(byte-optimize-lapcode): Correctly
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;;; This file has been censored by the Communications Decency Act.
29 ;;; That law was passed under the guise of a ban on pornography, but
30 ;;; it bans far more than that. This file did not contain pornography,
31 ;;; but it was censored nonetheless.
32
33 ;;; For information on US government censorship of the Internet, and
34 ;;; what you can do to bring back freedom of the press, see the web
35 ;;; site http://www.vtw.org/
36
37 ;; ========================================================================
38 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
39 ;; You can, however, make a faster pig."
40 ;;
41 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
42 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
43 ;; still not going to make it go faster than 70 mph, but it might be easier
44 ;; to get it there.
45 ;;
46
47 ;; TO DO:
48 ;;
49 ;; (apply '(lambda (x &rest y) ...) 1 (foo))
50 ;;
51 ;; maintain a list of functions known not to access any global variables
52 ;; (actually, give them a 'dynamically-safe property) and then
53 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
54 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
55 ;; by recursing on this, we might be able to eliminate the entire let.
56 ;; However certain variables should never have their bindings optimized
57 ;; away, because they affect everything.
58 ;; (put 'debug-on-error 'binding-is-magic t)
59 ;; (put 'debug-on-abort 'binding-is-magic t)
60 ;; (put 'debug-on-next-call 'binding-is-magic t)
61 ;; (put 'mocklisp-arguments 'binding-is-magic t)
62 ;; (put 'inhibit-quit 'binding-is-magic t)
63 ;; (put 'quit-flag 'binding-is-magic t)
64 ;; (put 't 'binding-is-magic t)
65 ;; (put 'nil 'binding-is-magic t)
66 ;; possibly also
67 ;; (put 'gc-cons-threshold 'binding-is-magic t)
68 ;; (put 'track-mouse 'binding-is-magic t)
69 ;; others?
70 ;;
71 ;; Simple defsubsts often produce forms like
72 ;; (let ((v1 (f1)) (v2 (f2)) ...)
73 ;; (FN v1 v2 ...))
74 ;; It would be nice if we could optimize this to
75 ;; (FN (f1) (f2) ...)
76 ;; but we can't unless FN is dynamically-safe (it might be dynamically
77 ;; referring to the bindings that the lambda arglist established.)
78 ;; One of the uncountable lossages introduced by dynamic scope...
79 ;;
80 ;; Maybe there should be a control-structure that says "turn on
81 ;; fast-and-loose type-assumptive optimizations here." Then when
82 ;; we see a form like (car foo) we can from then on assume that
83 ;; the variable foo is of type cons, and optimize based on that.
84 ;; But, this won't win much because of (you guessed it) dynamic
85 ;; scope. Anything down the stack could change the value.
86 ;; (Another reason it doesn't work is that it is perfectly valid
87 ;; to call car with a null argument.) A better approach might
88 ;; be to allow type-specification of the form
89 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
90 ;; (put 'foo 'result-type 'bool)
91 ;; It should be possible to have these types checked to a certain
92 ;; degree.
93 ;;
94 ;; collapse common subexpressions
95 ;;
96 ;; It would be nice if redundant sequences could be factored out as well,
97 ;; when they are known to have no side-effects:
98 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
99 ;; but beware of traps like
100 ;; (cons (list x y) (list x y))
101 ;;
102 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
103 ;; Tail-recursion elimination is almost always impossible when all variables
104 ;; have dynamic scope, but given that the "return" byteop requires the
105 ;; binding stack to be empty (rather than emptying it itself), there can be
106 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
107 ;; make any bindings.
108 ;;
109 ;; Here is an example of an Emacs Lisp function which could safely be
110 ;; byte-compiled tail-recursively:
111 ;;
112 ;; (defun tail-map (fn list)
113 ;; (cond (list
114 ;; (funcall fn (car list))
115 ;; (tail-map fn (cdr list)))))
116 ;;
117 ;; However, if there was even a single let-binding around the COND,
118 ;; it could not be byte-compiled, because there would be an "unbind"
119 ;; byte-op between the final "call" and "return." Adding a
120 ;; Bunbind_all byteop would fix this.
121 ;;
122 ;; (defun foo (x y z) ... (foo a b c))
123 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
124 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
125 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
126 ;;
127 ;; this also can be considered tail recursion:
128 ;;
129 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
130 ;; could generalize this by doing the optimization
131 ;; (goto X) ... X: (return) --> (return)
132 ;;
133 ;; But this doesn't solve all of the problems: although by doing tail-
134 ;; recursion elimination in this way, the call-stack does not grow, the
135 ;; binding-stack would grow with each recursive step, and would eventually
136 ;; overflow. I don't believe there is any way around this without lexical
137 ;; scope.
138 ;;
139 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
140 ;;
141 ;; Idea: the form (lexical-scope) in a file means that the file may be
142 ;; compiled lexically. This proclamation is file-local. Then, within
143 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
144 ;; would do things the old way. (Or we could use CL "declare" forms.)
145 ;; We'd have to notice defvars and defconsts, since those variables should
146 ;; always be dynamic, and attempting to do a lexical binding of them
147 ;; should simply do a dynamic binding instead.
148 ;; But! We need to know about variables that were not necessarily defvarred
149 ;; in the file being compiled (doing a boundp check isn't good enough.)
150 ;; Fdefvar() would have to be modified to add something to the plist.
151 ;;
152 ;; A major disadvantage of this scheme is that the interpreter and compiler
153 ;; would have different semantics for files compiled with (dynamic-scope).
154 ;; Since this would be a file-local optimization, there would be no way to
155 ;; modify the interpreter to obey this (unless the loader was hacked
156 ;; in some grody way, but that's a really bad idea.)
157
158 ;; Other things to consider:
159
160 ;;;;; Associative math should recognize subcalls to identical function:
161 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
162 ;;;;; This should generate the same as (1+ x) and (1- x)
163
164 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
165 ;;;;; An awful lot of functions always return a non-nil value. If they're
166 ;;;;; error free also they may act as true-constants.
167
168 ;;;(disassemble (lambda (x) (and (point) (foo))))
169 ;;;;; When
170 ;;;;; - all but one arguments to a function are constant
171 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
172 ;;;;; then the outer function can be distributed. If the guarding
173 ;;;;; condition is side-effect-free [assignment-free] then the other
174 ;;;;; arguments may be any expressions. Since, however, the code size
175 ;;;;; can increase this way they should be "simple". Compare:
176
177 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
178 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
179
180 ;;;;; (car (cons A B)) -> (progn B A)
181 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
182
183 ;;;;; (cdr (cons A B)) -> (progn A B)
184 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
185
186 ;;;;; (car (list A B ...)) -> (progn B ... A)
187 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
188
189 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
190 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
191
192
193 ;;; Code:
194
195 (defun byte-compile-log-lap-1 (format &rest args)
196 (if (aref byte-code-vector 0)
197 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
198 (byte-compile-log-1
199 (apply 'format format
200 (let (c a)
201 (mapcar '(lambda (arg)
202 (if (not (consp arg))
203 (if (and (symbolp arg)
204 (string-match "^byte-" (symbol-name arg)))
205 (intern (substring (symbol-name arg) 5))
206 arg)
207 (if (integerp (setq c (car arg)))
208 (error "non-symbolic byte-op %s" c))
209 (if (eq c 'TAG)
210 (setq c arg)
211 (setq a (cond ((memq c byte-goto-ops)
212 (car (cdr (cdr arg))))
213 ((memq c byte-constref-ops)
214 (car (cdr arg)))
215 (t (cdr arg))))
216 (setq c (symbol-name c))
217 (if (string-match "^byte-." c)
218 (setq c (intern (substring c 5)))))
219 (if (eq c 'constant) (setq c 'const))
220 (if (and (eq (cdr arg) 0)
221 (not (memq c '(unbind call const))))
222 c
223 (format "(%s %s)" c a))))
224 args)))))
225
226 (defmacro byte-compile-log-lap (format-string &rest args)
227 (list 'and
228 '(memq byte-optimize-log '(t byte))
229 (cons 'byte-compile-log-lap-1
230 (cons format-string args))))
231
232 \f
233 ;;; byte-compile optimizers to support inlining
234
235 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
236
237 (defun byte-optimize-inline-handler (form)
238 "byte-optimize-handler for the `inline' special-form."
239 (cons 'progn
240 (mapcar
241 '(lambda (sexp)
242 (let ((fn (car-safe sexp)))
243 (if (and (symbolp fn)
244 (or (cdr (assq fn byte-compile-function-environment))
245 (and (fboundp fn)
246 (not (or (cdr (assq fn byte-compile-macro-environment))
247 (and (consp (setq fn (symbol-function fn)))
248 (eq (car fn) 'macro))
249 (subrp fn))))))
250 (byte-compile-inline-expand sexp)
251 sexp)))
252 (cdr form))))
253
254
255 ;; Splice the given lap code into the current instruction stream.
256 ;; If it has any labels in it, you're responsible for making sure there
257 ;; are no collisions, and that byte-compile-tag-number is reasonable
258 ;; after this is spliced in. The provided list is destroyed.
