Fix a typo in a recent entry in src/ChangeLog.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #endif
78
79 #ifdef DOUG_LEA_MALLOC
80
81 #include <malloc.h>
82
83 /* Specify maximum number of areas to mmap. It would be nice to use a
84 value that explicitly means "no limit". */
85
86 #define MMAP_MAX_AREAS 100000000
87
88 #endif /* not DOUG_LEA_MALLOC */
89
90 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
91 to a struct Lisp_String. */
92
93 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
94 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
95 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
96
97 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
98 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
99 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
100
101 /* Default value of gc_cons_threshold (see below). */
102
103 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
104
105 /* Global variables. */
106 struct emacs_globals globals;
107
108 /* Number of bytes of consing done since the last gc. */
109
110 EMACS_INT consing_since_gc;
111
112 /* Similar minimum, computed from Vgc_cons_percentage. */
113
114 EMACS_INT gc_relative_threshold;
115
116 /* Minimum number of bytes of consing since GC before next GC,
117 when memory is full. */
118
119 EMACS_INT memory_full_cons_threshold;
120
121 /* True during GC. */
122
123 bool gc_in_progress;
124
125 /* True means abort if try to GC.
126 This is for code which is written on the assumption that
127 no GC will happen, so as to verify that assumption. */
128
129 bool abort_on_gc;
130
131 /* Number of live and free conses etc. */
132
133 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
134 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
135 static EMACS_INT total_free_floats, total_floats;
136
137 /* Points to memory space allocated as "spare", to be freed if we run
138 out of memory. We keep one large block, four cons-blocks, and
139 two string blocks. */
140
141 static char *spare_memory[7];
142
143 /* Amount of spare memory to keep in large reserve block, or to see
144 whether this much is available when malloc fails on a larger request. */
145
146 #define SPARE_MEMORY (1 << 14)
147
148 /* Initialize it to a nonzero value to force it into data space
149 (rather than bss space). That way unexec will remap it into text
150 space (pure), on some systems. We have not implemented the
151 remapping on more recent systems because this is less important
152 nowadays than in the days of small memories and timesharing. */
153
154 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
155 #define PUREBEG (char *) pure
156
157 /* Pointer to the pure area, and its size. */
158
159 static char *purebeg;
160 static ptrdiff_t pure_size;
161
162 /* Number of bytes of pure storage used before pure storage overflowed.
163 If this is non-zero, this implies that an overflow occurred. */
164
165 static ptrdiff_t pure_bytes_used_before_overflow;
166
167 /* True if P points into pure space. */
168
169 #define PURE_POINTER_P(P) \
170 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
171
172 /* Index in pure at which next pure Lisp object will be allocated.. */
173
174 static ptrdiff_t pure_bytes_used_lisp;
175
176 /* Number of bytes allocated for non-Lisp objects in pure storage. */
177
178 static ptrdiff_t pure_bytes_used_non_lisp;
179
180 /* If nonzero, this is a warning delivered by malloc and not yet
181 displayed. */
182
183 const char *pending_malloc_warning;
184
185 /* Maximum amount of C stack to save when a GC happens. */
186
187 #ifndef MAX_SAVE_STACK
188 #define MAX_SAVE_STACK 16000
189 #endif
190
191 /* Buffer in which we save a copy of the C stack at each GC. */
192
193 #if MAX_SAVE_STACK > 0
194 static char *stack_copy;
195 static ptrdiff_t stack_copy_size;
196 #endif
197
198 static Lisp_Object Qconses;
199 static Lisp_Object Qsymbols;
200 static Lisp_Object Qmiscs;
201 static Lisp_Object Qstrings;
202 static Lisp_Object Qvectors;
203 static Lisp_Object Qfloats;
204 static Lisp_Object Qintervals;
205 static Lisp_Object Qbuffers;
206 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
207 static Lisp_Object Qgc_cons_threshold;
208 Lisp_Object Qchar_table_extra_slots;
209
210 /* Hook run after GC has finished. */
211
212 static Lisp_Object Qpost_gc_hook;
213
214 static void mark_terminals (void);
215 static void gc_sweep (void);
216 static Lisp_Object make_pure_vector (ptrdiff_t);
217 static void mark_glyph_matrix (struct glyph_matrix *);
218 static void mark_face_cache (struct face_cache *);
219 static void mark_buffer (struct buffer *);
220
221 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
222 static void refill_memory_reserve (void);
223 #endif
224 static struct Lisp_String *allocate_string (void);
225 static void compact_small_strings (void);
226 static void free_large_strings (void);
227 static void sweep_strings (void);
228 static void free_misc (Lisp_Object);
229 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
230
231 /* When scanning the C stack for live Lisp objects, Emacs keeps track
232 of what memory allocated via lisp_malloc is intended for what
233 purpose. This enumeration specifies the type of memory. */
234
235 enum mem_type
236 {
237 MEM_TYPE_NON_LISP,
238 MEM_TYPE_BUFFER,
239 MEM_TYPE_CONS,
240 MEM_TYPE_STRING,
241 MEM_TYPE_MISC,
242 MEM_TYPE_SYMBOL,
243 MEM_TYPE_FLOAT,
244 /* We used to keep separate mem_types for subtypes of vectors such as
245 process, hash_table, frame, terminal, and window, but we never made
246 use of the distinction, so it only caused source-code complexity
247 and runtime slowdown. Minor but pointless. */
248 MEM_TYPE_VECTORLIKE,
249 /* Special type to denote vector blocks. */
250 MEM_TYPE_VECTOR_BLOCK,
251 /* Special type to denote reserved memory. */
252 MEM_TYPE_SPARE
253 };
254
255 static void *lisp_malloc (size_t, enum mem_type);
256
257
258 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
259
260 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
261 #include <stdio.h> /* For fprintf. */
262 #endif
263
264 /* A unique object in pure space used to make some Lisp objects
265 on free lists recognizable in O(1). */
266
267 static Lisp_Object Vdead;
268 #define DEADP(x) EQ (x, Vdead)
269
270 #ifdef GC_MALLOC_CHECK
271
272 enum mem_type allocated_mem_type;
273
274 #endif /* GC_MALLOC_CHECK */
275
276 /* A node in the red-black tree describing allocated memory containing
277 Lisp data. Each such block is recorded with its start and end
278 address when it is allocated, and removed from the tree when it
279 is freed.
280
281 A red-black tree is a balanced binary tree with the following
282 properties:
283
284 1. Every node is either red or black.
285 2. Every leaf is black.
286 3. If a node is red, then both of its children are black.
287 4. Every simple path from a node to a descendant leaf contains
288 the same number of black nodes.
289 5. The root is always black.
290
291 When nodes are inserted into the tree, or deleted from the tree,
292 the tree is "fixed" so that these properties are always true.
293
294 A red-black tree with N internal nodes has height at most 2
295 log(N+1). Searches, insertions and deletions are done in O(log N).
296 Please see a text book about data structures for a detailed
297 description of red-black trees. Any book worth its salt should
298 describe them. */
299
300 struct mem_node
301 {
302 /* Children of this node. These pointers are never NULL. When there
303 is no child, the value is MEM_NIL, which points to a dummy node. */
304 struct mem_node *left, *right;
305
306 /* The parent of this node. In the root node, this is NULL. */
307 struct mem_node *parent;
308
309 /* Start and end of allocated region. */
310 void *start, *end;
311
312 /* Node color. */
313 enum {MEM_BLACK, MEM_RED} color;
314
315 /* Memory type. */
316 enum mem_type type;
317 };
318
319 /* Base address of stack. Set in main. */
320
321 Lisp_Object *stack_base;
322
323 /* Root of the tree describing allocated Lisp memory. */
324
325 static struct mem_node *mem_root;
326
327 /* Lowest and highest known address in the heap. */
328
329 static void *min_heap_address, *max_heap_address;
330
331 /* Sentinel node of the tree. */
332
333 static struct mem_node mem_z;
334 #define MEM_NIL &mem_z
335
336 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
337 static void lisp_free (void *);
338 static void mark_stack (void);
339 static bool live_vector_p (struct mem_node *, void *);
340 static bool live_buffer_p (struct mem_node *, void *);
341 static bool live_string_p (struct mem_node *, void *);
342 static bool live_cons_p (struct mem_node *, void *);
343 static bool live_symbol_p (struct mem_node *, void *);
344 static bool live_float_p (struct mem_node *, void *);
345 static bool live_misc_p (struct mem_node *, void *);
346 static void mark_maybe_object (Lisp_Object);
347 static void mark_memory (void *, void *);
348 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
349 static void mem_init (void);
350 static struct mem_node *mem_insert (void *, void *, enum mem_type);
351 static void mem_insert_fixup (struct mem_node *);
352 static void mem_rotate_left (struct mem_node *);
353 static void mem_rotate_right (struct mem_node *);
354 static void mem_delete (struct mem_node *);
355 static void mem_delete_fixup (struct mem_node *);
356 static inline struct mem_node *mem_find (void *);
357 #endif
358
359
360 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
361 static void check_gcpros (void);
362 #endif
363
364 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
365
366 #ifndef DEADP
367 # define DEADP(x) 0
368 #endif
369
370 /* Recording what needs to be marked for gc. */
371
372 struct gcpro *gcprolist;
373
374 /* Addresses of staticpro'd variables. Initialize it to a nonzero
375 value; otherwise some compilers put it into BSS. */
376
377 #define NSTATICS 0x650
378 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
379
380 /* Index of next unused slot in staticvec. */
381
382 static int staticidx;
383
384 static void *pure_alloc (size_t, int);
385
386
387 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
388 ALIGNMENT must be a power of 2. */
389
390 #define ALIGN(ptr, ALIGNMENT) \
391 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
392 & ~ ((ALIGNMENT) - 1)))
393
394
395 \f
396 /************************************************************************
397 Malloc
398 ************************************************************************/
399
400 /* Function malloc calls this if it finds we are near exhausting storage. */
401
402 void
403 malloc_warning (const char *str)
404 {
405 pending_malloc_warning = str;
406 }
407
408
409 /* Display an already-pending malloc warning. */
410
411 void
412 display_malloc_warning (void)
413 {
414 call3 (intern ("display-warning"),
415 intern ("alloc"),
416 build_string (pending_malloc_warning),
417 intern ("emergency"));
418 pending_malloc_warning = 0;
419 }
420 \f
421 /* Called if we can't allocate relocatable space for a buffer. */
422
423 void
424 buffer_memory_full (ptrdiff_t nbytes)
425 {
426 /* If buffers use the relocating allocator, no need to free
427 spare_memory, because we may have plenty of malloc space left
428 that we could get, and if we don't, the malloc that fails will
429 itself cause spare_memory to be freed. If buffers don't use the
430 relocating allocator, treat this like any other failing
431 malloc. */
432
433 #ifndef REL_ALLOC
434 memory_full (nbytes);
435 #endif
436
437 /* This used to call error, but if we've run out of memory, we could
438 get infinite recursion trying to build the string. */
439 xsignal (Qnil, Vmemory_signal_data);
440 }
441
442 /* A common multiple of the positive integers A and B. Ideally this
443 would be the least common multiple, but there's no way to do that
444 as a constant expression in C, so do the best that we can easily do. */
445 #define COMMON_MULTIPLE(a, b) \
446 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
447
448 #ifndef XMALLOC_OVERRUN_CHECK
449 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
450 #else
451
452 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
453 around each block.
454
455 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
456 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
457 block size in little-endian order. The trailer consists of
458 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
459
460 The header is used to detect whether this block has been allocated
461 through these functions, as some low-level libc functions may
462 bypass the malloc hooks. */
463
464 #define XMALLOC_OVERRUN_CHECK_SIZE 16
465 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
466 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
467
468 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
469 hold a size_t value and (2) the header size is a multiple of the
470 alignment that Emacs needs for C types and for USE_LSB_TAG. */
471 #define XMALLOC_BASE_ALIGNMENT \
472 alignof (union { long double d; intmax_t i; void *p; })
473
474 #if USE_LSB_TAG
475 # define XMALLOC_HEADER_ALIGNMENT \
476 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
477 #else
478 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
479 #endif
480 #define XMALLOC_OVERRUN_SIZE_SIZE \
481 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
482 + XMALLOC_HEADER_ALIGNMENT - 1) \
483 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
484 - XMALLOC_OVERRUN_CHECK_SIZE)
485
486 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\x9a', '\x9b', '\xae', '\xaf',
488 '\xbf', '\xbe', '\xce', '\xcf',
489 '\xea', '\xeb', '\xec', '\xed',
490 '\xdf', '\xde', '\x9c', '\x9d' };
491
492 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
493 { '\xaa', '\xab', '\xac', '\xad',
494 '\xba', '\xbb', '\xbc', '\xbd',
495 '\xca', '\xcb', '\xcc', '\xcd',
496 '\xda', '\xdb', '\xdc', '\xdd' };
497
498 /* Insert and extract the block size in the header. */
499
500 static void
501 xmalloc_put_size (unsigned char *ptr, size_t size)
502 {
503 int i;
504 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
505 {
506 *--ptr = size & ((1 << CHAR_BIT) - 1);
507 size >>= CHAR_BIT;
508 }
509 }
510
511 static size_t
512 xmalloc_get_size (unsigned char *ptr)
513 {
514 size_t size = 0;
515 int i;
516 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
517 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
518 {
519 size <<= CHAR_BIT;
520 size += *ptr++;
521 }
522 return size;
523 }
524
525
526 /* Like malloc, but wraps allocated block with header and trailer. */
527
528 static void *
529 overrun_check_malloc (size_t size)
530 {
531 register unsigned char *val;
532 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
533 emacs_abort ();
534
535 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
536 if (val)
537 {
538 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
539 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
540 xmalloc_put_size (val, size);
541 memcpy (val + size, xmalloc_overrun_check_trailer,
542 XMALLOC_OVERRUN_CHECK_SIZE);
543 }
544 return val;
545 }
546
547
548 /* Like realloc, but checks old block for overrun, and wraps new block
549 with header and trailer. */
550
551 static void *
552 overrun_check_realloc (void *block, size_t size)
553 {
554 register unsigned char *val = (unsigned char *) block;
555 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
556 emacs_abort ();
557
558 if (val
559 && memcmp (xmalloc_overrun_check_header,
560 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
561 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
562 {
563 size_t osize = xmalloc_get_size (val);
564 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
565 XMALLOC_OVERRUN_CHECK_SIZE))
566 emacs_abort ();
567 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
568 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
570 }
571
572 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
573
574 if (val)
575 {
576 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
577 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
578 xmalloc_put_size (val, size);
579 memcpy (val + size, xmalloc_overrun_check_trailer,
580 XMALLOC_OVERRUN_CHECK_SIZE);
581 }
582 return val;
583 }
584
585 /* Like free, but checks block for overrun. */
586
587 static void
588 overrun_check_free (void *block)
589 {
590 unsigned char *val = (unsigned char *) block;
591
592 if (val
593 && memcmp (xmalloc_overrun_check_header,
594 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
595 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
596 {
597 size_t osize = xmalloc_get_size (val);
598 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
599 XMALLOC_OVERRUN_CHECK_SIZE))
600 emacs_abort ();
601 #ifdef XMALLOC_CLEAR_FREE_MEMORY
602 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
603 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
604 #else
605 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
606 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
607 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
608 #endif
609 }
610
611 free (val);
612 }
613
614 #undef malloc
615 #undef realloc
616 #undef free
617 #define malloc overrun_check_malloc
618 #define realloc overrun_check_realloc
619 #define free overrun_check_free
620 #endif
621
622 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
623 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
624 If that variable is set, block input while in one of Emacs's memory
625 allocation functions. There should be no need for this debugging
626 option, since signal handlers do not allocate memory, but Emacs
627 formerly allocated memory in signal handlers and this compile-time
628 option remains as a way to help debug the issue should it rear its
629 ugly head again. */
630 #ifdef XMALLOC_BLOCK_INPUT_CHECK
631 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
632 static void
633 malloc_block_input (void)
634 {
635 if (block_input_in_memory_allocators)
636 block_input ();
637 }
638 static void
639 malloc_unblock_input (void)
640 {
641 if (block_input_in_memory_allocators)
642 unblock_input ();
643 }
644 # define MALLOC_BLOCK_INPUT malloc_block_input ()
645 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
646 #else
647 # define MALLOC_BLOCK_INPUT ((void) 0)
648 # define MALLOC_UNBLOCK_INPUT ((void) 0)
649 #endif
650
651 /* Like malloc but check for no memory and block interrupt input.. */
652
653 void *
654 xmalloc (size_t size)
655 {
656 void *val;
657
658 MALLOC_BLOCK_INPUT;
659 val = malloc (size);
660 MALLOC_UNBLOCK_INPUT;
661
662 if (!val && size)
663 memory_full (size);
664 return val;
665 }
666
667 /* Like the above, but zeroes out the memory just allocated. */
668
669 void *
670 xzalloc (size_t size)
671 {
672 void *val;
673
674 MALLOC_BLOCK_INPUT;
675 val = malloc (size);
676 MALLOC_UNBLOCK_INPUT;
677
678 if (!val && size)
679 memory_full (size);
680 memset (val, 0, size);
681 return val;
682 }
683
684 /* Like realloc but check for no memory and block interrupt input.. */
685
686 void *
687 xrealloc (void *block, size_t size)
688 {
689 void *val;
690
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
699
700 if (!val && size)
701 memory_full (size);
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (void *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because in practice the call in r_alloc_free seems to suffice. */
718 }
719
720
721 /* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
723 be safe. */
724 verify (INT_MAX <= PTRDIFF_MAX);
725
726
727 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
729
730 void *
731 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
732 {
733 eassert (0 <= nitems && 0 < item_size);
734 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
735 memory_full (SIZE_MAX);
736 return xmalloc (nitems * item_size);
737 }
738
739
740 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
742
743 void *
744 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
745 {
746 eassert (0 <= nitems && 0 < item_size);
747 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
748 memory_full (SIZE_MAX);
749 return xrealloc (pa, nitems * item_size);
750 }
751
752
753 /* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
758
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
761 infinity.
762
763 If PA is null, then allocate a new array instead of reallocating
764 the old one. Thus, to grow an array A without saving its old
765 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
766 &NITEMS, ...).
767
768 Block interrupt input as needed. If memory exhaustion occurs, set
769 *NITEMS to zero if PA is null, and signal an error (i.e., do not
770 return). */
771
772 void *
773 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
774 ptrdiff_t nitems_max, ptrdiff_t item_size)
775 {
776 /* The approximate size to use for initial small allocation
777 requests. This is the largest "small" request for the GNU C
778 library malloc. */
779 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
780
781 /* If the array is tiny, grow it to about (but no greater than)
782 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
783 ptrdiff_t n = *nitems;
784 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
785 ptrdiff_t half_again = n >> 1;
786 ptrdiff_t incr_estimate = max (tiny_max, half_again);
787
788 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
789 NITEMS_MAX, and what the C language can represent safely. */
790 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
791 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
792 ? nitems_max : C_language_max);
793 ptrdiff_t nitems_incr_max = n_max - n;
794 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
795
796 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
797 if (! pa)
798 *nitems = 0;
799 if (nitems_incr_max < incr)
800 memory_full (SIZE_MAX);
801 n += incr;
802 pa = xrealloc (pa, n * item_size);
803 *nitems = n;
804 return pa;
805 }
806
807
808 /* Like strdup, but uses xmalloc. */
809
810 char *
811 xstrdup (const char *s)
812 {
813 size_t len = strlen (s) + 1;
814 char *p = xmalloc (len);
815 memcpy (p, s, len);
816 return p;
817 }
818
819
820 /* Unwind for SAFE_ALLOCA */
821
822 Lisp_Object
823 safe_alloca_unwind (Lisp_Object arg)
824 {
825 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
826
827 p->dogc = 0;
828 xfree (p->pointer);
829 p->pointer = 0;
830 free_misc (arg);
831 return Qnil;
832 }
833
834 /* Return a newly allocated memory block of SIZE bytes, remembering
835 to free it when unwinding. */
836 void *
837 record_xmalloc (size_t size)
838 {
839 void *p = xmalloc (size);
840 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
841 return p;
842 }
843
844
845 /* Like malloc but used for allocating Lisp data. NBYTES is the
846 number of bytes to allocate, TYPE describes the intended use of the
847 allocated memory block (for strings, for conses, ...). */
848
849 #if ! USE_LSB_TAG
850 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
851 #endif
852
853 static void *
854 lisp_malloc (size_t nbytes, enum mem_type type)
855 {
856 register void *val;
857
858 MALLOC_BLOCK_INPUT;
859
860 #ifdef GC_MALLOC_CHECK
861 allocated_mem_type = type;
862 #endif
863
864 val = malloc (nbytes);
865
866 #if ! USE_LSB_TAG
867 /* If the memory just allocated cannot be addressed thru a Lisp
868 object's pointer, and it needs to be,
869 that's equivalent to running out of memory. */
870 if (val && type != MEM_TYPE_NON_LISP)
871 {
872 Lisp_Object tem;
873 XSETCONS (tem, (char *) val + nbytes - 1);
874 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
875 {
876 lisp_malloc_loser = val;
877 free (val);
878 val = 0;
879 }
880 }
881 #endif
882
883 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
884 if (val && type != MEM_TYPE_NON_LISP)
885 mem_insert (val, (char *) val + nbytes, type);
886 #endif
887
888 MALLOC_UNBLOCK_INPUT;
889 if (!val && nbytes)
890 memory_full (nbytes);
891 return val;
892 }
893
894 /* Free BLOCK. This must be called to free memory allocated with a
895 call to lisp_malloc. */
896
897 static void
898 lisp_free (void *block)
899 {
900 MALLOC_BLOCK_INPUT;
901 free (block);
902 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
903 mem_delete (mem_find (block));
904 #endif
905 MALLOC_UNBLOCK_INPUT;
906 }
907
908 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
909
910 /* The entry point is lisp_align_malloc which returns blocks of at most
911 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
912
913 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914 #define USE_POSIX_MEMALIGN 1
915 #endif
916
917 /* BLOCK_ALIGN has to be a power of 2. */
918 #define BLOCK_ALIGN (1 << 10)
919
920 /* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
930 #define BLOCK_PADDING 0
931 #define BLOCK_BYTES \
932 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
933
934 /* Internal data structures and constants. */
935
936 #define ABLOCKS_SIZE 16
937
938 /* An aligned block of memory. */
939 struct ablock
940 {
941 union
942 {
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
958 #if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
960 #endif
961 };
962
963 /* A bunch of consecutive aligned blocks. */
964 struct ablocks
965 {
966 struct ablock blocks[ABLOCKS_SIZE];
967 };
968
969 /* Size of the block requested from malloc or posix_memalign. */
970 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971
972 #define ABLOCK_ABASE(block) \
973 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
976
977 /* Virtual `busy' field. */
978 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979
980 /* Pointer to the (not necessarily aligned) malloc block. */
981 #ifdef USE_POSIX_MEMALIGN
982 #define ABLOCKS_BASE(abase) (abase)
983 #else
984 #define ABLOCKS_BASE(abase) \
985 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
986 #endif
987
988 /* The list of free ablock. */
989 static struct ablock *free_ablock;
990
991 /* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
994 static void *
995 lisp_align_malloc (size_t nbytes, enum mem_type type)
996 {
997 void *base, *val;
998 struct ablocks *abase;
999
1000 eassert (nbytes <= BLOCK_BYTES);
1001
1002 MALLOC_BLOCK_INPUT;
1003
1004 #ifdef GC_MALLOC_CHECK
1005 allocated_mem_type = type;
1006 #endif
1007
1008 if (!free_ablock)
1009 {
1010 int i;
1011 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1012
1013 #ifdef DOUG_LEA_MALLOC
1014 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1015 because mapped region contents are not preserved in
1016 a dumped Emacs. */
1017 mallopt (M_MMAP_MAX, 0);
1018 #endif
1019
1020 #ifdef USE_POSIX_MEMALIGN
1021 {
1022 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1023 if (err)
1024 base = NULL;
1025 abase = base;
1026 }
1027 #else
1028 base = malloc (ABLOCKS_BYTES);
1029 abase = ALIGN (base, BLOCK_ALIGN);
1030 #endif
1031
1032 if (base == 0)
1033 {
1034 MALLOC_UNBLOCK_INPUT;
1035 memory_full (ABLOCKS_BYTES);
1036 }
1037
1038 aligned = (base == abase);
1039 if (!aligned)
1040 ((void**)abase)[-1] = base;
1041
1042 #ifdef DOUG_LEA_MALLOC
1043 /* Back to a reasonable maximum of mmap'ed areas. */
1044 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1045 #endif
1046
1047 #if ! USE_LSB_TAG
1048 /* If the memory just allocated cannot be addressed thru a Lisp
1049 object's pointer, and it needs to be, that's equivalent to
1050 running out of memory. */
1051 if (type != MEM_TYPE_NON_LISP)
1052 {
1053 Lisp_Object tem;
1054 char *end = (char *) base + ABLOCKS_BYTES - 1;
1055 XSETCONS (tem, end);
1056 if ((char *) XCONS (tem) != end)
1057 {
1058 lisp_malloc_loser = base;
1059 free (base);
1060 MALLOC_UNBLOCK_INPUT;
1061 memory_full (SIZE_MAX);
1062 }
1063 }
1064 #endif
1065
1066 /* Initialize the blocks and put them on the free list.
