Minor string-length refactoring.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void mark_terminals (void);
213 static void gc_sweep (void);
214 static Lisp_Object make_pure_vector (ptrdiff_t);
215 static void mark_buffer (struct buffer *);
216
217 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
218 static void refill_memory_reserve (void);
219 #endif
220 static void compact_small_strings (void);
221 static void free_large_strings (void);
222 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
223
224 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
225 what memory allocated via lisp_malloc and lisp_align_malloc is intended
226 for what purpose. This enumeration specifies the type of memory. */
227
228 enum mem_type
229 {
230 MEM_TYPE_NON_LISP,
231 MEM_TYPE_BUFFER,
232 MEM_TYPE_CONS,
233 MEM_TYPE_STRING,
234 MEM_TYPE_MISC,
235 MEM_TYPE_SYMBOL,
236 MEM_TYPE_FLOAT,
237 /* Since all non-bool pseudovectors are small enough to be
238 allocated from vector blocks, this memory type denotes
239 large regular vectors and large bool pseudovectors. */
240 MEM_TYPE_VECTORLIKE,
241 /* Special type to denote vector blocks. */
242 MEM_TYPE_VECTOR_BLOCK,
243 /* Special type to denote reserved memory. */
244 MEM_TYPE_SPARE
245 };
246
247 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
248
249 /* A unique object in pure space used to make some Lisp objects
250 on free lists recognizable in O(1). */
251
252 static Lisp_Object Vdead;
253 #define DEADP(x) EQ (x, Vdead)
254
255 #ifdef GC_MALLOC_CHECK
256
257 enum mem_type allocated_mem_type;
258
259 #endif /* GC_MALLOC_CHECK */
260
261 /* A node in the red-black tree describing allocated memory containing
262 Lisp data. Each such block is recorded with its start and end
263 address when it is allocated, and removed from the tree when it
264 is freed.
265
266 A red-black tree is a balanced binary tree with the following
267 properties:
268
269 1. Every node is either red or black.
270 2. Every leaf is black.
271 3. If a node is red, then both of its children are black.
272 4. Every simple path from a node to a descendant leaf contains
273 the same number of black nodes.
274 5. The root is always black.
275
276 When nodes are inserted into the tree, or deleted from the tree,
277 the tree is "fixed" so that these properties are always true.
278
279 A red-black tree with N internal nodes has height at most 2
280 log(N+1). Searches, insertions and deletions are done in O(log N).
281 Please see a text book about data structures for a detailed
282 description of red-black trees. Any book worth its salt should
283 describe them. */
284
285 struct mem_node
286 {
287 /* Children of this node. These pointers are never NULL. When there
288 is no child, the value is MEM_NIL, which points to a dummy node. */
289 struct mem_node *left, *right;
290
291 /* The parent of this node. In the root node, this is NULL. */
292 struct mem_node *parent;
293
294 /* Start and end of allocated region. */
295 void *start, *end;
296
297 /* Node color. */
298 enum {MEM_BLACK, MEM_RED} color;
299
300 /* Memory type. */
301 enum mem_type type;
302 };
303
304 /* Base address of stack. Set in main. */
305
306 Lisp_Object *stack_base;
307
308 /* Root of the tree describing allocated Lisp memory. */
309
310 static struct mem_node *mem_root;
311
312 /* Lowest and highest known address in the heap. */
313
314 static void *min_heap_address, *max_heap_address;
315
316 /* Sentinel node of the tree. */
317
318 static struct mem_node mem_z;
319 #define MEM_NIL &mem_z
320
321 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
322 static struct mem_node *mem_insert (void *, void *, enum mem_type);
323 static void mem_insert_fixup (struct mem_node *);
324 static void mem_rotate_left (struct mem_node *);
325 static void mem_rotate_right (struct mem_node *);
326 static void mem_delete (struct mem_node *);
327 static void mem_delete_fixup (struct mem_node *);
328 static struct mem_node *mem_find (void *);
329 #endif
330
331 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
332
333 #ifndef DEADP
334 # define DEADP(x) 0
335 #endif
336
337 /* Recording what needs to be marked for gc. */
338
339 struct gcpro *gcprolist;
340
341 /* Addresses of staticpro'd variables. Initialize it to a nonzero
342 value; otherwise some compilers put it into BSS. */
343
344 enum { NSTATICS = 2048 };
345 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
346
347 /* Index of next unused slot in staticvec. */
348
349 static int staticidx;
350
351 static void *pure_alloc (size_t, int);
352
353
354 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
355 ALIGNMENT must be a power of 2. */
356
357 #define ALIGN(ptr, ALIGNMENT) \
358 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
359 & ~ ((ALIGNMENT) - 1)))
360
361 static void
362 XFLOAT_INIT (Lisp_Object f, double n)
363 {
364 XFLOAT (f)->u.data = n;
365 }
366
367 \f
368 /************************************************************************
369 Malloc
370 ************************************************************************/
371
372 /* Function malloc calls this if it finds we are near exhausting storage. */
373
374 void
375 malloc_warning (const char *str)
376 {
377 pending_malloc_warning = str;
378 }
379
380
381 /* Display an already-pending malloc warning. */
382
383 void
384 display_malloc_warning (void)
385 {
386 call3 (intern ("display-warning"),
387 intern ("alloc"),
388 build_string (pending_malloc_warning),
389 intern ("emergency"));
390 pending_malloc_warning = 0;
391 }
392 \f
393 /* Called if we can't allocate relocatable space for a buffer. */
394
395 void
396 buffer_memory_full (ptrdiff_t nbytes)
397 {
398 /* If buffers use the relocating allocator, no need to free
399 spare_memory, because we may have plenty of malloc space left
400 that we could get, and if we don't, the malloc that fails will
401 itself cause spare_memory to be freed. If buffers don't use the
402 relocating allocator, treat this like any other failing
403 malloc. */
404
405 #ifndef REL_ALLOC
406 memory_full (nbytes);
407 #else
408 /* This used to call error, but if we've run out of memory, we could
409 get infinite recursion trying to build the string. */
410 xsignal (Qnil, Vmemory_signal_data);
411 #endif
412 }
413
414 /* A common multiple of the positive integers A and B. Ideally this
415 would be the least common multiple, but there's no way to do that
416 as a constant expression in C, so do the best that we can easily do. */
417 #define COMMON_MULTIPLE(a, b) \
418 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
419
420 #ifndef XMALLOC_OVERRUN_CHECK
421 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 #else
423
424 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 around each block.
426
427 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
428 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
429 block size in little-endian order. The trailer consists of
430 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
431
432 The header is used to detect whether this block has been allocated
433 through these functions, as some low-level libc functions may
434 bypass the malloc hooks. */
435
436 #define XMALLOC_OVERRUN_CHECK_SIZE 16
437 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
438 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
439
440 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
441 hold a size_t value and (2) the header size is a multiple of the
442 alignment that Emacs needs for C types and for USE_LSB_TAG. */
443 #define XMALLOC_BASE_ALIGNMENT \
444 alignof (union { long double d; intmax_t i; void *p; })
445
446 #if USE_LSB_TAG
447 # define XMALLOC_HEADER_ALIGNMENT \
448 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
449 #else
450 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
451 #endif
452 #define XMALLOC_OVERRUN_SIZE_SIZE \
453 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
454 + XMALLOC_HEADER_ALIGNMENT - 1) \
455 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
456 - XMALLOC_OVERRUN_CHECK_SIZE)
457
458 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
459 { '\x9a', '\x9b', '\xae', '\xaf',
460 '\xbf', '\xbe', '\xce', '\xcf',
461 '\xea', '\xeb', '\xec', '\xed',
462 '\xdf', '\xde', '\x9c', '\x9d' };
463
464 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
465 { '\xaa', '\xab', '\xac', '\xad',
466 '\xba', '\xbb', '\xbc', '\xbd',
467 '\xca', '\xcb', '\xcc', '\xcd',
468 '\xda', '\xdb', '\xdc', '\xdd' };
469
470 /* Insert and extract the block size in the header. */
471
472 static void
473 xmalloc_put_size (unsigned char *ptr, size_t size)
474 {
475 int i;
476 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
477 {
478 *--ptr = size & ((1 << CHAR_BIT) - 1);
479 size >>= CHAR_BIT;
480 }
481 }
482
483 static size_t
484 xmalloc_get_size (unsigned char *ptr)
485 {
486 size_t size = 0;
487 int i;
488 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
489 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
490 {
491 size <<= CHAR_BIT;
492 size += *ptr++;
493 }
494 return size;
495 }
496
497
498 /* Like malloc, but wraps allocated block with header and trailer. */
499
500 static void *
501 overrun_check_malloc (size_t size)
502 {
503 register unsigned char *val;
504 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
505 emacs_abort ();
506
507 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
508 if (val)
509 {
510 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
511 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
512 xmalloc_put_size (val, size);
513 memcpy (val + size, xmalloc_overrun_check_trailer,
514 XMALLOC_OVERRUN_CHECK_SIZE);
515 }
516 return val;
517 }
518
519
520 /* Like realloc, but checks old block for overrun, and wraps new block
521 with header and trailer. */
522
523 static void *
524 overrun_check_realloc (void *block, size_t size)
525 {
526 register unsigned char *val = (unsigned char *) block;
527 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
528 emacs_abort ();
529
530 if (val
531 && memcmp (xmalloc_overrun_check_header,
532 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
533 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
534 {
535 size_t osize = xmalloc_get_size (val);
536 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
537 XMALLOC_OVERRUN_CHECK_SIZE))
538 emacs_abort ();
539 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
540 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
541 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
542 }
543
544 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
545
546 if (val)
547 {
548 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
549 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
550 xmalloc_put_size (val, size);
551 memcpy (val + size, xmalloc_overrun_check_trailer,
552 XMALLOC_OVERRUN_CHECK_SIZE);
553 }
554 return val;
555 }
556
557 /* Like free, but checks block for overrun. */
558
559 static void
560 overrun_check_free (void *block)
561 {
562 unsigned char *val = (unsigned char *) block;
563
564 if (val
565 && memcmp (xmalloc_overrun_check_header,
566 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
567 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
568 {
569 size_t osize = xmalloc_get_size (val);
570 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
571 XMALLOC_OVERRUN_CHECK_SIZE))
572 emacs_abort ();
573 #ifdef XMALLOC_CLEAR_FREE_MEMORY
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
576 #else
577 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
578 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
579 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
580 #endif
581 }
582
583 free (val);
584 }
585
586 #undef malloc
587 #undef realloc
588 #undef free
589 #define malloc overrun_check_malloc
590 #define realloc overrun_check_realloc
591 #define free overrun_check_free
592 #endif
593
594 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
595 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
596 If that variable is set, block input while in one of Emacs's memory
597 allocation functions. There should be no need for this debugging
598 option, since signal handlers do not allocate memory, but Emacs
599 formerly allocated memory in signal handlers and this compile-time
600 option remains as a way to help debug the issue should it rear its
601 ugly head again. */
602 #ifdef XMALLOC_BLOCK_INPUT_CHECK
603 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
604 static void
605 malloc_block_input (void)
606 {
607 if (block_input_in_memory_allocators)
608 block_input ();
609 }
610 static void
611 malloc_unblock_input (void)
612 {
613 if (block_input_in_memory_allocators)
614 unblock_input ();
615 }
616 # define MALLOC_BLOCK_INPUT malloc_block_input ()
617 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
618 #else
619 # define MALLOC_BLOCK_INPUT ((void) 0)
620 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #endif
622
623 #define MALLOC_PROBE(size) \
624 do { \
625 if (profiler_memory_running) \
626 malloc_probe (size); \
627 } while (0)
628
629
630 /* Like malloc but check for no memory and block interrupt input.. */
631
632 void *
633 xmalloc (size_t size)
634 {
635 void *val;
636
637 MALLOC_BLOCK_INPUT;
638 val = malloc (size);
639 MALLOC_UNBLOCK_INPUT;
640
641 if (!val && size)
642 memory_full (size);
643 MALLOC_PROBE (size);
644 return val;
645 }
646
647 /* Like the above, but zeroes out the memory just allocated. */
648
649 void *
650 xzalloc (size_t size)
651 {
652 void *val;
653
654 MALLOC_BLOCK_INPUT;
655 val = malloc (size);
656 MALLOC_UNBLOCK_INPUT;
657
658 if (!val && size)
659 memory_full (size);
660 memset (val, 0, size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like realloc but check for no memory and block interrupt input.. */
666
667 void *
668 xrealloc (void *block, size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 /* We must call malloc explicitly when BLOCK is 0, since some
674 reallocs don't do this. */
675 if (! block)
676 val = malloc (size);
677 else
678 val = realloc (block, size);
679 MALLOC_UNBLOCK_INPUT;
680
681 if (!val && size)
682 memory_full (size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687
688 /* Like free but block interrupt input. */
689
690 void
691 xfree (void *block)
692 {
693 if (!block)
694 return;
695 MALLOC_BLOCK_INPUT;
696 free (block);
697 MALLOC_UNBLOCK_INPUT;
698 /* We don't call refill_memory_reserve here
699 because in practice the call in r_alloc_free seems to suffice. */
700 }
701
702
703 /* Other parts of Emacs pass large int values to allocator functions
704 expecting ptrdiff_t. This is portable in practice, but check it to
705 be safe. */
706 verify (INT_MAX <= PTRDIFF_MAX);
707
708
709 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
710 Signal an error on memory exhaustion, and block interrupt input. */
711
712 void *
713 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
714 {
715 eassert (0 <= nitems && 0 < item_size);
716 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
717 memory_full (SIZE_MAX);
718 return xmalloc (nitems * item_size);
719 }
720
721
722 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
723 Signal an error on memory exhaustion, and block interrupt input. */
724
725 void *
726 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
727 {
728 eassert (0 <= nitems && 0 < item_size);
729 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
730 memory_full (SIZE_MAX);
731 return xrealloc (pa, nitems * item_size);
732 }
733
734
735 /* Grow PA, which points to an array of *NITEMS items, and return the
736 location of the reallocated array, updating *NITEMS to reflect its
737 new size. The new array will contain at least NITEMS_INCR_MIN more
738 items, but will not contain more than NITEMS_MAX items total.
739 ITEM_SIZE is the size of each item, in bytes.
740
741 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
742 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 infinity.
744
745 If PA is null, then allocate a new array instead of reallocating
746 the old one.
747
748 Block interrupt input as needed. If memory exhaustion occurs, set
749 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 return).
751
752 Thus, to grow an array A without saving its old contents, do
753 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
754 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
755 and signals an error, and later this code is reexecuted and
756 attempts to free A. */
757
758 void *
759 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
760 ptrdiff_t nitems_max, ptrdiff_t item_size)
761 {
762 /* The approximate size to use for initial small allocation
763 requests. This is the largest "small" request for the GNU C
764 library malloc. */
765 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
766
767 /* If the array is tiny, grow it to about (but no greater than)
768 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
769 ptrdiff_t n = *nitems;
770 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
771 ptrdiff_t half_again = n >> 1;
772 ptrdiff_t incr_estimate = max (tiny_max, half_again);
773
774 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
775 NITEMS_MAX, and what the C language can represent safely. */
776 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
777 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
778 ? nitems_max : C_language_max);
779 ptrdiff_t nitems_incr_max = n_max - n;
780 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
781
782 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
783 if (! pa)
784 *nitems = 0;
785 if (nitems_incr_max < incr)
786 memory_full (SIZE_MAX);
787 n += incr;
788 pa = xrealloc (pa, n * item_size);
789 *nitems = n;
790 return pa;
791 }
792
793
794 /* Like strdup, but uses xmalloc. */
795
796 char *
797 xstrdup (const char *s)
798 {
799 ptrdiff_t size;
800 eassert (s);
801 size = strlen (s) + 1;
802 return memcpy (xmalloc (size), s, size);
803 }
804
805 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
806 argument is a const pointer. */
807
808 void
809 xputenv (char const *string)
810 {
811 if (putenv ((char *) string) != 0)
812 memory_full (0);
813 }
814
815 /* Return a newly allocated memory block of SIZE bytes, remembering
816 to free it when unwinding. */
817 void *
818 record_xmalloc (size_t size)
819 {
820 void *p = xmalloc (size);
821 record_unwind_protect_ptr (xfree, p);
822 return p;
823 }
824
825
826 /* Like malloc but used for allocating Lisp data. NBYTES is the
827 number of bytes to allocate, TYPE describes the intended use of the
828 allocated memory block (for strings, for conses, ...). */
829
830 #if ! USE_LSB_TAG
831 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
832 #endif
833
834 static void *
835 lisp_malloc (size_t nbytes, enum mem_type type)
836 {
837 register void *val;
838
839 MALLOC_BLOCK_INPUT;
840
841 #ifdef GC_MALLOC_CHECK
842 allocated_mem_type = type;
843 #endif
844
845 val = malloc (nbytes);
846
847 #if ! USE_LSB_TAG
848 /* If the memory just allocated cannot be addressed thru a Lisp
849 object's pointer, and it needs to be,
850 that's equivalent to running out of memory. */
851 if (val && type != MEM_TYPE_NON_LISP)
852 {
853 Lisp_Object tem;
854 XSETCONS (tem, (char *) val + nbytes - 1);
855 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
856 {
857 lisp_malloc_loser = val;
858 free (val);
859 val = 0;
860 }
861 }
862 #endif
863
864 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
865 if (val && type != MEM_TYPE_NON_LISP)
866 mem_insert (val, (char *) val + nbytes, type);
867 #endif
868
869 MALLOC_UNBLOCK_INPUT;
870 if (!val && nbytes)
871 memory_full (nbytes);
872 MALLOC_PROBE (nbytes);
873 return val;
874 }
875
876 /* Free BLOCK. This must be called to free memory allocated with a
877 call to lisp_malloc. */
878
879 static void
880 lisp_free (void *block)
881 {
882 MALLOC_BLOCK_INPUT;
883 free (block);
884 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
885 mem_delete (mem_find (block));
886 #endif
887 MALLOC_UNBLOCK_INPUT;
888 }
889
890 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
891
892 /* The entry point is lisp_align_malloc which returns blocks of at most
893 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
894
895 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
896 #define USE_POSIX_MEMALIGN 1
897 #endif
898
899 /* BLOCK_ALIGN has to be a power of 2. */
900 #define BLOCK_ALIGN (1 << 10)
901
902 /* Padding to leave at the end of a malloc'd block. This is to give
903 malloc a chance to minimize the amount of memory wasted to alignment.
904 It should be tuned to the particular malloc library used.
905 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
906 posix_memalign on the other hand would ideally prefer a value of 4
907 because otherwise, there's 1020 bytes wasted between each ablocks.
908 In Emacs, testing shows that those 1020 can most of the time be
909 efficiently used by malloc to place other objects, so a value of 0 can
910 still preferable unless you have a lot of aligned blocks and virtually
911 nothing else. */
912 #define BLOCK_PADDING 0
913 #define BLOCK_BYTES \
914 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
915
916 /* Internal data structures and constants. */
917
918 #define ABLOCKS_SIZE 16
919
920 /* An aligned block of memory. */
921 struct ablock
922 {
923 union
924 {
925 char payload[BLOCK_BYTES];
926 struct ablock *next_free;
927 } x;
928 /* `abase' is the aligned base of the ablocks. */
929 /* It is overloaded to hold the virtual `busy' field that counts
930 the number of used ablock in the parent ablocks.
931 The first ablock has the `busy' field, the others have the `abase'
932 field. To tell the difference, we assume that pointers will have
933 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
934 is used to tell whether the real base of the parent ablocks is `abase'
935 (if not, the word before the first ablock holds a pointer to the
936 real base). */
937 struct ablocks *abase;
938 /* The padding of all but the last ablock is unused. The padding of
939 the last ablock in an ablocks is not allocated. */
940 #if BLOCK_PADDING
941 char padding[BLOCK_PADDING];
942 #endif
943 };
944
945 /* A bunch of consecutive aligned blocks. */
946 struct ablocks
947 {
948 struct ablock blocks[ABLOCKS_SIZE];
949 };
950
951 /* Size of the block requested from malloc or posix_memalign. */
952 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
953
954 #define ABLOCK_ABASE(block) \
955 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
956 ? (struct ablocks *)(block) \
957 : (block)->abase)
958
959 /* Virtual `busy' field. */
960 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
961
962 /* Pointer to the (not necessarily aligned) malloc block. */
963 #ifdef USE_POSIX_MEMALIGN
964 #define ABLOCKS_BASE(abase) (abase)
965 #else
966 #define ABLOCKS_BASE(abase) \
967 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
968 #endif
969
970 /* The list of free ablock. */
971 static struct ablock *free_ablock;
972
973 /* Allocate an aligned block of nbytes.
974 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
975 smaller or equal to BLOCK_BYTES. */
976 static void *
977 lisp_align_malloc (size_t nbytes, enum mem_type type)
978 {
979 void *base, *val;
980 struct ablocks *abase;
981
982 eassert (nbytes <= BLOCK_BYTES);
983
984 MALLOC_BLOCK_INPUT;
985
986 #ifdef GC_MALLOC_CHECK
987 allocated_mem_type = type;
988 #endif
989
990 if (!free_ablock)
991 {
992 int i;
993 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
994
995 #ifdef DOUG_LEA_MALLOC
996 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
997 because mapped region contents are not preserved in
998 a dumped Emacs. */
999 mallopt (M_MMAP_MAX, 0);
1000 #endif
1001
1002 #ifdef USE_POSIX_MEMALIGN
1003 {
1004 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1005 if (err)
1006 base = NULL;
1007 abase = base;
1008 }
1009 #else
1010 base = malloc (ABLOCKS_BYTES);
1011 abase = ALIGN (base, BLOCK_ALIGN);
1012 #endif
1013
1014 if (base == 0)
1015 {
1016 MALLOC_UNBLOCK_INPUT;
1017 memory_full (ABLOCKS_BYTES);
1018 }
1019
1020 aligned = (base == abase);
1021 if (!aligned)
1022 ((void**)abase)[-1] = base;
1023
1024 #ifdef DOUG_LEA_MALLOC
1025 /* Back to a reasonable maximum of mmap'ed areas. */
1026 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1027 #endif
1028
1029 #if ! USE_LSB_TAG
1030 /* If the memory just allocated cannot be addressed thru a Lisp
1031 object's pointer, and it needs to be, that's equivalent to
1032 running out of memory. */
1033 if (type != MEM_TYPE_NON_LISP)
1034 {
1035 Lisp_Object tem;
1036 char *end = (char *) base + ABLOCKS_BYTES - 1;
1037 XSETCONS (tem, end);
1038 if ((char *) XCONS (tem) != end)
1039 {
1040 lisp_malloc_loser = base;
1041 free (base);
1042 MALLOC_UNBLOCK_INPUT;
1043 memory_full (SIZE_MAX);
1044 }
1045 }
1046 #endif
1047
1048 /* Initialize the blocks and put them on the free list.
