Shrink struct vectorlike_header to the only size field.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 Other values of LIMIT are ignored. */)
70 (Lisp_Object limit)
71 {
72 EMACS_INT val;
73
74 if (EQ (limit, Qt))
75 init_random ();
76 else if (STRINGP (limit))
77 seed_random (SSDATA (limit), SBYTES (limit));
78
79 val = get_random ();
80 if (NATNUMP (limit) && XFASTINT (limit) != 0)
81 val %= XFASTINT (limit);
82 return make_number (val);
83 }
84 \f
85 /* Heuristic on how many iterations of a tight loop can be safely done
86 before it's time to do a QUIT. This must be a power of 2. */
87 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
88
89 /* Random data-structure functions */
90
91 DEFUN ("length", Flength, Slength, 1, 1, 0,
92 doc: /* Return the length of vector, list or string SEQUENCE.
93 A byte-code function object is also allowed.
94 If the string contains multibyte characters, this is not necessarily
95 the number of bytes in the string; it is the number of characters.
96 To get the number of bytes, use `string-bytes'. */)
97 (register Lisp_Object sequence)
98 {
99 register Lisp_Object val;
100
101 if (STRINGP (sequence))
102 XSETFASTINT (val, SCHARS (sequence));
103 else if (VECTORP (sequence))
104 XSETFASTINT (val, ASIZE (sequence));
105 else if (CHAR_TABLE_P (sequence))
106 XSETFASTINT (val, MAX_CHAR);
107 else if (BOOL_VECTOR_P (sequence))
108 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
109 else if (COMPILEDP (sequence))
110 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
111 else if (CONSP (sequence))
112 {
113 EMACS_INT i = 0;
114
115 do
116 {
117 ++i;
118 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
119 {
120 if (MOST_POSITIVE_FIXNUM < i)
121 error ("List too long");
122 QUIT;
123 }
124 sequence = XCDR (sequence);
125 }
126 while (CONSP (sequence));
127
128 CHECK_LIST_END (sequence, sequence);
129
130 val = make_number (i);
131 }
132 else if (NILP (sequence))
133 XSETFASTINT (val, 0);
134 else
135 wrong_type_argument (Qsequencep, sequence);
136
137 return val;
138 }
139
140 /* This does not check for quits. That is safe since it must terminate. */
141
142 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
143 doc: /* Return the length of a list, but avoid error or infinite loop.
144 This function never gets an error. If LIST is not really a list,
145 it returns 0. If LIST is circular, it returns a finite value
146 which is at least the number of distinct elements. */)
147 (Lisp_Object list)
148 {
149 Lisp_Object tail, halftail;
150 double hilen = 0;
151 uintmax_t lolen = 1;
152
153 if (! CONSP (list))
154 return make_number (0);
155
156 /* halftail is used to detect circular lists. */
157 for (tail = halftail = list; ; )
158 {
159 tail = XCDR (tail);
160 if (! CONSP (tail))
161 break;
162 if (EQ (tail, halftail))
163 break;
164 lolen++;
165 if ((lolen & 1) == 0)
166 {
167 halftail = XCDR (halftail);
168 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
169 {
170 QUIT;
171 if (lolen == 0)
172 hilen += UINTMAX_MAX + 1.0;
173 }
174 }
175 }
176
177 /* If the length does not fit into a fixnum, return a float.
178 On all known practical machines this returns an upper bound on
179 the true length. */
180 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
181 }
182
183 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
184 doc: /* Return the number of bytes in STRING.
185 If STRING is multibyte, this may be greater than the length of STRING. */)
186 (Lisp_Object string)
187 {
188 CHECK_STRING (string);
189 return make_number (SBYTES (string));
190 }
191
192 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
193 doc: /* Return t if two strings have identical contents.
194 Case is significant, but text properties are ignored.
195 Symbols are also allowed; their print names are used instead. */)
196 (register Lisp_Object s1, Lisp_Object s2)
197 {
198 if (SYMBOLP (s1))
199 s1 = SYMBOL_NAME (s1);
200 if (SYMBOLP (s2))
201 s2 = SYMBOL_NAME (s2);
202 CHECK_STRING (s1);
203 CHECK_STRING (s2);
204
205 if (SCHARS (s1) != SCHARS (s2)
206 || SBYTES (s1) != SBYTES (s2)
207 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
208 return Qnil;
209 return Qt;
210 }
211
212 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
213 doc: /* Compare the contents of two strings, converting to multibyte if needed.
214 In string STR1, skip the first START1 characters and stop at END1.
215 In string STR2, skip the first START2 characters and stop at END2.
216 END1 and END2 default to the full lengths of the respective strings.
217
218 Case is significant in this comparison if IGNORE-CASE is nil.
219 Unibyte strings are converted to multibyte for comparison.
220
221 The value is t if the strings (or specified portions) match.
222 If string STR1 is less, the value is a negative number N;
223 - 1 - N is the number of characters that match at the beginning.
224 If string STR1 is greater, the value is a positive number N;
225 N - 1 is the number of characters that match at the beginning. */)
226 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
227 {
228 register ptrdiff_t end1_char, end2_char;
229 register ptrdiff_t i1, i1_byte, i2, i2_byte;
230
231 CHECK_STRING (str1);
232 CHECK_STRING (str2);
233 if (NILP (start1))
234 start1 = make_number (0);
235 if (NILP (start2))
236 start2 = make_number (0);
237 CHECK_NATNUM (start1);
238 CHECK_NATNUM (start2);
239 if (! NILP (end1))
240 CHECK_NATNUM (end1);
241 if (! NILP (end2))
242 CHECK_NATNUM (end2);
243
244 end1_char = SCHARS (str1);
245 if (! NILP (end1) && end1_char > XINT (end1))
246 end1_char = XINT (end1);
247 if (end1_char < XINT (start1))
248 args_out_of_range (str1, start1);
249
250 end2_char = SCHARS (str2);
251 if (! NILP (end2) && end2_char > XINT (end2))
252 end2_char = XINT (end2);
253 if (end2_char < XINT (start2))
254 args_out_of_range (str2, start2);
255
256 i1 = XINT (start1);
257 i2 = XINT (start2);
258
259 i1_byte = string_char_to_byte (str1, i1);
260 i2_byte = string_char_to_byte (str2, i2);
261
262 while (i1 < end1_char && i2 < end2_char)
263 {
264 /* When we find a mismatch, we must compare the
265 characters, not just the bytes. */
266 int c1, c2;
267
268 if (STRING_MULTIBYTE (str1))
269 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
270 else
271 {
272 c1 = SREF (str1, i1++);
273 MAKE_CHAR_MULTIBYTE (c1);
274 }
275
276 if (STRING_MULTIBYTE (str2))
277 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
278 else
279 {
280 c2 = SREF (str2, i2++);
281 MAKE_CHAR_MULTIBYTE (c2);
282 }
283
284 if (c1 == c2)
285 continue;
286
287 if (! NILP (ignore_case))
288 {
289 Lisp_Object tem;
290
291 tem = Fupcase (make_number (c1));
292 c1 = XINT (tem);
293 tem = Fupcase (make_number (c2));
294 c2 = XINT (tem);
295 }
296
297 if (c1 == c2)
298 continue;
299
300 /* Note that I1 has already been incremented
301 past the character that we are comparing;
302 hence we don't add or subtract 1 here. */
303 if (c1 < c2)
304 return make_number (- i1 + XINT (start1));
305 else
306 return make_number (i1 - XINT (start1));
307 }
308
309 if (i1 < end1_char)
310 return make_number (i1 - XINT (start1) + 1);
311 if (i2 < end2_char)
312 return make_number (- i1 + XINT (start1) - 1);
313
314 return Qt;
315 }
316
317 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
318 doc: /* Return t if first arg string is less than second in lexicographic order.
319 Case is significant.
320 Symbols are also allowed; their print names are used instead. */)
321 (register Lisp_Object s1, Lisp_Object s2)
322 {
323 register ptrdiff_t end;
324 register ptrdiff_t i1, i1_byte, i2, i2_byte;
325
326 if (SYMBOLP (s1))
327 s1 = SYMBOL_NAME (s1);
328 if (SYMBOLP (s2))
329 s2 = SYMBOL_NAME (s2);
330 CHECK_STRING (s1);
331 CHECK_STRING (s2);
332
333 i1 = i1_byte = i2 = i2_byte = 0;
334
335 end = SCHARS (s1);
336 if (end > SCHARS (s2))
337 end = SCHARS (s2);
338
339 while (i1 < end)
340 {
341 /* When we find a mismatch, we must compare the
342 characters, not just the bytes. */
343 int c1, c2;
344
345 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
346 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
347
348 if (c1 != c2)
349 return c1 < c2 ? Qt : Qnil;
350 }
351 return i1 < SCHARS (s2) ? Qt : Qnil;
352 }
353 \f
354 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
355 enum Lisp_Type target_type, bool last_special);
356
357 /* ARGSUSED */
358 Lisp_Object
359 concat2 (Lisp_Object s1, Lisp_Object s2)
360 {
361 Lisp_Object args[2];
362 args[0] = s1;
363 args[1] = s2;
364 return concat (2, args, Lisp_String, 0);
365 }
366
367 /* ARGSUSED */
368 Lisp_Object
369 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
370 {
371 Lisp_Object args[3];
372 args[0] = s1;
373 args[1] = s2;
374 args[2] = s3;
375 return concat (3, args, Lisp_String, 0);
376 }
377
378 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
379 doc: /* Concatenate all the arguments and make the result a list.
380 The result is a list whose elements are the elements of all the arguments.
381 Each argument may be a list, vector or string.
382 The last argument is not copied, just used as the tail of the new list.
383 usage: (append &rest SEQUENCES) */)
384 (ptrdiff_t nargs, Lisp_Object *args)
385 {
386 return concat (nargs, args, Lisp_Cons, 1);
387 }
388
389 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
390 doc: /* Concatenate all the arguments and make the result a string.
391 The result is a string whose elements are the elements of all the arguments.
392 Each argument may be a string or a list or vector of characters (integers).
393 usage: (concat &rest SEQUENCES) */)
394 (ptrdiff_t nargs, Lisp_Object *args)
395 {
396 return concat (nargs, args, Lisp_String, 0);
397 }
398
399 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
400 doc: /* Concatenate all the arguments and make the result a vector.
401 The result is a vector whose elements are the elements of all the arguments.
402 Each argument may be a list, vector or string.
403 usage: (vconcat &rest SEQUENCES) */)
404 (ptrdiff_t nargs, Lisp_Object *args)
405 {
406 return concat (nargs, args, Lisp_Vectorlike, 0);
407 }
408
409
410 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
411 doc: /* Return a copy of a list, vector, string or char-table.
412 The elements of a list or vector are not copied; they are shared
413 with the original. */)
414 (Lisp_Object arg)
415 {
416 if (NILP (arg)) return arg;
417
418 if (CHAR_TABLE_P (arg))
419 {
420 return copy_char_table (arg);
421 }
422
423 if (BOOL_VECTOR_P (arg))
424 {
425 Lisp_Object val;
426 ptrdiff_t size_in_chars
427 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
428 / BOOL_VECTOR_BITS_PER_CHAR);
429
430 val = Fmake_bool_vector (Flength (arg), Qnil);
431 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
432 size_in_chars);
433 return val;
434 }
435
436 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
437 wrong_type_argument (Qsequencep, arg);
438
439 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
440 }
441
442 /* This structure holds information of an argument of `concat' that is
443 a string and has text properties to be copied. */
444 struct textprop_rec
445 {
446 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
447 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
448 ptrdiff_t to; /* refer to VAL (the target string) */
449 };
450
451 static Lisp_Object
452 concat (ptrdiff_t nargs, Lisp_Object *args,
453 enum Lisp_Type target_type, bool last_special)
454 {
455 Lisp_Object val;
456 Lisp_Object tail;
457 Lisp_Object this;
458 ptrdiff_t toindex;
459 ptrdiff_t toindex_byte = 0;
460 EMACS_INT result_len;
461 EMACS_INT result_len_byte;
462 ptrdiff_t argnum;
463 Lisp_Object last_tail;
464 Lisp_Object prev;
465 bool some_multibyte;
466 /* When we make a multibyte string, we can't copy text properties
467 while concatenating each string because the length of resulting
468 string can't be decided until we finish the whole concatenation.
469 So, we record strings that have text properties to be copied
470 here, and copy the text properties after the concatenation. */
471 struct textprop_rec *textprops = NULL;
472 /* Number of elements in textprops. */
473 ptrdiff_t num_textprops = 0;
474 USE_SAFE_ALLOCA;
475
476 tail = Qnil;
477
478 /* In append, the last arg isn't treated like the others */
479 if (last_special && nargs > 0)
480 {
481 nargs--;
482 last_tail = args[nargs];
483 }
484 else
485 last_tail = Qnil;
486
487 /* Check each argument. */
488 for (argnum = 0; argnum < nargs; argnum++)
489 {
490 this = args[argnum];
491 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
492 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
493 wrong_type_argument (Qsequencep, this);
494 }
495
496 /* Compute total length in chars of arguments in RESULT_LEN.
