* alloc.c: Integer signedness and overflow fixes.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
52
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
56
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
61
62 #include <fcntl.h>
63
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
67
68 #ifdef DOUG_LEA_MALLOC
69
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t size_t
74 #endif
75
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
78
79 #define MMAP_MAX_AREAS 100000000
80
81 #else /* not DOUG_LEA_MALLOC */
82
83 /* The following come from gmalloc.c. */
84
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
127 } \
128 while (0)
129
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
137
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
140
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
144
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
148
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
152
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
154
155 /* Global variables. */
156 struct emacs_globals globals;
157
158 /* Number of bytes of consing done since the last gc. */
159
160 EMACS_INT consing_since_gc;
161
162 /* Similar minimum, computed from Vgc_cons_percentage. */
163
164 EMACS_INT gc_relative_threshold;
165
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
168
169 EMACS_INT memory_full_cons_threshold;
170
171 /* Nonzero during GC. */
172
173 int gc_in_progress;
174
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
178
179 int abort_on_gc;
180
181 /* Number of live and free conses etc. */
182
183 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185 static EMACS_INT total_free_floats, total_floats;
186
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
190
191 static char *spare_memory[7];
192
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
195
196 #define SPARE_MEMORY (1 << 14)
197
198 /* Number of extra blocks malloc should get when it needs more core. */
199
200 static int malloc_hysteresis;
201
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
207
208 #ifndef VIRT_ADDR_VARIES
209 static
210 #endif
211 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
212 #define PUREBEG (char *) pure
213
214 /* Pointer to the pure area, and its size. */
215
216 static char *purebeg;
217 static ptrdiff_t pure_size;
218
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
221
222 static ptrdiff_t pure_bytes_used_before_overflow;
223
224 /* Value is non-zero if P points into pure space. */
225
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
231
232 /* Index in pure at which next pure Lisp object will be allocated.. */
233
234 static EMACS_INT pure_bytes_used_lisp;
235
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
237
238 static EMACS_INT pure_bytes_used_non_lisp;
239
240 /* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
242
243 const char *pending_malloc_warning;
244
245 /* Maximum amount of C stack to save when a GC happens. */
246
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
249 #endif
250
251 /* Buffer in which we save a copy of the C stack at each GC. */
252
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy;
255 static ptrdiff_t stack_copy_size;
256 #endif
257
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
260
261 static int ignore_warnings;
262
263 static Lisp_Object Qgc_cons_threshold;
264 Lisp_Object Qchar_table_extra_slots;
265
266 /* Hook run after GC has finished. */
267
268 static Lisp_Object Qpost_gc_hook;
269
270 static void mark_buffer (Lisp_Object);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix *);
274 static void mark_face_cache (struct face_cache *);
275
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
278 #endif
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object);
284
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289 enum mem_type
290 {
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
303 };
304
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
307
308
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
310
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
314
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
318 static Lisp_Object Vdead;
319
320 #ifdef GC_MALLOC_CHECK
321
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
324
325 #endif /* GC_MALLOC_CHECK */
326
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351 struct mem_node
352 {
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
365
366 /* Memory type. */
367 enum mem_type type;
368 };
369
370 /* Base address of stack. Set in main. */
371
372 Lisp_Object *stack_base;
373
374 /* Root of the tree describing allocated Lisp memory. */
375
376 static struct mem_node *mem_root;
377
378 /* Lowest and highest known address in the heap. */
379
380 static void *min_heap_address, *max_heap_address;
381
382 /* Sentinel node of the tree. */
383
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
386
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static inline struct mem_node *mem_find (void *);
407
408
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
412
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
414
415 /* Recording what needs to be marked for gc. */
416
417 struct gcpro *gcprolist;
418
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
421
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
424
425 /* Index of next unused slot in staticvec. */
426
427 static int staticidx = 0;
428
429 static POINTER_TYPE *pure_alloc (size_t, int);
430
431
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
438
439
440 \f
441 /************************************************************************
442 Malloc
443 ************************************************************************/
444
445 /* Function malloc calls this if it finds we are near exhausting storage. */
446
447 void
448 malloc_warning (const char *str)
449 {
450 pending_malloc_warning = str;
451 }
452
453
454 /* Display an already-pending malloc warning. */
455
456 void
457 display_malloc_warning (void)
458 {
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
464 }
465 \f
466 /* Called if we can't allocate relocatable space for a buffer. */
467
468 void
469 buffer_memory_full (EMACS_INT nbytes)
470 {
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
477
478 #ifndef REL_ALLOC
479 memory_full (nbytes);
480 #endif
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil, Vmemory_signal_data);
485 }
486
487
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
490 #else
491
492 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
493 around each block.
494
495 The header consists of 16 fixed bytes followed by sizeof (size_t) bytes
496 containing the original block size in little-endian order,
497 while the trailer consists of 16 fixed bytes.
498
499 The header is used to detect whether this block has been allocated
500 through these functions -- as it seems that some low-level libc
501 functions may bypass the malloc hooks.
502 */
503
504
505 #define XMALLOC_OVERRUN_CHECK_SIZE 16
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
507 (2 * XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t))
508
509 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
510 { '\x9a', '\x9b', '\xae', '\xaf',
511 '\xbf', '\xbe', '\xce', '\xcf',
512 '\xea', '\xeb', '\xec', '\xed',
513 '\xdf', '\xde', '\x9c', '\x9d' };
514
515 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
516 { '\xaa', '\xab', '\xac', '\xad',
517 '\xba', '\xbb', '\xbc', '\xbd',
518 '\xca', '\xcb', '\xcc', '\xcd',
519 '\xda', '\xdb', '\xdc', '\xdd' };
520
521 /* Insert and extract the block size in the header. */
522
523 static void
524 xmalloc_put_size (unsigned char *ptr, size_t size)
525 {
526 int i;
527 for (i = 0; i < sizeof (size_t); i++)
528 {
529 *--ptr = size & (1 << CHAR_BIT) - 1;
530 size >>= CHAR_BIT;
531 }
532 }
533
534 static size_t
535 xmalloc_get_size (unsigned char *ptr)
536 {
537 size_t size = 0;
538 int i;
539 ptr -= sizeof (size_t);
540 for (i = 0; i < sizeof (size_t); i++)
541 {
542 size <<= CHAR_BIT;
543 size += *ptr++;
544 }
545 return size;
546 }
547
548
549 /* The call depth in overrun_check functions. For example, this might happen:
550 xmalloc()
551 overrun_check_malloc()
552 -> malloc -> (via hook)_-> emacs_blocked_malloc
553 -> overrun_check_malloc
554 call malloc (hooks are NULL, so real malloc is called).
555 malloc returns 10000.
556 add overhead, return 10016.
557 <- (back in overrun_check_malloc)
558 add overhead again, return 10032
559 xmalloc returns 10032.
560
561 (time passes).
562
563 xfree(10032)
564 overrun_check_free(10032)
565 decrease overhead
566 free(10016) <- crash, because 10000 is the original pointer. */
567
568 static ptrdiff_t check_depth;
569
570 /* Like malloc, but wraps allocated block with header and trailer. */
571
572 static POINTER_TYPE *
573 overrun_check_malloc (size_t size)
574 {
575 register unsigned char *val;
576 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
577 if (SIZE_MAX - overhead < size)
578 abort ();
579
580 val = (unsigned char *) malloc (size + overhead);
581 if (val && check_depth == 1)
582 {
583 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
584 val += XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t);
585 xmalloc_put_size (val, size);
586 memcpy (val + size, xmalloc_overrun_check_trailer,
587 XMALLOC_OVERRUN_CHECK_SIZE);
588 }
589 --check_depth;
590 return (POINTER_TYPE *)val;
591 }
592
593
594 /* Like realloc, but checks old block for overrun, and wraps new block
595 with header and trailer. */
596
597 static POINTER_TYPE *
598 overrun_check_realloc (POINTER_TYPE *block, size_t size)
599 {
600 register unsigned char *val = (unsigned char *) block;
601 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
602 if (SIZE_MAX - overhead < size)
603 abort ();
604
605 if (val
606 && check_depth == 1
607 && memcmp (xmalloc_overrun_check_header,
608 val - XMALLOC_OVERRUN_CHECK_SIZE - sizeof (size_t),
609 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
610 {
611 size_t osize = xmalloc_get_size (val);
612 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
613 XMALLOC_OVERRUN_CHECK_SIZE))
614 abort ();
615 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
616 val -= XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t);
617 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t));
618 }
619
620 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
621
622 if (val && check_depth == 1)
623 {
624 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
625 val += XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t);
626 xmalloc_put_size (val, size);
627 memcpy (val + size, xmalloc_overrun_check_trailer,
628 XMALLOC_OVERRUN_CHECK_SIZE);
629 }
630 --check_depth;
631 return (POINTER_TYPE *)val;
632 }
633
634 /* Like free, but checks block for overrun. */
635
636 static void
637 overrun_check_free (POINTER_TYPE *block)
638 {
639 unsigned char *val = (unsigned char *) block;
640
641 ++check_depth;
642 if (val
643 && check_depth == 1
644 && memcmp (xmalloc_overrun_check_header,
645 val - XMALLOC_OVERRUN_CHECK_SIZE - sizeof (size_t),
646 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
647 {
648 size_t osize = xmalloc_get_size (val);
649 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
650 XMALLOC_OVERRUN_CHECK_SIZE))
651 abort ();
652 #ifdef XMALLOC_CLEAR_FREE_MEMORY
653 val -= XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t);
654 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
655 #else
656 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
657 val -= XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t);
658 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t));
659 #endif
660 }
661
662 free (val);
663 --check_depth;
664 }
665
666 #undef malloc
667 #undef realloc
668 #undef free
669 #define malloc overrun_check_malloc
670 #define realloc overrun_check_realloc
671 #define free overrun_check_free
672 #endif
673
674 #ifdef SYNC_INPUT
675 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
676 there's no need to block input around malloc. */
677 #define MALLOC_BLOCK_INPUT ((void)0)
678 #define MALLOC_UNBLOCK_INPUT ((void)0)
679 #else
680 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
681 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
682 #endif
683
684 /* Like malloc but check for no memory and block interrupt input.. */
685
686 POINTER_TYPE *
687 xmalloc (size_t size)
688 {
689 register POINTER_TYPE *val;
690
691 MALLOC_BLOCK_INPUT;
692 val = (POINTER_TYPE *) malloc (size);
693 MALLOC_UNBLOCK_INPUT;
694
695 if (!val && size)
696 memory_full (size);
697 return val;
698 }
699
700
701 /* Like realloc but check for no memory and block interrupt input.. */
702
703 POINTER_TYPE *
704 xrealloc (POINTER_TYPE *block, size_t size)
705 {
706 register POINTER_TYPE *val;
707
708 MALLOC_BLOCK_INPUT;
709 /* We must call malloc explicitly when BLOCK is 0, since some
710 reallocs don't do this. */
711 if (! block)
712 val = (POINTER_TYPE *) malloc (size);
713 else
714 val = (POINTER_TYPE *) realloc (block, size);
715 MALLOC_UNBLOCK_INPUT;
716
717 if (!val && size)
718 memory_full (size);
719 return val;
720 }
721
722
723 /* Like free but block interrupt input. */
724
725 void
726 xfree (POINTER_TYPE *block)
727 {
728 if (!block)
729 return;
730 MALLOC_BLOCK_INPUT;
731 free (block);
732 MALLOC_UNBLOCK_INPUT;
733 /* We don't call refill_memory_reserve here
734 because that duplicates doing so in emacs_blocked_free
735 and the criterion should go there. */
736 }
737
738
739 /* Like strdup, but uses xmalloc. */
740
741 char *
742 xstrdup (const char *s)
743 {
744 size_t len = strlen (s) + 1;
745 char *p = (char *) xmalloc (len);
746 memcpy (p, s, len);
747 return p;
748 }
749
750
751 /* Unwind for SAFE_ALLOCA */
752
753 Lisp_Object
754 safe_alloca_unwind (Lisp_Object arg)
755 {
756 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
757
758 p->dogc = 0;
759 xfree (p->pointer);
760 p->pointer = 0;
761 free_misc (arg);
762 return Qnil;
763 }
764
765
766 /* Like malloc but used for allocating Lisp data. NBYTES is the
767 number of bytes to allocate, TYPE describes the intended use of the
768 allcated memory block (for strings, for conses, ...). */
769
770 #ifndef USE_LSB_TAG
771 static void *lisp_malloc_loser;
772 #endif
773
774 static POINTER_TYPE *
775 lisp_malloc (size_t nbytes, enum mem_type type)
776 {
777 register void *val;
778
779 MALLOC_BLOCK_INPUT;
780
781 #ifdef GC_MALLOC_CHECK
782 allocated_mem_type = type;
783 #endif
784
785 val = (void *) malloc (nbytes);
786
787 #ifndef USE_LSB_TAG
788 /* If the memory just allocated cannot be addressed thru a Lisp
789 object's pointer, and it needs to be,
790 that's equivalent to running out of memory. */
791 if (val && type != MEM_TYPE_NON_LISP)
792 {
793 Lisp_Object tem;
794 XSETCONS (tem, (char *) val + nbytes - 1);
795 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
796 {
797 lisp_malloc_loser = val;
798 free (val);
799 val = 0;
800 }
801 }
802 #endif
803
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 if (val && type != MEM_TYPE_NON_LISP)
806 mem_insert (val, (char *) val + nbytes, type);
807 #endif
808
809 MALLOC_UNBLOCK_INPUT;
810 if (!val && nbytes)
811 memory_full (nbytes);
812 return val;
813 }
814
815 /* Free BLOCK. This must be called to free memory allocated with a
816 call to lisp_malloc. */
817
818 static void
819 lisp_free (POINTER_TYPE *block)
820 {
821 MALLOC_BLOCK_INPUT;
822 free (block);
823 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
824 mem_delete (mem_find (block));
825 #endif
826 MALLOC_UNBLOCK_INPUT;
827 }
828
829 /* Allocation of aligned blocks of memory to store Lisp data. */
830 /* The entry point is lisp_align_malloc which returns blocks of at most */
831 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
832
833 /* Use posix_memalloc if the system has it and we're using the system's
834 malloc (because our gmalloc.c routines don't have posix_memalign although
835 its memalloc could be used). */
836 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
837 #define USE_POSIX_MEMALIGN 1
838 #endif
839
840 /* BLOCK_ALIGN has to be a power of 2. */
841 #define BLOCK_ALIGN (1 << 10)
842
843 /* Padding to leave at the end of a malloc'd block. This is to give
844 malloc a chance to minimize the amount of memory wasted to alignment.
845 It should be tuned to the particular malloc library used.
846 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
847 posix_memalign on the other hand would ideally prefer a value of 4
848 because otherwise, there's 1020 bytes wasted between each ablocks.
849 In Emacs, testing shows that those 1020 can most of the time be
850 efficiently used by malloc to place other objects, so a value of 0 can
851 still preferable unless you have a lot of aligned blocks and virtually
852 nothing else. */
853 #define BLOCK_PADDING 0
854 #define BLOCK_BYTES \
855 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
856
857 /* Internal data structures and constants. */
858
859 #define ABLOCKS_SIZE 16
860
861 /* An aligned block of memory. */
862 struct ablock
863 {
864 union
865 {
866 char payload[BLOCK_BYTES];
867 struct ablock *next_free;
868 } x;
869 /* `abase' is the aligned base of the ablocks. */
870 /* It is overloaded to hold the virtual `busy' field that counts
871 the number of used ablock in the parent ablocks.
872 The first ablock has the `busy' field, the others have the `abase'
873 field. To tell the difference, we assume that pointers will have
874 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
875 is used to tell whether the real base of the parent ablocks is `abase'
876 (if not, the word before the first ablock holds a pointer to the
877 real base). */
878 struct ablocks *abase;
879 /* The padding of all but the last ablock is unused. The padding of
880 the last ablock in an ablocks is not allocated. */
881 #if BLOCK_PADDING
882 char padding[BLOCK_PADDING];
883 #endif
884 };
885
886 /* A bunch of consecutive aligned blocks. */
887 struct ablocks
888 {
889 struct ablock blocks[ABLOCKS_SIZE];
890 };
891
892 /* Size of the block requested from malloc or memalign. */
893 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
894
895 #define ABLOCK_ABASE(block) \
896 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
897 ? (struct ablocks *)(block) \
898 : (block)->abase)
899
900 /* Virtual `busy' field. */
901 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
902
903 /* Pointer to the (not necessarily aligned) malloc block. */
904 #ifdef USE_POSIX_MEMALIGN
905 #define ABLOCKS_BASE(abase) (abase)
906 #else
907 #define ABLOCKS_BASE(abase) \
908 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
909 #endif
910
911 /* The list of free ablock. */
912 static struct ablock *free_ablock;
913
914 /* Allocate an aligned block of nbytes.
915 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
916 smaller or equal to BLOCK_BYTES. */
917 static POINTER_TYPE *
918 lisp_align_malloc (size_t nbytes, enum mem_type type)
919 {
920 void *base, *val;
921 struct ablocks *abase;
922
923 eassert (nbytes <= BLOCK_BYTES);
924
925 MALLOC_BLOCK_INPUT;
926
927 #ifdef GC_MALLOC_CHECK
928 allocated_mem_type = type;
929 #endif
930
931 if (!free_ablock)
932 {
933 int i;
934 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
935
936 #ifdef DOUG_LEA_MALLOC
937 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
938 because mapped region contents are not preserved in
939 a dumped Emacs. */
940 mallopt (M_MMAP_MAX, 0);
941 #endif
942
943 #ifdef USE_POSIX_MEMALIGN
944 {
945 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
946 if (err)
947 base = NULL;
948 abase = base;
949 }
950 #else
951 base = malloc (ABLOCKS_BYTES);
952 abase = ALIGN (base, BLOCK_ALIGN);
953 #endif
954
955 if (base == 0)
956 {
957 MALLOC_UNBLOCK_INPUT;
958 memory_full (ABLOCKS_BYTES);
959 }
960
961 aligned = (base == abase);
962 if (!aligned)
963 ((void**)abase)[-1] = base;
964
965 #ifdef DOUG_LEA_MALLOC
966 /* Back to a reasonable maximum of mmap'ed areas. */
967 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
968 #endif
969
970 #ifndef USE_LSB_TAG
971 /* If the memory just allocated cannot be addressed thru a Lisp
972 object's pointer, and it needs to be, that's equivalent to
973 running out of memory. */
974 if (type != MEM_TYPE_NON_LISP)
975 {
976 Lisp_Object tem;
977 char *end = (char *) base + ABLOCKS_BYTES - 1;
978 XSETCONS (tem, end);
979 if ((char *) XCONS (tem) != end)
980 {
981 lisp_malloc_loser = base;
982 free (base);
983 MALLOC_UNBLOCK_INPUT;
984 memory_full (SIZE_MAX);
985 }
986 }
987 #endif
988
989 /* Initialize the blocks and put them on the free list.
990 Is `base' was not properly aligned, we can't use the last block. */
991 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
992 {
993 abase->blocks[i].abase = abase;
994 abase->blocks[i].x.next_free = free_ablock;
995 free_ablock = &abase->blocks[i];
996 }
997 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
998
999 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1000 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1001 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1002 eassert (ABLOCKS_BASE (abase) == base);
1003 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1004 }
1005
1006 abase = ABLOCK_ABASE (free_ablock);
1007 ABLOCKS_BUSY (abase) =
1008 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1009 val = free_ablock;
1010 free_ablock = free_ablock->x.next_free;
1011
1012 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1013 if (type != MEM_TYPE_NON_LISP)
1014 mem_insert (val, (char *) val + nbytes, type);
1015 #endif
1016
1017 MALLOC_UNBLOCK_INPUT;
1018
1019 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1020 return val;
1021 }
1022
1023 static void
1024 lisp_align_free (POINTER_TYPE *block)
1025 {
1026 struct ablock *ablock = block;
1027 struct ablocks *abase = ABLOCK_ABASE (ablock);
1028
1029 MALLOC_BLOCK_INPUT;
1030 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1031 mem_delete (mem_find (block));
1032 #endif
1033 /* Put on free list. */
1034 ablock->x.next_free = free_ablock;
1035 free_ablock = ablock;
1036 /* Update busy count. */
1037 ABLOCKS_BUSY (abase) =
1038 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1039
1040 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1041 { /* All the blocks are free. */
1042 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1043 struct ablock **tem = &free_ablock;
1044 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1045
1046 while (*tem)
1047 {
1048 if (*tem >= (struct ablock *) abase && *tem < atop)
1049 {
1050 i++;
1051 *tem = (*tem)->x.next_free;
1052 }
1053 else
1054 tem = &(*tem)->x.next_free;
1055 }
1056 eassert ((aligned & 1) == aligned);
1057 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1058 #ifdef USE_POSIX_MEMALIGN
1059 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1060 #endif
1061 free (ABLOCKS_BASE (abase));
1062 }
1063 MALLOC_UNBLOCK_INPUT;
1064 }
1065
1066 /* Return a new buffer structure allocated from the heap with
1067 a call to lisp_malloc. */
1068
1069 struct buffer *
1070 allocate_buffer (void)
1071 {
1072 struct buffer *b
1073 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1074 MEM_TYPE_BUFFER);
1075 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1076 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1077 / sizeof (EMACS_INT)));
1078 return b;
1079 }
1080
1081 \f
1082 #ifndef SYSTEM_MALLOC
1083
1084 /* Arranging to disable input signals while we're in malloc.
