(describe_vector): Do not descibe deeper char-table if
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86, 87, 88, 93, 94, 95 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33
34 #define min(a, b) ((a) < (b) ? (a) : (b))
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Keymap mapping ASCII function key sequences onto their preferred forms.
75 Initialized by the terminal-specific lisp files. See DEFVAR for more
76 documentation. */
77 Lisp_Object Vfunction_key_map;
78
79 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
80 Lisp_Object Vkey_translation_map;
81
82 /* A list of all commands given new bindings since a certain time
83 when nil was stored here.
84 This is used to speed up recomputation of menu key equivalents
85 when Emacs starts up. t means don't record anything here. */
86 Lisp_Object Vdefine_key_rebound_commands;
87
88 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii;
89
90 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
91 in a string key sequence is equivalent to prefixing with this
92 character. */
93 extern Lisp_Object meta_prefix_char;
94
95 extern Lisp_Object Voverriding_local_map;
96
97 static Lisp_Object define_as_prefix ();
98 static Lisp_Object describe_buffer_bindings ();
99 static void describe_command (), describe_translation ();
100 static void describe_map ();
101 \f
102 /* Keymap object support - constructors and predicates. */
103
104 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
105 "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
106 VECTOR is a vector which holds the bindings for the ASCII\n\
107 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
108 mouse events, and any other things that appear in the input stream.\n\
109 All entries in it are initially nil, meaning \"command undefined\".\n\n\
110 The optional arg STRING supplies a menu name for the keymap\n\
111 in case you use it as a menu with `x-popup-menu'.")
112 (string)
113 Lisp_Object string;
114 {
115 Lisp_Object tail;
116 if (!NILP (string))
117 tail = Fcons (string, Qnil);
118 else
119 tail = Qnil;
120 return Fcons (Qkeymap,
121 Fcons (Fmake_vector (make_number (DENSE_TABLE_SIZE), Qnil),
122 tail));
123 }
124
125 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
126 "Construct and return a new sparse-keymap list.\n\
127 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
128 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
129 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
130 Initially the alist is nil.\n\n\
131 The optional arg STRING supplies a menu name for the keymap\n\
132 in case you use it as a menu with `x-popup-menu'.")
133 (string)
134 Lisp_Object string;
135 {
136 if (!NILP (string))
137 return Fcons (Qkeymap, Fcons (string, Qnil));
138 return Fcons (Qkeymap, Qnil);
139 }
140
141 /* This function is used for installing the standard key bindings
142 at initialization time.
143
144 For example:
145
146 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
147
148 void
149 initial_define_key (keymap, key, defname)
150 Lisp_Object keymap;
151 int key;
152 char *defname;
153 {
154 store_in_keymap (keymap, make_number (key), intern (defname));
155 }
156
157 void
158 initial_define_lispy_key (keymap, keyname, defname)
159 Lisp_Object keymap;
160 char *keyname;
161 char *defname;
162 {
163 store_in_keymap (keymap, intern (keyname), intern (defname));
164 }
165
166 /* Define character fromchar in map frommap as an alias for character
167 tochar in map tomap. Subsequent redefinitions of the latter WILL
168 affect the former. */
169
170 #if 0
171 void
172 synkey (frommap, fromchar, tomap, tochar)
173 struct Lisp_Vector *frommap, *tomap;
174 int fromchar, tochar;
175 {
176 Lisp_Object v, c;
177 XSETVECTOR (v, tomap);
178 XSETFASTINT (c, tochar);
179 frommap->contents[fromchar] = Fcons (v, c);
180 }
181 #endif /* 0 */
182
183 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
184 "Return t if OBJECT is a keymap.\n\
185 \n\
186 A keymap is a list (keymap . ALIST),\n\
187 or a symbol whose function definition is itself a keymap.\n\
188 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
189 a vector of densely packed bindings for small character codes\n\
190 is also allowed as an element.")
191 (object)
192 Lisp_Object object;
193 {
194 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
195 }
196
197 /* Check that OBJECT is a keymap (after dereferencing through any
198 symbols). If it is, return it.
199
200 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
201 is an autoload form, do the autoload and try again.
202 If AUTOLOAD is nonzero, callers must assume GC is possible.
203
204 ERROR controls how we respond if OBJECT isn't a keymap.
205 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
206
207 Note that most of the time, we don't want to pursue autoloads.
208 Functions like Faccessible_keymaps which scan entire keymap trees
209 shouldn't load every autoloaded keymap. I'm not sure about this,
210 but it seems to me that only read_key_sequence, Flookup_key, and
211 Fdefine_key should cause keymaps to be autoloaded. */
212
213 Lisp_Object
214 get_keymap_1 (object, error, autoload)
215 Lisp_Object object;
216 int error, autoload;
217 {
218 Lisp_Object tem;
219
220 autoload_retry:
221 tem = indirect_function (object);
222 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
223 return tem;
224
225 /* Should we do an autoload? Autoload forms for keymaps have
226 Qkeymap as their fifth element. */
227 if (autoload
228 && SYMBOLP (object)
229 && CONSP (tem)
230 && EQ (XCONS (tem)->car, Qautoload))
231 {
232 Lisp_Object tail;
233
234 tail = Fnth (make_number (4), tem);
235 if (EQ (tail, Qkeymap))
236 {
237 struct gcpro gcpro1, gcpro2;
238
239 GCPRO2 (tem, object);
240 do_autoload (tem, object);
241 UNGCPRO;
242
243 goto autoload_retry;
244 }
245 }
246
247 if (error)
248 wrong_type_argument (Qkeymapp, object);
249 else
250 return Qnil;
251 }
252
253
254 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
255 If OBJECT doesn't denote a keymap at all, signal an error. */
256 Lisp_Object
257 get_keymap (object)
258 Lisp_Object object;
259 {
260 return get_keymap_1 (object, 1, 0);
261 }
262 \f
263 /* Return the parent map of the keymap MAP, or nil if it has none.
264 We assume that MAP is a valid keymap. */
265
266 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
267 "Return the parent keymap of KEYMAP.")
268 (keymap)
269 Lisp_Object keymap;
270 {
271 Lisp_Object list;
272
273 keymap = get_keymap_1 (keymap, 1, 1);
274
275 /* Skip past the initial element `keymap'. */
276 list = XCONS (keymap)->cdr;
277 for (; CONSP (list); list = XCONS (list)->cdr)
278 {
279 /* See if there is another `keymap'. */
280 if (EQ (Qkeymap, XCONS (list)->car))
281 return list;
282 }
283
284 return Qnil;
285 }
286
287 /* Set the parent keymap of MAP to PARENT. */
288
289 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
290 "Modify KEYMAP to set its parent map to PARENT.\n\
291 PARENT should be nil or another keymap.")
292 (keymap, parent)
293 Lisp_Object keymap, parent;
294 {
295 Lisp_Object list, prev;
296 int i;
297
298 keymap = get_keymap_1 (keymap, 1, 1);
299 if (!NILP (parent))
300 parent = get_keymap_1 (parent, 1, 1);
301
302 /* Skip past the initial element `keymap'. */
303 prev = keymap;
304 while (1)
305 {
306 list = XCONS (prev)->cdr;
307 /* If there is a parent keymap here, replace it.
308 If we came to the end, add the parent in PREV. */
309 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
310 {
311 /* If we already have the right parent, return now
312 so that we avoid the loops below. */
313 if (EQ (XCONS (prev)->cdr, parent))
314 return parent;
315
316 XCONS (prev)->cdr = parent;
317 break;
318 }
319 prev = list;
320 }
321
322 /* Scan through for submaps, and set their parents too. */
323
324 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
325 {
326 /* Stop the scan when we come to the parent. */
327 if (EQ (XCONS (list)->car, Qkeymap))
328 break;
329
330 /* If this element holds a prefix map, deal with it. */
331 if (CONSP (XCONS (list)->car)
332 && CONSP (XCONS (XCONS (list)->car)->cdr))
333 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
334 XCONS (XCONS (list)->car)->cdr);
335
336 if (VECTORP (XCONS (list)->car))
337 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
338 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
339 fix_submap_inheritance (keymap, make_number (i),
340 XVECTOR (XCONS (list)->car)->contents[i]);
341 }
342
343 return parent;
344 }
345
346 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
347 if EVENT is also a prefix in MAP's parent,
348 make sure that SUBMAP inherits that definition as its own parent. */
349
350 fix_submap_inheritance (map, event, submap)
351 Lisp_Object map, event, submap;
352 {
353 Lisp_Object map_parent, parent_entry;
354
355 /* SUBMAP is a cons that we found as a key binding.
356 Discard the other things found in a menu key binding. */
357
358 if (CONSP (submap)
359 && STRINGP (XCONS (submap)->car))
360 {
361 submap = XCONS (submap)->cdr;
362 /* Also remove a menu help string, if any,
363 following the menu item name. */
364 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
365 submap = XCONS (submap)->cdr;
366 /* Also remove the sublist that caches key equivalences, if any. */
367 if (CONSP (submap)
368 && CONSP (XCONS (submap)->car))
369 {
370 Lisp_Object carcar;
371 carcar = XCONS (XCONS (submap)->car)->car;
372 if (NILP (carcar) || VECTORP (carcar))
373 submap = XCONS (submap)->cdr;
374 }
375 }
376
377 /* If it isn't a keymap now, there's no work to do. */
378 if (! CONSP (submap)
379 || ! EQ (XCONS (submap)->car, Qkeymap))
380 return;
381
382 map_parent = Fkeymap_parent (map);
383 if (! NILP (map_parent))
384 parent_entry = access_keymap (map_parent, event, 0, 0);
385 else
386 parent_entry = Qnil;
387
388 /* If MAP's parent has something other than a keymap,
389 our own submap shadows it completely, so use nil as SUBMAP's parent. */
390 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
391 parent_entry = Qnil;
392
393 if (! EQ (parent_entry, submap))
394 Fset_keymap_parent (submap, parent_entry);
395 }
396 \f
397 /* Look up IDX in MAP. IDX may be any sort of event.
398 Note that this does only one level of lookup; IDX must be a single
399 event, not a sequence.
400
401 If T_OK is non-zero, bindings for Qt are treated as default
402 bindings; any key left unmentioned by other tables and bindings is
403 given the binding of Qt.