259 (defun byte-inline-lapcode (lap)
260 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
261
262
263 (defun byte-compile-inline-expand (form)
264 (let* ((name (car form))
265 (fn (or (cdr (assq name byte-compile-function-environment))
266 (and (fboundp name) (symbol-function name)))))
267 (if (null fn)
268 (progn
269 (byte-compile-warn "attempt to inline %s before it was defined" name)
270 form)
271 ;; else
272 (if (and (consp fn) (eq (car fn) 'autoload))
273 (progn
274 (load (nth 1 fn))
275 (setq fn (or (cdr (assq name byte-compile-function-environment))
276 (and (fboundp name) (symbol-function name))))))
277 (if (and (consp fn) (eq (car fn) 'autoload))
278 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
279 (if (symbolp fn)
280 (byte-compile-inline-expand (cons fn (cdr form)))
281 (if (byte-code-function-p fn)
282 (progn
283 (fetch-bytecode fn)
284 (cons (list 'lambda (aref fn 0)
285 (list 'byte-code (aref fn 1) (aref fn 2) (aref fn 3)))
286 (cdr form)))
287 (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
288 (cons fn (cdr form)))))))
289
290 ;;; ((lambda ...) ...)
291 ;;;
292 (defun byte-compile-unfold-lambda (form &optional name)
293 (or name (setq name "anonymous lambda"))
294 (let ((lambda (car form))
295 (values (cdr form)))
296 (if (byte-code-function-p lambda)
297 (setq lambda (list 'lambda (aref lambda 0)
298 (list 'byte-code (aref lambda 1)
299 (aref lambda 2) (aref lambda 3)))))
300 (let ((arglist (nth 1 lambda))
301 (body (cdr (cdr lambda)))
302 optionalp restp
303 bindings)
304 (if (and (stringp (car body)) (cdr body))
305 (setq body (cdr body)))
306 (if (and (consp (car body)) (eq 'interactive (car (car body))))
307 (setq body (cdr body)))
308 (while arglist
309 (cond ((eq (car arglist) '&optional)
310 ;; ok, I'll let this slide because funcall_lambda() does...
311 ;; (if optionalp (error "multiple &optional keywords in %s" name))
312 (if restp (error "&optional found after &rest in %s" name))
313 (if (null (cdr arglist))
314 (error "nothing after &optional in %s" name))
315 (setq optionalp t))
316 ((eq (car arglist) '&rest)
317 ;; ...but it is by no stretch of the imagination a reasonable
318 ;; thing that funcall_lambda() allows (&rest x y) and
319 ;; (&rest x &optional y) in arglists.
320 (if (null (cdr arglist))
321 (error "nothing after &rest in %s" name))
322 (if (cdr (cdr arglist))
323 (error "multiple vars after &rest in %s" name))
324 (setq restp t))
325 (restp
326 (setq bindings (cons (list (car arglist)
327 (and values (cons 'list values)))
328 bindings)
329 values nil))
330 ((and (not optionalp) (null values))
331 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
332 (setq arglist nil values 'too-few))
333 (t
334 (setq bindings (cons (list (car arglist) (car values))
335 bindings)
336 values (cdr values))))
337 (setq arglist (cdr arglist)))
338 (if values
339 (progn
340 (or (eq values 'too-few)
341 (byte-compile-warn
342 "attempt to open-code %s with too many arguments" name))
343 form)
344 (setq body (mapcar 'byte-optimize-form body))
345 (let ((newform
346 (if bindings
347 (cons 'let (cons (nreverse bindings) body))
348 (cons 'progn body))))
349 (byte-compile-log " %s\t==>\t%s" form newform)
350 newform)))))
351
352 \f
353 ;;; implementing source-level optimizers
354
355 (defun byte-optimize-form-code-walker (form for-effect)
356 ;;
357 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
358 ;; we need to have special knowledge of the syntax of the special forms
359 ;; like let and defun (that's why they're special forms :-). (Actually,
360 ;; the important aspect is that they are subrs that don't evaluate all of
361 ;; their args.)
362 ;;
363 (let ((fn (car-safe form))
364 tmp)
365 (cond ((not (consp form))
366 (if (not (and for-effect
367 (or byte-compile-delete-errors
368 (not (symbolp form))
369 (eq form t))))
370 form))
371 ((eq fn 'quote)
372 (if (cdr (cdr form))
373 (byte-compile-warn "malformed quote form: %s"
374 (prin1-to-string form)))
375 ;; map (quote nil) to nil to simplify optimizer logic.
376 ;; map quoted constants to nil if for-effect (just because).
377 (and (nth 1 form)
378 (not for-effect)
379 form))
380 ((or (byte-code-function-p fn)
381 (eq 'lambda (car-safe fn)))
382 (byte-compile-unfold-lambda form))
383 ((memq fn '(let let*))
384 ;; recursively enter the optimizer for the bindings and body
385 ;; of a let or let*. This for depth-firstness: forms that
386 ;; are more deeply nested are optimized first.
387 (cons fn
388 (cons
389 (mapcar '(lambda (binding)
390 (if (symbolp binding)
391 binding
392 (if (cdr (cdr binding))
393 (byte-compile-warn "malformed let binding: %s"
394 (prin1-to-string binding)))
395 (list (car binding)
396 (byte-optimize-form (nth 1 binding) nil))))
397 (nth 1 form))
398 (byte-optimize-body (cdr (cdr form)) for-effect))))
399 ((eq fn 'cond)
400 (cons fn
401 (mapcar '(lambda (clause)
402 (if (consp clause)
403 (cons
404 (byte-optimize-form (car clause) nil)
405 (byte-optimize-body (cdr clause) for-effect))
406 (byte-compile-warn "malformed cond form: %s"
407 (prin1-to-string clause))
408 clause))
409 (cdr form))))
410 ((eq fn 'progn)
411 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
412 (if (cdr (cdr form))
413 (progn
414 (setq tmp (byte-optimize-body (cdr form) for-effect))
415 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
416 (byte-optimize-form (nth 1 form) for-effect)))
417 ((eq fn 'prog1)
418 (if (cdr (cdr form))
419 (cons 'prog1
420 (cons (byte-optimize-form (nth 1 form) for-effect)
421 (byte-optimize-body (cdr (cdr form)) t)))
422 (byte-optimize-form (nth 1 form) for-effect)))
423 ((eq fn 'prog2)
424 (cons 'prog2
425 (cons (byte-optimize-form (nth 1 form) t)
426 (cons (byte-optimize-form (nth 2 form) for-effect)
427 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
428
429 ((memq fn '(save-excursion save-restriction save-current-buffer))
430 ;; those subrs which have an implicit progn; it's not quite good
431 ;; enough to treat these like normal function calls.
432 ;; This can turn (save-excursion ...) into (save-excursion) which
433 ;; will be optimized away in the lap-optimize pass.
434 (cons fn (byte-optimize-body (cdr form) for-effect)))
435
436 ((eq fn 'with-output-to-temp-buffer)
437 ;; this is just like the above, except for the first argument.
438 (cons fn
439 (cons
440 (byte-optimize-form (nth 1 form) nil)
441 (byte-optimize-body (cdr (cdr form)) for-effect))))
442
443 ((eq fn 'if)
444 (cons fn
445 (cons (byte-optimize-form (nth 1 form) nil)
446 (cons
447 (byte-optimize-form (nth 2 form) for-effect)
448 (byte-optimize-body (nthcdr 3 form) for-effect)))))
449
450 ((memq fn '(and or)) ; remember, and/or are control structures.
451 ;; take forms off the back until we can't any more.
452 ;; In the future it could conceivably be a problem that the
453 ;; subexpressions of these forms are optimized in the reverse
454 ;; order, but it's ok for now.
455 (if for-effect
456 (let ((backwards (reverse (cdr form))))
457 (while (and backwards
458 (null (setcar backwards
459 (byte-optimize-form (car backwards)
460 for-effect))))
461 (setq backwards (cdr backwards)))
462 (if (and (cdr form) (null backwards))
463 (byte-compile-log
464 " all subforms of %s called for effect; deleted" form))
465 (and backwards
466 (cons fn (nreverse backwards))))
467 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
468
469 ((eq fn 'interactive)
470 (byte-compile-warn "misplaced interactive spec: %s"
471 (prin1-to-string form))
472 nil)
473
474 ((memq fn '(defun defmacro function
475 condition-case save-window-excursion))
476 ;; These forms are compiled as constants or by breaking out
477 ;; all the subexpressions and compiling them separately.
478 form)
479
480 ((eq fn 'unwind-protect)
481 ;; the "protected" part of an unwind-protect is compiled (and thus
482 ;; optimized) as a top-level form, so don't do it here. But the
483 ;; non-protected part has the same for-effect status as the
484 ;; unwind-protect itself. (The protected part is always for effect,
485 ;; but that isn't handled properly yet.)