1085
1086 This only works with GNU malloc. To help out systems which can't
1087 use GNU malloc, all the calls to malloc, realloc, and free
1088 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1089 pair; unfortunately, we have no idea what C library functions
1090 might call malloc, so we can't really protect them unless you're
1091 using GNU malloc. Fortunately, most of the major operating systems
1092 can use GNU malloc. */
1093
1094 #ifndef SYNC_INPUT
1095 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1096 there's no need to block input around malloc. */
1097
1098 #ifndef DOUG_LEA_MALLOC
1099 extern void * (*__malloc_hook) (size_t, const void *);
1100 extern void * (*__realloc_hook) (void *, size_t, const void *);
1101 extern void (*__free_hook) (void *, const void *);
1102 /* Else declared in malloc.h, perhaps with an extra arg. */
1103 #endif /* DOUG_LEA_MALLOC */
1104 static void * (*old_malloc_hook) (size_t, const void *);
1105 static void * (*old_realloc_hook) (void *, size_t, const void*);
1106 static void (*old_free_hook) (void*, const void*);
1107
1108 #ifdef DOUG_LEA_MALLOC
1109 # define BYTES_USED (mallinfo ().uordblks)
1110 #else
1111 # define BYTES_USED _bytes_used
1112 #endif
1113
1114 static __malloc_size_t bytes_used_when_reconsidered;
1115
1116 /* Value of _bytes_used, when spare_memory was freed. */
1117
1118 static __malloc_size_t bytes_used_when_full;
1119
1120 /* This function is used as the hook for free to call. */
1121
1122 static void
1123 emacs_blocked_free (void *ptr, const void *ptr2)
1124 {
1125 BLOCK_INPUT_ALLOC;
1126
1127 #ifdef GC_MALLOC_CHECK
1128 if (ptr)
1129 {
1130 struct mem_node *m;
1131
1132 m = mem_find (ptr);
1133 if (m == MEM_NIL || m->start != ptr)
1134 {
1135 fprintf (stderr,
1136 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1137 abort ();
1138 }
1139 else
1140 {
1141 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1142 mem_delete (m);
1143 }
1144 }
1145 #endif /* GC_MALLOC_CHECK */
1146
1147 __free_hook = old_free_hook;
1148 free (ptr);
1149
1150 /* If we released our reserve (due to running out of memory),
1151 and we have a fair amount free once again,
1152 try to set aside another reserve in case we run out once more. */
1153 if (! NILP (Vmemory_full)
1154 /* Verify there is enough space that even with the malloc
1155 hysteresis this call won't run out again.
1156 The code here is correct as long as SPARE_MEMORY
1157 is substantially larger than the block size malloc uses. */
1158 && (bytes_used_when_full
1159 > ((bytes_used_when_reconsidered = BYTES_USED)
1160 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1161 refill_memory_reserve ();
1162
1163 __free_hook = emacs_blocked_free;
1164 UNBLOCK_INPUT_ALLOC;
1165 }
1166
1167
1168 /* This function is the malloc hook that Emacs uses. */
1169
1170 static void *
1171 emacs_blocked_malloc (size_t size, const void *ptr)
1172 {
1173 void *value;
1174
1175 BLOCK_INPUT_ALLOC;
1176 __malloc_hook = old_malloc_hook;
1177 #ifdef DOUG_LEA_MALLOC
1178 /* Segfaults on my system. --lorentey */
1179 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1180 #else
1181 __malloc_extra_blocks = malloc_hysteresis;
1182 #endif
1183
1184 value = (void *) malloc (size);
1185
1186 #ifdef GC_MALLOC_CHECK
1187 {
1188 struct mem_node *m = mem_find (value);
1189 if (m != MEM_NIL)
1190 {
1191 fprintf (stderr, "Malloc returned %p which is already in use\n",
1192 value);
1193 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1194 m->start, m->end, (char *) m->end - (char *) m->start,
1195 m->type);
1196 abort ();
1197 }
1198
1199 if (!dont_register_blocks)
1200 {
1201 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1202 allocated_mem_type = MEM_TYPE_NON_LISP;
1203 }
1204 }
1205 #endif /* GC_MALLOC_CHECK */
1206
1207 __malloc_hook = emacs_blocked_malloc;
1208 UNBLOCK_INPUT_ALLOC;
1209
1210 /* fprintf (stderr, "%p malloc\n", value); */
1211 return value;
1212 }
1213
1214
1215 /* This function is the realloc hook that Emacs uses. */
1216
1217 static void *
1218 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1219 {
1220 void *value;
1221
1222 BLOCK_INPUT_ALLOC;
1223 __realloc_hook = old_realloc_hook;
1224
1225 #ifdef GC_MALLOC_CHECK
1226 if (ptr)
1227 {
1228 struct mem_node *m = mem_find (ptr);
1229 if (m == MEM_NIL || m->start != ptr)
1230 {
1231 fprintf (stderr,
1232 "Realloc of %p which wasn't allocated with malloc\n",
1233 ptr);
1234 abort ();
1235 }
1236
1237 mem_delete (m);
1238 }
1239
1240 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1241
1242 /* Prevent malloc from registering blocks. */
1243 dont_register_blocks = 1;
1244 #endif /* GC_MALLOC_CHECK */
1245
1246 value = (void *) realloc (ptr, size);
1247
1248 #ifdef GC_MALLOC_CHECK
1249 dont_register_blocks = 0;
1250
1251 {
1252 struct mem_node *m = mem_find (value);
1253 if (m != MEM_NIL)
1254 {
1255 fprintf (stderr, "Realloc returns memory that is already in use\n");
1256 abort ();
1257 }
1258
1259 /* Can't handle zero size regions in the red-black tree. */
1260 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1261 }
1262
1263 /* fprintf (stderr, "%p <- realloc\n", value); */
1264 #endif /* GC_MALLOC_CHECK */
1265
1266 __realloc_hook = emacs_blocked_realloc;
1267 UNBLOCK_INPUT_ALLOC;
1268
1269 return value;
1270 }
1271
1272
1273 #ifdef HAVE_GTK_AND_PTHREAD
1274 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1275 normal malloc. Some thread implementations need this as they call
1276 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1277 calls malloc because it is the first call, and we have an endless loop. */
1278
1279 void
1280 reset_malloc_hooks ()
1281 {
1282 __free_hook = old_free_hook;
1283 __malloc_hook = old_malloc_hook;
1284 __realloc_hook = old_realloc_hook;
1285 }
1286 #endif /* HAVE_GTK_AND_PTHREAD */
1287
1288
1289 /* Called from main to set up malloc to use our hooks. */
1290
1291 void
1292 uninterrupt_malloc (void)
1293 {
1294 #ifdef HAVE_GTK_AND_PTHREAD
1295 #ifdef DOUG_LEA_MALLOC
1296 pthread_mutexattr_t attr;
1297
1298 /* GLIBC has a faster way to do this, but lets keep it portable.
1299 This is according to the Single UNIX Specification. */
1300 pthread_mutexattr_init (&attr);
1301 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1302 pthread_mutex_init (&alloc_mutex, &attr);
1303 #else /* !DOUG_LEA_MALLOC */
1304 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1305 and the bundled gmalloc.c doesn't require it. */
1306 pthread_mutex_init (&alloc_mutex, NULL);
1307 #endif /* !DOUG_LEA_MALLOC */
1308 #endif /* HAVE_GTK_AND_PTHREAD */
1309
1310 if (__free_hook != emacs_blocked_free)
1311 old_free_hook = __free_hook;
1312 __free_hook = emacs_blocked_free;
1313
1314 if (__malloc_hook != emacs_blocked_malloc)
1315 old_malloc_hook = __malloc_hook;
1316 __malloc_hook = emacs_blocked_malloc;
1317
1318 if (__realloc_hook != emacs_blocked_realloc)
1319 old_realloc_hook = __realloc_hook;
1320 __realloc_hook = emacs_blocked_realloc;
1321 }
1322
1323 #endif /* not SYNC_INPUT */
1324 #endif /* not SYSTEM_MALLOC */
1325
1326
1327 \f
1328 /***********************************************************************
1329 Interval Allocation
1330 ***********************************************************************/
1331
1332 /* Number of intervals allocated in an interval_block structure.
1333 The 1020 is 1024 minus malloc overhead. */
1334
1335 #define INTERVAL_BLOCK_SIZE \
1336 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1337
1338 /* Intervals are allocated in chunks in form of an interval_block
1339 structure. */
1340
1341 struct interval_block
1342 {
1343 /* Place `intervals' first, to preserve alignment. */
1344 struct interval intervals[INTERVAL_BLOCK_SIZE];
1345 struct interval_block *next;
1346 };
1347
1348 /* Current interval block. Its `next' pointer points to older
1349 blocks. */
1350
1351 static struct interval_block *interval_block;
1352
1353 /* Index in interval_block above of the next unused interval
1354 structure. */
1355
1356 static int interval_block_index;
1357
1358 /* Number of free and live intervals. */
1359
1360 static EMACS_INT total_free_intervals, total_intervals;
1361
1362 /* List of free intervals. */
1363
1364 static INTERVAL interval_free_list;
1365
1366
1367 /* Initialize interval allocation. */
1368
1369 static void
1370 init_intervals (void)
1371 {
1372 interval_block = NULL;
1373 interval_block_index = INTERVAL_BLOCK_SIZE;
1374 interval_free_list = 0;
1375 }
1376
1377
1378 /* Return a new interval. */
1379
1380 INTERVAL
1381 make_interval (void)
1382 {
1383 INTERVAL val;
1384
1385 /* eassert (!handling_signal); */
1386
1387 MALLOC_BLOCK_INPUT;
1388
1389 if (interval_free_list)
1390 {
1391 val = interval_free_list;
1392 interval_free_list = INTERVAL_PARENT (interval_free_list);
1393 }
1394 else
1395 {
1396 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1397 {
1398 register struct interval_block *newi;
1399
1400 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1401 MEM_TYPE_NON_LISP);
1402
1403 newi->next = interval_block;
1404 interval_block = newi;
1405 interval_block_index = 0;
1406 }
1407 val = &interval_block->intervals[interval_block_index++];
1408 }
1409
1410 MALLOC_UNBLOCK_INPUT;
1411
1412 consing_since_gc += sizeof (struct interval);
1413 intervals_consed++;
1414 RESET_INTERVAL (val);
1415 val->gcmarkbit = 0;
1416 return val;
1417 }
1418
1419
1420 /* Mark Lisp objects in interval I. */
1421
1422 static void
1423 mark_interval (register INTERVAL i, Lisp_Object dummy)
1424 {
1425 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1426 i->gcmarkbit = 1;
1427 mark_object (i->plist);
1428 }
1429
1430
1431 /* Mark the interval tree rooted in TREE. Don't call this directly;
1432 use the macro MARK_INTERVAL_TREE instead. */
1433
1434 static void
1435 mark_interval_tree (register INTERVAL tree)
1436 {
1437 /* No need to test if this tree has been marked already; this
1438 function is always called through the MARK_INTERVAL_TREE macro,
1439 which takes care of that. */
1440
1441 traverse_intervals_noorder (tree, mark_interval, Qnil);
1442 }
1443
1444
1445 /* Mark the interval tree rooted in I. */
1446
1447 #define MARK_INTERVAL_TREE(i) \
1448 do { \
1449 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1450 mark_interval_tree (i); \
1451 } while (0)
1452
1453
1454 #define UNMARK_BALANCE_INTERVALS(i) \
1455 do { \
1456 if (! NULL_INTERVAL_P (i)) \
1457 (i) = balance_intervals (i); \
1458 } while (0)
1459
1460 \f
1461 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1462 can't create number objects in macros. */
1463 #ifndef make_number
1464 Lisp_Object
1465 make_number (EMACS_INT n)
1466 {
1467 Lisp_Object obj;
1468 obj.s.val = n;
1469 obj.s.type = Lisp_Int;
1470 return obj;
1471 }
1472 #endif
1473 \f
1474 /***********************************************************************
1475 String Allocation
1476 ***********************************************************************/
1477
1478 /* Lisp_Strings are allocated in string_block structures. When a new
1479 string_block is allocated, all the Lisp_Strings it contains are
1480 added to a free-list string_free_list. When a new Lisp_String is
1481 needed, it is taken from that list. During the sweep phase of GC,
1482 string_blocks that are entirely free are freed, except two which
1483 we keep.
1484
1485 String data is allocated from sblock structures. Strings larger
1486 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1487 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1488
1489 Sblocks consist internally of sdata structures, one for each
1490 Lisp_String. The sdata structure points to the Lisp_String it
1491 belongs to. The Lisp_String points back to the `u.data' member of
1492 its sdata structure.
1493
1494 When a Lisp_String is freed during GC, it is put back on
1495 string_free_list, and its `data' member and its sdata's `string'
1496 pointer is set to null. The size of the string is recorded in the
1497 `u.nbytes' member of the sdata. So, sdata structures that are no
1498 longer used, can be easily recognized, and it's easy to compact the
1499 sblocks of small strings which we do in compact_small_strings. */
1500
1501 /* Size in bytes of an sblock structure used for small strings. This
1502 is 8192 minus malloc overhead. */
1503
1504 #define SBLOCK_SIZE 8188
1505
1506 /* Strings larger than this are considered large strings. String data
1507 for large strings is allocated from individual sblocks. */
1508
1509 #define LARGE_STRING_BYTES 1024
1510
1511 /* Structure describing string memory sub-allocated from an sblock.
1512 This is where the contents of Lisp strings are stored. */
1513
1514 struct sdata
1515 {
1516 /* Back-pointer to the string this sdata belongs to. If null, this
1517 structure is free, and the NBYTES member of the union below
1518 contains the string's byte size (the same value that STRING_BYTES
1519 would return if STRING were non-null). If non-null, STRING_BYTES
1520 (STRING) is the size of the data, and DATA contains the string's
1521 contents. */
1522 struct Lisp_String *string;
1523
1524 #ifdef GC_CHECK_STRING_BYTES
1525
1526 EMACS_INT nbytes;
1527 unsigned char data[1];
1528
1529 #define SDATA_NBYTES(S) (S)->nbytes
1530 #define SDATA_DATA(S) (S)->data
1531 #define SDATA_SELECTOR(member) member
1532
1533 #else /* not GC_CHECK_STRING_BYTES */
1534
1535 union
1536 {
1537 /* When STRING is non-null. */
1538 unsigned char data[1];
1539
1540 /* When STRING is null. */
1541 EMACS_INT nbytes;
1542 } u;
1543
1544 #define SDATA_NBYTES(S) (S)->u.nbytes
1545 #define SDATA_DATA(S) (S)->u.data
1546 #define SDATA_SELECTOR(member) u.member
1547
1548 #endif /* not GC_CHECK_STRING_BYTES */
1549
1550 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1551 };
1552
1553
1554 /* Structure describing a block of memory which is sub-allocated to
1555 obtain string data memory for strings. Blocks for small strings
1556 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1557 as large as needed. */
1558
1559 struct sblock
1560 {
1561 /* Next in list. */
1562 struct sblock *next;
1563
1564 /* Pointer to the next free sdata block. This points past the end
1565 of the sblock if there isn't any space left in this block. */
1566 struct sdata *next_free;
1567
1568 /* Start of data. */
1569 struct sdata first_data;
1570 };
1571
1572 /* Number of Lisp strings in a string_block structure. The 1020 is
1573 1024 minus malloc overhead. */
1574
1575 #define STRING_BLOCK_SIZE \
1576 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1577
1578 /* Structure describing a block from which Lisp_String structures
1579 are allocated. */
1580
1581 struct string_block
1582 {
1583 /* Place `strings' first, to preserve alignment. */
1584 struct Lisp_String strings[STRING_BLOCK_SIZE];
1585 struct string_block *next;
1586 };
1587
1588 /* Head and tail of the list of sblock structures holding Lisp string
1589 data. We always allocate from current_sblock. The NEXT pointers
1590 in the sblock structures go from oldest_sblock to current_sblock. */
1591
1592 static struct sblock *oldest_sblock, *current_sblock;
1593
1594 /* List of sblocks for large strings. */
1595
1596 static struct sblock *large_sblocks;
1597
1598 /* List of string_block structures. */
1599
1600 static struct string_block *string_blocks;
1601
1602 /* Free-list of Lisp_Strings. */
1603
1604 static struct Lisp_String *string_free_list;
1605
1606 /* Number of live and free Lisp_Strings. */
1607
1608 static EMACS_INT total_strings, total_free_strings;
1609
1610 /* Number of bytes used by live strings. */
1611
1612 static EMACS_INT total_string_size;
1613
1614 /* Given a pointer to a Lisp_String S which is on the free-list
1615 string_free_list, return a pointer to its successor in the
1616 free-list. */
1617
1618 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1619
1620 /* Return a pointer to the sdata structure belonging to Lisp string S.