404
405 If T_OK is zero, bindings for Qt are not treated specially.
406
407 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
408
409 Lisp_Object
410 access_keymap (map, idx, t_ok, noinherit)
411 Lisp_Object map;
412 Lisp_Object idx;
413 int t_ok;
414 int noinherit;
415 {
416 int noprefix = 0;
417 Lisp_Object val;
418
419 /* If idx is a list (some sort of mouse click, perhaps?),
420 the index we want to use is the car of the list, which
421 ought to be a symbol. */
422 idx = EVENT_HEAD (idx);
423
424 /* If idx is a symbol, it might have modifiers, which need to
425 be put in the canonical order. */
426 if (SYMBOLP (idx))
427 idx = reorder_modifiers (idx);
428 else if (INTEGERP (idx))
429 /* Clobber the high bits that can be present on a machine
430 with more than 24 bits of integer. */
431 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
432
433 {
434 Lisp_Object tail;
435 Lisp_Object t_binding;
436
437 t_binding = Qnil;
438 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
439 {
440 Lisp_Object binding;
441
442 binding = XCONS (tail)->car;
443 if (SYMBOLP (binding))
444 {
445 /* If NOINHERIT, stop finding prefix definitions
446 after we pass a second occurrence of the `keymap' symbol. */
447 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
448 noprefix = 1;
449 }
450 else if (CONSP (binding))
451 {
452 if (EQ (XCONS (binding)->car, idx))
453 {
454 val = XCONS (binding)->cdr;
455 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
456 return Qnil;
457 if (CONSP (val))
458 fix_submap_inheritance (map, idx, val);
459 return val;
460 }
461 if (t_ok && EQ (XCONS (binding)->car, Qt))
462 t_binding = XCONS (binding)->cdr;
463 }
464 else if (VECTORP (binding))
465 {
466 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
467 {
468 val = XVECTOR (binding)->contents[XFASTINT (idx)];
469 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
470 return Qnil;
471 if (CONSP (val))
472 fix_submap_inheritance (map, idx, val);
473 return val;
474 }
475 }
476
477 QUIT;
478 }
479
480 return t_binding;
481 }
482 }
483
484 /* Given OBJECT which was found in a slot in a keymap,
485 trace indirect definitions to get the actual definition of that slot.
486 An indirect definition is a list of the form
487 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
488 and INDEX is the object to look up in KEYMAP to yield the definition.
489
490 Also if OBJECT has a menu string as the first element,
491 remove that. Also remove a menu help string as second element.
492
493 If AUTOLOAD is nonzero, load autoloadable keymaps
494 that are referred to with indirection. */
495
496 Lisp_Object
497 get_keyelt (object, autoload)
498 register Lisp_Object object;
499 int autoload;
500 {
501 while (1)
502 {
503 register Lisp_Object map, tem;
504
505 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
506 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
507 tem = Fkeymapp (map);
508 if (!NILP (tem))
509 object = access_keymap (map, Fcdr (object), 0, 0);
510
511 /* If the keymap contents looks like (STRING . DEFN),
512 use DEFN.
513 Keymap alist elements like (CHAR MENUSTRING . DEFN)
514 will be used by HierarKey menus. */
515 else if (CONSP (object)
516 && STRINGP (XCONS (object)->car))
517 {
518 object = XCONS (object)->cdr;
519 /* Also remove a menu help string, if any,
520 following the menu item name. */
521 if (CONSP (object) && STRINGP (XCONS (object)->car))
522 object = XCONS (object)->cdr;
523 /* Also remove the sublist that caches key equivalences, if any. */
524 if (CONSP (object)
525 && CONSP (XCONS (object)->car))
526 {
527 Lisp_Object carcar;
528 carcar = XCONS (XCONS (object)->car)->car;
529 if (NILP (carcar) || VECTORP (carcar))
530 object = XCONS (object)->cdr;
531 }
532 }
533
534 else
535 /* Anything else is really the value. */
536 return object;
537 }
538 }
539
540 Lisp_Object
541 store_in_keymap (keymap, idx, def)
542 Lisp_Object keymap;
543 register Lisp_Object idx;
544 register Lisp_Object def;
545 {
546 /* If we are preparing to dump, and DEF is a menu element
547 with a menu item string, copy it to ensure it is not pure. */
548 if (CONSP (def) && PURE_P (def) && STRINGP (XCONS (def)->car))
549 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
550
551 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
552 error ("attempt to define a key in a non-keymap");
553
554 /* If idx is a list (some sort of mouse click, perhaps?),
555 the index we want to use is the car of the list, which
556 ought to be a symbol. */
557 idx = EVENT_HEAD (idx);
558
559 /* If idx is a symbol, it might have modifiers, which need to
560 be put in the canonical order. */
561 if (SYMBOLP (idx))
562 idx = reorder_modifiers (idx);
563 else if (INTEGERP (idx))
564 /* Clobber the high bits that can be present on a machine
565 with more than 24 bits of integer. */
566 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
567
568 /* Scan the keymap for a binding of idx. */
569 {
570 Lisp_Object tail;
571
572 /* The cons after which we should insert new bindings. If the
573 keymap has a table element, we record its position here, so new
574 bindings will go after it; this way, the table will stay
575 towards the front of the alist and character lookups in dense
576 keymaps will remain fast. Otherwise, this just points at the
577 front of the keymap. */
578 Lisp_Object insertion_point;
579
580 insertion_point = keymap;
581 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
582 {
583 Lisp_Object elt;
584
585 elt = XCONS (tail)->car;
586 if (VECTORP (elt))
587 {
588 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
589 {
590 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
591 return def;
592 }
593 insertion_point = tail;
594 }
595 else if (CONSP (elt))
596 {
597 if (EQ (idx, XCONS (elt)->car))
598 {
599 XCONS (elt)->cdr = def;
600 return def;
601 }
602 }
603 else if (SYMBOLP (elt))
604 {
605 /* If we find a 'keymap' symbol in the spine of KEYMAP,
606 then we must have found the start of a second keymap
607 being used as the tail of KEYMAP, and a binding for IDX
608 should be inserted before it. */
609 if (EQ (elt, Qkeymap))
610 goto keymap_end;
611 }
612
613 QUIT;
614 }
615
616 keymap_end:
617 /* We have scanned the entire keymap, and not found a binding for
618 IDX. Let's add one. */
619 XCONS (insertion_point)->cdr
620 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
621 }
622
623 return def;
624 }
625
626
627 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
628 "Return a copy of the keymap KEYMAP.\n\
629 The copy starts out with the same definitions of KEYMAP,\n\
630 but changing either the copy or KEYMAP does not affect the other.\n\
631 Any key definitions that are subkeymaps are recursively copied.\n\
632 However, a key definition which is a symbol whose definition is a keymap\n\
633 is not copied.")
634 (keymap)
635 Lisp_Object keymap;
636 {
637 register Lisp_Object copy, tail;
638
639 copy = Fcopy_alist (get_keymap (keymap));
640
641 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
642 {
643 Lisp_Object elt;
644
645 elt = XCONS (tail)->car;
646 if (VECTORP (elt))
647 {
648 int i;
649
650 elt = Fcopy_sequence (elt);
651 XCONS (tail)->car = elt;
652
653 for (i = 0; i < XVECTOR (elt)->size; i++)
654 if (!SYMBOLP (XVECTOR (elt)->contents[i])
655 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
656 XVECTOR (elt)->contents[i] =
657 Fcopy_keymap (XVECTOR (elt)->contents[i]);
658 }
659 else if (CONSP (elt))
660 {
661 /* Skip the optional menu string. */
662 if (CONSP (XCONS (elt)->cdr)
663 && STRINGP (XCONS (XCONS (elt)->cdr)->car))
664 {
665 Lisp_Object tem;
666
667 /* Copy the cell, since copy-alist didn't go this deep. */
668 XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
669 XCONS (XCONS (elt)->cdr)->cdr);
670 elt = XCONS (elt)->cdr;
671
672 /* Also skip the optional menu help string. */
673 if (CONSP (XCONS (elt)->cdr)
674 && STRINGP (XCONS (XCONS (elt)->cdr)->car))
675 {
676 XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
677 XCONS (XCONS (elt)->cdr)->cdr);
678 elt = XCONS (elt)->cdr;
679 }
680 /* There may also be a list that caches key equivalences.
681 Just delete it for the new keymap. */
682 if (CONSP (XCONS (elt)->cdr)
683 && CONSP (XCONS (XCONS (elt)->cdr)->car)
684 && (NILP (tem = XCONS (XCONS (XCONS (elt)->cdr)->car)->car)
685 || VECTORP (tem)))
686 XCONS (elt)->cdr = XCONS (XCONS (elt)->cdr)->cdr;
687 }
688 if (CONSP (elt)
689 && ! SYMBOLP (XCONS (elt)->cdr)
690 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
691 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
692 }
693 }
694
695 return copy;
696 }
697 \f
698 /* Simple Keymap mutators and accessors. */
699
700 /* GC is possible in this function if it autoloads a keymap. */
701
702 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
703 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
704 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
705 meaning a sequence of keystrokes and events.\n\
706 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
707 can be included if you use a vector.\n\
708 DEF is anything that can be a key's definition:\n\
709 nil (means key is undefined in this keymap),\n\
710 a command (a Lisp function suitable for interactive calling)\n\
711 a string (treated as a keyboard macro),\n\
712 a keymap (to define a prefix key),\n\
713 a symbol. When the key is looked up, the symbol will stand for its\n\
714 function definition, which should at that time be one of the above,\n\
715 or another symbol whose function definition is used, etc.\n\
716 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
717 (DEFN should be a valid definition in its own right),\n\
718 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
719 \n\
720 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
721 the front of KEYMAP.")
722 (keymap, key, def)
723 Lisp_Object keymap;
724 Lisp_Object key;
725 Lisp_Object def;
726 {
727 register int idx;
728 register Lisp_Object c;
729 register Lisp_Object tem;
730 register Lisp_Object cmd;
731 int metized = 0;
732 int meta_bit;
733 int length;
734 struct gcpro gcpro1, gcpro2, gcpro3;
735
736 keymap = get_keymap_1 (keymap, 1, 1);
737
738 if (!VECTORP (key) && !STRINGP (key))
739 key = wrong_type_argument (Qarrayp, key);
740
741 length = XFASTINT (Flength (key));
742 if (length == 0)
743 return Qnil;
744
745 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
746 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
747
748 GCPRO3 (keymap, key, def);
749
750 if (VECTORP (key))
751 meta_bit = meta_modifier;
752 else
753 meta_bit = 0x80;
754
755 idx = 0;
756 while (1)
757 {
758 c = Faref (key, make_number (idx));
759
760 if (CONSP (c) && lucid_event_type_list_p (c))
761 c = Fevent_convert_list (c);
762
763 if (INTEGERP (c)
764 && (XINT (c) & meta_bit)
765 && !metized)
766 {
767 c = meta_prefix_char;
768 metized = 1;
769 }
770 else
771 {
772 if (INTEGERP (c))
773 XSETINT (c, XINT (c) & ~meta_bit);
774
775 metized = 0;
776 idx++;
777 }
778
779 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
780 error ("Key sequence contains invalid events");
781
782 if (idx == length)
783 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
784
785 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
786
787 /* If this key is undefined, make it a prefix. */
788 if (NILP (cmd))
789 cmd = define_as_prefix (keymap, c);
790
791 keymap = get_keymap_1 (cmd, 0, 1);
792 if (NILP (keymap))
793 /* We must use Fkey_description rather than just passing key to
794 error; key might be a vector, not a string. */
795 error ("Key sequence %s uses invalid prefix characters",
796 XSTRING (Fkey_description (key))->data);
797 }
798 }
799
800 /* Value is number if KEY is too long; NIL if valid but has no definition. */
801 /* GC is possible in this function if it autoloads a keymap. */
802
803 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
804 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
805 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
806 \n\
807 A number as value means KEY is \"too long\";\n\
808 that is, characters or symbols in it except for the last one\n\
809 fail to be a valid sequence of prefix characters in KEYMAP.\n\
810 The number is how many characters at the front of KEY\n\
811 it takes to reach a non-prefix command.\n\
812 \n\
813 Normally, `lookup-key' ignores bindings for t, which act as default\n\
814 bindings, used when nothing else in the keymap applies; this makes it\n\
815 usable as a general function for probing keymaps. However, if the\n\
816 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
817 recognize the default bindings, just as `read-key-sequence' does.")