486 (cons fn
487 (cons (byte-optimize-form (nth 1 form) for-effect)
488 (cdr (cdr form)))))
489
490 ((eq fn 'catch)
491 ;; the body of a catch is compiled (and thus optimized) as a
492 ;; top-level form, so don't do it here. The tag is never
493 ;; for-effect. The body should have the same for-effect status
494 ;; as the catch form itself, but that isn't handled properly yet.
495 (cons fn
496 (cons (byte-optimize-form (nth 1 form) nil)
497 (cdr (cdr form)))))
498
499 ;; If optimization is on, this is the only place that macros are
500 ;; expanded. If optimization is off, then macroexpansion happens
501 ;; in byte-compile-form. Otherwise, the macros are already expanded
502 ;; by the time that is reached.
503 ((not (eq form
504 (setq form (macroexpand form
505 byte-compile-macro-environment))))
506 (byte-optimize-form form for-effect))
507
508 ((not (symbolp fn))
509 (or (eq 'mocklisp (car-safe fn)) ; ha!
510 (byte-compile-warn "%s is a malformed function"
511 (prin1-to-string fn)))
512 form)
513
514 ((and for-effect (setq tmp (get fn 'side-effect-free))
515 (or byte-compile-delete-errors
516 (eq tmp 'error-free)
517 (progn
518 (byte-compile-warn "%s called for effect"
519 (prin1-to-string form))
520 nil)))
521 (byte-compile-log " %s called for effect; deleted" fn)
522 ;; appending a nil here might not be necessary, but it can't hurt.
523 (byte-optimize-form
524 (cons 'progn (append (cdr form) '(nil))) t))
525
526 (t
527 ;; Otherwise, no args can be considered to be for-effect,
528 ;; even if the called function is for-effect, because we
529 ;; don't know anything about that function.
530 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
531
532
533 (defun byte-optimize-form (form &optional for-effect)
534 "The source-level pass of the optimizer."
535 ;;
536 ;; First, optimize all sub-forms of this one.
537 (setq form (byte-optimize-form-code-walker form for-effect))
538 ;;
539 ;; after optimizing all subforms, optimize this form until it doesn't
540 ;; optimize any further. This means that some forms will be passed through
541 ;; the optimizer many times, but that's necessary to make the for-effect
542 ;; processing do as much as possible.
543 ;;
544 (let (opt new)
545 (if (and (consp form)
546 (symbolp (car form))
547 (or (and for-effect
548 ;; we don't have any of these yet, but we might.
549 (setq opt (get (car form) 'byte-for-effect-optimizer)))
550 (setq opt (get (car form) 'byte-optimizer)))
551 (not (eq form (setq new (funcall opt form)))))
552 (progn
553 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
554 (byte-compile-log " %s\t==>\t%s" form new)
555 (setq new (byte-optimize-form new for-effect))
556 new)
557 form)))
558
559
560 (defun byte-optimize-body (forms all-for-effect)
561 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
562 ;; forms, all but the last of which are optimized with the assumption that
563 ;; they are being called for effect. the last is for-effect as well if
564 ;; all-for-effect is true. returns a new list of forms.
565 (let ((rest forms)
566 (result nil)
567 fe new)
568 (while rest
569 (setq fe (or all-for-effect (cdr rest)))
570 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
571 (if (or new (not fe))
572 (setq result (cons new result)))
573 (setq rest (cdr rest)))
574 (nreverse result)))
575
576 \f
577 ;;; some source-level optimizers
578 ;;;
579 ;;; when writing optimizers, be VERY careful that the optimizer returns
580 ;;; something not EQ to its argument if and ONLY if it has made a change.
581 ;;; This implies that you cannot simply destructively modify the list;
582 ;;; you must return something not EQ to it if you make an optimization.
583 ;;;
584 ;;; It is now safe to optimize code such that it introduces new bindings.
585
586 ;; I'd like this to be a defsubst, but let's not be self-referential...
587 (defmacro byte-compile-trueconstp (form)
588 ;; Returns non-nil if FORM is a non-nil constant.
589 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
590 ((not (symbolp (, form))))
591 ((eq (, form) t)))))
592
593 ;; If the function is being called with constant numeric args,
594 ;; evaluate as much as possible at compile-time. This optimizer
595 ;; assumes that the function is associative, like + or *.
596 (defun byte-optimize-associative-math (form)
597 (let ((args nil)
598 (constants nil)
599 (rest (cdr form)))
600 (while rest
601 (if (numberp (car rest))
602 (setq constants (cons (car rest) constants))
603 (setq args (cons (car rest) args)))
604 (setq rest (cdr rest)))
605 (if (cdr constants)
606 (if args
607 (list (car form)
608 (apply (car form) constants)
609 (if (cdr args)
610 (cons (car form) (nreverse args))
611 (car args)))
612 (apply (car form) constants))
613 form)))
614
615 ;; If the function is being called with constant numeric args,
616 ;; evaluate as much as possible at compile-time. This optimizer
617 ;; assumes that the function satisfies
618 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
619 ;; like - and /.
620 (defun byte-optimize-nonassociative-math (form)
621 (if (or (not (numberp (car (cdr form))))
622 (not (numberp (car (cdr (cdr form))))))
623 form
624 (let ((constant (car (cdr form)))
625 (rest (cdr (cdr form))))
626 (while (numberp (car rest))
627 (setq constant (funcall (car form) constant (car rest))
628 rest (cdr rest)))
629 (if rest
630 (cons (car form) (cons constant rest))
631 constant))))
632
633 ;;(defun byte-optimize-associative-two-args-math (form)
634 ;; (setq form (byte-optimize-associative-math form))
635 ;; (if (consp form)
636 ;; (byte-optimize-two-args-left form)
637 ;; form))
638
639 ;;(defun byte-optimize-nonassociative-two-args-math (form)
640 ;; (setq form (byte-optimize-nonassociative-math form))
641 ;; (if (consp form)
642 ;; (byte-optimize-two-args-right form)
643 ;; form))
644
645 (defun byte-optimize-approx-equal (x y)
646 (<= (* (abs (- x y)) 100) (abs (+ x y))))
647
648 ;; Collect all the constants from FORM, after the STARTth arg,
649 ;; and apply FUN to them to make one argument at the end.
650 ;; For functions that can handle floats, that optimization
651 ;; can be incorrect because reordering can cause an overflow
652 ;; that would otherwise be avoided by encountering an arg that is a float.
653 ;; We avoid this problem by (1) not moving float constants and
654 ;; (2) not moving anything if it would cause an overflow.
655 (defun byte-optimize-delay-constants-math (form start fun)
656 ;; Merge all FORM's constants from number START, call FUN on them
657 ;; and put the result at the end.
658 (let ((rest (nthcdr (1- start) form))
659 (orig form)
660 ;; t means we must check for overflow.
661 (overflow (memq fun '(+ *))))
662 (while (cdr (setq rest (cdr rest)))
663 (if (integerp (car rest))
664 (let (constants)
665 (setq form (copy-sequence form)
666 rest (nthcdr (1- start) form))
667 (while (setq rest (cdr rest))
668 (cond ((integerp (car rest))
669 (setq constants (cons (car rest) constants))
670 (setcar rest nil))))
671 ;; If necessary, check now for overflow
672 ;; that might be caused by reordering.
673 (if (and overflow
674 ;; We have overflow if the result of doing the arithmetic
675 ;; on floats is not even close to the result
676 ;; of doing it on integers.
677 (not (byte-optimize-approx-equal
678 (apply fun (mapcar 'float constants))
679 (float (apply fun constants)))))
680 (setq form orig)
681 (setq form (nconc (delq nil form)
682 (list (apply fun (nreverse constants)))))))))
683 form))
684
685 (defun byte-optimize-plus (form)
686 (setq form (byte-optimize-delay-constants-math form 1 '+))
687 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
688 ;;(setq form (byte-optimize-associative-two-args-math form))
689 (cond ((null (cdr form))
690 (condition-case ()
691 (eval form)
692 (error form)))
693 ;;; It is not safe to delete the function entirely
694 ;;; (actually, it would be safe if we know the sole arg
695 ;;; is not a marker).
696 ;; ((null (cdr (cdr form))) (nth 1 form))
697 ((and (null (nthcdr 3 form))
698 (or (memq (nth 1 form) '(1 -1))
699 (memq (nth 2 form) '(1 -1))))
700 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
701 (let ((integer
702 (if (memq (nth 1 form) '(1 -1))
703 (nth 1 form)
704 (nth 2 form)))
705 (other
706 (if (memq (nth 1 form) '(1 -1))
707 (nth 2 form)
708 (nth 1 form))))
709 (list (if (eq integer 1) '1+ '1-)
710 other)))
711 (t form)))
712
713 (defun byte-optimize-minus (form)
714 ;; Put constants at the end, except the last constant.
715 (setq form (byte-optimize-delay-constants-math form 2 '+))
716 ;; Now only first and last element can be a number.
717 (let ((last (car (reverse (nthcdr 3 form)))))
718 (cond ((eq 0 last)
719 ;; (- x y ... 0) --> (- x y ...)