1067 If `base' was not properly aligned, we can't use the last block. */
1068 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1069 {
1070 abase->blocks[i].abase = abase;
1071 abase->blocks[i].x.next_free = free_ablock;
1072 free_ablock = &abase->blocks[i];
1073 }
1074 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1075
1076 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1077 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1078 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1079 eassert (ABLOCKS_BASE (abase) == base);
1080 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1081 }
1082
1083 abase = ABLOCK_ABASE (free_ablock);
1084 ABLOCKS_BUSY (abase) =
1085 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1088
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 if (type != MEM_TYPE_NON_LISP)
1091 mem_insert (val, (char *) val + nbytes, type);
1092 #endif
1093
1094 MALLOC_UNBLOCK_INPUT;
1095
1096 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1097 return val;
1098 }
1099
1100 static void
1101 lisp_align_free (void *block)
1102 {
1103 struct ablock *ablock = block;
1104 struct ablocks *abase = ABLOCK_ABASE (ablock);
1105
1106 MALLOC_BLOCK_INPUT;
1107 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1108 mem_delete (mem_find (block));
1109 #endif
1110 /* Put on free list. */
1111 ablock->x.next_free = free_ablock;
1112 free_ablock = ablock;
1113 /* Update busy count. */
1114 ABLOCKS_BUSY (abase)
1115 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1116
1117 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1118 { /* All the blocks are free. */
1119 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1120 struct ablock **tem = &free_ablock;
1121 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1122
1123 while (*tem)
1124 {
1125 if (*tem >= (struct ablock *) abase && *tem < atop)
1126 {
1127 i++;
1128 *tem = (*tem)->x.next_free;
1129 }
1130 else
1131 tem = &(*tem)->x.next_free;
1132 }
1133 eassert ((aligned & 1) == aligned);
1134 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1135 #ifdef USE_POSIX_MEMALIGN
1136 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1137 #endif
1138 free (ABLOCKS_BASE (abase));
1139 }
1140 MALLOC_UNBLOCK_INPUT;
1141 }
1142
1143 \f
1144 /***********************************************************************
1145 Interval Allocation
1146 ***********************************************************************/
1147
1148 /* Number of intervals allocated in an interval_block structure.
1149 The 1020 is 1024 minus malloc overhead. */
1150
1151 #define INTERVAL_BLOCK_SIZE \
1152 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1153
1154 /* Intervals are allocated in chunks in form of an interval_block
1155 structure. */
1156
1157 struct interval_block
1158 {
1159 /* Place `intervals' first, to preserve alignment. */
1160 struct interval intervals[INTERVAL_BLOCK_SIZE];
1161 struct interval_block *next;
1162 };
1163
1164 /* Current interval block. Its `next' pointer points to older
1165 blocks. */
1166
1167 static struct interval_block *interval_block;
1168
1169 /* Index in interval_block above of the next unused interval
1170 structure. */
1171
1172 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1173
1174 /* Number of free and live intervals. */
1175
1176 static EMACS_INT total_free_intervals, total_intervals;
1177
1178 /* List of free intervals. */
1179
1180 static INTERVAL interval_free_list;
1181
1182 /* Return a new interval. */
1183
1184 INTERVAL
1185 make_interval (void)
1186 {
1187 INTERVAL val;
1188
1189 MALLOC_BLOCK_INPUT;
1190
1191 if (interval_free_list)
1192 {
1193 val = interval_free_list;
1194 interval_free_list = INTERVAL_PARENT (interval_free_list);
1195 }
1196 else
1197 {
1198 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1199 {
1200 struct interval_block *newi
1201 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1202
1203 newi->next = interval_block;
1204 interval_block = newi;
1205 interval_block_index = 0;
1206 total_free_intervals += INTERVAL_BLOCK_SIZE;
1207 }
1208 val = &interval_block->intervals[interval_block_index++];
1209 }
1210
1211 MALLOC_UNBLOCK_INPUT;
1212
1213 consing_since_gc += sizeof (struct interval);
1214 intervals_consed++;
1215 total_free_intervals--;
1216 RESET_INTERVAL (val);
1217 val->gcmarkbit = 0;
1218 return val;
1219 }
1220
1221
1222 /* Mark Lisp objects in interval I. */
1223
1224 static void
1225 mark_interval (register INTERVAL i, Lisp_Object dummy)
1226 {
1227 /* Intervals should never be shared. So, if extra internal checking is
1228 enabled, GC aborts if it seems to have visited an interval twice. */
1229 eassert (!i->gcmarkbit);
1230 i->gcmarkbit = 1;
1231 mark_object (i->plist);
1232 }
1233
1234 /* Mark the interval tree rooted in I. */
1235
1236 #define MARK_INTERVAL_TREE(i) \
1237 do { \
1238 if (i && !i->gcmarkbit) \
1239 traverse_intervals_noorder (i, mark_interval, Qnil); \
1240 } while (0)
1241
1242 /***********************************************************************
1243 String Allocation
1244 ***********************************************************************/
1245
1246 /* Lisp_Strings are allocated in string_block structures. When a new
1247 string_block is allocated, all the Lisp_Strings it contains are
1248 added to a free-list string_free_list. When a new Lisp_String is
1249 needed, it is taken from that list. During the sweep phase of GC,
1250 string_blocks that are entirely free are freed, except two which
1251 we keep.
1252
1253 String data is allocated from sblock structures. Strings larger
1254 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1255 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1256
1257 Sblocks consist internally of sdata structures, one for each
1258 Lisp_String. The sdata structure points to the Lisp_String it
1259 belongs to. The Lisp_String points back to the `u.data' member of
1260 its sdata structure.
1261
1262 When a Lisp_String is freed during GC, it is put back on
1263 string_free_list, and its `data' member and its sdata's `string'
1264 pointer is set to null. The size of the string is recorded in the
1265 `u.nbytes' member of the sdata. So, sdata structures that are no
1266 longer used, can be easily recognized, and it's easy to compact the
1267 sblocks of small strings which we do in compact_small_strings. */
1268
1269 /* Size in bytes of an sblock structure used for small strings. This
1270 is 8192 minus malloc overhead. */
1271
1272 #define SBLOCK_SIZE 8188
1273
1274 /* Strings larger than this are considered large strings. String data
1275 for large strings is allocated from individual sblocks. */
1276
1277 #define LARGE_STRING_BYTES 1024
1278
1279 /* Structure describing string memory sub-allocated from an sblock.
1280 This is where the contents of Lisp strings are stored. */
1281
1282 struct sdata
1283 {
1284 /* Back-pointer to the string this sdata belongs to. If null, this
1285 structure is free, and the NBYTES member of the union below
1286 contains the string's byte size (the same value that STRING_BYTES
1287 would return if STRING were non-null). If non-null, STRING_BYTES
1288 (STRING) is the size of the data, and DATA contains the string's
1289 contents. */
1290 struct Lisp_String *string;
1291
1292 #ifdef GC_CHECK_STRING_BYTES
1293
1294 ptrdiff_t nbytes;
1295 unsigned char data[1];
1296
1297 #define SDATA_NBYTES(S) (S)->nbytes
1298 #define SDATA_DATA(S) (S)->data
1299 #define SDATA_SELECTOR(member) member
1300
1301 #else /* not GC_CHECK_STRING_BYTES */
1302
1303 union
1304 {
1305 /* When STRING is non-null. */
1306 unsigned char data[1];
1307
1308 /* When STRING is null. */
1309 ptrdiff_t nbytes;
1310 } u;
1311
1312 #define SDATA_NBYTES(S) (S)->u.nbytes
1313 #define SDATA_DATA(S) (S)->u.data
1314 #define SDATA_SELECTOR(member) u.member
1315
1316 #endif /* not GC_CHECK_STRING_BYTES */
1317
1318 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures. */
1367
1368 static struct string_block *string_blocks;
1369
1370 /* Free-list of Lisp_Strings. */
1371
1372 static struct Lisp_String *string_free_list;
1373
1374 /* Number of live and free Lisp_Strings. */
1375
1376 static EMACS_INT total_strings, total_free_strings;
1377
1378 /* Number of bytes used by live strings. */
1379
1380 static EMACS_INT total_string_bytes;
1381
1382 /* Given a pointer to a Lisp_String S which is on the free-list
1383 string_free_list, return a pointer to its successor in the
1384 free-list. */
1385
1386 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1387
1388 /* Return a pointer to the sdata structure belonging to Lisp string S.
1389 S must be live, i.e. S->data must not be null. S->data is actually
1390 a pointer to the `u.data' member of its sdata structure; the
1391 structure starts at a constant offset in front of that. */
1392
1393 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1394
1395
1396 #ifdef GC_CHECK_STRING_OVERRUN
1397
1398 /* We check for overrun in string data blocks by appending a small
1399 "cookie" after each allocated string data block, and check for the
1400 presence of this cookie during GC. */
1401
1402 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1403 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1404 { '\xde', '\xad', '\xbe', '\xef' };
1405
1406 #else
1407 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1408 #endif
1409
1410 /* Value is the size of an sdata structure large enough to hold NBYTES
1411 bytes of string data. The value returned includes a terminating
1412 NUL byte, the size of the sdata structure, and padding. */
1413
1414 #ifdef GC_CHECK_STRING_BYTES
1415
1416 #define SDATA_SIZE(NBYTES) \
1417 ((SDATA_DATA_OFFSET \
1418 + (NBYTES) + 1 \
1419 + sizeof (ptrdiff_t) - 1) \
1420 & ~(sizeof (ptrdiff_t) - 1))
1421
1422 #else /* not GC_CHECK_STRING_BYTES */
1423
1424 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1425 less than the size of that member. The 'max' is not needed when
1426 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1427 alignment code reserves enough space. */
1428
1429 #define SDATA_SIZE(NBYTES) \
1430 ((SDATA_DATA_OFFSET \
1431 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1432 ? NBYTES \
1433 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1434 + 1 \
1435 + sizeof (ptrdiff_t) - 1) \
1436 & ~(sizeof (ptrdiff_t) - 1))
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 /* Extra bytes to allocate for each string. */
1441
1442 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1443
1444 /* Exact bound on the number of bytes in a string, not counting the
1445 terminating null. A string cannot contain more bytes than
1446 STRING_BYTES_BOUND, nor can it be so long that the size_t
1447 arithmetic in allocate_string_data would overflow while it is
1448 calculating a value to be passed to malloc. */
1449 static ptrdiff_t const STRING_BYTES_MAX =
1450 min (STRING_BYTES_BOUND,
1451 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1452 - GC_STRING_EXTRA
1453 - offsetof (struct sblock, first_data)
1454 - SDATA_DATA_OFFSET)
1455 & ~(sizeof (EMACS_INT) - 1)));
1456
1457 /* Initialize string allocation. Called from init_alloc_once. */
1458
1459 static void
1460 init_strings (void)
1461 {
1462 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1463 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1464 }
1465
1466
1467 #ifdef GC_CHECK_STRING_BYTES
1468
1469 static int check_string_bytes_count;
1470
1471 /* Like STRING_BYTES, but with debugging check. Can be
1472 called during GC, so pay attention to the mark bit. */
1473
1474 ptrdiff_t
1475 string_bytes (struct Lisp_String *s)
1476 {
1477 ptrdiff_t nbytes =
1478 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1479
1480 if (!PURE_POINTER_P (s)
1481 && s->data
1482 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1483 emacs_abort ();
1484 return nbytes;
1485 }
1486
1487 /* Check validity of Lisp strings' string_bytes member in B. */
1488
1489 static void
1490 check_sblock (struct sblock *b)
1491 {
1492 struct sdata *from, *end, *from_end;
1493
1494 end = b->next_free;
1495
1496 for (from = &b->first_data; from < end; from = from_end)
1497 {
1498 /* Compute the next FROM here because copying below may
1499 overwrite data we need to compute it. */
1500 ptrdiff_t nbytes;
1501
1502 /* Check that the string size recorded in the string is the
1503 same as the one recorded in the sdata structure. */
1504 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1505 : SDATA_NBYTES (from));
1506 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1507 }
1508 }
1509
1510
1511 /* Check validity of Lisp strings' string_bytes member. ALL_P
1512 means check all strings, otherwise check only most
1513 recently allocated strings. Used for hunting a bug. */
1514
1515 static void
1516 check_string_bytes (bool all_p)
1517 {
1518 if (all_p)
1519 {
1520 struct sblock *b;
1521
1522 for (b = large_sblocks; b; b = b->next)
1523 {
1524 struct Lisp_String *s = b->first_data.string;
1525 if (s)
1526 string_bytes (s);
1527 }
1528
1529 for (b = oldest_sblock; b; b = b->next)
1530 check_sblock (b);
1531 }
1532 else if (current_sblock)
1533 check_sblock (current_sblock);
1534 }
1535
1536 #else /* not GC_CHECK_STRING_BYTES */
1537
1538 #define check_string_bytes(all) ((void) 0)
1539
1540 #endif /* GC_CHECK_STRING_BYTES */
1541
1542 #ifdef GC_CHECK_STRING_FREE_LIST
1543
1544 /* Walk through the string free list looking for bogus next pointers.
1545 This may catch buffer overrun from a previous string. */
1546
1547 static void
1548 check_string_free_list (void)
1549 {
1550 struct Lisp_String *s;
1551
1552 /* Pop a Lisp_String off the free-list. */
1553 s = string_free_list;
1554 while (s != NULL)
1555 {
1556 if ((uintptr_t) s < 1024)
1557 emacs_abort ();
1558 s = NEXT_FREE_LISP_STRING (s);
1559 }
1560 }
1561 #else
1562 #define check_string_free_list()
1563 #endif
1564
1565 /* Return a new Lisp_String. */
1566
1567 static struct Lisp_String *
1568 allocate_string (void)
1569 {
1570 struct Lisp_String *s;
1571
1572 MALLOC_BLOCK_INPUT;
1573
1574 /* If the free-list is empty, allocate a new string_block, and
1575 add all the Lisp_Strings in it to the free-list. */
1576 if (string_free_list == NULL)
1577 {
1578 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1579 int i;
1580
1581 b->next = string_blocks;
1582 string_blocks = b;
1583
1584 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1585 {
1586 s = b->strings + i;
1587 /* Every string on a free list should have NULL data pointer. */
1588 s->data = NULL;
1589 NEXT_FREE_LISP_STRING (s) = string_free_list;
1590 string_free_list = s;
1591 }
1592
1593 total_free_strings += STRING_BLOCK_SIZE;
1594 }
1595
1596 check_string_free_list ();
1597
1598 /* Pop a Lisp_String off the free-list. */
1599 s = string_free_list;
1600 string_free_list = NEXT_FREE_LISP_STRING (s);
1601
1602 MALLOC_UNBLOCK_INPUT;
1603
1604 --total_free_strings;
1605 ++total_strings;
1606 ++strings_consed;
1607 consing_since_gc += sizeof *s;
1608
1609 #ifdef GC_CHECK_STRING_BYTES
1610 if (!noninteractive)
1611 {
1612 if (++check_string_bytes_count == 200)
1613 {
1614 check_string_bytes_count = 0;
1615 check_string_bytes (1);
1616 }
1617 else
1618 check_string_bytes (0);
1619 }
1620 #endif /* GC_CHECK_STRING_BYTES */
1621
1622 return s;
1623 }
1624
1625
1626 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1627 plus a NUL byte at the end. Allocate an sdata structure for S, and
1628 set S->data to its `u.data' member. Store a NUL byte at the end of
1629 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1630 S->data if it was initially non-null. */
1631
1632 void
1633 allocate_string_data (struct Lisp_String *s,
1634 EMACS_INT nchars, EMACS_INT nbytes)
1635 {
1636 struct sdata *data, *old_data;
1637 struct sblock *b;
1638 ptrdiff_t needed, old_nbytes;
1639
1640 if (STRING_BYTES_MAX < nbytes)
1641 string_overflow ();
1642
1643 /* Determine the number of bytes needed to store NBYTES bytes
1644 of string data. */
1645 needed = SDATA_SIZE (nbytes);
1646 if (s->data)
1647 {
1648 old_data = SDATA_OF_STRING (s);
1649 old_nbytes = STRING_BYTES (s);
1650 }
1651 else
1652 old_data = NULL;
1653
1654 MALLOC_BLOCK_INPUT;
1655
1656 if (nbytes > LARGE_STRING_BYTES)
1657 {
1658 size_t size = offsetof (struct sblock, first_data) + needed;
1659
1660 #ifdef DOUG_LEA_MALLOC
1661 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1662 because mapped region contents are not preserved in
1663 a dumped Emacs.