818 (keymap, key, accept_default)
819 register Lisp_Object keymap;
820 Lisp_Object key;
821 Lisp_Object accept_default;
822 {
823 register int idx;
824 register Lisp_Object tem;
825 register Lisp_Object cmd;
826 register Lisp_Object c;
827 int metized = 0;
828 int length;
829 int t_ok = ! NILP (accept_default);
830 int meta_bit;
831 struct gcpro gcpro1;
832
833 keymap = get_keymap_1 (keymap, 1, 1);
834
835 if (!VECTORP (key) && !STRINGP (key))
836 key = wrong_type_argument (Qarrayp, key);
837
838 length = XFASTINT (Flength (key));
839 if (length == 0)
840 return keymap;
841
842 if (VECTORP (key))
843 meta_bit = meta_modifier;
844 else
845 meta_bit = 0x80;
846
847 GCPRO1 (key);
848
849 idx = 0;
850 while (1)
851 {
852 c = Faref (key, make_number (idx));
853
854 if (CONSP (c) && lucid_event_type_list_p (c))
855 c = Fevent_convert_list (c);
856
857 if (INTEGERP (c)
858 && (XINT (c) & meta_bit)
859 && !metized)
860 {
861 c = meta_prefix_char;
862 metized = 1;
863 }
864 else
865 {
866 if (INTEGERP (c))
867 XSETINT (c, XINT (c) & ~meta_bit);
868
869 metized = 0;
870 idx++;
871 }
872
873 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
874 if (idx == length)
875 RETURN_UNGCPRO (cmd);
876
877 keymap = get_keymap_1 (cmd, 0, 1);
878 if (NILP (keymap))
879 RETURN_UNGCPRO (make_number (idx));
880
881 QUIT;
882 }
883 }
884
885 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
886 Assume that currently it does not define C at all.
887 Return the keymap. */
888
889 static Lisp_Object
890 define_as_prefix (keymap, c)
891 Lisp_Object keymap, c;
892 {
893 Lisp_Object inherit, cmd;
894
895 cmd = Fmake_sparse_keymap (Qnil);
896 /* If this key is defined as a prefix in an inherited keymap,
897 make it a prefix in this map, and make its definition
898 inherit the other prefix definition. */
899 inherit = access_keymap (keymap, c, 0, 0);
900 #if 0
901 /* This code is needed to do the right thing in the following case:
902 keymap A inherits from B,
903 you define KEY as a prefix in A,
904 then later you define KEY as a prefix in B.
905 We want the old prefix definition in A to inherit from that in B.
906 It is hard to do that retroactively, so this code
907 creates the prefix in B right away.
908
909 But it turns out that this code causes problems immediately
910 when the prefix in A is defined: it causes B to define KEY
911 as a prefix with no subcommands.
912
913 So I took out this code. */
914 if (NILP (inherit))
915 {
916 /* If there's an inherited keymap
917 and it doesn't define this key,
918 make it define this key. */
919 Lisp_Object tail;
920
921 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
922 if (EQ (XCONS (tail)->car, Qkeymap))
923 break;
924
925 if (!NILP (tail))
926 inherit = define_as_prefix (tail, c);
927 }
928 #endif
929
930 cmd = nconc2 (cmd, inherit);
931 store_in_keymap (keymap, c, cmd);
932
933 return cmd;
934 }
935
936 /* Append a key to the end of a key sequence. We always make a vector. */
937
938 Lisp_Object
939 append_key (key_sequence, key)
940 Lisp_Object key_sequence, key;
941 {
942 Lisp_Object args[2];
943
944 args[0] = key_sequence;
945
946 args[1] = Fcons (key, Qnil);
947 return Fvconcat (2, args);
948 }
949
950 \f
951 /* Global, local, and minor mode keymap stuff. */
952
953 /* We can't put these variables inside current_minor_maps, since under
954 some systems, static gets macro-defined to be the empty string.
955 Ickypoo. */
956 static Lisp_Object *cmm_modes, *cmm_maps;
957 static int cmm_size;
958
959 /* Error handler used in current_minor_maps. */
960 static Lisp_Object
961 current_minor_maps_error ()
962 {
963 return Qnil;
964 }
965
966 /* Store a pointer to an array of the keymaps of the currently active
967 minor modes in *buf, and return the number of maps it contains.
968
969 This function always returns a pointer to the same buffer, and may
970 free or reallocate it, so if you want to keep it for a long time or
971 hand it out to lisp code, copy it. This procedure will be called
972 for every key sequence read, so the nice lispy approach (return a
973 new assoclist, list, what have you) for each invocation would
974 result in a lot of consing over time.
975
976 If we used xrealloc/xmalloc and ran out of memory, they would throw
977 back to the command loop, which would try to read a key sequence,
978 which would call this function again, resulting in an infinite
979 loop. Instead, we'll use realloc/malloc and silently truncate the
980 list, let the key sequence be read, and hope some other piece of
981 code signals the error. */
982 int
983 current_minor_maps (modeptr, mapptr)
984 Lisp_Object **modeptr, **mapptr;
985 {
986 int i = 0;
987 Lisp_Object alist, assoc, var, val;
988
989 for (alist = Vminor_mode_map_alist;
990 CONSP (alist);
991 alist = XCONS (alist)->cdr)
992 if ((assoc = XCONS (alist)->car, CONSP (assoc))
993 && (var = XCONS (assoc)->car, SYMBOLP (var))
994 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
995 && ! NILP (val))
996 {
997 Lisp_Object temp;
998
999 if (i >= cmm_size)
1000 {
1001 Lisp_Object *newmodes, *newmaps;
1002
1003 if (cmm_maps)
1004 {
1005 BLOCK_INPUT;
1006 cmm_size *= 2;
1007 newmodes
1008 = (Lisp_Object *) realloc (cmm_modes,
1009 cmm_size * sizeof (Lisp_Object));
1010 newmaps
1011 = (Lisp_Object *) realloc (cmm_maps,
1012 cmm_size * sizeof (Lisp_Object));
1013 UNBLOCK_INPUT;
1014 }
1015 else
1016 {
1017 BLOCK_INPUT;
1018 cmm_size = 30;
1019 newmodes
1020 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1021 newmaps
1022 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1023 UNBLOCK_INPUT;
1024 }
1025
1026 if (newmaps && newmodes)
1027 {
1028 cmm_modes = newmodes;
1029 cmm_maps = newmaps;
1030 }
1031 else
1032 break;
1033 }
1034
1035 /* Get the keymap definition--or nil if it is not defined. */
1036 temp = internal_condition_case_1 (Findirect_function,
1037 XCONS (assoc)->cdr,
1038 Qerror, current_minor_maps_error);
1039 if (!NILP (temp))
1040 {
1041 cmm_modes[i] = var;
1042 cmm_maps [i] = temp;
1043 i++;
1044 }
1045 }
1046
1047 if (modeptr) *modeptr = cmm_modes;
1048 if (mapptr) *mapptr = cmm_maps;
1049 return i;
1050 }
1051
1052 /* GC is possible in this function if it autoloads a keymap. */
1053
1054 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1055 "Return the binding for command KEY in current keymaps.\n\
1056 KEY is a string or vector, a sequence of keystrokes.\n\
1057 The binding is probably a symbol with a function definition.\n\
1058 \n\
1059 Normally, `key-binding' ignores bindings for t, which act as default\n\
1060 bindings, used when nothing else in the keymap applies; this makes it\n\
1061 usable as a general function for probing keymaps. However, if the\n\
1062 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1063 recognize the default bindings, just as `read-key-sequence' does.")
1064 (key, accept_default)
1065 Lisp_Object key, accept_default;
1066 {
1067 Lisp_Object *maps, value;
1068 int nmaps, i;
1069 struct gcpro gcpro1;
1070
1071 GCPRO1 (key);
1072
1073 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1074 {
1075 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1076 key, accept_default);
1077 if (! NILP (value) && !INTEGERP (value))
1078 RETURN_UNGCPRO (value);
1079 }
1080 else if (!NILP (Voverriding_local_map))
1081 {
1082 value = Flookup_key (Voverriding_local_map, key, accept_default);
1083 if (! NILP (value) && !INTEGERP (value))
1084 RETURN_UNGCPRO (value);
1085 }
1086 else
1087 {
1088 Lisp_Object local;
1089
1090 nmaps = current_minor_maps (0, &maps);
1091 /* Note that all these maps are GCPRO'd
1092 in the places where we found them. */
1093
1094 for (i = 0; i < nmaps; i++)
1095 if (! NILP (maps[i]))
1096 {
1097 value = Flookup_key (maps[i], key, accept_default);
1098 if (! NILP (value) && !INTEGERP (value))
1099 RETURN_UNGCPRO (value);
1100 }
1101
1102 local = get_local_map (PT, current_buffer);
1103
1104 if (! NILP (local))
1105 {
1106 value = Flookup_key (local, key, accept_default);
1107 if (! NILP (value) && !INTEGERP (value))
1108 RETURN_UNGCPRO (value);
1109 }
1110 }
1111
1112 value = Flookup_key (current_global_map, key, accept_default);
1113 UNGCPRO;
1114 if (! NILP (value) && !INTEGERP (value))
1115 return value;
1116
1117 return Qnil;
1118 }
1119
1120 /* GC is possible in this function if it autoloads a keymap. */
1121
1122 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1123 "Return the binding for command KEYS in current local keymap only.\n\
1124 KEYS is a string, a sequence of keystrokes.\n\
1125 The binding is probably a symbol with a function definition.\n\
1126 \n\
1127 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1128 bindings; see the description of `lookup-key' for more details about this.")
1129 (keys, accept_default)
1130 Lisp_Object keys, accept_default;
1131 {
1132 register Lisp_Object map;
1133 map = current_buffer->keymap;
1134 if (NILP (map))
1135 return Qnil;
1136 return Flookup_key (map, keys, accept_default);
1137 }
1138
1139 /* GC is possible in this function if it autoloads a keymap. */
1140
1141 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1142 "Return the binding for command KEYS in current global keymap only.\n\
1143 KEYS is a string, a sequence of keystrokes.\n\
1144 The binding is probably a symbol with a function definition.\n\
1145 This function's return values are the same as those of lookup-key\n\
1146 \(which see).\n\
1147 \n\
1148 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1149 bindings; see the description of `lookup-key' for more details about this.")