720 (setq form (copy-sequence form))
721 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
722 ((equal (nthcdr 2 form) '(1))
723 (setq form (list '1- (nth 1 form))))
724 ((equal (nthcdr 2 form) '(-1))
725 (setq form (list '1+ (nth 1 form))))
726 ;; If form is (- CONST foo... CONST), merge first and last.
727 ((and (numberp (nth 1 form))
728 (numberp last))
729 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
730 (delq last (copy-sequence (nthcdr 3 form))))))))
731 ;;; It is not safe to delete the function entirely
732 ;;; (actually, it would be safe if we know the sole arg
733 ;;; is not a marker).
734 ;;; (if (eq (nth 2 form) 0)
735 ;;; (nth 1 form) ; (- x 0) --> x
736 (byte-optimize-predicate
737 (if (and (null (cdr (cdr (cdr form))))
738 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
739 (cons (car form) (cdr (cdr form)))
740 form))
741 ;;; )
742 )
743
744 (defun byte-optimize-multiply (form)
745 (setq form (byte-optimize-delay-constants-math form 1 '*))
746 ;; If there is a constant in FORM, it is now the last element.
747 (cond ((null (cdr form)) 1)
748 ;;; It is not safe to delete the function entirely
749 ;;; (actually, it would be safe if we know the sole arg
750 ;;; is not a marker or if it appears in other arithmetic).
751 ;;; ((null (cdr (cdr form))) (nth 1 form))
752 ((let ((last (car (reverse form))))
753 (cond ((eq 0 last) (cons 'progn (cdr form)))
754 ((eq 1 last) (delq 1 (copy-sequence form)))
755 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
756 ((and (eq 2 last)
757 (memq t (mapcar 'symbolp (cdr form))))
758 (prog1 (setq form (delq 2 (copy-sequence form)))
759 (while (not (symbolp (car (setq form (cdr form))))))
760 (setcar form (list '+ (car form) (car form)))))
761 (form))))))
762
763 (defsubst byte-compile-butlast (form)
764 (nreverse (cdr (reverse form))))
765
766 (defun byte-optimize-divide (form)
767 (setq form (byte-optimize-delay-constants-math form 2 '*))
768 (let ((last (car (reverse (cdr (cdr form))))))
769 (if (numberp last)
770 (cond ((= (length form) 3)
771 (if (and (numberp (nth 1 form))
772 (not (zerop last))
773 (condition-case nil
774 (/ (nth 1 form) last)
775 (error nil)))
776 (setq form (list 'progn (/ (nth 1 form) last)))))
777 ((= last 1)
778 (setq form (byte-compile-butlast form)))
779 ((numberp (nth 1 form))
780 (setq form (cons (car form)
781 (cons (/ (nth 1 form) last)
782 (byte-compile-butlast (cdr (cdr form)))))
783 last nil))))
784 (cond
785 ;;; ((null (cdr (cdr form)))
786 ;;; (nth 1 form))
787 ((eq (nth 1 form) 0)
788 (append '(progn) (cdr (cdr form)) '(0)))
789 ((eq last -1)
790 (list '- (if (nthcdr 3 form)
791 (byte-compile-butlast form)
792 (nth 1 form))))
793 (form))))
794
795 (defun byte-optimize-logmumble (form)
796 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
797 (byte-optimize-predicate
798 (cond ((memq 0 form)
799 (setq form (if (eq (car form) 'logand)
800 (cons 'progn (cdr form))
801 (delq 0 (copy-sequence form)))))
802 ((and (eq (car-safe form) 'logior)
803 (memq -1 form))
804 (cons 'progn (cdr form)))
805 (form))))
806
807
808 (defun byte-optimize-binary-predicate (form)
809 (if (byte-compile-constp (nth 1 form))
810 (if (byte-compile-constp (nth 2 form))
811 (condition-case ()
812 (list 'quote (eval form))
813 (error form))
814 ;; This can enable some lapcode optimizations.
815 (list (car form) (nth 2 form) (nth 1 form)))
816 form))
817
818 (defun byte-optimize-predicate (form)
819 (let ((ok t)
820 (rest (cdr form)))
821 (while (and rest ok)
822 (setq ok (byte-compile-constp (car rest))
823 rest (cdr rest)))
824 (if ok
825 (condition-case ()
826 (list 'quote (eval form))
827 (error form))
828 form)))
829
830 (defun byte-optimize-identity (form)
831 (if (and (cdr form) (null (cdr (cdr form))))
832 (nth 1 form)
833 (byte-compile-warn "identity called with %d arg%s, but requires 1"
834 (length (cdr form))
835 (if (= 1 (length (cdr form))) "" "s"))
836 form))
837
838 (put 'identity 'byte-optimizer 'byte-optimize-identity)
839
840 (put '+ 'byte-optimizer 'byte-optimize-plus)
841 (put '* 'byte-optimizer 'byte-optimize-multiply)
842 (put '- 'byte-optimizer 'byte-optimize-minus)
843 (put '/ 'byte-optimizer 'byte-optimize-divide)
844 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
845 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
846
847 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
848 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
849 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
850 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
851 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
852 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
853
854 (put '< 'byte-optimizer 'byte-optimize-predicate)
855 (put '> 'byte-optimizer 'byte-optimize-predicate)
856 (put '<= 'byte-optimizer 'byte-optimize-predicate)
857 (put '>= 'byte-optimizer 'byte-optimize-predicate)
858 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
859 (put '1- 'byte-optimizer 'byte-optimize-predicate)
860 (put 'not 'byte-optimizer 'byte-optimize-predicate)
861 (put 'null 'byte-optimizer 'byte-optimize-predicate)
862 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
863 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
864 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
865 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
866 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
867 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
868 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
869
870 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
871 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
872 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
873 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
874
875 (put 'car 'byte-optimizer 'byte-optimize-predicate)
876 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
877 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
878 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
879
880
881 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
882 ;; take care of this? - Jamie
883 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
884 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
885 (put 'quote 'byte-optimizer 'byte-optimize-quote)
886 (defun byte-optimize-quote (form)
887 (if (or (consp (nth 1 form))
888 (and (symbolp (nth 1 form))
889 (not (memq (nth 1 form) '(nil t)))))
890 form
891 (nth 1 form)))
892
893 (defun byte-optimize-zerop (form)
894 (cond ((numberp (nth 1 form))
895 (eval form))
896 (byte-compile-delete-errors
897 (list '= (nth 1 form) 0))
898 (form)))
899
900 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
901
902 (defun byte-optimize-and (form)
903 ;; Simplify if less than 2 args.
904 ;; if there is a literal nil in the args to `and', throw it and following
905 ;; forms away, and surround the `and' with (progn ... nil).
906 (cond ((null (cdr form)))
907 ((memq nil form)
908 (list 'progn
909 (byte-optimize-and
910 (prog1 (setq form (copy-sequence form))
911 (while (nth 1 form)
912 (setq form (cdr form)))
913 (setcdr form nil)))
914 nil))
915 ((null (cdr (cdr form)))
916 (nth 1 form))
917 ((byte-optimize-predicate form))))
918
919 (defun byte-optimize-or (form)
920 ;; Throw away nil's, and simplify if less than 2 args.
921 ;; If there is a literal non-nil constant in the args to `or', throw away all
922 ;; following forms.
923 (if (memq nil form)
924 (setq form (delq nil (copy-sequence form))))
925 (let ((rest form))
926 (while (cdr (setq rest (cdr rest)))
927 (if (byte-compile-trueconstp (car rest))
928 (setq form (copy-sequence form)
929 rest (setcdr (memq (car rest) form) nil))))
930 (if (cdr (cdr form))
931 (byte-optimize-predicate form)
932 (nth 1 form))))
933
934 (defun byte-optimize-cond (form)
935 ;; if any clauses have a literal nil as their test, throw them away.
936 ;; if any clause has a literal non-nil constant as its test, throw
937 ;; away all following clauses.
938 (let (rest)
939 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
940 (while (setq rest (assq nil (cdr form)))
941 (setq form (delq rest (copy-sequence form))))
942 (if (memq nil (cdr form))
943 (setq form (delq nil (copy-sequence form))))
944 (setq rest form)
945 (while (setq rest (cdr rest))
946 (cond ((byte-compile-trueconstp (car-safe (car rest)))
947 (cond ((eq rest (cdr form))
948 (setq form
949 (if (cdr (car rest))
950 (if (cdr (cdr (car rest)))
951 (cons 'progn (cdr (car rest)))
952 (nth 1 (car rest)))
953 (car (car rest)))))
954 ((cdr rest)
955 (setq form (copy-sequence form))
956 (setcdr (memq (car rest) form) nil)))
957 (setq rest nil)))))
958 ;;
959 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
960 (if (eq 'cond (car-safe form))
961 (let ((clauses (cdr form)))
962 (if (and (consp (car clauses))
963 (null (cdr (car clauses))))
964 (list 'or (car (car clauses))
965 (byte-optimize-cond
966 (cons (car form) (cdr (cdr form)))))
967 form))
968 form))
969
970 (defun byte-optimize-if (form)
971 ;; (if <true-constant> <then> <else...>) ==> <then>
972 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
973 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
974 ;; (if <test> <then> nil) ==> (if <test> <then>)
975 (let ((clause (nth 1 form)))
976 (cond ((byte-compile-trueconstp clause)
977 (nth 2 form))
978 ((null clause)
979 (if (nthcdr 4 form)
980 (cons 'progn (nthcdr 3 form))
981 (nth 3 form)))
982 ((nth 2 form)
983 (if (equal '(nil) (nthcdr 3 form))
984 (list 'if clause (nth 2 form))
985 form))
986 ((or (nth 3 form) (nthcdr 4 form))
987 (list 'if
988 ;; Don't make a double negative;
989 ;; instead, take away the one that is there.