1621 S must be live, i.e. S->data must not be null. S->data is actually
1622 a pointer to the `u.data' member of its sdata structure; the
1623 structure starts at a constant offset in front of that. */
1624
1625 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1626
1627
1628 #ifdef GC_CHECK_STRING_OVERRUN
1629
1630 /* We check for overrun in string data blocks by appending a small
1631 "cookie" after each allocated string data block, and check for the
1632 presence of this cookie during GC. */
1633
1634 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1635 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1636 { '\xde', '\xad', '\xbe', '\xef' };
1637
1638 #else
1639 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1640 #endif
1641
1642 /* Value is the size of an sdata structure large enough to hold NBYTES
1643 bytes of string data. The value returned includes a terminating
1644 NUL byte, the size of the sdata structure, and padding. */
1645
1646 #ifdef GC_CHECK_STRING_BYTES
1647
1648 #define SDATA_SIZE(NBYTES) \
1649 ((SDATA_DATA_OFFSET \
1650 + (NBYTES) + 1 \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1657 less than the size of that member. The 'max' is not needed when
1658 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1659 alignment code reserves enough space. */
1660
1661 #define SDATA_SIZE(NBYTES) \
1662 ((SDATA_DATA_OFFSET \
1663 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1664 ? NBYTES \
1665 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1666 + 1 \
1667 + sizeof (EMACS_INT) - 1) \
1668 & ~(sizeof (EMACS_INT) - 1))
1669
1670 #endif /* not GC_CHECK_STRING_BYTES */
1671
1672 /* Extra bytes to allocate for each string. */
1673
1674 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1675
1676 /* Exact bound on the number of bytes in a string, not counting the
1677 terminating null. A string cannot contain more bytes than
1678 STRING_BYTES_BOUND, nor can it be so long that the size_t
1679 arithmetic in allocate_string_data would overflow while it is
1680 calculating a value to be passed to malloc. */
1681 #define STRING_BYTES_MAX \
1682 min (STRING_BYTES_BOUND, \
1683 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1684 - GC_STRING_EXTRA \
1685 - offsetof (struct sblock, first_data) \
1686 - SDATA_DATA_OFFSET) \
1687 & ~(sizeof (EMACS_INT) - 1)))
1688
1689 /* Initialize string allocation. Called from init_alloc_once. */
1690
1691 static void
1692 init_strings (void)
1693 {
1694 total_strings = total_free_strings = total_string_size = 0;
1695 oldest_sblock = current_sblock = large_sblocks = NULL;
1696 string_blocks = NULL;
1697 string_free_list = NULL;
1698 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1699 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1700 }
1701
1702
1703 #ifdef GC_CHECK_STRING_BYTES
1704
1705 static int check_string_bytes_count;
1706
1707 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1708
1709
1710 /* Like GC_STRING_BYTES, but with debugging check. */
1711
1712 EMACS_INT
1713 string_bytes (struct Lisp_String *s)
1714 {
1715 EMACS_INT nbytes =
1716 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1717
1718 if (!PURE_POINTER_P (s)
1719 && s->data
1720 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1721 abort ();
1722 return nbytes;
1723 }
1724
1725 /* Check validity of Lisp strings' string_bytes member in B. */
1726
1727 static void
1728 check_sblock (struct sblock *b)
1729 {
1730 struct sdata *from, *end, *from_end;
1731
1732 end = b->next_free;
1733
1734 for (from = &b->first_data; from < end; from = from_end)
1735 {
1736 /* Compute the next FROM here because copying below may
1737 overwrite data we need to compute it. */
1738 EMACS_INT nbytes;
1739
1740 /* Check that the string size recorded in the string is the
1741 same as the one recorded in the sdata structure. */
1742 if (from->string)
1743 CHECK_STRING_BYTES (from->string);
1744
1745 if (from->string)
1746 nbytes = GC_STRING_BYTES (from->string);
1747 else
1748 nbytes = SDATA_NBYTES (from);
1749
1750 nbytes = SDATA_SIZE (nbytes);
1751 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1752 }
1753 }
1754
1755
1756 /* Check validity of Lisp strings' string_bytes member. ALL_P
1757 non-zero means check all strings, otherwise check only most
1758 recently allocated strings. Used for hunting a bug. */
1759
1760 static void
1761 check_string_bytes (int all_p)
1762 {
1763 if (all_p)
1764 {
1765 struct sblock *b;
1766
1767 for (b = large_sblocks; b; b = b->next)
1768 {
1769 struct Lisp_String *s = b->first_data.string;
1770 if (s)
1771 CHECK_STRING_BYTES (s);
1772 }
1773
1774 for (b = oldest_sblock; b; b = b->next)
1775 check_sblock (b);
1776 }
1777 else
1778 check_sblock (current_sblock);
1779 }
1780
1781 #endif /* GC_CHECK_STRING_BYTES */
1782
1783 #ifdef GC_CHECK_STRING_FREE_LIST
1784
1785 /* Walk through the string free list looking for bogus next pointers.
1786 This may catch buffer overrun from a previous string. */
1787
1788 static void
1789 check_string_free_list (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* Pop a Lisp_String off the free-list. */
1794 s = string_free_list;
1795 while (s != NULL)
1796 {
1797 if ((uintptr_t) s < 1024)
1798 abort();
1799 s = NEXT_FREE_LISP_STRING (s);
1800 }
1801 }
1802 #else
1803 #define check_string_free_list()
1804 #endif
1805
1806 /* Return a new Lisp_String. */
1807
1808 static struct Lisp_String *
1809 allocate_string (void)
1810 {
1811 struct Lisp_String *s;
1812
1813 /* eassert (!handling_signal); */
1814
1815 MALLOC_BLOCK_INPUT;
1816
1817 /* If the free-list is empty, allocate a new string_block, and
1818 add all the Lisp_Strings in it to the free-list. */
1819 if (string_free_list == NULL)
1820 {
1821 struct string_block *b;
1822 int i;
1823
1824 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1825 memset (b, 0, sizeof *b);
1826 b->next = string_blocks;
1827 string_blocks = b;
1828
1829 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1830 {
1831 s = b->strings + i;
1832 NEXT_FREE_LISP_STRING (s) = string_free_list;
1833 string_free_list = s;
1834 }
1835
1836 total_free_strings += STRING_BLOCK_SIZE;
1837 }
1838
1839 check_string_free_list ();
1840
1841 /* Pop a Lisp_String off the free-list. */
1842 s = string_free_list;
1843 string_free_list = NEXT_FREE_LISP_STRING (s);
1844
1845 MALLOC_UNBLOCK_INPUT;
1846
1847 /* Probably not strictly necessary, but play it safe. */
1848 memset (s, 0, sizeof *s);
1849
1850 --total_free_strings;
1851 ++total_strings;
1852 ++strings_consed;
1853 consing_since_gc += sizeof *s;
1854
1855 #ifdef GC_CHECK_STRING_BYTES
1856 if (!noninteractive)
1857 {
1858 if (++check_string_bytes_count == 200)
1859 {
1860 check_string_bytes_count = 0;
1861 check_string_bytes (1);
1862 }
1863 else
1864 check_string_bytes (0);
1865 }
1866 #endif /* GC_CHECK_STRING_BYTES */
1867
1868 return s;
1869 }
1870
1871
1872 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1873 plus a NUL byte at the end. Allocate an sdata structure for S, and
1874 set S->data to its `u.data' member. Store a NUL byte at the end of
1875 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1876 S->data if it was initially non-null. */
1877
1878 void
1879 allocate_string_data (struct Lisp_String *s,
1880 EMACS_INT nchars, EMACS_INT nbytes)
1881 {
1882 struct sdata *data, *old_data;
1883 struct sblock *b;
1884 EMACS_INT needed, old_nbytes;
1885
1886 if (STRING_BYTES_MAX < nbytes)
1887 string_overflow ();
1888
1889 /* Determine the number of bytes needed to store NBYTES bytes
1890 of string data. */
1891 needed = SDATA_SIZE (nbytes);
1892 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1893 old_nbytes = GC_STRING_BYTES (s);
1894
1895 MALLOC_BLOCK_INPUT;
1896
1897 if (nbytes > LARGE_STRING_BYTES)
1898 {
1899 size_t size = offsetof (struct sblock, first_data) + needed;
1900
1901 #ifdef DOUG_LEA_MALLOC
1902 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1903 because mapped region contents are not preserved in
1904 a dumped Emacs.
1905
1906 In case you think of allowing it in a dumped Emacs at the
1907 cost of not being able to re-dump, there's another reason:
1908 mmap'ed data typically have an address towards the top of the
1909 address space, which won't fit into an EMACS_INT (at least on
1910 32-bit systems with the current tagging scheme). --fx */
1911 mallopt (M_MMAP_MAX, 0);
1912 #endif
1913
1914 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1915
1916 #ifdef DOUG_LEA_MALLOC
1917 /* Back to a reasonable maximum of mmap'ed areas. */
1918 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1919 #endif
1920
1921 b->next_free = &b->first_data;
1922 b->first_data.string = NULL;
1923 b->next = large_sblocks;
1924 large_sblocks = b;
1925 }
1926 else if (current_sblock == NULL
1927 || (((char *) current_sblock + SBLOCK_SIZE
1928 - (char *) current_sblock->next_free)
1929 < (needed + GC_STRING_EXTRA)))
1930 {
1931 /* Not enough room in the current sblock. */
1932 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1933 b->next_free = &b->first_data;
1934 b->first_data.string = NULL;
1935 b->next = NULL;
1936
1937 if (current_sblock)
1938 current_sblock->next = b;
1939 else
1940 oldest_sblock = b;
1941 current_sblock = b;
1942 }
1943 else
1944 b = current_sblock;
1945
1946 data = b->next_free;
1947 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1948
1949 MALLOC_UNBLOCK_INPUT;
1950
1951 data->string = s;
1952 s->data = SDATA_DATA (data);
1953 #ifdef GC_CHECK_STRING_BYTES
1954 SDATA_NBYTES (data) = nbytes;
1955 #endif
1956 s->size = nchars;
1957 s->size_byte = nbytes;
1958 s->data[nbytes] = '\0';
1959 #ifdef GC_CHECK_STRING_OVERRUN
1960 memcpy ((char *) data + needed, string_overrun_cookie,
1961 GC_STRING_OVERRUN_COOKIE_SIZE);
1962 #endif
1963
1964 /* If S had already data assigned, mark that as free by setting its
1965 string back-pointer to null, and recording the size of the data
1966 in it. */
1967 if (old_data)
1968 {
1969 SDATA_NBYTES (old_data) = old_nbytes;
1970 old_data->string = NULL;
1971 }
1972
1973 consing_since_gc += needed;
1974 }
1975
1976
1977 /* Sweep and compact strings. */
1978
1979 static void
1980 sweep_strings (void)
1981 {
1982 struct string_block *b, *next;
1983 struct string_block *live_blocks = NULL;
1984
1985 string_free_list = NULL;
1986 total_strings = total_free_strings = 0;
1987 total_string_size = 0;
1988
1989 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1990 for (b = string_blocks; b; b = next)
1991 {
1992 int i, nfree = 0;
1993 struct Lisp_String *free_list_before = string_free_list;
1994
1995 next = b->next;
1996
1997 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1998 {
1999 struct Lisp_String *s = b->strings + i;
2000
2001 if (s->data)
2002 {
2003 /* String was not on free-list before. */
2004 if (STRING_MARKED_P (s))
2005 {
2006 /* String is live; unmark it and its intervals. */
2007 UNMARK_STRING (s);
2008
2009 if (!NULL_INTERVAL_P (s->intervals))
2010 UNMARK_BALANCE_INTERVALS (s->intervals);
2011
2012 ++total_strings;
2013 total_string_size += STRING_BYTES (s);
2014 }
2015 else
2016 {
2017 /* String is dead. Put it on the free-list. */
2018 struct sdata *data = SDATA_OF_STRING (s);
2019
2020 /* Save the size of S in its sdata so that we know
2021 how large that is. Reset the sdata's string
2022 back-pointer so that we know it's free. */
2023 #ifdef GC_CHECK_STRING_BYTES
2024 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2025 abort ();
2026 #else
2027 data->u.nbytes = GC_STRING_BYTES (s);
2028 #endif
2029 data->string = NULL;
2030
2031 /* Reset the strings's `data' member so that we
2032 know it's free. */
2033 s->data = NULL;
2034
2035 /* Put the string on the free-list. */
2036 NEXT_FREE_LISP_STRING (s) = string_free_list;
2037 string_free_list = s;
2038 ++nfree;
2039 }
2040 }
2041 else
2042 {
2043 /* S was on the free-list before. Put it there again. */
2044 NEXT_FREE_LISP_STRING (s) = string_free_list;
2045 string_free_list = s;
2046 ++nfree;
2047 }
2048 }
2049
2050 /* Free blocks that contain free Lisp_Strings only, except
2051 the first two of them. */
2052 if (nfree == STRING_BLOCK_SIZE
2053 && total_free_strings > STRING_BLOCK_SIZE)
2054 {
2055 lisp_free (b);
2056 string_free_list = free_list_before;
2057 }
2058 else
2059 {
2060 total_free_strings += nfree;
2061 b->next = live_blocks;
2062 live_blocks = b;
2063 }
2064 }
2065
2066 check_string_free_list ();
2067
2068 string_blocks = live_blocks;
2069 free_large_strings ();
2070 compact_small_strings ();
2071
2072 check_string_free_list ();
2073 }
2074
2075
2076 /* Free dead large strings. */
2077
2078 static void
2079 free_large_strings (void)
2080 {
2081 struct sblock *b, *next;
2082 struct sblock *live_blocks = NULL;
2083
2084 for (b = large_sblocks; b; b = next)
2085 {
2086 next = b->next;
2087
2088 if (b->first_data.string == NULL)
2089 lisp_free (b);
2090 else
2091 {
2092 b->next = live_blocks;
2093 live_blocks = b;
2094 }
2095 }
2096
2097 large_sblocks = live_blocks;
2098 }
2099
2100
2101 /* Compact data of small strings. Free sblocks that don't contain
2102 data of live strings after compaction. */
2103
2104 static void
2105 compact_small_strings (void)
2106 {
2107 struct sblock *b, *tb, *next;
2108 struct sdata *from, *to, *end, *tb_end;
2109 struct sdata *to_end, *from_end;
2110
2111 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2112 to, and TB_END is the end of TB. */
2113 tb = oldest_sblock;
2114 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2115 to = &tb->first_data;
2116
2117 /* Step through the blocks from the oldest to the youngest. We
2118 expect that old blocks will stabilize over time, so that less
2119 copying will happen this way. */
2120 for (b = oldest_sblock; b; b = b->next)
2121 {
2122 end = b->next_free;
2123 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2124
2125 for (from = &b->first_data; from < end; from = from_end)
2126 {
2127 /* Compute the next FROM here because copying below may
2128 overwrite data we need to compute it. */
2129 EMACS_INT nbytes;
2130
2131 #ifdef GC_CHECK_STRING_BYTES
2132 /* Check that the string size recorded in the string is the
2133 same as the one recorded in the sdata structure. */
2134 if (from->string
2135 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2136 abort ();
2137 #endif /* GC_CHECK_STRING_BYTES */
2138
2139 if (from->string)
2140 nbytes = GC_STRING_BYTES (from->string);
2141 else
2142 nbytes = SDATA_NBYTES (from);
2143
2144 if (nbytes > LARGE_STRING_BYTES)
2145 abort ();
2146
2147 nbytes = SDATA_SIZE (nbytes);
2148 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2149
2150 #ifdef GC_CHECK_STRING_OVERRUN
2151 if (memcmp (string_overrun_cookie,
2152 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2153 GC_STRING_OVERRUN_COOKIE_SIZE))
2154 abort ();
2155 #endif
2156
2157 /* FROM->string non-null means it's alive. Copy its data. */
2158 if (from->string)
2159 {
2160 /* If TB is full, proceed with the next sblock. */
2161 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2162 if (to_end > tb_end)
2163 {
2164 tb->next_free = to;
2165 tb = tb->next;
2166 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2167 to = &tb->first_data;
2168 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2169 }
2170
2171 /* Copy, and update the string's `data' pointer. */
2172 if (from != to)
2173 {
2174 xassert (tb != b || to < from);
2175 memmove (to, from, nbytes + GC_STRING_EXTRA);
2176 to->string->data = SDATA_DATA (to);
2177 }
2178
2179 /* Advance past the sdata we copied to. */
2180 to = to_end;
2181 }
2182 }
2183 }
2184
2185 /* The rest of the sblocks following TB don't contain live data, so
2186 we can free them. */
2187 for (b = tb->next; b; b = next)
2188 {
2189 next = b->next;
2190 lisp_free (b);
2191 }
2192
2193 tb->next_free = to;
2194 tb->next = NULL;
2195 current_sblock = tb;
2196 }
2197
2198 void
2199 string_overflow (void)
2200 {
2201 error ("Maximum string size exceeded");
2202 }
2203
2204 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2205 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2206 LENGTH must be an integer.