1150 (keys, accept_default)
1151 Lisp_Object keys, accept_default;
1152 {
1153 return Flookup_key (current_global_map, keys, accept_default);
1154 }
1155
1156 /* GC is possible in this function if it autoloads a keymap. */
1157
1158 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1159 "Find the visible minor mode bindings of KEY.\n\
1160 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1161 the symbol which names the minor mode binding KEY, and BINDING is\n\
1162 KEY's definition in that mode. In particular, if KEY has no\n\
1163 minor-mode bindings, return nil. If the first binding is a\n\
1164 non-prefix, all subsequent bindings will be omitted, since they would\n\
1165 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1166 that come after prefix bindings.\n\
1167 \n\
1168 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1169 bindings; see the description of `lookup-key' for more details about this.")
1170 (key, accept_default)
1171 Lisp_Object key, accept_default;
1172 {
1173 Lisp_Object *modes, *maps;
1174 int nmaps;
1175 Lisp_Object binding;
1176 int i, j;
1177 struct gcpro gcpro1, gcpro2;
1178
1179 nmaps = current_minor_maps (&modes, &maps);
1180 /* Note that all these maps are GCPRO'd
1181 in the places where we found them. */
1182
1183 binding = Qnil;
1184 GCPRO2 (key, binding);
1185
1186 for (i = j = 0; i < nmaps; i++)
1187 if (! NILP (maps[i])
1188 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1189 && !INTEGERP (binding))
1190 {
1191 if (! NILP (get_keymap (binding)))
1192 maps[j++] = Fcons (modes[i], binding);
1193 else if (j == 0)
1194 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1195 }
1196
1197 UNGCPRO;
1198 return Flist (j, maps);
1199 }
1200
1201 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
1202 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1203 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1204 If a second optional argument MAPVAR is given, the map is stored as\n\
1205 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1206 as a function.")
1207 (command, mapvar)
1208 Lisp_Object command, mapvar;
1209 {
1210 Lisp_Object map;
1211 map = Fmake_sparse_keymap (Qnil);
1212 Ffset (command, map);
1213 if (!NILP (mapvar))
1214 Fset (mapvar, map);
1215 else
1216 Fset (command, map);
1217 return command;
1218 }
1219
1220 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1221 "Select KEYMAP as the global keymap.")
1222 (keymap)
1223 Lisp_Object keymap;
1224 {
1225 keymap = get_keymap (keymap);
1226 current_global_map = keymap;
1227
1228 return Qnil;
1229 }
1230
1231 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1232 "Select KEYMAP as the local keymap.\n\
1233 If KEYMAP is nil, that means no local keymap.")
1234 (keymap)
1235 Lisp_Object keymap;
1236 {
1237 if (!NILP (keymap))
1238 keymap = get_keymap (keymap);
1239
1240 current_buffer->keymap = keymap;
1241
1242 return Qnil;
1243 }
1244
1245 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1246 "Return current buffer's local keymap, or nil if it has none.")
1247 ()
1248 {
1249 return current_buffer->keymap;
1250 }
1251
1252 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1253 "Return the current global keymap.")
1254 ()
1255 {
1256 return current_global_map;
1257 }
1258
1259 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1260 "Return a list of keymaps for the minor modes of the current buffer.")
1261 ()
1262 {
1263 Lisp_Object *maps;
1264 int nmaps = current_minor_maps (0, &maps);
1265
1266 return Flist (nmaps, maps);
1267 }
1268 \f
1269 /* Help functions for describing and documenting keymaps. */
1270
1271 /* This function cannot GC. */
1272
1273 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1274 1, 2, 0,
1275 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1276 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1277 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1278 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1279 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1280 then the value includes only maps for prefixes that start with PREFIX.")
1281 (keymap, prefix)
1282 Lisp_Object keymap, prefix;
1283 {
1284 Lisp_Object maps, good_maps, tail;
1285 int prefixlen = 0;
1286
1287 /* no need for gcpro because we don't autoload any keymaps. */
1288
1289 if (!NILP (prefix))
1290 prefixlen = XINT (Flength (prefix));
1291
1292 if (!NILP (prefix))
1293 {
1294 /* If a prefix was specified, start with the keymap (if any) for
1295 that prefix, so we don't waste time considering other prefixes. */
1296 Lisp_Object tem;
1297 tem = Flookup_key (keymap, prefix, Qt);
1298 /* Flookup_key may give us nil, or a number,
1299 if the prefix is not defined in this particular map.
1300 It might even give us a list that isn't a keymap. */
1301 tem = get_keymap_1 (tem, 0, 0);
1302 if (!NILP (tem))
1303 maps = Fcons (Fcons (prefix, tem), Qnil);
1304 else
1305 return Qnil;
1306 }
1307 else
1308 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1309 get_keymap (keymap)),
1310 Qnil);
1311
1312 /* For each map in the list maps,
1313 look at any other maps it points to,
1314 and stick them at the end if they are not already in the list.
1315
1316 This is a breadth-first traversal, where tail is the queue of
1317 nodes, and maps accumulates a list of all nodes visited. */
1318
1319 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1320 {
1321 register Lisp_Object thisseq, thismap;
1322 Lisp_Object last;
1323 /* Does the current sequence end in the meta-prefix-char? */
1324 int is_metized;
1325
1326 thisseq = Fcar (Fcar (tail));
1327 thismap = Fcdr (Fcar (tail));
1328 last = make_number (XINT (Flength (thisseq)) - 1);
1329 is_metized = (XINT (last) >= 0
1330 && EQ (Faref (thisseq, last), meta_prefix_char));
1331
1332 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1333 {
1334 Lisp_Object elt;
1335
1336 elt = XCONS (thismap)->car;
1337
1338 QUIT;
1339
1340 if (VECTORP (elt))
1341 {
1342 register int i;
1343
1344 /* Vector keymap. Scan all the elements. */
1345 for (i = 0; i < XVECTOR (elt)->size; i++)
1346 {
1347 register Lisp_Object tem;
1348 register Lisp_Object cmd;
1349
1350 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1351 if (NILP (cmd)) continue;
1352 tem = Fkeymapp (cmd);
1353 if (!NILP (tem))
1354 {
1355 cmd = get_keymap (cmd);
1356 /* Ignore keymaps that are already added to maps. */
1357 tem = Frassq (cmd, maps);
1358 if (NILP (tem))
1359 {
1360 /* If the last key in thisseq is meta-prefix-char,
1361 turn it into a meta-ized keystroke. We know
1362 that the event we're about to append is an
1363 ascii keystroke since we're processing a
1364 keymap table. */
1365 if (is_metized)
1366 {
1367 int meta_bit = meta_modifier;
1368 tem = Fcopy_sequence (thisseq);
1369
1370 Faset (tem, last, make_number (i | meta_bit));
1371
1372 /* This new sequence is the same length as
1373 thisseq, so stick it in the list right
1374 after this one. */
1375 XCONS (tail)->cdr
1376 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1377 }
1378 else
1379 {
1380 tem = append_key (thisseq, make_number (i));
1381 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1382 }
1383 }
1384 }
1385 }
1386 }
1387 else if (CONSP (elt))
1388 {
1389 register Lisp_Object cmd, tem, filter;
1390
1391 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1392 /* Ignore definitions that aren't keymaps themselves. */
1393 tem = Fkeymapp (cmd);
1394 if (!NILP (tem))
1395 {
1396 /* Ignore keymaps that have been seen already. */
1397 cmd = get_keymap (cmd);
1398 tem = Frassq (cmd, maps);
1399 if (NILP (tem))
1400 {
1401 /* Let elt be the event defined by this map entry. */
1402 elt = XCONS (elt)->car;
1403
1404 /* If the last key in thisseq is meta-prefix-char, and
1405 this entry is a binding for an ascii keystroke,
1406 turn it into a meta-ized keystroke. */
1407 if (is_metized && INTEGERP (elt))
1408 {
1409 tem = Fcopy_sequence (thisseq);
1410 Faset (tem, last,
1411 make_number (XINT (elt) | meta_modifier));
1412
1413 /* This new sequence is the same length as
1414 thisseq, so stick it in the list right
1415 after this one. */
1416 XCONS (tail)->cdr
1417 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1418 }
1419 else
1420 nconc2 (tail,
1421 Fcons (Fcons (append_key (thisseq, elt), cmd),
1422 Qnil));
1423 }
1424 }
1425 }
1426 }
1427 }
1428
1429 if (NILP (prefix))
1430 return maps;
1431
1432 /* Now find just the maps whose access prefixes start with PREFIX. */
1433
1434 good_maps = Qnil;
1435 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1436 {
1437 Lisp_Object elt, thisseq;
1438 elt = XCONS (maps)->car;
1439 thisseq = XCONS (elt)->car;
1440 /* The access prefix must be at least as long as PREFIX,
1441 and the first elements must match those of PREFIX. */
1442 if (XINT (Flength (thisseq)) >= prefixlen)
1443 {
1444 int i;
1445 for (i = 0; i < prefixlen; i++)
1446 {
1447 Lisp_Object i1;
1448 XSETFASTINT (i1, i);
1449 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1450 break;
1451 }
1452 if (i == prefixlen)
1453 good_maps = Fcons (elt, good_maps);
1454 }
1455 }
1456
1457 return Fnreverse (good_maps);
1458 }
1459
1460 Lisp_Object Qsingle_key_description, Qkey_description;
1461
1462 /* This function cannot GC. */
1463
1464 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1465 "Return a pretty description of key-sequence KEYS.\n\
1466 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1467 spaces are put between sequence elements, etc.")