1049 If `base' was not properly aligned, we can't use the last block. */
1050 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1051 {
1052 abase->blocks[i].abase = abase;
1053 abase->blocks[i].x.next_free = free_ablock;
1054 free_ablock = &abase->blocks[i];
1055 }
1056 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1057
1058 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1059 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1060 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1061 eassert (ABLOCKS_BASE (abase) == base);
1062 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1063 }
1064
1065 abase = ABLOCK_ABASE (free_ablock);
1066 ABLOCKS_BUSY (abase) =
1067 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1068 val = free_ablock;
1069 free_ablock = free_ablock->x.next_free;
1070
1071 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1072 if (type != MEM_TYPE_NON_LISP)
1073 mem_insert (val, (char *) val + nbytes, type);
1074 #endif
1075
1076 MALLOC_UNBLOCK_INPUT;
1077
1078 MALLOC_PROBE (nbytes);
1079
1080 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1081 return val;
1082 }
1083
1084 static void
1085 lisp_align_free (void *block)
1086 {
1087 struct ablock *ablock = block;
1088 struct ablocks *abase = ABLOCK_ABASE (ablock);
1089
1090 MALLOC_BLOCK_INPUT;
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 mem_delete (mem_find (block));
1093 #endif
1094 /* Put on free list. */
1095 ablock->x.next_free = free_ablock;
1096 free_ablock = ablock;
1097 /* Update busy count. */
1098 ABLOCKS_BUSY (abase)
1099 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1100
1101 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1102 { /* All the blocks are free. */
1103 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1104 struct ablock **tem = &free_ablock;
1105 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1106
1107 while (*tem)
1108 {
1109 if (*tem >= (struct ablock *) abase && *tem < atop)
1110 {
1111 i++;
1112 *tem = (*tem)->x.next_free;
1113 }
1114 else
1115 tem = &(*tem)->x.next_free;
1116 }
1117 eassert ((aligned & 1) == aligned);
1118 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1119 #ifdef USE_POSIX_MEMALIGN
1120 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1121 #endif
1122 free (ABLOCKS_BASE (abase));
1123 }
1124 MALLOC_UNBLOCK_INPUT;
1125 }
1126
1127 \f
1128 /***********************************************************************
1129 Interval Allocation
1130 ***********************************************************************/
1131
1132 /* Number of intervals allocated in an interval_block structure.
1133 The 1020 is 1024 minus malloc overhead. */
1134
1135 #define INTERVAL_BLOCK_SIZE \
1136 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1137
1138 /* Intervals are allocated in chunks in the form of an interval_block
1139 structure. */
1140
1141 struct interval_block
1142 {
1143 /* Place `intervals' first, to preserve alignment. */
1144 struct interval intervals[INTERVAL_BLOCK_SIZE];
1145 struct interval_block *next;
1146 };
1147
1148 /* Current interval block. Its `next' pointer points to older
1149 blocks. */
1150
1151 static struct interval_block *interval_block;
1152
1153 /* Index in interval_block above of the next unused interval
1154 structure. */
1155
1156 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1157
1158 /* Number of free and live intervals. */
1159
1160 static EMACS_INT total_free_intervals, total_intervals;
1161
1162 /* List of free intervals. */
1163
1164 static INTERVAL interval_free_list;
1165
1166 /* Return a new interval. */
1167
1168 INTERVAL
1169 make_interval (void)
1170 {
1171 INTERVAL val;
1172
1173 MALLOC_BLOCK_INPUT;
1174
1175 if (interval_free_list)
1176 {
1177 val = interval_free_list;
1178 interval_free_list = INTERVAL_PARENT (interval_free_list);
1179 }
1180 else
1181 {
1182 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1183 {
1184 struct interval_block *newi
1185 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1186
1187 newi->next = interval_block;
1188 interval_block = newi;
1189 interval_block_index = 0;
1190 total_free_intervals += INTERVAL_BLOCK_SIZE;
1191 }
1192 val = &interval_block->intervals[interval_block_index++];
1193 }
1194
1195 MALLOC_UNBLOCK_INPUT;
1196
1197 consing_since_gc += sizeof (struct interval);
1198 intervals_consed++;
1199 total_free_intervals--;
1200 RESET_INTERVAL (val);
1201 val->gcmarkbit = 0;
1202 return val;
1203 }
1204
1205
1206 /* Mark Lisp objects in interval I. */
1207
1208 static void
1209 mark_interval (register INTERVAL i, Lisp_Object dummy)
1210 {
1211 /* Intervals should never be shared. So, if extra internal checking is
1212 enabled, GC aborts if it seems to have visited an interval twice. */
1213 eassert (!i->gcmarkbit);
1214 i->gcmarkbit = 1;
1215 mark_object (i->plist);
1216 }
1217
1218 /* Mark the interval tree rooted in I. */
1219
1220 #define MARK_INTERVAL_TREE(i) \
1221 do { \
1222 if (i && !i->gcmarkbit) \
1223 traverse_intervals_noorder (i, mark_interval, Qnil); \
1224 } while (0)
1225
1226 /***********************************************************************
1227 String Allocation
1228 ***********************************************************************/
1229
1230 /* Lisp_Strings are allocated in string_block structures. When a new
1231 string_block is allocated, all the Lisp_Strings it contains are
1232 added to a free-list string_free_list. When a new Lisp_String is
1233 needed, it is taken from that list. During the sweep phase of GC,
1234 string_blocks that are entirely free are freed, except two which
1235 we keep.
1236
1237 String data is allocated from sblock structures. Strings larger
1238 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1239 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1240
1241 Sblocks consist internally of sdata structures, one for each
1242 Lisp_String. The sdata structure points to the Lisp_String it
1243 belongs to. The Lisp_String points back to the `u.data' member of
1244 its sdata structure.
1245
1246 When a Lisp_String is freed during GC, it is put back on
1247 string_free_list, and its `data' member and its sdata's `string'
1248 pointer is set to null. The size of the string is recorded in the
1249 `n.nbytes' member of the sdata. So, sdata structures that are no
1250 longer used, can be easily recognized, and it's easy to compact the
1251 sblocks of small strings which we do in compact_small_strings. */
1252
1253 /* Size in bytes of an sblock structure used for small strings. This
1254 is 8192 minus malloc overhead. */
1255
1256 #define SBLOCK_SIZE 8188
1257
1258 /* Strings larger than this are considered large strings. String data
1259 for large strings is allocated from individual sblocks. */
1260
1261 #define LARGE_STRING_BYTES 1024
1262
1263 /* Struct or union describing string memory sub-allocated from an sblock.
1264 This is where the contents of Lisp strings are stored. */
1265
1266 #ifdef GC_CHECK_STRING_BYTES
1267
1268 typedef struct
1269 {
1270 /* Back-pointer to the string this sdata belongs to. If null, this
1271 structure is free, and the NBYTES member of the union below
1272 contains the string's byte size (the same value that STRING_BYTES
1273 would return if STRING were non-null). If non-null, STRING_BYTES
1274 (STRING) is the size of the data, and DATA contains the string's
1275 contents. */
1276 struct Lisp_String *string;
1277
1278 ptrdiff_t nbytes;
1279 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1280 } sdata;
1281
1282 #define SDATA_NBYTES(S) (S)->nbytes
1283 #define SDATA_DATA(S) (S)->data
1284 #define SDATA_SELECTOR(member) member
1285
1286 #else
1287
1288 typedef union
1289 {
1290 struct Lisp_String *string;
1291
1292 /* When STRING is non-null. */
1293 struct
1294 {
1295 struct Lisp_String *string;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } u;
1298
1299 /* When STRING is null. */
1300 struct
1301 {
1302 struct Lisp_String *string;
1303 ptrdiff_t nbytes;
1304 } n;
1305 } sdata;
1306
1307 #define SDATA_NBYTES(S) (S)->n.nbytes
1308 #define SDATA_DATA(S) (S)->u.data
1309 #define SDATA_SELECTOR(member) u.member
1310
1311 #endif /* not GC_CHECK_STRING_BYTES */
1312
1313 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1314
1315
1316 /* Structure describing a block of memory which is sub-allocated to
1317 obtain string data memory for strings. Blocks for small strings
1318 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1319 as large as needed. */
1320
1321 struct sblock
1322 {
1323 /* Next in list. */
1324 struct sblock *next;
1325
1326 /* Pointer to the next free sdata block. This points past the end
1327 of the sblock if there isn't any space left in this block. */
1328 sdata *next_free;
1329
1330 /* Start of data. */
1331 sdata first_data;
1332 };
1333
1334 /* Number of Lisp strings in a string_block structure. The 1020 is
1335 1024 minus malloc overhead. */
1336
1337 #define STRING_BLOCK_SIZE \
1338 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1339
1340 /* Structure describing a block from which Lisp_String structures
1341 are allocated. */
1342
1343 struct string_block
1344 {
1345 /* Place `strings' first, to preserve alignment. */
1346 struct Lisp_String strings[STRING_BLOCK_SIZE];
1347 struct string_block *next;
1348 };
1349
1350 /* Head and tail of the list of sblock structures holding Lisp string
1351 data. We always allocate from current_sblock. The NEXT pointers
1352 in the sblock structures go from oldest_sblock to current_sblock. */
1353
1354 static struct sblock *oldest_sblock, *current_sblock;
1355
1356 /* List of sblocks for large strings. */
1357
1358 static struct sblock *large_sblocks;
1359
1360 /* List of string_block structures. */
1361
1362 static struct string_block *string_blocks;
1363
1364 /* Free-list of Lisp_Strings. */
1365
1366 static struct Lisp_String *string_free_list;
1367
1368 /* Number of live and free Lisp_Strings. */
1369
1370 static EMACS_INT total_strings, total_free_strings;
1371
1372 /* Number of bytes used by live strings. */
1373
1374 static EMACS_INT total_string_bytes;
1375
1376 /* Given a pointer to a Lisp_String S which is on the free-list
1377 string_free_list, return a pointer to its successor in the
1378 free-list. */
1379
1380 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1381
1382 /* Return a pointer to the sdata structure belonging to Lisp string S.
1383 S must be live, i.e. S->data must not be null. S->data is actually
1384 a pointer to the `u.data' member of its sdata structure; the
1385 structure starts at a constant offset in front of that. */
1386
1387 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1388
1389
1390 #ifdef GC_CHECK_STRING_OVERRUN
1391
1392 /* We check for overrun in string data blocks by appending a small
1393 "cookie" after each allocated string data block, and check for the
1394 presence of this cookie during GC. */
1395
1396 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1397 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1398 { '\xde', '\xad', '\xbe', '\xef' };
1399
1400 #else
1401 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1402 #endif
1403
1404 /* Value is the size of an sdata structure large enough to hold NBYTES
1405 bytes of string data. The value returned includes a terminating
1406 NUL byte, the size of the sdata structure, and padding. */
1407
1408 #ifdef GC_CHECK_STRING_BYTES
1409
1410 #define SDATA_SIZE(NBYTES) \
1411 ((SDATA_DATA_OFFSET \
1412 + (NBYTES) + 1 \
1413 + sizeof (ptrdiff_t) - 1) \
1414 & ~(sizeof (ptrdiff_t) - 1))
1415
1416 #else /* not GC_CHECK_STRING_BYTES */
1417
1418 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1419 less than the size of that member. The 'max' is not needed when
1420 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1421 alignment code reserves enough space. */
1422
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1426 ? NBYTES \
1427 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1428 + 1 \
1429 + sizeof (ptrdiff_t) - 1) \
1430 & ~(sizeof (ptrdiff_t) - 1))
1431
1432 #endif /* not GC_CHECK_STRING_BYTES */
1433
1434 /* Extra bytes to allocate for each string. */
1435
1436 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1437
1438 /* Exact bound on the number of bytes in a string, not counting the
1439 terminating null. A string cannot contain more bytes than
1440 STRING_BYTES_BOUND, nor can it be so long that the size_t
1441 arithmetic in allocate_string_data would overflow while it is
1442 calculating a value to be passed to malloc. */
1443 static ptrdiff_t const STRING_BYTES_MAX =
1444 min (STRING_BYTES_BOUND,
1445 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1446 - GC_STRING_EXTRA
1447 - offsetof (struct sblock, first_data)
1448 - SDATA_DATA_OFFSET)
1449 & ~(sizeof (EMACS_INT) - 1)));
1450
1451 /* Initialize string allocation. Called from init_alloc_once. */
1452
1453 static void
1454 init_strings (void)
1455 {
1456 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1457 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1458 }
1459
1460
1461 #ifdef GC_CHECK_STRING_BYTES
1462
1463 static int check_string_bytes_count;
1464
1465 /* Like STRING_BYTES, but with debugging check. Can be
1466 called during GC, so pay attention to the mark bit. */
1467
1468 ptrdiff_t
1469 string_bytes (struct Lisp_String *s)
1470 {
1471 ptrdiff_t nbytes =
1472 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1473
1474 if (!PURE_POINTER_P (s)
1475 && s->data
1476 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1477 emacs_abort ();
1478 return nbytes;
1479 }
1480
1481 /* Check validity of Lisp strings' string_bytes member in B. */
1482
1483 static void
1484 check_sblock (struct sblock *b)
1485 {
1486 sdata *from, *end, *from_end;
1487
1488 end = b->next_free;
1489
1490 for (from = &b->first_data; from < end; from = from_end)
1491 {
1492 /* Compute the next FROM here because copying below may
1493 overwrite data we need to compute it. */
1494 ptrdiff_t nbytes;
1495
1496 /* Check that the string size recorded in the string is the
1497 same as the one recorded in the sdata structure. */
1498 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1499 : SDATA_NBYTES (from));
1500 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1501 }
1502 }
1503
1504
1505 /* Check validity of Lisp strings' string_bytes member. ALL_P
1506 means check all strings, otherwise check only most
1507 recently allocated strings. Used for hunting a bug. */
1508
1509 static void
1510 check_string_bytes (bool all_p)
1511 {
1512 if (all_p)
1513 {
1514 struct sblock *b;
1515
1516 for (b = large_sblocks; b; b = b->next)
1517 {
1518 struct Lisp_String *s = b->first_data.string;
1519 if (s)
1520 string_bytes (s);
1521 }
1522
1523 for (b = oldest_sblock; b; b = b->next)
1524 check_sblock (b);
1525 }
1526 else if (current_sblock)
1527 check_sblock (current_sblock);
1528 }
1529
1530 #else /* not GC_CHECK_STRING_BYTES */
1531
1532 #define check_string_bytes(all) ((void) 0)
1533
1534 #endif /* GC_CHECK_STRING_BYTES */
1535
1536 #ifdef GC_CHECK_STRING_FREE_LIST
1537
1538 /* Walk through the string free list looking for bogus next pointers.
1539 This may catch buffer overrun from a previous string. */
1540
1541 static void
1542 check_string_free_list (void)
1543 {
1544 struct Lisp_String *s;
1545
1546 /* Pop a Lisp_String off the free-list. */
1547 s = string_free_list;
1548 while (s != NULL)
1549 {
1550 if ((uintptr_t) s < 1024)
1551 emacs_abort ();
1552 s = NEXT_FREE_LISP_STRING (s);
1553 }
1554 }
1555 #else
1556 #define check_string_free_list()
1557 #endif
1558
1559 /* Return a new Lisp_String. */
1560
1561 static struct Lisp_String *
1562 allocate_string (void)
1563 {
1564 struct Lisp_String *s;
1565
1566 MALLOC_BLOCK_INPUT;
1567
1568 /* If the free-list is empty, allocate a new string_block, and
1569 add all the Lisp_Strings in it to the free-list. */
1570 if (string_free_list == NULL)
1571 {
1572 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1573 int i;
1574
1575 b->next = string_blocks;
1576 string_blocks = b;
1577
1578 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1579 {
1580 s = b->strings + i;
1581 /* Every string on a free list should have NULL data pointer. */
1582 s->data = NULL;
1583 NEXT_FREE_LISP_STRING (s) = string_free_list;
1584 string_free_list = s;
1585 }
1586
1587 total_free_strings += STRING_BLOCK_SIZE;
1588 }
1589
1590 check_string_free_list ();
1591
1592 /* Pop a Lisp_String off the free-list. */
1593 s = string_free_list;
1594 string_free_list = NEXT_FREE_LISP_STRING (s);
1595
1596 MALLOC_UNBLOCK_INPUT;
1597
1598 --total_free_strings;
1599 ++total_strings;
1600 ++strings_consed;
1601 consing_since_gc += sizeof *s;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604 if (!noninteractive)
1605 {
1606 if (++check_string_bytes_count == 200)
1607 {
1608 check_string_bytes_count = 0;
1609 check_string_bytes (1);
1610 }
1611 else
1612 check_string_bytes (0);
1613 }
1614 #endif /* GC_CHECK_STRING_BYTES */
1615
1616 return s;
1617 }
1618
1619
1620 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1621 plus a NUL byte at the end. Allocate an sdata structure for S, and
1622 set S->data to its `u.data' member. Store a NUL byte at the end of
1623 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1624 S->data if it was initially non-null. */
1625
1626 void
1627 allocate_string_data (struct Lisp_String *s,
1628 EMACS_INT nchars, EMACS_INT nbytes)
1629 {
1630 sdata *data, *old_data;
1631 struct sblock *b;
1632 ptrdiff_t needed, old_nbytes;
1633
1634 if (STRING_BYTES_MAX < nbytes)
1635 string_overflow ();
1636
1637 /* Determine the number of bytes needed to store NBYTES bytes
1638 of string data. */
1639 needed = SDATA_SIZE (nbytes);
1640 if (s->data)
1641 {
1642 old_data = SDATA_OF_STRING (s);
1643 old_nbytes = STRING_BYTES (s);
1644 }
1645 else
1646 old_data = NULL;
1647
1648 MALLOC_BLOCK_INPUT;
1649
1650 if (nbytes > LARGE_STRING_BYTES)
1651 {
1652 size_t size = offsetof (struct sblock, first_data) + needed;
1653
1654 #ifdef DOUG_LEA_MALLOC
1655 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1656 because mapped region contents are not preserved in
1657 a dumped Emacs.
1658
1659 In case you think of allowing it in a dumped Emacs at the
1660 cost of not being able to re-dump, there's another reason:
1661 mmap'ed data typically have an address towards the top of the
1662 address space, which won't fit into an EMACS_INT (at least on
1663 32-bit systems with the current tagging scheme). --fx */
1664 mallopt (M_MMAP_MAX, 0);
1665 #endif
1666
1667 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1668
1669 #ifdef DOUG_LEA_MALLOC
1670 /* Back to a reasonable maximum of mmap'ed areas. */
1671 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1672 #endif
1673
1674 b->next_free = &b->first_data;
1675 b->first_data.string = NULL;
1676 b->next = large_sblocks;
1677 large_sblocks = b;
1678 }
1679 else if (current_sblock == NULL
1680 || (((char *) current_sblock + SBLOCK_SIZE
1681 - (char *) current_sblock->next_free)
1682 < (needed + GC_STRING_EXTRA)))
1683 {
1684 /* Not enough room in the current sblock. */
1685 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1686 b->next_free = &b->first_data;
1687 b->first_data.string = NULL;
1688 b->next = NULL;
1689
1690 if (current_sblock)
1691 current_sblock->next = b;
1692 else
1693 oldest_sblock = b;
1694 current_sblock = b;
1695 }
1696 else
1697 b = current_sblock;
1698
1699 data = b->next_free;
1700 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1701
1702 MALLOC_UNBLOCK_INPUT;
1703
1704 data->string = s;
1705 s->data = SDATA_DATA (data);
1706 #ifdef GC_CHECK_STRING_BYTES
1707 SDATA_NBYTES (data) = nbytes;
1708 #endif
1709 s->size = nchars;
1710 s->size_byte = nbytes;
1711 s->data[nbytes] = '\0';
1712 #ifdef GC_CHECK_STRING_OVERRUN
1713 memcpy ((char *) data + needed, string_overrun_cookie,
1714 GC_STRING_OVERRUN_COOKIE_SIZE);
1715 #endif
1716
1717 /* Note that Faset may call to this function when S has already data
1718 assigned. In this case, mark data as free by setting it's string
1719 back-pointer to null, and record the size of the data in it. */
1720 if (old_data)
1721 {
1722 SDATA_NBYTES (old_data) = old_nbytes;
1723 old_data->string = NULL;
1724 }
1725
1726 consing_since_gc += needed;
1727 }
1728
1729
1730 /* Sweep and compact strings. */
1731
1732 static void
1733 sweep_strings (void)
1734 {
1735 struct string_block *b, *next;
1736 struct string_block *live_blocks = NULL;
1737
1738 string_free_list = NULL;
1739 total_strings = total_free_strings = 0;
1740 total_string_bytes = 0;
1741
1742 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1743 for (b = string_blocks; b; b = next)
1744 {
1745 int i, nfree = 0;
1746 struct Lisp_String *free_list_before = string_free_list;
1747
1748 next = b->next;
1749
1750 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1751 {
1752 struct Lisp_String *s = b->strings + i;
1753
1754 if (s->data)
1755 {
1756 /* String was not on free-list before. */
1757 if (STRING_MARKED_P (s))
1758 {
1759 /* String is live; unmark it and its intervals. */
1760 UNMARK_STRING (s);
1761
1762 /* Do not use string_(set|get)_intervals here. */
1763 s->intervals = balance_intervals (s->intervals);
1764
1765 ++total_strings;
1766 total_string_bytes += STRING_BYTES (s);
1767 }
1768 else
1769 {
1770 /* String is dead. Put it on the free-list. */
1771 sdata *data = SDATA_OF_STRING (s);
1772
1773 /* Save the size of S in its sdata so that we know
1774 how large that is. Reset the sdata's string
1775 back-pointer so that we know it's free. */
1776 #ifdef GC_CHECK_STRING_BYTES
1777 if (string_bytes (s) != SDATA_NBYTES (data))
1778 emacs_abort ();
1779 #else
1780 data->n.nbytes = STRING_BYTES (s);
1781 #endif
1782 data->string = NULL;
1783
1784 /* Reset the strings's `data' member so that we
1785 know it's free. */
1786 s->data = NULL;
1787
1788 /* Put the string on the free-list. */
1789 NEXT_FREE_LISP_STRING (s) = string_free_list;
1790 string_free_list = s;
1791 ++nfree;
1792 }
1793 }
1794 else
1795 {
1796 /* S was on the free-list before. Put it there again. */
1797 NEXT_FREE_LISP_STRING (s) = string_free_list;
1798 string_free_list = s;
1799 ++nfree;
1800 }
1801 }
1802
1803 /* Free blocks that contain free Lisp_Strings only, except
1804 the first two of them. */
1805 if (nfree == STRING_BLOCK_SIZE
1806 && total_free_strings > STRING_BLOCK_SIZE)
1807 {
1808 lisp_free (b);
1809 string_free_list = free_list_before;
1810 }
1811 else
1812 {
1813 total_free_strings += nfree;
1814 b->next = live_blocks;
1815 live_blocks = b;
1816 }
1817 }
1818
1819 check_string_free_list ();
1820
1821 string_blocks = live_blocks;
1822 free_large_strings ();
1823 compact_small_strings ();
1824
1825 check_string_free_list ();
1826 }
1827
1828
1829 /* Free dead large strings. */
1830
1831 static void
1832 free_large_strings (void)
1833 {
1834 struct sblock *b, *next;
1835 struct sblock *live_blocks = NULL;
1836
1837 for (b = large_sblocks; b; b = next)
1838 {
1839 next = b->next;
1840
1841 if (b->first_data.string == NULL)
1842 lisp_free (b);
1843 else
1844 {
1845 b->next = live_blocks;
1846 live_blocks = b;
1847 }
1848 }
1849
1850 large_sblocks = live_blocks;
1851 }
1852
1853
1854 /* Compact data of small strings. Free sblocks that don't contain
1855 data of live strings after compaction. */
1856
1857 static void
1858 compact_small_strings (void)
1859 {
1860 struct sblock *b, *tb, *next;
1861 sdata *from, *to, *end, *tb_end;
1862 sdata *to_end, *from_end;
1863
1864 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1865 to, and TB_END is the end of TB. */
1866 tb = oldest_sblock;
1867 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1868 to = &tb->first_data;
1869
1870 /* Step through the blocks from the oldest to the youngest. We
1871 expect that old blocks will stabilize over time, so that less
1872 copying will happen this way. */
1873 for (b = oldest_sblock; b; b = b->next)
1874 {
1875 end = b->next_free;
1876 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1877
1878 for (from = &b->first_data; from < end; from = from_end)
1879 {
1880 /* Compute the next FROM here because copying below may
1881 overwrite data we need to compute it. */
1882 ptrdiff_t nbytes;
1883 struct Lisp_String *s = from->string;
1884
1885 #ifdef GC_CHECK_STRING_BYTES
1886 /* Check that the string size recorded in the string is the
1887 same as the one recorded in the sdata structure. */
1888 if (s && string_bytes (s) != SDATA_NBYTES (from))
1889 emacs_abort ();
1890 #endif /* GC_CHECK_STRING_BYTES */
1891
1892 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1893 eassert (nbytes <= LARGE_STRING_BYTES);
1894
1895 nbytes = SDATA_SIZE (nbytes);
1896 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1897
1898 #ifdef GC_CHECK_STRING_OVERRUN
1899 if (memcmp (string_overrun_cookie,
1900 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1901 GC_STRING_OVERRUN_COOKIE_SIZE))
1902 emacs_abort ();
1903 #endif
1904
1905 /* Non-NULL S means it's alive. Copy its data. */
1906 if (s)
1907 {
1908 /* If TB is full, proceed with the next sblock. */
1909 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1910 if (to_end > tb_end)
1911 {
1912 tb->next_free = to;
1913 tb = tb->next;
1914 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1915 to = &tb->first_data;
1916 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1917 }
1918
1919 /* Copy, and update the string's `data' pointer. */
1920 if (from != to)
1921 {
1922 eassert (tb != b || to < from);
1923 memmove (to, from, nbytes + GC_STRING_EXTRA);
1924 to->string->data = SDATA_DATA (to);
1925 }
1926
1927 /* Advance past the sdata we copied to. */
1928 to = to_end;
1929 }
1930 }
1931 }
1932
1933 /* The rest of the sblocks following TB don't contain live data, so
1934 we can free them. */
1935 for (b = tb->next; b; b = next)
1936 {
1937 next = b->next;
1938 lisp_free (b);
1939 }
1940
1941 tb->next_free = to;
1942 tb->next = NULL;
1943 current_sblock = tb;
1944 }
1945
1946 void
1947 string_overflow (void)
1948 {
1949 error ("Maximum string size exceeded");
1950 }
1951
1952 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1953 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1954 LENGTH must be an integer.