2207 INIT must be an integer that represents a character. */)
2208 (Lisp_Object length, Lisp_Object init)
2209 {
2210 register Lisp_Object val;
2211 register unsigned char *p, *end;
2212 int c;
2213 EMACS_INT nbytes;
2214
2215 CHECK_NATNUM (length);
2216 CHECK_CHARACTER (init);
2217
2218 c = XFASTINT (init);
2219 if (ASCII_CHAR_P (c))
2220 {
2221 nbytes = XINT (length);
2222 val = make_uninit_string (nbytes);
2223 p = SDATA (val);
2224 end = p + SCHARS (val);
2225 while (p != end)
2226 *p++ = c;
2227 }
2228 else
2229 {
2230 unsigned char str[MAX_MULTIBYTE_LENGTH];
2231 int len = CHAR_STRING (c, str);
2232 EMACS_INT string_len = XINT (length);
2233
2234 if (string_len > STRING_BYTES_MAX / len)
2235 string_overflow ();
2236 nbytes = len * string_len;
2237 val = make_uninit_multibyte_string (string_len, nbytes);
2238 p = SDATA (val);
2239 end = p + nbytes;
2240 while (p != end)
2241 {
2242 memcpy (p, str, len);
2243 p += len;
2244 }
2245 }
2246
2247 *p = 0;
2248 return val;
2249 }
2250
2251
2252 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2253 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2254 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2255 (Lisp_Object length, Lisp_Object init)
2256 {
2257 register Lisp_Object val;
2258 struct Lisp_Bool_Vector *p;
2259 EMACS_INT length_in_chars, length_in_elts;
2260 int bits_per_value;
2261
2262 CHECK_NATNUM (length);
2263
2264 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2265
2266 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2267 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2268 / BOOL_VECTOR_BITS_PER_CHAR);
2269
2270 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2271 slot `size' of the struct Lisp_Bool_Vector. */
2272 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2273
2274 /* No Lisp_Object to trace in there. */
2275 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2276
2277 p = XBOOL_VECTOR (val);
2278 p->size = XFASTINT (length);
2279
2280 if (length_in_chars)
2281 {
2282 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2283
2284 /* Clear any extraneous bits in the last byte. */
2285 p->data[length_in_chars - 1]
2286 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2287 }
2288
2289 return val;
2290 }
2291
2292
2293 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2294 of characters from the contents. This string may be unibyte or
2295 multibyte, depending on the contents. */
2296
2297 Lisp_Object
2298 make_string (const char *contents, EMACS_INT nbytes)
2299 {
2300 register Lisp_Object val;
2301 EMACS_INT nchars, multibyte_nbytes;
2302
2303 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2304 &nchars, &multibyte_nbytes);
2305 if (nbytes == nchars || nbytes != multibyte_nbytes)
2306 /* CONTENTS contains no multibyte sequences or contains an invalid
2307 multibyte sequence. We must make unibyte string. */
2308 val = make_unibyte_string (contents, nbytes);
2309 else
2310 val = make_multibyte_string (contents, nchars, nbytes);
2311 return val;
2312 }
2313
2314
2315 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2316
2317 Lisp_Object
2318 make_unibyte_string (const char *contents, EMACS_INT length)
2319 {
2320 register Lisp_Object val;
2321 val = make_uninit_string (length);
2322 memcpy (SDATA (val), contents, length);
2323 return val;
2324 }
2325
2326
2327 /* Make a multibyte string from NCHARS characters occupying NBYTES
2328 bytes at CONTENTS. */
2329
2330 Lisp_Object
2331 make_multibyte_string (const char *contents,
2332 EMACS_INT nchars, EMACS_INT nbytes)
2333 {
2334 register Lisp_Object val;
2335 val = make_uninit_multibyte_string (nchars, nbytes);
2336 memcpy (SDATA (val), contents, nbytes);
2337 return val;
2338 }
2339
2340
2341 /* Make a string from NCHARS characters occupying NBYTES bytes at
2342 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2343
2344 Lisp_Object
2345 make_string_from_bytes (const char *contents,
2346 EMACS_INT nchars, EMACS_INT nbytes)
2347 {
2348 register Lisp_Object val;
2349 val = make_uninit_multibyte_string (nchars, nbytes);
2350 memcpy (SDATA (val), contents, nbytes);
2351 if (SBYTES (val) == SCHARS (val))
2352 STRING_SET_UNIBYTE (val);
2353 return val;
2354 }
2355
2356
2357 /* Make a string from NCHARS characters occupying NBYTES bytes at
2358 CONTENTS. The argument MULTIBYTE controls whether to label the
2359 string as multibyte. If NCHARS is negative, it counts the number of
2360 characters by itself. */
2361
2362 Lisp_Object
2363 make_specified_string (const char *contents,
2364 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2365 {
2366 register Lisp_Object val;
2367
2368 if (nchars < 0)
2369 {
2370 if (multibyte)
2371 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2372 nbytes);
2373 else
2374 nchars = nbytes;
2375 }
2376 val = make_uninit_multibyte_string (nchars, nbytes);
2377 memcpy (SDATA (val), contents, nbytes);
2378 if (!multibyte)
2379 STRING_SET_UNIBYTE (val);
2380 return val;
2381 }
2382
2383
2384 /* Make a string from the data at STR, treating it as multibyte if the
2385 data warrants. */
2386
2387 Lisp_Object
2388 build_string (const char *str)
2389 {
2390 return make_string (str, strlen (str));
2391 }
2392
2393
2394 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2395 occupying LENGTH bytes. */
2396
2397 Lisp_Object
2398 make_uninit_string (EMACS_INT length)
2399 {
2400 Lisp_Object val;
2401
2402 if (!length)
2403 return empty_unibyte_string;
2404 val = make_uninit_multibyte_string (length, length);
2405 STRING_SET_UNIBYTE (val);
2406 return val;
2407 }
2408
2409
2410 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2411 which occupy NBYTES bytes. */
2412
2413 Lisp_Object
2414 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2415 {
2416 Lisp_Object string;
2417 struct Lisp_String *s;
2418
2419 if (nchars < 0)
2420 abort ();
2421 if (!nbytes)
2422 return empty_multibyte_string;
2423
2424 s = allocate_string ();
2425 allocate_string_data (s, nchars, nbytes);
2426 XSETSTRING (string, s);
2427 string_chars_consed += nbytes;
2428 return string;
2429 }
2430
2431
2432 \f
2433 /***********************************************************************
2434 Float Allocation
2435 ***********************************************************************/
2436
2437 /* We store float cells inside of float_blocks, allocating a new
2438 float_block with malloc whenever necessary. Float cells reclaimed
2439 by GC are put on a free list to be reallocated before allocating
2440 any new float cells from the latest float_block. */
2441
2442 #define FLOAT_BLOCK_SIZE \
2443 (((BLOCK_BYTES - sizeof (struct float_block *) \
2444 /* The compiler might add padding at the end. */ \
2445 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2446 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2447
2448 #define GETMARKBIT(block,n) \
2449 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2450 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2451 & 1)
2452
2453 #define SETMARKBIT(block,n) \
2454 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2455 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2456
2457 #define UNSETMARKBIT(block,n) \
2458 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2459 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2460
2461 #define FLOAT_BLOCK(fptr) \
2462 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2463
2464 #define FLOAT_INDEX(fptr) \
2465 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2466
2467 struct float_block
2468 {
2469 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2470 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2471 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2472 struct float_block *next;
2473 };
2474
2475 #define FLOAT_MARKED_P(fptr) \
2476 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2477
2478 #define FLOAT_MARK(fptr) \
2479 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2480
2481 #define FLOAT_UNMARK(fptr) \
2482 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2483
2484 /* Current float_block. */
2485
2486 static struct float_block *float_block;
2487
2488 /* Index of first unused Lisp_Float in the current float_block. */
2489
2490 static int float_block_index;
2491
2492 /* Free-list of Lisp_Floats. */
2493
2494 static struct Lisp_Float *float_free_list;
2495
2496
2497 /* Initialize float allocation. */
2498
2499 static void
2500 init_float (void)
2501 {
2502 float_block = NULL;
2503 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2504 float_free_list = 0;
2505 }
2506
2507
2508 /* Return a new float object with value FLOAT_VALUE. */
2509
2510 Lisp_Object
2511 make_float (double float_value)
2512 {
2513 register Lisp_Object val;
2514
2515 /* eassert (!handling_signal); */
2516
2517 MALLOC_BLOCK_INPUT;
2518
2519 if (float_free_list)
2520 {
2521 /* We use the data field for chaining the free list
2522 so that we won't use the same field that has the mark bit. */
2523 XSETFLOAT (val, float_free_list);
2524 float_free_list = float_free_list->u.chain;
2525 }
2526 else
2527 {
2528 if (float_block_index == FLOAT_BLOCK_SIZE)
2529 {
2530 register struct float_block *new;
2531
2532 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2533 MEM_TYPE_FLOAT);
2534 new->next = float_block;
2535 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2536 float_block = new;
2537 float_block_index = 0;
2538 }
2539 XSETFLOAT (val, &float_block->floats[float_block_index]);
2540 float_block_index++;
2541 }
2542
2543 MALLOC_UNBLOCK_INPUT;
2544
2545 XFLOAT_INIT (val, float_value);
2546 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2547 consing_since_gc += sizeof (struct Lisp_Float);
2548 floats_consed++;
2549 return val;
2550 }
2551
2552
2553 \f
2554 /***********************************************************************
2555 Cons Allocation
2556 ***********************************************************************/
2557
2558 /* We store cons cells inside of cons_blocks, allocating a new
2559 cons_block with malloc whenever necessary. Cons cells reclaimed by
2560 GC are put on a free list to be reallocated before allocating
2561 any new cons cells from the latest cons_block. */
2562
2563 #define CONS_BLOCK_SIZE \
2564 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2565 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2566
2567 #define CONS_BLOCK(fptr) \
2568 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2569
2570 #define CONS_INDEX(fptr) \
2571 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2572
2573 struct cons_block
2574 {
2575 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2576 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2577 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2578 struct cons_block *next;
2579 };
2580
2581 #define CONS_MARKED_P(fptr) \
2582 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2583
2584 #define CONS_MARK(fptr) \
2585 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2586
2587 #define CONS_UNMARK(fptr) \
2588 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2589
2590 /* Current cons_block. */
2591
2592 static struct cons_block *cons_block;
2593
2594 /* Index of first unused Lisp_Cons in the current block. */
2595
2596 static int cons_block_index;
2597
2598 /* Free-list of Lisp_Cons structures. */
2599
2600 static struct Lisp_Cons *cons_free_list;
2601
2602
2603 /* Initialize cons allocation. */
2604
2605 static void
2606 init_cons (void)
2607 {
2608 cons_block = NULL;
2609 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2610 cons_free_list = 0;
2611 }
2612
2613
2614 /* Explicitly free a cons cell by putting it on the free-list. */
2615
2616 void
2617 free_cons (struct Lisp_Cons *ptr)
2618 {
2619 ptr->u.chain = cons_free_list;
2620 #if GC_MARK_STACK
2621 ptr->car = Vdead;
2622 #endif
2623 cons_free_list = ptr;
2624 }
2625
2626 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2627 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2628 (Lisp_Object car, Lisp_Object cdr)
2629 {
2630 register Lisp_Object val;
2631
2632 /* eassert (!handling_signal); */
2633
2634 MALLOC_BLOCK_INPUT;
2635
2636 if (cons_free_list)
2637 {
2638 /* We use the cdr for chaining the free list
2639 so that we won't use the same field that has the mark bit. */
2640 XSETCONS (val, cons_free_list);
2641 cons_free_list = cons_free_list->u.chain;
2642 }
2643 else
2644 {
2645 if (cons_block_index == CONS_BLOCK_SIZE)
2646 {
2647 register struct cons_block *new;
2648 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2649 MEM_TYPE_CONS);
2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2651 new->next = cons_block;
2652 cons_block = new;
2653 cons_block_index = 0;
2654 }
2655 XSETCONS (val, &cons_block->conses[cons_block_index]);
2656 cons_block_index++;
2657 }
2658
2659 MALLOC_UNBLOCK_INPUT;
2660
2661 XSETCAR (val, car);
2662 XSETCDR (val, cdr);
2663 eassert (!CONS_MARKED_P (XCONS (val)));
2664 consing_since_gc += sizeof (struct Lisp_Cons);
2665 cons_cells_consed++;
2666 return val;
2667 }
2668
2669 #ifdef GC_CHECK_CONS_LIST
2670 /* Get an error now if there's any junk in the cons free list. */
2671 void
2672 check_cons_list (void)
2673 {
2674 struct Lisp_Cons *tail = cons_free_list;
2675
2676 while (tail)
2677 tail = tail->u.chain;
2678 }
2679 #endif
2680
2681 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2682
2683 Lisp_Object
2684 list1 (Lisp_Object arg1)
2685 {
2686 return Fcons (arg1, Qnil);
2687 }
2688
2689 Lisp_Object
2690 list2 (Lisp_Object arg1, Lisp_Object arg2)
2691 {
2692 return Fcons (arg1, Fcons (arg2, Qnil));
2693 }
2694
2695
2696 Lisp_Object
2697 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2698 {
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2700 }
2701
2702
2703 Lisp_Object
2704 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2705 {
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2707 }
2708
2709
2710 Lisp_Object
2711 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2712 {
2713 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2714 Fcons (arg5, Qnil)))));
2715 }
2716
2717
2718 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2719 doc: /* Return a newly created list with specified arguments as elements.
2720 Any number of arguments, even zero arguments, are allowed.
2721 usage: (list &rest OBJECTS) */)
2722 (ptrdiff_t nargs, Lisp_Object *args)
2723 {
2724 register Lisp_Object val;
2725 val = Qnil;
2726
2727 while (nargs > 0)
2728 {
2729 nargs--;
2730 val = Fcons (args[nargs], val);
2731 }
2732 return val;
2733 }
2734
2735
2736 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2737 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2738 (register Lisp_Object length, Lisp_Object init)
2739 {
2740 register Lisp_Object val;
2741 register EMACS_INT size;
2742
2743 CHECK_NATNUM (length);
2744 size = XFASTINT (length);
2745
2746 val = Qnil;
2747 while (size > 0)
2748 {
2749 val = Fcons (init, val);
2750 --size;
2751
2752 if (size > 0)
2753 {
2754 val = Fcons (init, val);
2755 --size;
2756
2757 if (size > 0)
2758 {
2759 val = Fcons (init, val);
2760 --size;
2761
2762 if (size > 0)
2763 {
2764 val = Fcons (init, val);
2765 --size;
2766
2767 if (size > 0)
2768 {
2769 val = Fcons (init, val);
2770 --size;
2771 }
2772 }
2773 }
2774 }
2775
2776 QUIT;
2777 }
2778
2779 return val;
2780 }
2781
2782
2783 \f
2784 /***********************************************************************
2785 Vector Allocation
2786 ***********************************************************************/
2787
2788 /* Singly-linked list of all vectors. */
2789
2790 static struct Lisp_Vector *all_vectors;
2791
2792 /* Handy constants for vectorlike objects. */
2793 enum
2794 {
2795 header_size = offsetof (struct Lisp_Vector, contents),
2796 word_size = sizeof (Lisp_Object)
2797 };
2798
2799 /* Value is a pointer to a newly allocated Lisp_Vector structure
2800 with room for LEN Lisp_Objects. */
2801
2802 static struct Lisp_Vector *
2803 allocate_vectorlike (EMACS_INT len)
2804 {
2805 struct Lisp_Vector *p;
2806 size_t nbytes;
2807
2808 MALLOC_BLOCK_INPUT;
2809
2810 #ifdef DOUG_LEA_MALLOC
2811 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2812 because mapped region contents are not preserved in
2813 a dumped Emacs. */
2814 mallopt (M_MMAP_MAX, 0);
2815 #endif
2816
2817 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2818 /* eassert (!handling_signal); */
2819
2820 nbytes = header_size + len * word_size;
2821 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2822
2823 #ifdef DOUG_LEA_MALLOC
2824 /* Back to a reasonable maximum of mmap'ed areas. */
2825 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2826 #endif
2827
2828 consing_since_gc += nbytes;
2829 vector_cells_consed += len;
2830
2831 p->header.next.vector = all_vectors;
2832 all_vectors = p;
2833
2834 MALLOC_UNBLOCK_INPUT;
2835
2836 return p;
2837 }
2838
2839
2840 /* Allocate a vector with LEN slots. */
2841
2842 struct Lisp_Vector *
2843 allocate_vector (EMACS_INT len)
2844 {
2845 struct Lisp_Vector *v;
2846 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2847
2848 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2849 memory_full (SIZE_MAX);
2850 v = allocate_vectorlike (len);
2851 v->header.size = len;
2852 return v;
2853 }
2854
2855
2856 /* Allocate other vector-like structures. */
2857
2858 struct Lisp_Vector *
2859 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2860 {
2861 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2862 int i;
2863
2864 /* Only the first lisplen slots will be traced normally by the GC. */
2865 for (i = 0; i < lisplen; ++i)
2866 v->contents[i] = Qnil;
2867
2868 XSETPVECTYPESIZE (v, tag, lisplen);
2869 return v;
2870 }
2871
2872 struct Lisp_Hash_Table *
2873 allocate_hash_table (void)
2874 {
2875 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2876 }
2877
2878
2879 struct window *
2880 allocate_window (void)
2881 {
2882 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2883 }
2884
2885
2886 struct terminal *
2887 allocate_terminal (void)
2888 {
2889 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2890 next_terminal, PVEC_TERMINAL);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&t->next_terminal, 0,
2893 (char*) (t + 1) - (char*) &t->next_terminal);
2894
2895 return t;
2896 }
2897
2898 struct frame *
2899 allocate_frame (void)
2900 {
2901 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2902 face_cache, PVEC_FRAME);
2903 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2904 memset (&f->face_cache, 0,
2905 (char *) (f + 1) - (char *) &f->face_cache);
2906 return f;
2907 }
2908
2909
2910 struct Lisp_Process *
2911 allocate_process (void)
2912 {
2913 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2914 }
2915
2916
2917 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2918 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2919 See also the function `vector'. */)
2920 (register Lisp_Object length, Lisp_Object init)
2921 {
2922 Lisp_Object vector;
2923 register EMACS_INT sizei;
2924 register EMACS_INT i;
2925 register struct Lisp_Vector *p;
2926
2927 CHECK_NATNUM (length);
2928 sizei = XFASTINT (length);
2929
2930 p = allocate_vector (sizei);
2931 for (i = 0; i < sizei; i++)
2932 p->contents[i] = init;
2933
2934 XSETVECTOR (vector, p);
2935 return vector;
2936 }
2937
2938
2939 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2940 doc: /* Return a newly created vector with specified arguments as elements.
2941 Any number of arguments, even zero arguments, are allowed.
2942 usage: (vector &rest OBJECTS) */)
2943 (ptrdiff_t nargs, Lisp_Object *args)
2944 {
2945 register Lisp_Object len, val;
2946 ptrdiff_t i;
2947 register struct Lisp_Vector *p;
2948
2949 XSETFASTINT (len, nargs);
2950 val = Fmake_vector (len, Qnil);
2951 p = XVECTOR (val);
2952 for (i = 0; i < nargs; i++)
2953 p->contents[i] = args[i];
2954 return val;
2955 }
2956
2957
2958 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2959 doc: /* Create a byte-code object with specified arguments as elements.
2960 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2961 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2962 and (optional) INTERACTIVE-SPEC.
2963 The first four arguments are required; at most six have any
2964 significance.
2965 The ARGLIST can be either like the one of `lambda', in which case the arguments
2966 will be dynamically bound before executing the byte code, or it can be an
2967 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2968 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2969 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2970 argument to catch the left-over arguments. If such an integer is used, the
2971 arguments will not be dynamically bound but will be instead pushed on the
2972 stack before executing the byte-code.
2973 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2974 (ptrdiff_t nargs, Lisp_Object *args)
2975 {
2976 register Lisp_Object len, val;
2977 ptrdiff_t i;
2978 register struct Lisp_Vector *p;
2979
2980 XSETFASTINT (len, nargs);
2981 if (!NILP (Vpurify_flag))
2982 val = make_pure_vector (nargs);
2983 else
2984 val = Fmake_vector (len, Qnil);
2985
2986 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2987 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2988 earlier because they produced a raw 8-bit string for byte-code
2989 and now such a byte-code string is loaded as multibyte while
2990 raw 8-bit characters converted to multibyte form. Thus, now we
2991 must convert them back to the original unibyte form. */
2992 args[1] = Fstring_as_unibyte (args[1]);
2993
2994 p = XVECTOR (val);
2995 for (i = 0; i < nargs; i++)
2996 {
2997 if (!NILP (Vpurify_flag))
2998 args[i] = Fpurecopy (args[i]);
2999 p->contents[i] = args[i];
3000 }
3001 XSETPVECTYPE (p, PVEC_COMPILED);
3002 XSETCOMPILED (val, p);
3003 return val;
3004 }
3005
3006
3007 \f
3008 /***********************************************************************
3009 Symbol Allocation
3010 ***********************************************************************/
3011
3012 /* Each symbol_block is just under 1020 bytes long, since malloc
3013 really allocates in units of powers of two and uses 4 bytes for its
3014 own overhead. */
3015
3016 #define SYMBOL_BLOCK_SIZE \
3017 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3018
3019 struct symbol_block
3020 {
3021 /* Place `symbols' first, to preserve alignment. */
3022 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3023 struct symbol_block *next;
3024 };
3025
3026 /* Current symbol block and index of first unused Lisp_Symbol
3027 structure in it. */
3028
3029 static struct symbol_block *symbol_block;
3030 static int symbol_block_index;
3031
3032 /* List of free symbols. */
3033
3034 static struct Lisp_Symbol *symbol_free_list;
3035
3036
3037 /* Initialize symbol allocation. */
3038
3039 static void
3040 init_symbol (void)
3041 {
3042 symbol_block = NULL;
3043 symbol_block_index = SYMBOL_BLOCK_SIZE;
3044 symbol_free_list = 0;
3045 }
3046
3047
3048 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3049 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3050 Its value and function definition are void, and its property list is nil. */)
3051 (Lisp_Object name)
3052 {
3053 register Lisp_Object val;
3054 register struct Lisp_Symbol *p;
3055
3056 CHECK_STRING (name);
3057
3058 /* eassert (!handling_signal); */
3059
3060 MALLOC_BLOCK_INPUT;
3061
3062 if (symbol_free_list)
3063 {
3064 XSETSYMBOL (val, symbol_free_list);
3065 symbol_free_list = symbol_free_list->next;
3066 }
3067 else
3068 {
3069 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3070 {
3071 struct symbol_block *new;
3072 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3073 MEM_TYPE_SYMBOL);
3074 new->next = symbol_block;
3075 symbol_block = new;
3076 symbol_block_index = 0;
3077 }
3078 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3079 symbol_block_index++;
3080 }
3081
3082 MALLOC_UNBLOCK_INPUT;
3083
3084 p = XSYMBOL (val);
3085 p->xname = name;
3086 p->plist = Qnil;
3087 p->redirect = SYMBOL_PLAINVAL;
3088 SET_SYMBOL_VAL (p, Qunbound);
3089 p->function = Qunbound;
3090 p->next = NULL;
3091 p->gcmarkbit = 0;
3092 p->interned = SYMBOL_UNINTERNED;
3093 p->constant = 0;
3094 p->declared_special = 0;
3095 consing_since_gc += sizeof (struct Lisp_Symbol);
3096 symbols_consed++;
3097 return val;
3098 }
3099
3100
3101 \f
3102 /***********************************************************************
3103 Marker (Misc) Allocation
3104 ***********************************************************************/
3105
3106 /* Allocation of markers and other objects that share that structure.
3107 Works like allocation of conses. */
3108
3109 #define MARKER_BLOCK_SIZE \
3110 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3111
3112 struct marker_block
3113 {
3114 /* Place `markers' first, to preserve alignment. */
3115 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3116 struct marker_block *next;
3117 };
3118
3119 static struct marker_block *marker_block;
3120 static int marker_block_index;
3121
3122 static union Lisp_Misc *marker_free_list;
3123
3124 static void
3125 init_marker (void)
3126 {
3127 marker_block = NULL;
3128 marker_block_index = MARKER_BLOCK_SIZE;
3129 marker_free_list = 0;
3130 }
3131
3132 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3133
3134 Lisp_Object
3135 allocate_misc (void)
3136 {
3137 Lisp_Object val;
3138
3139 /* eassert (!handling_signal); */
3140
3141 MALLOC_BLOCK_INPUT;
3142
3143 if (marker_free_list)
3144 {
3145 XSETMISC (val, marker_free_list);
3146 marker_free_list = marker_free_list->u_free.chain;
3147 }
3148 else
3149 {
3150 if (marker_block_index == MARKER_BLOCK_SIZE)
3151 {
3152 struct marker_block *new;
3153 new = (struct marker_block *) lisp_malloc (sizeof *new,
3154 MEM_TYPE_MISC);
3155 new->next = marker_block;
3156 marker_block = new;
3157 marker_block_index = 0;
3158 total_free_markers += MARKER_BLOCK_SIZE;
3159 }
3160 XSETMISC (val, &marker_block->markers[marker_block_index]);
3161 marker_block_index++;
3162 }
3163
3164 MALLOC_UNBLOCK_INPUT;
3165
3166 --total_free_markers;
3167 consing_since_gc += sizeof (union Lisp_Misc);
3168 misc_objects_consed++;
3169 XMISCANY (val)->gcmarkbit = 0;
3170 return val;
3171 }
3172
3173 /* Free a Lisp_Misc object */
3174
3175 static void
3176 free_misc (Lisp_Object misc)
3177 {
3178 XMISCTYPE (misc) = Lisp_Misc_Free;
3179 XMISC (misc)->u_free.chain = marker_free_list;
3180 marker_free_list = XMISC (misc);
3181
3182 total_free_markers++;
3183 }
3184
3185 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3186 INTEGER. This is used to package C values to call record_unwind_protect.