497 If desired output is a string, also compute length in bytes
498 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
499 whether the result should be a multibyte string. */
500 result_len_byte = 0;
501 result_len = 0;
502 some_multibyte = 0;
503 for (argnum = 0; argnum < nargs; argnum++)
504 {
505 EMACS_INT len;
506 this = args[argnum];
507 len = XFASTINT (Flength (this));
508 if (target_type == Lisp_String)
509 {
510 /* We must count the number of bytes needed in the string
511 as well as the number of characters. */
512 ptrdiff_t i;
513 Lisp_Object ch;
514 int c;
515 ptrdiff_t this_len_byte;
516
517 if (VECTORP (this) || COMPILEDP (this))
518 for (i = 0; i < len; i++)
519 {
520 ch = AREF (this, i);
521 CHECK_CHARACTER (ch);
522 c = XFASTINT (ch);
523 this_len_byte = CHAR_BYTES (c);
524 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
525 string_overflow ();
526 result_len_byte += this_len_byte;
527 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
528 some_multibyte = 1;
529 }
530 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
531 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
532 else if (CONSP (this))
533 for (; CONSP (this); this = XCDR (this))
534 {
535 ch = XCAR (this);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
540 string_overflow ();
541 result_len_byte += this_len_byte;
542 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
543 some_multibyte = 1;
544 }
545 else if (STRINGP (this))
546 {
547 if (STRING_MULTIBYTE (this))
548 {
549 some_multibyte = 1;
550 this_len_byte = SBYTES (this);
551 }
552 else
553 this_len_byte = count_size_as_multibyte (SDATA (this),
554 SCHARS (this));
555 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
556 string_overflow ();
557 result_len_byte += this_len_byte;
558 }
559 }
560
561 result_len += len;
562 if (MOST_POSITIVE_FIXNUM < result_len)
563 memory_full (SIZE_MAX);
564 }
565
566 if (! some_multibyte)
567 result_len_byte = result_len;
568
569 /* Create the output object. */
570 if (target_type == Lisp_Cons)
571 val = Fmake_list (make_number (result_len), Qnil);
572 else if (target_type == Lisp_Vectorlike)
573 val = Fmake_vector (make_number (result_len), Qnil);
574 else if (some_multibyte)
575 val = make_uninit_multibyte_string (result_len, result_len_byte);
576 else
577 val = make_uninit_string (result_len);
578
579 /* In `append', if all but last arg are nil, return last arg. */
580 if (target_type == Lisp_Cons && EQ (val, Qnil))
581 return last_tail;
582
583 /* Copy the contents of the args into the result. */
584 if (CONSP (val))
585 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
586 else
587 toindex = 0, toindex_byte = 0;
588
589 prev = Qnil;
590 if (STRINGP (val))
591 SAFE_NALLOCA (textprops, 1, nargs);
592
593 for (argnum = 0; argnum < nargs; argnum++)
594 {
595 Lisp_Object thislen;
596 ptrdiff_t thisleni = 0;
597 register ptrdiff_t thisindex = 0;
598 register ptrdiff_t thisindex_byte = 0;
599
600 this = args[argnum];
601 if (!CONSP (this))
602 thislen = Flength (this), thisleni = XINT (thislen);
603
604 /* Between strings of the same kind, copy fast. */
605 if (STRINGP (this) && STRINGP (val)
606 && STRING_MULTIBYTE (this) == some_multibyte)
607 {
608 ptrdiff_t thislen_byte = SBYTES (this);
609
610 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
611 if (string_intervals (this))
612 {
613 textprops[num_textprops].argnum = argnum;
614 textprops[num_textprops].from = 0;
615 textprops[num_textprops++].to = toindex;
616 }
617 toindex_byte += thislen_byte;
618 toindex += thisleni;
619 }
620 /* Copy a single-byte string to a multibyte string. */
621 else if (STRINGP (this) && STRINGP (val))
622 {
623 if (string_intervals (this))
624 {
625 textprops[num_textprops].argnum = argnum;
626 textprops[num_textprops].from = 0;
627 textprops[num_textprops++].to = toindex;
628 }
629 toindex_byte += copy_text (SDATA (this),
630 SDATA (val) + toindex_byte,
631 SCHARS (this), 0, 1);
632 toindex += thisleni;
633 }
634 else
635 /* Copy element by element. */
636 while (1)
637 {
638 register Lisp_Object elt;
639
640 /* Fetch next element of `this' arg into `elt', or break if
641 `this' is exhausted. */
642 if (NILP (this)) break;
643 if (CONSP (this))
644 elt = XCAR (this), this = XCDR (this);
645 else if (thisindex >= thisleni)
646 break;
647 else if (STRINGP (this))
648 {
649 int c;
650 if (STRING_MULTIBYTE (this))
651 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
652 thisindex,
653 thisindex_byte);
654 else
655 {
656 c = SREF (this, thisindex); thisindex++;
657 if (some_multibyte && !ASCII_CHAR_P (c))
658 c = BYTE8_TO_CHAR (c);
659 }
660 XSETFASTINT (elt, c);
661 }
662 else if (BOOL_VECTOR_P (this))
663 {
664 int byte;
665 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
666 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
667 elt = Qt;
668 else
669 elt = Qnil;
670 thisindex++;
671 }
672 else
673 {
674 elt = AREF (this, thisindex);
675 thisindex++;
676 }
677
678 /* Store this element into the result. */
679 if (toindex < 0)
680 {
681 XSETCAR (tail, elt);
682 prev = tail;
683 tail = XCDR (tail);
684 }
685 else if (VECTORP (val))
686 {
687 ASET (val, toindex, elt);
688 toindex++;
689 }
690 else
691 {
692 int c;
693 CHECK_CHARACTER (elt);
694 c = XFASTINT (elt);
695 if (some_multibyte)
696 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
697 else
698 SSET (val, toindex_byte++, c);
699 toindex++;
700 }
701 }
702 }
703 if (!NILP (prev))
704 XSETCDR (prev, last_tail);
705
706 if (num_textprops > 0)
707 {
708 Lisp_Object props;
709 ptrdiff_t last_to_end = -1;
710
711 for (argnum = 0; argnum < num_textprops; argnum++)
712 {
713 this = args[textprops[argnum].argnum];
714 props = text_property_list (this,
715 make_number (0),
716 make_number (SCHARS (this)),
717 Qnil);
718 /* If successive arguments have properties, be sure that the
719 value of `composition' property be the copy. */
720 if (last_to_end == textprops[argnum].to)
721 make_composition_value_copy (props);
722 add_text_properties_from_list (val, props,
723 make_number (textprops[argnum].to));
724 last_to_end = textprops[argnum].to + SCHARS (this);
725 }
726 }
727
728 SAFE_FREE ();
729 return val;
730 }
731 \f
732 static Lisp_Object string_char_byte_cache_string;
733 static ptrdiff_t string_char_byte_cache_charpos;
734 static ptrdiff_t string_char_byte_cache_bytepos;
735
736 void
737 clear_string_char_byte_cache (void)
738 {
739 string_char_byte_cache_string = Qnil;
740 }
741
742 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
743
744 ptrdiff_t
745 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
746 {
747 ptrdiff_t i_byte;
748 ptrdiff_t best_below, best_below_byte;
749 ptrdiff_t best_above, best_above_byte;
750
751 best_below = best_below_byte = 0;
752 best_above = SCHARS (string);
753 best_above_byte = SBYTES (string);
754 if (best_above == best_above_byte)
755 return char_index;
756
757 if (EQ (string, string_char_byte_cache_string))
758 {
759 if (string_char_byte_cache_charpos < char_index)
760 {
761 best_below = string_char_byte_cache_charpos;
762 best_below_byte = string_char_byte_cache_bytepos;
763 }
764 else
765 {
766 best_above = string_char_byte_cache_charpos;
767 best_above_byte = string_char_byte_cache_bytepos;
768 }
769 }
770
771 if (char_index - best_below < best_above - char_index)
772 {
773 unsigned char *p = SDATA (string) + best_below_byte;
774
775 while (best_below < char_index)
776 {
777 p += BYTES_BY_CHAR_HEAD (*p);
778 best_below++;
779 }
780 i_byte = p - SDATA (string);
781 }
782 else
783 {
784 unsigned char *p = SDATA (string) + best_above_byte;
785
786 while (best_above > char_index)
787 {
788 p--;
789 while (!CHAR_HEAD_P (*p)) p--;
790 best_above--;
791 }
792 i_byte = p - SDATA (string);
793 }
794
795 string_char_byte_cache_bytepos = i_byte;
796 string_char_byte_cache_charpos = char_index;
797 string_char_byte_cache_string = string;
798
799 return i_byte;
800 }
801 \f
802 /* Return the character index corresponding to BYTE_INDEX in STRING. */
803
804 ptrdiff_t
805 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
806 {
807 ptrdiff_t i, i_byte;
808 ptrdiff_t best_below, best_below_byte;
809 ptrdiff_t best_above, best_above_byte;
810
811 best_below = best_below_byte = 0;
812 best_above = SCHARS (string);
813 best_above_byte = SBYTES (string);
814 if (best_above == best_above_byte)
815 return byte_index;
816
817 if (EQ (string, string_char_byte_cache_string))
818 {
819 if (string_char_byte_cache_bytepos < byte_index)
820 {
821 best_below = string_char_byte_cache_charpos;
822 best_below_byte = string_char_byte_cache_bytepos;
823 }
824 else
825 {
826 best_above = string_char_byte_cache_charpos;
827 best_above_byte = string_char_byte_cache_bytepos;
828 }
829 }
830
831 if (byte_index - best_below_byte < best_above_byte - byte_index)
832 {
833 unsigned char *p = SDATA (string) + best_below_byte;
834 unsigned char *pend = SDATA (string) + byte_index;
835
836 while (p < pend)
837 {
838 p += BYTES_BY_CHAR_HEAD (*p);
839 best_below++;
840 }
841 i = best_below;
842 i_byte = p - SDATA (string);
843 }
844 else
845 {
846 unsigned char *p = SDATA (string) + best_above_byte;
847 unsigned char *pbeg = SDATA (string) + byte_index;
848
849 while (p > pbeg)
850 {
851 p--;
852 while (!CHAR_HEAD_P (*p)) p--;
853 best_above--;
854 }
855 i = best_above;
856 i_byte = p - SDATA (string);
857 }
858
859 string_char_byte_cache_bytepos = i_byte;
860 string_char_byte_cache_charpos = i;
861 string_char_byte_cache_string = string;
862
863 return i;
864 }
865 \f
866 /* Convert STRING to a multibyte string. */
867
868 static Lisp_Object
869 string_make_multibyte (Lisp_Object string)
870 {
871 unsigned char *buf;
872 ptrdiff_t nbytes;
873 Lisp_Object ret;
874 USE_SAFE_ALLOCA;
875
876 if (STRING_MULTIBYTE (string))
877 return string;
878
879 nbytes = count_size_as_multibyte (SDATA (string),
880 SCHARS (string));
881 /* If all the chars are ASCII, they won't need any more bytes
882 once converted. In that case, we can return STRING itself. */
883 if (nbytes == SBYTES (string))
884 return string;
885
886 buf = SAFE_ALLOCA (nbytes);
887 copy_text (SDATA (string), buf, SBYTES (string),
888 0, 1);
889
890 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
891 SAFE_FREE ();
892
893 return ret;
894 }
895
896
897 /* Convert STRING (if unibyte) to a multibyte string without changing
898 the number of characters. Characters 0200 trough 0237 are
899 converted to eight-bit characters. */
900
901 Lisp_Object
902 string_to_multibyte (Lisp_Object string)
903 {
904 unsigned char *buf;
905 ptrdiff_t nbytes;
906 Lisp_Object ret;
907 USE_SAFE_ALLOCA;
908
909 if (STRING_MULTIBYTE (string))
910 return string;
911
912 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
913 /* If all the chars are ASCII, they won't need any more bytes once
914 converted. */
915 if (nbytes == SBYTES (string))
916 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
917
918 buf = SAFE_ALLOCA (nbytes);
919 memcpy (buf, SDATA (string), SBYTES (string));
920 str_to_multibyte (buf, nbytes, SBYTES (string));
921
922 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
923 SAFE_FREE ();
924
925 return ret;
926 }
927
928
929 /* Convert STRING to a single-byte string. */
930
931 Lisp_Object
932 string_make_unibyte (Lisp_Object string)
933 {
934 ptrdiff_t nchars;
935 unsigned char *buf;
936 Lisp_Object ret;
937 USE_SAFE_ALLOCA;
938
939 if (! STRING_MULTIBYTE (string))
940 return string;
941
942 nchars = SCHARS (string);
943
944 buf = SAFE_ALLOCA (nchars);
945 copy_text (SDATA (string), buf, SBYTES (string),
946 1, 0);
947
948 ret = make_unibyte_string ((char *) buf, nchars);
949 SAFE_FREE ();
950
951 return ret;
952 }
953
954 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
955 1, 1, 0,
956 doc: /* Return the multibyte equivalent of STRING.
957 If STRING is unibyte and contains non-ASCII characters, the function
958 `unibyte-char-to-multibyte' is used to convert each unibyte character
959 to a multibyte character. In this case, the returned string is a
960 newly created string with no text properties. If STRING is multibyte
961 or entirely ASCII, it is returned unchanged. In particular, when
962 STRING is unibyte and entirely ASCII, the returned string is unibyte.
963 \(When the characters are all ASCII, Emacs primitives will treat the
964 string the same way whether it is unibyte or multibyte.) */)
965 (Lisp_Object string)
966 {
967 CHECK_STRING (string);
968
969 return string_make_multibyte (string);
970 }
971
972 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
973 1, 1, 0,
974 doc: /* Return the unibyte equivalent of STRING.
975 Multibyte character codes are converted to unibyte according to
976 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
977 If the lookup in the translation table fails, this function takes just
978 the low 8 bits of each character. */)
979 (Lisp_Object string)
980 {
981 CHECK_STRING (string);
982
983 return string_make_unibyte (string);
984 }
985
986 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
987 1, 1, 0,
988 doc: /* Return a unibyte string with the same individual bytes as STRING.
989 If STRING is unibyte, the result is STRING itself.
990 Otherwise it is a newly created string, with no text properties.
991 If STRING is multibyte and contains a character of charset
992 `eight-bit', it is converted to the corresponding single byte. */)
993 (Lisp_Object string)
994 {
995 CHECK_STRING (string);
996
997 if (STRING_MULTIBYTE (string))
998 {
999 ptrdiff_t bytes = SBYTES (string);
1000 unsigned char *str = xmalloc (bytes);
1001
1002 memcpy (str, SDATA (string), bytes);
1003 bytes = str_as_unibyte (str, bytes);
1004 string = make_unibyte_string ((char *) str, bytes);
1005 xfree (str);
1006 }
1007 return string;
1008 }
1009
1010 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1011 1, 1, 0,
1012 doc: /* Return a multibyte string with the same individual bytes as STRING.
1013 If STRING is multibyte, the result is STRING itself.
1014 Otherwise it is a newly created string, with no text properties.
1015
1016 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1017 part of a correct utf-8 sequence), it is converted to the corresponding
1018 multibyte character of charset `eight-bit'.
1019 See also `string-to-multibyte'.
1020
1021 Beware, this often doesn't really do what you think it does.
1022 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1023 If you're not sure, whether to use `string-as-multibyte' or
1024 `string-to-multibyte', use `string-to-multibyte'. */)
1025 (Lisp_Object string)
1026 {
1027 CHECK_STRING (string);
1028
1029 if (! STRING_MULTIBYTE (string))
1030 {
1031 Lisp_Object new_string;
1032 ptrdiff_t nchars, nbytes;
1033
1034 parse_str_as_multibyte (SDATA (string),
1035 SBYTES (string),
1036 &nchars, &nbytes);
1037 new_string = make_uninit_multibyte_string (nchars, nbytes);
1038 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1039 if (nbytes != SBYTES (string))
1040 str_as_multibyte (SDATA (new_string), nbytes,
1041 SBYTES (string), NULL);
1042 string = new_string;
1043 set_string_intervals (string, NULL);
1044 }
1045 return string;
1046 }
1047
1048 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1049 1, 1, 0,
1050 doc: /* Return a multibyte string with the same individual chars as STRING.
1051 If STRING is multibyte, the result is STRING itself.
1052 Otherwise it is a newly created string, with no text properties.
1053
1054 If STRING is unibyte and contains an 8-bit byte, it is converted to
1055 the corresponding multibyte character of charset `eight-bit'.
1056
1057 This differs from `string-as-multibyte' by converting each byte of a correct
1058 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1059 correct sequence. */)
1060 (Lisp_Object string)
1061 {
1062 CHECK_STRING (string);
1063
1064 return string_to_multibyte (string);
1065 }
1066
1067 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1068 1, 1, 0,
1069 doc: /* Return a unibyte string with the same individual chars as STRING.
1070 If STRING is unibyte, the result is STRING itself.
1071 Otherwise it is a newly created string, with no text properties,
1072 where each `eight-bit' character is converted to the corresponding byte.
1073 If STRING contains a non-ASCII, non-`eight-bit' character,
1074 an error is signaled. */)
1075 (Lisp_Object string)
1076 {
1077 CHECK_STRING (string);
1078
1079 if (STRING_MULTIBYTE (string))
1080 {
1081 ptrdiff_t chars = SCHARS (string);
1082 unsigned char *str = xmalloc (chars);
1083 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1084
1085 if (converted < chars)
1086 error ("Can't convert the %"pD"dth character to unibyte", converted);
1087 string = make_unibyte_string ((char *) str, chars);
1088 xfree (str);
1089 }
1090 return string;
1091 }
1092
1093 \f
1094 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1095 doc: /* Return a copy of ALIST.
1096 This is an alist which represents the same mapping from objects to objects,
1097 but does not share the alist structure with ALIST.
1098 The objects mapped (cars and cdrs of elements of the alist)
1099 are shared, however.
1100 Elements of ALIST that are not conses are also shared. */)
1101 (Lisp_Object alist)
1102 {
1103 register Lisp_Object tem;
1104
1105 CHECK_LIST (alist);
1106 if (NILP (alist))
1107 return alist;
1108 alist = concat (1, &alist, Lisp_Cons, 0);
1109 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1110 {
1111 register Lisp_Object car;
1112 car = XCAR (tem);
1113
1114 if (CONSP (car))
1115 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1116 }
1117 return alist;
1118 }
1119
1120 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1121 doc: /* Return a new string whose contents are a substring of STRING.
1122 The returned string consists of the characters between index FROM
1123 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1124 zero-indexed: 0 means the first character of STRING. Negative values
1125 are counted from the end of STRING. If TO is nil, the substring runs
1126 to the end of STRING.
1127
1128 The STRING argument may also be a vector. In that case, the return
1129 value is a new vector that contains the elements between index FROM
1130 \(inclusive) and index TO (exclusive) of that vector argument. */)
1131 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1132 {
1133 Lisp_Object res;
1134 ptrdiff_t size;
1135 EMACS_INT from_char, to_char;
1136
1137 CHECK_VECTOR_OR_STRING (string);
1138 CHECK_NUMBER (from);
1139
1140 if (STRINGP (string))
1141 size = SCHARS (string);
1142 else
1143 size = ASIZE (string);
1144
1145 if (NILP (to))
1146 to_char = size;
1147 else
1148 {
1149 CHECK_NUMBER (to);
1150
1151 to_char = XINT (to);
1152 if (to_char < 0)
1153 to_char += size;
1154 }
1155
1156 from_char = XINT (from);
1157 if (from_char < 0)
1158 from_char += size;
1159 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1160 args_out_of_range_3 (string, make_number (from_char),
1161 make_number (to_char));
1162
1163 if (STRINGP (string))
1164 {
1165 ptrdiff_t to_byte =
1166 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1167 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1168 res = make_specified_string (SSDATA (string) + from_byte,
1169 to_char - from_char, to_byte - from_byte,
1170 STRING_MULTIBYTE (string));
1171 copy_text_properties (make_number (from_char), make_number (to_char),
1172 string, make_number (0), res, Qnil);
1173 }
1174 else
1175 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1176
1177 return res;
1178 }
1179
1180
1181 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1182 doc: /* Return a substring of STRING, without text properties.
1183 It starts at index FROM and ends before TO.
1184 TO may be nil or omitted; then the substring runs to the end of STRING.
1185 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1186 If FROM or TO is negative, it counts from the end.
1187
1188 With one argument, just copy STRING without its properties. */)
1189 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1190 {
1191 ptrdiff_t size;
1192 EMACS_INT from_char, to_char;
1193 ptrdiff_t from_byte, to_byte;
1194
1195 CHECK_STRING (string);
1196
1197 size = SCHARS (string);
1198
1199 if (NILP (from))
1200 from_char = 0;
1201 else
1202 {
1203 CHECK_NUMBER (from);
1204 from_char = XINT (from);
1205 if (from_char < 0)
1206 from_char += size;
1207 }
1208
1209 if (NILP (to))
1210 to_char = size;
1211 else
1212 {
1213 CHECK_NUMBER (to);
1214 to_char = XINT (to);
1215 if (to_char < 0)
1216 to_char += size;
1217 }
1218
1219 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1220 args_out_of_range_3 (string, make_number (from_char),
1221 make_number (to_char));
1222
1223 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1224 to_byte =
1225 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1226 return make_specified_string (SSDATA (string) + from_byte,
1227 to_char - from_char, to_byte - from_byte,
1228 STRING_MULTIBYTE (string));
1229 }
1230
1231 /* Extract a substring of STRING, giving start and end positions
1232 both in characters and in bytes. */
1233
1234 Lisp_Object
1235 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1236 ptrdiff_t to, ptrdiff_t to_byte)
1237 {
1238 Lisp_Object res;
1239 ptrdiff_t size;
1240
1241 CHECK_VECTOR_OR_STRING (string);
1242
1243 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1244
1245 if (!(0 <= from && from <= to && to <= size))
1246 args_out_of_range_3 (string, make_number (from), make_number (to));
1247
1248 if (STRINGP (string))
1249 {
1250 res = make_specified_string (SSDATA (string) + from_byte,
1251 to - from, to_byte - from_byte,
1252 STRING_MULTIBYTE (string));
1253 copy_text_properties (make_number (from), make_number (to),
1254 string, make_number (0), res, Qnil);
1255 }
1256 else
1257 res = Fvector (to - from, aref_addr (string, from));
1258
1259 return res;
1260 }
1261 \f
1262 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1263 doc: /* Take cdr N times on LIST, return the result. */)
1264 (Lisp_Object n, Lisp_Object list)
1265 {
1266 EMACS_INT i, num;
1267 CHECK_NUMBER (n);
1268 num = XINT (n);
1269 for (i = 0; i < num && !NILP (list); i++)
1270 {
1271 QUIT;
1272 CHECK_LIST_CONS (list, list);
1273 list = XCDR (list);
1274 }
1275 return list;
1276 }
1277
1278 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1279 doc: /* Return the Nth element of LIST.