1955 INIT must be an integer that represents a character. */)
1956 (Lisp_Object length, Lisp_Object init)
1957 {
1958 register Lisp_Object val;
1959 register unsigned char *p, *end;
1960 int c;
1961 EMACS_INT nbytes;
1962
1963 CHECK_NATNUM (length);
1964 CHECK_CHARACTER (init);
1965
1966 c = XFASTINT (init);
1967 if (ASCII_CHAR_P (c))
1968 {
1969 nbytes = XINT (length);
1970 val = make_uninit_string (nbytes);
1971 p = SDATA (val);
1972 end = p + SCHARS (val);
1973 while (p != end)
1974 *p++ = c;
1975 }
1976 else
1977 {
1978 unsigned char str[MAX_MULTIBYTE_LENGTH];
1979 int len = CHAR_STRING (c, str);
1980 EMACS_INT string_len = XINT (length);
1981
1982 if (string_len > STRING_BYTES_MAX / len)
1983 string_overflow ();
1984 nbytes = len * string_len;
1985 val = make_uninit_multibyte_string (string_len, nbytes);
1986 p = SDATA (val);
1987 end = p + nbytes;
1988 while (p != end)
1989 {
1990 memcpy (p, str, len);
1991 p += len;
1992 }
1993 }
1994
1995 *p = 0;
1996 return val;
1997 }
1998
1999
2000 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2001 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2002 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2003 (Lisp_Object length, Lisp_Object init)
2004 {
2005 register Lisp_Object val;
2006 struct Lisp_Bool_Vector *p;
2007 ptrdiff_t length_in_chars;
2008 EMACS_INT length_in_elts;
2009 int bits_per_value;
2010 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2011 / word_size);
2012
2013 CHECK_NATNUM (length);
2014
2015 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2016
2017 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2018
2019 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2020
2021 /* No Lisp_Object to trace in there. */
2022 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2023
2024 p = XBOOL_VECTOR (val);
2025 p->size = XFASTINT (length);
2026
2027 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2028 / BOOL_VECTOR_BITS_PER_CHAR);
2029 if (length_in_chars)
2030 {
2031 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2032
2033 /* Clear any extraneous bits in the last byte. */
2034 p->data[length_in_chars - 1]
2035 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2036 }
2037
2038 return val;
2039 }
2040
2041
2042 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2043 of characters from the contents. This string may be unibyte or
2044 multibyte, depending on the contents. */
2045
2046 Lisp_Object
2047 make_string (const char *contents, ptrdiff_t nbytes)
2048 {
2049 register Lisp_Object val;
2050 ptrdiff_t nchars, multibyte_nbytes;
2051
2052 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2053 &nchars, &multibyte_nbytes);
2054 if (nbytes == nchars || nbytes != multibyte_nbytes)
2055 /* CONTENTS contains no multibyte sequences or contains an invalid
2056 multibyte sequence. We must make unibyte string. */
2057 val = make_unibyte_string (contents, nbytes);
2058 else
2059 val = make_multibyte_string (contents, nchars, nbytes);
2060 return val;
2061 }
2062
2063
2064 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2065
2066 Lisp_Object
2067 make_unibyte_string (const char *contents, ptrdiff_t length)
2068 {
2069 register Lisp_Object val;
2070 val = make_uninit_string (length);
2071 memcpy (SDATA (val), contents, length);
2072 return val;
2073 }
2074
2075
2076 /* Make a multibyte string from NCHARS characters occupying NBYTES
2077 bytes at CONTENTS. */
2078
2079 Lisp_Object
2080 make_multibyte_string (const char *contents,
2081 ptrdiff_t nchars, ptrdiff_t nbytes)
2082 {
2083 register Lisp_Object val;
2084 val = make_uninit_multibyte_string (nchars, nbytes);
2085 memcpy (SDATA (val), contents, nbytes);
2086 return val;
2087 }
2088
2089
2090 /* Make a string from NCHARS characters occupying NBYTES bytes at
2091 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2092
2093 Lisp_Object
2094 make_string_from_bytes (const char *contents,
2095 ptrdiff_t nchars, ptrdiff_t nbytes)
2096 {
2097 register Lisp_Object val;
2098 val = make_uninit_multibyte_string (nchars, nbytes);
2099 memcpy (SDATA (val), contents, nbytes);
2100 if (SBYTES (val) == SCHARS (val))
2101 STRING_SET_UNIBYTE (val);
2102 return val;
2103 }
2104
2105
2106 /* Make a string from NCHARS characters occupying NBYTES bytes at
2107 CONTENTS. The argument MULTIBYTE controls whether to label the
2108 string as multibyte. If NCHARS is negative, it counts the number of
2109 characters by itself. */
2110
2111 Lisp_Object
2112 make_specified_string (const char *contents,
2113 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2114 {
2115 Lisp_Object val;
2116
2117 if (nchars < 0)
2118 {
2119 if (multibyte)
2120 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2121 nbytes);
2122 else
2123 nchars = nbytes;
2124 }
2125 val = make_uninit_multibyte_string (nchars, nbytes);
2126 memcpy (SDATA (val), contents, nbytes);
2127 if (!multibyte)
2128 STRING_SET_UNIBYTE (val);
2129 return val;
2130 }
2131
2132
2133 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2134 occupying LENGTH bytes. */
2135
2136 Lisp_Object
2137 make_uninit_string (EMACS_INT length)
2138 {
2139 Lisp_Object val;
2140
2141 if (!length)
2142 return empty_unibyte_string;
2143 val = make_uninit_multibyte_string (length, length);
2144 STRING_SET_UNIBYTE (val);
2145 return val;
2146 }
2147
2148
2149 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2150 which occupy NBYTES bytes. */
2151
2152 Lisp_Object
2153 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2154 {
2155 Lisp_Object string;
2156 struct Lisp_String *s;
2157
2158 if (nchars < 0)
2159 emacs_abort ();
2160 if (!nbytes)
2161 return empty_multibyte_string;
2162
2163 s = allocate_string ();
2164 s->intervals = NULL;
2165 allocate_string_data (s, nchars, nbytes);
2166 XSETSTRING (string, s);
2167 string_chars_consed += nbytes;
2168 return string;
2169 }
2170
2171 /* Print arguments to BUF according to a FORMAT, then return
2172 a Lisp_String initialized with the data from BUF. */
2173
2174 Lisp_Object
2175 make_formatted_string (char *buf, const char *format, ...)
2176 {
2177 va_list ap;
2178 int length;
2179
2180 va_start (ap, format);
2181 length = vsprintf (buf, format, ap);
2182 va_end (ap);
2183 return make_string (buf, length);
2184 }
2185
2186 \f
2187 /***********************************************************************
2188 Float Allocation
2189 ***********************************************************************/
2190
2191 /* We store float cells inside of float_blocks, allocating a new
2192 float_block with malloc whenever necessary. Float cells reclaimed
2193 by GC are put on a free list to be reallocated before allocating
2194 any new float cells from the latest float_block. */
2195
2196 #define FLOAT_BLOCK_SIZE \
2197 (((BLOCK_BYTES - sizeof (struct float_block *) \
2198 /* The compiler might add padding at the end. */ \
2199 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2200 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2201
2202 #define GETMARKBIT(block,n) \
2203 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2204 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2205 & 1)
2206
2207 #define SETMARKBIT(block,n) \
2208 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2209 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2210
2211 #define UNSETMARKBIT(block,n) \
2212 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2213 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2214
2215 #define FLOAT_BLOCK(fptr) \
2216 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2217
2218 #define FLOAT_INDEX(fptr) \
2219 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2220
2221 struct float_block
2222 {
2223 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2224 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2225 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2226 struct float_block *next;
2227 };
2228
2229 #define FLOAT_MARKED_P(fptr) \
2230 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2231
2232 #define FLOAT_MARK(fptr) \
2233 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2234
2235 #define FLOAT_UNMARK(fptr) \
2236 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2237
2238 /* Current float_block. */
2239
2240 static struct float_block *float_block;
2241
2242 /* Index of first unused Lisp_Float in the current float_block. */
2243
2244 static int float_block_index = FLOAT_BLOCK_SIZE;
2245
2246 /* Free-list of Lisp_Floats. */
2247
2248 static struct Lisp_Float *float_free_list;
2249
2250 /* Return a new float object with value FLOAT_VALUE. */
2251
2252 Lisp_Object
2253 make_float (double float_value)
2254 {
2255 register Lisp_Object val;
2256
2257 MALLOC_BLOCK_INPUT;
2258
2259 if (float_free_list)
2260 {
2261 /* We use the data field for chaining the free list
2262 so that we won't use the same field that has the mark bit. */
2263 XSETFLOAT (val, float_free_list);
2264 float_free_list = float_free_list->u.chain;
2265 }
2266 else
2267 {
2268 if (float_block_index == FLOAT_BLOCK_SIZE)
2269 {
2270 struct float_block *new
2271 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2272 new->next = float_block;
2273 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2274 float_block = new;
2275 float_block_index = 0;
2276 total_free_floats += FLOAT_BLOCK_SIZE;
2277 }
2278 XSETFLOAT (val, &float_block->floats[float_block_index]);
2279 float_block_index++;
2280 }
2281
2282 MALLOC_UNBLOCK_INPUT;
2283
2284 XFLOAT_INIT (val, float_value);
2285 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2286 consing_since_gc += sizeof (struct Lisp_Float);
2287 floats_consed++;
2288 total_free_floats--;
2289 return val;
2290 }
2291
2292
2293 \f
2294 /***********************************************************************
2295 Cons Allocation
2296 ***********************************************************************/
2297
2298 /* We store cons cells inside of cons_blocks, allocating a new
2299 cons_block with malloc whenever necessary. Cons cells reclaimed by
2300 GC are put on a free list to be reallocated before allocating
2301 any new cons cells from the latest cons_block. */
2302
2303 #define CONS_BLOCK_SIZE \
2304 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2305 /* The compiler might add padding at the end. */ \
2306 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2307 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2308
2309 #define CONS_BLOCK(fptr) \
2310 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2311
2312 #define CONS_INDEX(fptr) \
2313 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2314
2315 struct cons_block
2316 {
2317 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2318 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2319 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2320 struct cons_block *next;
2321 };
2322
2323 #define CONS_MARKED_P(fptr) \
2324 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2325
2326 #define CONS_MARK(fptr) \
2327 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2328
2329 #define CONS_UNMARK(fptr) \
2330 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2331
2332 /* Current cons_block. */
2333
2334 static struct cons_block *cons_block;
2335
2336 /* Index of first unused Lisp_Cons in the current block. */
2337
2338 static int cons_block_index = CONS_BLOCK_SIZE;
2339
2340 /* Free-list of Lisp_Cons structures. */
2341
2342 static struct Lisp_Cons *cons_free_list;
2343
2344 /* Explicitly free a cons cell by putting it on the free-list. */
2345
2346 void
2347 free_cons (struct Lisp_Cons *ptr)
2348 {
2349 ptr->u.chain = cons_free_list;
2350 #if GC_MARK_STACK
2351 ptr->car = Vdead;
2352 #endif
2353 cons_free_list = ptr;
2354 consing_since_gc -= sizeof *ptr;
2355 total_free_conses++;
2356 }
2357
2358 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2359 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2360 (Lisp_Object car, Lisp_Object cdr)
2361 {
2362 register Lisp_Object val;
2363
2364 MALLOC_BLOCK_INPUT;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = cons_free_list->u.chain;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 struct cons_block *new
2378 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2379 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2380 new->next = cons_block;
2381 cons_block = new;
2382 cons_block_index = 0;
2383 total_free_conses += CONS_BLOCK_SIZE;
2384 }
2385 XSETCONS (val, &cons_block->conses[cons_block_index]);
2386 cons_block_index++;
2387 }
2388
2389 MALLOC_UNBLOCK_INPUT;
2390
2391 XSETCAR (val, car);
2392 XSETCDR (val, cdr);
2393 eassert (!CONS_MARKED_P (XCONS (val)));
2394 consing_since_gc += sizeof (struct Lisp_Cons);
2395 total_free_conses--;
2396 cons_cells_consed++;
2397 return val;
2398 }
2399
2400 #ifdef GC_CHECK_CONS_LIST
2401 /* Get an error now if there's any junk in the cons free list. */
2402 void
2403 check_cons_list (void)
2404 {
2405 struct Lisp_Cons *tail = cons_free_list;
2406
2407 while (tail)
2408 tail = tail->u.chain;
2409 }
2410 #endif
2411
2412 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2413
2414 Lisp_Object
2415 list1 (Lisp_Object arg1)
2416 {
2417 return Fcons (arg1, Qnil);
2418 }
2419
2420 Lisp_Object
2421 list2 (Lisp_Object arg1, Lisp_Object arg2)
2422 {
2423 return Fcons (arg1, Fcons (arg2, Qnil));
2424 }
2425
2426
2427 Lisp_Object
2428 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2429 {
2430 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2431 }
2432
2433
2434 Lisp_Object
2435 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2436 {
2437 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2438 }
2439
2440
2441 Lisp_Object
2442 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2443 {
2444 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2445 Fcons (arg5, Qnil)))));
2446 }
2447
2448 /* Make a list of COUNT Lisp_Objects, where ARG is the
2449 first one. Allocate conses from pure space if TYPE
2450 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2451
2452 Lisp_Object
2453 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2454 {
2455 va_list ap;
2456 ptrdiff_t i;
2457 Lisp_Object val, *objp;
2458
2459 /* Change to SAFE_ALLOCA if you hit this eassert. */
2460 eassert (count <= MAX_ALLOCA / word_size);
2461
2462 objp = alloca (count * word_size);
2463 objp[0] = arg;
2464 va_start (ap, arg);
2465 for (i = 1; i < count; i++)
2466 objp[i] = va_arg (ap, Lisp_Object);
2467 va_end (ap);
2468
2469 for (val = Qnil, i = count - 1; i >= 0; i--)
2470 {
2471 if (type == CONSTYPE_PURE)
2472 val = pure_cons (objp[i], val);
2473 else if (type == CONSTYPE_HEAP)
2474 val = Fcons (objp[i], val);
2475 else
2476 emacs_abort ();
2477 }
2478 return val;
2479 }
2480
2481 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2482 doc: /* Return a newly created list with specified arguments as elements.
2483 Any number of arguments, even zero arguments, are allowed.
2484 usage: (list &rest OBJECTS) */)
2485 (ptrdiff_t nargs, Lisp_Object *args)
2486 {
2487 register Lisp_Object val;
2488 val = Qnil;
2489
2490 while (nargs > 0)
2491 {
2492 nargs--;
2493 val = Fcons (args[nargs], val);
2494 }
2495 return val;
2496 }
2497
2498
2499 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2500 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2501 (register Lisp_Object length, Lisp_Object init)
2502 {
2503 register Lisp_Object val;
2504 register EMACS_INT size;
2505
2506 CHECK_NATNUM (length);
2507 size = XFASTINT (length);
2508
2509 val = Qnil;
2510 while (size > 0)
2511 {
2512 val = Fcons (init, val);
2513 --size;
2514
2515 if (size > 0)
2516 {
2517 val = Fcons (init, val);
2518 --size;
2519
2520 if (size > 0)
2521 {
2522 val = Fcons (init, val);
2523 --size;
2524
2525 if (size > 0)
2526 {
2527 val = Fcons (init, val);
2528 --size;
2529
2530 if (size > 0)
2531 {
2532 val = Fcons (init, val);
2533 --size;
2534 }
2535 }
2536 }
2537 }
2538
2539 QUIT;
2540 }
2541
2542 return val;
2543 }
2544
2545
2546 \f
2547 /***********************************************************************
2548 Vector Allocation
2549 ***********************************************************************/
2550
2551 /* This value is balanced well enough to avoid too much internal overhead
2552 for the most common cases; it's not required to be a power of two, but
2553 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2554
2555 #define VECTOR_BLOCK_SIZE 4096
2556
2557 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2558 enum
2559 {
2560 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2561 };
2562
2563 /* ROUNDUP_SIZE must be a power of 2. */
2564 verify ((roundup_size & (roundup_size - 1)) == 0);
2565
2566 /* Verify assumptions described above. */
2567 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2568 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2569
2570 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2571
2572 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2573
2574 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2575
2576 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2577
2578 /* Size of the minimal vector allocated from block. */
2579
2580 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2581
2582 /* Size of the largest vector allocated from block. */
2583
2584 #define VBLOCK_BYTES_MAX \
2585 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2586
2587 /* We maintain one free list for each possible block-allocated
2588 vector size, and this is the number of free lists we have. */
2589
2590 #define VECTOR_MAX_FREE_LIST_INDEX \
2591 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2592
2593 /* Common shortcut to advance vector pointer over a block data. */
2594
2595 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2596
2597 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2598
2599 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2600
2601 /* Get and set the next field in block-allocated vectorlike objects on
2602 the free list. Doing it this way respects C's aliasing rules.