1468 (keys)
1469 Lisp_Object keys;
1470 {
1471 int len;
1472 int i;
1473 Lisp_Object sep;
1474 Lisp_Object *args;
1475
1476 if (STRINGP (keys))
1477 {
1478 Lisp_Object vector;
1479 vector = Fmake_vector (Flength (keys), Qnil);
1480 for (i = 0; i < XSTRING (keys)->size; i++)
1481 {
1482 if (XSTRING (keys)->data[i] & 0x80)
1483 XSETFASTINT (XVECTOR (vector)->contents[i],
1484 meta_modifier | (XSTRING (keys)->data[i] & ~0x80));
1485 else
1486 XSETFASTINT (XVECTOR (vector)->contents[i],
1487 XSTRING (keys)->data[i]);
1488 }
1489 keys = vector;
1490 }
1491 else if (!VECTORP (keys))
1492 keys = wrong_type_argument (Qarrayp, keys);
1493
1494 /* In effect, this computes
1495 (mapconcat 'single-key-description keys " ")
1496 but we shouldn't use mapconcat because it can do GC. */
1497
1498 len = XVECTOR (keys)->size;
1499 sep = build_string (" ");
1500 /* This has one extra element at the end that we don't pass to Fconcat. */
1501 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1502
1503 for (i = 0; i < len; i++)
1504 {
1505 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1506 args[i * 2 + 1] = sep;
1507 }
1508
1509 return Fconcat (len * 2 - 1, args);
1510 }
1511
1512 char *
1513 push_key_description (c, p)
1514 register unsigned int c;
1515 register char *p;
1516 {
1517 /* Clear all the meaningless bits above the meta bit. */
1518 c &= meta_modifier | ~ - meta_modifier;
1519
1520 if (c & alt_modifier)
1521 {
1522 *p++ = 'A';
1523 *p++ = '-';
1524 c -= alt_modifier;
1525 }
1526 if (c & ctrl_modifier)
1527 {
1528 *p++ = 'C';
1529 *p++ = '-';
1530 c -= ctrl_modifier;
1531 }
1532 if (c & hyper_modifier)
1533 {
1534 *p++ = 'H';
1535 *p++ = '-';
1536 c -= hyper_modifier;
1537 }
1538 if (c & meta_modifier)
1539 {
1540 *p++ = 'M';
1541 *p++ = '-';
1542 c -= meta_modifier;
1543 }
1544 if (c & shift_modifier)
1545 {
1546 *p++ = 'S';
1547 *p++ = '-';
1548 c -= shift_modifier;
1549 }
1550 if (c & super_modifier)
1551 {
1552 *p++ = 's';
1553 *p++ = '-';
1554 c -= super_modifier;
1555 }
1556 if (c < 040)
1557 {
1558 if (c == 033)
1559 {
1560 *p++ = 'E';
1561 *p++ = 'S';
1562 *p++ = 'C';
1563 }
1564 else if (c == '\t')
1565 {
1566 *p++ = 'T';
1567 *p++ = 'A';
1568 *p++ = 'B';
1569 }
1570 else if (c == Ctl ('M'))
1571 {
1572 *p++ = 'R';
1573 *p++ = 'E';
1574 *p++ = 'T';
1575 }
1576 else
1577 {
1578 *p++ = 'C';
1579 *p++ = '-';
1580 if (c > 0 && c <= Ctl ('Z'))
1581 *p++ = c + 0140;
1582 else
1583 *p++ = c + 0100;
1584 }
1585 }
1586 else if (c == 0177)
1587 {
1588 *p++ = 'D';
1589 *p++ = 'E';
1590 *p++ = 'L';
1591 }
1592 else if (c == ' ')
1593 {
1594 *p++ = 'S';
1595 *p++ = 'P';
1596 *p++ = 'C';
1597 }
1598 else if (c < 128)
1599 *p++ = c;
1600 else if (c < 256)
1601 {
1602 if (current_buffer->enable_multibyte_characters)
1603 *p++ = c;
1604 else
1605 {
1606 *p++ = '\\';
1607 *p++ = (7 & (c >> 6)) + '0';
1608 *p++ = (7 & (c >> 3)) + '0';
1609 *p++ = (7 & (c >> 0)) + '0';
1610 }
1611 }
1612 else
1613 {
1614 *p++ = '\\';
1615 *p++ = (7 & (c >> 15)) + '0';
1616 *p++ = (7 & (c >> 12)) + '0';
1617 *p++ = (7 & (c >> 9)) + '0';
1618 *p++ = (7 & (c >> 6)) + '0';
1619 *p++ = (7 & (c >> 3)) + '0';
1620 *p++ = (7 & (c >> 0)) + '0';
1621 }
1622
1623 return p;
1624 }
1625
1626 /* This function cannot GC. */
1627
1628 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1629 "Return a pretty description of command character KEY.\n\
1630 Control characters turn into C-whatever, etc.")
1631 (key)
1632 Lisp_Object key;
1633 {
1634 char tem[20];
1635
1636 key = EVENT_HEAD (key);
1637
1638 if (INTEGERP (key)) /* Normal character */
1639 {
1640 *push_key_description (XUINT (key), tem) = 0;
1641 return build_string (tem);
1642 }
1643 else if (SYMBOLP (key)) /* Function key or event-symbol */
1644 return Fsymbol_name (key);
1645 else if (STRINGP (key)) /* Buffer names in the menubar. */
1646 return Fcopy_sequence (key);
1647 else
1648 error ("KEY must be an integer, cons, symbol, or string");
1649 }
1650
1651 char *
1652 push_text_char_description (c, p)
1653 register unsigned int c;
1654 register char *p;
1655 {
1656 if (c >= 0200)
1657 {
1658 *p++ = 'M';
1659 *p++ = '-';
1660 c -= 0200;
1661 }
1662 if (c < 040)
1663 {
1664 *p++ = '^';
1665 *p++ = c + 64; /* 'A' - 1 */
1666 }
1667 else if (c == 0177)
1668 {
1669 *p++ = '^';
1670 *p++ = '?';
1671 }
1672 else
1673 *p++ = c;
1674 return p;
1675 }
1676
1677 /* This function cannot GC. */
1678
1679 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1680 "Return a pretty description of file-character CHARACTER.\n\
1681 Control characters turn into \"^char\", etc.")
1682 (character)
1683 Lisp_Object character;
1684 {
1685 char tem[6];
1686
1687 CHECK_NUMBER (character, 0);
1688
1689 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1690 {
1691 char *str;
1692 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1693
1694 return make_string (str, len);
1695 }
1696
1697 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1698
1699 return build_string (tem);
1700 }
1701
1702 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1703 a meta bit. */
1704 static int
1705 ascii_sequence_p (seq)
1706 Lisp_Object seq;
1707 {
1708 int i;
1709 int len = XINT (Flength (seq));
1710
1711 for (i = 0; i < len; i++)
1712 {
1713 Lisp_Object ii, elt;
1714
1715 XSETFASTINT (ii, i);
1716 elt = Faref (seq, ii);
1717
1718 if (!INTEGERP (elt)
1719 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1720 return 0;
1721 }
1722
1723 return 1;
1724 }
1725
1726 \f
1727 /* where-is - finding a command in a set of keymaps. */
1728
1729 /* This function can GC if Flookup_key autoloads any keymaps. */
1730
1731 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
1732 "Return list of keys that invoke DEFINITION.\n\
1733 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
1734 If KEYMAP is nil, search all the currently active keymaps.\n\
1735 \n\
1736 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
1737 rather than a list of all possible key sequences.\n\
1738 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
1739 no matter what it is.\n\
1740 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
1741 and entirely reject menu bindings.\n\
1742 \n\
1743 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
1744 to other keymaps or slots. This makes it possible to search for an\n\
1745 indirect definition itself.")
1746 (definition, keymap, firstonly, noindirect)
1747 Lisp_Object definition, keymap;
1748 Lisp_Object firstonly, noindirect;
1749 {
1750 Lisp_Object maps;
1751 Lisp_Object found, sequence;
1752 int keymap_specified = !NILP (keymap);
1753 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
1754 /* 1 means ignore all menu bindings entirely. */
1755 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
1756
1757 if (! keymap_specified)
1758 {
1759 #ifdef USE_TEXT_PROPERTIES
1760 keymap = get_local_map (PT, current_buffer);
1761 #else
1762 keymap = current_buffer->keymap;
1763 #endif
1764 }
1765
1766 if (!NILP (keymap))
1767 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap), Qnil),
1768 Faccessible_keymaps (get_keymap (current_global_map),
1769 Qnil));
1770 else
1771 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
1772
1773 /* Put the minor mode keymaps on the front. */
1774 if (! keymap_specified)
1775 {
1776 Lisp_Object minors;
1777 minors = Fnreverse (Fcurrent_minor_mode_maps ());
1778 while (!NILP (minors))
1779 {
1780 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
1781 Qnil),
1782 maps);
1783 minors = XCONS (minors)->cdr;
1784 }
1785 }
1786
1787 GCPRO5 (definition, keymap, maps, found, sequence);
1788 found = Qnil;
1789 sequence = Qnil;
1790
1791 for (; !NILP (maps); maps = Fcdr (maps))
1792 {
1793 /* Key sequence to reach map, and the map that it reaches */
1794 register Lisp_Object this, map;
1795
1796 /* If Fcar (map) is a VECTOR, the current element within that vector. */
1797 int i = 0;
1798
1799 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
1800 [M-CHAR] sequences, check if last character of the sequence
1801 is the meta-prefix char. */
1802 Lisp_Object last;
1803 int last_is_meta;
1804
1805 this = Fcar (Fcar (maps));
1806 map = Fcdr (Fcar (maps));
1807 last = make_number (XINT (Flength (this)) - 1);
1808 last_is_meta = (XINT (last) >= 0
1809 && EQ (Faref (this, last), meta_prefix_char));
1810
1811 QUIT;
1812
1813 while (CONSP (map))
1814 {
1815 /* Because the code we want to run on each binding is rather
1816 large, we don't want to have two separate loop bodies for
1817 sparse keymap bindings and tables; we want to iterate one
1818 loop body over both keymap and vector bindings.
1819
1820 For this reason, if Fcar (map) is a vector, we don't
1821 advance map to the next element until i indicates that we
1822 have finished off the vector. */
1823
1824 Lisp_Object elt, key, binding;
1825 elt = XCONS (map)->car;
1826
1827 QUIT;
1828
1829 /* Set key and binding to the current key and binding, and
1830 advance map and i to the next binding. */
1831 if (VECTORP (elt))
1832 {
1833 /* In a vector, look at each element. */
1834 binding = XVECTOR (elt)->contents[i];
1835 XSETFASTINT (key, i);
1836 i++;
1837
1838 /* If we've just finished scanning a vector, advance map
1839 to the next element, and reset i in anticipation of the
1840 next vector we may find. */
1841 if (i >= XVECTOR (elt)->size)
1842 {
1843 map = XCONS (map)->cdr;
1844 i = 0;
1845 }
1846 }
1847 else if (CONSP (elt))
1848 {
1849 key = Fcar (Fcar (map));
1850 binding = Fcdr (Fcar (map));
1851
1852 map = XCONS (map)->cdr;
1853 }
1854 else
1855 /* We want to ignore keymap elements that are neither
1856 vectors nor conses. */
1857 {
1858 map = XCONS (map)->cdr;
1859 continue;
1860 }
1861
1862 /* Search through indirections unless that's not wanted. */
1863 if (NILP (noindirect))
1864 {
1865 if (nomenus)
1866 {
1867 while (1)
1868 {
1869 Lisp_Object map, tem;
1870 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
1871 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
1872 tem = Fkeymapp (map);
1873 if (!NILP (tem))
1874 definition = access_keymap (map, Fcdr (definition), 0, 0);
1875 else
1876 break;
1877 }
1878 /* If the contents are (STRING ...), reject. */
1879 if (CONSP (definition)
1880 && STRINGP (XCONS (definition)->car))
1881 continue;
1882 }
1883 else
1884 binding = get_keyelt (binding, 0);
1885 }
1886
1887 /* End this iteration if this element does not match
1888 the target. */
1889
1890 if (CONSP (definition))
1891 {
1892 Lisp_Object tem;
1893 tem = Fequal (binding, definition);
1894 if (NILP (tem))
1895 continue;
1896 }
1897 else
1898 if (!EQ (binding, definition))
1899 continue;
1900
1901 /* We have found a match.