1664
1665 In case you think of allowing it in a dumped Emacs at the
1666 cost of not being able to re-dump, there's another reason:
1667 mmap'ed data typically have an address towards the top of the
1668 address space, which won't fit into an EMACS_INT (at least on
1669 32-bit systems with the current tagging scheme). --fx */
1670 mallopt (M_MMAP_MAX, 0);
1671 #endif
1672
1673 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1674
1675 #ifdef DOUG_LEA_MALLOC
1676 /* Back to a reasonable maximum of mmap'ed areas. */
1677 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1678 #endif
1679
1680 b->next_free = &b->first_data;
1681 b->first_data.string = NULL;
1682 b->next = large_sblocks;
1683 large_sblocks = b;
1684 }
1685 else if (current_sblock == NULL
1686 || (((char *) current_sblock + SBLOCK_SIZE
1687 - (char *) current_sblock->next_free)
1688 < (needed + GC_STRING_EXTRA)))
1689 {
1690 /* Not enough room in the current sblock. */
1691 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1692 b->next_free = &b->first_data;
1693 b->first_data.string = NULL;
1694 b->next = NULL;
1695
1696 if (current_sblock)
1697 current_sblock->next = b;
1698 else
1699 oldest_sblock = b;
1700 current_sblock = b;
1701 }
1702 else
1703 b = current_sblock;
1704
1705 data = b->next_free;
1706 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1707
1708 MALLOC_UNBLOCK_INPUT;
1709
1710 data->string = s;
1711 s->data = SDATA_DATA (data);
1712 #ifdef GC_CHECK_STRING_BYTES
1713 SDATA_NBYTES (data) = nbytes;
1714 #endif
1715 s->size = nchars;
1716 s->size_byte = nbytes;
1717 s->data[nbytes] = '\0';
1718 #ifdef GC_CHECK_STRING_OVERRUN
1719 memcpy ((char *) data + needed, string_overrun_cookie,
1720 GC_STRING_OVERRUN_COOKIE_SIZE);
1721 #endif
1722
1723 /* Note that Faset may call to this function when S has already data
1724 assigned. In this case, mark data as free by setting it's string
1725 back-pointer to null, and record the size of the data in it. */
1726 if (old_data)
1727 {
1728 SDATA_NBYTES (old_data) = old_nbytes;
1729 old_data->string = NULL;
1730 }
1731
1732 consing_since_gc += needed;
1733 }
1734
1735
1736 /* Sweep and compact strings. */
1737
1738 static void
1739 sweep_strings (void)
1740 {
1741 struct string_block *b, *next;
1742 struct string_block *live_blocks = NULL;
1743
1744 string_free_list = NULL;
1745 total_strings = total_free_strings = 0;
1746 total_string_bytes = 0;
1747
1748 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1749 for (b = string_blocks; b; b = next)
1750 {
1751 int i, nfree = 0;
1752 struct Lisp_String *free_list_before = string_free_list;
1753
1754 next = b->next;
1755
1756 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1757 {
1758 struct Lisp_String *s = b->strings + i;
1759
1760 if (s->data)
1761 {
1762 /* String was not on free-list before. */
1763 if (STRING_MARKED_P (s))
1764 {
1765 /* String is live; unmark it and its intervals. */
1766 UNMARK_STRING (s);
1767
1768 /* Do not use string_(set|get)_intervals here. */
1769 s->intervals = balance_intervals (s->intervals);
1770
1771 ++total_strings;
1772 total_string_bytes += STRING_BYTES (s);
1773 }
1774 else
1775 {
1776 /* String is dead. Put it on the free-list. */
1777 struct sdata *data = SDATA_OF_STRING (s);
1778
1779 /* Save the size of S in its sdata so that we know
1780 how large that is. Reset the sdata's string
1781 back-pointer so that we know it's free. */
1782 #ifdef GC_CHECK_STRING_BYTES
1783 if (string_bytes (s) != SDATA_NBYTES (data))
1784 emacs_abort ();
1785 #else
1786 data->u.nbytes = STRING_BYTES (s);
1787 #endif
1788 data->string = NULL;
1789
1790 /* Reset the strings's `data' member so that we
1791 know it's free. */
1792 s->data = NULL;
1793
1794 /* Put the string on the free-list. */
1795 NEXT_FREE_LISP_STRING (s) = string_free_list;
1796 string_free_list = s;
1797 ++nfree;
1798 }
1799 }
1800 else
1801 {
1802 /* S was on the free-list before. Put it there again. */
1803 NEXT_FREE_LISP_STRING (s) = string_free_list;
1804 string_free_list = s;
1805 ++nfree;
1806 }
1807 }
1808
1809 /* Free blocks that contain free Lisp_Strings only, except
1810 the first two of them. */
1811 if (nfree == STRING_BLOCK_SIZE
1812 && total_free_strings > STRING_BLOCK_SIZE)
1813 {
1814 lisp_free (b);
1815 string_free_list = free_list_before;
1816 }
1817 else
1818 {
1819 total_free_strings += nfree;
1820 b->next = live_blocks;
1821 live_blocks = b;
1822 }
1823 }
1824
1825 check_string_free_list ();
1826
1827 string_blocks = live_blocks;
1828 free_large_strings ();
1829 compact_small_strings ();
1830
1831 check_string_free_list ();
1832 }
1833
1834
1835 /* Free dead large strings. */
1836
1837 static void
1838 free_large_strings (void)
1839 {
1840 struct sblock *b, *next;
1841 struct sblock *live_blocks = NULL;
1842
1843 for (b = large_sblocks; b; b = next)
1844 {
1845 next = b->next;
1846
1847 if (b->first_data.string == NULL)
1848 lisp_free (b);
1849 else
1850 {
1851 b->next = live_blocks;
1852 live_blocks = b;
1853 }
1854 }
1855
1856 large_sblocks = live_blocks;
1857 }
1858
1859
1860 /* Compact data of small strings. Free sblocks that don't contain
1861 data of live strings after compaction. */
1862
1863 static void
1864 compact_small_strings (void)
1865 {
1866 struct sblock *b, *tb, *next;
1867 struct sdata *from, *to, *end, *tb_end;
1868 struct sdata *to_end, *from_end;
1869
1870 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1871 to, and TB_END is the end of TB. */
1872 tb = oldest_sblock;
1873 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1874 to = &tb->first_data;
1875
1876 /* Step through the blocks from the oldest to the youngest. We
1877 expect that old blocks will stabilize over time, so that less
1878 copying will happen this way. */
1879 for (b = oldest_sblock; b; b = b->next)
1880 {
1881 end = b->next_free;
1882 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1883
1884 for (from = &b->first_data; from < end; from = from_end)
1885 {
1886 /* Compute the next FROM here because copying below may
1887 overwrite data we need to compute it. */
1888 ptrdiff_t nbytes;
1889 struct Lisp_String *s = from->string;
1890
1891 #ifdef GC_CHECK_STRING_BYTES
1892 /* Check that the string size recorded in the string is the
1893 same as the one recorded in the sdata structure. */
1894 if (s && string_bytes (s) != SDATA_NBYTES (from))
1895 emacs_abort ();
1896 #endif /* GC_CHECK_STRING_BYTES */
1897
1898 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1899 eassert (nbytes <= LARGE_STRING_BYTES);
1900
1901 nbytes = SDATA_SIZE (nbytes);
1902 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1903
1904 #ifdef GC_CHECK_STRING_OVERRUN
1905 if (memcmp (string_overrun_cookie,
1906 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1907 GC_STRING_OVERRUN_COOKIE_SIZE))
1908 emacs_abort ();
1909 #endif
1910
1911 /* Non-NULL S means it's alive. Copy its data. */
1912 if (s)
1913 {
1914 /* If TB is full, proceed with the next sblock. */
1915 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1916 if (to_end > tb_end)
1917 {
1918 tb->next_free = to;
1919 tb = tb->next;
1920 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1921 to = &tb->first_data;
1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1923 }
1924
1925 /* Copy, and update the string's `data' pointer. */
1926 if (from != to)
1927 {
1928 eassert (tb != b || to < from);
1929 memmove (to, from, nbytes + GC_STRING_EXTRA);
1930 to->string->data = SDATA_DATA (to);
1931 }
1932
1933 /* Advance past the sdata we copied to. */
1934 to = to_end;
1935 }
1936 }
1937 }
1938
1939 /* The rest of the sblocks following TB don't contain live data, so
1940 we can free them. */
1941 for (b = tb->next; b; b = next)
1942 {
1943 next = b->next;
1944 lisp_free (b);
1945 }
1946
1947 tb->next_free = to;
1948 tb->next = NULL;
1949 current_sblock = tb;
1950 }
1951
1952 void
1953 string_overflow (void)
1954 {
1955 error ("Maximum string size exceeded");
1956 }
1957
1958 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1959 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1960 LENGTH must be an integer.
1961 INIT must be an integer that represents a character. */)
1962 (Lisp_Object length, Lisp_Object init)
1963 {
1964 register Lisp_Object val;
1965 register unsigned char *p, *end;
1966 int c;
1967 EMACS_INT nbytes;
1968
1969 CHECK_NATNUM (length);
1970 CHECK_CHARACTER (init);
1971
1972 c = XFASTINT (init);
1973 if (ASCII_CHAR_P (c))
1974 {
1975 nbytes = XINT (length);
1976 val = make_uninit_string (nbytes);
1977 p = SDATA (val);
1978 end = p + SCHARS (val);
1979 while (p != end)
1980 *p++ = c;
1981 }
1982 else
1983 {
1984 unsigned char str[MAX_MULTIBYTE_LENGTH];
1985 int len = CHAR_STRING (c, str);
1986 EMACS_INT string_len = XINT (length);
1987
1988 if (string_len > STRING_BYTES_MAX / len)
1989 string_overflow ();
1990 nbytes = len * string_len;
1991 val = make_uninit_multibyte_string (string_len, nbytes);
1992 p = SDATA (val);
1993 end = p + nbytes;
1994 while (p != end)
1995 {
1996 memcpy (p, str, len);
1997 p += len;
1998 }
1999 }
2000
2001 *p = 0;
2002 return val;
2003 }
2004
2005
2006 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2007 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2008 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2009 (Lisp_Object length, Lisp_Object init)
2010 {
2011 register Lisp_Object val;
2012 struct Lisp_Bool_Vector *p;
2013 ptrdiff_t length_in_chars;
2014 EMACS_INT length_in_elts;
2015 int bits_per_value;
2016 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2017 / word_size);
2018
2019 CHECK_NATNUM (length);
2020
2021 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2022
2023 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2024
2025 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2026
2027 /* No Lisp_Object to trace in there. */
2028 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2029
2030 p = XBOOL_VECTOR (val);
2031 p->size = XFASTINT (length);
2032
2033 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2034 / BOOL_VECTOR_BITS_PER_CHAR);
2035 if (length_in_chars)
2036 {
2037 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2038
2039 /* Clear any extraneous bits in the last byte. */
2040 p->data[length_in_chars - 1]
2041 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2042 }
2043
2044 return val;
2045 }
2046
2047
2048 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2049 of characters from the contents. This string may be unibyte or
2050 multibyte, depending on the contents. */
2051
2052 Lisp_Object
2053 make_string (const char *contents, ptrdiff_t nbytes)
2054 {
2055 register Lisp_Object val;
2056 ptrdiff_t nchars, multibyte_nbytes;
2057
2058 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2059 &nchars, &multibyte_nbytes);
2060 if (nbytes == nchars || nbytes != multibyte_nbytes)
2061 /* CONTENTS contains no multibyte sequences or contains an invalid
2062 multibyte sequence. We must make unibyte string. */
2063 val = make_unibyte_string (contents, nbytes);
2064 else
2065 val = make_multibyte_string (contents, nchars, nbytes);
2066 return val;
2067 }
2068
2069
2070 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2071
2072 Lisp_Object
2073 make_unibyte_string (const char *contents, ptrdiff_t length)
2074 {
2075 register Lisp_Object val;
2076 val = make_uninit_string (length);
2077 memcpy (SDATA (val), contents, length);
2078 return val;
2079 }
2080
2081
2082 /* Make a multibyte string from NCHARS characters occupying NBYTES
2083 bytes at CONTENTS. */
2084
2085 Lisp_Object
2086 make_multibyte_string (const char *contents,
2087 ptrdiff_t nchars, ptrdiff_t nbytes)
2088 {
2089 register Lisp_Object val;
2090 val = make_uninit_multibyte_string (nchars, nbytes);
2091 memcpy (SDATA (val), contents, nbytes);
2092 return val;
2093 }
2094
2095
2096 /* Make a string from NCHARS characters occupying NBYTES bytes at
2097 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2098
2099 Lisp_Object
2100 make_string_from_bytes (const char *contents,
2101 ptrdiff_t nchars, ptrdiff_t nbytes)
2102 {
2103 register Lisp_Object val;
2104 val = make_uninit_multibyte_string (nchars, nbytes);
2105 memcpy (SDATA (val), contents, nbytes);
2106 if (SBYTES (val) == SCHARS (val))
2107 STRING_SET_UNIBYTE (val);
2108 return val;
2109 }
2110
2111
2112 /* Make a string from NCHARS characters occupying NBYTES bytes at
2113 CONTENTS. The argument MULTIBYTE controls whether to label the
2114 string as multibyte. If NCHARS is negative, it counts the number of
2115 characters by itself. */
2116
2117 Lisp_Object
2118 make_specified_string (const char *contents,
2119 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2120 {
2121 Lisp_Object val;
2122
2123 if (nchars < 0)
2124 {
2125 if (multibyte)
2126 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2127 nbytes);
2128 else
2129 nchars = nbytes;
2130 }
2131 val = make_uninit_multibyte_string (nchars, nbytes);
2132 memcpy (SDATA (val), contents, nbytes);
2133 if (!multibyte)
2134 STRING_SET_UNIBYTE (val);
2135 return val;
2136 }
2137
2138
2139 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2140 occupying LENGTH bytes. */
2141
2142 Lisp_Object
2143 make_uninit_string (EMACS_INT length)
2144 {
2145 Lisp_Object val;
2146
2147 if (!length)
2148 return empty_unibyte_string;
2149 val = make_uninit_multibyte_string (length, length);
2150 STRING_SET_UNIBYTE (val);
2151 return val;
2152 }
2153
2154
2155 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2156 which occupy NBYTES bytes. */
2157
2158 Lisp_Object
2159 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2160 {
2161 Lisp_Object string;
2162 struct Lisp_String *s;
2163
2164 if (nchars < 0)
2165 emacs_abort ();
2166 if (!nbytes)
2167 return empty_multibyte_string;
2168
2169 s = allocate_string ();
2170 s->intervals = NULL;
2171 allocate_string_data (s, nchars, nbytes);
2172 XSETSTRING (string, s);
2173 string_chars_consed += nbytes;
2174 return string;
2175 }
2176
2177 /* Print arguments to BUF according to a FORMAT, then return
2178 a Lisp_String initialized with the data from BUF. */
2179
2180 Lisp_Object
2181 make_formatted_string (char *buf, const char *format, ...)
2182 {
2183 va_list ap;
2184 int length;
2185
2186 va_start (ap, format);
2187 length = vsprintf (buf, format, ap);
2188 va_end (ap);
2189 return make_string (buf, length);
2190 }
2191
2192 \f
2193 /***********************************************************************
2194 Float Allocation
2195 ***********************************************************************/
2196
2197 /* We store float cells inside of float_blocks, allocating a new
2198 float_block with malloc whenever necessary. Float cells reclaimed
2199 by GC are put on a free list to be reallocated before allocating
2200 any new float cells from the latest float_block. */
2201
2202 #define FLOAT_BLOCK_SIZE \
2203 (((BLOCK_BYTES - sizeof (struct float_block *) \
2204 /* The compiler might add padding at the end. */ \
2205 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2206 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2207
2208 #define GETMARKBIT(block,n) \
2209 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2210 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2211 & 1)
2212
2213 #define SETMARKBIT(block,n) \
2214 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2215 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2216
2217 #define UNSETMARKBIT(block,n) \
2218 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2219 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2220
2221 #define FLOAT_BLOCK(fptr) \
2222 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2223
2224 #define FLOAT_INDEX(fptr) \
2225 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2226
2227 struct float_block
2228 {
2229 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2230 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2231 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2232 struct float_block *next;
2233 };
2234
2235 #define FLOAT_MARKED_P(fptr) \
2236 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2237
2238 #define FLOAT_MARK(fptr) \
2239 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2240
2241 #define FLOAT_UNMARK(fptr) \
2242 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2243
2244 /* Current float_block. */
2245
2246 static struct float_block *float_block;
2247
2248 /* Index of first unused Lisp_Float in the current float_block. */
2249
2250 static int float_block_index = FLOAT_BLOCK_SIZE;
2251
2252 /* Free-list of Lisp_Floats. */
2253
2254 static struct Lisp_Float *float_free_list;
2255
2256 /* Return a new float object with value FLOAT_VALUE. */
2257
2258 Lisp_Object
2259 make_float (double float_value)
2260 {
2261 register Lisp_Object val;
2262
2263 MALLOC_BLOCK_INPUT;
2264
2265 if (float_free_list)
2266 {
2267 /* We use the data field for chaining the free list
2268 so that we won't use the same field that has the mark bit. */
2269 XSETFLOAT (val, float_free_list);
2270 float_free_list = float_free_list->u.chain;
2271 }
2272 else
2273 {
2274 if (float_block_index == FLOAT_BLOCK_SIZE)
2275 {
2276 struct float_block *new
2277 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2278 new->next = float_block;
2279 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2280 float_block = new;
2281 float_block_index = 0;
2282 total_free_floats += FLOAT_BLOCK_SIZE;
2283 }
2284 XSETFLOAT (val, &float_block->floats[float_block_index]);
2285 float_block_index++;
2286 }
2287
2288 MALLOC_UNBLOCK_INPUT;
2289
2290 XFLOAT_INIT (val, float_value);
2291 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2292 consing_since_gc += sizeof (struct Lisp_Float);
2293 floats_consed++;
2294 total_free_floats--;
2295 return val;
2296 }
2297
2298
2299 \f
2300 /***********************************************************************
2301 Cons Allocation
2302 ***********************************************************************/
2303
2304 /* We store cons cells inside of cons_blocks, allocating a new
2305 cons_block with malloc whenever necessary. Cons cells reclaimed by
2306 GC are put on a free list to be reallocated before allocating
2307 any new cons cells from the latest cons_block. */
2308
2309 #define CONS_BLOCK_SIZE \
2310 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2311 /* The compiler might add padding at the end. */ \
2312 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2313 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2314
2315 #define CONS_BLOCK(fptr) \
2316 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2317
2318 #define CONS_INDEX(fptr) \
2319 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2320
2321 struct cons_block
2322 {
2323 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2324 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2325 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2326 struct cons_block *next;
2327 };
2328
2329 #define CONS_MARKED_P(fptr) \
2330 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2331
2332 #define CONS_MARK(fptr) \
2333 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2334
2335 #define CONS_UNMARK(fptr) \
2336 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2337
2338 /* Current cons_block. */
2339
2340 static struct cons_block *cons_block;
2341
2342 /* Index of first unused Lisp_Cons in the current block. */
2343
2344 static int cons_block_index = CONS_BLOCK_SIZE;
2345
2346 /* Free-list of Lisp_Cons structures. */
2347
2348 static struct Lisp_Cons *cons_free_list;
2349
2350 /* Explicitly free a cons cell by putting it on the free-list. */
2351
2352 void
2353 free_cons (struct Lisp_Cons *ptr)
2354 {
2355 ptr->u.chain = cons_free_list;
2356 #if GC_MARK_STACK
2357 ptr->car = Vdead;
2358 #endif
2359 cons_free_list = ptr;
2360 consing_since_gc -= sizeof *ptr;
2361 total_free_conses++;
2362 }
2363
2364 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2365 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2366 (Lisp_Object car, Lisp_Object cdr)
2367 {
2368 register Lisp_Object val;
2369
2370 MALLOC_BLOCK_INPUT;
2371
2372 if (cons_free_list)
2373 {
2374 /* We use the cdr for chaining the free list
2375 so that we won't use the same field that has the mark bit. */
2376 XSETCONS (val, cons_free_list);
2377 cons_free_list = cons_free_list->u.chain;
2378 }
2379 else
2380 {
2381 if (cons_block_index == CONS_BLOCK_SIZE)
2382 {
2383 struct cons_block *new
2384 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2385 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2386 new->next = cons_block;
2387 cons_block = new;
2388 cons_block_index = 0;
2389 total_free_conses += CONS_BLOCK_SIZE;
2390 }
2391 XSETCONS (val, &cons_block->conses[cons_block_index]);
2392 cons_block_index++;
2393 }
2394
2395 MALLOC_UNBLOCK_INPUT;
2396
2397 XSETCAR (val, car);
2398 XSETCDR (val, cdr);
2399 eassert (!CONS_MARKED_P (XCONS (val)));
2400 consing_since_gc += sizeof (struct Lisp_Cons);
2401 total_free_conses--;
2402 cons_cells_consed++;
2403 return val;
2404 }
2405
2406 #ifdef GC_CHECK_CONS_LIST
2407 /* Get an error now if there's any junk in the cons free list. */
2408 void
2409 check_cons_list (void)
2410 {
2411 struct Lisp_Cons *tail = cons_free_list;
2412
2413 while (tail)
2414 tail = tail->u.chain;
2415 }
2416 #endif
2417
2418 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2419
2420 Lisp_Object
2421 list1 (Lisp_Object arg1)
2422 {
2423 return Fcons (arg1, Qnil);
2424 }
2425
2426 Lisp_Object
2427 list2 (Lisp_Object arg1, Lisp_Object arg2)
2428 {
2429 return Fcons (arg1, Fcons (arg2, Qnil));
2430 }
2431
2432
2433 Lisp_Object
2434 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2437 }
2438
2439
2440 Lisp_Object
2441 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2444 }
2445
2446
2447 Lisp_Object
2448 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2449 {
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2451 Fcons (arg5, Qnil)))));
2452 }
2453
2454 /* Make a list of COUNT Lisp_Objects, where ARG is the
2455 first one. Allocate conses from pure space if TYPE
2456 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2457
2458 Lisp_Object
2459 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2460 {
2461 va_list ap;
2462 ptrdiff_t i;
2463 Lisp_Object val, *objp;
2464
2465 /* Change to SAFE_ALLOCA if you hit this eassert. */
2466 eassert (count <= MAX_ALLOCA / word_size);
2467
2468 objp = alloca (count * word_size);
2469 objp[0] = arg;
2470 va_start (ap, arg);
2471 for (i = 1; i < count; i++)
2472 objp[i] = va_arg (ap, Lisp_Object);
2473 va_end (ap);
2474
2475 for (val = Qnil, i = count - 1; i >= 0; i--)
2476 {
2477 if (type == CONSTYPE_PURE)
2478 val = pure_cons (objp[i], val);
2479 else if (type == CONSTYPE_HEAP)
2480 val = Fcons (objp[i], val);
2481 else
2482 emacs_abort ();
2483 }
2484 return val;
2485 }
2486
2487 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2488 doc: /* Return a newly created list with specified arguments as elements.
2489 Any number of arguments, even zero arguments, are allowed.
2490 usage: (list &rest OBJECTS) */)
2491 (ptrdiff_t nargs, Lisp_Object *args)
2492 {
2493 register Lisp_Object val;
2494 val = Qnil;
2495
2496 while (nargs > 0)
2497 {
2498 nargs--;
2499 val = Fcons (args[nargs], val);
2500 }
2501 return val;
2502 }
2503
2504
2505 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2506 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2507 (register Lisp_Object length, Lisp_Object init)
2508 {
2509 register Lisp_Object val;
2510 register EMACS_INT size;
2511
2512 CHECK_NATNUM (length);
2513 size = XFASTINT (length);
2514
2515 val = Qnil;
2516 while (size > 0)
2517 {
2518 val = Fcons (init, val);
2519 --size;
2520
2521 if (size > 0)
2522 {
2523 val = Fcons (init, val);
2524 --size;
2525
2526 if (size > 0)
2527 {
2528 val = Fcons (init, val);
2529 --size;
2530
2531 if (size > 0)
2532 {
2533 val = Fcons (init, val);
2534 --size;
2535
2536 if (size > 0)
2537 {
2538 val = Fcons (init, val);
2539 --size;
2540 }
2541 }
2542 }
2543 }
2544
2545 QUIT;
2546 }
2547
2548 return val;
2549 }
2550
2551
2552 \f
2553 /***********************************************************************
2554 Vector Allocation
2555 ***********************************************************************/
2556
2557 /* This value is balanced well enough to avoid too much internal overhead
2558 for the most common cases; it's not required to be a power of two, but
2559 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2560
2561 #define VECTOR_BLOCK_SIZE 4096
2562
2563 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2564 enum
2565 {
2566 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2567 };
2568
2569 /* ROUNDUP_SIZE must be a power of 2. */
2570 verify ((roundup_size & (roundup_size - 1)) == 0);
2571
2572 /* Verify assumptions described above. */
2573 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2574 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2575
2576 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2577
2578 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2579
2580 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2581
2582 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2583
2584 /* Size of the minimal vector allocated from block. */
2585
2586 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2587
2588 /* Size of the largest vector allocated from block. */
2589
2590 #define VBLOCK_BYTES_MAX \
2591 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2592
2593 /* We maintain one free list for each possible block-allocated
2594 vector size, and this is the number of free lists we have. */
2595
2596 #define VECTOR_MAX_FREE_LIST_INDEX \
2597 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2598
2599 /* Common shortcut to advance vector pointer over a block data. */
2600
2601 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2602
2603 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2604
2605 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2606
2607 /* Common shortcut to setup vector on a free list. */
2608
2609 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2610 do { \
2611 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2612 eassert ((nbytes) % roundup_size == 0); \
2613 (index) = VINDEX (nbytes); \
2614 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2615 (v)->header.next.vector = vector_free_lists[index]; \
2616 vector_free_lists[index] = (v); \
2617 total_free_vector_slots += (nbytes) / word_size; \
2618 } while (0)
2619
2620 struct vector_block
2621 {
2622 char data[VECTOR_BLOCK_BYTES];
2623 struct vector_block *next;
2624 };
2625
2626 /* Chain of vector blocks. */
2627
2628 static struct vector_block *vector_blocks;
2629
2630 /* Vector free lists, where NTH item points to a chain of free
2631 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2632
2633 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2634
2635 /* Singly-linked list of large vectors. */
2636
2637 static struct Lisp_Vector *large_vectors;
2638
2639 /* The only vector with 0 slots, allocated from pure space. */
2640
2641 Lisp_Object zero_vector;
2642
2643 /* Number of live vectors. */
2644
2645 static EMACS_INT total_vectors;
2646
2647 /* Total size of live and free vectors, in Lisp_Object units. */
2648
2649 static EMACS_INT total_vector_slots, total_free_vector_slots;
2650
2651 /* Get a new vector block. */
2652
2653 static struct vector_block *
2654 allocate_vector_block (void)
2655 {
2656 struct vector_block *block = xmalloc (sizeof *block);
2657
2658 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2659 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2660 MEM_TYPE_VECTOR_BLOCK);
2661 #endif
2662
2663 block->next = vector_blocks;
2664 vector_blocks = block;
2665 return block;
2666 }
2667
2668 /* Called once to initialize vector allocation. */
2669
2670 static void
2671 init_vectors (void)
2672 {
2673 zero_vector = make_pure_vector (0);
2674 }
2675
2676 /* Allocate vector from a vector block. */
2677
2678 static struct Lisp_Vector *
2679 allocate_vector_from_block (size_t nbytes)
2680 {
2681 struct Lisp_Vector *vector, *rest;
2682 struct vector_block *block;
2683 size_t index, restbytes;
2684
2685 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2686 eassert (nbytes % roundup_size == 0);
2687
2688 /* First, try to allocate from a free list
2689 containing vectors of the requested size. */
2690 index = VINDEX (nbytes);
2691 if (vector_free_lists[index])
2692 {
2693 vector = vector_free_lists[index];
2694 vector_free_lists[index] = vector->header.next.vector;
2695 vector->header.next.nbytes = nbytes;
2696 total_free_vector_slots -= nbytes / word_size;
2697 return vector;
2698 }
2699
2700 /* Next, check free lists containing larger vectors. Since
2701 we will split the result, we should have remaining space
2702 large enough to use for one-slot vector at least. */
2703 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2704 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2705 if (vector_free_lists[index])
2706 {
2707 /* This vector is larger than requested. */
2708 vector = vector_free_lists[index];
2709 vector_free_lists[index] = vector->header.next.vector;
2710 vector->header.next.nbytes = nbytes;
2711 total_free_vector_slots -= nbytes / word_size;
2712
2713 /* Excess bytes are used for the smaller vector,
2714 which should be set on an appropriate free list. */
2715 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2716 eassert (restbytes % roundup_size == 0);
2717 rest = ADVANCE (vector, nbytes);
2718 SETUP_ON_FREE_LIST (rest, restbytes, index);
2719 return vector;
2720 }
2721
2722 /* Finally, need a new vector block. */
2723 block = allocate_vector_block ();
2724
2725 /* New vector will be at the beginning of this block. */
2726 vector = (struct Lisp_Vector *) block->data;
2727 vector->header.next.nbytes = nbytes;
2728
2729 /* If the rest of space from this block is large enough
2730 for one-slot vector at least, set up it on a free list. */
2731 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2732 if (restbytes >= VBLOCK_BYTES_MIN)
2733 {
2734 eassert (restbytes % roundup_size == 0);
2735 rest = ADVANCE (vector, nbytes);
2736 SETUP_ON_FREE_LIST (rest, restbytes, index);
2737 }
2738 return vector;
2739 }
2740
2741 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2742
2743 #define VECTOR_IN_BLOCK(vector, block) \
2744 ((char *) (vector) <= (block)->data \
2745 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2746
2747 /* Number of bytes used by vector-block-allocated object. This is the only
2748 place where we actually use the `nbytes' field of the vector-header.