990 (if (and (consp clause) (memq (car clause) '(not null))
991 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
992 (nth 1 clause)
993 (list 'not clause))
994 (if (nthcdr 4 form)
995 (cons 'progn (nthcdr 3 form))
996 (nth 3 form))))
997 (t
998 (list 'progn clause nil)))))
999
1000 (defun byte-optimize-while (form)
1001 (if (nth 1 form)
1002 form))
1003
1004 (put 'and 'byte-optimizer 'byte-optimize-and)
1005 (put 'or 'byte-optimizer 'byte-optimize-or)
1006 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1007 (put 'if 'byte-optimizer 'byte-optimize-if)
1008 (put 'while 'byte-optimizer 'byte-optimize-while)
1009
1010 ;; byte-compile-negation-optimizer lives in bytecomp.el
1011 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1012 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1013 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1014
1015
1016 (defun byte-optimize-funcall (form)
1017 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1018 ;; (funcall 'foo ...) ==> (foo ...)
1019 (let ((fn (nth 1 form)))
1020 (if (memq (car-safe fn) '(quote function))
1021 (cons (nth 1 fn) (cdr (cdr form)))
1022 form)))
1023
1024 (defun byte-optimize-apply (form)
1025 ;; If the last arg is a literal constant, turn this into a funcall.
1026 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1027 (let ((fn (nth 1 form))
1028 (last (nth (1- (length form)) form))) ; I think this really is fastest
1029 (or (if (or (null last)
1030 (eq (car-safe last) 'quote))
1031 (if (listp (nth 1 last))
1032 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1033 (nconc (list 'funcall fn) butlast
1034 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1035 (byte-compile-warn
1036 "last arg to apply can't be a literal atom: %s"
1037 (prin1-to-string last))
1038 nil))
1039 form)))
1040
1041 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1042 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1043
1044
1045 (put 'let 'byte-optimizer 'byte-optimize-letX)
1046 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1047 (defun byte-optimize-letX (form)
1048 (cond ((null (nth 1 form))
1049 ;; No bindings
1050 (cons 'progn (cdr (cdr form))))
1051 ((or (nth 2 form) (nthcdr 3 form))
1052 form)
1053 ;; The body is nil
1054 ((eq (car form) 'let)
1055 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1056 '(nil)))
1057 (t
1058 (let ((binds (reverse (nth 1 form))))
1059 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1060
1061
1062 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1063 (defun byte-optimize-nth (form)
1064 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1065 (list 'car (if (zerop (nth 1 form))
1066 (nth 2 form)
1067 (list 'cdr (nth 2 form))))
1068 (byte-optimize-predicate form)))
1069
1070 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1071 (defun byte-optimize-nthcdr (form)
1072 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1073 (byte-optimize-predicate form)
1074 (let ((count (nth 1 form)))
1075 (setq form (nth 2 form))
1076 (while (>= (setq count (1- count)) 0)
1077 (setq form (list 'cdr form)))
1078 form)))
1079
1080 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1081 (defun byte-optimize-concat (form)
1082 (let ((args (cdr form))
1083 (constant t))
1084 (while (and args constant)
1085 (or (byte-compile-constp (car args))
1086 (setq constant nil))
1087 (setq args (cdr args)))
1088 (if constant
1089 (eval form)
1090 form)))
1091 \f
1092 ;;; enumerating those functions which need not be called if the returned
1093 ;;; value is not used. That is, something like
1094 ;;; (progn (list (something-with-side-effects) (yow))
1095 ;;; (foo))
1096 ;;; may safely be turned into
1097 ;;; (progn (progn (something-with-side-effects) (yow))
1098 ;;; (foo))
1099 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1100
1101 ;;; I wonder if I missed any :-\)
1102 (let ((side-effect-free-fns
1103 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1104 assoc assq
1105 boundp buffer-file-name buffer-local-variables buffer-modified-p
1106 buffer-substring
1107 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
1108 copy-marker cos count-lines
1109 default-boundp default-value documentation downcase
1110 elt exp expt fboundp featurep
1111 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1112 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1113 float floor format
1114 get get-buffer get-buffer-window getenv get-file-buffer
1115 int-to-string
1116 length log log10 logand logb logior lognot logxor lsh
1117 marker-buffer max member memq min mod
1118 next-window nth nthcdr number-to-string
1119 parse-colon-path previous-window
1120 radians-to-degrees rassq regexp-quote reverse round
1121 sin sqrt string< string= string-equal string-lessp string-to-char
1122 string-to-int string-to-number substring symbol-plist
1123 tan upcase user-variable-p vconcat
1124 window-buffer window-dedicated-p window-edges window-height
1125 window-hscroll window-minibuffer-p window-width
1126 zerop))
1127 (side-effect-and-error-free-fns
1128 '(arrayp atom
1129 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1130 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1131 current-buffer
1132 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1133 get-largest-window get-lru-window
1134 identity ignore integerp integer-or-marker-p interactive-p
1135 invocation-directory invocation-name
1136 keymapp list listp
1137 make-marker mark mark-marker markerp memory-limit minibuffer-window
1138 mouse-movement-p
1139 natnump nlistp not null number-or-marker-p numberp
1140 one-window-p overlayp
1141 point point-marker point-min point-max processp
1142 selected-window sequencep stringp subrp symbolp syntax-table-p
1143 user-full-name user-login-name user-original-login-name
1144 user-real-login-name user-real-uid user-uid
1145 vector vectorp
1146 window-configuration-p window-live-p windowp)))
1147 (while side-effect-free-fns
1148 (put (car side-effect-free-fns) 'side-effect-free t)
1149 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1150 (while side-effect-and-error-free-fns
1151 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1152 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1153 nil)
1154
1155
1156 (defun byte-compile-splice-in-already-compiled-code (form)
1157 ;; form is (byte-code "..." [...] n)
1158 (if (not (memq byte-optimize '(t lap)))
1159 (byte-compile-normal-call form)
1160 (byte-inline-lapcode
1161 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1162 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1163 byte-compile-maxdepth))
1164 (setq byte-compile-depth (1+ byte-compile-depth))))
1165
1166 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1167
1168 \f
1169 (defconst byte-constref-ops
1170 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1171
1172 ;;; This function extracts the bitfields from variable-length opcodes.
1173 ;;; Originally defined in disass.el (which no longer uses it.)
1174
1175 (defun disassemble-offset ()
1176 "Don't call this!"
1177 ;; fetch and return the offset for the current opcode.
1178 ;; return NIL if this opcode has no offset
1179 ;; OP, PTR and BYTES are used and set dynamically
1180 (defvar op)
1181 (defvar ptr)
1182 (defvar bytes)
1183 (cond ((< op byte-nth)
1184 (let ((tem (logand op 7)))
1185 (setq op (logand op 248))
1186 (cond ((eq tem 6)
1187 (setq ptr (1+ ptr)) ;offset in next byte
1188 (aref bytes ptr))
1189 ((eq tem 7)
1190 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1191 (+ (aref bytes ptr)
1192 (progn (setq ptr (1+ ptr))
1193 (lsh (aref bytes ptr) 8))))
1194 (t tem)))) ;offset was in opcode
1195 ((>= op byte-constant)
1196 (prog1 (- op byte-constant) ;offset in opcode
1197 (setq op byte-constant)))
1198 ((and (>= op byte-constant2)
1199 (<= op byte-goto-if-not-nil-else-pop))
1200 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1201 (+ (aref bytes ptr)
1202 (progn (setq ptr (1+ ptr))
1203 (lsh (aref bytes ptr) 8))))
1204 ((and (>= op byte-listN)
1205 (<= op byte-insertN))
1206 (setq ptr (1+ ptr)) ;offset in next byte
1207 (aref bytes ptr))))
1208
1209
1210 ;;; This de-compiler is used for inline expansion of compiled functions,
1211 ;;; and by the disassembler.
1212 ;;;
1213 ;;; This list contains numbers, which are pc values,
1214 ;;; before each instruction.
1215 (defun byte-decompile-bytecode (bytes constvec)
1216 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1217 (let ((byte-compile-constants nil)
1218 (byte-compile-variables nil)
1219 (byte-compile-tag-number 0))
1220 (byte-decompile-bytecode-1 bytes constvec)))
1221
1222 ;; As byte-decompile-bytecode, but updates
1223 ;; byte-compile-{constants, variables, tag-number}.