3187 The unwind function can get the C values back using XSAVE_VALUE. */
3188
3189 Lisp_Object
3190 make_save_value (void *pointer, ptrdiff_t integer)
3191 {
3192 register Lisp_Object val;
3193 register struct Lisp_Save_Value *p;
3194
3195 val = allocate_misc ();
3196 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3197 p = XSAVE_VALUE (val);
3198 p->pointer = pointer;
3199 p->integer = integer;
3200 p->dogc = 0;
3201 return val;
3202 }
3203
3204 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3205 doc: /* Return a newly allocated marker which does not point at any place. */)
3206 (void)
3207 {
3208 register Lisp_Object val;
3209 register struct Lisp_Marker *p;
3210
3211 val = allocate_misc ();
3212 XMISCTYPE (val) = Lisp_Misc_Marker;
3213 p = XMARKER (val);
3214 p->buffer = 0;
3215 p->bytepos = 0;
3216 p->charpos = 0;
3217 p->next = NULL;
3218 p->insertion_type = 0;
3219 return val;
3220 }
3221
3222 /* Put MARKER back on the free list after using it temporarily. */
3223
3224 void
3225 free_marker (Lisp_Object marker)
3226 {
3227 unchain_marker (XMARKER (marker));
3228 free_misc (marker);
3229 }
3230
3231 \f
3232 /* Return a newly created vector or string with specified arguments as
3233 elements. If all the arguments are characters that can fit
3234 in a string of events, make a string; otherwise, make a vector.
3235
3236 Any number of arguments, even zero arguments, are allowed. */
3237
3238 Lisp_Object
3239 make_event_array (register int nargs, Lisp_Object *args)
3240 {
3241 int i;
3242
3243 for (i = 0; i < nargs; i++)
3244 /* The things that fit in a string
3245 are characters that are in 0...127,
3246 after discarding the meta bit and all the bits above it. */
3247 if (!INTEGERP (args[i])
3248 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3249 return Fvector (nargs, args);
3250
3251 /* Since the loop exited, we know that all the things in it are
3252 characters, so we can make a string. */
3253 {
3254 Lisp_Object result;
3255
3256 result = Fmake_string (make_number (nargs), make_number (0));
3257 for (i = 0; i < nargs; i++)
3258 {
3259 SSET (result, i, XINT (args[i]));
3260 /* Move the meta bit to the right place for a string char. */
3261 if (XINT (args[i]) & CHAR_META)
3262 SSET (result, i, SREF (result, i) | 0x80);
3263 }
3264
3265 return result;
3266 }
3267 }
3268
3269
3270 \f
3271 /************************************************************************
3272 Memory Full Handling
3273 ************************************************************************/
3274
3275
3276 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3277 there may have been size_t overflow so that malloc was never
3278 called, or perhaps malloc was invoked successfully but the
3279 resulting pointer had problems fitting into a tagged EMACS_INT. In
3280 either case this counts as memory being full even though malloc did
3281 not fail. */
3282
3283 void
3284 memory_full (size_t nbytes)
3285 {
3286 /* Do not go into hysterics merely because a large request failed. */
3287 int enough_free_memory = 0;
3288 if (SPARE_MEMORY < nbytes)
3289 {
3290 void *p = malloc (SPARE_MEMORY);
3291 if (p)
3292 {
3293 free (p);
3294 enough_free_memory = 1;
3295 }
3296 }
3297
3298 if (! enough_free_memory)
3299 {
3300 int i;
3301
3302 Vmemory_full = Qt;
3303
3304 memory_full_cons_threshold = sizeof (struct cons_block);
3305
3306 /* The first time we get here, free the spare memory. */
3307 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3308 if (spare_memory[i])
3309 {
3310 if (i == 0)
3311 free (spare_memory[i]);
3312 else if (i >= 1 && i <= 4)
3313 lisp_align_free (spare_memory[i]);
3314 else
3315 lisp_free (spare_memory[i]);
3316 spare_memory[i] = 0;
3317 }
3318
3319 /* Record the space now used. When it decreases substantially,
3320 we can refill the memory reserve. */
3321 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3322 bytes_used_when_full = BYTES_USED;
3323 #endif
3324 }
3325
3326 /* This used to call error, but if we've run out of memory, we could
3327 get infinite recursion trying to build the string. */
3328 xsignal (Qnil, Vmemory_signal_data);
3329 }
3330
3331 /* If we released our reserve (due to running out of memory),
3332 and we have a fair amount free once again,
3333 try to set aside another reserve in case we run out once more.
3334
3335 This is called when a relocatable block is freed in ralloc.c,
3336 and also directly from this file, in case we're not using ralloc.c. */
3337
3338 void
3339 refill_memory_reserve (void)
3340 {
3341 #ifndef SYSTEM_MALLOC
3342 if (spare_memory[0] == 0)
3343 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3344 if (spare_memory[1] == 0)
3345 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3346 MEM_TYPE_CONS);
3347 if (spare_memory[2] == 0)
3348 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3349 MEM_TYPE_CONS);
3350 if (spare_memory[3] == 0)
3351 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3352 MEM_TYPE_CONS);
3353 if (spare_memory[4] == 0)
3354 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3355 MEM_TYPE_CONS);
3356 if (spare_memory[5] == 0)
3357 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3358 MEM_TYPE_STRING);
3359 if (spare_memory[6] == 0)
3360 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3361 MEM_TYPE_STRING);
3362 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3363 Vmemory_full = Qnil;
3364 #endif
3365 }
3366 \f
3367 /************************************************************************
3368 C Stack Marking
3369 ************************************************************************/
3370
3371 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3372
3373 /* Conservative C stack marking requires a method to identify possibly
3374 live Lisp objects given a pointer value. We do this by keeping
3375 track of blocks of Lisp data that are allocated in a red-black tree
3376 (see also the comment of mem_node which is the type of nodes in
3377 that tree). Function lisp_malloc adds information for an allocated
3378 block to the red-black tree with calls to mem_insert, and function
3379 lisp_free removes it with mem_delete. Functions live_string_p etc
3380 call mem_find to lookup information about a given pointer in the
3381 tree, and use that to determine if the pointer points to a Lisp
3382 object or not. */
3383
3384 /* Initialize this part of alloc.c. */
3385
3386 static void
3387 mem_init (void)
3388 {
3389 mem_z.left = mem_z.right = MEM_NIL;
3390 mem_z.parent = NULL;
3391 mem_z.color = MEM_BLACK;
3392 mem_z.start = mem_z.end = NULL;
3393 mem_root = MEM_NIL;
3394 }
3395
3396
3397 /* Value is a pointer to the mem_node containing START. Value is
3398 MEM_NIL if there is no node in the tree containing START. */
3399
3400 static inline struct mem_node *
3401 mem_find (void *start)
3402 {
3403 struct mem_node *p;
3404
3405 if (start < min_heap_address || start > max_heap_address)
3406 return MEM_NIL;
3407
3408 /* Make the search always successful to speed up the loop below. */
3409 mem_z.start = start;
3410 mem_z.end = (char *) start + 1;
3411
3412 p = mem_root;
3413 while (start < p->start || start >= p->end)
3414 p = start < p->start ? p->left : p->right;
3415 return p;
3416 }
3417
3418
3419 /* Insert a new node into the tree for a block of memory with start
3420 address START, end address END, and type TYPE. Value is a
3421 pointer to the node that was inserted. */
3422
3423 static struct mem_node *
3424 mem_insert (void *start, void *end, enum mem_type type)
3425 {
3426 struct mem_node *c, *parent, *x;
3427
3428 if (min_heap_address == NULL || start < min_heap_address)
3429 min_heap_address = start;
3430 if (max_heap_address == NULL || end > max_heap_address)
3431 max_heap_address = end;
3432
3433 /* See where in the tree a node for START belongs. In this
3434 particular application, it shouldn't happen that a node is already
3435 present. For debugging purposes, let's check that. */
3436 c = mem_root;
3437 parent = NULL;
3438
3439 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3440
3441 while (c != MEM_NIL)
3442 {
3443 if (start >= c->start && start < c->end)
3444 abort ();
3445 parent = c;
3446 c = start < c->start ? c->left : c->right;
3447 }
3448
3449 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3450
3451 while (c != MEM_NIL)
3452 {
3453 parent = c;
3454 c = start < c->start ? c->left : c->right;
3455 }
3456
3457 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3458
3459 /* Create a new node. */
3460 #ifdef GC_MALLOC_CHECK
3461 x = (struct mem_node *) _malloc_internal (sizeof *x);
3462 if (x == NULL)
3463 abort ();
3464 #else
3465 x = (struct mem_node *) xmalloc (sizeof *x);
3466 #endif
3467 x->start = start;
3468 x->end = end;
3469 x->type = type;
3470 x->parent = parent;
3471 x->left = x->right = MEM_NIL;
3472 x->color = MEM_RED;
3473
3474 /* Insert it as child of PARENT or install it as root. */
3475 if (parent)
3476 {
3477 if (start < parent->start)
3478 parent->left = x;
3479 else
3480 parent->right = x;
3481 }
3482 else
3483 mem_root = x;
3484
3485 /* Re-establish red-black tree properties. */
3486 mem_insert_fixup (x);
3487
3488 return x;
3489 }
3490
3491
3492 /* Re-establish the red-black properties of the tree, and thereby
3493 balance the tree, after node X has been inserted; X is always red. */
3494
3495 static void
3496 mem_insert_fixup (struct mem_node *x)
3497 {
3498 while (x != mem_root && x->parent->color == MEM_RED)
3499 {
3500 /* X is red and its parent is red. This is a violation of
3501 red-black tree property #3. */
3502
3503 if (x->parent == x->parent->parent->left)
3504 {
3505 /* We're on the left side of our grandparent, and Y is our
3506 "uncle". */
3507 struct mem_node *y = x->parent->parent->right;
3508
3509 if (y->color == MEM_RED)
3510 {
3511 /* Uncle and parent are red but should be black because
3512 X is red. Change the colors accordingly and proceed
3513 with the grandparent. */
3514 x->parent->color = MEM_BLACK;
3515 y->color = MEM_BLACK;
3516 x->parent->parent->color = MEM_RED;
3517 x = x->parent->parent;
3518 }
3519 else
3520 {
3521 /* Parent and uncle have different colors; parent is
3522 red, uncle is black. */
3523 if (x == x->parent->right)
3524 {
3525 x = x->parent;
3526 mem_rotate_left (x);
3527 }
3528
3529 x->parent->color = MEM_BLACK;
3530 x->parent->parent->color = MEM_RED;
3531 mem_rotate_right (x->parent->parent);
3532 }
3533 }
3534 else
3535 {
3536 /* This is the symmetrical case of above. */
3537 struct mem_node *y = x->parent->parent->left;
3538
3539 if (y->color == MEM_RED)
3540 {
3541 x->parent->color = MEM_BLACK;
3542 y->color = MEM_BLACK;
3543 x->parent->parent->color = MEM_RED;
3544 x = x->parent->parent;
3545 }
3546 else
3547 {
3548 if (x == x->parent->left)
3549 {
3550 x = x->parent;
3551 mem_rotate_right (x);
3552 }
3553
3554 x->parent->color = MEM_BLACK;
3555 x->parent->parent->color = MEM_RED;
3556 mem_rotate_left (x->parent->parent);
3557 }
3558 }
3559 }
3560
3561 /* The root may have been changed to red due to the algorithm. Set
3562 it to black so that property #5 is satisfied. */
3563 mem_root->color = MEM_BLACK;
3564 }
3565
3566
3567 /* (x) (y)
3568 / \ / \
3569 a (y) ===> (x) c
3570 / \ / \
3571 b c a b */
3572
3573 static void
3574 mem_rotate_left (struct mem_node *x)
3575 {
3576 struct mem_node *y;
3577
3578 /* Turn y's left sub-tree into x's right sub-tree. */
3579 y = x->right;
3580 x->right = y->left;
3581 if (y->left != MEM_NIL)
3582 y->left->parent = x;
3583
3584 /* Y's parent was x's parent. */
3585 if (y != MEM_NIL)
3586 y->parent = x->parent;
3587
3588 /* Get the parent to point to y instead of x. */
3589 if (x->parent)
3590 {
3591 if (x == x->parent->left)
3592 x->parent->left = y;
3593 else
3594 x->parent->right = y;
3595 }
3596 else
3597 mem_root = y;
3598
3599 /* Put x on y's left. */
3600 y->left = x;
3601 if (x != MEM_NIL)
3602 x->parent = y;
3603 }
3604
3605
3606 /* (x) (Y)
3607 / \ / \
3608 (y) c ===> a (x)
3609 / \ / \
3610 a b b c */
3611
3612 static void
3613 mem_rotate_right (struct mem_node *x)
3614 {
3615 struct mem_node *y = x->left;
3616
3617 x->left = y->right;
3618 if (y->right != MEM_NIL)
3619 y->right->parent = x;
3620
3621 if (y != MEM_NIL)
3622 y->parent = x->parent;
3623 if (x->parent)
3624 {
3625 if (x == x->parent->right)
3626 x->parent->right = y;
3627 else
3628 x->parent->left = y;
3629 }
3630 else
3631 mem_root = y;
3632
3633 y->right = x;
3634 if (x != MEM_NIL)
3635 x->parent = y;
3636 }
3637
3638
3639 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3640
3641 static void
3642 mem_delete (struct mem_node *z)
3643 {
3644 struct mem_node *x, *y;
3645
3646 if (!z || z == MEM_NIL)
3647 return;
3648
3649 if (z->left == MEM_NIL || z->right == MEM_NIL)
3650 y = z;
3651 else
3652 {
3653 y = z->right;
3654 while (y->left != MEM_NIL)
3655 y = y->left;
3656 }
3657
3658 if (y->left != MEM_NIL)
3659 x = y->left;
3660 else
3661 x = y->right;
3662
3663 x->parent = y->parent;
3664 if (y->parent)
3665 {
3666 if (y == y->parent->left)
3667 y->parent->left = x;
3668 else
3669 y->parent->right = x;
3670 }
3671 else
3672 mem_root = x;
3673
3674 if (y != z)
3675 {
3676 z->start = y->start;
3677 z->end = y->end;
3678 z->type = y->type;
3679 }
3680
3681 if (y->color == MEM_BLACK)
3682 mem_delete_fixup (x);
3683
3684 #ifdef GC_MALLOC_CHECK
3685 _free_internal (y);
3686 #else
3687 xfree (y);
3688 #endif
3689 }
3690
3691
3692 /* Re-establish the red-black properties of the tree, after a
3693 deletion. */
3694
3695 static void
3696 mem_delete_fixup (struct mem_node *x)
3697 {
3698 while (x != mem_root && x->color == MEM_BLACK)
3699 {
3700 if (x == x->parent->left)
3701 {
3702 struct mem_node *w = x->parent->right;
3703
3704 if (w->color == MEM_RED)
3705 {
3706 w->color = MEM_BLACK;
3707 x->parent->color = MEM_RED;
3708 mem_rotate_left (x->parent);
3709 w = x->parent->right;
3710 }
3711
3712 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3713 {
3714 w->color = MEM_RED;
3715 x = x->parent;
3716 }
3717 else
3718 {
3719 if (w->right->color == MEM_BLACK)
3720 {
3721 w->left->color = MEM_BLACK;
3722 w->color = MEM_RED;
3723 mem_rotate_right (w);
3724 w = x->parent->right;
3725 }
3726 w->color = x->parent->color;
3727 x->parent->color = MEM_BLACK;
3728 w->right->color = MEM_BLACK;
3729 mem_rotate_left (x->parent);
3730 x = mem_root;
3731 }
3732 }
3733 else
3734 {
3735 struct mem_node *w = x->parent->left;
3736
3737 if (w->color == MEM_RED)
3738 {
3739 w->color = MEM_BLACK;
3740 x->parent->color = MEM_RED;
3741 mem_rotate_right (x->parent);
3742 w = x->parent->left;
3743 }
3744
3745 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3746 {
3747 w->color = MEM_RED;
3748 x = x->parent;
3749 }
3750 else
3751 {
3752 if (w->left->color == MEM_BLACK)
3753 {
3754 w->right->color = MEM_BLACK;
3755 w->color = MEM_RED;
3756 mem_rotate_left (w);
3757 w = x->parent->left;
3758 }
3759
3760 w->color = x->parent->color;
3761 x->parent->color = MEM_BLACK;
3762 w->left->color = MEM_BLACK;
3763 mem_rotate_right (x->parent);
3764 x = mem_root;
3765 }
3766 }
3767 }
3768
3769 x->color = MEM_BLACK;
3770 }
3771
3772
3773 /* Value is non-zero if P is a pointer to a live Lisp string on
3774 the heap. M is a pointer to the mem_block for P. */
3775
3776 static inline int
3777 live_string_p (struct mem_node *m, void *p)
3778 {
3779 if (m->type == MEM_TYPE_STRING)
3780 {
3781 struct string_block *b = (struct string_block *) m->start;
3782 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3783
3784 /* P must point to the start of a Lisp_String structure, and it
3785 must not be on the free-list. */
3786 return (offset >= 0
3787 && offset % sizeof b->strings[0] == 0
3788 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3789 && ((struct Lisp_String *) p)->data != NULL);
3790 }
3791 else
3792 return 0;
3793 }
3794
3795
3796 /* Value is non-zero if P is a pointer to a live Lisp cons on
3797 the heap. M is a pointer to the mem_block for P. */
3798
3799 static inline int
3800 live_cons_p (struct mem_node *m, void *p)
3801 {
3802 if (m->type == MEM_TYPE_CONS)
3803 {
3804 struct cons_block *b = (struct cons_block *) m->start;
3805 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3806
3807 /* P must point to the start of a Lisp_Cons, not be
3808 one of the unused cells in the current cons block,
3809 and not be on the free-list. */
3810 return (offset >= 0
3811 && offset % sizeof b->conses[0] == 0
3812 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3813 && (b != cons_block
3814 || offset / sizeof b->conses[0] < cons_block_index)
3815 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3816 }
3817 else
3818 return 0;
3819 }
3820
3821
3822 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3823 the heap. M is a pointer to the mem_block for P. */
3824
3825 static inline int
3826 live_symbol_p (struct mem_node *m, void *p)
3827 {
3828 if (m->type == MEM_TYPE_SYMBOL)
3829 {
3830 struct symbol_block *b = (struct symbol_block *) m->start;
3831 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3832
3833 /* P must point to the start of a Lisp_Symbol, not be
3834 one of the unused cells in the current symbol block,
3835 and not be on the free-list. */
3836 return (offset >= 0
3837 && offset % sizeof b->symbols[0] == 0
3838 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3839 && (b != symbol_block
3840 || offset / sizeof b->symbols[0] < symbol_block_index)
3841 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3842 }
3843 else
3844 return 0;
3845 }
3846
3847
3848 /* Value is non-zero if P is a pointer to a live Lisp float on
3849 the heap. M is a pointer to the mem_block for P. */
3850
3851 static inline int
3852 live_float_p (struct mem_node *m, void *p)
3853 {
3854 if (m->type == MEM_TYPE_FLOAT)
3855 {
3856 struct float_block *b = (struct float_block *) m->start;
3857 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3858
3859 /* P must point to the start of a Lisp_Float and not be
3860 one of the unused cells in the current float block. */
3861 return (offset >= 0
3862 && offset % sizeof b->floats[0] == 0
3863 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3864 && (b != float_block
3865 || offset / sizeof b->floats[0] < float_block_index));
3866 }
3867 else
3868 return 0;
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3873 the heap. M is a pointer to the mem_block for P. */
3874
3875 static inline int
3876 live_misc_p (struct mem_node *m, void *p)
3877 {
3878 if (m->type == MEM_TYPE_MISC)
3879 {
3880 struct marker_block *b = (struct marker_block *) m->start;
3881 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3882
3883 /* P must point to the start of a Lisp_Misc, not be
3884 one of the unused cells in the current misc block,
3885 and not be on the free-list. */
3886 return (offset >= 0
3887 && offset % sizeof b->markers[0] == 0
3888 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3889 && (b != marker_block
3890 || offset / sizeof b->markers[0] < marker_block_index)
3891 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3892 }
3893 else
3894 return 0;
3895 }
3896
3897
3898 /* Value is non-zero if P is a pointer to a live vector-like object.