2749 I.e. we could get rid of the `nbytes' field by computing it based on the
2750 vector-type. */
2751
2752 #define PSEUDOVECTOR_NBYTES(vector) \
2753 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
2754 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
2755 : vector->header.next.nbytes)
2756
2757 /* Reclaim space used by unmarked vectors. */
2758
2759 static void
2760 sweep_vectors (void)
2761 {
2762 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2763 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
2764
2765 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2766 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2767
2768 /* Looking through vector blocks. */
2769
2770 for (block = vector_blocks; block; block = *bprev)
2771 {
2772 bool free_this_block = 0;
2773
2774 for (vector = (struct Lisp_Vector *) block->data;
2775 VECTOR_IN_BLOCK (vector, block); vector = next)
2776 {
2777 if (VECTOR_MARKED_P (vector))
2778 {
2779 VECTOR_UNMARK (vector);
2780 total_vectors++;
2781 total_vector_slots += vector->header.next.nbytes / word_size;
2782 next = ADVANCE (vector, vector->header.next.nbytes);
2783 }
2784 else
2785 {
2786 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
2787 ptrdiff_t total_bytes = nbytes;
2788
2789 next = ADVANCE (vector, nbytes);
2790
2791 /* While NEXT is not marked, try to coalesce with VECTOR,
2792 thus making VECTOR of the largest possible size. */
2793
2794 while (VECTOR_IN_BLOCK (next, block))
2795 {
2796 if (VECTOR_MARKED_P (next))
2797 break;
2798 nbytes = PSEUDOVECTOR_NBYTES (next);
2799 total_bytes += nbytes;
2800 next = ADVANCE (next, nbytes);
2801 }
2802
2803 eassert (total_bytes % roundup_size == 0);
2804
2805 if (vector == (struct Lisp_Vector *) block->data
2806 && !VECTOR_IN_BLOCK (next, block))
2807 /* This block should be freed because all of it's
2808 space was coalesced into the only free vector. */
2809 free_this_block = 1;
2810 else
2811 {
2812 int tmp;
2813 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2814 }
2815 }
2816 }
2817
2818 if (free_this_block)
2819 {
2820 *bprev = block->next;
2821 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2822 mem_delete (mem_find (block->data));
2823 #endif
2824 xfree (block);
2825 }
2826 else
2827 bprev = &block->next;
2828 }
2829
2830 /* Sweep large vectors. */
2831
2832 for (vector = large_vectors; vector; vector = *vprev)
2833 {
2834 if (VECTOR_MARKED_P (vector))
2835 {
2836 VECTOR_UNMARK (vector);
2837 total_vectors++;
2838 if (vector->header.size & PSEUDOVECTOR_FLAG)
2839 {
2840 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2841
2842 /* All non-bool pseudovectors are small enough to be allocated
2843 from vector blocks. This code should be redesigned if some
2844 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2845 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2846
2847 total_vector_slots
2848 += (bool_header_size
2849 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2850 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2851 }
2852 else
2853 total_vector_slots
2854 += header_size / word_size + vector->header.size;
2855 vprev = &vector->header.next.vector;
2856 }
2857 else
2858 {
2859 *vprev = vector->header.next.vector;
2860 lisp_free (vector);
2861 }
2862 }
2863 }
2864
2865 /* Value is a pointer to a newly allocated Lisp_Vector structure
2866 with room for LEN Lisp_Objects. */
2867
2868 static struct Lisp_Vector *
2869 allocate_vectorlike (ptrdiff_t len)
2870 {
2871 struct Lisp_Vector *p;
2872
2873 MALLOC_BLOCK_INPUT;
2874
2875 if (len == 0)
2876 p = XVECTOR (zero_vector);
2877 else
2878 {
2879 size_t nbytes = header_size + len * word_size;
2880
2881 #ifdef DOUG_LEA_MALLOC
2882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2883 because mapped region contents are not preserved in
2884 a dumped Emacs. */
2885 mallopt (M_MMAP_MAX, 0);
2886 #endif
2887
2888 if (nbytes <= VBLOCK_BYTES_MAX)
2889 p = allocate_vector_from_block (vroundup (nbytes));
2890 else
2891 {
2892 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2893 p->header.next.vector = large_vectors;
2894 large_vectors = p;
2895 }
2896
2897 #ifdef DOUG_LEA_MALLOC
2898 /* Back to a reasonable maximum of mmap'ed areas. */
2899 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2900 #endif
2901
2902 consing_since_gc += nbytes;
2903 vector_cells_consed += len;
2904 }
2905
2906 MALLOC_UNBLOCK_INPUT;
2907
2908 return p;
2909 }
2910
2911
2912 /* Allocate a vector with LEN slots. */
2913
2914 struct Lisp_Vector *
2915 allocate_vector (EMACS_INT len)
2916 {
2917 struct Lisp_Vector *v;
2918 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2919
2920 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2921 memory_full (SIZE_MAX);
2922 v = allocate_vectorlike (len);
2923 v->header.size = len;
2924 return v;
2925 }
2926
2927
2928 /* Allocate other vector-like structures. */
2929
2930 struct Lisp_Vector *
2931 allocate_pseudovector (int memlen, int lisplen, int tag)
2932 {
2933 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2934 int i;
2935
2936 /* Only the first lisplen slots will be traced normally by the GC. */
2937 for (i = 0; i < lisplen; ++i)
2938 v->contents[i] = Qnil;
2939
2940 XSETPVECTYPESIZE (v, tag, lisplen);
2941 return v;
2942 }
2943
2944 struct buffer *
2945 allocate_buffer (void)
2946 {
2947 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
2948
2949 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
2950 - header_size) / word_size);
2951 /* Put B on the chain of all buffers including killed ones. */
2952 b->header.next.buffer = all_buffers;
2953 all_buffers = b;
2954 /* Note that the rest fields of B are not initialized. */
2955 return b;
2956 }
2957
2958 struct Lisp_Hash_Table *
2959 allocate_hash_table (void)
2960 {
2961 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2962 }
2963
2964 struct window *
2965 allocate_window (void)
2966 {
2967 struct window *w;
2968
2969 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
2970 /* Users assumes that non-Lisp data is zeroed. */
2971 memset (&w->current_matrix, 0,
2972 sizeof (*w) - offsetof (struct window, current_matrix));
2973 return w;
2974 }
2975
2976 struct terminal *
2977 allocate_terminal (void)
2978 {
2979 struct terminal *t;
2980
2981 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
2982 /* Users assumes that non-Lisp data is zeroed. */
2983 memset (&t->next_terminal, 0,
2984 sizeof (*t) - offsetof (struct terminal, next_terminal));
2985 return t;
2986 }
2987
2988 struct frame *
2989 allocate_frame (void)
2990 {
2991 struct frame *f;
2992
2993 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
2994 /* Users assumes that non-Lisp data is zeroed. */
2995 memset (&f->face_cache, 0,
2996 sizeof (*f) - offsetof (struct frame, face_cache));
2997 return f;
2998 }
2999
3000 struct Lisp_Process *
3001 allocate_process (void)
3002 {
3003 struct Lisp_Process *p;
3004
3005 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3006 /* Users assumes that non-Lisp data is zeroed. */
3007 memset (&p->pid, 0,
3008 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3009 return p;
3010 }
3011
3012 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3013 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3014 See also the function `vector'. */)
3015 (register Lisp_Object length, Lisp_Object init)
3016 {
3017 Lisp_Object vector;
3018 register ptrdiff_t sizei;
3019 register ptrdiff_t i;
3020 register struct Lisp_Vector *p;
3021
3022 CHECK_NATNUM (length);
3023
3024 p = allocate_vector (XFASTINT (length));
3025 sizei = XFASTINT (length);
3026 for (i = 0; i < sizei; i++)
3027 p->contents[i] = init;
3028
3029 XSETVECTOR (vector, p);
3030 return vector;
3031 }
3032
3033
3034 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3035 doc: /* Return a newly created vector with specified arguments as elements.
3036 Any number of arguments, even zero arguments, are allowed.
3037 usage: (vector &rest OBJECTS) */)
3038 (ptrdiff_t nargs, Lisp_Object *args)
3039 {
3040 register Lisp_Object len, val;
3041 ptrdiff_t i;
3042 register struct Lisp_Vector *p;
3043
3044 XSETFASTINT (len, nargs);
3045 val = Fmake_vector (len, Qnil);
3046 p = XVECTOR (val);
3047 for (i = 0; i < nargs; i++)
3048 p->contents[i] = args[i];
3049 return val;
3050 }
3051
3052 void
3053 make_byte_code (struct Lisp_Vector *v)
3054 {
3055 if (v->header.size > 1 && STRINGP (v->contents[1])
3056 && STRING_MULTIBYTE (v->contents[1]))
3057 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3058 earlier because they produced a raw 8-bit string for byte-code
3059 and now such a byte-code string is loaded as multibyte while
3060 raw 8-bit characters converted to multibyte form. Thus, now we
3061 must convert them back to the original unibyte form. */
3062 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3063 XSETPVECTYPE (v, PVEC_COMPILED);
3064 }
3065
3066 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3067 doc: /* Create a byte-code object with specified arguments as elements.
3068 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3069 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3070 and (optional) INTERACTIVE-SPEC.
3071 The first four arguments are required; at most six have any
3072 significance.
3073 The ARGLIST can be either like the one of `lambda', in which case the arguments
3074 will be dynamically bound before executing the byte code, or it can be an
3075 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3076 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3077 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3078 argument to catch the left-over arguments. If such an integer is used, the
3079 arguments will not be dynamically bound but will be instead pushed on the
3080 stack before executing the byte-code.
3081 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3082 (ptrdiff_t nargs, Lisp_Object *args)
3083 {
3084 register Lisp_Object len, val;
3085 ptrdiff_t i;
3086 register struct Lisp_Vector *p;
3087
3088 /* We used to purecopy everything here, if purify-flga was set. This worked
3089 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3090 dangerous, since make-byte-code is used during execution to build
3091 closures, so any closure built during the preload phase would end up
3092 copied into pure space, including its free variables, which is sometimes
3093 just wasteful and other times plainly wrong (e.g. those free vars may want
3094 to be setcar'd). */
3095
3096 XSETFASTINT (len, nargs);
3097 val = Fmake_vector (len, Qnil);
3098
3099 p = XVECTOR (val);
3100 for (i = 0; i < nargs; i++)
3101 p->contents[i] = args[i];
3102 make_byte_code (p);
3103 XSETCOMPILED (val, p);
3104 return val;
3105 }
3106
3107
3108 \f
3109 /***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
3112
3113 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3114 of the required alignment if LSB tags are used. */
3115
3116 union aligned_Lisp_Symbol
3117 {
3118 struct Lisp_Symbol s;
3119 #if USE_LSB_TAG
3120 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3121 & -GCALIGNMENT];
3122 #endif
3123 };
3124
3125 /* Each symbol_block is just under 1020 bytes long, since malloc
3126 really allocates in units of powers of two and uses 4 bytes for its
3127 own overhead. */
3128
3129 #define SYMBOL_BLOCK_SIZE \
3130 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3131
3132 struct symbol_block
3133 {
3134 /* Place `symbols' first, to preserve alignment. */
3135 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3136 struct symbol_block *next;
3137 };
3138
3139 /* Current symbol block and index of first unused Lisp_Symbol
3140 structure in it. */
3141
3142 static struct symbol_block *symbol_block;
3143 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3144
3145 /* List of free symbols. */
3146
3147 static struct Lisp_Symbol *symbol_free_list;
3148
3149 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3150 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3151 Its value and function definition are void, and its property list is nil. */)
3152 (Lisp_Object name)
3153 {
3154 register Lisp_Object val;
3155 register struct Lisp_Symbol *p;
3156
3157 CHECK_STRING (name);
3158
3159 MALLOC_BLOCK_INPUT;
3160
3161 if (symbol_free_list)
3162 {
3163 XSETSYMBOL (val, symbol_free_list);
3164 symbol_free_list = symbol_free_list->next;
3165 }
3166 else
3167 {
3168 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3169 {
3170 struct symbol_block *new
3171 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3172 new->next = symbol_block;
3173 symbol_block = new;
3174 symbol_block_index = 0;
3175 total_free_symbols += SYMBOL_BLOCK_SIZE;
3176 }
3177 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3178 symbol_block_index++;
3179 }
3180
3181 MALLOC_UNBLOCK_INPUT;
3182
3183 p = XSYMBOL (val);
3184 set_symbol_name (val, name);
3185 set_symbol_plist (val, Qnil);
3186 p->redirect = SYMBOL_PLAINVAL;
3187 SET_SYMBOL_VAL (p, Qunbound);
3188 set_symbol_function (val, Qunbound);
3189 set_symbol_next (val, NULL);
3190 p->gcmarkbit = 0;
3191 p->interned = SYMBOL_UNINTERNED;
3192 p->constant = 0;
3193 p->declared_special = 0;
3194 consing_since_gc += sizeof (struct Lisp_Symbol);
3195 symbols_consed++;
3196 total_free_symbols--;
3197 return val;
3198 }
3199
3200
3201 \f
3202 /***********************************************************************
3203 Marker (Misc) Allocation
3204 ***********************************************************************/
3205
3206 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3207 the required alignment when LSB tags are used. */
3208
3209 union aligned_Lisp_Misc
3210 {
3211 union Lisp_Misc m;
3212 #if USE_LSB_TAG
3213 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3214 & -GCALIGNMENT];
3215 #endif
3216 };
3217
3218 /* Allocation of markers and other objects that share that structure.
3219 Works like allocation of conses. */
3220
3221 #define MARKER_BLOCK_SIZE \
3222 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3223
3224 struct marker_block
3225 {
3226 /* Place `markers' first, to preserve alignment. */
3227 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3228 struct marker_block *next;
3229 };
3230
3231 static struct marker_block *marker_block;
3232 static int marker_block_index = MARKER_BLOCK_SIZE;
3233
3234 static union Lisp_Misc *marker_free_list;
3235
3236 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3237
3238 static Lisp_Object
3239 allocate_misc (enum Lisp_Misc_Type type)
3240 {
3241 Lisp_Object val;
3242
3243 MALLOC_BLOCK_INPUT;
3244
3245 if (marker_free_list)
3246 {
3247 XSETMISC (val, marker_free_list);
3248 marker_free_list = marker_free_list->u_free.chain;
3249 }
3250 else
3251 {
3252 if (marker_block_index == MARKER_BLOCK_SIZE)
3253 {
3254 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3255 new->next = marker_block;
3256 marker_block = new;
3257 marker_block_index = 0;
3258 total_free_markers += MARKER_BLOCK_SIZE;
3259 }
3260 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3261 marker_block_index++;
3262 }
3263
3264 MALLOC_UNBLOCK_INPUT;
3265
3266 --total_free_markers;
3267 consing_since_gc += sizeof (union Lisp_Misc);
3268 misc_objects_consed++;
3269 XMISCTYPE (val) = type;
3270 XMISCANY (val)->gcmarkbit = 0;
3271 return val;
3272 }
3273
3274 /* Free a Lisp_Misc object */
3275
3276 static void
3277 free_misc (Lisp_Object misc)
3278 {
3279 XMISCTYPE (misc) = Lisp_Misc_Free;
3280 XMISC (misc)->u_free.chain = marker_free_list;
3281 marker_free_list = XMISC (misc);
3282 consing_since_gc -= sizeof (union Lisp_Misc);
3283 total_free_markers++;
3284 }
3285
3286 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3287 INTEGER. This is used to package C values to call record_unwind_protect.
3288 The unwind function can get the C values back using XSAVE_VALUE. */
3289
3290 Lisp_Object
3291 make_save_value (void *pointer, ptrdiff_t integer)
3292 {
3293 register Lisp_Object val;
3294 register struct Lisp_Save_Value *p;
3295
3296 val = allocate_misc (Lisp_Misc_Save_Value);
3297 p = XSAVE_VALUE (val);
3298 p->pointer = pointer;
3299 p->integer = integer;
3300 p->dogc = 0;
3301 return val;
3302 }
3303
3304 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3305
3306 Lisp_Object
3307 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3308 {
3309 register Lisp_Object overlay;
3310
3311 overlay = allocate_misc (Lisp_Misc_Overlay);
3312 OVERLAY_START (overlay) = start;
3313 OVERLAY_END (overlay) = end;
3314 set_overlay_plist (overlay, plist);
3315 XOVERLAY (overlay)->next = NULL;
3316 return overlay;
3317 }
3318
3319 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3320 doc: /* Return a newly allocated marker which does not point at any place. */)
3321 (void)
3322 {
3323 register Lisp_Object val;
3324 register struct Lisp_Marker *p;
3325
3326 val = allocate_misc (Lisp_Misc_Marker);
3327 p = XMARKER (val);
3328 p->buffer = 0;
3329 p->bytepos = 0;
3330 p->charpos = 0;
3331 p->next = NULL;
3332 p->insertion_type = 0;
3333 return val;
3334 }
3335
3336 /* Return a newly allocated marker which points into BUF
3337 at character position CHARPOS and byte position BYTEPOS. */
3338
3339 Lisp_Object
3340 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3341 {
3342 Lisp_Object obj;
3343 struct Lisp_Marker *m;
3344
3345 /* No dead buffers here. */
3346 eassert (BUFFER_LIVE_P (buf));
3347
3348 /* Every character is at least one byte. */
3349 eassert (charpos <= bytepos);
3350
3351 obj = allocate_misc (Lisp_Misc_Marker);
3352 m = XMARKER (obj);
3353 m->buffer = buf;
3354 m->charpos = charpos;
3355 m->bytepos = bytepos;
3356 m->insertion_type = 0;
3357 m->next = BUF_MARKERS (buf);
3358 BUF_MARKERS (buf) = m;
3359 return obj;
3360 }
3361
3362 /* Put MARKER back on the free list after using it temporarily. */
3363
3364 void
3365 free_marker (Lisp_Object marker)
3366 {
3367 unchain_marker (XMARKER (marker));
3368 free_misc (marker);
3369 }
3370
3371 \f
3372 /* Return a newly created vector or string with specified arguments as
3373 elements. If all the arguments are characters that can fit
3374 in a string of events, make a string; otherwise, make a vector.
3375
3376 Any number of arguments, even zero arguments, are allowed. */
3377
3378 Lisp_Object
3379 make_event_array (register int nargs, Lisp_Object *args)
3380 {
3381 int i;
3382
3383 for (i = 0; i < nargs; i++)
3384 /* The things that fit in a string
3385 are characters that are in 0...127,
3386 after discarding the meta bit and all the bits above it. */
3387 if (!INTEGERP (args[i])
3388 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3389 return Fvector (nargs, args);
3390
3391 /* Since the loop exited, we know that all the things in it are
3392 characters, so we can make a string. */
3393 {
3394 Lisp_Object result;
3395
3396 result = Fmake_string (make_number (nargs), make_number (0));
3397 for (i = 0; i < nargs; i++)
3398 {
3399 SSET (result, i, XINT (args[i]));
3400 /* Move the meta bit to the right place for a string char. */
3401 if (XINT (args[i]) & CHAR_META)
3402 SSET (result, i, SREF (result, i) | 0x80);
3403 }
3404
3405 return result;
3406 }
3407 }
3408
3409
3410 \f
3411 /************************************************************************
3412 Memory Full Handling
3413 ************************************************************************/
3414
3415
3416 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3417 there may have been size_t overflow so that malloc was never
3418 called, or perhaps malloc was invoked successfully but the
3419 resulting pointer had problems fitting into a tagged EMACS_INT. In
3420 either case this counts as memory being full even though malloc did
3421 not fail. */
3422
3423 void
3424 memory_full (size_t nbytes)
3425 {
3426 /* Do not go into hysterics merely because a large request failed. */
3427 bool enough_free_memory = 0;
3428 if (SPARE_MEMORY < nbytes)
3429 {
3430 void *p;
3431
3432 MALLOC_BLOCK_INPUT;
3433 p = malloc (SPARE_MEMORY);
3434 if (p)
3435 {
3436 free (p);
3437 enough_free_memory = 1;
3438 }
3439 MALLOC_UNBLOCK_INPUT;
3440 }
3441
3442 if (! enough_free_memory)
3443 {
3444 int i;
3445
3446 Vmemory_full = Qt;
3447
3448 memory_full_cons_threshold = sizeof (struct cons_block);
3449
3450 /* The first time we get here, free the spare memory. */
3451 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3452 if (spare_memory[i])
3453 {
3454 if (i == 0)
3455 free (spare_memory[i]);
3456 else if (i >= 1 && i <= 4)
3457 lisp_align_free (spare_memory[i]);
3458 else
3459 lisp_free (spare_memory[i]);
3460 spare_memory[i] = 0;
3461 }
3462 }
3463
3464 /* This used to call error, but if we've run out of memory, we could
3465 get infinite recursion trying to build the string. */
3466 xsignal (Qnil, Vmemory_signal_data);
3467 }
3468
3469 /* If we released our reserve (due to running out of memory),
3470 and we have a fair amount free once again,
3471 try to set aside another reserve in case we run out once more.