1280 N counts from zero. If LIST is not that long, nil is returned. */)
1281 (Lisp_Object n, Lisp_Object list)
1282 {
1283 return Fcar (Fnthcdr (n, list));
1284 }
1285
1286 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1287 doc: /* Return element of SEQUENCE at index N. */)
1288 (register Lisp_Object sequence, Lisp_Object n)
1289 {
1290 CHECK_NUMBER (n);
1291 if (CONSP (sequence) || NILP (sequence))
1292 return Fcar (Fnthcdr (n, sequence));
1293
1294 /* Faref signals a "not array" error, so check here. */
1295 CHECK_ARRAY (sequence, Qsequencep);
1296 return Faref (sequence, n);
1297 }
1298
1299 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1300 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1301 The value is actually the tail of LIST whose car is ELT. */)
1302 (register Lisp_Object elt, Lisp_Object list)
1303 {
1304 register Lisp_Object tail;
1305 for (tail = list; CONSP (tail); tail = XCDR (tail))
1306 {
1307 register Lisp_Object tem;
1308 CHECK_LIST_CONS (tail, list);
1309 tem = XCAR (tail);
1310 if (! NILP (Fequal (elt, tem)))
1311 return tail;
1312 QUIT;
1313 }
1314 return Qnil;
1315 }
1316
1317 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1318 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1319 The value is actually the tail of LIST whose car is ELT. */)
1320 (register Lisp_Object elt, Lisp_Object list)
1321 {
1322 while (1)
1323 {
1324 if (!CONSP (list) || EQ (XCAR (list), elt))
1325 break;
1326
1327 list = XCDR (list);
1328 if (!CONSP (list) || EQ (XCAR (list), elt))
1329 break;
1330
1331 list = XCDR (list);
1332 if (!CONSP (list) || EQ (XCAR (list), elt))
1333 break;
1334
1335 list = XCDR (list);
1336 QUIT;
1337 }
1338
1339 CHECK_LIST (list);
1340 return list;
1341 }
1342
1343 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1344 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1345 The value is actually the tail of LIST whose car is ELT. */)
1346 (register Lisp_Object elt, Lisp_Object list)
1347 {
1348 register Lisp_Object tail;
1349
1350 if (!FLOATP (elt))
1351 return Fmemq (elt, list);
1352
1353 for (tail = list; CONSP (tail); tail = XCDR (tail))
1354 {
1355 register Lisp_Object tem;
1356 CHECK_LIST_CONS (tail, list);
1357 tem = XCAR (tail);
1358 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1359 return tail;
1360 QUIT;
1361 }
1362 return Qnil;
1363 }
1364
1365 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1366 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1367 The value is actually the first element of LIST whose car is KEY.
1368 Elements of LIST that are not conses are ignored. */)
1369 (Lisp_Object key, Lisp_Object list)
1370 {
1371 while (1)
1372 {
1373 if (!CONSP (list)
1374 || (CONSP (XCAR (list))
1375 && EQ (XCAR (XCAR (list)), key)))
1376 break;
1377
1378 list = XCDR (list);
1379 if (!CONSP (list)
1380 || (CONSP (XCAR (list))
1381 && EQ (XCAR (XCAR (list)), key)))
1382 break;
1383
1384 list = XCDR (list);
1385 if (!CONSP (list)
1386 || (CONSP (XCAR (list))
1387 && EQ (XCAR (XCAR (list)), key)))
1388 break;
1389
1390 list = XCDR (list);
1391 QUIT;
1392 }
1393
1394 return CAR (list);
1395 }
1396
1397 /* Like Fassq but never report an error and do not allow quits.
1398 Use only on lists known never to be circular. */
1399
1400 Lisp_Object
1401 assq_no_quit (Lisp_Object key, Lisp_Object list)
1402 {
1403 while (CONSP (list)
1404 && (!CONSP (XCAR (list))
1405 || !EQ (XCAR (XCAR (list)), key)))
1406 list = XCDR (list);
1407
1408 return CAR_SAFE (list);
1409 }
1410
1411 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1412 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1413 The value is actually the first element of LIST whose car equals KEY. */)
1414 (Lisp_Object key, Lisp_Object list)
1415 {
1416 Lisp_Object car;
1417
1418 while (1)
1419 {
1420 if (!CONSP (list)
1421 || (CONSP (XCAR (list))
1422 && (car = XCAR (XCAR (list)),
1423 EQ (car, key) || !NILP (Fequal (car, key)))))
1424 break;
1425
1426 list = XCDR (list);
1427 if (!CONSP (list)
1428 || (CONSP (XCAR (list))
1429 && (car = XCAR (XCAR (list)),
1430 EQ (car, key) || !NILP (Fequal (car, key)))))
1431 break;
1432
1433 list = XCDR (list);
1434 if (!CONSP (list)
1435 || (CONSP (XCAR (list))
1436 && (car = XCAR (XCAR (list)),
1437 EQ (car, key) || !NILP (Fequal (car, key)))))
1438 break;
1439
1440 list = XCDR (list);
1441 QUIT;
1442 }
1443
1444 return CAR (list);
1445 }
1446
1447 /* Like Fassoc but never report an error and do not allow quits.
1448 Use only on lists known never to be circular. */
1449
1450 Lisp_Object
1451 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1452 {
1453 while (CONSP (list)
1454 && (!CONSP (XCAR (list))
1455 || (!EQ (XCAR (XCAR (list)), key)
1456 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1457 list = XCDR (list);
1458
1459 return CONSP (list) ? XCAR (list) : Qnil;
1460 }
1461
1462 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1463 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1464 The value is actually the first element of LIST whose cdr is KEY. */)
1465 (register Lisp_Object key, Lisp_Object list)
1466 {
1467 while (1)
1468 {
1469 if (!CONSP (list)
1470 || (CONSP (XCAR (list))
1471 && EQ (XCDR (XCAR (list)), key)))
1472 break;
1473
1474 list = XCDR (list);
1475 if (!CONSP (list)
1476 || (CONSP (XCAR (list))
1477 && EQ (XCDR (XCAR (list)), key)))
1478 break;
1479
1480 list = XCDR (list);
1481 if (!CONSP (list)
1482 || (CONSP (XCAR (list))
1483 && EQ (XCDR (XCAR (list)), key)))
1484 break;
1485
1486 list = XCDR (list);
1487 QUIT;
1488 }
1489
1490 return CAR (list);
1491 }
1492
1493 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1494 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1495 The value is actually the first element of LIST whose cdr equals KEY. */)
1496 (Lisp_Object key, Lisp_Object list)
1497 {
1498 Lisp_Object cdr;
1499
1500 while (1)
1501 {
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && (cdr = XCDR (XCAR (list)),
1505 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1506 break;
1507
1508 list = XCDR (list);
1509 if (!CONSP (list)
1510 || (CONSP (XCAR (list))
1511 && (cdr = XCDR (XCAR (list)),
1512 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1513 break;
1514
1515 list = XCDR (list);
1516 if (!CONSP (list)
1517 || (CONSP (XCAR (list))
1518 && (cdr = XCDR (XCAR (list)),
1519 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1520 break;
1521
1522 list = XCDR (list);
1523 QUIT;
1524 }
1525
1526 return CAR (list);
1527 }
1528 \f
1529 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1530 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1531 More precisely, this function skips any members `eq' to ELT at the
1532 front of LIST, then removes members `eq' to ELT from the remaining
1533 sublist by modifying its list structure, then returns the resulting
1534 list.
1535
1536 Write `(setq foo (delq element foo))' to be sure of correctly changing
1537 the value of a list `foo'. */)
1538 (register Lisp_Object elt, Lisp_Object list)
1539 {
1540 register Lisp_Object tail, prev;
1541 register Lisp_Object tem;
1542
1543 tail = list;
1544 prev = Qnil;
1545 while (!NILP (tail))
1546 {
1547 CHECK_LIST_CONS (tail, list);
1548 tem = XCAR (tail);
1549 if (EQ (elt, tem))
1550 {
1551 if (NILP (prev))
1552 list = XCDR (tail);
1553 else
1554 Fsetcdr (prev, XCDR (tail));
1555 }
1556 else
1557 prev = tail;
1558 tail = XCDR (tail);
1559 QUIT;
1560 }
1561 return list;
1562 }
1563
1564 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1565 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1566 SEQ must be a sequence (i.e. a list, a vector, or a string).
1567 The return value is a sequence of the same type.
1568
1569 If SEQ is a list, this behaves like `delq', except that it compares
1570 with `equal' instead of `eq'. In particular, it may remove elements
1571 by altering the list structure.
1572
1573 If SEQ is not a list, deletion is never performed destructively;
1574 instead this function creates and returns a new vector or string.
1575
1576 Write `(setq foo (delete element foo))' to be sure of correctly
1577 changing the value of a sequence `foo'. */)
1578 (Lisp_Object elt, Lisp_Object seq)
1579 {
1580 if (VECTORP (seq))
1581 {
1582 ptrdiff_t i, n;
1583
1584 for (i = n = 0; i < ASIZE (seq); ++i)
1585 if (NILP (Fequal (AREF (seq, i), elt)))
1586 ++n;
1587
1588 if (n != ASIZE (seq))
1589 {
1590 struct Lisp_Vector *p = allocate_vector (n);
1591
1592 for (i = n = 0; i < ASIZE (seq); ++i)
1593 if (NILP (Fequal (AREF (seq, i), elt)))
1594 p->contents[n++] = AREF (seq, i);
1595
1596 XSETVECTOR (seq, p);
1597 }
1598 }
1599 else if (STRINGP (seq))
1600 {
1601 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1602 int c;
1603
1604 for (i = nchars = nbytes = ibyte = 0;
1605 i < SCHARS (seq);
1606 ++i, ibyte += cbytes)
1607 {
1608 if (STRING_MULTIBYTE (seq))
1609 {
1610 c = STRING_CHAR (SDATA (seq) + ibyte);
1611 cbytes = CHAR_BYTES (c);
1612 }
1613 else
1614 {
1615 c = SREF (seq, i);
1616 cbytes = 1;
1617 }
1618
1619 if (!INTEGERP (elt) || c != XINT (elt))
1620 {
1621 ++nchars;
1622 nbytes += cbytes;
1623 }
1624 }
1625
1626 if (nchars != SCHARS (seq))
1627 {
1628 Lisp_Object tem;
1629
1630 tem = make_uninit_multibyte_string (nchars, nbytes);
1631 if (!STRING_MULTIBYTE (seq))
1632 STRING_SET_UNIBYTE (tem);
1633
1634 for (i = nchars = nbytes = ibyte = 0;
1635 i < SCHARS (seq);
1636 ++i, ibyte += cbytes)
1637 {
1638 if (STRING_MULTIBYTE (seq))
1639 {
1640 c = STRING_CHAR (SDATA (seq) + ibyte);
1641 cbytes = CHAR_BYTES (c);
1642 }
1643 else
1644 {
1645 c = SREF (seq, i);
1646 cbytes = 1;
1647 }
1648
1649 if (!INTEGERP (elt) || c != XINT (elt))
1650 {
1651 unsigned char *from = SDATA (seq) + ibyte;
1652 unsigned char *to = SDATA (tem) + nbytes;
1653 ptrdiff_t n;
1654
1655 ++nchars;
1656 nbytes += cbytes;
1657
1658 for (n = cbytes; n--; )
1659 *to++ = *from++;
1660 }
1661 }
1662
1663 seq = tem;
1664 }
1665 }
1666 else
1667 {
1668 Lisp_Object tail, prev;
1669
1670 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1671 {
1672 CHECK_LIST_CONS (tail, seq);
1673
1674 if (!NILP (Fequal (elt, XCAR (tail))))
1675 {
1676 if (NILP (prev))
1677 seq = XCDR (tail);
1678 else
1679 Fsetcdr (prev, XCDR (tail));
1680 }
1681 else
1682 prev = tail;
1683 QUIT;
1684 }
1685 }
1686
1687 return seq;
1688 }
1689
1690 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1691 doc: /* Reverse LIST by modifying cdr pointers.
1692 Return the reversed list. Expects a properly nil-terminated list. */)
1693 (Lisp_Object list)
1694 {
1695 register Lisp_Object prev, tail, next;
1696
1697 if (NILP (list)) return list;
1698 prev = Qnil;
1699 tail = list;
1700 while (!NILP (tail))
1701 {
1702 QUIT;
1703 CHECK_LIST_CONS (tail, tail);
1704 next = XCDR (tail);
1705 Fsetcdr (tail, prev);
1706 prev = tail;
1707 tail = next;
1708 }
1709 return prev;
1710 }
1711
1712 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1713 doc: /* Reverse LIST, copying. Return the reversed list.
1714 See also the function `nreverse', which is used more often. */)
1715 (Lisp_Object list)
1716 {
1717 Lisp_Object new;
1718
1719 for (new = Qnil; CONSP (list); list = XCDR (list))
1720 {
1721 QUIT;
1722 new = Fcons (XCAR (list), new);
1723 }
1724 CHECK_LIST_END (list, list);
1725 return new;
1726 }
1727 \f
1728 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1729
1730 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1731 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1732 Returns the sorted list. LIST is modified by side effects.
1733 PREDICATE is called with two elements of LIST, and should return non-nil
1734 if the first element should sort before the second. */)
1735 (Lisp_Object list, Lisp_Object predicate)
1736 {
1737 Lisp_Object front, back;
1738 register Lisp_Object len, tem;
1739 struct gcpro gcpro1, gcpro2;
1740 EMACS_INT length;
1741
1742 front = list;
1743 len = Flength (list);
1744 length = XINT (len);
1745 if (length < 2)
1746 return list;
1747
1748 XSETINT (len, (length / 2) - 1);
1749 tem = Fnthcdr (len, list);
1750 back = Fcdr (tem);
1751 Fsetcdr (tem, Qnil);
1752
1753 GCPRO2 (front, back);
1754 front = Fsort (front, predicate);
1755 back = Fsort (back, predicate);
1756 UNGCPRO;
1757 return merge (front, back, predicate);
1758 }
1759
1760 Lisp_Object
1761 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1762 {
1763 Lisp_Object value;
1764 register Lisp_Object tail;
1765 Lisp_Object tem;
1766 register Lisp_Object l1, l2;
1767 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1768
1769 l1 = org_l1;
1770 l2 = org_l2;
1771 tail = Qnil;
1772 value = Qnil;
1773
1774 /* It is sufficient to protect org_l1 and org_l2.
1775 When l1 and l2 are updated, we copy the new values
1776 back into the org_ vars. */
1777 GCPRO4 (org_l1, org_l2, pred, value);
1778
1779 while (1)
1780 {
1781 if (NILP (l1))
1782 {
1783 UNGCPRO;
1784 if (NILP (tail))
1785 return l2;
1786 Fsetcdr (tail, l2);
1787 return value;
1788 }
1789 if (NILP (l2))
1790 {
1791 UNGCPRO;
1792 if (NILP (tail))
1793 return l1;
1794 Fsetcdr (tail, l1);
1795 return value;
1796 }
1797 tem = call2 (pred, Fcar (l2), Fcar (l1));
1798 if (NILP (tem))
1799 {
1800 tem = l1;
1801 l1 = Fcdr (l1);
1802 org_l1 = l1;
1803 }
1804 else
1805 {
1806 tem = l2;
1807 l2 = Fcdr (l2);
1808 org_l2 = l2;
1809 }
1810 if (NILP (tail))
1811 value = tem;
1812 else
1813 Fsetcdr (tail, tem);
1814 tail = tem;
1815 }
1816 }
1817
1818 \f
1819 /* This does not check for quits. That is safe since it must terminate. */
1820
1821 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1822 doc: /* Extract a value from a property list.
1823 PLIST is a property list, which is a list of the form
1824 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1825 corresponding to the given PROP, or nil if PROP is not one of the
1826 properties on the list. This function never signals an error. */)
1827 (Lisp_Object plist, Lisp_Object prop)
1828 {
1829 Lisp_Object tail, halftail;
1830
1831 /* halftail is used to detect circular lists. */
1832 tail = halftail = plist;
1833 while (CONSP (tail) && CONSP (XCDR (tail)))
1834 {
1835 if (EQ (prop, XCAR (tail)))
1836 return XCAR (XCDR (tail));
1837
1838 tail = XCDR (XCDR (tail));
1839 halftail = XCDR (halftail);
1840 if (EQ (tail, halftail))
1841 break;
1842 }
1843
1844 return Qnil;
1845 }
1846
1847 DEFUN ("get", Fget, Sget, 2, 2, 0,
1848 doc: /* Return the value of SYMBOL's PROPNAME property.
1849 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1850 (Lisp_Object symbol, Lisp_Object propname)
1851 {
1852 CHECK_SYMBOL (symbol);
1853 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1854 }
1855
1856 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1857 doc: /* Change value in PLIST of PROP to VAL.
1858 PLIST is a property list, which is a list of the form
1859 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1860 If PROP is already a property on the list, its value is set to VAL,
1861 otherwise the new PROP VAL pair is added. The new plist is returned;
1862 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1863 The PLIST is modified by side effects. */)
1864 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1865 {
1866 register Lisp_Object tail, prev;
1867 Lisp_Object newcell;
1868 prev = Qnil;
1869 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1870 tail = XCDR (XCDR (tail)))
1871 {
1872 if (EQ (prop, XCAR (tail)))
1873 {
1874 Fsetcar (XCDR (tail), val);
1875 return plist;
1876 }
1877
1878 prev = tail;
1879 QUIT;
1880 }
1881 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1882 if (NILP (prev))
1883 return newcell;
1884 else
1885 Fsetcdr (XCDR (prev), newcell);
1886 return plist;
1887 }
1888
1889 DEFUN ("put", Fput, Sput, 3, 3, 0,
1890 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1891 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1892 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1893 {
1894 CHECK_SYMBOL (symbol);
1895 set_symbol_plist
1896 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1897 return value;
1898 }
1899 \f
1900 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1901 doc: /* Extract a value from a property list, comparing with `equal'.
1902 PLIST is a property list, which is a list of the form
1903 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1904 corresponding to the given PROP, or nil if PROP is not
1905 one of the properties on the list. */)
1906 (Lisp_Object plist, Lisp_Object prop)
1907 {
1908 Lisp_Object tail;
1909
1910 for (tail = plist;
1911 CONSP (tail) && CONSP (XCDR (tail));
1912 tail = XCDR (XCDR (tail)))
1913 {
1914 if (! NILP (Fequal (prop, XCAR (tail))))
1915 return XCAR (XCDR (tail));
1916
1917 QUIT;
1918 }
1919
1920 CHECK_LIST_END (tail, prop);
1921
1922 return Qnil;
1923 }
1924
1925 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1926 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1927 PLIST is a property list, which is a list of the form
1928 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1929 If PROP is already a property on the list, its value is set to VAL,
1930 otherwise the new PROP VAL pair is added. The new plist is returned;
1931 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1932 The PLIST is modified by side effects. */)
1933 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1934 {
1935 register Lisp_Object tail, prev;
1936 Lisp_Object newcell;
1937 prev = Qnil;
1938 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1939 tail = XCDR (XCDR (tail)))
1940 {
1941 if (! NILP (Fequal (prop, XCAR (tail))))
1942 {
1943 Fsetcar (XCDR (tail), val);
1944 return plist;
1945 }
1946
1947 prev = tail;
1948 QUIT;
1949 }
1950 newcell = Fcons (prop, Fcons (val, Qnil));
1951 if (NILP (prev))
1952 return newcell;
1953 else
1954 Fsetcdr (XCDR (prev), newcell);
1955 return plist;
1956 }
1957 \f
1958 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1959 doc: /* Return t if the two args are the same Lisp object.