2603 We could instead make 'contents' a union, but that would mean
2604 changes everywhere that the code uses 'contents'. */
2605 static struct Lisp_Vector *
2606 next_in_free_list (struct Lisp_Vector *v)
2607 {
2608 intptr_t i = XLI (v->contents[0]);
2609 return (struct Lisp_Vector *) i;
2610 }
2611 static void
2612 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2613 {
2614 v->contents[0] = XIL ((intptr_t) next);
2615 }
2616
2617 /* Common shortcut to setup vector on a free list. */
2618
2619 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2620 do { \
2621 (tmp) = ((nbytes - header_size) / word_size); \
2622 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2623 eassert ((nbytes) % roundup_size == 0); \
2624 (tmp) = VINDEX (nbytes); \
2625 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2626 set_next_in_free_list (v, vector_free_lists[tmp]); \
2627 vector_free_lists[tmp] = (v); \
2628 total_free_vector_slots += (nbytes) / word_size; \
2629 } while (0)
2630
2631 /* This internal type is used to maintain the list of large vectors
2632 which are allocated at their own, e.g. outside of vector blocks. */
2633
2634 struct large_vector
2635 {
2636 union {
2637 struct large_vector *vector;
2638 #if USE_LSB_TAG
2639 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2640 unsigned char c[vroundup (sizeof (struct large_vector *))];
2641 #endif
2642 } next;
2643 struct Lisp_Vector v;
2644 };
2645
2646 /* This internal type is used to maintain an underlying storage
2647 for small vectors. */
2648
2649 struct vector_block
2650 {
2651 char data[VECTOR_BLOCK_BYTES];
2652 struct vector_block *next;
2653 };
2654
2655 /* Chain of vector blocks. */
2656
2657 static struct vector_block *vector_blocks;
2658
2659 /* Vector free lists, where NTH item points to a chain of free
2660 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2661
2662 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2663
2664 /* Singly-linked list of large vectors. */
2665
2666 static struct large_vector *large_vectors;
2667
2668 /* The only vector with 0 slots, allocated from pure space. */
2669
2670 Lisp_Object zero_vector;
2671
2672 /* Number of live vectors. */
2673
2674 static EMACS_INT total_vectors;
2675
2676 /* Total size of live and free vectors, in Lisp_Object units. */
2677
2678 static EMACS_INT total_vector_slots, total_free_vector_slots;
2679
2680 /* Get a new vector block. */
2681
2682 static struct vector_block *
2683 allocate_vector_block (void)
2684 {
2685 struct vector_block *block = xmalloc (sizeof *block);
2686
2687 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2688 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2689 MEM_TYPE_VECTOR_BLOCK);
2690 #endif
2691
2692 block->next = vector_blocks;
2693 vector_blocks = block;
2694 return block;
2695 }
2696
2697 /* Called once to initialize vector allocation. */
2698
2699 static void
2700 init_vectors (void)
2701 {
2702 zero_vector = make_pure_vector (0);
2703 }
2704
2705 /* Allocate vector from a vector block. */
2706
2707 static struct Lisp_Vector *
2708 allocate_vector_from_block (size_t nbytes)
2709 {
2710 struct Lisp_Vector *vector;
2711 struct vector_block *block;
2712 size_t index, restbytes;
2713
2714 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2715 eassert (nbytes % roundup_size == 0);
2716
2717 /* First, try to allocate from a free list
2718 containing vectors of the requested size. */
2719 index = VINDEX (nbytes);
2720 if (vector_free_lists[index])
2721 {
2722 vector = vector_free_lists[index];
2723 vector_free_lists[index] = next_in_free_list (vector);
2724 total_free_vector_slots -= nbytes / word_size;
2725 return vector;
2726 }
2727
2728 /* Next, check free lists containing larger vectors. Since
2729 we will split the result, we should have remaining space
2730 large enough to use for one-slot vector at least. */
2731 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2732 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2733 if (vector_free_lists[index])
2734 {
2735 /* This vector is larger than requested. */
2736 vector = vector_free_lists[index];
2737 vector_free_lists[index] = next_in_free_list (vector);
2738 total_free_vector_slots -= nbytes / word_size;
2739
2740 /* Excess bytes are used for the smaller vector,
2741 which should be set on an appropriate free list. */
2742 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2743 eassert (restbytes % roundup_size == 0);
2744 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2745 return vector;
2746 }
2747
2748 /* Finally, need a new vector block. */
2749 block = allocate_vector_block ();
2750
2751 /* New vector will be at the beginning of this block. */
2752 vector = (struct Lisp_Vector *) block->data;
2753
2754 /* If the rest of space from this block is large enough
2755 for one-slot vector at least, set up it on a free list. */
2756 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2757 if (restbytes >= VBLOCK_BYTES_MIN)
2758 {
2759 eassert (restbytes % roundup_size == 0);
2760 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2761 }
2762 return vector;
2763 }
2764
2765 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2766
2767 #define VECTOR_IN_BLOCK(vector, block) \
2768 ((char *) (vector) <= (block)->data \
2769 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2770
2771 /* Return the memory footprint of V in bytes. */
2772
2773 static ptrdiff_t
2774 vector_nbytes (struct Lisp_Vector *v)
2775 {
2776 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2777
2778 if (size & PSEUDOVECTOR_FLAG)
2779 {
2780 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2781 size = (bool_header_size
2782 + (((struct Lisp_Bool_Vector *) v)->size
2783 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2784 / BOOL_VECTOR_BITS_PER_CHAR);
2785 else
2786 size = (header_size
2787 + ((size & PSEUDOVECTOR_SIZE_MASK)
2788 + ((size & PSEUDOVECTOR_REST_MASK)
2789 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2790 }
2791 else
2792 size = header_size + size * word_size;
2793 return vroundup (size);
2794 }
2795
2796 /* Reclaim space used by unmarked vectors. */
2797
2798 static void
2799 sweep_vectors (void)
2800 {
2801 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2802 struct large_vector *lv, **lvprev = &large_vectors;
2803 struct Lisp_Vector *vector, *next;
2804
2805 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2806 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2807
2808 /* Looking through vector blocks. */
2809
2810 for (block = vector_blocks; block; block = *bprev)
2811 {
2812 bool free_this_block = 0;
2813 ptrdiff_t nbytes;
2814
2815 for (vector = (struct Lisp_Vector *) block->data;
2816 VECTOR_IN_BLOCK (vector, block); vector = next)
2817 {
2818 if (VECTOR_MARKED_P (vector))
2819 {
2820 VECTOR_UNMARK (vector);
2821 total_vectors++;
2822 nbytes = vector_nbytes (vector);
2823 total_vector_slots += nbytes / word_size;
2824 next = ADVANCE (vector, nbytes);
2825 }
2826 else
2827 {
2828 ptrdiff_t total_bytes;
2829
2830 nbytes = vector_nbytes (vector);
2831 total_bytes = nbytes;
2832 next = ADVANCE (vector, nbytes);
2833
2834 /* While NEXT is not marked, try to coalesce with VECTOR,
2835 thus making VECTOR of the largest possible size. */
2836
2837 while (VECTOR_IN_BLOCK (next, block))
2838 {
2839 if (VECTOR_MARKED_P (next))
2840 break;
2841 nbytes = vector_nbytes (next);
2842 total_bytes += nbytes;
2843 next = ADVANCE (next, nbytes);
2844 }
2845
2846 eassert (total_bytes % roundup_size == 0);
2847
2848 if (vector == (struct Lisp_Vector *) block->data
2849 && !VECTOR_IN_BLOCK (next, block))
2850 /* This block should be freed because all of it's
2851 space was coalesced into the only free vector. */
2852 free_this_block = 1;
2853 else
2854 {
2855 int tmp;
2856 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2857 }
2858 }
2859 }
2860
2861 if (free_this_block)
2862 {
2863 *bprev = block->next;
2864 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2865 mem_delete (mem_find (block->data));
2866 #endif
2867 xfree (block);
2868 }
2869 else
2870 bprev = &block->next;
2871 }
2872
2873 /* Sweep large vectors. */
2874
2875 for (lv = large_vectors; lv; lv = *lvprev)
2876 {
2877 vector = &lv->v;
2878 if (VECTOR_MARKED_P (vector))
2879 {
2880 VECTOR_UNMARK (vector);
2881 total_vectors++;
2882 if (vector->header.size & PSEUDOVECTOR_FLAG)
2883 {
2884 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2885
2886 /* All non-bool pseudovectors are small enough to be allocated
2887 from vector blocks. This code should be redesigned if some
2888 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2889 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2890
2891 total_vector_slots
2892 += (bool_header_size
2893 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2894 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2895 }
2896 else
2897 total_vector_slots
2898 += header_size / word_size + vector->header.size;
2899 lvprev = &lv->next.vector;
2900 }
2901 else
2902 {
2903 *lvprev = lv->next.vector;
2904 lisp_free (lv);
2905 }
2906 }
2907 }
2908
2909 /* Value is a pointer to a newly allocated Lisp_Vector structure
2910 with room for LEN Lisp_Objects. */
2911
2912 static struct Lisp_Vector *
2913 allocate_vectorlike (ptrdiff_t len)
2914 {
2915 struct Lisp_Vector *p;
2916
2917 MALLOC_BLOCK_INPUT;
2918
2919 if (len == 0)
2920 p = XVECTOR (zero_vector);
2921 else
2922 {
2923 size_t nbytes = header_size + len * word_size;
2924
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2931
2932 if (nbytes <= VBLOCK_BYTES_MAX)
2933 p = allocate_vector_from_block (vroundup (nbytes));
2934 else
2935 {
2936 struct large_vector *lv
2937 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2938 + len * word_size),
2939 MEM_TYPE_VECTORLIKE);
2940 lv->next.vector = large_vectors;
2941 large_vectors = lv;
2942 p = &lv->v;
2943 }
2944
2945 #ifdef DOUG_LEA_MALLOC
2946 /* Back to a reasonable maximum of mmap'ed areas. */
2947 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2948 #endif
2949
2950 consing_since_gc += nbytes;
2951 vector_cells_consed += len;
2952 }
2953
2954 MALLOC_UNBLOCK_INPUT;
2955
2956 return p;
2957 }
2958
2959
2960 /* Allocate a vector with LEN slots. */
2961
2962 struct Lisp_Vector *
2963 allocate_vector (EMACS_INT len)
2964 {
2965 struct Lisp_Vector *v;
2966 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2967
2968 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2969 memory_full (SIZE_MAX);
2970 v = allocate_vectorlike (len);
2971 v->header.size = len;
2972 return v;
2973 }
2974
2975
2976 /* Allocate other vector-like structures. */
2977
2978 struct Lisp_Vector *
2979 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2980 {
2981 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2982 int i;
2983
2984 /* Catch bogus values. */
2985 eassert (tag <= PVEC_FONT);
2986 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2987 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2988
2989 /* Only the first lisplen slots will be traced normally by the GC. */
2990 for (i = 0; i < lisplen; ++i)
2991 v->contents[i] = Qnil;
2992
2993 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2994 return v;
2995 }
2996
2997 struct buffer *
2998 allocate_buffer (void)
2999 {
3000 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3001
3002 BUFFER_PVEC_INIT (b);
3003 /* Put B on the chain of all buffers including killed ones. */
3004 b->next = all_buffers;
3005 all_buffers = b;
3006 /* Note that the rest fields of B are not initialized. */
3007 return b;
3008 }
3009
3010 struct Lisp_Hash_Table *
3011 allocate_hash_table (void)
3012 {
3013 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3014 }
3015
3016 struct window *
3017 allocate_window (void)
3018 {
3019 struct window *w;
3020
3021 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3022 /* Users assumes that non-Lisp data is zeroed. */
3023 memset (&w->current_matrix, 0,
3024 sizeof (*w) - offsetof (struct window, current_matrix));
3025 return w;
3026 }
3027
3028 struct terminal *
3029 allocate_terminal (void)
3030 {
3031 struct terminal *t;
3032
3033 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3034 /* Users assumes that non-Lisp data is zeroed. */
3035 memset (&t->next_terminal, 0,
3036 sizeof (*t) - offsetof (struct terminal, next_terminal));
3037 return t;
3038 }
3039
3040 struct frame *
3041 allocate_frame (void)
3042 {
3043 struct frame *f;
3044
3045 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3046 /* Users assumes that non-Lisp data is zeroed. */
3047 memset (&f->face_cache, 0,
3048 sizeof (*f) - offsetof (struct frame, face_cache));
3049 return f;
3050 }
3051
3052 struct Lisp_Process *
3053 allocate_process (void)
3054 {
3055 struct Lisp_Process *p;
3056
3057 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3058 /* Users assumes that non-Lisp data is zeroed. */
3059 memset (&p->pid, 0,
3060 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3061 return p;
3062 }
3063
3064 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3065 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3066 See also the function `vector'. */)
3067 (register Lisp_Object length, Lisp_Object init)
3068 {
3069 Lisp_Object vector;
3070 register ptrdiff_t sizei;
3071 register ptrdiff_t i;
3072 register struct Lisp_Vector *p;
3073
3074 CHECK_NATNUM (length);
3075
3076 p = allocate_vector (XFASTINT (length));
3077 sizei = XFASTINT (length);
3078 for (i = 0; i < sizei; i++)
3079 p->contents[i] = init;
3080
3081 XSETVECTOR (vector, p);
3082 return vector;
3083 }
3084
3085
3086 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3087 doc: /* Return a newly created vector with specified arguments as elements.
3088 Any number of arguments, even zero arguments, are allowed.
3089 usage: (vector &rest OBJECTS) */)
3090 (ptrdiff_t nargs, Lisp_Object *args)
3091 {
3092 ptrdiff_t i;
3093 register Lisp_Object val = make_uninit_vector (nargs);
3094 register struct Lisp_Vector *p = XVECTOR (val);
3095
3096 for (i = 0; i < nargs; i++)
3097 p->contents[i] = args[i];
3098 return val;
3099 }
3100
3101 void
3102 make_byte_code (struct Lisp_Vector *v)
3103 {
3104 if (v->header.size > 1 && STRINGP (v->contents[1])
3105 && STRING_MULTIBYTE (v->contents[1]))
3106 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3107 earlier because they produced a raw 8-bit string for byte-code
3108 and now such a byte-code string is loaded as multibyte while
3109 raw 8-bit characters converted to multibyte form. Thus, now we
3110 must convert them back to the original unibyte form. */
3111 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3112 XSETPVECTYPE (v, PVEC_COMPILED);
3113 }
3114
3115 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3116 doc: /* Create a byte-code object with specified arguments as elements.
3117 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3118 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3119 and (optional) INTERACTIVE-SPEC.
3120 The first four arguments are required; at most six have any
3121 significance.
3122 The ARGLIST can be either like the one of `lambda', in which case the arguments
3123 will be dynamically bound before executing the byte code, or it can be an
3124 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3125 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3126 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3127 argument to catch the left-over arguments. If such an integer is used, the
3128 arguments will not be dynamically bound but will be instead pushed on the
3129 stack before executing the byte-code.
3130 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3131 (ptrdiff_t nargs, Lisp_Object *args)
3132 {
3133 ptrdiff_t i;
3134 register Lisp_Object val = make_uninit_vector (nargs);
3135 register struct Lisp_Vector *p = XVECTOR (val);
3136
3137 /* We used to purecopy everything here, if purify-flag was set. This worked
3138 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3139 dangerous, since make-byte-code is used during execution to build
3140 closures, so any closure built during the preload phase would end up
3141 copied into pure space, including its free variables, which is sometimes
3142 just wasteful and other times plainly wrong (e.g. those free vars may want
3143 to be setcar'd). */
3144
3145 for (i = 0; i < nargs; i++)
3146 p->contents[i] = args[i];
3147 make_byte_code (p);
3148 XSETCOMPILED (val, p);
3149 return val;
3150 }
3151
3152
3153 \f
3154 /***********************************************************************
3155 Symbol Allocation
3156 ***********************************************************************/
3157
3158 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3159 of the required alignment if LSB tags are used. */
3160
3161 union aligned_Lisp_Symbol
3162 {
3163 struct Lisp_Symbol s;
3164 #if USE_LSB_TAG
3165 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3166 & -GCALIGNMENT];
3167 #endif
3168 };
3169
3170 /* Each symbol_block is just under 1020 bytes long, since malloc
3171 really allocates in units of powers of two and uses 4 bytes for its
3172 own overhead. */
3173
3174 #define SYMBOL_BLOCK_SIZE \
3175 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3176
3177 struct symbol_block
3178 {
3179 /* Place `symbols' first, to preserve alignment. */
3180 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3181 struct symbol_block *next;
3182 };
3183
3184 /* Current symbol block and index of first unused Lisp_Symbol
3185 structure in it. */
3186
3187 static struct symbol_block *symbol_block;
3188 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3189
3190 /* List of free symbols. */
3191
3192 static struct Lisp_Symbol *symbol_free_list;
3193
3194 static void
3195 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3196 {
3197 XSYMBOL (sym)->name = name;
3198 }
3199
3200 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3201 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3202 Its value is void, and its function definition and property list are nil. */)
3203 (Lisp_Object name)
3204 {
3205 register Lisp_Object val;
3206 register struct Lisp_Symbol *p;
3207
3208 CHECK_STRING (name);
3209
3210 MALLOC_BLOCK_INPUT;
3211
3212 if (symbol_free_list)
3213 {
3214 XSETSYMBOL (val, symbol_free_list);
3215 symbol_free_list = symbol_free_list->next;
3216 }
3217 else
3218 {
3219 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3220 {
3221 struct symbol_block *new
3222 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3223 new->next = symbol_block;
3224 symbol_block = new;
3225 symbol_block_index = 0;
3226 total_free_symbols += SYMBOL_BLOCK_SIZE;
3227 }
3228 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3229 symbol_block_index++;
3230 }
3231
3232 MALLOC_UNBLOCK_INPUT;
3233
3234 p = XSYMBOL (val);
3235 set_symbol_name (val, name);
3236 set_symbol_plist (val, Qnil);
3237 p->redirect = SYMBOL_PLAINVAL;
3238 SET_SYMBOL_VAL (p, Qunbound);
3239 set_symbol_function (val, Qnil);
3240 set_symbol_next (val, NULL);
3241 p->gcmarkbit = 0;
3242 p->interned = SYMBOL_UNINTERNED;
3243 p->constant = 0;
3244 p->declared_special = 0;
3245 consing_since_gc += sizeof (struct Lisp_Symbol);
3246 symbols_consed++;
3247 total_free_symbols--;
3248 return val;
3249 }
3250
3251
3252 \f
3253 /***********************************************************************
3254 Marker (Misc) Allocation
3255 ***********************************************************************/
3256
3257 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3258 the required alignment when LSB tags are used. */
3259
3260 union aligned_Lisp_Misc
3261 {
3262 union Lisp_Misc m;
3263 #if USE_LSB_TAG
3264 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3265 & -GCALIGNMENT];
3266 #endif
3267 };
3268
3269 /* Allocation of markers and other objects that share that structure.
3270 Works like allocation of conses. */
3271
3272 #define MARKER_BLOCK_SIZE \
3273 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3274
3275 struct marker_block
3276 {
3277 /* Place `markers' first, to preserve alignment. */
3278 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3279 struct marker_block *next;
3280 };
3281
3282 static struct marker_block *marker_block;
3283 static int marker_block_index = MARKER_BLOCK_SIZE;
3284
3285 static union Lisp_Misc *marker_free_list;
3286
3287 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3288
3289 static Lisp_Object
3290 allocate_misc (enum Lisp_Misc_Type type)
3291 {
3292 Lisp_Object val;
3293
3294 MALLOC_BLOCK_INPUT;
3295
3296 if (marker_free_list)
3297 {
3298 XSETMISC (val, marker_free_list);
3299 marker_free_list = marker_free_list->u_free.chain;
3300 }
3301 else
3302 {
3303 if (marker_block_index == MARKER_BLOCK_SIZE)
3304 {
3305 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3306 new->next = marker_block;
3307 marker_block = new;
3308 marker_block_index = 0;
3309 total_free_markers += MARKER_BLOCK_SIZE;
3310 }
3311 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3312 marker_block_index++;
3313 }
3314
3315 MALLOC_UNBLOCK_INPUT;
3316
3317 --total_free_markers;
3318 consing_since_gc += sizeof (union Lisp_Misc);
3319 misc_objects_consed++;
3320 XMISCANY (val)->type = type;
3321 XMISCANY (val)->gcmarkbit = 0;
3322 return val;
3323 }
3324
3325 /* Free a Lisp_Misc object. */
3326
3327 void
3328 free_misc (Lisp_Object misc)
3329 {
3330 XMISCANY (misc)->type = Lisp_Misc_Free;
3331 XMISC (misc)->u_free.chain = marker_free_list;
3332 marker_free_list = XMISC (misc);
3333 consing_since_gc -= sizeof (union Lisp_Misc);
3334 total_free_markers++;
3335 }
3336
3337 /* Verify properties of Lisp_Save_Value's representation
3338 that are assumed here and elsewhere. */
3339
3340 verify (SAVE_UNUSED == 0);
3341 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3342 >> SAVE_SLOT_BITS)
3343 == 0);
3344
3345 /* Return Lisp_Save_Value objects for the various combinations
3346 that callers need. */
3347
3348 Lisp_Object
3349 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3350 {
3351 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3352 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3353 p->save_type = SAVE_TYPE_INT_INT_INT;
3354 p->data[0].integer = a;
3355 p->data[1].integer = b;
3356 p->data[2].integer = c;
3357 return val;
3358 }
3359
3360 Lisp_Object
3361 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3362 Lisp_Object d)
3363 {
3364 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3365 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3366 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3367 p->data[0].object = a;
3368 p->data[1].object = b;
3369 p->data[2].object = c;
3370 p->data[3].object = d;
3371 return val;
3372 }
3373
3374 #if defined HAVE_NS || defined HAVE_NTGUI
3375 Lisp_Object
3376 make_save_ptr (void *a)
3377 {
3378 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3379 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3380 p->save_type = SAVE_POINTER;
3381 p->data[0].pointer = a;
3382 return val;
3383 }
3384 #endif
3385
3386 Lisp_Object
3387 make_save_ptr_int (void *a, ptrdiff_t b)
3388 {
3389 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3390 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3391 p->save_type = SAVE_TYPE_PTR_INT;
3392 p->data[0].pointer = a;
3393 p->data[1].integer = b;
3394 return val;
3395 }
3396
3397 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3398 Lisp_Object
3399 make_save_ptr_ptr (void *a, void *b)
3400 {
3401 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3402 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3403 p->save_type = SAVE_TYPE_PTR_PTR;
3404 p->data[0].pointer = a;
3405 p->data[1].pointer = b;
3406 return val;
3407 }
3408 #endif
3409
3410 Lisp_Object
3411 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3412 {
3413 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3414 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3415 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3416 p->data[0].funcpointer = a;
3417 p->data[1].pointer = b;
3418 p->data[2].object = c;
3419 return val;
3420 }
3421
3422 /* Return a Lisp_Save_Value object that represents an array A
3423 of N Lisp objects. */
3424
3425 Lisp_Object
3426 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3427 {
3428 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3429 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3430 p->save_type = SAVE_TYPE_MEMORY;
3431 p->data[0].pointer = a;
3432 p->data[1].integer = n;
3433 return val;
3434 }
3435
3436 /* Free a Lisp_Save_Value object. Do not use this function
3437 if SAVE contains pointer other than returned by xmalloc. */
3438
3439 void
3440 free_save_value (Lisp_Object save)
3441 {
3442 xfree (XSAVE_POINTER (save, 0));
3443 free_misc (save);
3444 }
3445
3446 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3447
3448 Lisp_Object
3449 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3450 {
3451 register Lisp_Object overlay;
3452
3453 overlay = allocate_misc (Lisp_Misc_Overlay);
3454 OVERLAY_START (overlay) = start;
3455 OVERLAY_END (overlay) = end;
3456 set_overlay_plist (overlay, plist);
3457 XOVERLAY (overlay)->next = NULL;
3458 return overlay;
3459 }
3460
3461 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3462 doc: /* Return a newly allocated marker which does not point at any place. */)
3463 (void)
3464 {
3465 register Lisp_Object val;
3466 register struct Lisp_Marker *p;
3467
3468 val = allocate_misc (Lisp_Misc_Marker);
3469 p = XMARKER (val);
3470 p->buffer = 0;
3471 p->bytepos = 0;
3472 p->charpos = 0;
3473 p->next = NULL;
3474 p->insertion_type = 0;
3475 return val;
3476 }
3477
3478 /* Return a newly allocated marker which points into BUF
3479 at character position CHARPOS and byte position BYTEPOS. */
3480
3481 Lisp_Object
3482 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3483 {
3484 Lisp_Object obj;
3485 struct Lisp_Marker *m;
3486
3487 /* No dead buffers here. */
3488 eassert (BUFFER_LIVE_P (buf));
3489
3490 /* Every character is at least one byte. */
3491 eassert (charpos <= bytepos);
3492
3493 obj = allocate_misc (Lisp_Misc_Marker);
3494 m = XMARKER (obj);
3495 m->buffer = buf;
3496 m->charpos = charpos;
3497 m->bytepos = bytepos;
3498 m->insertion_type = 0;
3499 m->next = BUF_MARKERS (buf);
3500 BUF_MARKERS (buf) = m;
3501 return obj;
3502 }
3503
3504 /* Put MARKER back on the free list after using it temporarily. */
3505
3506 void
3507 free_marker (Lisp_Object marker)
3508 {
3509 unchain_marker (XMARKER (marker));
3510 free_misc (marker);
3511 }
3512
3513 \f
3514 /* Return a newly created vector or string with specified arguments as
3515 elements. If all the arguments are characters that can fit
3516 in a string of events, make a string; otherwise, make a vector.