3899 M is a pointer to the mem_block for P. */
3900
3901 static inline int
3902 live_vector_p (struct mem_node *m, void *p)
3903 {
3904 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3905 }
3906
3907
3908 /* Value is non-zero if P is a pointer to a live buffer. M is a
3909 pointer to the mem_block for P. */
3910
3911 static inline int
3912 live_buffer_p (struct mem_node *m, void *p)
3913 {
3914 /* P must point to the start of the block, and the buffer
3915 must not have been killed. */
3916 return (m->type == MEM_TYPE_BUFFER
3917 && p == m->start
3918 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3919 }
3920
3921 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3922
3923 #if GC_MARK_STACK
3924
3925 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3926
3927 /* Array of objects that are kept alive because the C stack contains
3928 a pattern that looks like a reference to them . */
3929
3930 #define MAX_ZOMBIES 10
3931 static Lisp_Object zombies[MAX_ZOMBIES];
3932
3933 /* Number of zombie objects. */
3934
3935 static EMACS_INT nzombies;
3936
3937 /* Number of garbage collections. */
3938
3939 static EMACS_INT ngcs;
3940
3941 /* Average percentage of zombies per collection. */
3942
3943 static double avg_zombies;
3944
3945 /* Max. number of live and zombie objects. */
3946
3947 static EMACS_INT max_live, max_zombies;
3948
3949 /* Average number of live objects per GC. */
3950
3951 static double avg_live;
3952
3953 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3954 doc: /* Show information about live and zombie objects. */)
3955 (void)
3956 {
3957 Lisp_Object args[8], zombie_list = Qnil;
3958 EMACS_INT i;
3959 for (i = 0; i < nzombies; i++)
3960 zombie_list = Fcons (zombies[i], zombie_list);
3961 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3962 args[1] = make_number (ngcs);
3963 args[2] = make_float (avg_live);
3964 args[3] = make_float (avg_zombies);
3965 args[4] = make_float (avg_zombies / avg_live / 100);
3966 args[5] = make_number (max_live);
3967 args[6] = make_number (max_zombies);
3968 args[7] = zombie_list;
3969 return Fmessage (8, args);
3970 }
3971
3972 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3973
3974
3975 /* Mark OBJ if we can prove it's a Lisp_Object. */
3976
3977 static inline void
3978 mark_maybe_object (Lisp_Object obj)
3979 {
3980 void *po;
3981 struct mem_node *m;
3982
3983 if (INTEGERP (obj))
3984 return;
3985
3986 po = (void *) XPNTR (obj);
3987 m = mem_find (po);
3988
3989 if (m != MEM_NIL)
3990 {
3991 int mark_p = 0;
3992
3993 switch (XTYPE (obj))
3994 {
3995 case Lisp_String:
3996 mark_p = (live_string_p (m, po)
3997 && !STRING_MARKED_P ((struct Lisp_String *) po));
3998 break;
3999
4000 case Lisp_Cons:
4001 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4002 break;
4003
4004 case Lisp_Symbol:
4005 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4006 break;
4007
4008 case Lisp_Float:
4009 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4010 break;
4011
4012 case Lisp_Vectorlike:
4013 /* Note: can't check BUFFERP before we know it's a
4014 buffer because checking that dereferences the pointer
4015 PO which might point anywhere. */
4016 if (live_vector_p (m, po))
4017 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4018 else if (live_buffer_p (m, po))
4019 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4020 break;
4021
4022 case Lisp_Misc:
4023 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4024 break;
4025
4026 default:
4027 break;
4028 }
4029
4030 if (mark_p)
4031 {
4032 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4033 if (nzombies < MAX_ZOMBIES)
4034 zombies[nzombies] = obj;
4035 ++nzombies;
4036 #endif
4037 mark_object (obj);
4038 }
4039 }
4040 }
4041
4042
4043 /* If P points to Lisp data, mark that as live if it isn't already
4044 marked. */
4045
4046 static inline void
4047 mark_maybe_pointer (void *p)
4048 {
4049 struct mem_node *m;
4050
4051 /* Quickly rule out some values which can't point to Lisp data. */
4052 if ((intptr_t) p %
4053 #ifdef USE_LSB_TAG
4054 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4055 #else
4056 2 /* We assume that Lisp data is aligned on even addresses. */
4057 #endif
4058 )
4059 return;
4060
4061 m = mem_find (p);
4062 if (m != MEM_NIL)
4063 {
4064 Lisp_Object obj = Qnil;
4065
4066 switch (m->type)
4067 {
4068 case MEM_TYPE_NON_LISP:
4069 /* Nothing to do; not a pointer to Lisp memory. */
4070 break;
4071
4072 case MEM_TYPE_BUFFER:
4073 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4074 XSETVECTOR (obj, p);
4075 break;
4076
4077 case MEM_TYPE_CONS:
4078 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4079 XSETCONS (obj, p);
4080 break;
4081
4082 case MEM_TYPE_STRING:
4083 if (live_string_p (m, p)
4084 && !STRING_MARKED_P ((struct Lisp_String *) p))
4085 XSETSTRING (obj, p);
4086 break;
4087
4088 case MEM_TYPE_MISC:
4089 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4090 XSETMISC (obj, p);
4091 break;
4092
4093 case MEM_TYPE_SYMBOL:
4094 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4095 XSETSYMBOL (obj, p);
4096 break;
4097
4098 case MEM_TYPE_FLOAT:
4099 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4100 XSETFLOAT (obj, p);
4101 break;
4102
4103 case MEM_TYPE_VECTORLIKE:
4104 if (live_vector_p (m, p))
4105 {
4106 Lisp_Object tem;
4107 XSETVECTOR (tem, p);
4108 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4109 obj = tem;
4110 }
4111 break;
4112
4113 default:
4114 abort ();
4115 }
4116
4117 if (!NILP (obj))
4118 mark_object (obj);
4119 }
4120 }
4121
4122
4123 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4124 or END+OFFSET..START. */
4125
4126 static void
4127 mark_memory (void *start, void *end, int offset)
4128 {
4129 Lisp_Object *p;
4130 void **pp;
4131
4132 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4133 nzombies = 0;
4134 #endif
4135
4136 /* Make START the pointer to the start of the memory region,
4137 if it isn't already. */
4138 if (end < start)
4139 {
4140 void *tem = start;
4141 start = end;
4142 end = tem;
4143 }
4144
4145 /* Mark Lisp_Objects. */
4146 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4147 mark_maybe_object (*p);
4148
4149 /* Mark Lisp data pointed to. This is necessary because, in some
4150 situations, the C compiler optimizes Lisp objects away, so that
4151 only a pointer to them remains. Example:
4152
4153 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4154 ()
4155 {
4156 Lisp_Object obj = build_string ("test");
4157 struct Lisp_String *s = XSTRING (obj);
4158 Fgarbage_collect ();
4159 fprintf (stderr, "test `%s'\n", s->data);
4160 return Qnil;
4161 }
4162
4163 Here, `obj' isn't really used, and the compiler optimizes it
4164 away. The only reference to the life string is through the
4165 pointer `s'. */
4166
4167 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4168 mark_maybe_pointer (*pp);
4169 }
4170
4171 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4172 the GCC system configuration. In gcc 3.2, the only systems for
4173 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4174 by others?) and ns32k-pc532-min. */
4175
4176 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4177
4178 static int setjmp_tested_p, longjmps_done;
4179
4180 #define SETJMP_WILL_LIKELY_WORK "\
4181 \n\
4182 Emacs garbage collector has been changed to use conservative stack\n\
4183 marking. Emacs has determined that the method it uses to do the\n\
4184 marking will likely work on your system, but this isn't sure.\n\
4185 \n\
4186 If you are a system-programmer, or can get the help of a local wizard\n\
4187 who is, please take a look at the function mark_stack in alloc.c, and\n\
4188 verify that the methods used are appropriate for your system.\n\
4189 \n\
4190 Please mail the result to <emacs-devel@gnu.org>.\n\
4191 "
4192
4193 #define SETJMP_WILL_NOT_WORK "\
4194 \n\
4195 Emacs garbage collector has been changed to use conservative stack\n\
4196 marking. Emacs has determined that the default method it uses to do the\n\
4197 marking will not work on your system. We will need a system-dependent\n\
4198 solution for your system.\n\
4199 \n\
4200 Please take a look at the function mark_stack in alloc.c, and\n\
4201 try to find a way to make it work on your system.\n\
4202 \n\
4203 Note that you may get false negatives, depending on the compiler.\n\
4204 In particular, you need to use -O with GCC for this test.\n\
4205 \n\
4206 Please mail the result to <emacs-devel@gnu.org>.\n\
4207 "
4208
4209
4210 /* Perform a quick check if it looks like setjmp saves registers in a
4211 jmp_buf. Print a message to stderr saying so. When this test
4212 succeeds, this is _not_ a proof that setjmp is sufficient for
4213 conservative stack marking. Only the sources or a disassembly
4214 can prove that. */
4215
4216 static void
4217 test_setjmp (void)
4218 {
4219 char buf[10];
4220 register int x;
4221 jmp_buf jbuf;
4222 int result = 0;
4223
4224 /* Arrange for X to be put in a register. */
4225 sprintf (buf, "1");
4226 x = strlen (buf);
4227 x = 2 * x - 1;
4228
4229 setjmp (jbuf);
4230 if (longjmps_done == 1)
4231 {
4232 /* Came here after the longjmp at the end of the function.
4233
4234 If x == 1, the longjmp has restored the register to its
4235 value before the setjmp, and we can hope that setjmp
4236 saves all such registers in the jmp_buf, although that
4237 isn't sure.
4238
4239 For other values of X, either something really strange is
4240 taking place, or the setjmp just didn't save the register. */
4241
4242 if (x == 1)
4243 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4244 else
4245 {
4246 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4247 exit (1);
4248 }
4249 }
4250
4251 ++longjmps_done;
4252 x = 2;
4253 if (longjmps_done == 1)
4254 longjmp (jbuf, 1);
4255 }
4256
4257 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4258
4259
4260 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4261
4262 /* Abort if anything GCPRO'd doesn't survive the GC. */
4263
4264 static void
4265 check_gcpros (void)
4266 {
4267 struct gcpro *p;
4268 ptrdiff_t i;
4269
4270 for (p = gcprolist; p; p = p->next)
4271 for (i = 0; i < p->nvars; ++i)
4272 if (!survives_gc_p (p->var[i]))
4273 /* FIXME: It's not necessarily a bug. It might just be that the
4274 GCPRO is unnecessary or should release the object sooner. */
4275 abort ();
4276 }
4277
4278 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4279
4280 static void
4281 dump_zombies (void)
4282 {
4283 int i;
4284
4285 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
4286 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4287 {
4288 fprintf (stderr, " %d = ", i);
4289 debug_print (zombies[i]);
4290 }
4291 }
4292
4293 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4294
4295
4296 /* Mark live Lisp objects on the C stack.
4297
4298 There are several system-dependent problems to consider when
4299 porting this to new architectures:
4300
4301 Processor Registers
4302
4303 We have to mark Lisp objects in CPU registers that can hold local
4304 variables or are used to pass parameters.
4305
4306 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4307 something that either saves relevant registers on the stack, or
4308 calls mark_maybe_object passing it each register's contents.
4309
4310 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4311 implementation assumes that calling setjmp saves registers we need
4312 to see in a jmp_buf which itself lies on the stack. This doesn't
4313 have to be true! It must be verified for each system, possibly
4314 by taking a look at the source code of setjmp.
4315
4316 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4317 can use it as a machine independent method to store all registers
4318 to the stack. In this case the macros described in the previous
4319 two paragraphs are not used.
4320
4321 Stack Layout
4322
4323 Architectures differ in the way their processor stack is organized.
4324 For example, the stack might look like this
4325
4326 +----------------+
4327 | Lisp_Object | size = 4
4328 +----------------+
4329 | something else | size = 2
4330 +----------------+
4331 | Lisp_Object | size = 4
4332 +----------------+
4333 | ... |
4334
4335 In such a case, not every Lisp_Object will be aligned equally. To
4336 find all Lisp_Object on the stack it won't be sufficient to walk
4337 the stack in steps of 4 bytes. Instead, two passes will be
4338 necessary, one starting at the start of the stack, and a second
4339 pass starting at the start of the stack + 2. Likewise, if the
4340 minimal alignment of Lisp_Objects on the stack is 1, four passes
4341 would be necessary, each one starting with one byte more offset
4342 from the stack start.
4343
4344 The current code assumes by default that Lisp_Objects are aligned
4345 equally on the stack. */
4346
4347 static void
4348 mark_stack (void)
4349 {
4350 int i;
4351 void *end;
4352
4353 #ifdef HAVE___BUILTIN_UNWIND_INIT
4354 /* Force callee-saved registers and register windows onto the stack.
4355 This is the preferred method if available, obviating the need for
4356 machine dependent methods. */
4357 __builtin_unwind_init ();
4358 end = &end;
4359 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4360 #ifndef GC_SAVE_REGISTERS_ON_STACK
4361 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4362 union aligned_jmpbuf {
4363 Lisp_Object o;
4364 jmp_buf j;
4365 } j;
4366 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4367 #endif
4368 /* This trick flushes the register windows so that all the state of
4369 the process is contained in the stack. */
4370 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4371 needed on ia64 too. See mach_dep.c, where it also says inline
4372 assembler doesn't work with relevant proprietary compilers. */
4373 #ifdef __sparc__
4374 #if defined (__sparc64__) && defined (__FreeBSD__)
4375 /* FreeBSD does not have a ta 3 handler. */
4376 asm ("flushw");
4377 #else
4378 asm ("ta 3");
4379 #endif
4380 #endif
4381
4382 /* Save registers that we need to see on the stack. We need to see
4383 registers used to hold register variables and registers used to
4384 pass parameters. */
4385 #ifdef GC_SAVE_REGISTERS_ON_STACK
4386 GC_SAVE_REGISTERS_ON_STACK (end);
4387 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4388
4389 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4390 setjmp will definitely work, test it
4391 and print a message with the result
4392 of the test. */
4393 if (!setjmp_tested_p)
4394 {
4395 setjmp_tested_p = 1;
4396 test_setjmp ();
4397 }
4398 #endif /* GC_SETJMP_WORKS */
4399
4400 setjmp (j.j);
4401 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4402 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4403 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4404
4405 /* This assumes that the stack is a contiguous region in memory. If
4406 that's not the case, something has to be done here to iterate
4407 over the stack segments. */
4408 #ifndef GC_LISP_OBJECT_ALIGNMENT
4409 #ifdef __GNUC__
4410 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4411 #else
4412 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4413 #endif
4414 #endif
4415 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4416 mark_memory (stack_base, end, i);
4417 /* Allow for marking a secondary stack, like the register stack on the
4418 ia64. */
4419 #ifdef GC_MARK_SECONDARY_STACK
4420 GC_MARK_SECONDARY_STACK ();
4421 #endif
4422
4423 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4424 check_gcpros ();
4425 #endif
4426 }
4427
4428 #endif /* GC_MARK_STACK != 0 */
4429
4430
4431 /* Determine whether it is safe to access memory at address P. */
4432 static int
4433 valid_pointer_p (void *p)
4434 {
4435 #ifdef WINDOWSNT
4436 return w32_valid_pointer_p (p, 16);
4437 #else
4438 int fd;
4439
4440 /* Obviously, we cannot just access it (we would SEGV trying), so we
4441 trick the o/s to tell us whether p is a valid pointer.
4442 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4443 not validate p in that case. */
4444
4445 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4446 {
4447 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4448 emacs_close (fd);
4449 unlink ("__Valid__Lisp__Object__");
4450 return valid;
4451 }
4452
4453 return -1;
4454 #endif
4455 }
4456
4457 /* Return 1 if OBJ is a valid lisp object.
4458 Return 0 if OBJ is NOT a valid lisp object.
4459 Return -1 if we cannot validate OBJ.
4460 This function can be quite slow,
4461 so it should only be used in code for manual debugging. */
4462
4463 int
4464 valid_lisp_object_p (Lisp_Object obj)
4465 {
4466 void *p;
4467 #if GC_MARK_STACK
4468 struct mem_node *m;
4469 #endif
4470
4471 if (INTEGERP (obj))
4472 return 1;
4473
4474 p = (void *) XPNTR (obj);
4475 if (PURE_POINTER_P (p))
4476 return 1;
4477
4478 #if !GC_MARK_STACK
4479 return valid_pointer_p (p);
4480 #else
4481
4482 m = mem_find (p);
4483
4484 if (m == MEM_NIL)
4485 {
4486 int valid = valid_pointer_p (p);
4487 if (valid <= 0)
4488 return valid;
4489
4490 if (SUBRP (obj))
4491 return 1;
4492
4493 return 0;
4494 }
4495
4496 switch (m->type)
4497 {
4498 case MEM_TYPE_NON_LISP:
4499 return 0;
4500
4501 case MEM_TYPE_BUFFER:
4502 return live_buffer_p (m, p);
4503
4504 case MEM_TYPE_CONS:
4505 return live_cons_p (m, p);
4506
4507 case MEM_TYPE_STRING:
4508 return live_string_p (m, p);
4509
4510 case MEM_TYPE_MISC:
4511 return live_misc_p (m, p);
4512
4513 case MEM_TYPE_SYMBOL:
4514 return live_symbol_p (m, p);
4515
4516 case MEM_TYPE_FLOAT:
4517 return live_float_p (m, p);
4518
4519 case MEM_TYPE_VECTORLIKE:
4520 return live_vector_p (m, p);
4521
4522 default:
4523 break;
4524 }
4525
4526 return 0;
4527 #endif
4528 }
4529
4530
4531
4532 \f
4533 /***********************************************************************
4534 Pure Storage Management
4535 ***********************************************************************/
4536
4537 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4538 pointer to it. TYPE is the Lisp type for which the memory is
4539 allocated. TYPE < 0 means it's not used for a Lisp object. */
4540
4541 static POINTER_TYPE *
4542 pure_alloc (size_t size, int type)
4543 {
4544 POINTER_TYPE *result;
4545 #ifdef USE_LSB_TAG
4546 size_t alignment = (1 << GCTYPEBITS);
4547 #else
4548 size_t alignment = sizeof (EMACS_INT);
4549
4550 /* Give Lisp_Floats an extra alignment. */
4551 if (type == Lisp_Float)
4552 {
4553 #if defined __GNUC__ && __GNUC__ >= 2
4554 alignment = __alignof (struct Lisp_Float);
4555 #else
4556 alignment = sizeof (struct Lisp_Float);
4557 #endif
4558 }
4559 #endif
4560
4561 again:
4562 if (type >= 0)
4563 {
4564 /* Allocate space for a Lisp object from the beginning of the free
4565 space with taking account of alignment. */
4566 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4567 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4568 }
4569 else
4570 {
4571 /* Allocate space for a non-Lisp object from the end of the free
4572 space. */
4573 pure_bytes_used_non_lisp += size;
4574 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4575 }
4576 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4577
4578 if (pure_bytes_used <= pure_size)
4579 return result;
4580
4581 /* Don't allocate a large amount here,
4582 because it might get mmap'd and then its address
4583 might not be usable. */
4584 purebeg = (char *) xmalloc (10000);
4585 pure_size = 10000;
4586 pure_bytes_used_before_overflow += pure_bytes_used - size;
4587 pure_bytes_used = 0;
4588 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4589 goto again;
4590 }
4591
4592
4593 /* Print a warning if PURESIZE is too small. */
4594
4595 void
4596 check_pure_size (void)
4597 {
4598 if (pure_bytes_used_before_overflow)
4599 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4600 " bytes needed)"),
4601 pure_bytes_used + pure_bytes_used_before_overflow);
4602 }
4603
4604
4605 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4606 the non-Lisp data pool of the pure storage, and return its start
4607 address. Return NULL if not found. */
4608
4609 static char *
4610 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4611 {
4612 int i;
4613 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4614 const unsigned char *p;
4615 char *non_lisp_beg;
4616
4617 if (pure_bytes_used_non_lisp < nbytes + 1)
4618 return NULL;
4619
4620 /* Set up the Boyer-Moore table. */
4621 skip = nbytes + 1;
4622 for (i = 0; i < 256; i++)
4623 bm_skip[i] = skip;
4624
4625 p = (const unsigned char *) data;
4626 while (--skip > 0)
4627 bm_skip[*p++] = skip;
4628
4629 last_char_skip = bm_skip['\0'];
4630
4631 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4632 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4633
4634 /* See the comments in the function `boyer_moore' (search.c) for the
4635 use of `infinity'. */
4636 infinity = pure_bytes_used_non_lisp + 1;
4637 bm_skip['\0'] = infinity;
4638
4639 p = (const unsigned char *) non_lisp_beg + nbytes;
4640 start = 0;
4641 do
4642 {
4643 /* Check the last character (== '\0'). */
4644 do
4645 {
4646 start += bm_skip[*(p + start)];
4647 }
4648 while (start <= start_max);
4649
4650 if (start < infinity)
4651 /* Couldn't find the last character. */
4652 return NULL;
4653
4654 /* No less than `infinity' means we could find the last
4655 character at `p[start - infinity]'. */
4656 start -= infinity;
4657
4658 /* Check the remaining characters. */
4659 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4660 /* Found. */
4661 return non_lisp_beg + start;
4662
4663 start += last_char_skip;
4664 }
4665 while (start <= start_max);
4666
4667 return NULL;
4668 }
4669
4670
4671 /* Return a string allocated in pure space. DATA is a buffer holding
4672 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4673 non-zero means make the result string multibyte.