1960 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1961 (Lisp_Object obj1, Lisp_Object obj2)
1962 {
1963 if (FLOATP (obj1))
1964 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1965 else
1966 return EQ (obj1, obj2) ? Qt : Qnil;
1967 }
1968
1969 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1970 doc: /* Return t if two Lisp objects have similar structure and contents.
1971 They must have the same data type.
1972 Conses are compared by comparing the cars and the cdrs.
1973 Vectors and strings are compared element by element.
1974 Numbers are compared by value, but integers cannot equal floats.
1975 (Use `=' if you want integers and floats to be able to be equal.)
1976 Symbols must match exactly. */)
1977 (register Lisp_Object o1, Lisp_Object o2)
1978 {
1979 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1980 }
1981
1982 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1983 doc: /* Return t if two Lisp objects have similar structure and contents.
1984 This is like `equal' except that it compares the text properties
1985 of strings. (`equal' ignores text properties.) */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1989 }
1990
1991 /* DEPTH is current depth of recursion. Signal an error if it
1992 gets too deep.
1993 PROPS means compare string text properties too. */
1994
1995 static bool
1996 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
1997 {
1998 if (depth > 200)
1999 error ("Stack overflow in equal");
2000
2001 tail_recurse:
2002 QUIT;
2003 if (EQ (o1, o2))
2004 return 1;
2005 if (XTYPE (o1) != XTYPE (o2))
2006 return 0;
2007
2008 switch (XTYPE (o1))
2009 {
2010 case Lisp_Float:
2011 {
2012 double d1, d2;
2013
2014 d1 = extract_float (o1);
2015 d2 = extract_float (o2);
2016 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2017 though they are not =. */
2018 return d1 == d2 || (d1 != d1 && d2 != d2);
2019 }
2020
2021 case Lisp_Cons:
2022 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2023 return 0;
2024 o1 = XCDR (o1);
2025 o2 = XCDR (o2);
2026 goto tail_recurse;
2027
2028 case Lisp_Misc:
2029 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2030 return 0;
2031 if (OVERLAYP (o1))
2032 {
2033 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2034 depth + 1, props)
2035 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2036 depth + 1, props))
2037 return 0;
2038 o1 = XOVERLAY (o1)->plist;
2039 o2 = XOVERLAY (o2)->plist;
2040 goto tail_recurse;
2041 }
2042 if (MARKERP (o1))
2043 {
2044 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2045 && (XMARKER (o1)->buffer == 0
2046 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2047 }
2048 break;
2049
2050 case Lisp_Vectorlike:
2051 {
2052 register int i;
2053 ptrdiff_t size = ASIZE (o1);
2054 /* Pseudovectors have the type encoded in the size field, so this test
2055 actually checks that the objects have the same type as well as the
2056 same size. */
2057 if (ASIZE (o2) != size)
2058 return 0;
2059 /* Boolvectors are compared much like strings. */
2060 if (BOOL_VECTOR_P (o1))
2061 {
2062 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2063 return 0;
2064 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2065 ((XBOOL_VECTOR (o1)->size
2066 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2067 / BOOL_VECTOR_BITS_PER_CHAR)))
2068 return 0;
2069 return 1;
2070 }
2071 if (WINDOW_CONFIGURATIONP (o1))
2072 return compare_window_configurations (o1, o2, 0);
2073
2074 /* Aside from them, only true vectors, char-tables, compiled
2075 functions, and fonts (font-spec, font-entity, font-object)
2076 are sensible to compare, so eliminate the others now. */
2077 if (size & PSEUDOVECTOR_FLAG)
2078 {
2079 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2080 < PVEC_COMPILED)
2081 return 0;
2082 size &= PSEUDOVECTOR_SIZE_MASK;
2083 }
2084 for (i = 0; i < size; i++)
2085 {
2086 Lisp_Object v1, v2;
2087 v1 = AREF (o1, i);
2088 v2 = AREF (o2, i);
2089 if (!internal_equal (v1, v2, depth + 1, props))
2090 return 0;
2091 }
2092 return 1;
2093 }
2094 break;
2095
2096 case Lisp_String:
2097 if (SCHARS (o1) != SCHARS (o2))
2098 return 0;
2099 if (SBYTES (o1) != SBYTES (o2))
2100 return 0;
2101 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2102 return 0;
2103 if (props && !compare_string_intervals (o1, o2))
2104 return 0;
2105 return 1;
2106
2107 default:
2108 break;
2109 }
2110
2111 return 0;
2112 }
2113 \f
2114
2115 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2116 doc: /* Store each element of ARRAY with ITEM.
2117 ARRAY is a vector, string, char-table, or bool-vector. */)
2118 (Lisp_Object array, Lisp_Object item)
2119 {
2120 register ptrdiff_t size, idx;
2121
2122 if (VECTORP (array))
2123 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2124 ASET (array, idx, item);
2125 else if (CHAR_TABLE_P (array))
2126 {
2127 int i;
2128
2129 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2130 set_char_table_contents (array, i, item);
2131 set_char_table_defalt (array, item);
2132 }
2133 else if (STRINGP (array))
2134 {
2135 register unsigned char *p = SDATA (array);
2136 int charval;
2137 CHECK_CHARACTER (item);
2138 charval = XFASTINT (item);
2139 size = SCHARS (array);
2140 if (STRING_MULTIBYTE (array))
2141 {
2142 unsigned char str[MAX_MULTIBYTE_LENGTH];
2143 int len = CHAR_STRING (charval, str);
2144 ptrdiff_t size_byte = SBYTES (array);
2145
2146 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2147 || SCHARS (array) * len != size_byte)
2148 error ("Attempt to change byte length of a string");
2149 for (idx = 0; idx < size_byte; idx++)
2150 *p++ = str[idx % len];
2151 }
2152 else
2153 for (idx = 0; idx < size; idx++)
2154 p[idx] = charval;
2155 }
2156 else if (BOOL_VECTOR_P (array))
2157 {
2158 register unsigned char *p = XBOOL_VECTOR (array)->data;
2159 size =
2160 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2161 / BOOL_VECTOR_BITS_PER_CHAR);
2162
2163 if (size)
2164 {
2165 memset (p, ! NILP (item) ? -1 : 0, size);
2166
2167 /* Clear any extraneous bits in the last byte. */
2168 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2169 }
2170 }
2171 else
2172 wrong_type_argument (Qarrayp, array);
2173 return array;
2174 }
2175
2176 DEFUN ("clear-string", Fclear_string, Sclear_string,
2177 1, 1, 0,
2178 doc: /* Clear the contents of STRING.
2179 This makes STRING unibyte and may change its length. */)
2180 (Lisp_Object string)
2181 {
2182 ptrdiff_t len;
2183 CHECK_STRING (string);
2184 len = SBYTES (string);
2185 memset (SDATA (string), 0, len);
2186 STRING_SET_CHARS (string, len);
2187 STRING_SET_UNIBYTE (string);
2188 return Qnil;
2189 }
2190 \f
2191 /* ARGSUSED */
2192 Lisp_Object
2193 nconc2 (Lisp_Object s1, Lisp_Object s2)
2194 {
2195 Lisp_Object args[2];
2196 args[0] = s1;
2197 args[1] = s2;
2198 return Fnconc (2, args);
2199 }
2200
2201 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2202 doc: /* Concatenate any number of lists by altering them.
2203 Only the last argument is not altered, and need not be a list.
2204 usage: (nconc &rest LISTS) */)
2205 (ptrdiff_t nargs, Lisp_Object *args)
2206 {
2207 ptrdiff_t argnum;
2208 register Lisp_Object tail, tem, val;
2209
2210 val = tail = Qnil;
2211
2212 for (argnum = 0; argnum < nargs; argnum++)
2213 {
2214 tem = args[argnum];
2215 if (NILP (tem)) continue;
2216
2217 if (NILP (val))
2218 val = tem;
2219
2220 if (argnum + 1 == nargs) break;
2221
2222 CHECK_LIST_CONS (tem, tem);
2223
2224 while (CONSP (tem))
2225 {
2226 tail = tem;
2227 tem = XCDR (tail);
2228 QUIT;
2229 }
2230
2231 tem = args[argnum + 1];
2232 Fsetcdr (tail, tem);
2233 if (NILP (tem))
2234 args[argnum + 1] = tail;
2235 }
2236
2237 return val;
2238 }
2239 \f
2240 /* This is the guts of all mapping functions.
2241 Apply FN to each element of SEQ, one by one,
2242 storing the results into elements of VALS, a C vector of Lisp_Objects.
2243 LENI is the length of VALS, which should also be the length of SEQ. */
2244
2245 static void
2246 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2247 {
2248 register Lisp_Object tail;
2249 Lisp_Object dummy;
2250 register EMACS_INT i;
2251 struct gcpro gcpro1, gcpro2, gcpro3;
2252
2253 if (vals)
2254 {
2255 /* Don't let vals contain any garbage when GC happens. */
2256 for (i = 0; i < leni; i++)
2257 vals[i] = Qnil;
2258
2259 GCPRO3 (dummy, fn, seq);
2260 gcpro1.var = vals;
2261 gcpro1.nvars = leni;
2262 }
2263 else
2264 GCPRO2 (fn, seq);
2265 /* We need not explicitly protect `tail' because it is used only on lists, and
2266 1) lists are not relocated and 2) the list is marked via `seq' so will not
2267 be freed */
2268
2269 if (VECTORP (seq) || COMPILEDP (seq))
2270 {
2271 for (i = 0; i < leni; i++)
2272 {
2273 dummy = call1 (fn, AREF (seq, i));
2274 if (vals)
2275 vals[i] = dummy;
2276 }
2277 }
2278 else if (BOOL_VECTOR_P (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 unsigned char byte;
2283 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2284 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2285 dummy = call1 (fn, dummy);
2286 if (vals)
2287 vals[i] = dummy;
2288 }
2289 }
2290 else if (STRINGP (seq))
2291 {
2292 ptrdiff_t i_byte;
2293
2294 for (i = 0, i_byte = 0; i < leni;)
2295 {
2296 int c;
2297 ptrdiff_t i_before = i;
2298
2299 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2300 XSETFASTINT (dummy, c);
2301 dummy = call1 (fn, dummy);
2302 if (vals)
2303 vals[i_before] = dummy;
2304 }
2305 }
2306 else /* Must be a list, since Flength did not get an error */
2307 {
2308 tail = seq;
2309 for (i = 0; i < leni && CONSP (tail); i++)
2310 {
2311 dummy = call1 (fn, XCAR (tail));
2312 if (vals)
2313 vals[i] = dummy;
2314 tail = XCDR (tail);
2315 }
2316 }
2317
2318 UNGCPRO;
2319 }
2320
2321 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2322 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2323 In between each pair of results, stick in SEPARATOR. Thus, " " as
2324 SEPARATOR results in spaces between the values returned by FUNCTION.
2325 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2326 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2327 {
2328 Lisp_Object len;
2329 register EMACS_INT leni;
2330 EMACS_INT nargs;
2331 ptrdiff_t i;
2332 register Lisp_Object *args;
2333 struct gcpro gcpro1;
2334 Lisp_Object ret;
2335 USE_SAFE_ALLOCA;
2336
2337 len = Flength (sequence);
2338 if (CHAR_TABLE_P (sequence))
2339 wrong_type_argument (Qlistp, sequence);
2340 leni = XINT (len);
2341 nargs = leni + leni - 1;
2342 if (nargs < 0) return empty_unibyte_string;
2343
2344 SAFE_ALLOCA_LISP (args, nargs);
2345
2346 GCPRO1 (separator);
2347 mapcar1 (leni, args, function, sequence);
2348 UNGCPRO;
2349
2350 for (i = leni - 1; i > 0; i--)
2351 args[i + i] = args[i];
2352
2353 for (i = 1; i < nargs; i += 2)
2354 args[i] = separator;
2355
2356 ret = Fconcat (nargs, args);
2357 SAFE_FREE ();
2358
2359 return ret;
2360 }
2361
2362 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2363 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2364 The result is a list just as long as SEQUENCE.
2365 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2366 (Lisp_Object function, Lisp_Object sequence)
2367 {
2368 register Lisp_Object len;
2369 register EMACS_INT leni;
2370 register Lisp_Object *args;
2371 Lisp_Object ret;
2372 USE_SAFE_ALLOCA;
2373
2374 len = Flength (sequence);
2375 if (CHAR_TABLE_P (sequence))
2376 wrong_type_argument (Qlistp, sequence);
2377 leni = XFASTINT (len);
2378
2379 SAFE_ALLOCA_LISP (args, leni);
2380
2381 mapcar1 (leni, args, function, sequence);
2382
2383 ret = Flist (leni, args);
2384 SAFE_FREE ();
2385
2386 return ret;
2387 }
2388
2389 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2390 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2391 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2392 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2393 (Lisp_Object function, Lisp_Object sequence)
2394 {
2395 register EMACS_INT leni;
2396
2397 leni = XFASTINT (Flength (sequence));
2398 if (CHAR_TABLE_P (sequence))
2399 wrong_type_argument (Qlistp, sequence);
2400 mapcar1 (leni, 0, function, sequence);
2401
2402 return sequence;
2403 }
2404 \f
2405 /* This is how C code calls `yes-or-no-p' and allows the user
2406 to redefined it.
2407
2408 Anything that calls this function must protect from GC! */
2409
2410 Lisp_Object
2411 do_yes_or_no_p (Lisp_Object prompt)
2412 {
2413 return call1 (intern ("yes-or-no-p"), prompt);
2414 }
2415
2416 /* Anything that calls this function must protect from GC! */
2417
2418 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2419 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2420 PROMPT is the string to display to ask the question. It should end in
2421 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2422
2423 The user must confirm the answer with RET, and can edit it until it
2424 has been confirmed.
2425
2426 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2427 is nil, and `use-dialog-box' is non-nil. */)
2428 (Lisp_Object prompt)
2429 {
2430 register Lisp_Object ans;
2431 Lisp_Object args[2];
2432 struct gcpro gcpro1;
2433
2434 CHECK_STRING (prompt);
2435
2436 #ifdef HAVE_MENUS
2437 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2438 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2439 && use_dialog_box
2440 && have_menus_p ())
2441 {
2442 Lisp_Object pane, menu, obj;
2443 redisplay_preserve_echo_area (4);
2444 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2445 Fcons (Fcons (build_string ("No"), Qnil),
2446 Qnil));
2447 GCPRO1 (pane);
2448 menu = Fcons (prompt, pane);
2449 obj = Fx_popup_dialog (Qt, menu, Qnil);
2450 UNGCPRO;
2451 return obj;
2452 }
2453 #endif /* HAVE_MENUS */
2454
2455 args[0] = prompt;
2456 args[1] = build_string ("(yes or no) ");
2457 prompt = Fconcat (2, args);
2458
2459 GCPRO1 (prompt);
2460
2461 while (1)
2462 {
2463 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2464 Qyes_or_no_p_history, Qnil,
2465 Qnil));
2466 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2467 {
2468 UNGCPRO;
2469 return Qt;
2470 }
2471 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2472 {
2473 UNGCPRO;
2474 return Qnil;
2475 }
2476
2477 Fding (Qnil);
2478 Fdiscard_input ();
2479 message ("Please answer yes or no.");
2480 Fsleep_for (make_number (2), Qnil);
2481 }
2482 }
2483 \f
2484 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2485 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2486
2487 Each of the three load averages is multiplied by 100, then converted
2488 to integer.
2489
2490 When USE-FLOATS is non-nil, floats will be used instead of integers.
2491 These floats are not multiplied by 100.
2492
2493 If the 5-minute or 15-minute load averages are not available, return a
2494 shortened list, containing only those averages which are available.
2495
2496 An error is thrown if the load average can't be obtained. In some
2497 cases making it work would require Emacs being installed setuid or
2498 setgid so that it can read kernel information, and that usually isn't
2499 advisable. */)
2500 (Lisp_Object use_floats)
2501 {
2502 double load_ave[3];
2503 int loads = getloadavg (load_ave, 3);
2504 Lisp_Object ret = Qnil;
2505
2506 if (loads < 0)
2507 error ("load-average not implemented for this operating system");
2508
2509 while (loads-- > 0)
2510 {
2511 Lisp_Object load = (NILP (use_floats)
2512 ? make_number (100.0 * load_ave[loads])
2513 : make_float (load_ave[loads]));
2514 ret = Fcons (load, ret);
2515 }
2516
2517 return ret;
2518 }
2519 \f
2520 static Lisp_Object Qsubfeatures;
2521
2522 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2523 doc: /* Return t if FEATURE is present in this Emacs.
2524
2525 Use this to conditionalize execution of lisp code based on the
2526 presence or absence of Emacs or environment extensions.
2527 Use `provide' to declare that a feature is available. This function
2528 looks at the value of the variable `features'. The optional argument
2529 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2530 (Lisp_Object feature, Lisp_Object subfeature)
2531 {
2532 register Lisp_Object tem;
2533 CHECK_SYMBOL (feature);
2534 tem = Fmemq (feature, Vfeatures);
2535 if (!NILP (tem) && !NILP (subfeature))
2536 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2537 return (NILP (tem)) ? Qnil : Qt;
2538 }
2539
2540 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2541 doc: /* Announce that FEATURE is a feature of the current Emacs.
2542 The optional argument SUBFEATURES should be a list of symbols listing
2543 particular subfeatures supported in this version of FEATURE. */)
2544 (Lisp_Object feature, Lisp_Object subfeatures)
2545 {
2546 register Lisp_Object tem;
2547 CHECK_SYMBOL (feature);
2548 CHECK_LIST (subfeatures);
2549 if (!NILP (Vautoload_queue))
2550 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2551 Vautoload_queue);
2552 tem = Fmemq (feature, Vfeatures);
2553 if (NILP (tem))
2554 Vfeatures = Fcons (feature, Vfeatures);
2555 if (!NILP (subfeatures))
2556 Fput (feature, Qsubfeatures, subfeatures);
2557 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2558
2559 /* Run any load-hooks for this file. */
2560 tem = Fassq (feature, Vafter_load_alist);
2561 if (CONSP (tem))
2562 Fprogn (XCDR (tem));
2563
2564 return feature;
2565 }
2566 \f
2567 /* `require' and its subroutines. */
2568
2569 /* List of features currently being require'd, innermost first. */
2570
2571 static Lisp_Object require_nesting_list;
2572
2573 static Lisp_Object
2574 require_unwind (Lisp_Object old_value)
2575 {
2576 return require_nesting_list = old_value;
2577 }
2578
2579 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2580 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2581 If FEATURE is not a member of the list `features', then the feature
2582 is not loaded; so load the file FILENAME.