1902 Construct the key sequence where we found it. */
1903 if (INTEGERP (key) && last_is_meta)
1904 {
1905 sequence = Fcopy_sequence (this);
1906 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
1907 }
1908 else
1909 sequence = append_key (this, key);
1910
1911 /* Verify that this key binding is not shadowed by another
1912 binding for the same key, before we say it exists.
1913
1914 Mechanism: look for local definition of this key and if
1915 it is defined and does not match what we found then
1916 ignore this key.
1917
1918 Either nil or number as value from Flookup_key
1919 means undefined. */
1920 if (keymap_specified)
1921 {
1922 binding = Flookup_key (keymap, sequence, Qnil);
1923 if (!NILP (binding) && !INTEGERP (binding))
1924 {
1925 if (CONSP (definition))
1926 {
1927 Lisp_Object tem;
1928 tem = Fequal (binding, definition);
1929 if (NILP (tem))
1930 continue;
1931 }
1932 else
1933 if (!EQ (binding, definition))
1934 continue;
1935 }
1936 }
1937 else
1938 {
1939 binding = Fkey_binding (sequence, Qnil);
1940 if (!EQ (binding, definition))
1941 continue;
1942 }
1943
1944 /* It is a true unshadowed match. Record it, unless it's already
1945 been seen (as could happen when inheriting keymaps). */
1946 if (NILP (Fmember (sequence, found)))
1947 found = Fcons (sequence, found);
1948
1949 /* If firstonly is Qnon_ascii, then we can return the first
1950 binding we find. If firstonly is not Qnon_ascii but not
1951 nil, then we should return the first ascii-only binding
1952 we find. */
1953 if (EQ (firstonly, Qnon_ascii))
1954 RETURN_UNGCPRO (sequence);
1955 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
1956 RETURN_UNGCPRO (sequence);
1957 }
1958 }
1959
1960 UNGCPRO;
1961
1962 found = Fnreverse (found);
1963
1964 /* firstonly may have been t, but we may have gone all the way through
1965 the keymaps without finding an all-ASCII key sequence. So just
1966 return the best we could find. */
1967 if (! NILP (firstonly))
1968 return Fcar (found);
1969
1970 return found;
1971 }
1972 \f
1973 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
1974
1975 DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 1, "",
1976 "Show a list of all defined keys, and their definitions.\n\
1977 The list is put in a buffer, which is displayed.\n\
1978 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1979 then we display only bindings that start with that prefix.")
1980 (prefix)
1981 Lisp_Object prefix;
1982 {
1983 register Lisp_Object thisbuf;
1984 XSETBUFFER (thisbuf, current_buffer);
1985 internal_with_output_to_temp_buffer ("*Help*",
1986 describe_buffer_bindings,
1987 Fcons (thisbuf, prefix));
1988 return Qnil;
1989 }
1990
1991 /* ARG is (BUFFER . PREFIX). */
1992
1993 static Lisp_Object
1994 describe_buffer_bindings (arg)
1995 Lisp_Object arg;
1996 {
1997 Lisp_Object descbuf, prefix, shadow;
1998 register Lisp_Object start1;
1999 struct gcpro gcpro1;
2000
2001 char *alternate_heading
2002 = "\
2003 Alternate Characters (use anywhere the nominal character is listed):\n\
2004 nominal alternate\n\
2005 ------- ---------\n";
2006
2007 descbuf = XCONS (arg)->car;
2008 prefix = XCONS (arg)->cdr;
2009 shadow = Qnil;
2010 GCPRO1 (shadow);
2011
2012 Fset_buffer (Vstandard_output);
2013
2014 /* Report on alternates for keys. */
2015 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2016 {
2017 int c;
2018 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2019 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2020
2021 for (c = 0; c < translate_len; c++)
2022 if (translate[c] != c)
2023 {
2024 char buf[20];
2025 char *bufend;
2026
2027 if (alternate_heading)
2028 {
2029 insert_string (alternate_heading);
2030 alternate_heading = 0;
2031 }
2032
2033 bufend = push_key_description (translate[c], buf);
2034 insert (buf, bufend - buf);
2035 Findent_to (make_number (16), make_number (1));
2036 bufend = push_key_description (c, buf);
2037 insert (buf, bufend - buf);
2038
2039 insert ("\n", 1);
2040 }
2041
2042 insert ("\n", 1);
2043 }
2044
2045 if (!NILP (Vkey_translation_map))
2046 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2047 "Key translations", 0, 1, 0);
2048
2049 {
2050 int i, nmaps;
2051 Lisp_Object *modes, *maps;
2052
2053 /* Temporarily switch to descbuf, so that we can get that buffer's
2054 minor modes correctly. */
2055 Fset_buffer (descbuf);
2056
2057 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2058 || !NILP (Voverriding_local_map))
2059 nmaps = 0;
2060 else
2061 nmaps = current_minor_maps (&modes, &maps);
2062 Fset_buffer (Vstandard_output);
2063
2064 /* Print the minor mode maps. */
2065 for (i = 0; i < nmaps; i++)
2066 {
2067 /* The title for a minor mode keymap
2068 is constructed at run time.
2069 We let describe_map_tree do the actual insertion
2070 because it takes care of other features when doing so. */
2071 char *title, *p;
2072
2073 if (!SYMBOLP (modes[i]))
2074 abort();
2075
2076 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2077 *p++ = '`';
2078 bcopy (XSYMBOL (modes[i])->name->data, p,
2079 XSYMBOL (modes[i])->name->size);
2080 p += XSYMBOL (modes[i])->name->size;
2081 *p++ = '\'';
2082 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2083 p += sizeof (" Minor Mode Bindings") - 1;
2084 *p = 0;
2085
2086 describe_map_tree (maps[i], 1, shadow, prefix, title, 0, 0, 0);
2087 shadow = Fcons (maps[i], shadow);
2088 }
2089 }
2090
2091 /* Print the (major mode) local map. */
2092 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2093 start1 = current_kboard->Voverriding_terminal_local_map;
2094 else if (!NILP (Voverriding_local_map))
2095 start1 = Voverriding_local_map;
2096 else
2097 start1 = XBUFFER (descbuf)->keymap;
2098
2099 if (!NILP (start1))
2100 {
2101 describe_map_tree (start1, 1, shadow, prefix,
2102 "Major Mode Bindings", 0, 0, 0);
2103 shadow = Fcons (start1, shadow);
2104 }
2105
2106 describe_map_tree (current_global_map, 1, shadow, prefix,
2107 "Global Bindings", 0, 0, 1);
2108
2109 /* Print the function-key-map translations under this prefix. */
2110 if (!NILP (Vfunction_key_map))
2111 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2112 "Function key map translations", 0, 1, 0);
2113
2114 call0 (intern ("help-mode"));
2115 Fset_buffer (descbuf);
2116 UNGCPRO;
2117 return Qnil;
2118 }
2119
2120 /* Insert a description of the key bindings in STARTMAP,
2121 followed by those of all maps reachable through STARTMAP.
2122 If PARTIAL is nonzero, omit certain "uninteresting" commands
2123 (such as `undefined').
2124 If SHADOW is non-nil, it is a list of maps;
2125 don't mention keys which would be shadowed by any of them.
2126 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2127 TITLE, if not 0, is a string to insert at the beginning.
2128 TITLE should not end with a colon or a newline; we supply that.
2129 If NOMENU is not 0, then omit menu-bar commands.
2130
2131 If TRANSL is nonzero, the definitions are actually key translations
2132 so print strings and vectors differently.
2133
2134 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2135 to look through. */
2136
2137 void
2138 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2139 always_title)
2140 Lisp_Object startmap, shadow, prefix;
2141 int partial;
2142 char *title;
2143 int nomenu;
2144 int transl;
2145 int always_title;
2146 {
2147 Lisp_Object maps, seen, sub_shadows;
2148 struct gcpro gcpro1, gcpro2, gcpro3;
2149 int something = 0;
2150 char *key_heading
2151 = "\
2152 key binding\n\
2153 --- -------\n";
2154
2155 maps = Faccessible_keymaps (startmap, prefix);
2156 seen = Qnil;
2157 sub_shadows = Qnil;
2158 GCPRO3 (maps, seen, sub_shadows);
2159
2160 if (nomenu)
2161 {
2162 Lisp_Object list;
2163
2164 /* Delete from MAPS each element that is for the menu bar. */
2165 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2166 {
2167 Lisp_Object elt, prefix, tem;
2168
2169 elt = Fcar (list);
2170 prefix = Fcar (elt);
2171 if (XVECTOR (prefix)->size >= 1)
2172 {
2173 tem = Faref (prefix, make_number (0));
2174 if (EQ (tem, Qmenu_bar))
2175 maps = Fdelq (elt, maps);
2176 }
2177 }
2178 }
2179
2180 if (!NILP (maps) || always_title)
2181 {
2182 if (title)
2183 {
2184 insert_string (title);
2185 if (!NILP (prefix))
2186 {
2187 insert_string (" Starting With ");
2188 insert1 (Fkey_description (prefix));
2189 }
2190 insert_string (":\n");
2191 }
2192 insert_string (key_heading);
2193 something = 1;
2194 }
2195
2196 for (; !NILP (maps); maps = Fcdr (maps))
2197 {
2198 register Lisp_Object elt, prefix, tail;
2199
2200 elt = Fcar (maps);
2201 prefix = Fcar (elt);
2202
2203 sub_shadows = Qnil;
2204
2205 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2206 {
2207 Lisp_Object shmap;
2208
2209 shmap = XCONS (tail)->car;
2210
2211 /* If the sequence by which we reach this keymap is zero-length,
2212 then the shadow map for this keymap is just SHADOW. */
2213 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2214 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2215 ;
2216 /* If the sequence by which we reach this keymap actually has
2217 some elements, then the sequence's definition in SHADOW is
2218 what we should use. */
2219 else
2220 {
2221 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2222 if (INTEGERP (shmap))
2223 shmap = Qnil;
2224 }
2225
2226 /* If shmap is not nil and not a keymap,
2227 it completely shadows this map, so don't
2228 describe this map at all. */
2229 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2230 goto skip;
2231
2232 if (!NILP (shmap))
2233 sub_shadows = Fcons (shmap, sub_shadows);
2234 }
2235
2236 describe_map (Fcdr (elt), Fcar (elt),
2237 transl ? describe_translation : describe_command,
2238 partial, sub_shadows, &seen, nomenu);
2239
2240 skip: ;
2241 }
2242
2243 if (something)
2244 insert_string ("\n");
2245
2246 UNGCPRO;
2247 }
2248
2249 static int previous_description_column;
2250
2251 static void
2252 describe_command (definition)
2253 Lisp_Object definition;
2254 {
2255 register Lisp_Object tem1;
2256 int column = current_column ();
2257 int description_column;
2258
2259 /* If column 16 is no good, go to col 32;
2260 but don't push beyond that--go to next line instead. */
2261 if (column > 30)
2262 {
2263 insert_char ('\n');
2264 description_column = 32;
2265 }
2266 else if (column > 14 || (column > 10 && previous_description_column == 32))
2267 description_column = 32;
2268 else
2269 description_column = 16;
2270
2271 Findent_to (make_number (description_column), make_number (1));
2272 previous_description_column = description_column;
2273
2274 if (SYMBOLP (definition))
2275 {
2276 XSETSTRING (tem1, XSYMBOL (definition)->name);
2277 insert1 (tem1);
2278 insert_string ("\n");
2279 }
2280 else if (STRINGP (definition) || VECTORP (definition))
2281 insert_string ("Keyboard Macro\n");
2282 else
2283 {
2284 tem1 = Fkeymapp (definition);
2285 if (!NILP (tem1))
2286 insert_string ("Prefix Command\n");
2287 else
2288 insert_string ("??\n");
2289 }
2290 }
2291
2292 static void
2293 describe_translation (definition)
2294 Lisp_Object definition;
2295 {
2296 register Lisp_Object tem1;
2297
2298 Findent_to (make_number (16), make_number (1));
2299
2300 if (SYMBOLP (definition))
2301 {
2302 XSETSTRING (tem1, XSYMBOL (definition)->name);
2303 insert1 (tem1);
2304 insert_string ("\n");
2305 }
2306 else if (STRINGP (definition) || VECTORP (definition))
2307 {
2308 insert1 (Fkey_description (definition));
2309 insert_string ("\n");
2310 }
2311 else
2312 {
2313 tem1 = Fkeymapp (definition);
2314 if (!NILP (tem1))
2315 insert_string ("Prefix Command\n");
2316 else
2317 insert_string ("??\n");
2318 }
2319 }
2320
2321 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2322 Returns the first non-nil binding found in any of those maps. */
2323
2324 static Lisp_Object
2325 shadow_lookup (shadow, key, flag)
2326 Lisp_Object shadow, key, flag;
2327 {
2328 Lisp_Object tail, value;
2329
2330 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2331 {
2332 value = Flookup_key (XCONS (tail)->car, key, flag);
2333 if (!NILP (value))
2334 return value;
2335 }
2336 return Qnil;
2337 }
2338
2339 /* Describe the contents of map MAP, assuming that this map itself is
2340 reached by the sequence of prefix keys KEYS (a string or vector).