3517
3518 Any number of arguments, even zero arguments, are allowed. */
3519
3520 Lisp_Object
3521 make_event_array (register int nargs, Lisp_Object *args)
3522 {
3523 int i;
3524
3525 for (i = 0; i < nargs; i++)
3526 /* The things that fit in a string
3527 are characters that are in 0...127,
3528 after discarding the meta bit and all the bits above it. */
3529 if (!INTEGERP (args[i])
3530 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3531 return Fvector (nargs, args);
3532
3533 /* Since the loop exited, we know that all the things in it are
3534 characters, so we can make a string. */
3535 {
3536 Lisp_Object result;
3537
3538 result = Fmake_string (make_number (nargs), make_number (0));
3539 for (i = 0; i < nargs; i++)
3540 {
3541 SSET (result, i, XINT (args[i]));
3542 /* Move the meta bit to the right place for a string char. */
3543 if (XINT (args[i]) & CHAR_META)
3544 SSET (result, i, SREF (result, i) | 0x80);
3545 }
3546
3547 return result;
3548 }
3549 }
3550
3551
3552 \f
3553 /************************************************************************
3554 Memory Full Handling
3555 ************************************************************************/
3556
3557
3558 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3559 there may have been size_t overflow so that malloc was never
3560 called, or perhaps malloc was invoked successfully but the
3561 resulting pointer had problems fitting into a tagged EMACS_INT. In
3562 either case this counts as memory being full even though malloc did
3563 not fail. */
3564
3565 void
3566 memory_full (size_t nbytes)
3567 {
3568 /* Do not go into hysterics merely because a large request failed. */
3569 bool enough_free_memory = 0;
3570 if (SPARE_MEMORY < nbytes)
3571 {
3572 void *p;
3573
3574 MALLOC_BLOCK_INPUT;
3575 p = malloc (SPARE_MEMORY);
3576 if (p)
3577 {
3578 free (p);
3579 enough_free_memory = 1;
3580 }
3581 MALLOC_UNBLOCK_INPUT;
3582 }
3583
3584 if (! enough_free_memory)
3585 {
3586 int i;
3587
3588 Vmemory_full = Qt;
3589
3590 memory_full_cons_threshold = sizeof (struct cons_block);
3591
3592 /* The first time we get here, free the spare memory. */
3593 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3594 if (spare_memory[i])
3595 {
3596 if (i == 0)
3597 free (spare_memory[i]);
3598 else if (i >= 1 && i <= 4)
3599 lisp_align_free (spare_memory[i]);
3600 else
3601 lisp_free (spare_memory[i]);
3602 spare_memory[i] = 0;
3603 }
3604 }
3605
3606 /* This used to call error, but if we've run out of memory, we could
3607 get infinite recursion trying to build the string. */
3608 xsignal (Qnil, Vmemory_signal_data);
3609 }
3610
3611 /* If we released our reserve (due to running out of memory),
3612 and we have a fair amount free once again,
3613 try to set aside another reserve in case we run out once more.
3614
3615 This is called when a relocatable block is freed in ralloc.c,
3616 and also directly from this file, in case we're not using ralloc.c. */
3617
3618 void
3619 refill_memory_reserve (void)
3620 {
3621 #ifndef SYSTEM_MALLOC
3622 if (spare_memory[0] == 0)
3623 spare_memory[0] = malloc (SPARE_MEMORY);
3624 if (spare_memory[1] == 0)
3625 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3626 MEM_TYPE_SPARE);
3627 if (spare_memory[2] == 0)
3628 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3629 MEM_TYPE_SPARE);
3630 if (spare_memory[3] == 0)
3631 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3632 MEM_TYPE_SPARE);
3633 if (spare_memory[4] == 0)
3634 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3635 MEM_TYPE_SPARE);
3636 if (spare_memory[5] == 0)
3637 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3638 MEM_TYPE_SPARE);
3639 if (spare_memory[6] == 0)
3640 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3641 MEM_TYPE_SPARE);
3642 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3643 Vmemory_full = Qnil;
3644 #endif
3645 }
3646 \f
3647 /************************************************************************
3648 C Stack Marking
3649 ************************************************************************/
3650
3651 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3652
3653 /* Conservative C stack marking requires a method to identify possibly
3654 live Lisp objects given a pointer value. We do this by keeping
3655 track of blocks of Lisp data that are allocated in a red-black tree
3656 (see also the comment of mem_node which is the type of nodes in
3657 that tree). Function lisp_malloc adds information for an allocated
3658 block to the red-black tree with calls to mem_insert, and function
3659 lisp_free removes it with mem_delete. Functions live_string_p etc
3660 call mem_find to lookup information about a given pointer in the
3661 tree, and use that to determine if the pointer points to a Lisp
3662 object or not. */
3663
3664 /* Initialize this part of alloc.c. */
3665
3666 static void
3667 mem_init (void)
3668 {
3669 mem_z.left = mem_z.right = MEM_NIL;
3670 mem_z.parent = NULL;
3671 mem_z.color = MEM_BLACK;
3672 mem_z.start = mem_z.end = NULL;
3673 mem_root = MEM_NIL;
3674 }
3675
3676
3677 /* Value is a pointer to the mem_node containing START. Value is
3678 MEM_NIL if there is no node in the tree containing START. */
3679
3680 static struct mem_node *
3681 mem_find (void *start)
3682 {
3683 struct mem_node *p;
3684
3685 if (start < min_heap_address || start > max_heap_address)
3686 return MEM_NIL;
3687
3688 /* Make the search always successful to speed up the loop below. */
3689 mem_z.start = start;
3690 mem_z.end = (char *) start + 1;
3691
3692 p = mem_root;
3693 while (start < p->start || start >= p->end)
3694 p = start < p->start ? p->left : p->right;
3695 return p;
3696 }
3697
3698
3699 /* Insert a new node into the tree for a block of memory with start
3700 address START, end address END, and type TYPE. Value is a
3701 pointer to the node that was inserted. */
3702
3703 static struct mem_node *
3704 mem_insert (void *start, void *end, enum mem_type type)
3705 {
3706 struct mem_node *c, *parent, *x;
3707
3708 if (min_heap_address == NULL || start < min_heap_address)
3709 min_heap_address = start;
3710 if (max_heap_address == NULL || end > max_heap_address)
3711 max_heap_address = end;
3712
3713 /* See where in the tree a node for START belongs. In this
3714 particular application, it shouldn't happen that a node is already
3715 present. For debugging purposes, let's check that. */
3716 c = mem_root;
3717 parent = NULL;
3718
3719 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3720
3721 while (c != MEM_NIL)
3722 {
3723 if (start >= c->start && start < c->end)
3724 emacs_abort ();
3725 parent = c;
3726 c = start < c->start ? c->left : c->right;
3727 }
3728
3729 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3730
3731 while (c != MEM_NIL)
3732 {
3733 parent = c;
3734 c = start < c->start ? c->left : c->right;
3735 }
3736
3737 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3738
3739 /* Create a new node. */
3740 #ifdef GC_MALLOC_CHECK
3741 x = malloc (sizeof *x);
3742 if (x == NULL)
3743 emacs_abort ();
3744 #else
3745 x = xmalloc (sizeof *x);
3746 #endif
3747 x->start = start;
3748 x->end = end;
3749 x->type = type;
3750 x->parent = parent;
3751 x->left = x->right = MEM_NIL;
3752 x->color = MEM_RED;
3753
3754 /* Insert it as child of PARENT or install it as root. */
3755 if (parent)
3756 {
3757 if (start < parent->start)
3758 parent->left = x;
3759 else
3760 parent->right = x;
3761 }
3762 else
3763 mem_root = x;
3764
3765 /* Re-establish red-black tree properties. */
3766 mem_insert_fixup (x);
3767
3768 return x;
3769 }
3770
3771
3772 /* Re-establish the red-black properties of the tree, and thereby
3773 balance the tree, after node X has been inserted; X is always red. */
3774
3775 static void
3776 mem_insert_fixup (struct mem_node *x)
3777 {
3778 while (x != mem_root && x->parent->color == MEM_RED)
3779 {
3780 /* X is red and its parent is red. This is a violation of
3781 red-black tree property #3. */
3782
3783 if (x->parent == x->parent->parent->left)
3784 {
3785 /* We're on the left side of our grandparent, and Y is our
3786 "uncle". */
3787 struct mem_node *y = x->parent->parent->right;
3788
3789 if (y->color == MEM_RED)
3790 {
3791 /* Uncle and parent are red but should be black because
3792 X is red. Change the colors accordingly and proceed
3793 with the grandparent. */
3794 x->parent->color = MEM_BLACK;
3795 y->color = MEM_BLACK;
3796 x->parent->parent->color = MEM_RED;
3797 x = x->parent->parent;
3798 }
3799 else
3800 {
3801 /* Parent and uncle have different colors; parent is
3802 red, uncle is black. */
3803 if (x == x->parent->right)
3804 {
3805 x = x->parent;
3806 mem_rotate_left (x);
3807 }
3808
3809 x->parent->color = MEM_BLACK;
3810 x->parent->parent->color = MEM_RED;
3811 mem_rotate_right (x->parent->parent);
3812 }
3813 }
3814 else
3815 {
3816 /* This is the symmetrical case of above. */
3817 struct mem_node *y = x->parent->parent->left;
3818
3819 if (y->color == MEM_RED)
3820 {
3821 x->parent->color = MEM_BLACK;
3822 y->color = MEM_BLACK;
3823 x->parent->parent->color = MEM_RED;
3824 x = x->parent->parent;
3825 }
3826 else
3827 {
3828 if (x == x->parent->left)
3829 {
3830 x = x->parent;
3831 mem_rotate_right (x);
3832 }
3833
3834 x->parent->color = MEM_BLACK;
3835 x->parent->parent->color = MEM_RED;
3836 mem_rotate_left (x->parent->parent);
3837 }
3838 }
3839 }
3840
3841 /* The root may have been changed to red due to the algorithm. Set
3842 it to black so that property #5 is satisfied. */
3843 mem_root->color = MEM_BLACK;
3844 }
3845
3846
3847 /* (x) (y)
3848 / \ / \
3849 a (y) ===> (x) c
3850 / \ / \
3851 b c a b */
3852
3853 static void
3854 mem_rotate_left (struct mem_node *x)
3855 {
3856 struct mem_node *y;
3857
3858 /* Turn y's left sub-tree into x's right sub-tree. */
3859 y = x->right;
3860 x->right = y->left;
3861 if (y->left != MEM_NIL)
3862 y->left->parent = x;
3863
3864 /* Y's parent was x's parent. */
3865 if (y != MEM_NIL)
3866 y->parent = x->parent;
3867
3868 /* Get the parent to point to y instead of x. */
3869 if (x->parent)
3870 {
3871 if (x == x->parent->left)
3872 x->parent->left = y;
3873 else
3874 x->parent->right = y;
3875 }
3876 else
3877 mem_root = y;
3878
3879 /* Put x on y's left. */
3880 y->left = x;
3881 if (x != MEM_NIL)
3882 x->parent = y;
3883 }
3884
3885
3886 /* (x) (Y)
3887 / \ / \
3888 (y) c ===> a (x)
3889 / \ / \
3890 a b b c */
3891
3892 static void
3893 mem_rotate_right (struct mem_node *x)
3894 {
3895 struct mem_node *y = x->left;
3896
3897 x->left = y->right;
3898 if (y->right != MEM_NIL)
3899 y->right->parent = x;
3900
3901 if (y != MEM_NIL)
3902 y->parent = x->parent;
3903 if (x->parent)
3904 {
3905 if (x == x->parent->right)
3906 x->parent->right = y;
3907 else
3908 x->parent->left = y;
3909 }
3910 else
3911 mem_root = y;
3912
3913 y->right = x;
3914 if (x != MEM_NIL)
3915 x->parent = y;
3916 }
3917
3918
3919 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3920
3921 static void
3922 mem_delete (struct mem_node *z)
3923 {
3924 struct mem_node *x, *y;
3925
3926 if (!z || z == MEM_NIL)
3927 return;
3928
3929 if (z->left == MEM_NIL || z->right == MEM_NIL)
3930 y = z;
3931 else
3932 {
3933 y = z->right;
3934 while (y->left != MEM_NIL)
3935 y = y->left;
3936 }
3937
3938 if (y->left != MEM_NIL)
3939 x = y->left;
3940 else
3941 x = y->right;
3942
3943 x->parent = y->parent;
3944 if (y->parent)
3945 {
3946 if (y == y->parent->left)
3947 y->parent->left = x;
3948 else
3949 y->parent->right = x;
3950 }
3951 else
3952 mem_root = x;
3953
3954 if (y != z)
3955 {
3956 z->start = y->start;
3957 z->end = y->end;
3958 z->type = y->type;
3959 }
3960
3961 if (y->color == MEM_BLACK)
3962 mem_delete_fixup (x);
3963
3964 #ifdef GC_MALLOC_CHECK
3965 free (y);
3966 #else
3967 xfree (y);
3968 #endif
3969 }
3970
3971
3972 /* Re-establish the red-black properties of the tree, after a
3973 deletion. */
3974
3975 static void
3976 mem_delete_fixup (struct mem_node *x)
3977 {
3978 while (x != mem_root && x->color == MEM_BLACK)
3979 {
3980 if (x == x->parent->left)
3981 {
3982 struct mem_node *w = x->parent->right;
3983
3984 if (w->color == MEM_RED)
3985 {
3986 w->color = MEM_BLACK;
3987 x->parent->color = MEM_RED;
3988 mem_rotate_left (x->parent);
3989 w = x->parent->right;
3990 }
3991
3992 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3993 {
3994 w->color = MEM_RED;
3995 x = x->parent;
3996 }
3997 else
3998 {
3999 if (w->right->color == MEM_BLACK)
4000 {
4001 w->left->color = MEM_BLACK;
4002 w->color = MEM_RED;
4003 mem_rotate_right (w);
4004 w = x->parent->right;
4005 }
4006 w->color = x->parent->color;
4007 x->parent->color = MEM_BLACK;
4008 w->right->color = MEM_BLACK;
4009 mem_rotate_left (x->parent);
4010 x = mem_root;
4011 }
4012 }
4013 else
4014 {
4015 struct mem_node *w = x->parent->left;
4016
4017 if (w->color == MEM_RED)
4018 {
4019 w->color = MEM_BLACK;
4020 x->parent->color = MEM_RED;
4021 mem_rotate_right (x->parent);
4022 w = x->parent->left;
4023 }
4024
4025 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4026 {
4027 w->color = MEM_RED;
4028 x = x->parent;
4029 }
4030 else
4031 {
4032 if (w->left->color == MEM_BLACK)
4033 {
4034 w->right->color = MEM_BLACK;
4035 w->color = MEM_RED;
4036 mem_rotate_left (w);
4037 w = x->parent->left;
4038 }
4039
4040 w->color = x->parent->color;
4041 x->parent->color = MEM_BLACK;
4042 w->left->color = MEM_BLACK;
4043 mem_rotate_right (x->parent);
4044 x = mem_root;
4045 }
4046 }
4047 }
4048
4049 x->color = MEM_BLACK;
4050 }
4051
4052
4053 /* Value is non-zero if P is a pointer to a live Lisp string on
4054 the heap. M is a pointer to the mem_block for P. */
4055
4056 static bool
4057 live_string_p (struct mem_node *m, void *p)
4058 {
4059 if (m->type == MEM_TYPE_STRING)
4060 {
4061 struct string_block *b = (struct string_block *) m->start;
4062 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4063
4064 /* P must point to the start of a Lisp_String structure, and it
4065 must not be on the free-list. */
4066 return (offset >= 0
4067 && offset % sizeof b->strings[0] == 0
4068 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4069 && ((struct Lisp_String *) p)->data != NULL);
4070 }
4071 else
4072 return 0;
4073 }
4074
4075
4076 /* Value is non-zero if P is a pointer to a live Lisp cons on
4077 the heap. M is a pointer to the mem_block for P. */
4078
4079 static bool
4080 live_cons_p (struct mem_node *m, void *p)
4081 {
4082 if (m->type == MEM_TYPE_CONS)
4083 {
4084 struct cons_block *b = (struct cons_block *) m->start;
4085 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4086
4087 /* P must point to the start of a Lisp_Cons, not be
4088 one of the unused cells in the current cons block,
4089 and not be on the free-list. */
4090 return (offset >= 0
4091 && offset % sizeof b->conses[0] == 0
4092 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4093 && (b != cons_block
4094 || offset / sizeof b->conses[0] < cons_block_index)
4095 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4096 }
4097 else
4098 return 0;
4099 }
4100
4101
4102 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4103 the heap. M is a pointer to the mem_block for P. */
4104
4105 static bool
4106 live_symbol_p (struct mem_node *m, void *p)
4107 {
4108 if (m->type == MEM_TYPE_SYMBOL)
4109 {
4110 struct symbol_block *b = (struct symbol_block *) m->start;
4111 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4112
4113 /* P must point to the start of a Lisp_Symbol, not be
4114 one of the unused cells in the current symbol block,
4115 and not be on the free-list. */
4116 return (offset >= 0
4117 && offset % sizeof b->symbols[0] == 0
4118 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4119 && (b != symbol_block
4120 || offset / sizeof b->symbols[0] < symbol_block_index)
4121 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4122 }
4123 else
4124 return 0;
4125 }
4126
4127
4128 /* Value is non-zero if P is a pointer to a live Lisp float on
4129 the heap. M is a pointer to the mem_block for P. */
4130
4131 static bool
4132 live_float_p (struct mem_node *m, void *p)
4133 {
4134 if (m->type == MEM_TYPE_FLOAT)
4135 {
4136 struct float_block *b = (struct float_block *) m->start;
4137 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4138
4139 /* P must point to the start of a Lisp_Float and not be
4140 one of the unused cells in the current float block. */
4141 return (offset >= 0
4142 && offset % sizeof b->floats[0] == 0
4143 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4144 && (b != float_block
4145 || offset / sizeof b->floats[0] < float_block_index));
4146 }
4147 else
4148 return 0;
4149 }
4150
4151
4152 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4153 the heap. M is a pointer to the mem_block for P. */
4154
4155 static bool
4156 live_misc_p (struct mem_node *m, void *p)
4157 {
4158 if (m->type == MEM_TYPE_MISC)
4159 {
4160 struct marker_block *b = (struct marker_block *) m->start;
4161 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4162
4163 /* P must point to the start of a Lisp_Misc, not be
4164 one of the unused cells in the current misc block,
4165 and not be on the free-list. */
4166 return (offset >= 0
4167 && offset % sizeof b->markers[0] == 0
4168 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4169 && (b != marker_block
4170 || offset / sizeof b->markers[0] < marker_block_index)
4171 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4172 }
4173 else
4174 return 0;
4175 }
4176
4177
4178 /* Value is non-zero if P is a pointer to a live vector-like object.
4179 M is a pointer to the mem_block for P. */
4180
4181 static bool
4182 live_vector_p (struct mem_node *m, void *p)
4183 {
4184 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4185 {
4186 /* This memory node corresponds to a vector block. */
4187 struct vector_block *block = (struct vector_block *) m->start;
4188 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4189
4190 /* P is in the block's allocation range. Scan the block
4191 up to P and see whether P points to the start of some
4192 vector which is not on a free list. FIXME: check whether
4193 some allocation patterns (probably a lot of short vectors)
4194 may cause a substantial overhead of this loop. */
4195 while (VECTOR_IN_BLOCK (vector, block)
4196 && vector <= (struct Lisp_Vector *) p)
4197 {
4198 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4199 return 1;
4200 else
4201 vector = ADVANCE (vector, vector_nbytes (vector));
4202 }
4203 }
4204 else if (m->type == MEM_TYPE_VECTORLIKE
4205 && (char *) p == ((char *) m->start
4206 + offsetof (struct large_vector, v)))
4207 /* This memory node corresponds to a large vector. */
4208 return 1;
4209 return 0;
4210 }
4211
4212
4213 /* Value is non-zero if P is a pointer to a live buffer. M is a
4214 pointer to the mem_block for P. */
4215
4216 static bool
4217 live_buffer_p (struct mem_node *m, void *p)
4218 {
4219 /* P must point to the start of the block, and the buffer
4220 must not have been killed. */
4221 return (m->type == MEM_TYPE_BUFFER
4222 && p == m->start
4223 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4224 }
4225
4226 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4227
4228 #if GC_MARK_STACK
4229
4230 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4231
4232 /* Array of objects that are kept alive because the C stack contains
4233 a pattern that looks like a reference to them . */
4234
4235 #define MAX_ZOMBIES 10
4236 static Lisp_Object zombies[MAX_ZOMBIES];
4237
4238 /* Number of zombie objects. */
4239
4240 static EMACS_INT nzombies;
4241
4242 /* Number of garbage collections. */
4243
4244 static EMACS_INT ngcs;
4245
4246 /* Average percentage of zombies per collection. */
4247
4248 static double avg_zombies;
4249
4250 /* Max. number of live and zombie objects. */
4251
4252 static EMACS_INT max_live, max_zombies;
4253
4254 /* Average number of live objects per GC. */
4255
4256 static double avg_live;
4257
4258 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4259 doc: /* Show information about live and zombie objects. */)
4260 (void)
4261 {
4262 Lisp_Object args[8], zombie_list = Qnil;
4263 EMACS_INT i;
4264 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4265 zombie_list = Fcons (zombies[i], zombie_list);
4266 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4267 args[1] = make_number (ngcs);
4268 args[2] = make_float (avg_live);
4269 args[3] = make_float (avg_zombies);
4270 args[4] = make_float (avg_zombies / avg_live / 100);
4271 args[5] = make_number (max_live);
4272 args[6] = make_number (max_zombies);
4273 args[7] = zombie_list;
4274 return Fmessage (8, args);
4275 }
4276
4277 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4278
4279
4280 /* Mark OBJ if we can prove it's a Lisp_Object. */
4281
4282 static void
4283 mark_maybe_object (Lisp_Object obj)
4284 {
4285 void *po;
4286 struct mem_node *m;
4287
4288 if (INTEGERP (obj))
4289 return;
4290
4291 po = (void *) XPNTR (obj);
4292 m = mem_find (po);
4293
4294 if (m != MEM_NIL)
4295 {
4296 bool mark_p = 0;
4297
4298 switch (XTYPE (obj))
4299 {
4300 case Lisp_String:
4301 mark_p = (live_string_p (m, po)
4302 && !STRING_MARKED_P ((struct Lisp_String *) po));
4303 break;
4304
4305 case Lisp_Cons:
4306 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4307 break;
4308
4309 case Lisp_Symbol:
4310 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4311 break;
4312
4313 case Lisp_Float:
4314 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4315 break;
4316
4317 case Lisp_Vectorlike:
4318 /* Note: can't check BUFFERP before we know it's a
4319 buffer because checking that dereferences the pointer
4320 PO which might point anywhere. */
4321 if (live_vector_p (m, po))
4322 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4323 else if (live_buffer_p (m, po))
4324 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4325 break;
4326
4327 case Lisp_Misc:
4328 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4329 break;
4330
4331 default:
4332 break;
4333 }
4334
4335 if (mark_p)
4336 {
4337 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4338 if (nzombies < MAX_ZOMBIES)
4339 zombies[nzombies] = obj;
4340 ++nzombies;
4341 #endif
4342 mark_object (obj);
4343 }
4344 }
4345 }
4346
4347
4348 /* If P points to Lisp data, mark that as live if it isn't already
4349 marked. */
4350
4351 static void
4352 mark_maybe_pointer (void *p)
4353 {
4354 struct mem_node *m;
4355
4356 /* Quickly rule out some values which can't point to Lisp data.