2583 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2584 and `load' will try to load this name appended with the suffix `.elc' or
2585 `.el', in that order. The name without appended suffix will not be used.
2586 See `get-load-suffixes' for the complete list of suffixes.
2587 If the optional third argument NOERROR is non-nil,
2588 then return nil if the file is not found instead of signaling an error.
2589 Normally the return value is FEATURE.
2590 The normal messages at start and end of loading FILENAME are suppressed. */)
2591 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2592 {
2593 Lisp_Object tem;
2594 struct gcpro gcpro1, gcpro2;
2595 bool from_file = load_in_progress;
2596
2597 CHECK_SYMBOL (feature);
2598
2599 /* Record the presence of `require' in this file
2600 even if the feature specified is already loaded.
2601 But not more than once in any file,
2602 and not when we aren't loading or reading from a file. */
2603 if (!from_file)
2604 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2605 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2606 from_file = 1;
2607
2608 if (from_file)
2609 {
2610 tem = Fcons (Qrequire, feature);
2611 if (NILP (Fmember (tem, Vcurrent_load_list)))
2612 LOADHIST_ATTACH (tem);
2613 }
2614 tem = Fmemq (feature, Vfeatures);
2615
2616 if (NILP (tem))
2617 {
2618 ptrdiff_t count = SPECPDL_INDEX ();
2619 int nesting = 0;
2620
2621 /* This is to make sure that loadup.el gives a clear picture
2622 of what files are preloaded and when. */
2623 if (! NILP (Vpurify_flag))
2624 error ("(require %s) while preparing to dump",
2625 SDATA (SYMBOL_NAME (feature)));
2626
2627 /* A certain amount of recursive `require' is legitimate,
2628 but if we require the same feature recursively 3 times,
2629 signal an error. */
2630 tem = require_nesting_list;
2631 while (! NILP (tem))
2632 {
2633 if (! NILP (Fequal (feature, XCAR (tem))))
2634 nesting++;
2635 tem = XCDR (tem);
2636 }
2637 if (nesting > 3)
2638 error ("Recursive `require' for feature `%s'",
2639 SDATA (SYMBOL_NAME (feature)));
2640
2641 /* Update the list for any nested `require's that occur. */
2642 record_unwind_protect (require_unwind, require_nesting_list);
2643 require_nesting_list = Fcons (feature, require_nesting_list);
2644
2645 /* Value saved here is to be restored into Vautoload_queue */
2646 record_unwind_protect (un_autoload, Vautoload_queue);
2647 Vautoload_queue = Qt;
2648
2649 /* Load the file. */
2650 GCPRO2 (feature, filename);
2651 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2652 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2653 UNGCPRO;
2654
2655 /* If load failed entirely, return nil. */
2656 if (NILP (tem))
2657 return unbind_to (count, Qnil);
2658
2659 tem = Fmemq (feature, Vfeatures);
2660 if (NILP (tem))
2661 error ("Required feature `%s' was not provided",
2662 SDATA (SYMBOL_NAME (feature)));
2663
2664 /* Once loading finishes, don't undo it. */
2665 Vautoload_queue = Qt;
2666 feature = unbind_to (count, feature);
2667 }
2668
2669 return feature;
2670 }
2671 \f
2672 /* Primitives for work of the "widget" library.
2673 In an ideal world, this section would not have been necessary.
2674 However, lisp function calls being as slow as they are, it turns
2675 out that some functions in the widget library (wid-edit.el) are the
2676 bottleneck of Widget operation. Here is their translation to C,
2677 for the sole reason of efficiency. */
2678
2679 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2680 doc: /* Return non-nil if PLIST has the property PROP.
2681 PLIST is a property list, which is a list of the form
2682 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2683 Unlike `plist-get', this allows you to distinguish between a missing
2684 property and a property with the value nil.
2685 The value is actually the tail of PLIST whose car is PROP. */)
2686 (Lisp_Object plist, Lisp_Object prop)
2687 {
2688 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2689 {
2690 QUIT;
2691 plist = XCDR (plist);
2692 plist = CDR (plist);
2693 }
2694 return plist;
2695 }
2696
2697 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2698 doc: /* In WIDGET, set PROPERTY to VALUE.
2699 The value can later be retrieved with `widget-get'. */)
2700 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2701 {
2702 CHECK_CONS (widget);
2703 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2704 return value;
2705 }
2706
2707 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2708 doc: /* In WIDGET, get the value of PROPERTY.
2709 The value could either be specified when the widget was created, or
2710 later with `widget-put'. */)
2711 (Lisp_Object widget, Lisp_Object property)
2712 {
2713 Lisp_Object tmp;
2714
2715 while (1)
2716 {
2717 if (NILP (widget))
2718 return Qnil;
2719 CHECK_CONS (widget);
2720 tmp = Fplist_member (XCDR (widget), property);
2721 if (CONSP (tmp))
2722 {
2723 tmp = XCDR (tmp);
2724 return CAR (tmp);
2725 }
2726 tmp = XCAR (widget);
2727 if (NILP (tmp))
2728 return Qnil;
2729 widget = Fget (tmp, Qwidget_type);
2730 }
2731 }
2732
2733 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2734 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2735 ARGS are passed as extra arguments to the function.
2736 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2737 (ptrdiff_t nargs, Lisp_Object *args)
2738 {
2739 /* This function can GC. */
2740 Lisp_Object newargs[3];
2741 struct gcpro gcpro1, gcpro2;
2742 Lisp_Object result;
2743
2744 newargs[0] = Fwidget_get (args[0], args[1]);
2745 newargs[1] = args[0];
2746 newargs[2] = Flist (nargs - 2, args + 2);
2747 GCPRO2 (newargs[0], newargs[2]);
2748 result = Fapply (3, newargs);
2749 UNGCPRO;
2750 return result;
2751 }
2752
2753 #ifdef HAVE_LANGINFO_CODESET
2754 #include <langinfo.h>
2755 #endif
2756
2757 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2758 doc: /* Access locale data ITEM for the current C locale, if available.
2759 ITEM should be one of the following:
2760
2761 `codeset', returning the character set as a string (locale item CODESET);
2762
2763 `days', returning a 7-element vector of day names (locale items DAY_n);
2764
2765 `months', returning a 12-element vector of month names (locale items MON_n);
2766
2767 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2768 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2769
2770 If the system can't provide such information through a call to
2771 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2772
2773 See also Info node `(libc)Locales'.
2774
2775 The data read from the system are decoded using `locale-coding-system'. */)
2776 (Lisp_Object item)
2777 {
2778 char *str = NULL;
2779 #ifdef HAVE_LANGINFO_CODESET
2780 Lisp_Object val;
2781 if (EQ (item, Qcodeset))
2782 {
2783 str = nl_langinfo (CODESET);
2784 return build_string (str);
2785 }
2786 #ifdef DAY_1
2787 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2788 {
2789 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2790 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2791 int i;
2792 struct gcpro gcpro1;
2793 GCPRO1 (v);
2794 synchronize_system_time_locale ();
2795 for (i = 0; i < 7; i++)
2796 {
2797 str = nl_langinfo (days[i]);
2798 val = build_unibyte_string (str);
2799 /* Fixme: Is this coding system necessarily right, even if
2800 it is consistent with CODESET? If not, what to do? */
2801 Faset (v, make_number (i),
2802 code_convert_string_norecord (val, Vlocale_coding_system,
2803 0));
2804 }
2805 UNGCPRO;
2806 return v;
2807 }
2808 #endif /* DAY_1 */
2809 #ifdef MON_1
2810 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2811 {
2812 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2813 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2814 MON_8, MON_9, MON_10, MON_11, MON_12};
2815 int i;
2816 struct gcpro gcpro1;
2817 GCPRO1 (v);
2818 synchronize_system_time_locale ();
2819 for (i = 0; i < 12; i++)
2820 {
2821 str = nl_langinfo (months[i]);
2822 val = build_unibyte_string (str);
2823 Faset (v, make_number (i),
2824 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2825 }
2826 UNGCPRO;
2827 return v;
2828 }
2829 #endif /* MON_1 */
2830 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2831 but is in the locale files. This could be used by ps-print. */
2832 #ifdef PAPER_WIDTH
2833 else if (EQ (item, Qpaper))
2834 {
2835 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2836 make_number (nl_langinfo (PAPER_HEIGHT)));
2837 }
2838 #endif /* PAPER_WIDTH */
2839 #endif /* HAVE_LANGINFO_CODESET*/
2840 return Qnil;
2841 }
2842 \f
2843 /* base64 encode/decode functions (RFC 2045).
2844 Based on code from GNU recode. */
2845
2846 #define MIME_LINE_LENGTH 76
2847
2848 #define IS_ASCII(Character) \
2849 ((Character) < 128)
2850 #define IS_BASE64(Character) \
2851 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2852 #define IS_BASE64_IGNORABLE(Character) \
2853 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2854 || (Character) == '\f' || (Character) == '\r')
2855
2856 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2857 character or return retval if there are no characters left to
2858 process. */
2859 #define READ_QUADRUPLET_BYTE(retval) \
2860 do \
2861 { \
2862 if (i == length) \
2863 { \
2864 if (nchars_return) \
2865 *nchars_return = nchars; \
2866 return (retval); \
2867 } \
2868 c = from[i++]; \
2869 } \
2870 while (IS_BASE64_IGNORABLE (c))
2871
2872 /* Table of characters coding the 64 values. */
2873 static const char base64_value_to_char[64] =
2874 {
2875 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2876 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2877 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2878 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2879 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2880 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2881 '8', '9', '+', '/' /* 60-63 */
2882 };
2883
2884 /* Table of base64 values for first 128 characters. */
2885 static const short base64_char_to_value[128] =
2886 {
2887 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2888 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2889 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2891 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2892 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2893 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2894 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2895 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2896 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2897 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2898 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2899 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2900 };
2901
2902 /* The following diagram shows the logical steps by which three octets
2903 get transformed into four base64 characters.
2904
2905 .--------. .--------. .--------.
2906 |aaaaaabb| |bbbbcccc| |ccdddddd|
2907 `--------' `--------' `--------'
2908 6 2 4 4 2 6
2909 .--------+--------+--------+--------.
2910 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2911 `--------+--------+--------+--------'
2912
2913 .--------+--------+--------+--------.
2914 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2915 `--------+--------+--------+--------'
2916
2917 The octets are divided into 6 bit chunks, which are then encoded into
2918 base64 characters. */
2919
2920
2921 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2922 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2923 ptrdiff_t *);
2924
2925 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2926 2, 3, "r",
2927 doc: /* Base64-encode the region between BEG and END.
2928 Return the length of the encoded text.
2929 Optional third argument NO-LINE-BREAK means do not break long lines
2930 into shorter lines. */)
2931 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2932 {
2933 char *encoded;
2934 ptrdiff_t allength, length;
2935 ptrdiff_t ibeg, iend, encoded_length;
2936 ptrdiff_t old_pos = PT;
2937 USE_SAFE_ALLOCA;
2938
2939 validate_region (&beg, &end);
2940
2941 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2942 iend = CHAR_TO_BYTE (XFASTINT (end));
2943 move_gap_both (XFASTINT (beg), ibeg);
2944
2945 /* We need to allocate enough room for encoding the text.
2946 We need 33 1/3% more space, plus a newline every 76
2947 characters, and then we round up. */
2948 length = iend - ibeg;
2949 allength = length + length/3 + 1;
2950 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2951
2952 encoded = SAFE_ALLOCA (allength);
2953 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2954 encoded, length, NILP (no_line_break),
2955 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2956 if (encoded_length > allength)
2957 emacs_abort ();
2958
2959 if (encoded_length < 0)
2960 {
2961 /* The encoding wasn't possible. */
2962 SAFE_FREE ();
2963 error ("Multibyte character in data for base64 encoding");
2964 }
2965
2966 /* Now we have encoded the region, so we insert the new contents
2967 and delete the old. (Insert first in order to preserve markers.) */
2968 SET_PT_BOTH (XFASTINT (beg), ibeg);
2969 insert (encoded, encoded_length);
2970 SAFE_FREE ();
2971 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2972
2973 /* If point was outside of the region, restore it exactly; else just
2974 move to the beginning of the region. */
2975 if (old_pos >= XFASTINT (end))
2976 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2977 else if (old_pos > XFASTINT (beg))
2978 old_pos = XFASTINT (beg);
2979 SET_PT (old_pos);
2980
2981 /* We return the length of the encoded text. */
2982 return make_number (encoded_length);
2983 }
2984
2985 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2986 1, 2, 0,
2987 doc: /* Base64-encode STRING and return the result.
2988 Optional second argument NO-LINE-BREAK means do not break long lines
2989 into shorter lines. */)
2990 (Lisp_Object string, Lisp_Object no_line_break)
2991 {
2992 ptrdiff_t allength, length, encoded_length;
2993 char *encoded;
2994 Lisp_Object encoded_string;
2995 USE_SAFE_ALLOCA;
2996
2997 CHECK_STRING (string);
2998
2999 /* We need to allocate enough room for encoding the text.
3000 We need 33 1/3% more space, plus a newline every 76
3001 characters, and then we round up. */
3002 length = SBYTES (string);
3003 allength = length + length/3 + 1;
3004 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3005
3006 /* We need to allocate enough room for decoding the text. */
3007 encoded = SAFE_ALLOCA (allength);
3008
3009 encoded_length = base64_encode_1 (SSDATA (string),
3010 encoded, length, NILP (no_line_break),
3011 STRING_MULTIBYTE (string));
3012 if (encoded_length > allength)
3013 emacs_abort ();
3014
3015 if (encoded_length < 0)
3016 {
3017 /* The encoding wasn't possible. */
3018 SAFE_FREE ();
3019 error ("Multibyte character in data for base64 encoding");
3020 }
3021
3022 encoded_string = make_unibyte_string (encoded, encoded_length);
3023 SAFE_FREE ();
3024
3025 return encoded_string;
3026 }
3027
3028 static ptrdiff_t
3029 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3030 bool line_break, bool multibyte)
3031 {
3032 int counter = 0;
3033 ptrdiff_t i = 0;
3034 char *e = to;
3035 int c;
3036 unsigned int value;
3037 int bytes;
3038
3039 while (i < length)
3040 {
3041 if (multibyte)
3042 {
3043 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3044 if (CHAR_BYTE8_P (c))
3045 c = CHAR_TO_BYTE8 (c);
3046 else if (c >= 256)
3047 return -1;
3048 i += bytes;
3049 }
3050 else
3051 c = from[i++];
3052
3053 /* Wrap line every 76 characters. */
3054
3055 if (line_break)
3056 {
3057 if (counter < MIME_LINE_LENGTH / 4)
3058 counter++;
3059 else
3060 {
3061 *e++ = '\n';
3062 counter = 1;
3063 }
3064 }
3065
3066 /* Process first byte of a triplet. */
3067
3068 *e++ = base64_value_to_char[0x3f & c >> 2];
3069 value = (0x03 & c) << 4;
3070
3071 /* Process second byte of a triplet. */
3072
3073 if (i == length)
3074 {
3075 *e++ = base64_value_to_char[value];
3076 *e++ = '=';
3077 *e++ = '=';
3078 break;
3079 }
3080
3081 if (multibyte)
3082 {
3083 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3084 if (CHAR_BYTE8_P (c))
3085 c = CHAR_TO_BYTE8 (c);
3086 else if (c >= 256)
3087 return -1;
3088 i += bytes;
3089 }
3090 else
3091 c = from[i++];
3092
3093 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3094 value = (0x0f & c) << 2;
3095
3096 /* Process third byte of a triplet. */
3097
3098 if (i == length)
3099 {
3100 *e++ = base64_value_to_char[value];
3101 *e++ = '=';
3102 break;
3103 }
3104
3105 if (multibyte)
3106 {
3107 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3108 if (CHAR_BYTE8_P (c))
3109 c = CHAR_TO_BYTE8 (c);
3110 else if (c >= 256)
3111 return -1;
3112 i += bytes;
3113 }
3114 else
3115 c = from[i++];
3116
3117 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3118 *e++ = base64_value_to_char[0x3f & c];
3119 }
3120
3121 return e - to;
3122 }
3123
3124
3125 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3126 2, 2, "r",
3127 doc: /* Base64-decode the region between BEG and END.