1224 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1225 ;; with `goto's destined for the end of the code.
1226 ;; That is for use by the compiler.
1227 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1228 ;; In that case, we put a pc value into the list
1229 ;; before each insn (or its label).
1230 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1231 (let ((length (length bytes))
1232 (ptr 0) optr tag tags op offset
1233 lap tmp
1234 endtag
1235 (retcount 0))
1236 (while (not (= ptr length))
1237 (or make-spliceable
1238 (setq lap (cons ptr lap)))
1239 (setq op (aref bytes ptr)
1240 optr ptr
1241 offset (disassemble-offset)) ; this does dynamic-scope magic
1242 (setq op (aref byte-code-vector op))
1243 (cond ((memq op byte-goto-ops)
1244 ;; it's a pc
1245 (setq offset
1246 (cdr (or (assq offset tags)
1247 (car (setq tags
1248 (cons (cons offset
1249 (byte-compile-make-tag))
1250 tags)))))))
1251 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1252 ((memq op byte-constref-ops)))
1253 (setq tmp (aref constvec offset)
1254 offset (if (eq op 'byte-constant)
1255 (byte-compile-get-constant tmp)
1256 (or (assq tmp byte-compile-variables)
1257 (car (setq byte-compile-variables
1258 (cons (list tmp)
1259 byte-compile-variables)))))))
1260 ((and make-spliceable
1261 (eq op 'byte-return))
1262 (if (= ptr (1- length))
1263 (setq op nil)
1264 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1265 op 'byte-goto))))
1266 ;; lap = ( [ (pc . (op . arg)) ]* )
1267 (setq lap (cons (cons optr (cons op (or offset 0)))
1268 lap))
1269 (setq ptr (1+ ptr)))
1270 ;; take off the dummy nil op that we replaced a trailing "return" with.
1271 (let ((rest lap))
1272 (while rest
1273 (cond ((numberp (car rest)))
1274 ((setq tmp (assq (car (car rest)) tags))
1275 ;; this addr is jumped to
1276 (setcdr rest (cons (cons nil (cdr tmp))
1277 (cdr rest)))
1278 (setq tags (delq tmp tags))
1279 (setq rest (cdr rest))))
1280 (setq rest (cdr rest))))
1281 (if tags (error "optimizer error: missed tags %s" tags))
1282 (if (null (car (cdr (car lap))))
1283 (setq lap (cdr lap)))
1284 (if endtag
1285 (setq lap (cons (cons nil endtag) lap)))
1286 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1287 (mapcar (function (lambda (elt)
1288 (if (numberp elt)
1289 elt
1290 (cdr elt))))
1291 (nreverse lap))))
1292
1293 \f
1294 ;;; peephole optimizer
1295
1296 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1297
1298 (defconst byte-conditional-ops
1299 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1300 byte-goto-if-not-nil-else-pop))
1301
1302 (defconst byte-after-unbind-ops
1303 '(byte-constant byte-dup
1304 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1305 byte-eq byte-equal byte-not
1306 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1307 byte-interactive-p)
1308 ;; How about other side-effect-free-ops? Is it safe to move an
1309 ;; error invocation (such as from nth) out of an unwind-protect?
1310 "Byte-codes that can be moved past an unbind.")
1311
1312 (defconst byte-compile-side-effect-and-error-free-ops
1313 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1314 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1315 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1316 byte-point-min byte-following-char byte-preceding-char
1317 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1318 byte-current-buffer byte-interactive-p))
1319
1320 (defconst byte-compile-side-effect-free-ops
1321 (nconc
1322 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1323 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1324 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1325 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1326 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1327 byte-member byte-assq byte-quo byte-rem)
1328 byte-compile-side-effect-and-error-free-ops))
1329
1330 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1331 ;;; Consider the code
1332 ;;;
1333 ;;; (defun foo (flag)
1334 ;;; (let ((old-pop-ups pop-up-windows)
1335 ;;; (pop-up-windows flag))
1336 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1337 ;;; (setq old-pop-ups pop-up-windows)
1338 ;;; ...))))
1339 ;;;
1340 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1341 ;;; something else. But if we optimize
1342 ;;;
1343 ;;; varref flag
1344 ;;; varbind pop-up-windows
1345 ;;; varref pop-up-windows
1346 ;;; not
1347 ;;; to
1348 ;;; varref flag
1349 ;;; dup
1350 ;;; varbind pop-up-windows
1351 ;;; not
1352 ;;;
1353 ;;; we break the program, because it will appear that pop-up-windows and
1354 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1355 ;;; the BOOL variables are, and not perform this optimization on them.
1356 ;;;
1357 (defconst byte-boolean-vars
1358 '(abbrev-all-caps abbrevs-changed byte-metering-on
1359 cannot-suspend completion-auto-help completion-ignore-case
1360 cursor-in-echo-area debug-on-next-call debug-on-quit
1361 delete-exited-processes enable-recursive-minibuffers
1362 highlight-nonselected-windows indent-tabs-mode inhibit-local-menu-bar-menus
1363 insert-default-directory inverse-video load-force-doc-strings
1364 load-in-progress menu-prompting minibuffer-auto-raise
1365 mode-line-inverse-video multiple-frames no-redraw-on-reenter noninteractive
1366 parse-sexp-ignore-comments pop-up-frames pop-up-windows
1367 print-escape-newlines system-uses-terminfo truncate-partial-width-windows
1368 visible-bell vms-stmlf-recfm words-include-escapes)
1369 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1370 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1371 may generate incorrect code.")
1372
1373 (defun byte-optimize-lapcode (lap &optional for-effect)
1374 "Simple peephole optimizer. LAP is both modified and returned."
1375 (let (lap0 off0
1376 lap1 off1
1377 lap2 off2
1378 (keep-going 'first-time)
1379 (add-depth 0)
1380 rest tmp tmp2 tmp3
1381 (side-effect-free (if byte-compile-delete-errors
1382 byte-compile-side-effect-free-ops
1383 byte-compile-side-effect-and-error-free-ops)))
1384 (while keep-going
1385 (or (eq keep-going 'first-time)
1386 (byte-compile-log-lap " ---- next pass"))
1387 (setq rest lap
1388 keep-going nil)
1389 (while rest
1390 (setq lap0 (car rest)
1391 lap1 (nth 1 rest)
1392 lap2 (nth 2 rest))
1393
1394 ;; You may notice that sequences like "dup varset discard" are
1395 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1396 ;; You may be tempted to change this; resist that temptation.
1397 (cond ;;
1398 ;; <side-effect-free> pop --> <deleted>
1399 ;; ...including:
1400 ;; const-X pop --> <deleted>
1401 ;; varref-X pop --> <deleted>
1402 ;; dup pop --> <deleted>
1403 ;;
1404 ((and (eq 'byte-discard (car lap1))
1405 (memq (car lap0) side-effect-free))
1406 (setq keep-going t)
1407 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1408 (setq rest (cdr rest))
1409 (cond ((= tmp 1)
1410 (byte-compile-log-lap
1411 " %s discard\t-->\t<deleted>" lap0)
1412 (setq lap (delq lap0 (delq lap1 lap))))
1413 ((= tmp 0)
1414 (byte-compile-log-lap
1415 " %s discard\t-->\t<deleted> discard" lap0)
1416 (setq lap (delq lap0 lap)))
1417 ((= tmp -1)
1418 (byte-compile-log-lap
1419 " %s discard\t-->\tdiscard discard" lap0)
1420 (setcar lap0 'byte-discard)
1421 (setcdr lap0 0))
1422 ((error "Optimizer error: too much on the stack"))))
1423 ;;
1424 ;; goto*-X X: --> X:
1425 ;;
1426 ((and (memq (car lap0) byte-goto-ops)
1427 (eq (cdr lap0) lap1))
1428 (cond ((eq (car lap0) 'byte-goto)
1429 (setq lap (delq lap0 lap))
1430 (setq tmp "<deleted>"))
1431 ((memq (car lap0) byte-goto-always-pop-ops)
1432 (setcar lap0 (setq tmp 'byte-discard))
1433 (setcdr lap0 0))
1434 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1435 (and (memq byte-optimize-log '(t byte))
1436 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1437 (nth 1 lap1) (nth 1 lap1)
1438 tmp (nth 1 lap1)))
1439 (setq keep-going t))
1440 ;;
1441 ;; varset-X varref-X --> dup varset-X
1442 ;; varbind-X varref-X --> dup varbind-X
1443 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1444 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1445 ;; The latter two can enable other optimizations.