4357 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4358 Otherwise, assume that Lisp data is aligned on even addresses. */
4359 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4360 return;
4361
4362 m = mem_find (p);
4363 if (m != MEM_NIL)
4364 {
4365 Lisp_Object obj = Qnil;
4366
4367 switch (m->type)
4368 {
4369 case MEM_TYPE_NON_LISP:
4370 case MEM_TYPE_SPARE:
4371 /* Nothing to do; not a pointer to Lisp memory. */
4372 break;
4373
4374 case MEM_TYPE_BUFFER:
4375 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4376 XSETVECTOR (obj, p);
4377 break;
4378
4379 case MEM_TYPE_CONS:
4380 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4381 XSETCONS (obj, p);
4382 break;
4383
4384 case MEM_TYPE_STRING:
4385 if (live_string_p (m, p)
4386 && !STRING_MARKED_P ((struct Lisp_String *) p))
4387 XSETSTRING (obj, p);
4388 break;
4389
4390 case MEM_TYPE_MISC:
4391 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4392 XSETMISC (obj, p);
4393 break;
4394
4395 case MEM_TYPE_SYMBOL:
4396 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4397 XSETSYMBOL (obj, p);
4398 break;
4399
4400 case MEM_TYPE_FLOAT:
4401 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4402 XSETFLOAT (obj, p);
4403 break;
4404
4405 case MEM_TYPE_VECTORLIKE:
4406 case MEM_TYPE_VECTOR_BLOCK:
4407 if (live_vector_p (m, p))
4408 {
4409 Lisp_Object tem;
4410 XSETVECTOR (tem, p);
4411 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4412 obj = tem;
4413 }
4414 break;
4415
4416 default:
4417 emacs_abort ();
4418 }
4419
4420 if (!NILP (obj))
4421 mark_object (obj);
4422 }
4423 }
4424
4425
4426 /* Alignment of pointer values. Use alignof, as it sometimes returns
4427 a smaller alignment than GCC's __alignof__ and mark_memory might
4428 miss objects if __alignof__ were used. */
4429 #define GC_POINTER_ALIGNMENT alignof (void *)
4430
4431 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4432 not suffice, which is the typical case. A host where a Lisp_Object is
4433 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4434 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4435 suffice to widen it to to a Lisp_Object and check it that way. */
4436 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4437 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4438 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4439 nor mark_maybe_object can follow the pointers. This should not occur on
4440 any practical porting target. */
4441 # error "MSB type bits straddle pointer-word boundaries"
4442 # endif
4443 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4444 pointer words that hold pointers ORed with type bits. */
4445 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4446 #else
4447 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4448 words that hold unmodified pointers. */
4449 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4450 #endif
4451
4452 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4453 or END+OFFSET..START. */
4454
4455 static void
4456 mark_memory (void *start, void *end)
4457 #if defined (__clang__) && defined (__has_feature)
4458 #if __has_feature(address_sanitizer)
4459 /* Do not allow -faddress-sanitizer to check this function, since it
4460 crosses the function stack boundary, and thus would yield many
4461 false positives. */
4462 __attribute__((no_address_safety_analysis))
4463 #endif
4464 #endif
4465 {
4466 void **pp;
4467 int i;
4468
4469 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4470 nzombies = 0;
4471 #endif
4472
4473 /* Make START the pointer to the start of the memory region,
4474 if it isn't already. */
4475 if (end < start)
4476 {
4477 void *tem = start;
4478 start = end;
4479 end = tem;
4480 }
4481
4482 /* Mark Lisp data pointed to. This is necessary because, in some
4483 situations, the C compiler optimizes Lisp objects away, so that
4484 only a pointer to them remains. Example:
4485
4486 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4487 ()
4488 {
4489 Lisp_Object obj = build_string ("test");
4490 struct Lisp_String *s = XSTRING (obj);
4491 Fgarbage_collect ();
4492 fprintf (stderr, "test `%s'\n", s->data);
4493 return Qnil;
4494 }
4495
4496 Here, `obj' isn't really used, and the compiler optimizes it
4497 away. The only reference to the life string is through the
4498 pointer `s'. */
4499
4500 for (pp = start; (void *) pp < end; pp++)
4501 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4502 {
4503 void *p = *(void **) ((char *) pp + i);
4504 mark_maybe_pointer (p);
4505 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4506 mark_maybe_object (XIL ((intptr_t) p));
4507 }
4508 }
4509
4510 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4511
4512 static bool setjmp_tested_p;
4513 static int longjmps_done;
4514
4515 #define SETJMP_WILL_LIKELY_WORK "\
4516 \n\
4517 Emacs garbage collector has been changed to use conservative stack\n\
4518 marking. Emacs has determined that the method it uses to do the\n\
4519 marking will likely work on your system, but this isn't sure.\n\
4520 \n\
4521 If you are a system-programmer, or can get the help of a local wizard\n\
4522 who is, please take a look at the function mark_stack in alloc.c, and\n\
4523 verify that the methods used are appropriate for your system.\n\
4524 \n\
4525 Please mail the result to <emacs-devel@gnu.org>.\n\
4526 "
4527
4528 #define SETJMP_WILL_NOT_WORK "\
4529 \n\
4530 Emacs garbage collector has been changed to use conservative stack\n\
4531 marking. Emacs has determined that the default method it uses to do the\n\
4532 marking will not work on your system. We will need a system-dependent\n\
4533 solution for your system.\n\
4534 \n\
4535 Please take a look at the function mark_stack in alloc.c, and\n\
4536 try to find a way to make it work on your system.\n\
4537 \n\
4538 Note that you may get false negatives, depending on the compiler.\n\
4539 In particular, you need to use -O with GCC for this test.\n\
4540 \n\
4541 Please mail the result to <emacs-devel@gnu.org>.\n\
4542 "
4543
4544
4545 /* Perform a quick check if it looks like setjmp saves registers in a
4546 jmp_buf. Print a message to stderr saying so. When this test
4547 succeeds, this is _not_ a proof that setjmp is sufficient for
4548 conservative stack marking. Only the sources or a disassembly
4549 can prove that. */
4550
4551 static void
4552 test_setjmp (void)
4553 {
4554 char buf[10];
4555 register int x;
4556 sys_jmp_buf jbuf;
4557
4558 /* Arrange for X to be put in a register. */
4559 sprintf (buf, "1");
4560 x = strlen (buf);
4561 x = 2 * x - 1;
4562
4563 sys_setjmp (jbuf);
4564 if (longjmps_done == 1)
4565 {
4566 /* Came here after the longjmp at the end of the function.
4567
4568 If x == 1, the longjmp has restored the register to its
4569 value before the setjmp, and we can hope that setjmp
4570 saves all such registers in the jmp_buf, although that
4571 isn't sure.
4572
4573 For other values of X, either something really strange is
4574 taking place, or the setjmp just didn't save the register. */
4575
4576 if (x == 1)
4577 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4578 else
4579 {
4580 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4581 exit (1);
4582 }
4583 }
4584
4585 ++longjmps_done;
4586 x = 2;
4587 if (longjmps_done == 1)
4588 sys_longjmp (jbuf, 1);
4589 }
4590
4591 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4592
4593
4594 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4595
4596 /* Abort if anything GCPRO'd doesn't survive the GC. */
4597
4598 static void
4599 check_gcpros (void)
4600 {
4601 struct gcpro *p;
4602 ptrdiff_t i;
4603
4604 for (p = gcprolist; p; p = p->next)
4605 for (i = 0; i < p->nvars; ++i)
4606 if (!survives_gc_p (p->var[i]))
4607 /* FIXME: It's not necessarily a bug. It might just be that the
4608 GCPRO is unnecessary or should release the object sooner. */
4609 emacs_abort ();
4610 }
4611
4612 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4613
4614 static void
4615 dump_zombies (void)
4616 {
4617 int i;
4618
4619 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4620 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4621 {
4622 fprintf (stderr, " %d = ", i);
4623 debug_print (zombies[i]);
4624 }
4625 }
4626
4627 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4628
4629
4630 /* Mark live Lisp objects on the C stack.
4631
4632 There are several system-dependent problems to consider when
4633 porting this to new architectures:
4634
4635 Processor Registers
4636
4637 We have to mark Lisp objects in CPU registers that can hold local
4638 variables or are used to pass parameters.
4639
4640 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4641 something that either saves relevant registers on the stack, or
4642 calls mark_maybe_object passing it each register's contents.
4643
4644 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4645 implementation assumes that calling setjmp saves registers we need
4646 to see in a jmp_buf which itself lies on the stack. This doesn't
4647 have to be true! It must be verified for each system, possibly
4648 by taking a look at the source code of setjmp.
4649
4650 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4651 can use it as a machine independent method to store all registers
4652 to the stack. In this case the macros described in the previous
4653 two paragraphs are not used.
4654
4655 Stack Layout
4656
4657 Architectures differ in the way their processor stack is organized.
4658 For example, the stack might look like this
4659
4660 +----------------+
4661 | Lisp_Object | size = 4
4662 +----------------+
4663 | something else | size = 2
4664 +----------------+
4665 | Lisp_Object | size = 4
4666 +----------------+
4667 | ... |
4668
4669 In such a case, not every Lisp_Object will be aligned equally. To
4670 find all Lisp_Object on the stack it won't be sufficient to walk
4671 the stack in steps of 4 bytes. Instead, two passes will be
4672 necessary, one starting at the start of the stack, and a second
4673 pass starting at the start of the stack + 2. Likewise, if the
4674 minimal alignment of Lisp_Objects on the stack is 1, four passes
4675 would be necessary, each one starting with one byte more offset
4676 from the stack start. */
4677
4678 static void
4679 mark_stack (void)
4680 {
4681 void *end;
4682
4683 #ifdef HAVE___BUILTIN_UNWIND_INIT
4684 /* Force callee-saved registers and register windows onto the stack.
4685 This is the preferred method if available, obviating the need for
4686 machine dependent methods. */
4687 __builtin_unwind_init ();
4688 end = &end;
4689 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4690 #ifndef GC_SAVE_REGISTERS_ON_STACK
4691 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4692 union aligned_jmpbuf {
4693 Lisp_Object o;
4694 sys_jmp_buf j;
4695 } j;
4696 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4697 #endif
4698 /* This trick flushes the register windows so that all the state of
4699 the process is contained in the stack. */
4700 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4701 needed on ia64 too. See mach_dep.c, where it also says inline
4702 assembler doesn't work with relevant proprietary compilers. */
4703 #ifdef __sparc__
4704 #if defined (__sparc64__) && defined (__FreeBSD__)
4705 /* FreeBSD does not have a ta 3 handler. */
4706 asm ("flushw");
4707 #else
4708 asm ("ta 3");
4709 #endif
4710 #endif
4711
4712 /* Save registers that we need to see on the stack. We need to see
4713 registers used to hold register variables and registers used to
4714 pass parameters. */
4715 #ifdef GC_SAVE_REGISTERS_ON_STACK
4716 GC_SAVE_REGISTERS_ON_STACK (end);
4717 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4718
4719 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4720 setjmp will definitely work, test it
4721 and print a message with the result
4722 of the test. */
4723 if (!setjmp_tested_p)
4724 {
4725 setjmp_tested_p = 1;
4726 test_setjmp ();
4727 }
4728 #endif /* GC_SETJMP_WORKS */
4729
4730 sys_setjmp (j.j);
4731 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4732 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4733 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4734
4735 /* This assumes that the stack is a contiguous region in memory. If
4736 that's not the case, something has to be done here to iterate
4737 over the stack segments. */
4738 mark_memory (stack_base, end);
4739
4740 /* Allow for marking a secondary stack, like the register stack on the
4741 ia64. */
4742 #ifdef GC_MARK_SECONDARY_STACK
4743 GC_MARK_SECONDARY_STACK ();
4744 #endif
4745
4746 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4747 check_gcpros ();
4748 #endif
4749 }
4750
4751 #endif /* GC_MARK_STACK != 0 */
4752
4753
4754 /* Determine whether it is safe to access memory at address P. */
4755 static int
4756 valid_pointer_p (void *p)
4757 {
4758 #ifdef WINDOWSNT
4759 return w32_valid_pointer_p (p, 16);
4760 #else
4761 int fd[2];
4762
4763 /* Obviously, we cannot just access it (we would SEGV trying), so we
4764 trick the o/s to tell us whether p is a valid pointer.
4765 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4766 not validate p in that case. */
4767
4768 if (emacs_pipe (fd) == 0)
4769 {
4770 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4771 emacs_close (fd[1]);
4772 emacs_close (fd[0]);
4773 return valid;
4774 }
4775
4776 return -1;
4777 #endif
4778 }
4779
4780 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4781 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4782 cannot validate OBJ. This function can be quite slow, so its primary
4783 use is the manual debugging. The only exception is print_object, where
4784 we use it to check whether the memory referenced by the pointer of
4785 Lisp_Save_Value object contains valid objects. */
4786
4787 int
4788 valid_lisp_object_p (Lisp_Object obj)
4789 {
4790 void *p;
4791 #if GC_MARK_STACK
4792 struct mem_node *m;
4793 #endif
4794
4795 if (INTEGERP (obj))
4796 return 1;
4797
4798 p = (void *) XPNTR (obj);
4799 if (PURE_POINTER_P (p))
4800 return 1;
4801
4802 if (p == &buffer_defaults || p == &buffer_local_symbols)
4803 return 2;
4804
4805 #if !GC_MARK_STACK
4806 return valid_pointer_p (p);
4807 #else
4808
4809 m = mem_find (p);
4810
4811 if (m == MEM_NIL)
4812 {
4813 int valid = valid_pointer_p (p);
4814 if (valid <= 0)
4815 return valid;
4816
4817 if (SUBRP (obj))
4818 return 1;
4819
4820 return 0;
4821 }
4822
4823 switch (m->type)
4824 {
4825 case MEM_TYPE_NON_LISP:
4826 case MEM_TYPE_SPARE:
4827 return 0;
4828
4829 case MEM_TYPE_BUFFER:
4830 return live_buffer_p (m, p) ? 1 : 2;
4831
4832 case MEM_TYPE_CONS:
4833 return live_cons_p (m, p);
4834
4835 case MEM_TYPE_STRING:
4836 return live_string_p (m, p);
4837
4838 case MEM_TYPE_MISC:
4839 return live_misc_p (m, p);
4840
4841 case MEM_TYPE_SYMBOL:
4842 return live_symbol_p (m, p);
4843
4844 case MEM_TYPE_FLOAT:
4845 return live_float_p (m, p);
4846
4847 case MEM_TYPE_VECTORLIKE:
4848 case MEM_TYPE_VECTOR_BLOCK:
4849 return live_vector_p (m, p);
4850
4851 default:
4852 break;
4853 }
4854
4855 return 0;
4856 #endif
4857 }
4858
4859
4860
4861 \f
4862 /***********************************************************************
4863 Pure Storage Management
4864 ***********************************************************************/
4865
4866 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4867 pointer to it. TYPE is the Lisp type for which the memory is
4868 allocated. TYPE < 0 means it's not used for a Lisp object. */
4869
4870 static void *
4871 pure_alloc (size_t size, int type)
4872 {
4873 void *result;
4874 #if USE_LSB_TAG
4875 size_t alignment = GCALIGNMENT;
4876 #else
4877 size_t alignment = alignof (EMACS_INT);
4878
4879 /* Give Lisp_Floats an extra alignment. */
4880 if (type == Lisp_Float)
4881 alignment = alignof (struct Lisp_Float);
4882 #endif
4883
4884 again:
4885 if (type >= 0)
4886 {
4887 /* Allocate space for a Lisp object from the beginning of the free
4888 space with taking account of alignment. */
4889 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4890 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4891 }
4892 else
4893 {
4894 /* Allocate space for a non-Lisp object from the end of the free
4895 space. */
4896 pure_bytes_used_non_lisp += size;
4897 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4898 }
4899 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4900
4901 if (pure_bytes_used <= pure_size)
4902 return result;
4903
4904 /* Don't allocate a large amount here,
4905 because it might get mmap'd and then its address
4906 might not be usable. */
4907 purebeg = xmalloc (10000);
4908 pure_size = 10000;
4909 pure_bytes_used_before_overflow += pure_bytes_used - size;
4910 pure_bytes_used = 0;
4911 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4912 goto again;
4913 }
4914
4915
4916 /* Print a warning if PURESIZE is too small. */
4917
4918 void
4919 check_pure_size (void)
4920 {
4921 if (pure_bytes_used_before_overflow)
4922 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4923 " bytes needed)"),
4924 pure_bytes_used + pure_bytes_used_before_overflow);
4925 }
4926
4927
4928 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4929 the non-Lisp data pool of the pure storage, and return its start
4930 address. Return NULL if not found. */
4931
4932 static char *
4933 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4934 {
4935 int i;
4936 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4937 const unsigned char *p;
4938 char *non_lisp_beg;
4939
4940 if (pure_bytes_used_non_lisp <= nbytes)
4941 return NULL;
4942
4943 /* Set up the Boyer-Moore table. */
4944 skip = nbytes + 1;
4945 for (i = 0; i < 256; i++)
4946 bm_skip[i] = skip;
4947
4948 p = (const unsigned char *) data;
4949 while (--skip > 0)
4950 bm_skip[*p++] = skip;
4951
4952 last_char_skip = bm_skip['\0'];
4953
4954 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4955 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4956
4957 /* See the comments in the function `boyer_moore' (search.c) for the
4958 use of `infinity'. */
4959 infinity = pure_bytes_used_non_lisp + 1;
4960 bm_skip['\0'] = infinity;
4961
4962 p = (const unsigned char *) non_lisp_beg + nbytes;
4963 start = 0;
4964 do
4965 {
4966 /* Check the last character (== '\0'). */
4967 do
4968 {
4969 start += bm_skip[*(p + start)];
4970 }
4971 while (start <= start_max);
4972
4973 if (start < infinity)
4974 /* Couldn't find the last character. */
4975 return NULL;
4976
4977 /* No less than `infinity' means we could find the last
4978 character at `p[start - infinity]'. */
4979 start -= infinity;
4980
4981 /* Check the remaining characters. */
4982 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4983 /* Found. */
4984 return non_lisp_beg + start;
4985
4986 start += last_char_skip;
4987 }
4988 while (start <= start_max);
4989
4990 return NULL;
4991 }
4992
4993
4994 /* Return a string allocated in pure space. DATA is a buffer holding
4995 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4996 means make the result string multibyte.
4997
4998 Must get an error if pure storage is full, since if it cannot hold
4999 a large string it may be able to hold conses that point to that
5000 string; then the string is not protected from gc. */
5001
5002 Lisp_Object
5003 make_pure_string (const char *data,
5004 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5005 {
5006 Lisp_Object string;
5007 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5008 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5009 if (s->data == NULL)
5010 {
5011 s->data = pure_alloc (nbytes + 1, -1);
5012 memcpy (s->data, data, nbytes);
5013 s->data[nbytes] = '\0';
5014 }
5015 s->size = nchars;
5016 s->size_byte = multibyte ? nbytes : -1;
5017 s->intervals = NULL;
5018 XSETSTRING (string, s);
5019 return string;
5020 }
5021
5022 /* Return a string allocated in pure space. Do not
5023 allocate the string data, just point to DATA. */
5024
5025 Lisp_Object
5026 make_pure_c_string (const char *data, ptrdiff_t nchars)
5027 {
5028 Lisp_Object string;
5029 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5030 s->size = nchars;
5031 s->size_byte = -1;
5032 s->data = (unsigned char *) data;
5033 s->intervals = NULL;
5034 XSETSTRING (string, s);
5035 return string;
5036 }
5037
5038 /* Return a cons allocated from pure space. Give it pure copies
5039 of CAR as car and CDR as cdr. */
5040
5041 Lisp_Object
5042 pure_cons (Lisp_Object car, Lisp_Object cdr)
5043 {
5044 Lisp_Object new;
5045 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5046 XSETCONS (new, p);
5047 XSETCAR (new, Fpurecopy (car));
5048 XSETCDR (new, Fpurecopy (cdr));
5049 return new;
5050 }
5051
5052
5053 /* Value is a float object with value NUM allocated from pure space. */
5054
5055 static Lisp_Object
5056 make_pure_float (double num)
5057 {
5058 Lisp_Object new;
5059 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5060 XSETFLOAT (new, p);
5061 XFLOAT_INIT (new, num);
5062 return new;
5063 }
5064
5065
5066 /* Return a vector with room for LEN Lisp_Objects allocated from
5067 pure space. */
5068
5069 static Lisp_Object
5070 make_pure_vector (ptrdiff_t len)
5071 {
5072 Lisp_Object new;
5073 size_t size = header_size + len * word_size;
5074 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5075 XSETVECTOR (new, p);
5076 XVECTOR (new)->header.size = len;
5077 return new;
5078 }
5079
5080
5081 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5082 doc: /* Make a copy of object OBJ in pure storage.
5083 Recursively copies contents of vectors and cons cells.
5084 Does not copy symbols. Copies strings without text properties. */)
5085 (register Lisp_Object obj)
5086 {
5087 if (NILP (Vpurify_flag))
5088 return obj;
5089
5090 if (PURE_POINTER_P (XPNTR (obj)))
5091 return obj;
5092
5093 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5094 {
5095 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5096 if (!NILP (tmp))
5097 return tmp;
5098 }
5099
5100 if (CONSP (obj))
5101 obj = pure_cons (XCAR (obj), XCDR (obj));
5102 else if (FLOATP (obj))
5103 obj = make_pure_float (XFLOAT_DATA (obj));
5104 else if (STRINGP (obj))
5105 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5106 SBYTES (obj),
5107 STRING_MULTIBYTE (obj));
5108 else if (COMPILEDP (obj) || VECTORP (obj))
5109 {
5110 register struct Lisp_Vector *vec;
5111 register ptrdiff_t i;
5112 ptrdiff_t size;
5113
5114 size = ASIZE (obj);
5115 if (size & PSEUDOVECTOR_FLAG)
5116 size &= PSEUDOVECTOR_SIZE_MASK;
5117 vec = XVECTOR (make_pure_vector (size));
5118 for (i = 0; i < size; i++)
5119 vec->contents[i] = Fpurecopy (AREF (obj, i));
5120 if (COMPILEDP (obj))
5121 {
5122 XSETPVECTYPE (vec, PVEC_COMPILED);
5123 XSETCOMPILED (obj, vec);
5124 }
5125 else
5126 XSETVECTOR (obj, vec);
5127 }
5128 else if (MARKERP (obj))
5129 error ("Attempt to copy a marker to pure storage");
5130 else
5131 /* Not purified, don't hash-cons. */
5132 return obj;
5133
5134 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5135 Fputhash (obj, obj, Vpurify_flag);
5136
5137 return obj;
5138 }
5139
5140
5141 \f
5142 /***********************************************************************
5143 Protection from GC
5144 ***********************************************************************/
5145
5146 /* Put an entry in staticvec, pointing at the variable with address
5147 VARADDRESS. */
5148
5149 void
5150 staticpro (Lisp_Object *varaddress)
5151 {
5152 if (staticidx >= NSTATICS)
5153 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5154 staticvec[staticidx++] = varaddress;
5155 }
5156
5157 \f
5158 /***********************************************************************
5159 Protection from GC
5160 ***********************************************************************/
5161
5162 /* Temporarily prevent garbage collection. */
5163
5164 ptrdiff_t
5165 inhibit_garbage_collection (void)
5166 {
5167 ptrdiff_t count = SPECPDL_INDEX ();
5168
5169 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5170 return count;
5171 }
5172
5173 /* Used to avoid possible overflows when
5174 converting from C to Lisp integers. */
5175
5176 static Lisp_Object
5177 bounded_number (EMACS_INT number)
5178 {
5179 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5180 }
5181
5182 /* Calculate total bytes of live objects. */
5183
5184 static size_t
5185 total_bytes_of_live_objects (void)
5186 {
5187 size_t tot = 0;
5188 tot += total_conses * sizeof (struct Lisp_Cons);
5189 tot += total_symbols * sizeof (struct Lisp_Symbol);
5190 tot += total_markers * sizeof (union Lisp_Misc);
5191 tot += total_string_bytes;
5192 tot += total_vector_slots * word_size;
5193 tot += total_floats * sizeof (struct Lisp_Float);
5194 tot += total_intervals * sizeof (struct interval);
5195 tot += total_strings * sizeof (struct Lisp_String);
5196 return tot;
5197 }
5198
5199 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5200 doc: /* Reclaim storage for Lisp objects no longer needed.