3128 Return the length of the decoded text.
3129 If the region can't be decoded, signal an error and don't modify the buffer. */)
3130 (Lisp_Object beg, Lisp_Object end)
3131 {
3132 ptrdiff_t ibeg, iend, length, allength;
3133 char *decoded;
3134 ptrdiff_t old_pos = PT;
3135 ptrdiff_t decoded_length;
3136 ptrdiff_t inserted_chars;
3137 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3138 USE_SAFE_ALLOCA;
3139
3140 validate_region (&beg, &end);
3141
3142 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3143 iend = CHAR_TO_BYTE (XFASTINT (end));
3144
3145 length = iend - ibeg;
3146
3147 /* We need to allocate enough room for decoding the text. If we are
3148 working on a multibyte buffer, each decoded code may occupy at
3149 most two bytes. */
3150 allength = multibyte ? length * 2 : length;
3151 decoded = SAFE_ALLOCA (allength);
3152
3153 move_gap_both (XFASTINT (beg), ibeg);
3154 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3155 decoded, length,
3156 multibyte, &inserted_chars);
3157 if (decoded_length > allength)
3158 emacs_abort ();
3159
3160 if (decoded_length < 0)
3161 {
3162 /* The decoding wasn't possible. */
3163 SAFE_FREE ();
3164 error ("Invalid base64 data");
3165 }
3166
3167 /* Now we have decoded the region, so we insert the new contents
3168 and delete the old. (Insert first in order to preserve markers.) */
3169 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3170 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3171 SAFE_FREE ();
3172
3173 /* Delete the original text. */
3174 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3175 iend + decoded_length, 1);
3176
3177 /* If point was outside of the region, restore it exactly; else just
3178 move to the beginning of the region. */
3179 if (old_pos >= XFASTINT (end))
3180 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3181 else if (old_pos > XFASTINT (beg))
3182 old_pos = XFASTINT (beg);
3183 SET_PT (old_pos > ZV ? ZV : old_pos);
3184
3185 return make_number (inserted_chars);
3186 }
3187
3188 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3189 1, 1, 0,
3190 doc: /* Base64-decode STRING and return the result. */)
3191 (Lisp_Object string)
3192 {
3193 char *decoded;
3194 ptrdiff_t length, decoded_length;
3195 Lisp_Object decoded_string;
3196 USE_SAFE_ALLOCA;
3197
3198 CHECK_STRING (string);
3199
3200 length = SBYTES (string);
3201 /* We need to allocate enough room for decoding the text. */
3202 decoded = SAFE_ALLOCA (length);
3203
3204 /* The decoded result should be unibyte. */
3205 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3206 0, NULL);
3207 if (decoded_length > length)
3208 emacs_abort ();
3209 else if (decoded_length >= 0)
3210 decoded_string = make_unibyte_string (decoded, decoded_length);
3211 else
3212 decoded_string = Qnil;
3213
3214 SAFE_FREE ();
3215 if (!STRINGP (decoded_string))
3216 error ("Invalid base64 data");
3217
3218 return decoded_string;
3219 }
3220
3221 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3222 MULTIBYTE, the decoded result should be in multibyte
3223 form. If NCHARS_RETURN is not NULL, store the number of produced
3224 characters in *NCHARS_RETURN. */
3225
3226 static ptrdiff_t
3227 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3228 bool multibyte, ptrdiff_t *nchars_return)
3229 {
3230 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3231 char *e = to;
3232 unsigned char c;
3233 unsigned long value;
3234 ptrdiff_t nchars = 0;
3235
3236 while (1)
3237 {
3238 /* Process first byte of a quadruplet. */
3239
3240 READ_QUADRUPLET_BYTE (e-to);
3241
3242 if (!IS_BASE64 (c))
3243 return -1;
3244 value = base64_char_to_value[c] << 18;
3245
3246 /* Process second byte of a quadruplet. */
3247
3248 READ_QUADRUPLET_BYTE (-1);
3249
3250 if (!IS_BASE64 (c))
3251 return -1;
3252 value |= base64_char_to_value[c] << 12;
3253
3254 c = (unsigned char) (value >> 16);
3255 if (multibyte && c >= 128)
3256 e += BYTE8_STRING (c, e);
3257 else
3258 *e++ = c;
3259 nchars++;
3260
3261 /* Process third byte of a quadruplet. */
3262
3263 READ_QUADRUPLET_BYTE (-1);
3264
3265 if (c == '=')
3266 {
3267 READ_QUADRUPLET_BYTE (-1);
3268
3269 if (c != '=')
3270 return -1;
3271 continue;
3272 }
3273
3274 if (!IS_BASE64 (c))
3275 return -1;
3276 value |= base64_char_to_value[c] << 6;
3277
3278 c = (unsigned char) (0xff & value >> 8);
3279 if (multibyte && c >= 128)
3280 e += BYTE8_STRING (c, e);
3281 else
3282 *e++ = c;
3283 nchars++;
3284
3285 /* Process fourth byte of a quadruplet. */
3286
3287 READ_QUADRUPLET_BYTE (-1);
3288
3289 if (c == '=')
3290 continue;
3291
3292 if (!IS_BASE64 (c))
3293 return -1;
3294 value |= base64_char_to_value[c];
3295
3296 c = (unsigned char) (0xff & value);
3297 if (multibyte && c >= 128)
3298 e += BYTE8_STRING (c, e);
3299 else
3300 *e++ = c;
3301 nchars++;
3302 }
3303 }
3304
3305
3306 \f
3307 /***********************************************************************
3308 ***** *****
3309 ***** Hash Tables *****
3310 ***** *****
3311 ***********************************************************************/
3312
3313 /* Implemented by gerd@gnu.org. This hash table implementation was
3314 inspired by CMUCL hash tables. */
3315
3316 /* Ideas:
3317
3318 1. For small tables, association lists are probably faster than
3319 hash tables because they have lower overhead.
3320
3321 For uses of hash tables where the O(1) behavior of table
3322 operations is not a requirement, it might therefore be a good idea
3323 not to hash. Instead, we could just do a linear search in the
3324 key_and_value vector of the hash table. This could be done
3325 if a `:linear-search t' argument is given to make-hash-table. */
3326
3327
3328 /* The list of all weak hash tables. Don't staticpro this one. */
3329
3330 static struct Lisp_Hash_Table *weak_hash_tables;
3331
3332 /* Various symbols. */
3333
3334 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3335 Lisp_Object Qeq, Qeql, Qequal;
3336 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3337 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3338
3339 \f
3340 /***********************************************************************
3341 Utilities
3342 ***********************************************************************/
3343
3344 /* If OBJ is a Lisp hash table, return a pointer to its struct
3345 Lisp_Hash_Table. Otherwise, signal an error. */
3346
3347 static struct Lisp_Hash_Table *
3348 check_hash_table (Lisp_Object obj)
3349 {
3350 CHECK_HASH_TABLE (obj);
3351 return XHASH_TABLE (obj);
3352 }
3353
3354
3355 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3356 number. A number is "almost" a prime number if it is not divisible
3357 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3358
3359 EMACS_INT
3360 next_almost_prime (EMACS_INT n)
3361 {
3362 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3363 for (n |= 1; ; n += 2)
3364 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3365 return n;
3366 }
3367
3368
3369 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3370 which USED[I] is non-zero. If found at index I in ARGS, set
3371 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3372 0. This function is used to extract a keyword/argument pair from
3373 a DEFUN parameter list. */
3374
3375 static ptrdiff_t
3376 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3377 {
3378 ptrdiff_t i;
3379
3380 for (i = 1; i < nargs; i++)
3381 if (!used[i - 1] && EQ (args[i - 1], key))
3382 {
3383 used[i - 1] = 1;
3384 used[i] = 1;
3385 return i;
3386 }
3387
3388 return 0;
3389 }
3390
3391
3392 /* Return a Lisp vector which has the same contents as VEC but has
3393 at least INCR_MIN more entries, where INCR_MIN is positive.
3394 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3395 than NITEMS_MAX. Entries in the resulting
3396 vector that are not copied from VEC are set to nil. */
3397
3398 Lisp_Object
3399 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3400 {
3401 struct Lisp_Vector *v;
3402 ptrdiff_t i, incr, incr_max, old_size, new_size;
3403 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3404 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3405 ? nitems_max : C_language_max);
3406 eassert (VECTORP (vec));
3407 eassert (0 < incr_min && -1 <= nitems_max);
3408 old_size = ASIZE (vec);
3409 incr_max = n_max - old_size;
3410 incr = max (incr_min, min (old_size >> 1, incr_max));
3411 if (incr_max < incr)
3412 memory_full (SIZE_MAX);
3413 new_size = old_size + incr;
3414 v = allocate_vector (new_size);
3415 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3416 for (i = old_size; i < new_size; ++i)
3417 v->contents[i] = Qnil;
3418 XSETVECTOR (vec, v);
3419 return vec;
3420 }
3421
3422
3423 /***********************************************************************
3424 Low-level Functions
3425 ***********************************************************************/
3426
3427 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3428 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3429 KEY2 are the same. */
3430
3431 static bool
3432 cmpfn_eql (struct Lisp_Hash_Table *h,
3433 Lisp_Object key1, EMACS_UINT hash1,
3434 Lisp_Object key2, EMACS_UINT hash2)
3435 {
3436 return (FLOATP (key1)
3437 && FLOATP (key2)
3438 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3439 }
3440
3441
3442 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3443 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3444 KEY2 are the same. */
3445
3446 static bool
3447 cmpfn_equal (struct Lisp_Hash_Table *h,
3448 Lisp_Object key1, EMACS_UINT hash1,
3449 Lisp_Object key2, EMACS_UINT hash2)
3450 {
3451 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3452 }
3453
3454
3455 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3456 HASH2 in hash table H using H->user_cmp_function. Value is true
3457 if KEY1 and KEY2 are the same. */
3458
3459 static bool
3460 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3461 Lisp_Object key1, EMACS_UINT hash1,
3462 Lisp_Object key2, EMACS_UINT hash2)
3463 {
3464 if (hash1 == hash2)
3465 {
3466 Lisp_Object args[3];
3467
3468 args[0] = h->user_cmp_function;
3469 args[1] = key1;
3470 args[2] = key2;
3471 return !NILP (Ffuncall (3, args));
3472 }
3473 else
3474 return 0;
3475 }
3476
3477
3478 /* Value is a hash code for KEY for use in hash table H which uses
3479 `eq' to compare keys. The hash code returned is guaranteed to fit
3480 in a Lisp integer. */
3481
3482 static EMACS_UINT
3483 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3484 {
3485 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3486 eassert ((hash & ~INTMASK) == 0);
3487 return hash;
3488 }
3489
3490
3491 /* Value is a hash code for KEY for use in hash table H which uses
3492 `eql' to compare keys. The hash code returned is guaranteed to fit
3493 in a Lisp integer. */
3494
3495 static EMACS_UINT
3496 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3497 {
3498 EMACS_UINT hash;
3499 if (FLOATP (key))
3500 hash = sxhash (key, 0);
3501 else
3502 hash = XUINT (key) ^ XTYPE (key);
3503 eassert ((hash & ~INTMASK) == 0);
3504 return hash;
3505 }
3506
3507
3508 /* Value is a hash code for KEY for use in hash table H which uses
3509 `equal' to compare keys. The hash code returned is guaranteed to fit
3510 in a Lisp integer. */
3511
3512 static EMACS_UINT
3513 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3514 {
3515 EMACS_UINT hash = sxhash (key, 0);
3516 eassert ((hash & ~INTMASK) == 0);
3517 return hash;
3518 }
3519
3520
3521 /* Value is a hash code for KEY for use in hash table H which uses as
3522 user-defined function to compare keys. The hash code returned is
3523 guaranteed to fit in a Lisp integer. */
3524
3525 static EMACS_UINT
3526 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3527 {
3528 Lisp_Object args[2], hash;
3529
3530 args[0] = h->user_hash_function;
3531 args[1] = key;
3532 hash = Ffuncall (2, args);
3533 if (!INTEGERP (hash))
3534 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3535 return XUINT (hash);
3536 }
3537
3538 /* An upper bound on the size of a hash table index. It must fit in
3539 ptrdiff_t and be a valid Emacs fixnum. */
3540 #define INDEX_SIZE_BOUND \
3541 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3542
3543 /* Create and initialize a new hash table.
3544
3545 TEST specifies the test the hash table will use to compare keys.
3546 It must be either one of the predefined tests `eq', `eql' or
3547 `equal' or a symbol denoting a user-defined test named TEST with
3548 test and hash functions USER_TEST and USER_HASH.
3549
3550 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3551
3552 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3553 new size when it becomes full is computed by adding REHASH_SIZE to
3554 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3555 table's new size is computed by multiplying its old size with
3556 REHASH_SIZE.
3557
3558 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3559 be resized when the ratio of (number of entries in the table) /
3560 (table size) is >= REHASH_THRESHOLD.
3561
3562 WEAK specifies the weakness of the table. If non-nil, it must be
3563 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3564
3565 Lisp_Object
3566 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3567 Lisp_Object rehash_threshold, Lisp_Object weak,
3568 Lisp_Object user_test, Lisp_Object user_hash)
3569 {
3570 struct Lisp_Hash_Table *h;
3571 Lisp_Object table;
3572 EMACS_INT index_size, sz;
3573 ptrdiff_t i;
3574 double index_float;
3575
3576 /* Preconditions. */
3577 eassert (SYMBOLP (test));
3578 eassert (INTEGERP (size) && XINT (size) >= 0);
3579 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3580 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3581 eassert (FLOATP (rehash_threshold)
3582 && 0 < XFLOAT_DATA (rehash_threshold)
3583 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3584
3585 if (XFASTINT (size) == 0)
3586 size = make_number (1);
3587
3588 sz = XFASTINT (size);
3589 index_float = sz / XFLOAT_DATA (rehash_threshold);
3590 index_size = (index_float < INDEX_SIZE_BOUND + 1
3591 ? next_almost_prime (index_float)
3592 : INDEX_SIZE_BOUND + 1);
3593 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3594 error ("Hash table too large");
3595
3596 /* Allocate a table and initialize it. */
3597 h = allocate_hash_table ();
3598
3599 /* Initialize hash table slots. */
3600 h->test = test;
3601 if (EQ (test, Qeql))
3602 {
3603 h->cmpfn = cmpfn_eql;
3604 h->hashfn = hashfn_eql;
3605 }
3606 else if (EQ (test, Qeq))
3607 {
3608 h->cmpfn = NULL;
3609 h->hashfn = hashfn_eq;
3610 }
3611 else if (EQ (test, Qequal))
3612 {
3613 h->cmpfn = cmpfn_equal;
3614 h->hashfn = hashfn_equal;
3615 }
3616 else
3617 {
3618 h->user_cmp_function = user_test;
3619 h->user_hash_function = user_hash;
3620 h->cmpfn = cmpfn_user_defined;
3621 h->hashfn = hashfn_user_defined;
3622 }
3623
3624 h->weak = weak;
3625 h->rehash_threshold = rehash_threshold;
3626 h->rehash_size = rehash_size;
3627 h->count = 0;
3628 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3629 h->hash = Fmake_vector (size, Qnil);
3630 h->next = Fmake_vector (size, Qnil);
3631 h->index = Fmake_vector (make_number (index_size), Qnil);
3632
3633 /* Set up the free list. */
3634 for (i = 0; i < sz - 1; ++i)
3635 set_hash_next_slot (h, i, make_number (i + 1));
3636 h->next_free = make_number (0);
3637
3638 XSET_HASH_TABLE (table, h);
3639 eassert (HASH_TABLE_P (table));
3640 eassert (XHASH_TABLE (table) == h);
3641
3642 /* Maybe add this hash table to the list of all weak hash tables. */
3643 if (NILP (h->weak))
3644 h->next_weak = NULL;
3645 else
3646 {
3647 h->next_weak = weak_hash_tables;
3648 weak_hash_tables = h;
3649 }
3650
3651 return table;
3652 }
3653
3654
3655 /* Return a copy of hash table H1. Keys and values are not copied,
3656 only the table itself is. */
3657
3658 static Lisp_Object
3659 copy_hash_table (struct Lisp_Hash_Table *h1)
3660 {
3661 Lisp_Object table;
3662 struct Lisp_Hash_Table *h2;
3663
3664 h2 = allocate_hash_table ();
3665 *h2 = *h1;
3666 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3667 h2->hash = Fcopy_sequence (h1->hash);
3668 h2->next = Fcopy_sequence (h1->next);
3669 h2->index = Fcopy_sequence (h1->index);
3670 XSET_HASH_TABLE (table, h2);
3671
3672 /* Maybe add this hash table to the list of all weak hash tables. */
3673 if (!NILP (h2->weak))
3674 {
3675 h2->next_weak = weak_hash_tables;
3676 weak_hash_tables = h2;
3677 }
3678
3679 return table;
3680 }
3681
3682
3683 /* Resize hash table H if it's too full. If H cannot be resized
3684 because it's already too large, throw an error. */
3685
3686 static void
3687 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3688 {
3689 if (NILP (h->next_free))
3690 {
3691 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3692 EMACS_INT new_size, index_size, nsize;
3693 ptrdiff_t i;
3694 double index_float;
3695
3696 if (INTEGERP (h->rehash_size))
3697 new_size = old_size + XFASTINT (h->rehash_size);
3698 else
3699 {
3700 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3701 if (float_new_size < INDEX_SIZE_BOUND + 1)
3702 {
3703 new_size = float_new_size;
3704 if (new_size <= old_size)
3705 new_size = old_size + 1;
3706 }
3707 else
3708 new_size = INDEX_SIZE_BOUND + 1;
3709 }
3710 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3711 index_size = (index_float < INDEX_SIZE_BOUND + 1
3712 ? next_almost_prime (index_float)
3713 : INDEX_SIZE_BOUND + 1);
3714 nsize = max (index_size, 2 * new_size);
3715 if (INDEX_SIZE_BOUND < nsize)
3716 error ("Hash table too large to resize");
3717
3718 #ifdef ENABLE_CHECKING
3719 if (HASH_TABLE_P (Vpurify_flag)
3720 && XHASH_TABLE (Vpurify_flag) == h)
3721 {
3722 Lisp_Object args[2];
3723 args[0] = build_string ("Growing hash table to: %d");
3724 args[1] = make_number (new_size);
3725 Fmessage (2, args);
3726 }
3727 #endif
3728
3729 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3730 2 * (new_size - old_size), -1));
3731 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3732 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3733 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3734
3735 /* Update the free list. Do it so that new entries are added at
3736 the end of the free list. This makes some operations like
3737 maphash faster. */
3738 for (i = old_size; i < new_size - 1; ++i)
3739 set_hash_next_slot (h, i, make_number (i + 1));
3740
3741 if (!NILP (h->next_free))
3742 {
3743 Lisp_Object last, next;
3744
3745 last = h->next_free;
3746 while (next = HASH_NEXT (h, XFASTINT (last)),
3747 !NILP (next))
3748 last = next;
3749
3750 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3751 }
3752 else
3753 XSETFASTINT (h->next_free, old_size);
3754
3755 /* Rehash. */
3756 for (i = 0; i < old_size; ++i)
3757 if (!NILP (HASH_HASH (h, i)))
3758 {
3759 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3760 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3761 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3762 set_hash_index_slot (h, start_of_bucket, make_number (i));
3763 }
3764 }
3765 }
3766
3767
3768 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3769 the hash code of KEY. Value is the index of the entry in H
3770 matching KEY, or -1 if not found. */
3771
3772 ptrdiff_t
3773 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3774 {
3775 EMACS_UINT hash_code;
3776 ptrdiff_t start_of_bucket;
3777 Lisp_Object idx;
3778
3779 hash_code = h->hashfn (h, key);
3780 if (hash)
3781 *hash = hash_code;
3782
3783 start_of_bucket = hash_code % ASIZE (h->index);
3784 idx = HASH_INDEX (h, start_of_bucket);
3785
3786 /* We need not gcpro idx since it's either an integer or nil. */
3787 while (!NILP (idx))
3788 {
3789 ptrdiff_t i = XFASTINT (idx);
3790 if (EQ (key, HASH_KEY (h, i))
3791 || (h->cmpfn
3792 && h->cmpfn (h, key, hash_code,
3793 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3794 break;
3795 idx = HASH_NEXT (h, i);
3796 }
3797
3798 return NILP (idx) ? -1 : XFASTINT (idx);
3799 }
3800
3801
3802 /* Put an entry into hash table H that associates KEY with VALUE.