1446 ;;
1447 ((and (eq 'byte-varref (car lap2))
1448 (eq (cdr lap1) (cdr lap2))
1449 (memq (car lap1) '(byte-varset byte-varbind)))
1450 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1451 (not (eq (car lap0) 'byte-constant)))
1452 nil
1453 (setq keep-going t)
1454 (if (memq (car lap0) '(byte-constant byte-dup))
1455 (progn
1456 (setq tmp (if (or (not tmp)
1457 (memq (car (cdr lap0)) '(nil t)))
1458 (cdr lap0)
1459 (byte-compile-get-constant t)))
1460 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1461 lap0 lap1 lap2 lap0 lap1
1462 (cons (car lap0) tmp))
1463 (setcar lap2 (car lap0))
1464 (setcdr lap2 tmp))
1465 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1466 (setcar lap2 (car lap1))
1467 (setcar lap1 'byte-dup)
1468 (setcdr lap1 0)
1469 ;; The stack depth gets locally increased, so we will
1470 ;; increase maxdepth in case depth = maxdepth here.
1471 ;; This can cause the third argument to byte-code to
1472 ;; be larger than necessary.
1473 (setq add-depth 1))))
1474 ;;
1475 ;; dup varset-X discard --> varset-X
1476 ;; dup varbind-X discard --> varbind-X
1477 ;; (the varbind variant can emerge from other optimizations)
1478 ;;
1479 ((and (eq 'byte-dup (car lap0))
1480 (eq 'byte-discard (car lap2))
1481 (memq (car lap1) '(byte-varset byte-varbind)))
1482 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1483 (setq keep-going t
1484 rest (cdr rest))
1485 (setq lap (delq lap0 (delq lap2 lap))))
1486 ;;
1487 ;; not goto-X-if-nil --> goto-X-if-non-nil
1488 ;; not goto-X-if-non-nil --> goto-X-if-nil
1489 ;;
1490 ;; it is wrong to do the same thing for the -else-pop variants.
1491 ;;
1492 ((and (eq 'byte-not (car lap0))
1493 (or (eq 'byte-goto-if-nil (car lap1))
1494 (eq 'byte-goto-if-not-nil (car lap1))))
1495 (byte-compile-log-lap " not %s\t-->\t%s"
1496 lap1
1497 (cons
1498 (if (eq (car lap1) 'byte-goto-if-nil)
1499 'byte-goto-if-not-nil
1500 'byte-goto-if-nil)
1501 (cdr lap1)))
1502 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1503 'byte-goto-if-not-nil
1504 'byte-goto-if-nil))
1505 (setq lap (delq lap0 lap))
1506 (setq keep-going t))
1507 ;;
1508 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1509 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1510 ;;
1511 ;; it is wrong to do the same thing for the -else-pop variants.
1512 ;;
1513 ((and (or (eq 'byte-goto-if-nil (car lap0))
1514 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1515 (eq 'byte-goto (car lap1)) ; gotoY
1516 (eq (cdr lap0) lap2)) ; TAG X
1517 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1518 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1519 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1520 lap0 lap1 lap2
1521 (cons inverse (cdr lap1)) lap2)
1522 (setq lap (delq lap0 lap))
1523 (setcar lap1 inverse)
1524 (setq keep-going t)))
1525 ;;
1526 ;; const goto-if-* --> whatever
1527 ;;
1528 ((and (eq 'byte-constant (car lap0))
1529 (memq (car lap1) byte-conditional-ops))
1530 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1531 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1532 (car (cdr lap0))
1533 (not (car (cdr lap0))))
1534 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1535 lap0 lap1)
1536 (setq rest (cdr rest)
1537 lap (delq lap0 (delq lap1 lap))))
1538 (t
1539 (if (memq (car lap1) byte-goto-always-pop-ops)
1540 (progn
1541 (byte-compile-log-lap " %s %s\t-->\t%s"
1542 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1543 (setq lap (delq lap0 lap)))
1544 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1545 (cons 'byte-goto (cdr lap1))))
1546 (setcar lap1 'byte-goto)))
1547 (setq keep-going t))
1548 ;;
1549 ;; varref-X varref-X --> varref-X dup
1550 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1551 ;; We don't optimize the const-X variations on this here,
1552 ;; because that would inhibit some goto optimizations; we
1553 ;; optimize the const-X case after all other optimizations.
1554 ;;
1555 ((and (eq 'byte-varref (car lap0))
1556 (progn
1557 (setq tmp (cdr rest))
1558 (while (eq (car (car tmp)) 'byte-dup)
1559 (setq tmp (cdr tmp)))
1560 t)
1561 (eq (cdr lap0) (cdr (car tmp)))
1562 (eq 'byte-varref (car (car tmp))))
1563 (if (memq byte-optimize-log '(t byte))
1564 (let ((str ""))
1565 (setq tmp2 (cdr rest))
1566 (while (not (eq tmp tmp2))
1567 (setq tmp2 (cdr tmp2)
1568 str (concat str " dup")))
1569 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1570 lap0 str lap0 lap0 str)))
1571 (setq keep-going t)
1572 (setcar (car tmp) 'byte-dup)
1573 (setcdr (car tmp) 0)
1574 (setq rest tmp))
1575 ;;
1576 ;; TAG1: TAG2: --> TAG1: <deleted>
1577 ;; (and other references to TAG2 are replaced with TAG1)
1578 ;;
1579 ((and (eq (car lap0) 'TAG)
1580 (eq (car lap1) 'TAG))
1581 (and (memq byte-optimize-log '(t byte))
1582 (byte-compile-log " adjacent tags %d and %d merged"
1583 (nth 1 lap1) (nth 1 lap0)))
1584 (setq tmp3 lap)
1585 (while (setq tmp2 (rassq lap0 tmp3))
1586 (setcdr tmp2 lap1)
1587 (setq tmp3 (cdr (memq tmp2 tmp3))))
1588 (setq lap (delq lap0 lap)
1589 keep-going t))
1590 ;;
1591 ;; unused-TAG: --> <deleted>
1592 ;;
1593 ((and (eq 'TAG (car lap0))
1594 (not (rassq lap0 lap)))
1595 (and (memq byte-optimize-log '(t byte))
1596 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1597 (setq lap (delq lap0 lap)
1598 keep-going t))
1599 ;;
1600 ;; goto ... --> goto <delete until TAG or end>
1601 ;; return ... --> return <delete until TAG or end>
1602 ;;
1603 ((and (memq (car lap0) '(byte-goto byte-return))
1604 (not (memq (car lap1) '(TAG nil))))
1605 (setq tmp rest)
1606 (let ((i 0)
1607 (opt-p (memq byte-optimize-log '(t lap)))
1608 str deleted)
1609 (while (and (setq tmp (cdr tmp))
1610 (not (eq 'TAG (car (car tmp)))))
1611 (if opt-p (setq deleted (cons (car tmp) deleted)
1612 str (concat str " %s")
1613 i (1+ i))))
1614 (if opt-p
1615 (let ((tagstr
1616 (if (eq 'TAG (car (car tmp)))
1617 (format "%d:" (car (cdr (car tmp))))
1618 (or (car tmp) ""))))
1619 (if (< i 6)
1620 (apply 'byte-compile-log-lap-1
1621 (concat " %s" str
1622 " %s\t-->\t%s <deleted> %s")
1623 lap0
1624 (nconc (nreverse deleted)
1625 (list tagstr lap0 tagstr)))
1626 (byte-compile-log-lap
1627 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1628 lap0 i (if (= i 1) "" "s")
1629 tagstr lap0 tagstr))))
1630 (rplacd rest tmp))
1631 (setq keep-going t))
1632 ;;
1633 ;; <safe-op> unbind --> unbind <safe-op>
1634 ;; (this may enable other optimizations.)
1635 ;;
1636 ((and (eq 'byte-unbind (car lap1))
1637 (memq (car lap0) byte-after-unbind-ops))
1638 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1639 (setcar rest lap1)
1640 (setcar (cdr rest) lap0)
1641 (setq keep-going t))
1642 ;;
1643 ;; varbind-X unbind-N --> discard unbind-(N-1)
1644 ;; save-excursion unbind-N --> unbind-(N-1)
1645 ;; save-restriction unbind-N --> unbind-(N-1)
1646 ;;
1647 ((and (eq 'byte-unbind (car lap1))
1648 (memq (car lap0) '(byte-varbind byte-save-excursion
1649 byte-save-restriction))
1650 (< 0 (cdr lap1)))
1651 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1652 (delq lap1 rest))
1653 (if (eq (car lap0) 'byte-varbind)
1654 (setcar rest (cons 'byte-discard 0))
1655 (setq lap (delq lap0 lap)))
1656 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1657 lap0 (cons (car lap1) (1+ (cdr lap1)))
1658 (if (eq (car lap0) 'byte-varbind)
1659 (car rest)
1660 (car (cdr rest)))
1661 (if (and (/= 0 (cdr lap1))
1662 (eq (car lap0) 'byte-varbind))
1663 (car (cdr rest))
1664 ""))
1665 (setq keep-going t))
1666 ;;
1667 ;; goto*-X ... X: goto-Y --> goto*-Y
1668 ;; goto-X ... X: return --> return
1669 ;;
1670 ((and (memq (car lap0) byte-goto-ops)
1671 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1672 '(byte-goto byte-return)))
1673 (cond ((and (not (eq tmp lap0))
1674 (or (eq (car lap0) 'byte-goto)
1675 (eq (car tmp) 'byte-goto)))
1676 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1677 (car lap0) tmp tmp)
1678 (if (eq (car tmp) 'byte-return)
1679 (setcar lap0 'byte-return))
1680 (setcdr lap0 (cdr tmp))
1681 (setq keep-going t))))
1682 ;;
1683 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1684 ;; goto-*-else-pop X ... X: discard --> whatever
1685 ;;
1686 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1687 byte-goto-if-not-nil-else-pop))
1688 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1689 (eval-when-compile
1690 (cons 'byte-discard byte-conditional-ops)))
1691 (not (eq lap0 (car tmp))))
1692 (setq tmp2 (car tmp))
1693 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1694 byte-goto-if-nil)
1695 (byte-goto-if-not-nil-else-pop
1696 byte-goto-if-not-nil))))
1697 (if (memq (car tmp2) tmp3)
1698 (progn (setcar lap0 (car tmp2))
1699 (setcdr lap0 (cdr tmp2))
1700 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1701 (car lap0) tmp2 lap0))
1702 ;; Get rid of the -else-pop's and jump one step further.