4674
4675 Must get an error if pure storage is full, since if it cannot hold
4676 a large string it may be able to hold conses that point to that
4677 string; then the string is not protected from gc. */
4678
4679 Lisp_Object
4680 make_pure_string (const char *data,
4681 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4682 {
4683 Lisp_Object string;
4684 struct Lisp_String *s;
4685
4686 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4687 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4688 if (s->data == NULL)
4689 {
4690 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4691 memcpy (s->data, data, nbytes);
4692 s->data[nbytes] = '\0';
4693 }
4694 s->size = nchars;
4695 s->size_byte = multibyte ? nbytes : -1;
4696 s->intervals = NULL_INTERVAL;
4697 XSETSTRING (string, s);
4698 return string;
4699 }
4700
4701 /* Return a string a string allocated in pure space. Do not allocate
4702 the string data, just point to DATA. */
4703
4704 Lisp_Object
4705 make_pure_c_string (const char *data)
4706 {
4707 Lisp_Object string;
4708 struct Lisp_String *s;
4709 EMACS_INT nchars = strlen (data);
4710
4711 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4712 s->size = nchars;
4713 s->size_byte = -1;
4714 s->data = (unsigned char *) data;
4715 s->intervals = NULL_INTERVAL;
4716 XSETSTRING (string, s);
4717 return string;
4718 }
4719
4720 /* Return a cons allocated from pure space. Give it pure copies
4721 of CAR as car and CDR as cdr. */
4722
4723 Lisp_Object
4724 pure_cons (Lisp_Object car, Lisp_Object cdr)
4725 {
4726 register Lisp_Object new;
4727 struct Lisp_Cons *p;
4728
4729 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4730 XSETCONS (new, p);
4731 XSETCAR (new, Fpurecopy (car));
4732 XSETCDR (new, Fpurecopy (cdr));
4733 return new;
4734 }
4735
4736
4737 /* Value is a float object with value NUM allocated from pure space. */
4738
4739 static Lisp_Object
4740 make_pure_float (double num)
4741 {
4742 register Lisp_Object new;
4743 struct Lisp_Float *p;
4744
4745 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4746 XSETFLOAT (new, p);
4747 XFLOAT_INIT (new, num);
4748 return new;
4749 }
4750
4751
4752 /* Return a vector with room for LEN Lisp_Objects allocated from
4753 pure space. */
4754
4755 Lisp_Object
4756 make_pure_vector (EMACS_INT len)
4757 {
4758 Lisp_Object new;
4759 struct Lisp_Vector *p;
4760 size_t size = (offsetof (struct Lisp_Vector, contents)
4761 + len * sizeof (Lisp_Object));
4762
4763 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4764 XSETVECTOR (new, p);
4765 XVECTOR (new)->header.size = len;
4766 return new;
4767 }
4768
4769
4770 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4771 doc: /* Make a copy of object OBJ in pure storage.
4772 Recursively copies contents of vectors and cons cells.
4773 Does not copy symbols. Copies strings without text properties. */)
4774 (register Lisp_Object obj)
4775 {
4776 if (NILP (Vpurify_flag))
4777 return obj;
4778
4779 if (PURE_POINTER_P (XPNTR (obj)))
4780 return obj;
4781
4782 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4783 {
4784 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4785 if (!NILP (tmp))
4786 return tmp;
4787 }
4788
4789 if (CONSP (obj))
4790 obj = pure_cons (XCAR (obj), XCDR (obj));
4791 else if (FLOATP (obj))
4792 obj = make_pure_float (XFLOAT_DATA (obj));
4793 else if (STRINGP (obj))
4794 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4795 SBYTES (obj),
4796 STRING_MULTIBYTE (obj));
4797 else if (COMPILEDP (obj) || VECTORP (obj))
4798 {
4799 register struct Lisp_Vector *vec;
4800 register EMACS_INT i;
4801 EMACS_INT size;
4802
4803 size = ASIZE (obj);
4804 if (size & PSEUDOVECTOR_FLAG)
4805 size &= PSEUDOVECTOR_SIZE_MASK;
4806 vec = XVECTOR (make_pure_vector (size));
4807 for (i = 0; i < size; i++)
4808 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4809 if (COMPILEDP (obj))
4810 {
4811 XSETPVECTYPE (vec, PVEC_COMPILED);
4812 XSETCOMPILED (obj, vec);
4813 }
4814 else
4815 XSETVECTOR (obj, vec);
4816 }
4817 else if (MARKERP (obj))
4818 error ("Attempt to copy a marker to pure storage");
4819 else
4820 /* Not purified, don't hash-cons. */
4821 return obj;
4822
4823 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4824 Fputhash (obj, obj, Vpurify_flag);
4825
4826 return obj;
4827 }
4828
4829
4830 \f
4831 /***********************************************************************
4832 Protection from GC
4833 ***********************************************************************/
4834
4835 /* Put an entry in staticvec, pointing at the variable with address
4836 VARADDRESS. */
4837
4838 void
4839 staticpro (Lisp_Object *varaddress)
4840 {
4841 staticvec[staticidx++] = varaddress;
4842 if (staticidx >= NSTATICS)
4843 abort ();
4844 }
4845
4846 \f
4847 /***********************************************************************
4848 Protection from GC
4849 ***********************************************************************/
4850
4851 /* Temporarily prevent garbage collection. */
4852
4853 int
4854 inhibit_garbage_collection (void)
4855 {
4856 int count = SPECPDL_INDEX ();
4857
4858 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4859 return count;
4860 }
4861
4862
4863 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4864 doc: /* Reclaim storage for Lisp objects no longer needed.
4865 Garbage collection happens automatically if you cons more than
4866 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4867 `garbage-collect' normally returns a list with info on amount of space in use:
4868 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4869 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4870 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4871 (USED-STRINGS . FREE-STRINGS))
4872 However, if there was overflow in pure space, `garbage-collect'
4873 returns nil, because real GC can't be done. */)
4874 (void)
4875 {
4876 register struct specbinding *bind;
4877 char stack_top_variable;
4878 ptrdiff_t i;
4879 int message_p;
4880 Lisp_Object total[8];
4881 int count = SPECPDL_INDEX ();
4882 EMACS_TIME t1, t2, t3;
4883
4884 if (abort_on_gc)
4885 abort ();
4886
4887 /* Can't GC if pure storage overflowed because we can't determine
4888 if something is a pure object or not. */
4889 if (pure_bytes_used_before_overflow)
4890 return Qnil;
4891
4892 CHECK_CONS_LIST ();
4893
4894 /* Don't keep undo information around forever.
4895 Do this early on, so it is no problem if the user quits. */
4896 {
4897 register struct buffer *nextb = all_buffers;
4898
4899 while (nextb)
4900 {
4901 /* If a buffer's undo list is Qt, that means that undo is
4902 turned off in that buffer. Calling truncate_undo_list on
4903 Qt tends to return NULL, which effectively turns undo back on.
4904 So don't call truncate_undo_list if undo_list is Qt. */
4905 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4906 truncate_undo_list (nextb);
4907
4908 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4909 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4910 && ! nextb->text->inhibit_shrinking)
4911 {
4912 /* If a buffer's gap size is more than 10% of the buffer
4913 size, or larger than 2000 bytes, then shrink it
4914 accordingly. Keep a minimum size of 20 bytes. */
4915 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4916
4917 if (nextb->text->gap_size > size)
4918 {
4919 struct buffer *save_current = current_buffer;
4920 current_buffer = nextb;
4921 make_gap (-(nextb->text->gap_size - size));
4922 current_buffer = save_current;
4923 }
4924 }
4925
4926 nextb = nextb->header.next.buffer;
4927 }
4928 }
4929
4930 EMACS_GET_TIME (t1);
4931
4932 /* In case user calls debug_print during GC,
4933 don't let that cause a recursive GC. */
4934 consing_since_gc = 0;
4935
4936 /* Save what's currently displayed in the echo area. */
4937 message_p = push_message ();
4938 record_unwind_protect (pop_message_unwind, Qnil);
4939
4940 /* Save a copy of the contents of the stack, for debugging. */
4941 #if MAX_SAVE_STACK > 0
4942 if (NILP (Vpurify_flag))
4943 {
4944 char *stack;
4945 ptrdiff_t stack_size;
4946 if (&stack_top_variable < stack_bottom)
4947 {
4948 stack = &stack_top_variable;
4949 stack_size = stack_bottom - &stack_top_variable;
4950 }
4951 else
4952 {
4953 stack = stack_bottom;
4954 stack_size = &stack_top_variable - stack_bottom;
4955 }
4956 if (stack_size <= MAX_SAVE_STACK)
4957 {
4958 if (stack_copy_size < stack_size)
4959 {
4960 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4961 stack_copy_size = stack_size;
4962 }
4963 memcpy (stack_copy, stack, stack_size);
4964 }
4965 }
4966 #endif /* MAX_SAVE_STACK > 0 */
4967
4968 if (garbage_collection_messages)
4969 message1_nolog ("Garbage collecting...");
4970
4971 BLOCK_INPUT;
4972
4973 shrink_regexp_cache ();
4974
4975 gc_in_progress = 1;
4976
4977 /* clear_marks (); */
4978
4979 /* Mark all the special slots that serve as the roots of accessibility. */
4980
4981 for (i = 0; i < staticidx; i++)
4982 mark_object (*staticvec[i]);
4983
4984 for (bind = specpdl; bind != specpdl_ptr; bind++)
4985 {
4986 mark_object (bind->symbol);
4987 mark_object (bind->old_value);
4988 }
4989 mark_terminals ();
4990 mark_kboards ();
4991 mark_ttys ();
4992
4993 #ifdef USE_GTK
4994 {
4995 extern void xg_mark_data (void);
4996 xg_mark_data ();
4997 }
4998 #endif
4999
5000 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5001 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5002 mark_stack ();
5003 #else
5004 {
5005 register struct gcpro *tail;
5006 for (tail = gcprolist; tail; tail = tail->next)
5007 for (i = 0; i < tail->nvars; i++)
5008 mark_object (tail->var[i]);
5009 }
5010 mark_byte_stack ();
5011 {
5012 struct catchtag *catch;
5013 struct handler *handler;
5014
5015 for (catch = catchlist; catch; catch = catch->next)
5016 {
5017 mark_object (catch->tag);
5018 mark_object (catch->val);
5019 }
5020 for (handler = handlerlist; handler; handler = handler->next)
5021 {
5022 mark_object (handler->handler);
5023 mark_object (handler->var);
5024 }
5025 }
5026 mark_backtrace ();
5027 #endif
5028
5029 #ifdef HAVE_WINDOW_SYSTEM
5030 mark_fringe_data ();
5031 #endif
5032
5033 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5034 mark_stack ();
5035 #endif
5036
5037 /* Everything is now marked, except for the things that require special
5038 finalization, i.e. the undo_list.
5039 Look thru every buffer's undo list
5040 for elements that update markers that were not marked,
5041 and delete them. */
5042 {
5043 register struct buffer *nextb = all_buffers;
5044
5045 while (nextb)
5046 {
5047 /* If a buffer's undo list is Qt, that means that undo is
5048 turned off in that buffer. Calling truncate_undo_list on
5049 Qt tends to return NULL, which effectively turns undo back on.
5050 So don't call truncate_undo_list if undo_list is Qt. */
5051 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5052 {
5053 Lisp_Object tail, prev;
5054 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5055 prev = Qnil;
5056 while (CONSP (tail))
5057 {
5058 if (CONSP (XCAR (tail))
5059 && MARKERP (XCAR (XCAR (tail)))
5060 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5061 {
5062 if (NILP (prev))
5063 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5064 else
5065 {
5066 tail = XCDR (tail);
5067 XSETCDR (prev, tail);
5068 }
5069 }
5070 else
5071 {
5072 prev = tail;
5073 tail = XCDR (tail);
5074 }
5075 }
5076 }
5077 /* Now that we have stripped the elements that need not be in the
5078 undo_list any more, we can finally mark the list. */
5079 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5080
5081 nextb = nextb->header.next.buffer;
5082 }
5083 }
5084
5085 gc_sweep ();
5086
5087 /* Clear the mark bits that we set in certain root slots. */
5088
5089 unmark_byte_stack ();
5090 VECTOR_UNMARK (&buffer_defaults);
5091 VECTOR_UNMARK (&buffer_local_symbols);
5092
5093 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5094 dump_zombies ();
5095 #endif
5096
5097 UNBLOCK_INPUT;
5098
5099 CHECK_CONS_LIST ();
5100
5101 /* clear_marks (); */
5102 gc_in_progress = 0;
5103
5104 consing_since_gc = 0;
5105 if (gc_cons_threshold < 10000)
5106 gc_cons_threshold = 10000;
5107
5108 gc_relative_threshold = 0;
5109 if (FLOATP (Vgc_cons_percentage))
5110 { /* Set gc_cons_combined_threshold. */
5111 double tot = 0;
5112
5113 tot += total_conses * sizeof (struct Lisp_Cons);
5114 tot += total_symbols * sizeof (struct Lisp_Symbol);
5115 tot += total_markers * sizeof (union Lisp_Misc);
5116 tot += total_string_size;
5117 tot += total_vector_size * sizeof (Lisp_Object);
5118 tot += total_floats * sizeof (struct Lisp_Float);
5119 tot += total_intervals * sizeof (struct interval);
5120 tot += total_strings * sizeof (struct Lisp_String);
5121
5122 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5123 if (0 < tot)
5124 {
5125 if (tot < TYPE_MAXIMUM (EMACS_INT))
5126 gc_relative_threshold = tot;
5127 else
5128 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5129 }
5130 }
5131
5132 if (garbage_collection_messages)
5133 {
5134 if (message_p || minibuf_level > 0)
5135 restore_message ();
5136 else
5137 message1_nolog ("Garbage collecting...done");
5138 }
5139
5140 unbind_to (count, Qnil);
5141
5142 total[0] = Fcons (make_number (total_conses),
5143 make_number (total_free_conses));
5144 total[1] = Fcons (make_number (total_symbols),
5145 make_number (total_free_symbols));
5146 total[2] = Fcons (make_number (total_markers),
5147 make_number (total_free_markers));
5148 total[3] = make_number (total_string_size);
5149 total[4] = make_number (total_vector_size);
5150 total[5] = Fcons (make_number (total_floats),
5151 make_number (total_free_floats));
5152 total[6] = Fcons (make_number (total_intervals),
5153 make_number (total_free_intervals));
5154 total[7] = Fcons (make_number (total_strings),
5155 make_number (total_free_strings));
5156
5157 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5158 {
5159 /* Compute average percentage of zombies. */
5160 double nlive = 0;
5161
5162 for (i = 0; i < 7; ++i)
5163 if (CONSP (total[i]))
5164 nlive += XFASTINT (XCAR (total[i]));
5165
5166 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5167 max_live = max (nlive, max_live);
5168 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5169 max_zombies = max (nzombies, max_zombies);
5170 ++ngcs;
5171 }
5172 #endif
5173
5174 if (!NILP (Vpost_gc_hook))
5175 {
5176 int gc_count = inhibit_garbage_collection ();
5177 safe_run_hooks (Qpost_gc_hook);
5178 unbind_to (gc_count, Qnil);
5179 }
5180
5181 /* Accumulate statistics. */
5182 EMACS_GET_TIME (t2);
5183 EMACS_SUB_TIME (t3, t2, t1);
5184 if (FLOATP (Vgc_elapsed))
5185 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5186 EMACS_SECS (t3) +
5187 EMACS_USECS (t3) * 1.0e-6);
5188 gcs_done++;
5189
5190 return Flist (sizeof total / sizeof *total, total);
5191 }
5192
5193
5194 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5195 only interesting objects referenced from glyphs are strings. */
5196
5197 static void
5198 mark_glyph_matrix (struct glyph_matrix *matrix)
5199 {
5200 struct glyph_row *row = matrix->rows;
5201 struct glyph_row *end = row + matrix->nrows;
5202
5203 for (; row < end; ++row)
5204 if (row->enabled_p)
5205 {
5206 int area;
5207 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5208 {
5209 struct glyph *glyph = row->glyphs[area];
5210 struct glyph *end_glyph = glyph + row->used[area];
5211
5212 for (; glyph < end_glyph; ++glyph)
5213 if (STRINGP (glyph->object)
5214 && !STRING_MARKED_P (XSTRING (glyph->object)))
5215 mark_object (glyph->object);
5216 }
5217 }
5218 }
5219
5220
5221 /* Mark Lisp faces in the face cache C. */
5222
5223 static void
5224 mark_face_cache (struct face_cache *c)
5225 {
5226 if (c)
5227 {
5228 int i, j;
5229 for (i = 0; i < c->used; ++i)
5230 {
5231 struct face *face = FACE_FROM_ID (c->f, i);
5232
5233 if (face)
5234 {
5235 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5236 mark_object (face->lface[j]);
5237 }
5238 }
5239 }
5240 }
5241
5242
5243 \f
5244 /* Mark reference to a Lisp_Object.
5245 If the object referred to has not been seen yet, recursively mark
5246 all the references contained in it. */
5247
5248 #define LAST_MARKED_SIZE 500
5249 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5250 static int last_marked_index;
5251
5252 /* For debugging--call abort when we cdr down this many
5253 links of a list, in mark_object. In debugging,
5254 the call to abort will hit a breakpoint.
5255 Normally this is zero and the check never goes off. */
5256 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5257
5258 static void
5259 mark_vectorlike (struct Lisp_Vector *ptr)
5260 {
5261 EMACS_INT size = ptr->header.size;
5262 EMACS_INT i;
5263
5264 eassert (!VECTOR_MARKED_P (ptr));
5265 VECTOR_MARK (ptr); /* Else mark it */
5266 if (size & PSEUDOVECTOR_FLAG)
5267 size &= PSEUDOVECTOR_SIZE_MASK;
5268
5269 /* Note that this size is not the memory-footprint size, but only
5270 the number of Lisp_Object fields that we should trace.