3472
3473 This is called when a relocatable block is freed in ralloc.c,
3474 and also directly from this file, in case we're not using ralloc.c. */
3475
3476 void
3477 refill_memory_reserve (void)
3478 {
3479 #ifndef SYSTEM_MALLOC
3480 if (spare_memory[0] == 0)
3481 spare_memory[0] = malloc (SPARE_MEMORY);
3482 if (spare_memory[1] == 0)
3483 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3484 MEM_TYPE_SPARE);
3485 if (spare_memory[2] == 0)
3486 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3487 MEM_TYPE_SPARE);
3488 if (spare_memory[3] == 0)
3489 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3490 MEM_TYPE_SPARE);
3491 if (spare_memory[4] == 0)
3492 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3493 MEM_TYPE_SPARE);
3494 if (spare_memory[5] == 0)
3495 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3496 MEM_TYPE_SPARE);
3497 if (spare_memory[6] == 0)
3498 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3499 MEM_TYPE_SPARE);
3500 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3501 Vmemory_full = Qnil;
3502 #endif
3503 }
3504 \f
3505 /************************************************************************
3506 C Stack Marking
3507 ************************************************************************/
3508
3509 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3510
3511 /* Conservative C stack marking requires a method to identify possibly
3512 live Lisp objects given a pointer value. We do this by keeping
3513 track of blocks of Lisp data that are allocated in a red-black tree
3514 (see also the comment of mem_node which is the type of nodes in
3515 that tree). Function lisp_malloc adds information for an allocated
3516 block to the red-black tree with calls to mem_insert, and function
3517 lisp_free removes it with mem_delete. Functions live_string_p etc
3518 call mem_find to lookup information about a given pointer in the
3519 tree, and use that to determine if the pointer points to a Lisp
3520 object or not. */
3521
3522 /* Initialize this part of alloc.c. */
3523
3524 static void
3525 mem_init (void)
3526 {
3527 mem_z.left = mem_z.right = MEM_NIL;
3528 mem_z.parent = NULL;
3529 mem_z.color = MEM_BLACK;
3530 mem_z.start = mem_z.end = NULL;
3531 mem_root = MEM_NIL;
3532 }
3533
3534
3535 /* Value is a pointer to the mem_node containing START. Value is
3536 MEM_NIL if there is no node in the tree containing START. */
3537
3538 static inline struct mem_node *
3539 mem_find (void *start)
3540 {
3541 struct mem_node *p;
3542
3543 if (start < min_heap_address || start > max_heap_address)
3544 return MEM_NIL;
3545
3546 /* Make the search always successful to speed up the loop below. */
3547 mem_z.start = start;
3548 mem_z.end = (char *) start + 1;
3549
3550 p = mem_root;
3551 while (start < p->start || start >= p->end)
3552 p = start < p->start ? p->left : p->right;
3553 return p;
3554 }
3555
3556
3557 /* Insert a new node into the tree for a block of memory with start
3558 address START, end address END, and type TYPE. Value is a
3559 pointer to the node that was inserted. */
3560
3561 static struct mem_node *
3562 mem_insert (void *start, void *end, enum mem_type type)
3563 {
3564 struct mem_node *c, *parent, *x;
3565
3566 if (min_heap_address == NULL || start < min_heap_address)
3567 min_heap_address = start;
3568 if (max_heap_address == NULL || end > max_heap_address)
3569 max_heap_address = end;
3570
3571 /* See where in the tree a node for START belongs. In this
3572 particular application, it shouldn't happen that a node is already
3573 present. For debugging purposes, let's check that. */
3574 c = mem_root;
3575 parent = NULL;
3576
3577 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3578
3579 while (c != MEM_NIL)
3580 {
3581 if (start >= c->start && start < c->end)
3582 emacs_abort ();
3583 parent = c;
3584 c = start < c->start ? c->left : c->right;
3585 }
3586
3587 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3588
3589 while (c != MEM_NIL)
3590 {
3591 parent = c;
3592 c = start < c->start ? c->left : c->right;
3593 }
3594
3595 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3596
3597 /* Create a new node. */
3598 #ifdef GC_MALLOC_CHECK
3599 x = malloc (sizeof *x);
3600 if (x == NULL)
3601 emacs_abort ();
3602 #else
3603 x = xmalloc (sizeof *x);
3604 #endif
3605 x->start = start;
3606 x->end = end;
3607 x->type = type;
3608 x->parent = parent;
3609 x->left = x->right = MEM_NIL;
3610 x->color = MEM_RED;
3611
3612 /* Insert it as child of PARENT or install it as root. */
3613 if (parent)
3614 {
3615 if (start < parent->start)
3616 parent->left = x;
3617 else
3618 parent->right = x;
3619 }
3620 else
3621 mem_root = x;
3622
3623 /* Re-establish red-black tree properties. */
3624 mem_insert_fixup (x);
3625
3626 return x;
3627 }
3628
3629
3630 /* Re-establish the red-black properties of the tree, and thereby
3631 balance the tree, after node X has been inserted; X is always red. */
3632
3633 static void
3634 mem_insert_fixup (struct mem_node *x)
3635 {
3636 while (x != mem_root && x->parent->color == MEM_RED)
3637 {
3638 /* X is red and its parent is red. This is a violation of
3639 red-black tree property #3. */
3640
3641 if (x->parent == x->parent->parent->left)
3642 {
3643 /* We're on the left side of our grandparent, and Y is our
3644 "uncle". */
3645 struct mem_node *y = x->parent->parent->right;
3646
3647 if (y->color == MEM_RED)
3648 {
3649 /* Uncle and parent are red but should be black because
3650 X is red. Change the colors accordingly and proceed
3651 with the grandparent. */
3652 x->parent->color = MEM_BLACK;
3653 y->color = MEM_BLACK;
3654 x->parent->parent->color = MEM_RED;
3655 x = x->parent->parent;
3656 }
3657 else
3658 {
3659 /* Parent and uncle have different colors; parent is
3660 red, uncle is black. */
3661 if (x == x->parent->right)
3662 {
3663 x = x->parent;
3664 mem_rotate_left (x);
3665 }
3666
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_right (x->parent->parent);
3670 }
3671 }
3672 else
3673 {
3674 /* This is the symmetrical case of above. */
3675 struct mem_node *y = x->parent->parent->left;
3676
3677 if (y->color == MEM_RED)
3678 {
3679 x->parent->color = MEM_BLACK;
3680 y->color = MEM_BLACK;
3681 x->parent->parent->color = MEM_RED;
3682 x = x->parent->parent;
3683 }
3684 else
3685 {
3686 if (x == x->parent->left)
3687 {
3688 x = x->parent;
3689 mem_rotate_right (x);
3690 }
3691
3692 x->parent->color = MEM_BLACK;
3693 x->parent->parent->color = MEM_RED;
3694 mem_rotate_left (x->parent->parent);
3695 }
3696 }
3697 }
3698
3699 /* The root may have been changed to red due to the algorithm. Set
3700 it to black so that property #5 is satisfied. */
3701 mem_root->color = MEM_BLACK;
3702 }
3703
3704
3705 /* (x) (y)
3706 / \ / \
3707 a (y) ===> (x) c
3708 / \ / \
3709 b c a b */
3710
3711 static void
3712 mem_rotate_left (struct mem_node *x)
3713 {
3714 struct mem_node *y;
3715
3716 /* Turn y's left sub-tree into x's right sub-tree. */
3717 y = x->right;
3718 x->right = y->left;
3719 if (y->left != MEM_NIL)
3720 y->left->parent = x;
3721
3722 /* Y's parent was x's parent. */
3723 if (y != MEM_NIL)
3724 y->parent = x->parent;
3725
3726 /* Get the parent to point to y instead of x. */
3727 if (x->parent)
3728 {
3729 if (x == x->parent->left)
3730 x->parent->left = y;
3731 else
3732 x->parent->right = y;
3733 }
3734 else
3735 mem_root = y;
3736
3737 /* Put x on y's left. */
3738 y->left = x;
3739 if (x != MEM_NIL)
3740 x->parent = y;
3741 }
3742
3743
3744 /* (x) (Y)
3745 / \ / \
3746 (y) c ===> a (x)
3747 / \ / \
3748 a b b c */
3749
3750 static void
3751 mem_rotate_right (struct mem_node *x)
3752 {
3753 struct mem_node *y = x->left;
3754
3755 x->left = y->right;
3756 if (y->right != MEM_NIL)
3757 y->right->parent = x;
3758
3759 if (y != MEM_NIL)
3760 y->parent = x->parent;
3761 if (x->parent)
3762 {
3763 if (x == x->parent->right)
3764 x->parent->right = y;
3765 else
3766 x->parent->left = y;
3767 }
3768 else
3769 mem_root = y;
3770
3771 y->right = x;
3772 if (x != MEM_NIL)
3773 x->parent = y;
3774 }
3775
3776
3777 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3778
3779 static void
3780 mem_delete (struct mem_node *z)
3781 {
3782 struct mem_node *x, *y;
3783
3784 if (!z || z == MEM_NIL)
3785 return;
3786
3787 if (z->left == MEM_NIL || z->right == MEM_NIL)
3788 y = z;
3789 else
3790 {
3791 y = z->right;
3792 while (y->left != MEM_NIL)
3793 y = y->left;
3794 }
3795
3796 if (y->left != MEM_NIL)
3797 x = y->left;
3798 else
3799 x = y->right;
3800
3801 x->parent = y->parent;
3802 if (y->parent)
3803 {
3804 if (y == y->parent->left)
3805 y->parent->left = x;
3806 else
3807 y->parent->right = x;
3808 }
3809 else
3810 mem_root = x;
3811
3812 if (y != z)
3813 {
3814 z->start = y->start;
3815 z->end = y->end;
3816 z->type = y->type;
3817 }
3818
3819 if (y->color == MEM_BLACK)
3820 mem_delete_fixup (x);
3821
3822 #ifdef GC_MALLOC_CHECK
3823 free (y);
3824 #else
3825 xfree (y);
3826 #endif
3827 }
3828
3829
3830 /* Re-establish the red-black properties of the tree, after a
3831 deletion. */
3832
3833 static void
3834 mem_delete_fixup (struct mem_node *x)
3835 {
3836 while (x != mem_root && x->color == MEM_BLACK)
3837 {
3838 if (x == x->parent->left)
3839 {
3840 struct mem_node *w = x->parent->right;
3841
3842 if (w->color == MEM_RED)
3843 {
3844 w->color = MEM_BLACK;
3845 x->parent->color = MEM_RED;
3846 mem_rotate_left (x->parent);
3847 w = x->parent->right;
3848 }
3849
3850 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3851 {
3852 w->color = MEM_RED;
3853 x = x->parent;
3854 }
3855 else
3856 {
3857 if (w->right->color == MEM_BLACK)
3858 {
3859 w->left->color = MEM_BLACK;
3860 w->color = MEM_RED;
3861 mem_rotate_right (w);
3862 w = x->parent->right;
3863 }
3864 w->color = x->parent->color;
3865 x->parent->color = MEM_BLACK;
3866 w->right->color = MEM_BLACK;
3867 mem_rotate_left (x->parent);
3868 x = mem_root;
3869 }
3870 }
3871 else
3872 {
3873 struct mem_node *w = x->parent->left;
3874
3875 if (w->color == MEM_RED)
3876 {
3877 w->color = MEM_BLACK;
3878 x->parent->color = MEM_RED;
3879 mem_rotate_right (x->parent);
3880 w = x->parent->left;
3881 }
3882
3883 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3884 {
3885 w->color = MEM_RED;
3886 x = x->parent;
3887 }
3888 else
3889 {
3890 if (w->left->color == MEM_BLACK)
3891 {
3892 w->right->color = MEM_BLACK;
3893 w->color = MEM_RED;
3894 mem_rotate_left (w);
3895 w = x->parent->left;
3896 }
3897
3898 w->color = x->parent->color;
3899 x->parent->color = MEM_BLACK;
3900 w->left->color = MEM_BLACK;
3901 mem_rotate_right (x->parent);
3902 x = mem_root;
3903 }
3904 }
3905 }
3906
3907 x->color = MEM_BLACK;
3908 }
3909
3910
3911 /* Value is non-zero if P is a pointer to a live Lisp string on
3912 the heap. M is a pointer to the mem_block for P. */
3913
3914 static inline bool
3915 live_string_p (struct mem_node *m, void *p)
3916 {
3917 if (m->type == MEM_TYPE_STRING)
3918 {
3919 struct string_block *b = (struct string_block *) m->start;
3920 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3921
3922 /* P must point to the start of a Lisp_String structure, and it
3923 must not be on the free-list. */
3924 return (offset >= 0
3925 && offset % sizeof b->strings[0] == 0
3926 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3927 && ((struct Lisp_String *) p)->data != NULL);
3928 }
3929 else
3930 return 0;
3931 }
3932
3933
3934 /* Value is non-zero if P is a pointer to a live Lisp cons on
3935 the heap. M is a pointer to the mem_block for P. */
3936
3937 static inline bool
3938 live_cons_p (struct mem_node *m, void *p)
3939 {
3940 if (m->type == MEM_TYPE_CONS)
3941 {
3942 struct cons_block *b = (struct cons_block *) m->start;
3943 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3944
3945 /* P must point to the start of a Lisp_Cons, not be
3946 one of the unused cells in the current cons block,
3947 and not be on the free-list. */
3948 return (offset >= 0
3949 && offset % sizeof b->conses[0] == 0
3950 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3951 && (b != cons_block
3952 || offset / sizeof b->conses[0] < cons_block_index)
3953 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3954 }
3955 else
3956 return 0;
3957 }
3958
3959
3960 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3961 the heap. M is a pointer to the mem_block for P. */
3962
3963 static inline bool
3964 live_symbol_p (struct mem_node *m, void *p)
3965 {
3966 if (m->type == MEM_TYPE_SYMBOL)
3967 {
3968 struct symbol_block *b = (struct symbol_block *) m->start;
3969 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3970
3971 /* P must point to the start of a Lisp_Symbol, not be
3972 one of the unused cells in the current symbol block,
3973 and not be on the free-list. */
3974 return (offset >= 0
3975 && offset % sizeof b->symbols[0] == 0
3976 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3977 && (b != symbol_block
3978 || offset / sizeof b->symbols[0] < symbol_block_index)
3979 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
3980 }
3981 else
3982 return 0;
3983 }
3984
3985
3986 /* Value is non-zero if P is a pointer to a live Lisp float on
3987 the heap. M is a pointer to the mem_block for P. */
3988
3989 static inline bool
3990 live_float_p (struct mem_node *m, void *p)
3991 {
3992 if (m->type == MEM_TYPE_FLOAT)
3993 {
3994 struct float_block *b = (struct float_block *) m->start;
3995 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3996
3997 /* P must point to the start of a Lisp_Float and not be
3998 one of the unused cells in the current float block. */
3999 return (offset >= 0
4000 && offset % sizeof b->floats[0] == 0
4001 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4002 && (b != float_block
4003 || offset / sizeof b->floats[0] < float_block_index));
4004 }
4005 else
4006 return 0;
4007 }
4008
4009
4010 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4011 the heap. M is a pointer to the mem_block for P. */
4012
4013 static inline bool
4014 live_misc_p (struct mem_node *m, void *p)
4015 {
4016 if (m->type == MEM_TYPE_MISC)
4017 {
4018 struct marker_block *b = (struct marker_block *) m->start;
4019 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4020
4021 /* P must point to the start of a Lisp_Misc, not be
4022 one of the unused cells in the current misc block,
4023 and not be on the free-list. */
4024 return (offset >= 0
4025 && offset % sizeof b->markers[0] == 0
4026 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4027 && (b != marker_block
4028 || offset / sizeof b->markers[0] < marker_block_index)
4029 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4030 }
4031 else
4032 return 0;
4033 }
4034
4035
4036 /* Value is non-zero if P is a pointer to a live vector-like object.
4037 M is a pointer to the mem_block for P. */
4038
4039 static inline bool
4040 live_vector_p (struct mem_node *m, void *p)
4041 {
4042 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4043 {
4044 /* This memory node corresponds to a vector block. */
4045 struct vector_block *block = (struct vector_block *) m->start;
4046 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4047
4048 /* P is in the block's allocation range. Scan the block
4049 up to P and see whether P points to the start of some
4050 vector which is not on a free list. FIXME: check whether
4051 some allocation patterns (probably a lot of short vectors)
4052 may cause a substantial overhead of this loop. */
4053 while (VECTOR_IN_BLOCK (vector, block)
4054 && vector <= (struct Lisp_Vector *) p)
4055 {
4056 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4057 vector = ADVANCE (vector, (vector->header.size
4058 & PSEUDOVECTOR_SIZE_MASK));
4059 else if (vector == p)
4060 return 1;
4061 else
4062 vector = ADVANCE (vector, vector->header.next.nbytes);
4063 }
4064 }
4065 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4066 /* This memory node corresponds to a large vector. */
4067 return 1;
4068 return 0;
4069 }
4070
4071
4072 /* Value is non-zero if P is a pointer to a live buffer. M is a
4073 pointer to the mem_block for P. */
4074
4075 static inline bool
4076 live_buffer_p (struct mem_node *m, void *p)
4077 {
4078 /* P must point to the start of the block, and the buffer
4079 must not have been killed. */
4080 return (m->type == MEM_TYPE_BUFFER
4081 && p == m->start
4082 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4083 }
4084
4085 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4086
4087 #if GC_MARK_STACK
4088
4089 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4090
4091 /* Array of objects that are kept alive because the C stack contains
4092 a pattern that looks like a reference to them . */
4093
4094 #define MAX_ZOMBIES 10
4095 static Lisp_Object zombies[MAX_ZOMBIES];
4096
4097 /* Number of zombie objects. */
4098
4099 static EMACS_INT nzombies;
4100
4101 /* Number of garbage collections. */
4102
4103 static EMACS_INT ngcs;
4104
4105 /* Average percentage of zombies per collection. */
4106
4107 static double avg_zombies;
4108
4109 /* Max. number of live and zombie objects. */
4110
4111 static EMACS_INT max_live, max_zombies;
4112
4113 /* Average number of live objects per GC. */
4114
4115 static double avg_live;
4116
4117 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4118 doc: /* Show information about live and zombie objects. */)
4119 (void)
4120 {
4121 Lisp_Object args[8], zombie_list = Qnil;
4122 EMACS_INT i;
4123 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4124 zombie_list = Fcons (zombies[i], zombie_list);
4125 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4126 args[1] = make_number (ngcs);
4127 args[2] = make_float (avg_live);
4128 args[3] = make_float (avg_zombies);
4129 args[4] = make_float (avg_zombies / avg_live / 100);
4130 args[5] = make_number (max_live);
4131 args[6] = make_number (max_zombies);
4132 args[7] = zombie_list;
4133 return Fmessage (8, args);
4134 }
4135
4136 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4137
4138
4139 /* Mark OBJ if we can prove it's a Lisp_Object. */
4140
4141 static inline void
4142 mark_maybe_object (Lisp_Object obj)
4143 {
4144 void *po;
4145 struct mem_node *m;
4146
4147 if (INTEGERP (obj))
4148 return;
4149
4150 po = (void *) XPNTR (obj);
4151 m = mem_find (po);
4152
4153 if (m != MEM_NIL)
4154 {
4155 bool mark_p = 0;
4156
4157 switch (XTYPE (obj))
4158 {
4159 case Lisp_String:
4160 mark_p = (live_string_p (m, po)
4161 && !STRING_MARKED_P ((struct Lisp_String *) po));
4162 break;
4163
4164 case Lisp_Cons:
4165 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4166 break;
4167
4168 case Lisp_Symbol:
4169 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4170 break;
4171
4172 case Lisp_Float:
4173 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4174 break;
4175
4176 case Lisp_Vectorlike:
4177 /* Note: can't check BUFFERP before we know it's a
4178 buffer because checking that dereferences the pointer
4179 PO which might point anywhere. */
4180 if (live_vector_p (m, po))
4181 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4182 else if (live_buffer_p (m, po))
4183 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4184 break;
4185
4186 case Lisp_Misc:
4187 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4188 break;
4189
4190 default:
4191 break;
4192 }
4193
4194 if (mark_p)
4195 {
4196 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4197 if (nzombies < MAX_ZOMBIES)
4198 zombies[nzombies] = obj;
4199 ++nzombies;
4200 #endif
4201 mark_object (obj);
4202 }
4203 }
4204 }
4205
4206
4207 /* If P points to Lisp data, mark that as live if it isn't already
4208 marked. */
4209
4210 static inline void
4211 mark_maybe_pointer (void *p)
4212 {
4213 struct mem_node *m;
4214
4215 /* Quickly rule out some values which can't point to Lisp data.