5201 Garbage collection happens automatically if you cons more than
5202 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5203 `garbage-collect' normally returns a list with info on amount of space in use,
5204 where each entry has the form (NAME SIZE USED FREE), where:
5205 - NAME is a symbol describing the kind of objects this entry represents,
5206 - SIZE is the number of bytes used by each one,
5207 - USED is the number of those objects that were found live in the heap,
5208 - FREE is the number of those objects that are not live but that Emacs
5209 keeps around for future allocations (maybe because it does not know how
5210 to return them to the OS).
5211 However, if there was overflow in pure space, `garbage-collect'
5212 returns nil, because real GC can't be done.
5213 See Info node `(elisp)Garbage Collection'. */)
5214 (void)
5215 {
5216 struct buffer *nextb;
5217 char stack_top_variable;
5218 ptrdiff_t i;
5219 bool message_p;
5220 ptrdiff_t count = SPECPDL_INDEX ();
5221 EMACS_TIME start;
5222 Lisp_Object retval = Qnil;
5223 size_t tot_before = 0;
5224
5225 if (abort_on_gc)
5226 emacs_abort ();
5227
5228 /* Can't GC if pure storage overflowed because we can't determine
5229 if something is a pure object or not. */
5230 if (pure_bytes_used_before_overflow)
5231 return Qnil;
5232
5233 /* Record this function, so it appears on the profiler's backtraces. */
5234 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5235
5236 check_cons_list ();
5237
5238 /* Don't keep undo information around forever.
5239 Do this early on, so it is no problem if the user quits. */
5240 FOR_EACH_BUFFER (nextb)
5241 compact_buffer (nextb);
5242
5243 if (profiler_memory_running)
5244 tot_before = total_bytes_of_live_objects ();
5245
5246 start = current_emacs_time ();
5247
5248 /* In case user calls debug_print during GC,
5249 don't let that cause a recursive GC. */
5250 consing_since_gc = 0;
5251
5252 /* Save what's currently displayed in the echo area. */
5253 message_p = push_message ();
5254 record_unwind_protect_void (pop_message_unwind);
5255
5256 /* Save a copy of the contents of the stack, for debugging. */
5257 #if MAX_SAVE_STACK > 0
5258 if (NILP (Vpurify_flag))
5259 {
5260 char *stack;
5261 ptrdiff_t stack_size;
5262 if (&stack_top_variable < stack_bottom)
5263 {
5264 stack = &stack_top_variable;
5265 stack_size = stack_bottom - &stack_top_variable;
5266 }
5267 else
5268 {
5269 stack = stack_bottom;
5270 stack_size = &stack_top_variable - stack_bottom;
5271 }
5272 if (stack_size <= MAX_SAVE_STACK)
5273 {
5274 if (stack_copy_size < stack_size)
5275 {
5276 stack_copy = xrealloc (stack_copy, stack_size);
5277 stack_copy_size = stack_size;
5278 }
5279 memcpy (stack_copy, stack, stack_size);
5280 }
5281 }
5282 #endif /* MAX_SAVE_STACK > 0 */
5283
5284 if (garbage_collection_messages)
5285 message1_nolog ("Garbage collecting...");
5286
5287 block_input ();
5288
5289 shrink_regexp_cache ();
5290
5291 gc_in_progress = 1;
5292
5293 /* Mark all the special slots that serve as the roots of accessibility. */
5294
5295 mark_buffer (&buffer_defaults);
5296 mark_buffer (&buffer_local_symbols);
5297
5298 for (i = 0; i < staticidx; i++)
5299 mark_object (*staticvec[i]);
5300
5301 mark_specpdl ();
5302 mark_terminals ();
5303 mark_kboards ();
5304
5305 #ifdef USE_GTK
5306 xg_mark_data ();
5307 #endif
5308
5309 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5310 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5311 mark_stack ();
5312 #else
5313 {
5314 register struct gcpro *tail;
5315 for (tail = gcprolist; tail; tail = tail->next)
5316 for (i = 0; i < tail->nvars; i++)
5317 mark_object (tail->var[i]);
5318 }
5319 mark_byte_stack ();
5320 {
5321 struct catchtag *catch;
5322 struct handler *handler;
5323
5324 for (catch = catchlist; catch; catch = catch->next)
5325 {
5326 mark_object (catch->tag);
5327 mark_object (catch->val);
5328 }
5329 for (handler = handlerlist; handler; handler = handler->next)
5330 {
5331 mark_object (handler->handler);
5332 mark_object (handler->var);
5333 }
5334 }
5335 #endif
5336
5337 #ifdef HAVE_WINDOW_SYSTEM
5338 mark_fringe_data ();
5339 #endif
5340
5341 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5342 mark_stack ();
5343 #endif
5344
5345 /* Everything is now marked, except for the things that require special
5346 finalization, i.e. the undo_list.
5347 Look thru every buffer's undo list
5348 for elements that update markers that were not marked,
5349 and delete them. */
5350 FOR_EACH_BUFFER (nextb)
5351 {
5352 /* If a buffer's undo list is Qt, that means that undo is
5353 turned off in that buffer. Calling truncate_undo_list on
5354 Qt tends to return NULL, which effectively turns undo back on.
5355 So don't call truncate_undo_list if undo_list is Qt. */
5356 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5357 {
5358 Lisp_Object tail, prev;
5359 tail = nextb->INTERNAL_FIELD (undo_list);
5360 prev = Qnil;
5361 while (CONSP (tail))
5362 {
5363 if (CONSP (XCAR (tail))
5364 && MARKERP (XCAR (XCAR (tail)))
5365 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5366 {
5367 if (NILP (prev))
5368 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5369 else
5370 {
5371 tail = XCDR (tail);
5372 XSETCDR (prev, tail);
5373 }
5374 }
5375 else
5376 {
5377 prev = tail;
5378 tail = XCDR (tail);
5379 }
5380 }
5381 }
5382 /* Now that we have stripped the elements that need not be in the
5383 undo_list any more, we can finally mark the list. */
5384 mark_object (nextb->INTERNAL_FIELD (undo_list));
5385 }
5386
5387 gc_sweep ();
5388
5389 /* Clear the mark bits that we set in certain root slots. */
5390
5391 unmark_byte_stack ();
5392 VECTOR_UNMARK (&buffer_defaults);
5393 VECTOR_UNMARK (&buffer_local_symbols);
5394
5395 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5396 dump_zombies ();
5397 #endif
5398
5399 check_cons_list ();
5400
5401 gc_in_progress = 0;
5402
5403 unblock_input ();
5404
5405 consing_since_gc = 0;
5406 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5407 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5408
5409 gc_relative_threshold = 0;
5410 if (FLOATP (Vgc_cons_percentage))
5411 { /* Set gc_cons_combined_threshold. */
5412 double tot = total_bytes_of_live_objects ();
5413
5414 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5415 if (0 < tot)
5416 {
5417 if (tot < TYPE_MAXIMUM (EMACS_INT))
5418 gc_relative_threshold = tot;
5419 else
5420 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5421 }
5422 }
5423
5424 if (garbage_collection_messages)
5425 {
5426 if (message_p || minibuf_level > 0)
5427 restore_message ();
5428 else
5429 message1_nolog ("Garbage collecting...done");
5430 }
5431
5432 unbind_to (count, Qnil);
5433 {
5434 Lisp_Object total[11];
5435 int total_size = 10;
5436
5437 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5438 bounded_number (total_conses),
5439 bounded_number (total_free_conses));
5440
5441 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5442 bounded_number (total_symbols),
5443 bounded_number (total_free_symbols));
5444
5445 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5446 bounded_number (total_markers),
5447 bounded_number (total_free_markers));
5448
5449 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5450 bounded_number (total_strings),
5451 bounded_number (total_free_strings));
5452
5453 total[4] = list3 (Qstring_bytes, make_number (1),
5454 bounded_number (total_string_bytes));
5455
5456 total[5] = list3 (Qvectors,
5457 make_number (header_size + sizeof (Lisp_Object)),
5458 bounded_number (total_vectors));
5459
5460 total[6] = list4 (Qvector_slots, make_number (word_size),
5461 bounded_number (total_vector_slots),
5462 bounded_number (total_free_vector_slots));
5463
5464 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5465 bounded_number (total_floats),
5466 bounded_number (total_free_floats));
5467
5468 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5469 bounded_number (total_intervals),
5470 bounded_number (total_free_intervals));
5471
5472 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5473 bounded_number (total_buffers));
5474
5475 #ifdef DOUG_LEA_MALLOC
5476 total_size++;
5477 total[10] = list4 (Qheap, make_number (1024),
5478 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5479 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5480 #endif
5481 retval = Flist (total_size, total);
5482 }
5483
5484 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5485 {
5486 /* Compute average percentage of zombies. */
5487 double nlive
5488 = (total_conses + total_symbols + total_markers + total_strings
5489 + total_vectors + total_floats + total_intervals + total_buffers);
5490
5491 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5492 max_live = max (nlive, max_live);
5493 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5494 max_zombies = max (nzombies, max_zombies);
5495 ++ngcs;
5496 }
5497 #endif
5498
5499 if (!NILP (Vpost_gc_hook))
5500 {
5501 ptrdiff_t gc_count = inhibit_garbage_collection ();
5502 safe_run_hooks (Qpost_gc_hook);
5503 unbind_to (gc_count, Qnil);
5504 }
5505
5506 /* Accumulate statistics. */
5507 if (FLOATP (Vgc_elapsed))
5508 {
5509 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5510 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5511 + EMACS_TIME_TO_DOUBLE (since_start));
5512 }
5513
5514 gcs_done++;
5515
5516 /* Collect profiling data. */
5517 if (profiler_memory_running)
5518 {
5519 size_t swept = 0;
5520 size_t tot_after = total_bytes_of_live_objects ();
5521 if (tot_before > tot_after)
5522 swept = tot_before - tot_after;
5523 malloc_probe (swept);
5524 }
5525
5526 return retval;
5527 }
5528
5529
5530 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5531 only interesting objects referenced from glyphs are strings. */
5532
5533 static void
5534 mark_glyph_matrix (struct glyph_matrix *matrix)
5535 {
5536 struct glyph_row *row = matrix->rows;
5537 struct glyph_row *end = row + matrix->nrows;
5538
5539 for (; row < end; ++row)
5540 if (row->enabled_p)
5541 {
5542 int area;
5543 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5544 {
5545 struct glyph *glyph = row->glyphs[area];
5546 struct glyph *end_glyph = glyph + row->used[area];
5547
5548 for (; glyph < end_glyph; ++glyph)
5549 if (STRINGP (glyph->object)
5550 && !STRING_MARKED_P (XSTRING (glyph->object)))
5551 mark_object (glyph->object);
5552 }
5553 }
5554 }
5555
5556
5557 /* Mark Lisp faces in the face cache C. */
5558
5559 static void
5560 mark_face_cache (struct face_cache *c)
5561 {
5562 if (c)
5563 {
5564 int i, j;
5565 for (i = 0; i < c->used; ++i)
5566 {
5567 struct face *face = FACE_FROM_ID (c->f, i);
5568
5569 if (face)
5570 {
5571 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5572 mark_object (face->lface[j]);
5573 }
5574 }
5575 }
5576 }
5577
5578
5579 \f
5580 /* Mark reference to a Lisp_Object.
5581 If the object referred to has not been seen yet, recursively mark
5582 all the references contained in it. */
5583
5584 #define LAST_MARKED_SIZE 500
5585 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5586 static int last_marked_index;
5587
5588 /* For debugging--call abort when we cdr down this many
5589 links of a list, in mark_object. In debugging,
5590 the call to abort will hit a breakpoint.
5591 Normally this is zero and the check never goes off. */
5592 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5593
5594 static void
5595 mark_vectorlike (struct Lisp_Vector *ptr)
5596 {
5597 ptrdiff_t size = ptr->header.size;
5598 ptrdiff_t i;
5599
5600 eassert (!VECTOR_MARKED_P (ptr));
5601 VECTOR_MARK (ptr); /* Else mark it. */
5602 if (size & PSEUDOVECTOR_FLAG)
5603 size &= PSEUDOVECTOR_SIZE_MASK;
5604
5605 /* Note that this size is not the memory-footprint size, but only
5606 the number of Lisp_Object fields that we should trace.
5607 The distinction is used e.g. by Lisp_Process which places extra
5608 non-Lisp_Object fields at the end of the structure... */
5609 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5610 mark_object (ptr->contents[i]);
5611 }
5612
5613 /* Like mark_vectorlike but optimized for char-tables (and
5614 sub-char-tables) assuming that the contents are mostly integers or
5615 symbols. */
5616
5617 static void
5618 mark_char_table (struct Lisp_Vector *ptr)
5619 {
5620 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5621 int i;
5622
5623 eassert (!VECTOR_MARKED_P (ptr));
5624 VECTOR_MARK (ptr);
5625 for (i = 0; i < size; i++)
5626 {
5627 Lisp_Object val = ptr->contents[i];
5628
5629 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5630 continue;
5631 if (SUB_CHAR_TABLE_P (val))
5632 {
5633 if (! VECTOR_MARKED_P (XVECTOR (val)))
5634 mark_char_table (XVECTOR (val));
5635 }
5636 else
5637 mark_object (val);
5638 }
5639 }
5640
5641 /* Mark the chain of overlays starting at PTR. */
5642
5643 static void
5644 mark_overlay (struct Lisp_Overlay *ptr)
5645 {
5646 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5647 {
5648 ptr->gcmarkbit = 1;
5649 mark_object (ptr->start);
5650 mark_object (ptr->end);
5651 mark_object (ptr->plist);
5652 }
5653 }
5654
5655 /* Mark Lisp_Objects and special pointers in BUFFER. */
5656
5657 static void
5658 mark_buffer (struct buffer *buffer)
5659 {
5660 /* This is handled much like other pseudovectors... */
5661 mark_vectorlike ((struct Lisp_Vector *) buffer);
5662
5663 /* ...but there are some buffer-specific things. */
5664
5665 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5666
5667 /* For now, we just don't mark the undo_list. It's done later in
5668 a special way just before the sweep phase, and after stripping
5669 some of its elements that are not needed any more. */
5670
5671 mark_overlay (buffer->overlays_before);
5672 mark_overlay (buffer->overlays_after);
5673
5674 /* If this is an indirect buffer, mark its base buffer. */
5675 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5676 mark_buffer (buffer->base_buffer);
5677 }
5678
5679 /* Remove killed buffers or items whose car is a killed buffer from
5680 LIST, and mark other items. Return changed LIST, which is marked. */
5681
5682 static Lisp_Object
5683 mark_discard_killed_buffers (Lisp_Object list)
5684 {
5685 Lisp_Object tail, *prev = &list;
5686
5687 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5688 tail = XCDR (tail))
5689 {
5690 Lisp_Object tem = XCAR (tail);
5691 if (CONSP (tem))
5692 tem = XCAR (tem);
5693 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5694 *prev = XCDR (tail);
5695 else
5696 {
5697 CONS_MARK (XCONS (tail));
5698 mark_object (XCAR (tail));
5699 prev = xcdr_addr (tail);
5700 }
5701 }
5702 mark_object (tail);
5703 return list;
5704 }
5705
5706 /* Determine type of generic Lisp_Object and mark it accordingly. */
5707
5708 void
5709 mark_object (Lisp_Object arg)
5710 {
5711 register Lisp_Object obj = arg;
5712 #ifdef GC_CHECK_MARKED_OBJECTS
5713 void *po;
5714 struct mem_node *m;
5715 #endif
5716 ptrdiff_t cdr_count = 0;
5717
5718 loop:
5719
5720 if (PURE_POINTER_P (XPNTR (obj)))
5721 return;
5722
5723 last_marked[last_marked_index++] = obj;
5724 if (last_marked_index == LAST_MARKED_SIZE)
5725 last_marked_index = 0;
5726
5727 /* Perform some sanity checks on the objects marked here. Abort if
5728 we encounter an object we know is bogus. This increases GC time
5729 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5730 #ifdef GC_CHECK_MARKED_OBJECTS
5731
5732 po = (void *) XPNTR (obj);
5733
5734 /* Check that the object pointed to by PO is known to be a Lisp
5735 structure allocated from the heap. */
5736 #define CHECK_ALLOCATED() \
5737 do { \
5738 m = mem_find (po); \
5739 if (m == MEM_NIL) \
5740 emacs_abort (); \
5741 } while (0)
5742
5743 /* Check that the object pointed to by PO is live, using predicate
5744 function LIVEP. */
5745 #define CHECK_LIVE(LIVEP) \
5746 do { \
5747 if (!LIVEP (m, po)) \
5748 emacs_abort (); \
5749 } while (0)
5750
5751 /* Check both of the above conditions. */
5752 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5753 do { \
5754 CHECK_ALLOCATED (); \
5755 CHECK_LIVE (LIVEP); \
5756 } while (0) \
5757
5758 #else /* not GC_CHECK_MARKED_OBJECTS */
5759
5760 #define CHECK_LIVE(LIVEP) (void) 0
5761 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5762
5763 #endif /* not GC_CHECK_MARKED_OBJECTS */
5764
5765 switch (XTYPE (obj))
5766 {
5767 case Lisp_String:
5768 {
5769 register struct Lisp_String *ptr = XSTRING (obj);
5770 if (STRING_MARKED_P (ptr))
5771 break;
5772 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5773 MARK_STRING (ptr);
5774 MARK_INTERVAL_TREE (ptr->intervals);
5775 #ifdef GC_CHECK_STRING_BYTES
5776 /* Check that the string size recorded in the string is the
5777 same as the one recorded in the sdata structure. */
5778 string_bytes (ptr);
5779 #endif /* GC_CHECK_STRING_BYTES */
5780 }
5781 break;
5782
5783 case Lisp_Vectorlike:
5784 {
5785 register struct Lisp_Vector *ptr = XVECTOR (obj);
5786 register ptrdiff_t pvectype;
5787
5788 if (VECTOR_MARKED_P (ptr))
5789 break;
5790
5791 #ifdef GC_CHECK_MARKED_OBJECTS
5792 m = mem_find (po);
5793 if (m == MEM_NIL && !SUBRP (obj))
5794 emacs_abort ();
5795 #endif /* GC_CHECK_MARKED_OBJECTS */
5796
5797 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5798 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5799 >> PSEUDOVECTOR_AREA_BITS);
5800 else
5801 pvectype = PVEC_NORMAL_VECTOR;
5802
5803 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5804 CHECK_LIVE (live_vector_p);
5805
5806 switch (pvectype)
5807 {
5808 case PVEC_BUFFER:
5809 #ifdef GC_CHECK_MARKED_OBJECTS
5810 {
5811 struct buffer *b;
5812 FOR_EACH_BUFFER (b)
5813 if (b == po)
5814 break;
5815 if (b == NULL)
5816 emacs_abort ();
5817 }
5818 #endif /* GC_CHECK_MARKED_OBJECTS */
5819 mark_buffer ((struct buffer *) ptr);
5820 break;
5821
5822 case PVEC_COMPILED:
5823 { /* We could treat this just like a vector, but it is better
5824 to save the COMPILED_CONSTANTS element for last and avoid
5825 recursion there. */
5826 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5827 int i;
5828
5829 VECTOR_MARK (ptr);
5830 for (i = 0; i < size; i++)
5831 if (i != COMPILED_CONSTANTS)
5832 mark_object (ptr->contents[i]);
5833 if (size > COMPILED_CONSTANTS)
5834 {
5835 obj = ptr->contents[COMPILED_CONSTANTS];
5836 goto loop;
5837 }
5838 }
5839 break;
5840
5841 case PVEC_FRAME:
5842 mark_vectorlike (ptr);
5843 mark_face_cache (((struct frame *) ptr)->face_cache);
5844 break;
5845
5846 case PVEC_WINDOW:
5847 {
5848 struct window *w = (struct window *) ptr;
5849
5850 mark_vectorlike (ptr);
5851
5852 /* Mark glyph matrices, if any. Marking window
5853 matrices is sufficient because frame matrices
5854 use the same glyph memory. */
5855 if (w->current_matrix)
5856 {
5857 mark_glyph_matrix (w->current_matrix);
5858 mark_glyph_matrix (w->desired_matrix);
5859 }
5860
5861 /* Filter out killed buffers from both buffer lists
5862 in attempt to help GC to reclaim killed buffers faster.
5863 We can do it elsewhere for live windows, but this is the
5864 best place to do it for dead windows. */
5865 wset_prev_buffers
5866 (w, mark_discard_killed_buffers (w->prev_buffers));
5867 wset_next_buffers
5868 (w, mark_discard_killed_buffers (w->next_buffers));
5869 }
5870 break;
5871
5872 case PVEC_HASH_TABLE:
5873 {
5874 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5875
5876 mark_vectorlike (ptr);
5877 mark_object (h->test.name);
5878 mark_object (h->test.user_hash_function);
5879 mark_object (h->test.user_cmp_function);
5880 /* If hash table is not weak, mark all keys and values.
5881 For weak tables, mark only the vector. */
5882 if (NILP (h->weak))
5883 mark_object (h->key_and_value);
5884 else
5885 VECTOR_MARK (XVECTOR (h->key_and_value));
5886 }
5887 break;
5888
5889 case PVEC_CHAR_TABLE:
5890 mark_char_table (ptr);
5891 break;
5892
5893 case PVEC_BOOL_VECTOR:
5894 /* No Lisp_Objects to mark in a bool vector. */
5895 VECTOR_MARK (ptr);
5896 break;
5897
5898 case PVEC_SUBR:
5899 break;
5900
5901 case PVEC_FREE:
5902 emacs_abort ();
5903
5904 default:
5905 mark_vectorlike (ptr);
5906 }
5907 }
5908 break;
5909
5910 case Lisp_Symbol:
5911 {
5912 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5913 struct Lisp_Symbol *ptrx;
5914
5915 if (ptr->gcmarkbit)
5916 break;
5917 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5918 ptr->gcmarkbit = 1;
5919 mark_object (ptr->function);
5920 mark_object (ptr->plist);
5921 switch (ptr->redirect)
5922 {
5923 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5924 case SYMBOL_VARALIAS:
5925 {
5926 Lisp_Object tem;
5927 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5928 mark_object (tem);
5929 break;
5930 }
5931 case SYMBOL_LOCALIZED:
5932 {
5933 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5934 Lisp_Object where = blv->where;
5935 /* If the value is set up for a killed buffer or deleted
5936 frame, restore it's global binding. If the value is
5937 forwarded to a C variable, either it's not a Lisp_Object
5938 var, or it's staticpro'd already. */
5939 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5940 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5941 swap_in_global_binding (ptr);
5942 mark_object (blv->where);
5943 mark_object (blv->valcell);
5944 mark_object (blv->defcell);
5945 break;
5946 }
5947 case SYMBOL_FORWARDED:
5948 /* If the value is forwarded to a buffer or keyboard field,
5949 these are marked when we see the corresponding object.