2341 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2342
2343 static void
2344 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2345 register Lisp_Object map;
2346 Lisp_Object keys;
2347 int (*elt_describer) ();
2348 int partial;
2349 Lisp_Object shadow;
2350 Lisp_Object *seen;
2351 int nomenu;
2352 {
2353 Lisp_Object elt_prefix;
2354 Lisp_Object tail, definition, event;
2355 Lisp_Object tem;
2356 Lisp_Object suppress;
2357 Lisp_Object kludge;
2358 int first = 1;
2359 struct gcpro gcpro1, gcpro2, gcpro3;
2360
2361 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2362 {
2363 /* Call Fkey_description first, to avoid GC bug for the other string. */
2364 tem = Fkey_description (keys);
2365 elt_prefix = concat2 (tem, build_string (" "));
2366 }
2367 else
2368 elt_prefix = Qnil;
2369
2370 if (partial)
2371 suppress = intern ("suppress-keymap");
2372
2373 /* This vector gets used to present single keys to Flookup_key. Since
2374 that is done once per keymap element, we don't want to cons up a
2375 fresh vector every time. */
2376 kludge = Fmake_vector (make_number (1), Qnil);
2377 definition = Qnil;
2378
2379 GCPRO3 (elt_prefix, definition, kludge);
2380
2381 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2382 {
2383 QUIT;
2384
2385 if (VECTORP (XCONS (tail)->car))
2386 describe_vector (XCONS (tail)->car,
2387 elt_prefix, elt_describer, partial, shadow, map);
2388 else if (CONSP (XCONS (tail)->car))
2389 {
2390 event = XCONS (XCONS (tail)->car)->car;
2391
2392 /* Ignore bindings whose "keys" are not really valid events.
2393 (We get these in the frames and buffers menu.) */
2394 if (! (SYMBOLP (event) || INTEGERP (event)))
2395 continue;
2396
2397 if (nomenu && EQ (event, Qmenu_bar))
2398 continue;
2399
2400 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2401
2402 /* Don't show undefined commands or suppressed commands. */
2403 if (NILP (definition)) continue;
2404 if (SYMBOLP (definition) && partial)
2405 {
2406 tem = Fget (definition, suppress);
2407 if (!NILP (tem))
2408 continue;
2409 }
2410
2411 /* Don't show a command that isn't really visible
2412 because a local definition of the same key shadows it. */
2413
2414 XVECTOR (kludge)->contents[0] = event;
2415 if (!NILP (shadow))
2416 {
2417 tem = shadow_lookup (shadow, kludge, Qt);
2418 if (!NILP (tem)) continue;
2419 }
2420
2421 tem = Flookup_key (map, kludge, Qt);
2422 if (! EQ (tem, definition)) continue;
2423
2424 if (first)
2425 {
2426 previous_description_column = 0;
2427 insert ("\n", 1);
2428 first = 0;
2429 }
2430
2431 if (!NILP (elt_prefix))
2432 insert1 (elt_prefix);
2433
2434 /* THIS gets the string to describe the character EVENT. */
2435 insert1 (Fsingle_key_description (event));
2436
2437 /* Print a description of the definition of this character.
2438 elt_describer will take care of spacing out far enough
2439 for alignment purposes. */
2440 (*elt_describer) (definition);
2441 }
2442 else if (EQ (XCONS (tail)->car, Qkeymap))
2443 {
2444 /* The same keymap might be in the structure twice, if we're
2445 using an inherited keymap. So skip anything we've already
2446 encountered. */
2447 tem = Fassq (tail, *seen);
2448 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2449 break;
2450 *seen = Fcons (Fcons (tail, keys), *seen);
2451 }
2452 }
2453
2454 UNGCPRO;
2455 }
2456
2457 static int
2458 describe_vector_princ (elt)
2459 Lisp_Object elt;
2460 {
2461 Findent_to (make_number (16), make_number (1));
2462 Fprinc (elt, Qnil);
2463 Fterpri (Qnil);
2464 }
2465
2466 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2467 "Insert a description of contents of VECTOR.\n\
2468 This is text showing the elements of vector matched against indices.")
2469 (vector)
2470 Lisp_Object vector;
2471 {
2472 int count = specpdl_ptr - specpdl;
2473
2474 specbind (Qstandard_output, Fcurrent_buffer ());
2475 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2476 describe_vector (vector, Qnil, describe_vector_princ, 0, Qnil, Qnil);
2477
2478 return unbind_to (count, Qnil);
2479 }
2480
2481 /* Insert in the current buffer a description of the contents of VECTOR.
2482 We call ELT_DESCRIBER to insert the description of one value found
2483 in VECTOR.
2484
2485 ELT_PREFIX describes what "comes before" the keys or indices defined
2486 by this vector.
2487
2488 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2489 leads to this keymap.
2490
2491 If the vector is a chartable, ELT_PREFIX is the vector
2492 of bytes that lead to the character set or portion of a character
2493 set described by this chartable.
2494
2495 If PARTIAL is nonzero, it means do not mention suppressed commands
2496 (that assumes the vector is in a keymap).
2497
2498 SHADOW is a list of keymaps that shadow this map.
2499 If it is non-nil, then we look up the key in those maps
2500 and we don't mention it now if it is defined by any of them.
2501
2502 ENTIRE_MAP is the keymap in which this vector appears.
2503 If the definition in effect in the whole map does not match
2504 the one in this vector, we ignore this one. */
2505
2506 describe_vector (vector, elt_prefix, elt_describer,
2507 partial, shadow, entire_map)
2508 register Lisp_Object vector;
2509 Lisp_Object elt_prefix;
2510 int (*elt_describer) ();
2511 int partial;
2512 Lisp_Object shadow;
2513 Lisp_Object entire_map;
2514 {
2515 Lisp_Object dummy;
2516 Lisp_Object definition;
2517 Lisp_Object tem2;
2518 register int i;
2519 Lisp_Object suppress;
2520 Lisp_Object kludge;
2521 Lisp_Object chartable_kludge;
2522 int first = 1;
2523 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2524 /* Range of elements to be handled. */
2525 int from, to;
2526 /* The current depth of VECTOR if it is char-table. */
2527 int this_level;
2528 /* Flag to tell if we should handle multibyte characters. */
2529 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2530 /* Array of indices to access each level of char-table.
2531 The elements are charset, code1, and code2. */
2532 int idx[3];
2533 /* A flag to tell if a leaf in this level of char-table is not a
2534 generic character (i.e. a complete multibyte character). */
2535 int complete_char;
2536
2537 definition = Qnil;
2538
2539 /* This vector gets used to present single keys to Flookup_key. Since
2540 that is done once per vector element, we don't want to cons up a
2541 fresh vector every time. */
2542 kludge = Fmake_vector (make_number (1), Qnil);
2543 GCPRO4 (elt_prefix, definition, kludge, chartable_kludge);
2544
2545 if (partial)
2546 suppress = intern ("suppress-keymap");
2547
2548 if (CHAR_TABLE_P (vector))
2549 {
2550 /* Prepare for handling a nested char-table. */
2551 if (NILP (elt_prefix))
2552 {
2553 /* VECTOR is the top level of char-table. */
2554 this_level = 0;
2555 complete_char = 0;
2556 from = 0;
2557 to = CHAR_TABLE_ORDINARY_SLOTS;
2558 }
2559 else
2560 {
2561 /* VECTOR is the deeper level of char-table. */
2562 this_level = XVECTOR (elt_prefix)->size;
2563 if (this_level >= 3)
2564 /* A char-table is not that deep. */
2565 wrong_type_argument (Qchar_table_p, vector);
2566
2567 for (i = 0; i < this_level; i++)
2568 idx[i] = XINT (XVECTOR (elt_prefix)->contents[i]);
2569 complete_char
2570 = (CHARSET_VALID_P (idx[0])
2571 && ((CHARSET_DIMENSION (idx[0]) == 1 && this_level == 1)
2572 || this_level == 2));
2573
2574 /* Meaningful elements are from 32th to 127th. */
2575 from = 32;
2576 to = 128;
2577 }
2578 chartable_kludge = Fmake_vector (make_number (this_level + 1), Qnil);
2579 if (this_level != 0)
2580 bcopy (XVECTOR (elt_prefix)->contents,
2581 XVECTOR (chartable_kludge)->contents,
2582 this_level * sizeof (Lisp_Object));
2583 }
2584 else
2585 {
2586 this_level = 0;
2587 from = 0;
2588 /* This does the right thing for ordinary vectors. */
2589 to = XFASTINT (Flength (vector));
2590 /* Now, can this be just `XVECTOR (vector)->size'? -- K.Handa */
2591 }
2592
2593 for (i = from; i < to; i++)
2594 {
2595 QUIT;
2596 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2597
2598 if (NILP (definition)) continue;
2599
2600 /* Don't mention suppressed commands. */
2601 if (SYMBOLP (definition) && partial)
2602 {
2603 Lisp_Object tem;
2604
2605 tem = Fget (definition, suppress);
2606
2607 if (!NILP (tem)) continue;
2608 }
2609
2610 /* If this binding is shadowed by some other map, ignore it. */
2611 if (!NILP (shadow))
2612 {
2613 Lisp_Object tem;
2614
2615 XVECTOR (kludge)->contents[0] = make_number (i);
2616 tem = shadow_lookup (shadow, kludge, Qt);
2617
2618 if (!NILP (tem)) continue;
2619 }
2620
2621 /* Ignore this definition if it is shadowed by an earlier
2622 one in the same keymap. */
2623 if (!NILP (entire_map))
2624 {
2625 Lisp_Object tem;
2626
2627 XVECTOR (kludge)->contents[0] = make_number (i);
2628 tem = Flookup_key (entire_map, kludge, Qt);
2629
2630 if (! EQ (tem, definition))
2631 continue;
2632 }
2633
2634 if (first)
2635 {
2636 if (this_level == 0)
2637 insert ("\n", 1);
2638 first = 0;
2639 }
2640
2641 /* If VECTOR is a deeper char-table, show the depth by indentation.