4216 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4217 Otherwise, assume that Lisp data is aligned on even addresses. */
4218 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4219 return;
4220
4221 m = mem_find (p);
4222 if (m != MEM_NIL)
4223 {
4224 Lisp_Object obj = Qnil;
4225
4226 switch (m->type)
4227 {
4228 case MEM_TYPE_NON_LISP:
4229 case MEM_TYPE_SPARE:
4230 /* Nothing to do; not a pointer to Lisp memory. */
4231 break;
4232
4233 case MEM_TYPE_BUFFER:
4234 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4235 XSETVECTOR (obj, p);
4236 break;
4237
4238 case MEM_TYPE_CONS:
4239 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4240 XSETCONS (obj, p);
4241 break;
4242
4243 case MEM_TYPE_STRING:
4244 if (live_string_p (m, p)
4245 && !STRING_MARKED_P ((struct Lisp_String *) p))
4246 XSETSTRING (obj, p);
4247 break;
4248
4249 case MEM_TYPE_MISC:
4250 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4251 XSETMISC (obj, p);
4252 break;
4253
4254 case MEM_TYPE_SYMBOL:
4255 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4256 XSETSYMBOL (obj, p);
4257 break;
4258
4259 case MEM_TYPE_FLOAT:
4260 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4261 XSETFLOAT (obj, p);
4262 break;
4263
4264 case MEM_TYPE_VECTORLIKE:
4265 case MEM_TYPE_VECTOR_BLOCK:
4266 if (live_vector_p (m, p))
4267 {
4268 Lisp_Object tem;
4269 XSETVECTOR (tem, p);
4270 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4271 obj = tem;
4272 }
4273 break;
4274
4275 default:
4276 emacs_abort ();
4277 }
4278
4279 if (!NILP (obj))
4280 mark_object (obj);
4281 }
4282 }
4283
4284
4285 /* Alignment of pointer values. Use alignof, as it sometimes returns
4286 a smaller alignment than GCC's __alignof__ and mark_memory might
4287 miss objects if __alignof__ were used. */
4288 #define GC_POINTER_ALIGNMENT alignof (void *)
4289
4290 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4291 not suffice, which is the typical case. A host where a Lisp_Object is
4292 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4293 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4294 suffice to widen it to to a Lisp_Object and check it that way. */
4295 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4296 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4297 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4298 nor mark_maybe_object can follow the pointers. This should not occur on
4299 any practical porting target. */
4300 # error "MSB type bits straddle pointer-word boundaries"
4301 # endif
4302 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4303 pointer words that hold pointers ORed with type bits. */
4304 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4305 #else
4306 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4307 words that hold unmodified pointers. */
4308 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4309 #endif
4310
4311 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4312 or END+OFFSET..START. */
4313
4314 static void
4315 mark_memory (void *start, void *end)
4316 #if defined (__clang__) && defined (__has_feature)
4317 #if __has_feature(address_sanitizer)
4318 /* Do not allow -faddress-sanitizer to check this function, since it
4319 crosses the function stack boundary, and thus would yield many
4320 false positives. */
4321 __attribute__((no_address_safety_analysis))
4322 #endif
4323 #endif
4324 {
4325 void **pp;
4326 int i;
4327
4328 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4329 nzombies = 0;
4330 #endif
4331
4332 /* Make START the pointer to the start of the memory region,
4333 if it isn't already. */
4334 if (end < start)
4335 {
4336 void *tem = start;
4337 start = end;
4338 end = tem;
4339 }
4340
4341 /* Mark Lisp data pointed to. This is necessary because, in some
4342 situations, the C compiler optimizes Lisp objects away, so that
4343 only a pointer to them remains. Example:
4344
4345 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4346 ()
4347 {
4348 Lisp_Object obj = build_string ("test");
4349 struct Lisp_String *s = XSTRING (obj);
4350 Fgarbage_collect ();
4351 fprintf (stderr, "test `%s'\n", s->data);
4352 return Qnil;
4353 }
4354
4355 Here, `obj' isn't really used, and the compiler optimizes it
4356 away. The only reference to the life string is through the
4357 pointer `s'. */
4358
4359 for (pp = start; (void *) pp < end; pp++)
4360 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4361 {
4362 void *p = *(void **) ((char *) pp + i);
4363 mark_maybe_pointer (p);
4364 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4365 mark_maybe_object (XIL ((intptr_t) p));
4366 }
4367 }
4368
4369 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4370 the GCC system configuration. In gcc 3.2, the only systems for
4371 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4372 by others?) and ns32k-pc532-min. */
4373
4374 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4375
4376 static bool setjmp_tested_p;
4377 static int longjmps_done;
4378
4379 #define SETJMP_WILL_LIKELY_WORK "\
4380 \n\
4381 Emacs garbage collector has been changed to use conservative stack\n\
4382 marking. Emacs has determined that the method it uses to do the\n\
4383 marking will likely work on your system, but this isn't sure.\n\
4384 \n\
4385 If you are a system-programmer, or can get the help of a local wizard\n\
4386 who is, please take a look at the function mark_stack in alloc.c, and\n\
4387 verify that the methods used are appropriate for your system.\n\
4388 \n\
4389 Please mail the result to <emacs-devel@gnu.org>.\n\
4390 "
4391
4392 #define SETJMP_WILL_NOT_WORK "\
4393 \n\
4394 Emacs garbage collector has been changed to use conservative stack\n\
4395 marking. Emacs has determined that the default method it uses to do the\n\
4396 marking will not work on your system. We will need a system-dependent\n\
4397 solution for your system.\n\
4398 \n\
4399 Please take a look at the function mark_stack in alloc.c, and\n\
4400 try to find a way to make it work on your system.\n\
4401 \n\
4402 Note that you may get false negatives, depending on the compiler.\n\
4403 In particular, you need to use -O with GCC for this test.\n\
4404 \n\
4405 Please mail the result to <emacs-devel@gnu.org>.\n\
4406 "
4407
4408
4409 /* Perform a quick check if it looks like setjmp saves registers in a
4410 jmp_buf. Print a message to stderr saying so. When this test
4411 succeeds, this is _not_ a proof that setjmp is sufficient for
4412 conservative stack marking. Only the sources or a disassembly
4413 can prove that. */
4414
4415 static void
4416 test_setjmp (void)
4417 {
4418 char buf[10];
4419 register int x;
4420 sys_jmp_buf jbuf;
4421
4422 /* Arrange for X to be put in a register. */
4423 sprintf (buf, "1");
4424 x = strlen (buf);
4425 x = 2 * x - 1;
4426
4427 sys_setjmp (jbuf);
4428 if (longjmps_done == 1)
4429 {
4430 /* Came here after the longjmp at the end of the function.
4431
4432 If x == 1, the longjmp has restored the register to its
4433 value before the setjmp, and we can hope that setjmp
4434 saves all such registers in the jmp_buf, although that
4435 isn't sure.
4436
4437 For other values of X, either something really strange is
4438 taking place, or the setjmp just didn't save the register. */
4439
4440 if (x == 1)
4441 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4442 else
4443 {
4444 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4445 exit (1);
4446 }
4447 }
4448
4449 ++longjmps_done;
4450 x = 2;
4451 if (longjmps_done == 1)
4452 sys_longjmp (jbuf, 1);
4453 }
4454
4455 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4456
4457
4458 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4459
4460 /* Abort if anything GCPRO'd doesn't survive the GC. */
4461
4462 static void
4463 check_gcpros (void)
4464 {
4465 struct gcpro *p;
4466 ptrdiff_t i;
4467
4468 for (p = gcprolist; p; p = p->next)
4469 for (i = 0; i < p->nvars; ++i)
4470 if (!survives_gc_p (p->var[i]))
4471 /* FIXME: It's not necessarily a bug. It might just be that the
4472 GCPRO is unnecessary or should release the object sooner. */
4473 emacs_abort ();
4474 }
4475
4476 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4477
4478 static void
4479 dump_zombies (void)
4480 {
4481 int i;
4482
4483 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4484 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4485 {
4486 fprintf (stderr, " %d = ", i);
4487 debug_print (zombies[i]);
4488 }
4489 }
4490
4491 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4492
4493
4494 /* Mark live Lisp objects on the C stack.
4495
4496 There are several system-dependent problems to consider when
4497 porting this to new architectures:
4498
4499 Processor Registers
4500
4501 We have to mark Lisp objects in CPU registers that can hold local
4502 variables or are used to pass parameters.
4503
4504 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4505 something that either saves relevant registers on the stack, or
4506 calls mark_maybe_object passing it each register's contents.
4507
4508 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4509 implementation assumes that calling setjmp saves registers we need
4510 to see in a jmp_buf which itself lies on the stack. This doesn't
4511 have to be true! It must be verified for each system, possibly
4512 by taking a look at the source code of setjmp.
4513
4514 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4515 can use it as a machine independent method to store all registers
4516 to the stack. In this case the macros described in the previous
4517 two paragraphs are not used.
4518
4519 Stack Layout
4520
4521 Architectures differ in the way their processor stack is organized.
4522 For example, the stack might look like this
4523
4524 +----------------+
4525 | Lisp_Object | size = 4
4526 +----------------+
4527 | something else | size = 2
4528 +----------------+
4529 | Lisp_Object | size = 4
4530 +----------------+
4531 | ... |
4532
4533 In such a case, not every Lisp_Object will be aligned equally. To
4534 find all Lisp_Object on the stack it won't be sufficient to walk
4535 the stack in steps of 4 bytes. Instead, two passes will be
4536 necessary, one starting at the start of the stack, and a second
4537 pass starting at the start of the stack + 2. Likewise, if the
4538 minimal alignment of Lisp_Objects on the stack is 1, four passes
4539 would be necessary, each one starting with one byte more offset
4540 from the stack start. */
4541
4542 static void
4543 mark_stack (void)
4544 {
4545 void *end;
4546
4547 #ifdef HAVE___BUILTIN_UNWIND_INIT
4548 /* Force callee-saved registers and register windows onto the stack.
4549 This is the preferred method if available, obviating the need for
4550 machine dependent methods. */
4551 __builtin_unwind_init ();
4552 end = &end;
4553 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4554 #ifndef GC_SAVE_REGISTERS_ON_STACK
4555 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4556 union aligned_jmpbuf {
4557 Lisp_Object o;
4558 sys_jmp_buf j;
4559 } j;
4560 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4561 #endif
4562 /* This trick flushes the register windows so that all the state of
4563 the process is contained in the stack. */
4564 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4565 needed on ia64 too. See mach_dep.c, where it also says inline
4566 assembler doesn't work with relevant proprietary compilers. */
4567 #ifdef __sparc__
4568 #if defined (__sparc64__) && defined (__FreeBSD__)
4569 /* FreeBSD does not have a ta 3 handler. */
4570 asm ("flushw");
4571 #else
4572 asm ("ta 3");
4573 #endif
4574 #endif
4575
4576 /* Save registers that we need to see on the stack. We need to see
4577 registers used to hold register variables and registers used to
4578 pass parameters. */
4579 #ifdef GC_SAVE_REGISTERS_ON_STACK
4580 GC_SAVE_REGISTERS_ON_STACK (end);
4581 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4582
4583 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4584 setjmp will definitely work, test it
4585 and print a message with the result
4586 of the test. */
4587 if (!setjmp_tested_p)
4588 {
4589 setjmp_tested_p = 1;
4590 test_setjmp ();
4591 }
4592 #endif /* GC_SETJMP_WORKS */
4593
4594 sys_setjmp (j.j);
4595 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4596 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4597 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4598
4599 /* This assumes that the stack is a contiguous region in memory. If
4600 that's not the case, something has to be done here to iterate
4601 over the stack segments. */
4602 mark_memory (stack_base, end);
4603
4604 /* Allow for marking a secondary stack, like the register stack on the
4605 ia64. */
4606 #ifdef GC_MARK_SECONDARY_STACK
4607 GC_MARK_SECONDARY_STACK ();
4608 #endif
4609
4610 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4611 check_gcpros ();
4612 #endif
4613 }
4614
4615 #endif /* GC_MARK_STACK != 0 */
4616
4617
4618 /* Determine whether it is safe to access memory at address P. */
4619 static int
4620 valid_pointer_p (void *p)
4621 {
4622 #ifdef WINDOWSNT
4623 return w32_valid_pointer_p (p, 16);
4624 #else
4625 int fd[2];
4626
4627 /* Obviously, we cannot just access it (we would SEGV trying), so we
4628 trick the o/s to tell us whether p is a valid pointer.
4629 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4630 not validate p in that case. */
4631
4632 if (pipe (fd) == 0)
4633 {
4634 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4635 emacs_close (fd[1]);
4636 emacs_close (fd[0]);
4637 return valid;
4638 }
4639
4640 return -1;
4641 #endif
4642 }
4643
4644 /* Return 2 if OBJ is a killed or special buffer object.
4645 Return 1 if OBJ is a valid lisp object.
4646 Return 0 if OBJ is NOT a valid lisp object.
4647 Return -1 if we cannot validate OBJ.
4648 This function can be quite slow,
4649 so it should only be used in code for manual debugging. */
4650
4651 int
4652 valid_lisp_object_p (Lisp_Object obj)
4653 {
4654 void *p;
4655 #if GC_MARK_STACK
4656 struct mem_node *m;
4657 #endif
4658
4659 if (INTEGERP (obj))
4660 return 1;
4661
4662 p = (void *) XPNTR (obj);
4663 if (PURE_POINTER_P (p))
4664 return 1;
4665
4666 if (p == &buffer_defaults || p == &buffer_local_symbols)
4667 return 2;
4668
4669 #if !GC_MARK_STACK
4670 return valid_pointer_p (p);
4671 #else
4672
4673 m = mem_find (p);
4674
4675 if (m == MEM_NIL)
4676 {
4677 int valid = valid_pointer_p (p);
4678 if (valid <= 0)
4679 return valid;
4680
4681 if (SUBRP (obj))
4682 return 1;
4683
4684 return 0;
4685 }
4686
4687 switch (m->type)
4688 {
4689 case MEM_TYPE_NON_LISP:
4690 case MEM_TYPE_SPARE:
4691 return 0;
4692
4693 case MEM_TYPE_BUFFER:
4694 return live_buffer_p (m, p) ? 1 : 2;
4695
4696 case MEM_TYPE_CONS:
4697 return live_cons_p (m, p);
4698
4699 case MEM_TYPE_STRING:
4700 return live_string_p (m, p);
4701
4702 case MEM_TYPE_MISC:
4703 return live_misc_p (m, p);
4704
4705 case MEM_TYPE_SYMBOL:
4706 return live_symbol_p (m, p);
4707
4708 case MEM_TYPE_FLOAT:
4709 return live_float_p (m, p);
4710
4711 case MEM_TYPE_VECTORLIKE:
4712 case MEM_TYPE_VECTOR_BLOCK:
4713 return live_vector_p (m, p);
4714
4715 default:
4716 break;
4717 }
4718
4719 return 0;
4720 #endif
4721 }
4722
4723
4724
4725 \f
4726 /***********************************************************************
4727 Pure Storage Management
4728 ***********************************************************************/
4729
4730 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4731 pointer to it. TYPE is the Lisp type for which the memory is
4732 allocated. TYPE < 0 means it's not used for a Lisp object. */
4733
4734 static void *
4735 pure_alloc (size_t size, int type)
4736 {
4737 void *result;
4738 #if USE_LSB_TAG
4739 size_t alignment = GCALIGNMENT;
4740 #else
4741 size_t alignment = alignof (EMACS_INT);
4742
4743 /* Give Lisp_Floats an extra alignment. */
4744 if (type == Lisp_Float)
4745 alignment = alignof (struct Lisp_Float);
4746 #endif
4747
4748 again:
4749 if (type >= 0)
4750 {
4751 /* Allocate space for a Lisp object from the beginning of the free
4752 space with taking account of alignment. */
4753 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4754 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4755 }
4756 else
4757 {
4758 /* Allocate space for a non-Lisp object from the end of the free
4759 space. */
4760 pure_bytes_used_non_lisp += size;
4761 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4762 }
4763 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4764
4765 if (pure_bytes_used <= pure_size)
4766 return result;
4767
4768 /* Don't allocate a large amount here,
4769 because it might get mmap'd and then its address
4770 might not be usable. */
4771 purebeg = xmalloc (10000);
4772 pure_size = 10000;
4773 pure_bytes_used_before_overflow += pure_bytes_used - size;
4774 pure_bytes_used = 0;
4775 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4776 goto again;
4777 }
4778
4779
4780 /* Print a warning if PURESIZE is too small. */
4781
4782 void
4783 check_pure_size (void)
4784 {
4785 if (pure_bytes_used_before_overflow)
4786 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4787 " bytes needed)"),
4788 pure_bytes_used + pure_bytes_used_before_overflow);
4789 }
4790
4791
4792 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4793 the non-Lisp data pool of the pure storage, and return its start
4794 address. Return NULL if not found. */
4795
4796 static char *
4797 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4798 {
4799 int i;
4800 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4801 const unsigned char *p;
4802 char *non_lisp_beg;
4803
4804 if (pure_bytes_used_non_lisp <= nbytes)
4805 return NULL;
4806
4807 /* Set up the Boyer-Moore table. */
4808 skip = nbytes + 1;
4809 for (i = 0; i < 256; i++)
4810 bm_skip[i] = skip;
4811
4812 p = (const unsigned char *) data;
4813 while (--skip > 0)
4814 bm_skip[*p++] = skip;
4815
4816 last_char_skip = bm_skip['\0'];
4817
4818 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4819 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4820
4821 /* See the comments in the function `boyer_moore' (search.c) for the
4822 use of `infinity'. */
4823 infinity = pure_bytes_used_non_lisp + 1;
4824 bm_skip['\0'] = infinity;
4825
4826 p = (const unsigned char *) non_lisp_beg + nbytes;
4827 start = 0;
4828 do
4829 {
4830 /* Check the last character (== '\0'). */
4831 do
4832 {
4833 start += bm_skip[*(p + start)];
4834 }
4835 while (start <= start_max);
4836
4837 if (start < infinity)
4838 /* Couldn't find the last character. */
4839 return NULL;
4840
4841 /* No less than `infinity' means we could find the last
4842 character at `p[start - infinity]'. */
4843 start -= infinity;
4844
4845 /* Check the remaining characters. */
4846 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4847 /* Found. */
4848 return non_lisp_beg + start;
4849
4850 start += last_char_skip;
4851 }
4852 while (start <= start_max);
4853
4854 return NULL;
4855 }
4856
4857
4858 /* Return a string allocated in pure space. DATA is a buffer holding
4859 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4860 means make the result string multibyte.
4861
4862 Must get an error if pure storage is full, since if it cannot hold
4863 a large string it may be able to hold conses that point to that
4864 string; then the string is not protected from gc. */
4865
4866 Lisp_Object
4867 make_pure_string (const char *data,
4868 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4869 {
4870 Lisp_Object string;
4871 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4872 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4873 if (s->data == NULL)
4874 {
4875 s->data = pure_alloc (nbytes + 1, -1);
4876 memcpy (s->data, data, nbytes);
4877 s->data[nbytes] = '\0';
4878 }
4879 s->size = nchars;
4880 s->size_byte = multibyte ? nbytes : -1;
4881 s->intervals = NULL;
4882 XSETSTRING (string, s);
4883 return string;
4884 }
4885
4886 /* Return a string allocated in pure space. Do not
4887 allocate the string data, just point to DATA. */
4888
4889 Lisp_Object
4890 make_pure_c_string (const char *data, ptrdiff_t nchars)
4891 {
4892 Lisp_Object string;
4893 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4894 s->size = nchars;
4895 s->size_byte = -1;
4896 s->data = (unsigned char *) data;
4897 s->intervals = NULL;
4898 XSETSTRING (string, s);
4899 return string;
4900 }
4901
4902 /* Return a cons allocated from pure space. Give it pure copies
4903 of CAR as car and CDR as cdr. */
4904
4905 Lisp_Object
4906 pure_cons (Lisp_Object car, Lisp_Object cdr)
4907 {
4908 Lisp_Object new;
4909 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4910 XSETCONS (new, p);
4911 XSETCAR (new, Fpurecopy (car));
4912 XSETCDR (new, Fpurecopy (cdr));
4913 return new;
4914 }
4915
4916
4917 /* Value is a float object with value NUM allocated from pure space. */
4918
4919 static Lisp_Object
4920 make_pure_float (double num)
4921 {
4922 Lisp_Object new;
4923 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4924 XSETFLOAT (new, p);
4925 XFLOAT_INIT (new, num);
4926 return new;
4927 }
4928
4929
4930 /* Return a vector with room for LEN Lisp_Objects allocated from
4931 pure space. */
4932
4933 static Lisp_Object
4934 make_pure_vector (ptrdiff_t len)
4935 {
4936 Lisp_Object new;
4937 size_t size = header_size + len * word_size;
4938 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
4939 XSETVECTOR (new, p);
4940 XVECTOR (new)->header.size = len;
4941 return new;
4942 }
4943
4944
4945 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4946 doc: /* Make a copy of object OBJ in pure storage.
4947 Recursively copies contents of vectors and cons cells.
4948 Does not copy symbols. Copies strings without text properties. */)
4949 (register Lisp_Object obj)
4950 {
4951 if (NILP (Vpurify_flag))
4952 return obj;
4953
4954 if (PURE_POINTER_P (XPNTR (obj)))
4955 return obj;
4956
4957 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4958 {
4959 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4960 if (!NILP (tmp))
4961 return tmp;
4962 }
4963
4964 if (CONSP (obj))
4965 obj = pure_cons (XCAR (obj), XCDR (obj));
4966 else if (FLOATP (obj))
4967 obj = make_pure_float (XFLOAT_DATA (obj));
4968 else if (STRINGP (obj))
4969 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4970 SBYTES (obj),
4971 STRING_MULTIBYTE (obj));
4972 else if (COMPILEDP (obj) || VECTORP (obj))
4973 {
4974 register struct Lisp_Vector *vec;
4975 register ptrdiff_t i;
4976 ptrdiff_t size;
4977
4978 size = ASIZE (obj);
4979 if (size & PSEUDOVECTOR_FLAG)
4980 size &= PSEUDOVECTOR_SIZE_MASK;
4981 vec = XVECTOR (make_pure_vector (size));
4982 for (i = 0; i < size; i++)
4983 vec->contents[i] = Fpurecopy (AREF (obj, i));
4984 if (COMPILEDP (obj))
4985 {
4986 XSETPVECTYPE (vec, PVEC_COMPILED);
4987 XSETCOMPILED (obj, vec);
4988 }
4989 else
4990 XSETVECTOR (obj, vec);
4991 }
4992 else if (MARKERP (obj))
4993 error ("Attempt to copy a marker to pure storage");
4994 else
4995 /* Not purified, don't hash-cons. */
4996 return obj;
4997
4998 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4999 Fputhash (obj, obj, Vpurify_flag);
5000
5001 return obj;
5002 }
5003
5004
5005 \f
5006 /***********************************************************************
5007 Protection from GC
5008 ***********************************************************************/
5009
5010 /* Put an entry in staticvec, pointing at the variable with address
5011 VARADDRESS. */
5012
5013 void
5014 staticpro (Lisp_Object *varaddress)
5015 {
5016 staticvec[staticidx++] = varaddress;
5017 if (staticidx >= NSTATICS)
5018 emacs_abort ();
5019 }
5020
5021 \f
5022 /***********************************************************************
5023 Protection from GC
5024 ***********************************************************************/
5025
5026 /* Temporarily prevent garbage collection. */
5027
5028 ptrdiff_t
5029 inhibit_garbage_collection (void)
5030 {
5031 ptrdiff_t count = SPECPDL_INDEX ();
5032
5033 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5034 return count;
5035 }
5036
5037 /* Used to avoid possible overflows when
5038 converting from C to Lisp integers. */
5039
5040 static inline Lisp_Object
5041 bounded_number (EMACS_INT number)
5042 {
5043 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5044 }
5045
5046 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5047 doc: /* Reclaim storage for Lisp objects no longer needed.