3803 HASH is a previously computed hash code of KEY.
3804 Value is the index of the entry in H matching KEY. */
3805
3806 ptrdiff_t
3807 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3808 EMACS_UINT hash)
3809 {
3810 ptrdiff_t start_of_bucket, i;
3811
3812 eassert ((hash & ~INTMASK) == 0);
3813
3814 /* Increment count after resizing because resizing may fail. */
3815 maybe_resize_hash_table (h);
3816 h->count++;
3817
3818 /* Store key/value in the key_and_value vector. */
3819 i = XFASTINT (h->next_free);
3820 h->next_free = HASH_NEXT (h, i);
3821 set_hash_key_slot (h, i, key);
3822 set_hash_value_slot (h, i, value);
3823
3824 /* Remember its hash code. */
3825 set_hash_hash_slot (h, i, make_number (hash));
3826
3827 /* Add new entry to its collision chain. */
3828 start_of_bucket = hash % ASIZE (h->index);
3829 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3830 set_hash_index_slot (h, start_of_bucket, make_number (i));
3831 return i;
3832 }
3833
3834
3835 /* Remove the entry matching KEY from hash table H, if there is one. */
3836
3837 static void
3838 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3839 {
3840 EMACS_UINT hash_code;
3841 ptrdiff_t start_of_bucket;
3842 Lisp_Object idx, prev;
3843
3844 hash_code = h->hashfn (h, key);
3845 start_of_bucket = hash_code % ASIZE (h->index);
3846 idx = HASH_INDEX (h, start_of_bucket);
3847 prev = Qnil;
3848
3849 /* We need not gcpro idx, prev since they're either integers or nil. */
3850 while (!NILP (idx))
3851 {
3852 ptrdiff_t i = XFASTINT (idx);
3853
3854 if (EQ (key, HASH_KEY (h, i))
3855 || (h->cmpfn
3856 && h->cmpfn (h, key, hash_code,
3857 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3858 {
3859 /* Take entry out of collision chain. */
3860 if (NILP (prev))
3861 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3862 else
3863 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3864
3865 /* Clear slots in key_and_value and add the slots to
3866 the free list. */
3867 set_hash_key_slot (h, i, Qnil);
3868 set_hash_value_slot (h, i, Qnil);
3869 set_hash_hash_slot (h, i, Qnil);
3870 set_hash_next_slot (h, i, h->next_free);
3871 h->next_free = make_number (i);
3872 h->count--;
3873 eassert (h->count >= 0);
3874 break;
3875 }
3876 else
3877 {
3878 prev = idx;
3879 idx = HASH_NEXT (h, i);
3880 }
3881 }
3882 }
3883
3884
3885 /* Clear hash table H. */
3886
3887 static void
3888 hash_clear (struct Lisp_Hash_Table *h)
3889 {
3890 if (h->count > 0)
3891 {
3892 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3893
3894 for (i = 0; i < size; ++i)
3895 {
3896 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3897 set_hash_key_slot (h, i, Qnil);
3898 set_hash_value_slot (h, i, Qnil);
3899 set_hash_hash_slot (h, i, Qnil);
3900 }
3901
3902 for (i = 0; i < ASIZE (h->index); ++i)
3903 ASET (h->index, i, Qnil);
3904
3905 h->next_free = make_number (0);
3906 h->count = 0;
3907 }
3908 }
3909
3910
3911 \f
3912 /************************************************************************
3913 Weak Hash Tables
3914 ************************************************************************/
3915
3916 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3917 entries from the table that don't survive the current GC.
3918 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3919 true if anything was marked. */
3920
3921 static bool
3922 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3923 {
3924 ptrdiff_t bucket, n;
3925 bool marked;
3926
3927 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3928 marked = 0;
3929
3930 for (bucket = 0; bucket < n; ++bucket)
3931 {
3932 Lisp_Object idx, next, prev;
3933
3934 /* Follow collision chain, removing entries that
3935 don't survive this garbage collection. */
3936 prev = Qnil;
3937 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3938 {
3939 ptrdiff_t i = XFASTINT (idx);
3940 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3941 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3942 bool remove_p;
3943
3944 if (EQ (h->weak, Qkey))
3945 remove_p = !key_known_to_survive_p;
3946 else if (EQ (h->weak, Qvalue))
3947 remove_p = !value_known_to_survive_p;
3948 else if (EQ (h->weak, Qkey_or_value))
3949 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3950 else if (EQ (h->weak, Qkey_and_value))
3951 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3952 else
3953 emacs_abort ();
3954
3955 next = HASH_NEXT (h, i);
3956
3957 if (remove_entries_p)
3958 {
3959 if (remove_p)
3960 {
3961 /* Take out of collision chain. */
3962 if (NILP (prev))
3963 set_hash_index_slot (h, bucket, next);
3964 else
3965 set_hash_next_slot (h, XFASTINT (prev), next);
3966
3967 /* Add to free list. */
3968 set_hash_next_slot (h, i, h->next_free);
3969 h->next_free = idx;
3970
3971 /* Clear key, value, and hash. */
3972 set_hash_key_slot (h, i, Qnil);
3973 set_hash_value_slot (h, i, Qnil);
3974 set_hash_hash_slot (h, i, Qnil);
3975
3976 h->count--;
3977 }
3978 else
3979 {
3980 prev = idx;
3981 }
3982 }
3983 else
3984 {
3985 if (!remove_p)
3986 {
3987 /* Make sure key and value survive. */
3988 if (!key_known_to_survive_p)
3989 {
3990 mark_object (HASH_KEY (h, i));
3991 marked = 1;
3992 }
3993
3994 if (!value_known_to_survive_p)
3995 {
3996 mark_object (HASH_VALUE (h, i));
3997 marked = 1;
3998 }
3999 }
4000 }
4001 }
4002 }
4003
4004 return marked;
4005 }
4006
4007 /* Remove elements from weak hash tables that don't survive the
4008 current garbage collection. Remove weak tables that don't survive
4009 from Vweak_hash_tables. Called from gc_sweep. */
4010
4011 void
4012 sweep_weak_hash_tables (void)
4013 {
4014 struct Lisp_Hash_Table *h, *used, *next;
4015 bool marked;
4016
4017 /* Mark all keys and values that are in use. Keep on marking until
4018 there is no more change. This is necessary for cases like
4019 value-weak table A containing an entry X -> Y, where Y is used in a
4020 key-weak table B, Z -> Y. If B comes after A in the list of weak
4021 tables, X -> Y might be removed from A, although when looking at B
4022 one finds that it shouldn't. */
4023 do
4024 {
4025 marked = 0;
4026 for (h = weak_hash_tables; h; h = h->next_weak)
4027 {
4028 if (h->header.size & ARRAY_MARK_FLAG)
4029 marked |= sweep_weak_table (h, 0);
4030 }
4031 }
4032 while (marked);
4033
4034 /* Remove tables and entries that aren't used. */
4035 for (h = weak_hash_tables, used = NULL; h; h = next)
4036 {
4037 next = h->next_weak;
4038
4039 if (h->header.size & ARRAY_MARK_FLAG)
4040 {
4041 /* TABLE is marked as used. Sweep its contents. */
4042 if (h->count > 0)
4043 sweep_weak_table (h, 1);
4044
4045 /* Add table to the list of used weak hash tables. */
4046 h->next_weak = used;
4047 used = h;
4048 }
4049 }
4050
4051 weak_hash_tables = used;
4052 }
4053
4054
4055 \f
4056 /***********************************************************************
4057 Hash Code Computation
4058 ***********************************************************************/
4059
4060 /* Maximum depth up to which to dive into Lisp structures. */
4061
4062 #define SXHASH_MAX_DEPTH 3
4063
4064 /* Maximum length up to which to take list and vector elements into
4065 account. */
4066
4067 #define SXHASH_MAX_LEN 7
4068
4069 /* Combine two integers X and Y for hashing. The result might not fit
4070 into a Lisp integer. */
4071
4072 #define SXHASH_COMBINE(X, Y) \
4073 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4074 + (EMACS_UINT) (Y))
4075
4076 /* Hash X, returning a value that fits into a Lisp integer. */
4077 #define SXHASH_REDUCE(X) \
4078 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4079
4080 /* Return a hash for string PTR which has length LEN. The hash value
4081 can be any EMACS_UINT value. */
4082
4083 EMACS_UINT
4084 hash_string (char const *ptr, ptrdiff_t len)
4085 {
4086 char const *p = ptr;
4087 char const *end = p + len;
4088 unsigned char c;
4089 EMACS_UINT hash = 0;
4090
4091 while (p != end)
4092 {
4093 c = *p++;
4094 hash = SXHASH_COMBINE (hash, c);
4095 }
4096
4097 return hash;
4098 }
4099
4100 /* Return a hash for string PTR which has length LEN. The hash
4101 code returned is guaranteed to fit in a Lisp integer. */
4102
4103 static EMACS_UINT
4104 sxhash_string (char const *ptr, ptrdiff_t len)
4105 {
4106 EMACS_UINT hash = hash_string (ptr, len);
4107 return SXHASH_REDUCE (hash);
4108 }
4109
4110 /* Return a hash for the floating point value VAL. */
4111
4112 static EMACS_INT
4113 sxhash_float (double val)
4114 {
4115 EMACS_UINT hash = 0;
4116 enum {
4117 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4118 + (sizeof val % sizeof hash != 0))
4119 };
4120 union {
4121 double val;
4122 EMACS_UINT word[WORDS_PER_DOUBLE];
4123 } u;
4124 int i;
4125 u.val = val;
4126 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4127 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4128 hash = SXHASH_COMBINE (hash, u.word[i]);
4129 return SXHASH_REDUCE (hash);
4130 }
4131
4132 /* Return a hash for list LIST. DEPTH is the current depth in the
4133 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4134
4135 static EMACS_UINT
4136 sxhash_list (Lisp_Object list, int depth)
4137 {
4138 EMACS_UINT hash = 0;
4139 int i;
4140
4141 if (depth < SXHASH_MAX_DEPTH)
4142 for (i = 0;
4143 CONSP (list) && i < SXHASH_MAX_LEN;
4144 list = XCDR (list), ++i)
4145 {
4146 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4147 hash = SXHASH_COMBINE (hash, hash2);
4148 }
4149
4150 if (!NILP (list))
4151 {
4152 EMACS_UINT hash2 = sxhash (list, depth + 1);
4153 hash = SXHASH_COMBINE (hash, hash2);
4154 }
4155
4156 return SXHASH_REDUCE (hash);
4157 }
4158
4159
4160 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4161 the Lisp structure. */
4162
4163 static EMACS_UINT
4164 sxhash_vector (Lisp_Object vec, int depth)
4165 {
4166 EMACS_UINT hash = ASIZE (vec);
4167 int i, n;
4168
4169 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4170 for (i = 0; i < n; ++i)
4171 {
4172 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4173 hash = SXHASH_COMBINE (hash, hash2);
4174 }
4175
4176 return SXHASH_REDUCE (hash);
4177 }
4178
4179 /* Return a hash for bool-vector VECTOR. */
4180
4181 static EMACS_UINT
4182 sxhash_bool_vector (Lisp_Object vec)
4183 {
4184 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4185 int i, n;
4186
4187 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4188 for (i = 0; i < n; ++i)
4189 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4190
4191 return SXHASH_REDUCE (hash);
4192 }
4193
4194
4195 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4196 structure. Value is an unsigned integer clipped to INTMASK. */
4197
4198 EMACS_UINT
4199 sxhash (Lisp_Object obj, int depth)
4200 {
4201 EMACS_UINT hash;
4202
4203 if (depth > SXHASH_MAX_DEPTH)
4204 return 0;
4205
4206 switch (XTYPE (obj))
4207 {
4208 case_Lisp_Int:
4209 hash = XUINT (obj);
4210 break;
4211
4212 case Lisp_Misc:
4213 hash = XUINT (obj);
4214 break;
4215
4216 case Lisp_Symbol:
4217 obj = SYMBOL_NAME (obj);
4218 /* Fall through. */
4219
4220 case Lisp_String:
4221 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4222 break;
4223
4224 /* This can be everything from a vector to an overlay. */
4225 case Lisp_Vectorlike:
4226 if (VECTORP (obj))
4227 /* According to the CL HyperSpec, two arrays are equal only if
4228 they are `eq', except for strings and bit-vectors. In
4229 Emacs, this works differently. We have to compare element
4230 by element. */
4231 hash = sxhash_vector (obj, depth);
4232 else if (BOOL_VECTOR_P (obj))
4233 hash = sxhash_bool_vector (obj);
4234 else
4235 /* Others are `equal' if they are `eq', so let's take their
4236 address as hash. */
4237 hash = XUINT (obj);
4238 break;
4239
4240 case Lisp_Cons:
4241 hash = sxhash_list (obj, depth);
4242 break;
4243
4244 case Lisp_Float:
4245 hash = sxhash_float (XFLOAT_DATA (obj));
4246 break;
4247
4248 default:
4249 emacs_abort ();
4250 }
4251
4252 return hash;
4253 }
4254
4255
4256 \f
4257 /***********************************************************************
4258 Lisp Interface
4259 ***********************************************************************/
4260
4261
4262 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4263 doc: /* Compute a hash code for OBJ and return it as integer. */)
4264 (Lisp_Object obj)
4265 {
4266 EMACS_UINT hash = sxhash (obj, 0);
4267 return make_number (hash);
4268 }
4269
4270
4271 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4272 doc: /* Create and return a new hash table.
4273
4274 Arguments are specified as keyword/argument pairs. The following
4275 arguments are defined:
4276
4277 :test TEST -- TEST must be a symbol that specifies how to compare
4278 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4279 `equal'. User-supplied test and hash functions can be specified via
4280 `define-hash-table-test'.
4281
4282 :size SIZE -- A hint as to how many elements will be put in the table.
4283 Default is 65.
4284
4285 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4286 fills up. If REHASH-SIZE is an integer, increase the size by that
4287 amount. If it is a float, it must be > 1.0, and the new size is the
4288 old size multiplied by that factor. Default is 1.5.
4289
4290 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4291 Resize the hash table when the ratio (number of entries / table size)
4292 is greater than or equal to THRESHOLD. Default is 0.8.
4293
4294 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4295 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4296 returned is a weak table. Key/value pairs are removed from a weak
4297 hash table when there are no non-weak references pointing to their
4298 key, value, one of key or value, or both key and value, depending on
4299 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4300 is nil.
4301
4302 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4303 (ptrdiff_t nargs, Lisp_Object *args)
4304 {
4305 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4306 Lisp_Object user_test, user_hash;
4307 char *used;
4308 ptrdiff_t i;
4309
4310 /* The vector `used' is used to keep track of arguments that
4311 have been consumed. */
4312 used = alloca (nargs * sizeof *used);
4313 memset (used, 0, nargs * sizeof *used);
4314
4315 /* See if there's a `:test TEST' among the arguments. */
4316 i = get_key_arg (QCtest, nargs, args, used);
4317 test = i ? args[i] : Qeql;
4318 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4319 {
4320 /* See if it is a user-defined test. */
4321 Lisp_Object prop;
4322
4323 prop = Fget (test, Qhash_table_test);
4324 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4325 signal_error ("Invalid hash table test", test);
4326 user_test = XCAR (prop);
4327 user_hash = XCAR (XCDR (prop));
4328 }
4329 else
4330 user_test = user_hash = Qnil;
4331
4332 /* See if there's a `:size SIZE' argument. */
4333 i = get_key_arg (QCsize, nargs, args, used);
4334 size = i ? args[i] : Qnil;
4335 if (NILP (size))
4336 size = make_number (DEFAULT_HASH_SIZE);
4337 else if (!INTEGERP (size) || XINT (size) < 0)
4338 signal_error ("Invalid hash table size", size);
4339
4340 /* Look for `:rehash-size SIZE'. */
4341 i = get_key_arg (QCrehash_size, nargs, args, used);
4342 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4343 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4344 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4345 signal_error ("Invalid hash table rehash size", rehash_size);
4346
4347 /* Look for `:rehash-threshold THRESHOLD'. */
4348 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4349 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4350 if (! (FLOATP (rehash_threshold)
4351 && 0 < XFLOAT_DATA (rehash_threshold)
4352 && XFLOAT_DATA (rehash_threshold) <= 1))
4353 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4354
4355 /* Look for `:weakness WEAK'. */
4356 i = get_key_arg (QCweakness, nargs, args, used);
4357 weak = i ? args[i] : Qnil;
4358 if (EQ (weak, Qt))
4359 weak = Qkey_and_value;
4360 if (!NILP (weak)
4361 && !EQ (weak, Qkey)
4362 && !EQ (weak, Qvalue)
4363 && !EQ (weak, Qkey_or_value)
4364 && !EQ (weak, Qkey_and_value))
4365 signal_error ("Invalid hash table weakness", weak);
4366
4367 /* Now, all args should have been used up, or there's a problem. */
4368 for (i = 0; i < nargs; ++i)
4369 if (!used[i])
4370 signal_error ("Invalid argument list", args[i]);
4371
4372 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4373 user_test, user_hash);
4374 }
4375
4376
4377 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4378 doc: /* Return a copy of hash table TABLE. */)
4379 (Lisp_Object table)
4380 {
4381 return copy_hash_table (check_hash_table (table));
4382 }
4383
4384
4385 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4386 doc: /* Return the number of elements in TABLE. */)
4387 (Lisp_Object table)
4388 {
4389 return make_number (check_hash_table (table)->count);
4390 }
4391
4392
4393 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4394 Shash_table_rehash_size, 1, 1, 0,
4395 doc: /* Return the current rehash size of TABLE. */)
4396 (Lisp_Object table)
4397 {
4398 return check_hash_table (table)->rehash_size;
4399 }
4400
4401
4402 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4403 Shash_table_rehash_threshold, 1, 1, 0,
4404 doc: /* Return the current rehash threshold of TABLE. */)
4405 (Lisp_Object table)
4406 {
4407 return check_hash_table (table)->rehash_threshold;
4408 }
4409
4410
4411 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4412 doc: /* Return the size of TABLE.