5950 And if it's forwarded to a C variable, either it's not
5951 a Lisp_Object var, or it's staticpro'd already. */
5952 break;
5953 default: emacs_abort ();
5954 }
5955 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5956 MARK_STRING (XSTRING (ptr->name));
5957 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5958
5959 ptr = ptr->next;
5960 if (ptr)
5961 {
5962 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5963 XSETSYMBOL (obj, ptrx);
5964 goto loop;
5965 }
5966 }
5967 break;
5968
5969 case Lisp_Misc:
5970 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5971
5972 if (XMISCANY (obj)->gcmarkbit)
5973 break;
5974
5975 switch (XMISCTYPE (obj))
5976 {
5977 case Lisp_Misc_Marker:
5978 /* DO NOT mark thru the marker's chain.
5979 The buffer's markers chain does not preserve markers from gc;
5980 instead, markers are removed from the chain when freed by gc. */
5981 XMISCANY (obj)->gcmarkbit = 1;
5982 break;
5983
5984 case Lisp_Misc_Save_Value:
5985 XMISCANY (obj)->gcmarkbit = 1;
5986 {
5987 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5988 /* If `save_type' is zero, `data[0].pointer' is the address
5989 of a memory area containing `data[1].integer' potential
5990 Lisp_Objects. */
5991 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5992 {
5993 Lisp_Object *p = ptr->data[0].pointer;
5994 ptrdiff_t nelt;
5995 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5996 mark_maybe_object (*p);
5997 }
5998 else
5999 {
6000 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6001 int i;
6002 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6003 if (save_type (ptr, i) == SAVE_OBJECT)
6004 mark_object (ptr->data[i].object);
6005 }
6006 }
6007 break;
6008
6009 case Lisp_Misc_Overlay:
6010 mark_overlay (XOVERLAY (obj));
6011 break;
6012
6013 default:
6014 emacs_abort ();
6015 }
6016 break;
6017
6018 case Lisp_Cons:
6019 {
6020 register struct Lisp_Cons *ptr = XCONS (obj);
6021 if (CONS_MARKED_P (ptr))
6022 break;
6023 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6024 CONS_MARK (ptr);
6025 /* If the cdr is nil, avoid recursion for the car. */
6026 if (EQ (ptr->u.cdr, Qnil))
6027 {
6028 obj = ptr->car;
6029 cdr_count = 0;
6030 goto loop;
6031 }
6032 mark_object (ptr->car);
6033 obj = ptr->u.cdr;
6034 cdr_count++;
6035 if (cdr_count == mark_object_loop_halt)
6036 emacs_abort ();
6037 goto loop;
6038 }
6039
6040 case Lisp_Float:
6041 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6042 FLOAT_MARK (XFLOAT (obj));
6043 break;
6044
6045 case_Lisp_Int:
6046 break;
6047
6048 default:
6049 emacs_abort ();
6050 }
6051
6052 #undef CHECK_LIVE
6053 #undef CHECK_ALLOCATED
6054 #undef CHECK_ALLOCATED_AND_LIVE
6055 }
6056 /* Mark the Lisp pointers in the terminal objects.
6057 Called by Fgarbage_collect. */
6058
6059 static void
6060 mark_terminals (void)
6061 {
6062 struct terminal *t;
6063 for (t = terminal_list; t; t = t->next_terminal)
6064 {
6065 eassert (t->name != NULL);
6066 #ifdef HAVE_WINDOW_SYSTEM
6067 /* If a terminal object is reachable from a stacpro'ed object,
6068 it might have been marked already. Make sure the image cache
6069 gets marked. */
6070 mark_image_cache (t->image_cache);
6071 #endif /* HAVE_WINDOW_SYSTEM */
6072 if (!VECTOR_MARKED_P (t))
6073 mark_vectorlike ((struct Lisp_Vector *)t);
6074 }
6075 }
6076
6077
6078
6079 /* Value is non-zero if OBJ will survive the current GC because it's
6080 either marked or does not need to be marked to survive. */
6081
6082 bool
6083 survives_gc_p (Lisp_Object obj)
6084 {
6085 bool survives_p;
6086
6087 switch (XTYPE (obj))
6088 {
6089 case_Lisp_Int:
6090 survives_p = 1;
6091 break;
6092
6093 case Lisp_Symbol:
6094 survives_p = XSYMBOL (obj)->gcmarkbit;
6095 break;
6096
6097 case Lisp_Misc:
6098 survives_p = XMISCANY (obj)->gcmarkbit;
6099 break;
6100
6101 case Lisp_String:
6102 survives_p = STRING_MARKED_P (XSTRING (obj));
6103 break;
6104
6105 case Lisp_Vectorlike:
6106 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6107 break;
6108
6109 case Lisp_Cons:
6110 survives_p = CONS_MARKED_P (XCONS (obj));
6111 break;
6112
6113 case Lisp_Float:
6114 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6115 break;
6116
6117 default:
6118 emacs_abort ();
6119 }
6120
6121 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6122 }
6123
6124
6125 \f
6126 /* Sweep: find all structures not marked, and free them. */
6127
6128 static void
6129 gc_sweep (void)
6130 {
6131 /* Remove or mark entries in weak hash tables.
6132 This must be done before any object is unmarked. */
6133 sweep_weak_hash_tables ();
6134
6135 sweep_strings ();
6136 check_string_bytes (!noninteractive);
6137
6138 /* Put all unmarked conses on free list */
6139 {
6140 register struct cons_block *cblk;
6141 struct cons_block **cprev = &cons_block;
6142 register int lim = cons_block_index;
6143 EMACS_INT num_free = 0, num_used = 0;
6144
6145 cons_free_list = 0;
6146
6147 for (cblk = cons_block; cblk; cblk = *cprev)
6148 {
6149 register int i = 0;
6150 int this_free = 0;
6151 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6152
6153 /* Scan the mark bits an int at a time. */
6154 for (i = 0; i < ilim; i++)
6155 {
6156 if (cblk->gcmarkbits[i] == -1)
6157 {
6158 /* Fast path - all cons cells for this int are marked. */
6159 cblk->gcmarkbits[i] = 0;
6160 num_used += BITS_PER_INT;
6161 }
6162 else
6163 {
6164 /* Some cons cells for this int are not marked.
6165 Find which ones, and free them. */
6166 int start, pos, stop;
6167
6168 start = i * BITS_PER_INT;
6169 stop = lim - start;
6170 if (stop > BITS_PER_INT)
6171 stop = BITS_PER_INT;
6172 stop += start;
6173
6174 for (pos = start; pos < stop; pos++)
6175 {
6176 if (!CONS_MARKED_P (&cblk->conses[pos]))
6177 {
6178 this_free++;
6179 cblk->conses[pos].u.chain = cons_free_list;
6180 cons_free_list = &cblk->conses[pos];
6181 #if GC_MARK_STACK
6182 cons_free_list->car = Vdead;
6183 #endif
6184 }
6185 else
6186 {
6187 num_used++;
6188 CONS_UNMARK (&cblk->conses[pos]);
6189 }
6190 }
6191 }
6192 }
6193
6194 lim = CONS_BLOCK_SIZE;
6195 /* If this block contains only free conses and we have already
6196 seen more than two blocks worth of free conses then deallocate
6197 this block. */
6198 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6199 {
6200 *cprev = cblk->next;
6201 /* Unhook from the free list. */
6202 cons_free_list = cblk->conses[0].u.chain;
6203 lisp_align_free (cblk);
6204 }
6205 else
6206 {
6207 num_free += this_free;
6208 cprev = &cblk->next;
6209 }
6210 }
6211 total_conses = num_used;
6212 total_free_conses = num_free;
6213 }
6214
6215 /* Put all unmarked floats on free list */
6216 {
6217 register struct float_block *fblk;
6218 struct float_block **fprev = &float_block;
6219 register int lim = float_block_index;
6220 EMACS_INT num_free = 0, num_used = 0;
6221
6222 float_free_list = 0;
6223
6224 for (fblk = float_block; fblk; fblk = *fprev)
6225 {
6226 register int i;
6227 int this_free = 0;
6228 for (i = 0; i < lim; i++)
6229 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6230 {
6231 this_free++;
6232 fblk->floats[i].u.chain = float_free_list;
6233 float_free_list = &fblk->floats[i];
6234 }
6235 else
6236 {
6237 num_used++;
6238 FLOAT_UNMARK (&fblk->floats[i]);
6239 }
6240 lim = FLOAT_BLOCK_SIZE;
6241 /* If this block contains only free floats and we have already
6242 seen more than two blocks worth of free floats then deallocate
6243 this block. */
6244 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6245 {
6246 *fprev = fblk->next;
6247 /* Unhook from the free list. */
6248 float_free_list = fblk->floats[0].u.chain;
6249 lisp_align_free (fblk);
6250 }
6251 else
6252 {
6253 num_free += this_free;
6254 fprev = &fblk->next;
6255 }
6256 }
6257 total_floats = num_used;
6258 total_free_floats = num_free;
6259 }
6260
6261 /* Put all unmarked intervals on free list */
6262 {
6263 register struct interval_block *iblk;
6264 struct interval_block **iprev = &interval_block;
6265 register int lim = interval_block_index;
6266 EMACS_INT num_free = 0, num_used = 0;
6267
6268 interval_free_list = 0;
6269
6270 for (iblk = interval_block; iblk; iblk = *iprev)
6271 {
6272 register int i;
6273 int this_free = 0;
6274
6275 for (i = 0; i < lim; i++)
6276 {
6277 if (!iblk->intervals[i].gcmarkbit)
6278 {
6279 set_interval_parent (&iblk->intervals[i], interval_free_list);
6280 interval_free_list = &iblk->intervals[i];
6281 this_free++;
6282 }
6283 else
6284 {
6285 num_used++;
6286 iblk->intervals[i].gcmarkbit = 0;
6287 }
6288 }
6289 lim = INTERVAL_BLOCK_SIZE;
6290 /* If this block contains only free intervals and we have already
6291 seen more than two blocks worth of free intervals then
6292 deallocate this block. */
6293 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6294 {
6295 *iprev = iblk->next;
6296 /* Unhook from the free list. */
6297 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6298 lisp_free (iblk);
6299 }
6300 else
6301 {
6302 num_free += this_free;
6303 iprev = &iblk->next;
6304 }
6305 }
6306 total_intervals = num_used;
6307 total_free_intervals = num_free;
6308 }
6309
6310 /* Put all unmarked symbols on free list */
6311 {
6312 register struct symbol_block *sblk;
6313 struct symbol_block **sprev = &symbol_block;
6314 register int lim = symbol_block_index;
6315 EMACS_INT num_free = 0, num_used = 0;
6316
6317 symbol_free_list = NULL;
6318
6319 for (sblk = symbol_block; sblk; sblk = *sprev)
6320 {
6321 int this_free = 0;
6322 union aligned_Lisp_Symbol *sym = sblk->symbols;
6323 union aligned_Lisp_Symbol *end = sym + lim;
6324
6325 for (; sym < end; ++sym)
6326 {
6327 /* Check if the symbol was created during loadup. In such a case
6328 it might be pointed to by pure bytecode which we don't trace,
6329 so we conservatively assume that it is live. */
6330 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6331
6332 if (!sym->s.gcmarkbit && !pure_p)
6333 {
6334 if (sym->s.redirect == SYMBOL_LOCALIZED)
6335 xfree (SYMBOL_BLV (&sym->s));
6336 sym->s.next = symbol_free_list;
6337 symbol_free_list = &sym->s;
6338 #if GC_MARK_STACK
6339 symbol_free_list->function = Vdead;
6340 #endif
6341 ++this_free;
6342 }
6343 else
6344 {
6345 ++num_used;
6346 if (!pure_p)
6347 UNMARK_STRING (XSTRING (sym->s.name));
6348 sym->s.gcmarkbit = 0;
6349 }
6350 }
6351
6352 lim = SYMBOL_BLOCK_SIZE;
6353 /* If this block contains only free symbols and we have already
6354 seen more than two blocks worth of free symbols then deallocate
6355 this block. */
6356 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6357 {
6358 *sprev = sblk->next;
6359 /* Unhook from the free list. */
6360 symbol_free_list = sblk->symbols[0].s.next;
6361 lisp_free (sblk);
6362 }
6363 else
6364 {
6365 num_free += this_free;
6366 sprev = &sblk->next;
6367 }
6368 }
6369 total_symbols = num_used;
6370 total_free_symbols = num_free;
6371 }
6372
6373 /* Put all unmarked misc's on free list.
6374 For a marker, first unchain it from the buffer it points into. */
6375 {
6376 register struct marker_block *mblk;
6377 struct marker_block **mprev = &marker_block;
6378 register int lim = marker_block_index;
6379 EMACS_INT num_free = 0, num_used = 0;
6380
6381 marker_free_list = 0;
6382
6383 for (mblk = marker_block; mblk; mblk = *mprev)
6384 {
6385 register int i;
6386 int this_free = 0;
6387
6388 for (i = 0; i < lim; i++)
6389 {
6390 if (!mblk->markers[i].m.u_any.gcmarkbit)
6391 {
6392 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6393 unchain_marker (&mblk->markers[i].m.u_marker);
6394 /* Set the type of the freed object to Lisp_Misc_Free.
6395 We could leave the type alone, since nobody checks it,
6396 but this might catch bugs faster. */
6397 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6398 mblk->markers[i].m.u_free.chain = marker_free_list;
6399 marker_free_list = &mblk->markers[i].m;
6400 this_free++;
6401 }
6402 else
6403 {
6404 num_used++;
6405 mblk->markers[i].m.u_any.gcmarkbit = 0;
6406 }
6407 }
6408 lim = MARKER_BLOCK_SIZE;
6409 /* If this block contains only free markers and we have already
6410 seen more than two blocks worth of free markers then deallocate
6411 this block. */
6412 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6413 {
6414 *mprev = mblk->next;
6415 /* Unhook from the free list. */
6416 marker_free_list = mblk->markers[0].m.u_free.chain;
6417 lisp_free (mblk);
6418 }
6419 else
6420 {
6421 num_free += this_free;
6422 mprev = &mblk->next;
6423 }
6424 }
6425
6426 total_markers = num_used;
6427 total_free_markers = num_free;
6428 }
6429
6430 /* Free all unmarked buffers */
6431 {
6432 register struct buffer *buffer, **bprev = &all_buffers;
6433
6434 total_buffers = 0;
6435 for (buffer = all_buffers; buffer; buffer = *bprev)
6436 if (!VECTOR_MARKED_P (buffer))
6437 {
6438 *bprev = buffer->next;
6439 lisp_free (buffer);
6440 }
6441 else
6442 {
6443 VECTOR_UNMARK (buffer);
6444 /* Do not use buffer_(set|get)_intervals here. */
6445 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6446 total_buffers++;
6447 bprev = &buffer->next;
6448 }
6449 }
6450
6451 sweep_vectors ();
6452 check_string_bytes (!noninteractive);
6453 }
6454
6455
6456
6457 \f
6458 /* Debugging aids. */
6459
6460 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6461 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6462 This may be helpful in debugging Emacs's memory usage.
6463 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6464 (void)
6465 {
6466 Lisp_Object end;
6467
6468 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6469
6470 return end;
6471 }
6472
6473 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6474 doc: /* Return a list of counters that measure how much consing there has been.
6475 Each of these counters increments for a certain kind of object.
6476 The counters wrap around from the largest positive integer to zero.
6477 Garbage collection does not decrease them.
6478 The elements of the value are as follows:
6479 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6480 All are in units of 1 = one object consed
6481 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6482 objects consed.
6483 MISCS include overlays, markers, and some internal types.
6484 Frames, windows, buffers, and subprocesses count as vectors
6485 (but the contents of a buffer's text do not count here). */)
6486 (void)
6487 {
6488 return listn (CONSTYPE_HEAP, 8,
6489 bounded_number (cons_cells_consed),
6490 bounded_number (floats_consed),
6491 bounded_number (vector_cells_consed),
6492 bounded_number (symbols_consed),
6493 bounded_number (string_chars_consed),
6494 bounded_number (misc_objects_consed),
6495 bounded_number (intervals_consed),
6496 bounded_number (strings_consed));
6497 }
6498
6499 /* Find at most FIND_MAX symbols which have OBJ as their value or
6500 function. This is used in gdbinit's `xwhichsymbols' command. */
6501
6502 Lisp_Object
6503 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6504 {
6505 struct symbol_block *sblk;
6506 ptrdiff_t gc_count = inhibit_garbage_collection ();
6507 Lisp_Object found = Qnil;
6508
6509 if (! DEADP (obj))
6510 {
6511 for (sblk = symbol_block; sblk; sblk = sblk->next)
6512 {
6513 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6514 int bn;
6515
6516 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6517 {
6518 struct Lisp_Symbol *sym = &aligned_sym->s;
6519 Lisp_Object val;
6520 Lisp_Object tem;
6521
6522 if (sblk == symbol_block && bn >= symbol_block_index)
6523 break;
6524
6525 XSETSYMBOL (tem, sym);
6526 val = find_symbol_value (tem);
6527 if (EQ (val, obj)
6528 || EQ (sym->function, obj)
6529 || (!NILP (sym->function)
6530 && COMPILEDP (sym->function)
6531 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6532 || (!NILP (val)
6533 && COMPILEDP (val)
6534 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6535 {
6536 found = Fcons (tem, found);
6537 if (--find_max == 0)
6538 goto out;
6539 }
6540 }
6541 }
6542 }
6543
6544 out:
6545 unbind_to (gc_count, Qnil);
6546 return found;
6547 }
6548
6549 #ifdef ENABLE_CHECKING
6550
6551 bool suppress_checking;
6552
6553 void
6554 die (const char *msg, const char *file, int line)
6555 {
6556 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6557 file, line, msg);
6558 terminate_due_to_signal (SIGABRT, INT_MAX);
6559 }
6560 #endif
6561 \f
6562 /* Initialization. */
6563
6564 void
6565 init_alloc_once (void)
6566 {
6567 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6568 purebeg = PUREBEG;
6569 pure_size = PURESIZE;
6570
6571 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6572 mem_init ();
6573 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6574 #endif
6575
6576 #ifdef DOUG_LEA_MALLOC
6577 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6578 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6579 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6580 #endif
6581 init_strings ();
6582 init_vectors ();
6583
6584 refill_memory_reserve ();
6585 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6586 }
6587
6588 void
6589 init_alloc (void)
6590 {
6591 gcprolist = 0;
6592 byte_stack_list = 0;
6593 #if GC_MARK_STACK
6594 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6595 setjmp_tested_p = longjmps_done = 0;
6596 #endif
6597 #endif
6598 Vgc_elapsed = make_float (0.0);
6599 gcs_done = 0;
6600 }
6601
6602 void
6603 syms_of_alloc (void)
6604 {
6605 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6606 doc: /* Number of bytes of consing between garbage collections.
6607 Garbage collection can happen automatically once this many bytes have been
6608 allocated since the last garbage collection. All data types count.
6609
6610 Garbage collection happens automatically only when `eval' is called.
6611
6612 By binding this temporarily to a large number, you can effectively
6613 prevent garbage collection during a part of the program.
6614 See also `gc-cons-percentage'. */);
6615
6616 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6617 doc: /* Portion of the heap used for allocation.
6618 Garbage collection can happen automatically once this portion of the heap
6619 has been allocated since the last garbage collection.
6620 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6621 Vgc_cons_percentage = make_float (0.1);
6622
6623 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6624 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6625
6626 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6627 doc: /* Number of cons cells that have been consed so far. */);
6628
6629 DEFVAR_INT ("floats-consed", floats_consed,
6630 doc: /* Number of floats that have been consed so far. */);
6631
6632 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6633 doc: /* Number of vector cells that have been consed so far. */);
6634
6635 DEFVAR_INT ("symbols-consed", symbols_consed,
6636 doc: /* Number of symbols that have been consed so far. */);
6637
6638 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6639 doc: /* Number of string characters that have been consed so far. */);
6640
6641 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6642 doc: /* Number of miscellaneous objects that have been consed so far.
6643 These include markers and overlays, plus certain objects not visible
6644 to users. */);
6645
6646 DEFVAR_INT ("intervals-consed", intervals_consed,
6647 doc: /* Number of intervals that have been consed so far. */);
6648
6649 DEFVAR_INT ("strings-consed", strings_consed,
6650 doc: /* Number of strings that have been consed so far. */);
6651
6652 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6653 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6654 This means that certain objects should be allocated in shared (pure) space.
6655 It can also be set to a hash-table, in which case this table is used to
6656 do hash-consing of the objects allocated to pure space. */);
6657
6658 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6659 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6660 garbage_collection_messages = 0;
6661
6662 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6663 doc: /* Hook run after garbage collection has finished. */);
6664 Vpost_gc_hook = Qnil;
6665 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6666
6667 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6668 doc: /* Precomputed `signal' argument for memory-full error. */);
6669 /* We build this in advance because if we wait until we need it, we might
6670 not be able to allocate the memory to hold it. */
6671 Vmemory_signal_data
6672 = listn (CONSTYPE_PURE, 2, Qerror,
6673 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6674
6675 DEFVAR_LISP ("memory-full", Vmemory_full,
6676 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6677 Vmemory_full = Qnil;
6678
6679 DEFSYM (Qconses, "conses");
6680 DEFSYM (Qsymbols, "symbols");
6681 DEFSYM (Qmiscs, "miscs");
6682 DEFSYM (Qstrings, "strings");
6683 DEFSYM (Qvectors, "vectors");
6684 DEFSYM (Qfloats, "floats");
6685 DEFSYM (Qintervals, "intervals");
6686 DEFSYM (Qbuffers, "buffers");
6687 DEFSYM (Qstring_bytes, "string-bytes");
6688 DEFSYM (Qvector_slots, "vector-slots");
6689 DEFSYM (Qheap, "heap");
6690 DEFSYM (Qautomatic_gc, "Automatic GC");
6691
6692 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6693 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6694
6695 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6696 doc: /* Accumulated time elapsed in garbage collections.
6697 The time is in seconds as a floating point value. */);
6698 DEFVAR_INT ("gcs-done", gcs_done,
6699 doc: /* Accumulated number of garbage collections done. */);
6700
6701 defsubr (&Scons);
6702 defsubr (&Slist);
6703 defsubr (&Svector);
6704 defsubr (&Smake_byte_code);
6705 defsubr (&Smake_list);
6706 defsubr (&Smake_vector);
6707 defsubr (&Smake_string);
6708 defsubr (&Smake_bool_vector);
6709 defsubr (&Smake_symbol);
6710 defsubr (&Smake_marker);
6711 defsubr (&Spurecopy);
6712 defsubr (&Sgarbage_collect);
6713 defsubr (&Smemory_limit);
6714 defsubr (&Smemory_use_counts);
6715
6716 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6717 defsubr (&Sgc_status);
6718 #endif
6719 }
6720
6721 /* When compiled with GCC, GDB might say "No enum type named
6722 pvec_type" if we don't have at least one symbol with that type, and
6723 then xbacktrace could fail. Similarly for the other enums and
6724 their values. Some non-GCC compilers don't like these constructs. */
6725 #ifdef __GNUC__
6726 union
6727 {
6728 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6729 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6730 enum char_bits char_bits;
6731 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6732 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6733 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6734 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6735 enum Lisp_Bits Lisp_Bits;
6736 enum Lisp_Compiled Lisp_Compiled;
6737 enum maxargs maxargs;
6738 enum MAX_ALLOCA MAX_ALLOCA;
6739 enum More_Lisp_Bits More_Lisp_Bits;
6740 enum pvec_type pvec_type;
6741 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6742 #endif /* __GNUC__ */