5048 Garbage collection happens automatically if you cons more than
5049 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5050 `garbage-collect' normally returns a list with info on amount of space in use,
5051 where each entry has the form (NAME SIZE USED FREE), where:
5052 - NAME is a symbol describing the kind of objects this entry represents,
5053 - SIZE is the number of bytes used by each one,
5054 - USED is the number of those objects that were found live in the heap,
5055 - FREE is the number of those objects that are not live but that Emacs
5056 keeps around for future allocations (maybe because it does not know how
5057 to return them to the OS).
5058 However, if there was overflow in pure space, `garbage-collect'
5059 returns nil, because real GC can't be done.
5060 See Info node `(elisp)Garbage Collection'. */)
5061 (void)
5062 {
5063 struct specbinding *bind;
5064 struct buffer *nextb;
5065 char stack_top_variable;
5066 ptrdiff_t i;
5067 bool message_p;
5068 ptrdiff_t count = SPECPDL_INDEX ();
5069 EMACS_TIME start;
5070 Lisp_Object retval = Qnil;
5071
5072 if (abort_on_gc)
5073 emacs_abort ();
5074
5075 /* Can't GC if pure storage overflowed because we can't determine
5076 if something is a pure object or not. */
5077 if (pure_bytes_used_before_overflow)
5078 return Qnil;
5079
5080 check_cons_list ();
5081
5082 /* Don't keep undo information around forever.
5083 Do this early on, so it is no problem if the user quits. */
5084 FOR_EACH_BUFFER (nextb)
5085 compact_buffer (nextb);
5086
5087 start = current_emacs_time ();
5088
5089 /* In case user calls debug_print during GC,
5090 don't let that cause a recursive GC. */
5091 consing_since_gc = 0;
5092
5093 /* Save what's currently displayed in the echo area. */
5094 message_p = push_message ();
5095 record_unwind_protect (pop_message_unwind, Qnil);
5096
5097 /* Save a copy of the contents of the stack, for debugging. */
5098 #if MAX_SAVE_STACK > 0
5099 if (NILP (Vpurify_flag))
5100 {
5101 char *stack;
5102 ptrdiff_t stack_size;
5103 if (&stack_top_variable < stack_bottom)
5104 {
5105 stack = &stack_top_variable;
5106 stack_size = stack_bottom - &stack_top_variable;
5107 }
5108 else
5109 {
5110 stack = stack_bottom;
5111 stack_size = &stack_top_variable - stack_bottom;
5112 }
5113 if (stack_size <= MAX_SAVE_STACK)
5114 {
5115 if (stack_copy_size < stack_size)
5116 {
5117 stack_copy = xrealloc (stack_copy, stack_size);
5118 stack_copy_size = stack_size;
5119 }
5120 memcpy (stack_copy, stack, stack_size);
5121 }
5122 }
5123 #endif /* MAX_SAVE_STACK > 0 */
5124
5125 if (garbage_collection_messages)
5126 message1_nolog ("Garbage collecting...");
5127
5128 block_input ();
5129
5130 shrink_regexp_cache ();
5131
5132 gc_in_progress = 1;
5133
5134 /* Mark all the special slots that serve as the roots of accessibility. */
5135
5136 mark_buffer (&buffer_defaults);
5137 mark_buffer (&buffer_local_symbols);
5138
5139 for (i = 0; i < staticidx; i++)
5140 mark_object (*staticvec[i]);
5141
5142 for (bind = specpdl; bind != specpdl_ptr; bind++)
5143 {
5144 mark_object (bind->symbol);
5145 mark_object (bind->old_value);
5146 }
5147 mark_terminals ();
5148 mark_kboards ();
5149
5150 #ifdef USE_GTK
5151 xg_mark_data ();
5152 #endif
5153
5154 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5155 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5156 mark_stack ();
5157 #else
5158 {
5159 register struct gcpro *tail;
5160 for (tail = gcprolist; tail; tail = tail->next)
5161 for (i = 0; i < tail->nvars; i++)
5162 mark_object (tail->var[i]);
5163 }
5164 mark_byte_stack ();
5165 {
5166 struct catchtag *catch;
5167 struct handler *handler;
5168
5169 for (catch = catchlist; catch; catch = catch->next)
5170 {
5171 mark_object (catch->tag);
5172 mark_object (catch->val);
5173 }
5174 for (handler = handlerlist; handler; handler = handler->next)
5175 {
5176 mark_object (handler->handler);
5177 mark_object (handler->var);
5178 }
5179 }
5180 mark_backtrace ();
5181 #endif
5182
5183 #ifdef HAVE_WINDOW_SYSTEM
5184 mark_fringe_data ();
5185 #endif
5186
5187 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5188 mark_stack ();
5189 #endif
5190
5191 /* Everything is now marked, except for the things that require special
5192 finalization, i.e. the undo_list.
5193 Look thru every buffer's undo list
5194 for elements that update markers that were not marked,
5195 and delete them. */
5196 FOR_EACH_BUFFER (nextb)
5197 {
5198 /* If a buffer's undo list is Qt, that means that undo is
5199 turned off in that buffer. Calling truncate_undo_list on
5200 Qt tends to return NULL, which effectively turns undo back on.
5201 So don't call truncate_undo_list if undo_list is Qt. */
5202 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5203 {
5204 Lisp_Object tail, prev;
5205 tail = nextb->INTERNAL_FIELD (undo_list);
5206 prev = Qnil;
5207 while (CONSP (tail))
5208 {
5209 if (CONSP (XCAR (tail))
5210 && MARKERP (XCAR (XCAR (tail)))
5211 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5212 {
5213 if (NILP (prev))
5214 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5215 else
5216 {
5217 tail = XCDR (tail);
5218 XSETCDR (prev, tail);
5219 }
5220 }
5221 else
5222 {
5223 prev = tail;
5224 tail = XCDR (tail);
5225 }
5226 }
5227 }
5228 /* Now that we have stripped the elements that need not be in the
5229 undo_list any more, we can finally mark the list. */
5230 mark_object (nextb->INTERNAL_FIELD (undo_list));
5231 }
5232
5233 gc_sweep ();
5234
5235 /* Clear the mark bits that we set in certain root slots. */
5236
5237 unmark_byte_stack ();
5238 VECTOR_UNMARK (&buffer_defaults);
5239 VECTOR_UNMARK (&buffer_local_symbols);
5240
5241 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5242 dump_zombies ();
5243 #endif
5244
5245 unblock_input ();
5246
5247 check_cons_list ();
5248
5249 gc_in_progress = 0;
5250
5251 consing_since_gc = 0;
5252 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5253 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5254
5255 gc_relative_threshold = 0;
5256 if (FLOATP (Vgc_cons_percentage))
5257 { /* Set gc_cons_combined_threshold. */
5258 double tot = 0;
5259
5260 tot += total_conses * sizeof (struct Lisp_Cons);
5261 tot += total_symbols * sizeof (struct Lisp_Symbol);
5262 tot += total_markers * sizeof (union Lisp_Misc);
5263 tot += total_string_bytes;
5264 tot += total_vector_slots * word_size;
5265 tot += total_floats * sizeof (struct Lisp_Float);
5266 tot += total_intervals * sizeof (struct interval);
5267 tot += total_strings * sizeof (struct Lisp_String);
5268
5269 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5270 if (0 < tot)
5271 {
5272 if (tot < TYPE_MAXIMUM (EMACS_INT))
5273 gc_relative_threshold = tot;
5274 else
5275 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5276 }
5277 }
5278
5279 if (garbage_collection_messages)
5280 {
5281 if (message_p || minibuf_level > 0)
5282 restore_message ();
5283 else
5284 message1_nolog ("Garbage collecting...done");
5285 }
5286
5287 unbind_to (count, Qnil);
5288 {
5289 Lisp_Object total[11];
5290 int total_size = 10;
5291
5292 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5293 bounded_number (total_conses),
5294 bounded_number (total_free_conses));
5295
5296 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5297 bounded_number (total_symbols),
5298 bounded_number (total_free_symbols));
5299
5300 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5301 bounded_number (total_markers),
5302 bounded_number (total_free_markers));
5303
5304 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5305 bounded_number (total_strings),
5306 bounded_number (total_free_strings));
5307
5308 total[4] = list3 (Qstring_bytes, make_number (1),
5309 bounded_number (total_string_bytes));
5310
5311 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5312 bounded_number (total_vectors));
5313
5314 total[6] = list4 (Qvector_slots, make_number (word_size),
5315 bounded_number (total_vector_slots),
5316 bounded_number (total_free_vector_slots));
5317
5318 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5319 bounded_number (total_floats),
5320 bounded_number (total_free_floats));
5321
5322 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5323 bounded_number (total_intervals),
5324 bounded_number (total_free_intervals));
5325
5326 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5327 bounded_number (total_buffers));
5328
5329 #ifdef DOUG_LEA_MALLOC
5330 total_size++;
5331 total[10] = list4 (Qheap, make_number (1024),
5332 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5333 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5334 #endif
5335 retval = Flist (total_size, total);
5336 }
5337
5338 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5339 {
5340 /* Compute average percentage of zombies. */
5341 double nlive
5342 = (total_conses + total_symbols + total_markers + total_strings
5343 + total_vectors + total_floats + total_intervals + total_buffers);
5344
5345 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5346 max_live = max (nlive, max_live);
5347 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5348 max_zombies = max (nzombies, max_zombies);
5349 ++ngcs;
5350 }
5351 #endif
5352
5353 if (!NILP (Vpost_gc_hook))
5354 {
5355 ptrdiff_t gc_count = inhibit_garbage_collection ();
5356 safe_run_hooks (Qpost_gc_hook);
5357 unbind_to (gc_count, Qnil);
5358 }
5359
5360 /* Accumulate statistics. */
5361 if (FLOATP (Vgc_elapsed))
5362 {
5363 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5364 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5365 + EMACS_TIME_TO_DOUBLE (since_start));
5366 }
5367
5368 gcs_done++;
5369
5370 return retval;
5371 }
5372
5373
5374 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5375 only interesting objects referenced from glyphs are strings. */
5376
5377 static void
5378 mark_glyph_matrix (struct glyph_matrix *matrix)
5379 {
5380 struct glyph_row *row = matrix->rows;
5381 struct glyph_row *end = row + matrix->nrows;
5382
5383 for (; row < end; ++row)
5384 if (row->enabled_p)
5385 {
5386 int area;
5387 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5388 {
5389 struct glyph *glyph = row->glyphs[area];
5390 struct glyph *end_glyph = glyph + row->used[area];
5391
5392 for (; glyph < end_glyph; ++glyph)
5393 if (STRINGP (glyph->object)
5394 && !STRING_MARKED_P (XSTRING (glyph->object)))
5395 mark_object (glyph->object);
5396 }
5397 }
5398 }
5399
5400
5401 /* Mark Lisp faces in the face cache C. */
5402
5403 static void
5404 mark_face_cache (struct face_cache *c)
5405 {
5406 if (c)
5407 {
5408 int i, j;
5409 for (i = 0; i < c->used; ++i)
5410 {
5411 struct face *face = FACE_FROM_ID (c->f, i);
5412
5413 if (face)
5414 {
5415 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5416 mark_object (face->lface[j]);
5417 }
5418 }
5419 }
5420 }
5421
5422
5423 \f
5424 /* Mark reference to a Lisp_Object.
5425 If the object referred to has not been seen yet, recursively mark
5426 all the references contained in it. */
5427
5428 #define LAST_MARKED_SIZE 500
5429 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5430 static int last_marked_index;
5431
5432 /* For debugging--call abort when we cdr down this many
5433 links of a list, in mark_object. In debugging,
5434 the call to abort will hit a breakpoint.
5435 Normally this is zero and the check never goes off. */
5436 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5437
5438 static void
5439 mark_vectorlike (struct Lisp_Vector *ptr)
5440 {
5441 ptrdiff_t size = ptr->header.size;
5442 ptrdiff_t i;
5443
5444 eassert (!VECTOR_MARKED_P (ptr));
5445 VECTOR_MARK (ptr); /* Else mark it. */
5446 if (size & PSEUDOVECTOR_FLAG)
5447 size &= PSEUDOVECTOR_SIZE_MASK;
5448
5449 /* Note that this size is not the memory-footprint size, but only
5450 the number of Lisp_Object fields that we should trace.
5451 The distinction is used e.g. by Lisp_Process which places extra
5452 non-Lisp_Object fields at the end of the structure... */
5453 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5454 mark_object (ptr->contents[i]);
5455 }
5456
5457 /* Like mark_vectorlike but optimized for char-tables (and
5458 sub-char-tables) assuming that the contents are mostly integers or
5459 symbols. */
5460
5461 static void
5462 mark_char_table (struct Lisp_Vector *ptr)
5463 {
5464 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5465 int i;
5466
5467 eassert (!VECTOR_MARKED_P (ptr));
5468 VECTOR_MARK (ptr);
5469 for (i = 0; i < size; i++)
5470 {
5471 Lisp_Object val = ptr->contents[i];
5472
5473 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5474 continue;
5475 if (SUB_CHAR_TABLE_P (val))
5476 {
5477 if (! VECTOR_MARKED_P (XVECTOR (val)))
5478 mark_char_table (XVECTOR (val));
5479 }
5480 else
5481 mark_object (val);
5482 }
5483 }
5484
5485 /* Mark the chain of overlays starting at PTR. */
5486
5487 static void
5488 mark_overlay (struct Lisp_Overlay *ptr)
5489 {
5490 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5491 {
5492 ptr->gcmarkbit = 1;
5493 mark_object (ptr->start);
5494 mark_object (ptr->end);
5495 mark_object (ptr->plist);
5496 }
5497 }
5498
5499 /* Mark Lisp_Objects and special pointers in BUFFER. */
5500
5501 static void
5502 mark_buffer (struct buffer *buffer)
5503 {
5504 /* This is handled much like other pseudovectors... */
5505 mark_vectorlike ((struct Lisp_Vector *) buffer);
5506
5507 /* ...but there are some buffer-specific things. */
5508
5509 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5510
5511 /* For now, we just don't mark the undo_list. It's done later in
5512 a special way just before the sweep phase, and after stripping
5513 some of its elements that are not needed any more. */
5514
5515 mark_overlay (buffer->overlays_before);
5516 mark_overlay (buffer->overlays_after);
5517
5518 /* If this is an indirect buffer, mark its base buffer. */
5519 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5520 mark_buffer (buffer->base_buffer);
5521 }
5522
5523 /* Remove killed buffers or items whose car is a killed buffer from
5524 LIST, and mark other items. Return changed LIST, which is marked. */
5525
5526 static Lisp_Object
5527 mark_discard_killed_buffers (Lisp_Object list)
5528 {
5529 Lisp_Object tail, *prev = &list;
5530
5531 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5532 tail = XCDR (tail))
5533 {
5534 Lisp_Object tem = XCAR (tail);
5535 if (CONSP (tem))
5536 tem = XCAR (tem);
5537 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5538 *prev = XCDR (tail);
5539 else
5540 {
5541 CONS_MARK (XCONS (tail));
5542 mark_object (XCAR (tail));
5543 prev = &XCDR_AS_LVALUE (tail);
5544 }
5545 }
5546 mark_object (tail);
5547 return list;
5548 }
5549
5550 /* Determine type of generic Lisp_Object and mark it accordingly. */
5551
5552 void
5553 mark_object (Lisp_Object arg)
5554 {
5555 register Lisp_Object obj = arg;
5556 #ifdef GC_CHECK_MARKED_OBJECTS
5557 void *po;
5558 struct mem_node *m;
5559 #endif
5560 ptrdiff_t cdr_count = 0;
5561
5562 loop:
5563
5564 if (PURE_POINTER_P (XPNTR (obj)))
5565 return;
5566
5567 last_marked[last_marked_index++] = obj;
5568 if (last_marked_index == LAST_MARKED_SIZE)
5569 last_marked_index = 0;
5570
5571 /* Perform some sanity checks on the objects marked here. Abort if
5572 we encounter an object we know is bogus. This increases GC time
5573 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5574 #ifdef GC_CHECK_MARKED_OBJECTS
5575
5576 po = (void *) XPNTR (obj);
5577
5578 /* Check that the object pointed to by PO is known to be a Lisp
5579 structure allocated from the heap. */
5580 #define CHECK_ALLOCATED() \
5581 do { \
5582 m = mem_find (po); \
5583 if (m == MEM_NIL) \
5584 emacs_abort (); \
5585 } while (0)
5586
5587 /* Check that the object pointed to by PO is live, using predicate
5588 function LIVEP. */
5589 #define CHECK_LIVE(LIVEP) \
5590 do { \
5591 if (!LIVEP (m, po)) \
5592 emacs_abort (); \
5593 } while (0)
5594
5595 /* Check both of the above conditions. */
5596 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5597 do { \
5598 CHECK_ALLOCATED (); \
5599 CHECK_LIVE (LIVEP); \
5600 } while (0) \
5601
5602 #else /* not GC_CHECK_MARKED_OBJECTS */
5603
5604 #define CHECK_LIVE(LIVEP) (void) 0
5605 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5606
5607 #endif /* not GC_CHECK_MARKED_OBJECTS */
5608
5609 switch (XTYPE (obj))
5610 {
5611 case Lisp_String:
5612 {
5613 register struct Lisp_String *ptr = XSTRING (obj);
5614 if (STRING_MARKED_P (ptr))
5615 break;
5616 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5617 MARK_STRING (ptr);
5618 MARK_INTERVAL_TREE (ptr->intervals);
5619 #ifdef GC_CHECK_STRING_BYTES
5620 /* Check that the string size recorded in the string is the
5621 same as the one recorded in the sdata structure. */
5622 string_bytes (ptr);
5623 #endif /* GC_CHECK_STRING_BYTES */
5624 }
5625 break;
5626
5627 case Lisp_Vectorlike:
5628 {
5629 register struct Lisp_Vector *ptr = XVECTOR (obj);
5630 register ptrdiff_t pvectype;
5631
5632 if (VECTOR_MARKED_P (ptr))
5633 break;
5634
5635 #ifdef GC_CHECK_MARKED_OBJECTS
5636 m = mem_find (po);
5637 if (m == MEM_NIL && !SUBRP (obj))
5638 emacs_abort ();
5639 #endif /* GC_CHECK_MARKED_OBJECTS */
5640
5641 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5642 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5643 >> PSEUDOVECTOR_SIZE_BITS);
5644 else
5645 pvectype = 0;
5646
5647 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5648 CHECK_LIVE (live_vector_p);
5649
5650 switch (pvectype)
5651 {
5652 case PVEC_BUFFER:
5653 #ifdef GC_CHECK_MARKED_OBJECTS
5654 {
5655 struct buffer *b;
5656 FOR_EACH_BUFFER (b)
5657 if (b == po)
5658 break;
5659 if (b == NULL)
5660 emacs_abort ();
5661 }
5662 #endif /* GC_CHECK_MARKED_OBJECTS */
5663 mark_buffer ((struct buffer *) ptr);
5664 break;
5665
5666 case PVEC_COMPILED:
5667 { /* We could treat this just like a vector, but it is better
5668 to save the COMPILED_CONSTANTS element for last and avoid
5669 recursion there. */
5670 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5671 int i;
5672
5673 VECTOR_MARK (ptr);
5674 for (i = 0; i < size; i++)
5675 if (i != COMPILED_CONSTANTS)
5676 mark_object (ptr->contents[i]);
5677 if (size > COMPILED_CONSTANTS)
5678 {
5679 obj = ptr->contents[COMPILED_CONSTANTS];
5680 goto loop;
5681 }
5682 }
5683 break;
5684
5685 case PVEC_FRAME:
5686 mark_vectorlike (ptr);
5687 mark_face_cache (((struct frame *) ptr)->face_cache);
5688 break;
5689
5690 case PVEC_WINDOW:
5691 {
5692 struct window *w = (struct window *) ptr;
5693 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5694
5695 mark_vectorlike (ptr);
5696
5697 /* Mark glyphs for leaf windows. Marking window
5698 matrices is sufficient because frame matrices
5699 use the same glyph memory. */
5700 if (leaf && w->current_matrix)
5701 {
5702 mark_glyph_matrix (w->current_matrix);
5703 mark_glyph_matrix (w->desired_matrix);
5704 }
5705
5706 /* Filter out killed buffers from both buffer lists
5707 in attempt to help GC to reclaim killed buffers faster.
5708 We can do it elsewhere for live windows, but this is the
5709 best place to do it for dead windows. */
5710 wset_prev_buffers
5711 (w, mark_discard_killed_buffers (w->prev_buffers));
5712 wset_next_buffers
5713 (w, mark_discard_killed_buffers (w->next_buffers));
5714 }
5715 break;
5716
5717 case PVEC_HASH_TABLE:
5718 {
5719 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5720
5721 mark_vectorlike (ptr);
5722 /* If hash table is not weak, mark all keys and values.
5723 For weak tables, mark only the vector. */
5724 if (NILP (h->weak))
5725 mark_object (h->key_and_value);
5726 else
5727 VECTOR_MARK (XVECTOR (h->key_and_value));
5728 }
5729 break;
5730
5731 case PVEC_CHAR_TABLE:
5732 mark_char_table (ptr);
5733 break;
5734
5735 case PVEC_BOOL_VECTOR:
5736 /* No Lisp_Objects to mark in a bool vector. */
5737 VECTOR_MARK (ptr);
5738 break;
5739
5740 case PVEC_SUBR:
5741 break;
5742
5743 case PVEC_FREE:
5744 emacs_abort ();
5745
5746 default:
5747 mark_vectorlike (ptr);
5748 }
5749 }
5750 break;
5751
5752 case Lisp_Symbol:
5753 {
5754 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5755 struct Lisp_Symbol *ptrx;
5756
5757 if (ptr->gcmarkbit)
5758 break;
5759 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5760 ptr->gcmarkbit = 1;
5761 mark_object (ptr->function);
5762 mark_object (ptr->plist);
5763 switch (ptr->redirect)
5764 {
5765 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5766 case SYMBOL_VARALIAS:
5767 {
5768 Lisp_Object tem;
5769 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5770 mark_object (tem);
5771 break;
5772 }
5773 case SYMBOL_LOCALIZED:
5774 {
5775 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5776 Lisp_Object where = blv->where;
5777 /* If the value is set up for a killed buffer or deleted
5778 frame, restore it's global binding. If the value is
5779 forwarded to a C variable, either it's not a Lisp_Object
5780 var, or it's staticpro'd already. */
5781 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5782 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5783 swap_in_global_binding (ptr);
5784 mark_object (blv->where);
5785 mark_object (blv->valcell);
5786 mark_object (blv->defcell);
5787 break;
5788 }
5789 case SYMBOL_FORWARDED:
5790 /* If the value is forwarded to a buffer or keyboard field,
5791 these are marked when we see the corresponding object.
5792 And if it's forwarded to a C variable, either it's not
5793 a Lisp_Object var, or it's staticpro'd already. */
5794 break;
5795 default: emacs_abort ();
5796 }
5797 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5798 MARK_STRING (XSTRING (ptr->name));
5799 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5800
5801 ptr = ptr->next;
5802 if (ptr)
5803 {
5804 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5805 XSETSYMBOL (obj, ptrx);
5806 goto loop;
5807 }
5808 }
5809 break;
5810
5811 case Lisp_Misc:
5812 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5813
5814 if (XMISCANY (obj)->gcmarkbit)
5815 break;
5816
5817 switch (XMISCTYPE (obj))
5818 {
5819 case Lisp_Misc_Marker:
5820 /* DO NOT mark thru the marker's chain.