1703 (or (eq 'TAG (car (nth 1 tmp)))
1704 (setcdr tmp (cons (byte-compile-make-tag)
1705 (cdr tmp))))
1706 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1707 (car lap0) tmp2 (nth 1 tmp3))
1708 (setcar lap0 (nth 1 tmp3))
1709 (setcdr lap0 (nth 1 tmp)))
1710 (setq keep-going t))
1711 ;;
1712 ;; const goto-X ... X: goto-if-* --> whatever
1713 ;; const goto-X ... X: discard --> whatever
1714 ;;
1715 ((and (eq (car lap0) 'byte-constant)
1716 (eq (car lap1) 'byte-goto)
1717 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1718 (eval-when-compile
1719 (cons 'byte-discard byte-conditional-ops)))
1720 (not (eq lap1 (car tmp))))
1721 (setq tmp2 (car tmp))
1722 (cond ((memq (car tmp2)
1723 (if (null (car (cdr lap0)))
1724 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1725 '(byte-goto-if-not-nil
1726 byte-goto-if-not-nil-else-pop)))
1727 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1728 lap0 tmp2 lap0 tmp2)
1729 (setcar lap1 (car tmp2))
1730 (setcdr lap1 (cdr tmp2))
1731 ;; Let next step fix the (const,goto-if*) sequence.
1732 (setq rest (cons nil rest)))
1733 (t
1734 ;; Jump one step further
1735 (byte-compile-log-lap
1736 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1737 lap0 tmp2)
1738 (or (eq 'TAG (car (nth 1 tmp)))
1739 (setcdr tmp (cons (byte-compile-make-tag)
1740 (cdr tmp))))
1741 (setcdr lap1 (car (cdr tmp)))
1742 (setq lap (delq lap0 lap))))
1743 (setq keep-going t))
1744 ;;
1745 ;; X: varref-Y ... varset-Y goto-X -->
1746 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1747 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1748 ;; (This is so usual for while loops that it is worth handling).
1749 ;;
1750 ((and (eq (car lap1) 'byte-varset)
1751 (eq (car lap2) 'byte-goto)
1752 (not (memq (cdr lap2) rest)) ;Backwards jump
1753 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1754 'byte-varref)
1755 (eq (cdr (car tmp)) (cdr lap1))
1756 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1757 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1758 (let ((newtag (byte-compile-make-tag)))
1759 (byte-compile-log-lap
1760 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1761 (nth 1 (cdr lap2)) (car tmp)
1762 lap1 lap2
1763 (nth 1 (cdr lap2)) (car tmp)
1764 (nth 1 newtag) 'byte-dup lap1
1765 (cons 'byte-goto newtag)
1766 )
1767 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1768 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1769 (setq add-depth 1)
1770 (setq keep-going t))
1771 ;;
1772 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1773 ;; (This can pull the loop test to the end of the loop)
1774 ;;
1775 ((and (eq (car lap0) 'byte-goto)
1776 (eq (car lap1) 'TAG)
1777 (eq lap1
1778 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1779 (memq (car (car tmp))
1780 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1781 byte-goto-if-nil-else-pop)))
1782 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1783 ;; lap0 lap1 (cdr lap0) (car tmp))
1784 (let ((newtag (byte-compile-make-tag)))
1785 (byte-compile-log-lap
1786 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1787 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1788 (cons (cdr (assq (car (car tmp))
1789 '((byte-goto-if-nil . byte-goto-if-not-nil)
1790 (byte-goto-if-not-nil . byte-goto-if-nil)
1791 (byte-goto-if-nil-else-pop .
1792 byte-goto-if-not-nil-else-pop)
1793 (byte-goto-if-not-nil-else-pop .
1794 byte-goto-if-nil-else-pop))))
1795 newtag)
1796
1797 (nth 1 newtag)
1798 )
1799 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1800 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1801 ;; We can handle this case but not the -if-not-nil case,
1802 ;; because we won't know which non-nil constant to push.
1803 (setcdr rest (cons (cons 'byte-constant
1804 (byte-compile-get-constant nil))
1805 (cdr rest))))
1806 (setcar lap0 (nth 1 (memq (car (car tmp))
1807 '(byte-goto-if-nil-else-pop
1808 byte-goto-if-not-nil
1809 byte-goto-if-nil
1810 byte-goto-if-not-nil
1811 byte-goto byte-goto))))
1812 )
1813 (setq keep-going t))
1814 )
1815 (setq rest (cdr rest)))
1816 )
1817 ;; Cleanup stage:
1818 ;; Rebuild byte-compile-constants / byte-compile-variables.
1819 ;; Simple optimizations that would inhibit other optimizations if they
1820 ;; were done in the optimizing loop, and optimizations which there is no
1821 ;; need to do more than once.
1822 (setq byte-compile-constants nil
1823 byte-compile-variables nil)
1824 (setq rest lap)
1825 (while rest
1826 (setq lap0 (car rest)
1827 lap1 (nth 1 rest))
1828 (if (memq (car lap0) byte-constref-ops)
1829 (if (not (eq (car lap0) 'byte-constant))
1830 (or (memq (cdr lap0) byte-compile-variables)
1831 (setq byte-compile-variables (cons (cdr lap0)
1832 byte-compile-variables)))
1833 (or (memq (cdr lap0) byte-compile-constants)
1834 (setq byte-compile-constants (cons (cdr lap0)
1835 byte-compile-constants)))))
1836 (cond (;;
1837 ;; const-C varset-X const-C --> const-C dup varset-X
1838 ;; const-C varbind-X const-C --> const-C dup varbind-X
1839 ;;
1840 (and (eq (car lap0) 'byte-constant)
1841 (eq (car (nth 2 rest)) 'byte-constant)
1842 (eq (cdr lap0) (car (nth 2 rest)))
1843 (memq (car lap1) '(byte-varbind byte-varset)))
1844 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1845 lap0 lap1 lap0 lap0 lap1)
1846 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1847 (setcar (cdr rest) (cons 'byte-dup 0))
1848 (setq add-depth 1))
1849 ;;
1850 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1851 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1852 ;;
1853 ((memq (car lap0) '(byte-constant byte-varref))
1854 (setq tmp rest
1855 tmp2 nil)
1856 (while (progn
1857 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1858 (and (eq (cdr lap0) (cdr (car tmp)))
1859 (eq (car lap0) (car (car tmp)))))
1860 (setcar tmp (cons 'byte-dup 0))
1861 (setq tmp2 t))
1862 (if tmp2
1863 (byte-compile-log-lap
1864 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1865 ;;
1866 ;; unbind-N unbind-M --> unbind-(N+M)
1867 ;;
1868 ((and (eq 'byte-unbind (car lap0))
1869 (eq 'byte-unbind (car lap1)))
1870 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1871 (cons 'byte-unbind
1872 (+ (cdr lap0) (cdr lap1))))
1873 (setq keep-going t)
1874 (setq lap (delq lap0 lap))
1875 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1876 )
1877 (setq rest (cdr rest)))
1878 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1879 lap)
1880
1881 (provide 'byte-optimize)
1882
1883 \f
1884 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1885 ;; itself, compile some of its most used recursive functions (at load time).
1886 ;;
1887 (eval-when-compile
1888 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1889 (assq 'byte-code (symbol-function 'byte-optimize-form))
1890 (let ((byte-optimize nil)
1891 (byte-compile-warnings nil))
1892 (mapcar '(lambda (x)
1893 (or noninteractive (message "compiling %s..." x))
1894 (byte-compile x)
1895 (or noninteractive (message "compiling %s...done" x)))
1896 '(byte-optimize-form
1897 byte-optimize-body
1898 byte-optimize-predicate
1899 byte-optimize-binary-predicate
1900 ;; Inserted some more than necessary, to speed it up.
1901 byte-optimize-form-code-walker
1902 byte-optimize-lapcode))))
1903 nil)
1904
1905 ;;; byte-opt.el ends here