4413 The size can be used as an argument to `make-hash-table' to create
4414 a hash table than can hold as many elements as TABLE holds
4415 without need for resizing. */)
4416 (Lisp_Object table)
4417 {
4418 struct Lisp_Hash_Table *h = check_hash_table (table);
4419 return make_number (HASH_TABLE_SIZE (h));
4420 }
4421
4422
4423 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4424 doc: /* Return the test TABLE uses. */)
4425 (Lisp_Object table)
4426 {
4427 return check_hash_table (table)->test;
4428 }
4429
4430
4431 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4432 1, 1, 0,
4433 doc: /* Return the weakness of TABLE. */)
4434 (Lisp_Object table)
4435 {
4436 return check_hash_table (table)->weak;
4437 }
4438
4439
4440 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4441 doc: /* Return t if OBJ is a Lisp hash table object. */)
4442 (Lisp_Object obj)
4443 {
4444 return HASH_TABLE_P (obj) ? Qt : Qnil;
4445 }
4446
4447
4448 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4449 doc: /* Clear hash table TABLE and return it. */)
4450 (Lisp_Object table)
4451 {
4452 hash_clear (check_hash_table (table));
4453 /* Be compatible with XEmacs. */
4454 return table;
4455 }
4456
4457
4458 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4459 doc: /* Look up KEY in TABLE and return its associated value.
4460 If KEY is not found, return DFLT which defaults to nil. */)
4461 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4462 {
4463 struct Lisp_Hash_Table *h = check_hash_table (table);
4464 ptrdiff_t i = hash_lookup (h, key, NULL);
4465 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4466 }
4467
4468
4469 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4470 doc: /* Associate KEY with VALUE in hash table TABLE.
4471 If KEY is already present in table, replace its current value with
4472 VALUE. In any case, return VALUE. */)
4473 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4474 {
4475 struct Lisp_Hash_Table *h = check_hash_table (table);
4476 ptrdiff_t i;
4477 EMACS_UINT hash;
4478
4479 i = hash_lookup (h, key, &hash);
4480 if (i >= 0)
4481 set_hash_value_slot (h, i, value);
4482 else
4483 hash_put (h, key, value, hash);
4484
4485 return value;
4486 }
4487
4488
4489 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4490 doc: /* Remove KEY from TABLE. */)
4491 (Lisp_Object key, Lisp_Object table)
4492 {
4493 struct Lisp_Hash_Table *h = check_hash_table (table);
4494 hash_remove_from_table (h, key);
4495 return Qnil;
4496 }
4497
4498
4499 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4500 doc: /* Call FUNCTION for all entries in hash table TABLE.
4501 FUNCTION is called with two arguments, KEY and VALUE. */)
4502 (Lisp_Object function, Lisp_Object table)
4503 {
4504 struct Lisp_Hash_Table *h = check_hash_table (table);
4505 Lisp_Object args[3];
4506 ptrdiff_t i;
4507
4508 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4509 if (!NILP (HASH_HASH (h, i)))
4510 {
4511 args[0] = function;
4512 args[1] = HASH_KEY (h, i);
4513 args[2] = HASH_VALUE (h, i);
4514 Ffuncall (3, args);
4515 }
4516
4517 return Qnil;
4518 }
4519
4520
4521 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4522 Sdefine_hash_table_test, 3, 3, 0,
4523 doc: /* Define a new hash table test with name NAME, a symbol.
4524
4525 In hash tables created with NAME specified as test, use TEST to
4526 compare keys, and HASH for computing hash codes of keys.
4527
4528 TEST must be a function taking two arguments and returning non-nil if
4529 both arguments are the same. HASH must be a function taking one
4530 argument and return an integer that is the hash code of the argument.
4531 Hash code computation should use the whole value range of integers,
4532 including negative integers. */)
4533 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4534 {
4535 return Fput (name, Qhash_table_test, list2 (test, hash));
4536 }
4537
4538
4539 \f
4540 /************************************************************************
4541 MD5, SHA-1, and SHA-2
4542 ************************************************************************/
4543
4544 #include "md5.h"
4545 #include "sha1.h"
4546 #include "sha256.h"
4547 #include "sha512.h"
4548
4549 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4550
4551 static Lisp_Object
4552 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4553 {
4554 int i;
4555 ptrdiff_t size;
4556 EMACS_INT start_char = 0, end_char = 0;
4557 ptrdiff_t start_byte, end_byte;
4558 register EMACS_INT b, e;
4559 register struct buffer *bp;
4560 EMACS_INT temp;
4561 int digest_size;
4562 void *(*hash_func) (const char *, size_t, void *);
4563 Lisp_Object digest;
4564
4565 CHECK_SYMBOL (algorithm);
4566
4567 if (STRINGP (object))
4568 {
4569 if (NILP (coding_system))
4570 {
4571 /* Decide the coding-system to encode the data with. */
4572
4573 if (STRING_MULTIBYTE (object))
4574 /* use default, we can't guess correct value */
4575 coding_system = preferred_coding_system ();
4576 else
4577 coding_system = Qraw_text;
4578 }
4579
4580 if (NILP (Fcoding_system_p (coding_system)))
4581 {
4582 /* Invalid coding system. */
4583
4584 if (!NILP (noerror))
4585 coding_system = Qraw_text;
4586 else
4587 xsignal1 (Qcoding_system_error, coding_system);
4588 }
4589
4590 if (STRING_MULTIBYTE (object))
4591 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4592
4593 size = SCHARS (object);
4594
4595 if (!NILP (start))
4596 {
4597 CHECK_NUMBER (start);
4598
4599 start_char = XINT (start);
4600
4601 if (start_char < 0)
4602 start_char += size;
4603 }
4604
4605 if (NILP (end))
4606 end_char = size;
4607 else
4608 {
4609 CHECK_NUMBER (end);
4610
4611 end_char = XINT (end);
4612
4613 if (end_char < 0)
4614 end_char += size;
4615 }
4616
4617 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4618 args_out_of_range_3 (object, make_number (start_char),
4619 make_number (end_char));
4620
4621 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4622 end_byte =
4623 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4624 }
4625 else
4626 {
4627 struct buffer *prev = current_buffer;
4628
4629 record_unwind_current_buffer ();
4630
4631 CHECK_BUFFER (object);
4632
4633 bp = XBUFFER (object);
4634 set_buffer_internal (bp);
4635
4636 if (NILP (start))
4637 b = BEGV;
4638 else
4639 {
4640 CHECK_NUMBER_COERCE_MARKER (start);
4641 b = XINT (start);
4642 }
4643
4644 if (NILP (end))
4645 e = ZV;
4646 else
4647 {
4648 CHECK_NUMBER_COERCE_MARKER (end);
4649 e = XINT (end);
4650 }
4651
4652 if (b > e)
4653 temp = b, b = e, e = temp;
4654
4655 if (!(BEGV <= b && e <= ZV))
4656 args_out_of_range (start, end);
4657
4658 if (NILP (coding_system))
4659 {
4660 /* Decide the coding-system to encode the data with.
4661 See fileio.c:Fwrite-region */
4662
4663 if (!NILP (Vcoding_system_for_write))
4664 coding_system = Vcoding_system_for_write;
4665 else
4666 {
4667 bool force_raw_text = 0;
4668
4669 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4670 if (NILP (coding_system)
4671 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4672 {
4673 coding_system = Qnil;
4674 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4675 force_raw_text = 1;
4676 }
4677
4678 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4679 {
4680 /* Check file-coding-system-alist. */
4681 Lisp_Object args[4], val;
4682
4683 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4684 args[3] = Fbuffer_file_name (object);
4685 val = Ffind_operation_coding_system (4, args);
4686 if (CONSP (val) && !NILP (XCDR (val)))
4687 coding_system = XCDR (val);
4688 }
4689
4690 if (NILP (coding_system)
4691 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4692 {
4693 /* If we still have not decided a coding system, use the
4694 default value of buffer-file-coding-system. */
4695 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4696 }
4697
4698 if (!force_raw_text
4699 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4700 /* Confirm that VAL can surely encode the current region. */
4701 coding_system = call4 (Vselect_safe_coding_system_function,
4702 make_number (b), make_number (e),
4703 coding_system, Qnil);
4704
4705 if (force_raw_text)
4706 coding_system = Qraw_text;
4707 }
4708
4709 if (NILP (Fcoding_system_p (coding_system)))
4710 {
4711 /* Invalid coding system. */
4712
4713 if (!NILP (noerror))
4714 coding_system = Qraw_text;
4715 else
4716 xsignal1 (Qcoding_system_error, coding_system);
4717 }
4718 }
4719
4720 object = make_buffer_string (b, e, 0);
4721 set_buffer_internal (prev);
4722 /* Discard the unwind protect for recovering the current
4723 buffer. */
4724 specpdl_ptr--;
4725
4726 if (STRING_MULTIBYTE (object))
4727 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4728 start_byte = 0;
4729 end_byte = SBYTES (object);
4730 }
4731
4732 if (EQ (algorithm, Qmd5))
4733 {
4734 digest_size = MD5_DIGEST_SIZE;
4735 hash_func = md5_buffer;
4736 }
4737 else if (EQ (algorithm, Qsha1))
4738 {
4739 digest_size = SHA1_DIGEST_SIZE;
4740 hash_func = sha1_buffer;
4741 }
4742 else if (EQ (algorithm, Qsha224))
4743 {
4744 digest_size = SHA224_DIGEST_SIZE;
4745 hash_func = sha224_buffer;
4746 }
4747 else if (EQ (algorithm, Qsha256))
4748 {
4749 digest_size = SHA256_DIGEST_SIZE;
4750 hash_func = sha256_buffer;
4751 }
4752 else if (EQ (algorithm, Qsha384))
4753 {
4754 digest_size = SHA384_DIGEST_SIZE;
4755 hash_func = sha384_buffer;
4756 }
4757 else if (EQ (algorithm, Qsha512))
4758 {
4759 digest_size = SHA512_DIGEST_SIZE;
4760 hash_func = sha512_buffer;
4761 }
4762 else
4763 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4764
4765 /* allocate 2 x digest_size so that it can be re-used to hold the
4766 hexified value */
4767 digest = make_uninit_string (digest_size * 2);
4768
4769 hash_func (SSDATA (object) + start_byte,
4770 end_byte - start_byte,
4771 SSDATA (digest));
4772
4773 if (NILP (binary))
4774 {
4775 unsigned char *p = SDATA (digest);
4776 for (i = digest_size - 1; i >= 0; i--)
4777 {
4778 static char const hexdigit[16] = "0123456789abcdef";
4779 int p_i = p[i];
4780 p[2 * i] = hexdigit[p_i >> 4];
4781 p[2 * i + 1] = hexdigit[p_i & 0xf];
4782 }
4783 return digest;
4784 }
4785 else
4786 return make_unibyte_string (SSDATA (digest), digest_size);
4787 }
4788
4789 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4790 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4791
4792 A message digest is a cryptographic checksum of a document, and the
4793 algorithm to calculate it is defined in RFC 1321.
4794
4795 The two optional arguments START and END are character positions
4796 specifying for which part of OBJECT the message digest should be
4797 computed. If nil or omitted, the digest is computed for the whole
4798 OBJECT.
4799
4800 The MD5 message digest is computed from the result of encoding the
4801 text in a coding system, not directly from the internal Emacs form of
4802 the text. The optional fourth argument CODING-SYSTEM specifies which
4803 coding system to encode the text with. It should be the same coding
4804 system that you used or will use when actually writing the text into a
4805 file.
4806
4807 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4808 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4809 system would be chosen by default for writing this text into a file.
4810
4811 If OBJECT is a string, the most preferred coding system (see the
4812 command `prefer-coding-system') is used.
4813
4814 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4815 guesswork fails. Normally, an error is signaled in such case. */)
4816 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4817 {
4818 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4819 }
4820
4821 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4822 doc: /* Return the secure hash of OBJECT, a buffer or string.
4823 ALGORITHM is a symbol specifying the hash to use:
4824 md5, sha1, sha224, sha256, sha384 or sha512.
4825
4826 The two optional arguments START and END are positions specifying for
4827 which part of OBJECT to compute the hash. If nil or omitted, uses the
4828 whole OBJECT.
4829
4830 If BINARY is non-nil, returns a string in binary form. */)
4831 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4832 {
4833 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4834 }
4835 \f
4836 void
4837 syms_of_fns (void)
4838 {
4839 DEFSYM (Qmd5, "md5");
4840 DEFSYM (Qsha1, "sha1");
4841 DEFSYM (Qsha224, "sha224");
4842 DEFSYM (Qsha256, "sha256");
4843 DEFSYM (Qsha384, "sha384");
4844 DEFSYM (Qsha512, "sha512");
4845
4846 /* Hash table stuff. */
4847 DEFSYM (Qhash_table_p, "hash-table-p");
4848 DEFSYM (Qeq, "eq");
4849 DEFSYM (Qeql, "eql");
4850 DEFSYM (Qequal, "equal");
4851 DEFSYM (QCtest, ":test");
4852 DEFSYM (QCsize, ":size");
4853 DEFSYM (QCrehash_size, ":rehash-size");
4854 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4855 DEFSYM (QCweakness, ":weakness");
4856 DEFSYM (Qkey, "key");
4857 DEFSYM (Qvalue, "value");
4858 DEFSYM (Qhash_table_test, "hash-table-test");
4859 DEFSYM (Qkey_or_value, "key-or-value");
4860 DEFSYM (Qkey_and_value, "key-and-value");
4861
4862 defsubr (&Ssxhash);
4863 defsubr (&Smake_hash_table);
4864 defsubr (&Scopy_hash_table);
4865 defsubr (&Shash_table_count);
4866 defsubr (&Shash_table_rehash_size);
4867 defsubr (&Shash_table_rehash_threshold);
4868 defsubr (&Shash_table_size);
4869 defsubr (&Shash_table_test);
4870 defsubr (&Shash_table_weakness);
4871 defsubr (&Shash_table_p);
4872 defsubr (&Sclrhash);
4873 defsubr (&Sgethash);
4874 defsubr (&Sputhash);
4875 defsubr (&Sremhash);
4876 defsubr (&Smaphash);
4877 defsubr (&Sdefine_hash_table_test);
4878
4879 DEFSYM (Qstring_lessp, "string-lessp");
4880 DEFSYM (Qprovide, "provide");
4881 DEFSYM (Qrequire, "require");
4882 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4883 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4884 DEFSYM (Qwidget_type, "widget-type");
4885
4886 staticpro (&string_char_byte_cache_string);
4887 string_char_byte_cache_string = Qnil;
4888
4889 require_nesting_list = Qnil;
4890 staticpro (&require_nesting_list);
4891
4892 Fset (Qyes_or_no_p_history, Qnil);
4893
4894 DEFVAR_LISP ("features", Vfeatures,
4895 doc: /* A list of symbols which are the features of the executing Emacs.
4896 Used by `featurep' and `require', and altered by `provide'. */);
4897 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4898 DEFSYM (Qsubfeatures, "subfeatures");
4899
4900 #ifdef HAVE_LANGINFO_CODESET
4901 DEFSYM (Qcodeset, "codeset");
4902 DEFSYM (Qdays, "days");
4903 DEFSYM (Qmonths, "months");
4904 DEFSYM (Qpaper, "paper");
4905 #endif /* HAVE_LANGINFO_CODESET */
4906
4907 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4908 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4909 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4910 invoked by mouse clicks and mouse menu items.
4911
4912 On some platforms, file selection dialogs are also enabled if this is
4913 non-nil. */);
4914 use_dialog_box = 1;
4915
4916 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4917 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4918 This applies to commands from menus and tool bar buttons even when
4919 they are initiated from the keyboard. If `use-dialog-box' is nil,
4920 that disables the use of a file dialog, regardless of the value of
4921 this variable. */);
4922 use_file_dialog = 1;
4923
4924 defsubr (&Sidentity);
4925 defsubr (&Srandom);
4926 defsubr (&Slength);
4927 defsubr (&Ssafe_length);
4928 defsubr (&Sstring_bytes);
4929 defsubr (&Sstring_equal);
4930 defsubr (&Scompare_strings);
4931 defsubr (&Sstring_lessp);
4932 defsubr (&Sappend);
4933 defsubr (&Sconcat);
4934 defsubr (&Svconcat);
4935 defsubr (&Scopy_sequence);
4936 defsubr (&Sstring_make_multibyte);
4937 defsubr (&Sstring_make_unibyte);
4938 defsubr (&Sstring_as_multibyte);
4939 defsubr (&Sstring_as_unibyte);
4940 defsubr (&Sstring_to_multibyte);
4941 defsubr (&Sstring_to_unibyte);
4942 defsubr (&Scopy_alist);
4943 defsubr (&Ssubstring);
4944 defsubr (&Ssubstring_no_properties);
4945 defsubr (&Snthcdr);
4946 defsubr (&Snth);
4947 defsubr (&Selt);
4948 defsubr (&Smember);
4949 defsubr (&Smemq);
4950 defsubr (&Smemql);
4951 defsubr (&Sassq);
4952 defsubr (&Sassoc);
4953 defsubr (&Srassq);
4954 defsubr (&Srassoc);
4955 defsubr (&Sdelq);
4956 defsubr (&Sdelete);
4957 defsubr (&Snreverse);
4958 defsubr (&Sreverse);
4959 defsubr (&Ssort);
4960 defsubr (&Splist_get);
4961 defsubr (&Sget);
4962 defsubr (&Splist_put);
4963 defsubr (&Sput);
4964 defsubr (&Slax_plist_get);
4965 defsubr (&Slax_plist_put);
4966 defsubr (&Seql);
4967 defsubr (&Sequal);
4968 defsubr (&Sequal_including_properties);
4969 defsubr (&Sfillarray);
4970 defsubr (&Sclear_string);
4971 defsubr (&Snconc);
4972 defsubr (&Smapcar);
4973 defsubr (&Smapc);
4974 defsubr (&Smapconcat);
4975 defsubr (&Syes_or_no_p);
4976 defsubr (&Sload_average);
4977 defsubr (&Sfeaturep);
4978 defsubr (&Srequire);
4979 defsubr (&Sprovide);
4980 defsubr (&Splist_member);
4981 defsubr (&Swidget_put);
4982 defsubr (&Swidget_get);
4983 defsubr (&Swidget_apply);
4984 defsubr (&Sbase64_encode_region);
4985 defsubr (&Sbase64_decode_region);
4986 defsubr (&Sbase64_encode_string);
4987 defsubr (&Sbase64_decode_string);
4988 defsubr (&Smd5);
4989 defsubr (&Ssecure_hash);
4990 defsubr (&Slocale_info);
4991 }