5821 The buffer's markers chain does not preserve markers from gc;
5822 instead, markers are removed from the chain when freed by gc. */
5823 XMISCANY (obj)->gcmarkbit = 1;
5824 break;
5825
5826 case Lisp_Misc_Save_Value:
5827 XMISCANY (obj)->gcmarkbit = 1;
5828 #if GC_MARK_STACK
5829 {
5830 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5831 /* If DOGC is set, POINTER is the address of a memory
5832 area containing INTEGER potential Lisp_Objects. */
5833 if (ptr->dogc)
5834 {
5835 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5836 ptrdiff_t nelt;
5837 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5838 mark_maybe_object (*p);
5839 }
5840 }
5841 #endif
5842 break;
5843
5844 case Lisp_Misc_Overlay:
5845 mark_overlay (XOVERLAY (obj));
5846 break;
5847
5848 default:
5849 emacs_abort ();
5850 }
5851 break;
5852
5853 case Lisp_Cons:
5854 {
5855 register struct Lisp_Cons *ptr = XCONS (obj);
5856 if (CONS_MARKED_P (ptr))
5857 break;
5858 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5859 CONS_MARK (ptr);
5860 /* If the cdr is nil, avoid recursion for the car. */
5861 if (EQ (ptr->u.cdr, Qnil))
5862 {
5863 obj = ptr->car;
5864 cdr_count = 0;
5865 goto loop;
5866 }
5867 mark_object (ptr->car);
5868 obj = ptr->u.cdr;
5869 cdr_count++;
5870 if (cdr_count == mark_object_loop_halt)
5871 emacs_abort ();
5872 goto loop;
5873 }
5874
5875 case Lisp_Float:
5876 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5877 FLOAT_MARK (XFLOAT (obj));
5878 break;
5879
5880 case_Lisp_Int:
5881 break;
5882
5883 default:
5884 emacs_abort ();
5885 }
5886
5887 #undef CHECK_LIVE
5888 #undef CHECK_ALLOCATED
5889 #undef CHECK_ALLOCATED_AND_LIVE
5890 }
5891 /* Mark the Lisp pointers in the terminal objects.
5892 Called by Fgarbage_collect. */
5893
5894 static void
5895 mark_terminals (void)
5896 {
5897 struct terminal *t;
5898 for (t = terminal_list; t; t = t->next_terminal)
5899 {
5900 eassert (t->name != NULL);
5901 #ifdef HAVE_WINDOW_SYSTEM
5902 /* If a terminal object is reachable from a stacpro'ed object,
5903 it might have been marked already. Make sure the image cache
5904 gets marked. */
5905 mark_image_cache (t->image_cache);
5906 #endif /* HAVE_WINDOW_SYSTEM */
5907 if (!VECTOR_MARKED_P (t))
5908 mark_vectorlike ((struct Lisp_Vector *)t);
5909 }
5910 }
5911
5912
5913
5914 /* Value is non-zero if OBJ will survive the current GC because it's
5915 either marked or does not need to be marked to survive. */
5916
5917 bool
5918 survives_gc_p (Lisp_Object obj)
5919 {
5920 bool survives_p;
5921
5922 switch (XTYPE (obj))
5923 {
5924 case_Lisp_Int:
5925 survives_p = 1;
5926 break;
5927
5928 case Lisp_Symbol:
5929 survives_p = XSYMBOL (obj)->gcmarkbit;
5930 break;
5931
5932 case Lisp_Misc:
5933 survives_p = XMISCANY (obj)->gcmarkbit;
5934 break;
5935
5936 case Lisp_String:
5937 survives_p = STRING_MARKED_P (XSTRING (obj));
5938 break;
5939
5940 case Lisp_Vectorlike:
5941 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5942 break;
5943
5944 case Lisp_Cons:
5945 survives_p = CONS_MARKED_P (XCONS (obj));
5946 break;
5947
5948 case Lisp_Float:
5949 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5950 break;
5951
5952 default:
5953 emacs_abort ();
5954 }
5955
5956 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5957 }
5958
5959
5960 \f
5961 /* Sweep: find all structures not marked, and free them. */
5962
5963 static void
5964 gc_sweep (void)
5965 {
5966 /* Remove or mark entries in weak hash tables.
5967 This must be done before any object is unmarked. */
5968 sweep_weak_hash_tables ();
5969
5970 sweep_strings ();
5971 check_string_bytes (!noninteractive);
5972
5973 /* Put all unmarked conses on free list */
5974 {
5975 register struct cons_block *cblk;
5976 struct cons_block **cprev = &cons_block;
5977 register int lim = cons_block_index;
5978 EMACS_INT num_free = 0, num_used = 0;
5979
5980 cons_free_list = 0;
5981
5982 for (cblk = cons_block; cblk; cblk = *cprev)
5983 {
5984 register int i = 0;
5985 int this_free = 0;
5986 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5987
5988 /* Scan the mark bits an int at a time. */
5989 for (i = 0; i < ilim; i++)
5990 {
5991 if (cblk->gcmarkbits[i] == -1)
5992 {
5993 /* Fast path - all cons cells for this int are marked. */
5994 cblk->gcmarkbits[i] = 0;
5995 num_used += BITS_PER_INT;
5996 }
5997 else
5998 {
5999 /* Some cons cells for this int are not marked.
6000 Find which ones, and free them. */
6001 int start, pos, stop;
6002
6003 start = i * BITS_PER_INT;
6004 stop = lim - start;
6005 if (stop > BITS_PER_INT)
6006 stop = BITS_PER_INT;
6007 stop += start;
6008
6009 for (pos = start; pos < stop; pos++)
6010 {
6011 if (!CONS_MARKED_P (&cblk->conses[pos]))
6012 {
6013 this_free++;
6014 cblk->conses[pos].u.chain = cons_free_list;
6015 cons_free_list = &cblk->conses[pos];
6016 #if GC_MARK_STACK
6017 cons_free_list->car = Vdead;
6018 #endif
6019 }
6020 else
6021 {
6022 num_used++;
6023 CONS_UNMARK (&cblk->conses[pos]);
6024 }
6025 }
6026 }
6027 }
6028
6029 lim = CONS_BLOCK_SIZE;
6030 /* If this block contains only free conses and we have already
6031 seen more than two blocks worth of free conses then deallocate
6032 this block. */
6033 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6034 {
6035 *cprev = cblk->next;
6036 /* Unhook from the free list. */
6037 cons_free_list = cblk->conses[0].u.chain;
6038 lisp_align_free (cblk);
6039 }
6040 else
6041 {
6042 num_free += this_free;
6043 cprev = &cblk->next;
6044 }
6045 }
6046 total_conses = num_used;
6047 total_free_conses = num_free;
6048 }
6049
6050 /* Put all unmarked floats on free list */
6051 {
6052 register struct float_block *fblk;
6053 struct float_block **fprev = &float_block;
6054 register int lim = float_block_index;
6055 EMACS_INT num_free = 0, num_used = 0;
6056
6057 float_free_list = 0;
6058
6059 for (fblk = float_block; fblk; fblk = *fprev)
6060 {
6061 register int i;
6062 int this_free = 0;
6063 for (i = 0; i < lim; i++)
6064 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6065 {
6066 this_free++;
6067 fblk->floats[i].u.chain = float_free_list;
6068 float_free_list = &fblk->floats[i];
6069 }
6070 else
6071 {
6072 num_used++;
6073 FLOAT_UNMARK (&fblk->floats[i]);
6074 }
6075 lim = FLOAT_BLOCK_SIZE;
6076 /* If this block contains only free floats and we have already
6077 seen more than two blocks worth of free floats then deallocate
6078 this block. */
6079 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6080 {
6081 *fprev = fblk->next;
6082 /* Unhook from the free list. */
6083 float_free_list = fblk->floats[0].u.chain;
6084 lisp_align_free (fblk);
6085 }
6086 else
6087 {
6088 num_free += this_free;
6089 fprev = &fblk->next;
6090 }
6091 }
6092 total_floats = num_used;
6093 total_free_floats = num_free;
6094 }
6095
6096 /* Put all unmarked intervals on free list */
6097 {
6098 register struct interval_block *iblk;
6099 struct interval_block **iprev = &interval_block;
6100 register int lim = interval_block_index;
6101 EMACS_INT num_free = 0, num_used = 0;
6102
6103 interval_free_list = 0;
6104
6105 for (iblk = interval_block; iblk; iblk = *iprev)
6106 {
6107 register int i;
6108 int this_free = 0;
6109
6110 for (i = 0; i < lim; i++)
6111 {
6112 if (!iblk->intervals[i].gcmarkbit)
6113 {
6114 set_interval_parent (&iblk->intervals[i], interval_free_list);
6115 interval_free_list = &iblk->intervals[i];
6116 this_free++;
6117 }
6118 else
6119 {
6120 num_used++;
6121 iblk->intervals[i].gcmarkbit = 0;
6122 }
6123 }
6124 lim = INTERVAL_BLOCK_SIZE;
6125 /* If this block contains only free intervals and we have already
6126 seen more than two blocks worth of free intervals then
6127 deallocate this block. */
6128 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6129 {
6130 *iprev = iblk->next;
6131 /* Unhook from the free list. */
6132 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6133 lisp_free (iblk);
6134 }
6135 else
6136 {
6137 num_free += this_free;
6138 iprev = &iblk->next;
6139 }
6140 }
6141 total_intervals = num_used;
6142 total_free_intervals = num_free;
6143 }
6144
6145 /* Put all unmarked symbols on free list */
6146 {
6147 register struct symbol_block *sblk;
6148 struct symbol_block **sprev = &symbol_block;
6149 register int lim = symbol_block_index;
6150 EMACS_INT num_free = 0, num_used = 0;
6151
6152 symbol_free_list = NULL;
6153
6154 for (sblk = symbol_block; sblk; sblk = *sprev)
6155 {
6156 int this_free = 0;
6157 union aligned_Lisp_Symbol *sym = sblk->symbols;
6158 union aligned_Lisp_Symbol *end = sym + lim;
6159
6160 for (; sym < end; ++sym)
6161 {
6162 /* Check if the symbol was created during loadup. In such a case
6163 it might be pointed to by pure bytecode which we don't trace,
6164 so we conservatively assume that it is live. */
6165 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6166
6167 if (!sym->s.gcmarkbit && !pure_p)
6168 {
6169 if (sym->s.redirect == SYMBOL_LOCALIZED)
6170 xfree (SYMBOL_BLV (&sym->s));
6171 sym->s.next = symbol_free_list;
6172 symbol_free_list = &sym->s;
6173 #if GC_MARK_STACK
6174 symbol_free_list->function = Vdead;
6175 #endif
6176 ++this_free;
6177 }
6178 else
6179 {
6180 ++num_used;
6181 if (!pure_p)
6182 UNMARK_STRING (XSTRING (sym->s.name));
6183 sym->s.gcmarkbit = 0;
6184 }
6185 }
6186
6187 lim = SYMBOL_BLOCK_SIZE;
6188 /* If this block contains only free symbols and we have already
6189 seen more than two blocks worth of free symbols then deallocate
6190 this block. */
6191 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6192 {
6193 *sprev = sblk->next;
6194 /* Unhook from the free list. */
6195 symbol_free_list = sblk->symbols[0].s.next;
6196 lisp_free (sblk);
6197 }
6198 else
6199 {
6200 num_free += this_free;
6201 sprev = &sblk->next;
6202 }
6203 }
6204 total_symbols = num_used;
6205 total_free_symbols = num_free;
6206 }
6207
6208 /* Put all unmarked misc's on free list.
6209 For a marker, first unchain it from the buffer it points into. */
6210 {
6211 register struct marker_block *mblk;
6212 struct marker_block **mprev = &marker_block;
6213 register int lim = marker_block_index;
6214 EMACS_INT num_free = 0, num_used = 0;
6215
6216 marker_free_list = 0;
6217
6218 for (mblk = marker_block; mblk; mblk = *mprev)
6219 {
6220 register int i;
6221 int this_free = 0;
6222
6223 for (i = 0; i < lim; i++)
6224 {
6225 if (!mblk->markers[i].m.u_any.gcmarkbit)
6226 {
6227 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6228 unchain_marker (&mblk->markers[i].m.u_marker);
6229 /* Set the type of the freed object to Lisp_Misc_Free.
6230 We could leave the type alone, since nobody checks it,
6231 but this might catch bugs faster. */
6232 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6233 mblk->markers[i].m.u_free.chain = marker_free_list;
6234 marker_free_list = &mblk->markers[i].m;
6235 this_free++;
6236 }
6237 else
6238 {
6239 num_used++;
6240 mblk->markers[i].m.u_any.gcmarkbit = 0;
6241 }
6242 }
6243 lim = MARKER_BLOCK_SIZE;
6244 /* If this block contains only free markers and we have already
6245 seen more than two blocks worth of free markers then deallocate
6246 this block. */
6247 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6248 {
6249 *mprev = mblk->next;
6250 /* Unhook from the free list. */
6251 marker_free_list = mblk->markers[0].m.u_free.chain;
6252 lisp_free (mblk);
6253 }
6254 else
6255 {
6256 num_free += this_free;
6257 mprev = &mblk->next;
6258 }
6259 }
6260
6261 total_markers = num_used;
6262 total_free_markers = num_free;
6263 }
6264
6265 /* Free all unmarked buffers */
6266 {
6267 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6268
6269 total_buffers = 0;
6270 while (buffer)
6271 if (!VECTOR_MARKED_P (buffer))
6272 {
6273 if (prev)
6274 prev->header.next = buffer->header.next;
6275 else
6276 all_buffers = buffer->header.next.buffer;
6277 next = buffer->header.next.buffer;
6278 lisp_free (buffer);
6279 buffer = next;
6280 }
6281 else
6282 {
6283 VECTOR_UNMARK (buffer);
6284 /* Do not use buffer_(set|get)_intervals here. */
6285 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6286 total_buffers++;
6287 prev = buffer, buffer = buffer->header.next.buffer;
6288 }
6289 }
6290
6291 sweep_vectors ();
6292 check_string_bytes (!noninteractive);
6293 }
6294
6295
6296
6297 \f
6298 /* Debugging aids. */
6299
6300 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6301 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6302 This may be helpful in debugging Emacs's memory usage.
6303 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6304 (void)
6305 {
6306 Lisp_Object end;
6307
6308 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6309
6310 return end;
6311 }
6312
6313 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6314 doc: /* Return a list of counters that measure how much consing there has been.
6315 Each of these counters increments for a certain kind of object.
6316 The counters wrap around from the largest positive integer to zero.
6317 Garbage collection does not decrease them.
6318 The elements of the value are as follows:
6319 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6320 All are in units of 1 = one object consed
6321 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6322 objects consed.
6323 MISCS include overlays, markers, and some internal types.
6324 Frames, windows, buffers, and subprocesses count as vectors
6325 (but the contents of a buffer's text do not count here). */)
6326 (void)
6327 {
6328 return listn (CONSTYPE_HEAP, 8,
6329 bounded_number (cons_cells_consed),
6330 bounded_number (floats_consed),
6331 bounded_number (vector_cells_consed),
6332 bounded_number (symbols_consed),
6333 bounded_number (string_chars_consed),
6334 bounded_number (misc_objects_consed),
6335 bounded_number (intervals_consed),
6336 bounded_number (strings_consed));
6337 }
6338
6339 /* Find at most FIND_MAX symbols which have OBJ as their value or
6340 function. This is used in gdbinit's `xwhichsymbols' command. */
6341
6342 Lisp_Object
6343 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6344 {
6345 struct symbol_block *sblk;
6346 ptrdiff_t gc_count = inhibit_garbage_collection ();
6347 Lisp_Object found = Qnil;
6348
6349 if (! DEADP (obj))
6350 {
6351 for (sblk = symbol_block; sblk; sblk = sblk->next)
6352 {
6353 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6354 int bn;
6355
6356 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6357 {
6358 struct Lisp_Symbol *sym = &aligned_sym->s;
6359 Lisp_Object val;
6360 Lisp_Object tem;
6361
6362 if (sblk == symbol_block && bn >= symbol_block_index)
6363 break;
6364
6365 XSETSYMBOL (tem, sym);
6366 val = find_symbol_value (tem);
6367 if (EQ (val, obj)
6368 || EQ (sym->function, obj)
6369 || (!NILP (sym->function)
6370 && COMPILEDP (sym->function)
6371 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6372 || (!NILP (val)
6373 && COMPILEDP (val)
6374 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6375 {
6376 found = Fcons (tem, found);
6377 if (--find_max == 0)
6378 goto out;
6379 }
6380 }
6381 }
6382 }
6383
6384 out:
6385 unbind_to (gc_count, Qnil);
6386 return found;
6387 }
6388
6389 #ifdef ENABLE_CHECKING
6390
6391 bool suppress_checking;
6392
6393 void
6394 die (const char *msg, const char *file, int line)
6395 {
6396 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6397 file, line, msg);
6398 terminate_due_to_signal (SIGABRT, INT_MAX);
6399 }
6400 #endif
6401 \f
6402 /* Initialization */
6403
6404 void
6405 init_alloc_once (void)
6406 {
6407 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6408 purebeg = PUREBEG;
6409 pure_size = PURESIZE;
6410
6411 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6412 mem_init ();
6413 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6414 #endif
6415
6416 #ifdef DOUG_LEA_MALLOC
6417 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6418 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6419 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6420 #endif
6421 init_strings ();
6422 init_vectors ();
6423
6424 refill_memory_reserve ();
6425 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6426 }
6427
6428 void
6429 init_alloc (void)
6430 {
6431 gcprolist = 0;
6432 byte_stack_list = 0;
6433 #if GC_MARK_STACK
6434 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6435 setjmp_tested_p = longjmps_done = 0;
6436 #endif
6437 #endif
6438 Vgc_elapsed = make_float (0.0);
6439 gcs_done = 0;
6440 }
6441
6442 void
6443 syms_of_alloc (void)
6444 {
6445 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6446 doc: /* Number of bytes of consing between garbage collections.
6447 Garbage collection can happen automatically once this many bytes have been
6448 allocated since the last garbage collection. All data types count.
6449
6450 Garbage collection happens automatically only when `eval' is called.
6451
6452 By binding this temporarily to a large number, you can effectively
6453 prevent garbage collection during a part of the program.
6454 See also `gc-cons-percentage'. */);
6455
6456 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6457 doc: /* Portion of the heap used for allocation.
6458 Garbage collection can happen automatically once this portion of the heap
6459 has been allocated since the last garbage collection.
6460 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6461 Vgc_cons_percentage = make_float (0.1);
6462
6463 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6464 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6465
6466 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6467 doc: /* Number of cons cells that have been consed so far. */);
6468
6469 DEFVAR_INT ("floats-consed", floats_consed,
6470 doc: /* Number of floats that have been consed so far. */);
6471
6472 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6473 doc: /* Number of vector cells that have been consed so far. */);
6474
6475 DEFVAR_INT ("symbols-consed", symbols_consed,
6476 doc: /* Number of symbols that have been consed so far. */);
6477
6478 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6479 doc: /* Number of string characters that have been consed so far. */);
6480
6481 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6482 doc: /* Number of miscellaneous objects that have been consed so far.
6483 These include markers and overlays, plus certain objects not visible
6484 to users. */);
6485
6486 DEFVAR_INT ("intervals-consed", intervals_consed,
6487 doc: /* Number of intervals that have been consed so far. */);
6488
6489 DEFVAR_INT ("strings-consed", strings_consed,
6490 doc: /* Number of strings that have been consed so far. */);
6491
6492 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6493 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6494 This means that certain objects should be allocated in shared (pure) space.
6495 It can also be set to a hash-table, in which case this table is used to
6496 do hash-consing of the objects allocated to pure space. */);
6497
6498 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6499 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6500 garbage_collection_messages = 0;
6501
6502 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6503 doc: /* Hook run after garbage collection has finished. */);
6504 Vpost_gc_hook = Qnil;
6505 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6506
6507 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6508 doc: /* Precomputed `signal' argument for memory-full error. */);
6509 /* We build this in advance because if we wait until we need it, we might
6510 not be able to allocate the memory to hold it. */
6511 Vmemory_signal_data
6512 = listn (CONSTYPE_PURE, 2, Qerror,
6513 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6514
6515 DEFVAR_LISP ("memory-full", Vmemory_full,
6516 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6517 Vmemory_full = Qnil;
6518
6519 DEFSYM (Qconses, "conses");
6520 DEFSYM (Qsymbols, "symbols");
6521 DEFSYM (Qmiscs, "miscs");
6522 DEFSYM (Qstrings, "strings");
6523 DEFSYM (Qvectors, "vectors");
6524 DEFSYM (Qfloats, "floats");
6525 DEFSYM (Qintervals, "intervals");
6526 DEFSYM (Qbuffers, "buffers");
6527 DEFSYM (Qstring_bytes, "string-bytes");
6528 DEFSYM (Qvector_slots, "vector-slots");
6529 DEFSYM (Qheap, "heap");
6530
6531 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6532 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6533
6534 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6535 doc: /* Accumulated time elapsed in garbage collections.
6536 The time is in seconds as a floating point value. */);
6537 DEFVAR_INT ("gcs-done", gcs_done,
6538 doc: /* Accumulated number of garbage collections done. */);
6539
6540 defsubr (&Scons);
6541 defsubr (&Slist);
6542 defsubr (&Svector);
6543 defsubr (&Smake_byte_code);
6544 defsubr (&Smake_list);
6545 defsubr (&Smake_vector);
6546 defsubr (&Smake_string);
6547 defsubr (&Smake_bool_vector);
6548 defsubr (&Smake_symbol);
6549 defsubr (&Smake_marker);
6550 defsubr (&Spurecopy);
6551 defsubr (&Sgarbage_collect);
6552 defsubr (&Smemory_limit);
6553 defsubr (&Smemory_use_counts);
6554
6555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6556 defsubr (&Sgc_status);
6557 #endif
6558 }
6559
6560 /* When compiled with GCC, GDB might say "No enum type named
6561 pvec_type" if we don't have at least one symbol with that type, and
6562 then xbacktrace could fail. Similarly for the other enums and
6563 their values. */
6564 union
6565 {
6566 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6567 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6568 enum char_bits char_bits;
6569 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6570 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6571 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6572 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6573 enum Lisp_Bits Lisp_Bits;
6574 enum Lisp_Compiled Lisp_Compiled;
6575 enum maxargs maxargs;
6576 enum MAX_ALLOCA MAX_ALLOCA;
6577 enum More_Lisp_Bits More_Lisp_Bits;
6578 enum pvec_type pvec_type;
6579 #if USE_LSB_TAG
6580 enum lsb_bits lsb_bits;
6581 #endif
6582 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};