2642 THIS_LEVEL can be greater than 0 only for char-table. */
2643 if (this_level > 0)
2644 insert (" ", this_level * 2); /* THIS_LEVEL is 1 or 2. */
2645
2646 /* Get a Lisp object for the character I. */
2647 XSETFASTINT (dummy, i);
2648
2649 if (CHAR_TABLE_P (vector))
2650 {
2651 if (complete_char)
2652 {
2653 /* Combine ELT_PREFIX with I to produce a character code,
2654 then insert that character's description. */
2655 idx[this_level] = i;
2656 insert_char (MAKE_NON_ASCII_CHAR (idx[0], idx[1], idx[2]));
2657 }
2658 else if (this_level > 0)
2659 {
2660 /* We need an octal representation. */
2661 char work[5];
2662 sprintf (work, "\\%03o", i & 255);
2663 insert (work, 4);
2664 }
2665 else
2666 insert1 (Fsingle_key_description (dummy));
2667 }
2668 else
2669 {
2670 /* Output the prefix that applies to every entry in this map. */
2671 if (!NILP (elt_prefix))
2672 insert1 (elt_prefix);
2673
2674 /* Get the string to describe the character DUMMY, and print it. */
2675 insert1 (Fsingle_key_description (dummy));
2676 }
2677
2678 /* If we find a char-table within a char-table,
2679 scan it recursively; it defines the details for
2680 a character set or a portion of a character set. */
2681 if (multibyte && CHAR_TABLE_P (vector) && CHAR_TABLE_P (definition))
2682 {
2683 if (this_level == 0
2684 && CHARSET_VALID_P (i))
2685 {
2686 /* Before scanning the deeper table, print the
2687 information for this character set. */
2688 insert_string ("\t\t<charset:");
2689 tem2 = CHARSET_TABLE_INFO (i, CHARSET_SHORT_NAME_IDX);
2690 insert_from_string (tem2, 0 , XSTRING (tem2)->size, 0);
2691 insert (">", 1);
2692 }
2693
2694 insert ("\n", 1);
2695 XVECTOR (chartable_kludge)->contents[this_level] = make_number (i);
2696 describe_vector (definition, chartable_kludge, elt_describer,
2697 partial, shadow, entire_map);
2698 continue;
2699 }
2700
2701 /* Find all consecutive characters that have the same definition. */
2702 while (i + 1 < to
2703 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i+1], 0),
2704 !NILP (tem2))
2705 && !NILP (Fequal (tem2, definition)))
2706 i++;
2707
2708 /* If we have a range of more than one character,
2709 print where the range reaches to. */
2710
2711 if (i != XINT (dummy))
2712 {
2713 insert (" .. ", 4);
2714 if (CHAR_TABLE_P (vector))
2715 {
2716 if (complete_char)
2717 {
2718 idx[this_level] = i;
2719 insert_char (MAKE_NON_ASCII_CHAR (idx[0], idx[1], idx[2]));
2720 }
2721 else if (this_level > 0)
2722 {
2723 char work[5];
2724 sprintf (work, "\\%03o", i & 255);
2725 insert (work, 4);
2726 }
2727 else
2728 {
2729 XSETFASTINT (dummy, i);
2730 insert1 (Fsingle_key_description (dummy));
2731 }
2732 }
2733 else
2734 {
2735 if (!NILP (elt_prefix) && !CHAR_TABLE_P (vector))
2736 insert1 (elt_prefix);
2737
2738 XSETFASTINT (dummy, i);
2739 insert1 (Fsingle_key_description (dummy));
2740 }
2741 }
2742
2743 /* Print a description of the definition of this character.
2744 elt_describer will take care of spacing out far enough
2745 for alignment purposes. */
2746 (*elt_describer) (definition);
2747 }
2748
2749 /* For char-table, print `defalt' slot at last. */
2750 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
2751 {
2752 insert (" ", this_level * 2);
2753 insert_string ("<<default>>");
2754 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
2755 }
2756
2757 UNGCPRO;
2758 }
2759 \f
2760 /* Apropos - finding all symbols whose names match a regexp. */
2761 Lisp_Object apropos_predicate;
2762 Lisp_Object apropos_accumulate;
2763
2764 static void
2765 apropos_accum (symbol, string)
2766 Lisp_Object symbol, string;
2767 {
2768 register Lisp_Object tem;
2769
2770 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
2771 if (!NILP (tem) && !NILP (apropos_predicate))
2772 tem = call1 (apropos_predicate, symbol);
2773 if (!NILP (tem))
2774 apropos_accumulate = Fcons (symbol, apropos_accumulate);
2775 }
2776
2777 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
2778 "Show all symbols whose names contain match for REGEXP.\n\
2779 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
2780 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
2781 Return list of symbols found.")
2782 (regexp, predicate)
2783 Lisp_Object regexp, predicate;
2784 {
2785 struct gcpro gcpro1, gcpro2;
2786 CHECK_STRING (regexp, 0);
2787 apropos_predicate = predicate;
2788 GCPRO2 (apropos_predicate, apropos_accumulate);
2789 apropos_accumulate = Qnil;
2790 map_obarray (Vobarray, apropos_accum, regexp);
2791 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
2792 UNGCPRO;
2793 return apropos_accumulate;
2794 }
2795 \f
2796 syms_of_keymap ()
2797 {
2798 Lisp_Object tem;
2799
2800 Qkeymap = intern ("keymap");
2801 staticpro (&Qkeymap);
2802
2803 /* Initialize the keymaps standardly used.
2804 Each one is the value of a Lisp variable, and is also
2805 pointed to by a C variable */
2806
2807 global_map = Fcons (Qkeymap,
2808 Fcons (Fmake_vector (make_number (0400), Qnil), Qnil));
2809 Fset (intern ("global-map"), global_map);
2810
2811 current_global_map = global_map;
2812 staticpro (&global_map);
2813 staticpro (&current_global_map);
2814
2815 meta_map = Fmake_keymap (Qnil);
2816 Fset (intern ("esc-map"), meta_map);
2817 Ffset (intern ("ESC-prefix"), meta_map);
2818
2819 control_x_map = Fmake_keymap (Qnil);
2820 Fset (intern ("ctl-x-map"), control_x_map);
2821 Ffset (intern ("Control-X-prefix"), control_x_map);
2822
2823 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
2824 "List of commands given new key bindings recently.\n\
2825 This is used for internal purposes during Emacs startup;\n\
2826 don't alter it yourself.");
2827 Vdefine_key_rebound_commands = Qt;
2828
2829 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
2830 "Default keymap to use when reading from the minibuffer.");
2831 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
2832
2833 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
2834 "Local keymap for the minibuffer when spaces are not allowed.");
2835 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
2836
2837 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
2838 "Local keymap for minibuffer input with completion.");
2839 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
2840
2841 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
2842 "Local keymap for minibuffer input with completion, for exact match.");
2843 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
2844
2845 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
2846 "Alist of keymaps to use for minor modes.\n\
2847 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
2848 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
2849 If two active keymaps bind the same key, the keymap appearing earlier\n\
2850 in the list takes precedence.");
2851 Vminor_mode_map_alist = Qnil;
2852
2853 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
2854 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
2855 This allows Emacs to recognize function keys sent from ASCII\n\
2856 terminals at any point in a key sequence.\n\
2857 \n\
2858 The `read-key-sequence' function replaces any subsequence bound by\n\
2859 `function-key-map' with its binding. More precisely, when the active\n\
2860 keymaps have no binding for the current key sequence but\n\
2861 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
2862 `read-key-sequence' replaces the matching suffix with its binding, and\n\
2863 continues with the new sequence.\n\
2864 \n\
2865 The events that come from bindings in `function-key-map' are not\n\
2866 themselves looked up in `function-key-map'.\n\
2867 \n\
2868 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
2869 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
2870 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
2871 key, typing `ESC O P x' would return [f1 x].");
2872 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
2873
2874 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
2875 "Keymap of key translations that can override keymaps.\n\
2876 This keymap works like `function-key-map', but comes after that,\n\
2877 and applies even for keys that have ordinary bindings.");
2878 Vkey_translation_map = Qnil;
2879
2880 Qsingle_key_description = intern ("single-key-description");
2881 staticpro (&Qsingle_key_description);
2882
2883 Qkey_description = intern ("key-description");
2884 staticpro (&Qkey_description);
2885
2886 Qkeymapp = intern ("keymapp");
2887 staticpro (&Qkeymapp);
2888
2889 Qnon_ascii = intern ("non-ascii");
2890 staticpro (&Qnon_ascii);
2891
2892 defsubr (&Skeymapp);
2893 defsubr (&Skeymap_parent);
2894 defsubr (&Sset_keymap_parent);
2895 defsubr (&Smake_keymap);
2896 defsubr (&Smake_sparse_keymap);
2897 defsubr (&Scopy_keymap);
2898 defsubr (&Skey_binding);
2899 defsubr (&Slocal_key_binding);
2900 defsubr (&Sglobal_key_binding);
2901 defsubr (&Sminor_mode_key_binding);
2902 defsubr (&Sdefine_key);
2903 defsubr (&Slookup_key);
2904 defsubr (&Sdefine_prefix_command);
2905 defsubr (&Suse_global_map);
2906 defsubr (&Suse_local_map);
2907 defsubr (&Scurrent_local_map);
2908 defsubr (&Scurrent_global_map);
2909 defsubr (&Scurrent_minor_mode_maps);
2910 defsubr (&Saccessible_keymaps);
2911 defsubr (&Skey_description);
2912 defsubr (&Sdescribe_vector);
2913 defsubr (&Ssingle_key_description);
2914 defsubr (&Stext_char_description);
2915 defsubr (&Swhere_is_internal);
2916 defsubr (&Sdescribe_bindings);
2917 defsubr (&Sapropos_internal);
2918 }
2919
2920 keys_of_keymap ()
2921 {
2922 Lisp_Object tem;
2923
2924 initial_define_key (global_map, 033, "ESC-prefix");
2925 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
2926 }