5271 The distinction is used e.g. by Lisp_Process which places extra
5272 non-Lisp_Object fields at the end of the structure. */
5273 for (i = 0; i < size; i++) /* and then mark its elements */
5274 mark_object (ptr->contents[i]);
5275 }
5276
5277 /* Like mark_vectorlike but optimized for char-tables (and
5278 sub-char-tables) assuming that the contents are mostly integers or
5279 symbols. */
5280
5281 static void
5282 mark_char_table (struct Lisp_Vector *ptr)
5283 {
5284 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5285 int i;
5286
5287 eassert (!VECTOR_MARKED_P (ptr));
5288 VECTOR_MARK (ptr);
5289 for (i = 0; i < size; i++)
5290 {
5291 Lisp_Object val = ptr->contents[i];
5292
5293 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5294 continue;
5295 if (SUB_CHAR_TABLE_P (val))
5296 {
5297 if (! VECTOR_MARKED_P (XVECTOR (val)))
5298 mark_char_table (XVECTOR (val));
5299 }
5300 else
5301 mark_object (val);
5302 }
5303 }
5304
5305 void
5306 mark_object (Lisp_Object arg)
5307 {
5308 register Lisp_Object obj = arg;
5309 #ifdef GC_CHECK_MARKED_OBJECTS
5310 void *po;
5311 struct mem_node *m;
5312 #endif
5313 ptrdiff_t cdr_count = 0;
5314
5315 loop:
5316
5317 if (PURE_POINTER_P (XPNTR (obj)))
5318 return;
5319
5320 last_marked[last_marked_index++] = obj;
5321 if (last_marked_index == LAST_MARKED_SIZE)
5322 last_marked_index = 0;
5323
5324 /* Perform some sanity checks on the objects marked here. Abort if
5325 we encounter an object we know is bogus. This increases GC time
5326 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5327 #ifdef GC_CHECK_MARKED_OBJECTS
5328
5329 po = (void *) XPNTR (obj);
5330
5331 /* Check that the object pointed to by PO is known to be a Lisp
5332 structure allocated from the heap. */
5333 #define CHECK_ALLOCATED() \
5334 do { \
5335 m = mem_find (po); \
5336 if (m == MEM_NIL) \
5337 abort (); \
5338 } while (0)
5339
5340 /* Check that the object pointed to by PO is live, using predicate
5341 function LIVEP. */
5342 #define CHECK_LIVE(LIVEP) \
5343 do { \
5344 if (!LIVEP (m, po)) \
5345 abort (); \
5346 } while (0)
5347
5348 /* Check both of the above conditions. */
5349 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5350 do { \
5351 CHECK_ALLOCATED (); \
5352 CHECK_LIVE (LIVEP); \
5353 } while (0) \
5354
5355 #else /* not GC_CHECK_MARKED_OBJECTS */
5356
5357 #define CHECK_LIVE(LIVEP) (void) 0
5358 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5359
5360 #endif /* not GC_CHECK_MARKED_OBJECTS */
5361
5362 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5363 {
5364 case Lisp_String:
5365 {
5366 register struct Lisp_String *ptr = XSTRING (obj);
5367 if (STRING_MARKED_P (ptr))
5368 break;
5369 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5370 MARK_INTERVAL_TREE (ptr->intervals);
5371 MARK_STRING (ptr);
5372 #ifdef GC_CHECK_STRING_BYTES
5373 /* Check that the string size recorded in the string is the
5374 same as the one recorded in the sdata structure. */
5375 CHECK_STRING_BYTES (ptr);
5376 #endif /* GC_CHECK_STRING_BYTES */
5377 }
5378 break;
5379
5380 case Lisp_Vectorlike:
5381 if (VECTOR_MARKED_P (XVECTOR (obj)))
5382 break;
5383 #ifdef GC_CHECK_MARKED_OBJECTS
5384 m = mem_find (po);
5385 if (m == MEM_NIL && !SUBRP (obj)
5386 && po != &buffer_defaults
5387 && po != &buffer_local_symbols)
5388 abort ();
5389 #endif /* GC_CHECK_MARKED_OBJECTS */
5390
5391 if (BUFFERP (obj))
5392 {
5393 #ifdef GC_CHECK_MARKED_OBJECTS
5394 if (po != &buffer_defaults && po != &buffer_local_symbols)
5395 {
5396 struct buffer *b;
5397 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5398 ;
5399 if (b == NULL)
5400 abort ();
5401 }
5402 #endif /* GC_CHECK_MARKED_OBJECTS */
5403 mark_buffer (obj);
5404 }
5405 else if (SUBRP (obj))
5406 break;
5407 else if (COMPILEDP (obj))
5408 /* We could treat this just like a vector, but it is better to
5409 save the COMPILED_CONSTANTS element for last and avoid
5410 recursion there. */
5411 {
5412 register struct Lisp_Vector *ptr = XVECTOR (obj);
5413 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5414 int i;
5415
5416 CHECK_LIVE (live_vector_p);
5417 VECTOR_MARK (ptr); /* Else mark it */
5418 for (i = 0; i < size; i++) /* and then mark its elements */
5419 {
5420 if (i != COMPILED_CONSTANTS)
5421 mark_object (ptr->contents[i]);
5422 }
5423 obj = ptr->contents[COMPILED_CONSTANTS];
5424 goto loop;
5425 }
5426 else if (FRAMEP (obj))
5427 {
5428 register struct frame *ptr = XFRAME (obj);
5429 mark_vectorlike (XVECTOR (obj));
5430 mark_face_cache (ptr->face_cache);
5431 }
5432 else if (WINDOWP (obj))
5433 {
5434 register struct Lisp_Vector *ptr = XVECTOR (obj);
5435 struct window *w = XWINDOW (obj);
5436 mark_vectorlike (ptr);
5437 /* Mark glyphs for leaf windows. Marking window matrices is
5438 sufficient because frame matrices use the same glyph
5439 memory. */
5440 if (NILP (w->hchild)
5441 && NILP (w->vchild)
5442 && w->current_matrix)
5443 {
5444 mark_glyph_matrix (w->current_matrix);
5445 mark_glyph_matrix (w->desired_matrix);
5446 }
5447 }
5448 else if (HASH_TABLE_P (obj))
5449 {
5450 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5451 mark_vectorlike ((struct Lisp_Vector *)h);
5452 /* If hash table is not weak, mark all keys and values.
5453 For weak tables, mark only the vector. */
5454 if (NILP (h->weak))
5455 mark_object (h->key_and_value);
5456 else
5457 VECTOR_MARK (XVECTOR (h->key_and_value));
5458 }
5459 else if (CHAR_TABLE_P (obj))
5460 mark_char_table (XVECTOR (obj));
5461 else
5462 mark_vectorlike (XVECTOR (obj));
5463 break;
5464
5465 case Lisp_Symbol:
5466 {
5467 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5468 struct Lisp_Symbol *ptrx;
5469
5470 if (ptr->gcmarkbit)
5471 break;
5472 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5473 ptr->gcmarkbit = 1;
5474 mark_object (ptr->function);
5475 mark_object (ptr->plist);
5476 switch (ptr->redirect)
5477 {
5478 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5479 case SYMBOL_VARALIAS:
5480 {
5481 Lisp_Object tem;
5482 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5483 mark_object (tem);
5484 break;
5485 }
5486 case SYMBOL_LOCALIZED:
5487 {
5488 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5489 /* If the value is forwarded to a buffer or keyboard field,
5490 these are marked when we see the corresponding object.
5491 And if it's forwarded to a C variable, either it's not
5492 a Lisp_Object var, or it's staticpro'd already. */
5493 mark_object (blv->where);
5494 mark_object (blv->valcell);
5495 mark_object (blv->defcell);
5496 break;
5497 }
5498 case SYMBOL_FORWARDED:
5499 /* If the value is forwarded to a buffer or keyboard field,
5500 these are marked when we see the corresponding object.
5501 And if it's forwarded to a C variable, either it's not
5502 a Lisp_Object var, or it's staticpro'd already. */
5503 break;
5504 default: abort ();
5505 }
5506 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5507 MARK_STRING (XSTRING (ptr->xname));
5508 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5509
5510 ptr = ptr->next;
5511 if (ptr)
5512 {
5513 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5514 XSETSYMBOL (obj, ptrx);
5515 goto loop;
5516 }
5517 }
5518 break;
5519
5520 case Lisp_Misc:
5521 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5522 if (XMISCANY (obj)->gcmarkbit)
5523 break;
5524 XMISCANY (obj)->gcmarkbit = 1;
5525
5526 switch (XMISCTYPE (obj))
5527 {
5528
5529 case Lisp_Misc_Marker:
5530 /* DO NOT mark thru the marker's chain.
5531 The buffer's markers chain does not preserve markers from gc;
5532 instead, markers are removed from the chain when freed by gc. */
5533 break;
5534
5535 case Lisp_Misc_Save_Value:
5536 #if GC_MARK_STACK
5537 {
5538 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5539 /* If DOGC is set, POINTER is the address of a memory
5540 area containing INTEGER potential Lisp_Objects. */
5541 if (ptr->dogc)
5542 {
5543 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5544 ptrdiff_t nelt;
5545 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5546 mark_maybe_object (*p);
5547 }
5548 }
5549 #endif
5550 break;
5551
5552 case Lisp_Misc_Overlay:
5553 {
5554 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5555 mark_object (ptr->start);
5556 mark_object (ptr->end);
5557 mark_object (ptr->plist);
5558 if (ptr->next)
5559 {
5560 XSETMISC (obj, ptr->next);
5561 goto loop;
5562 }
5563 }
5564 break;
5565
5566 default:
5567 abort ();
5568 }
5569 break;
5570
5571 case Lisp_Cons:
5572 {
5573 register struct Lisp_Cons *ptr = XCONS (obj);
5574 if (CONS_MARKED_P (ptr))
5575 break;
5576 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5577 CONS_MARK (ptr);
5578 /* If the cdr is nil, avoid recursion for the car. */
5579 if (EQ (ptr->u.cdr, Qnil))
5580 {
5581 obj = ptr->car;
5582 cdr_count = 0;
5583 goto loop;
5584 }
5585 mark_object (ptr->car);
5586 obj = ptr->u.cdr;
5587 cdr_count++;
5588 if (cdr_count == mark_object_loop_halt)
5589 abort ();
5590 goto loop;
5591 }
5592
5593 case Lisp_Float:
5594 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5595 FLOAT_MARK (XFLOAT (obj));
5596 break;
5597
5598 case_Lisp_Int:
5599 break;
5600
5601 default:
5602 abort ();
5603 }
5604
5605 #undef CHECK_LIVE
5606 #undef CHECK_ALLOCATED
5607 #undef CHECK_ALLOCATED_AND_LIVE
5608 }
5609
5610 /* Mark the pointers in a buffer structure. */
5611
5612 static void
5613 mark_buffer (Lisp_Object buf)
5614 {
5615 register struct buffer *buffer = XBUFFER (buf);
5616 register Lisp_Object *ptr, tmp;
5617 Lisp_Object base_buffer;
5618
5619 eassert (!VECTOR_MARKED_P (buffer));
5620 VECTOR_MARK (buffer);
5621
5622 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5623
5624 /* For now, we just don't mark the undo_list. It's done later in
5625 a special way just before the sweep phase, and after stripping
5626 some of its elements that are not needed any more. */
5627
5628 if (buffer->overlays_before)
5629 {
5630 XSETMISC (tmp, buffer->overlays_before);
5631 mark_object (tmp);
5632 }
5633 if (buffer->overlays_after)
5634 {
5635 XSETMISC (tmp, buffer->overlays_after);
5636 mark_object (tmp);
5637 }
5638
5639 /* buffer-local Lisp variables start at `undo_list',
5640 tho only the ones from `name' on are GC'd normally. */
5641 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5642 ptr <= &PER_BUFFER_VALUE (buffer,
5643 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
5644 ptr++)
5645 mark_object (*ptr);
5646
5647 /* If this is an indirect buffer, mark its base buffer. */
5648 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5649 {
5650 XSETBUFFER (base_buffer, buffer->base_buffer);
5651 mark_buffer (base_buffer);
5652 }
5653 }
5654
5655 /* Mark the Lisp pointers in the terminal objects.
5656 Called by the Fgarbage_collector. */
5657
5658 static void
5659 mark_terminals (void)
5660 {
5661 struct terminal *t;
5662 for (t = terminal_list; t; t = t->next_terminal)
5663 {
5664 eassert (t->name != NULL);
5665 #ifdef HAVE_WINDOW_SYSTEM
5666 /* If a terminal object is reachable from a stacpro'ed object,
5667 it might have been marked already. Make sure the image cache
5668 gets marked. */
5669 mark_image_cache (t->image_cache);
5670 #endif /* HAVE_WINDOW_SYSTEM */
5671 if (!VECTOR_MARKED_P (t))
5672 mark_vectorlike ((struct Lisp_Vector *)t);
5673 }
5674 }
5675
5676
5677
5678 /* Value is non-zero if OBJ will survive the current GC because it's
5679 either marked or does not need to be marked to survive. */
5680
5681 int
5682 survives_gc_p (Lisp_Object obj)
5683 {
5684 int survives_p;
5685
5686 switch (XTYPE (obj))
5687 {
5688 case_Lisp_Int:
5689 survives_p = 1;
5690 break;
5691
5692 case Lisp_Symbol:
5693 survives_p = XSYMBOL (obj)->gcmarkbit;
5694 break;
5695
5696 case Lisp_Misc:
5697 survives_p = XMISCANY (obj)->gcmarkbit;
5698 break;
5699
5700 case Lisp_String:
5701 survives_p = STRING_MARKED_P (XSTRING (obj));
5702 break;
5703
5704 case Lisp_Vectorlike:
5705 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5706 break;
5707
5708 case Lisp_Cons:
5709 survives_p = CONS_MARKED_P (XCONS (obj));
5710 break;
5711
5712 case Lisp_Float:
5713 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5714 break;
5715
5716 default:
5717 abort ();
5718 }
5719
5720 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5721 }
5722
5723
5724 \f
5725 /* Sweep: find all structures not marked, and free them. */
5726
5727 static void
5728 gc_sweep (void)
5729 {
5730 /* Remove or mark entries in weak hash tables.
5731 This must be done before any object is unmarked. */
5732 sweep_weak_hash_tables ();
5733
5734 sweep_strings ();
5735 #ifdef GC_CHECK_STRING_BYTES
5736 if (!noninteractive)
5737 check_string_bytes (1);
5738 #endif
5739
5740 /* Put all unmarked conses on free list */
5741 {
5742 register struct cons_block *cblk;
5743 struct cons_block **cprev = &cons_block;
5744 register int lim = cons_block_index;
5745 EMACS_INT num_free = 0, num_used = 0;
5746
5747 cons_free_list = 0;
5748
5749 for (cblk = cons_block; cblk; cblk = *cprev)
5750 {
5751 register int i = 0;
5752 int this_free = 0;
5753 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5754
5755 /* Scan the mark bits an int at a time. */
5756 for (i = 0; i <= ilim; i++)
5757 {
5758 if (cblk->gcmarkbits[i] == -1)
5759 {
5760 /* Fast path - all cons cells for this int are marked. */
5761 cblk->gcmarkbits[i] = 0;
5762 num_used += BITS_PER_INT;
5763 }
5764 else
5765 {
5766 /* Some cons cells for this int are not marked.
5767 Find which ones, and free them. */
5768 int start, pos, stop;
5769
5770 start = i * BITS_PER_INT;
5771 stop = lim - start;
5772 if (stop > BITS_PER_INT)
5773 stop = BITS_PER_INT;
5774 stop += start;
5775
5776 for (pos = start; pos < stop; pos++)
5777 {
5778 if (!CONS_MARKED_P (&cblk->conses[pos]))
5779 {
5780 this_free++;
5781 cblk->conses[pos].u.chain = cons_free_list;
5782 cons_free_list = &cblk->conses[pos];
5783 #if GC_MARK_STACK
5784 cons_free_list->car = Vdead;
5785 #endif
5786 }
5787 else
5788 {
5789 num_used++;
5790 CONS_UNMARK (&cblk->conses[pos]);
5791 }
5792 }
5793 }
5794 }
5795
5796 lim = CONS_BLOCK_SIZE;
5797 /* If this block contains only free conses and we have already
5798 seen more than two blocks worth of free conses then deallocate
5799 this block. */
5800 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5801 {
5802 *cprev = cblk->next;
5803 /* Unhook from the free list. */
5804 cons_free_list = cblk->conses[0].u.chain;
5805 lisp_align_free (cblk);
5806 }
5807 else
5808 {
5809 num_free += this_free;
5810 cprev = &cblk->next;
5811 }
5812 }
5813 total_conses = num_used;
5814 total_free_conses = num_free;
5815 }
5816
5817 /* Put all unmarked floats on free list */
5818 {
5819 register struct float_block *fblk;
5820 struct float_block **fprev = &float_block;
5821 register int lim = float_block_index;
5822 EMACS_INT num_free = 0, num_used = 0;
5823
5824 float_free_list = 0;
5825
5826 for (fblk = float_block; fblk; fblk = *fprev)
5827 {
5828 register int i;
5829 int this_free = 0;
5830 for (i = 0; i < lim; i++)
5831 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5832 {
5833 this_free++;
5834 fblk->floats[i].u.chain = float_free_list;
5835 float_free_list = &fblk->floats[i];
5836 }
5837 else
5838 {
5839 num_used++;
5840 FLOAT_UNMARK (&fblk->floats[i]);
5841 }
5842 lim = FLOAT_BLOCK_SIZE;
5843 /* If this block contains only free floats and we have already
5844 seen more than two blocks worth of free floats then deallocate
5845 this block. */
5846 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5847 {
5848 *fprev = fblk->next;
5849 /* Unhook from the free list. */
5850 float_free_list = fblk->floats[0].u.chain;
5851 lisp_align_free (fblk);
5852 }
5853 else
5854 {
5855 num_free += this_free;
5856 fprev = &fblk->next;
5857 }
5858 }
5859 total_floats = num_used;
5860 total_free_floats = num_free;
5861 }
5862
5863 /* Put all unmarked intervals on free list */
5864 {
5865 register struct interval_block *iblk;
5866 struct interval_block **iprev = &interval_block;
5867 register int lim = interval_block_index;
5868 EMACS_INT num_free = 0, num_used = 0;
5869
5870 interval_free_list = 0;
5871
5872 for (iblk = interval_block; iblk; iblk = *iprev)
5873 {
5874 register int i;
5875 int this_free = 0;
5876
5877 for (i = 0; i < lim; i++)
5878 {
5879 if (!iblk->intervals[i].gcmarkbit)
5880 {
5881 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5882 interval_free_list = &iblk->intervals[i];
5883 this_free++;
5884 }
5885 else
5886 {
5887 num_used++;
5888 iblk->intervals[i].gcmarkbit = 0;
5889 }
5890 }
5891 lim = INTERVAL_BLOCK_SIZE;
5892 /* If this block contains only free intervals and we have already
5893 seen more than two blocks worth of free intervals then
5894 deallocate this block. */
5895 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5896 {
5897 *iprev = iblk->next;
5898 /* Unhook from the free list. */
5899 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5900 lisp_free (iblk);
5901 }
5902 else
5903 {
5904 num_free += this_free;
5905 iprev = &iblk->next;
5906 }
5907 }
5908 total_intervals = num_used;
5909 total_free_intervals = num_free;
5910 }
5911
5912 /* Put all unmarked symbols on free list */
5913 {
5914 register struct symbol_block *sblk;
5915 struct symbol_block **sprev = &symbol_block;
5916 register int lim = symbol_block_index;
5917 EMACS_INT num_free = 0, num_used = 0;
5918
5919 symbol_free_list = NULL;
5920
5921 for (sblk = symbol_block; sblk; sblk = *sprev)
5922 {
5923 int this_free = 0;
5924 struct Lisp_Symbol *sym = sblk->symbols;
5925 struct Lisp_Symbol *end = sym + lim;
5926
5927 for (; sym < end; ++sym)
5928 {
5929 /* Check if the symbol was created during loadup. In such a case
5930 it might be pointed to by pure bytecode which we don't trace,
5931 so we conservatively assume that it is live. */
5932 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5933
5934 if (!sym->gcmarkbit && !pure_p)
5935 {
5936 if (sym->redirect == SYMBOL_LOCALIZED)
5937 xfree (SYMBOL_BLV (sym));
5938 sym->next = symbol_free_list;
5939 symbol_free_list = sym;
5940 #if GC_MARK_STACK
5941 symbol_free_list->function = Vdead;
5942 #endif
5943 ++this_free;
5944 }
5945 else
5946 {
5947 ++num_used;
5948 if (!pure_p)
5949 UNMARK_STRING (XSTRING (sym->xname));
5950 sym->gcmarkbit = 0;
5951 }
5952 }
5953
5954 lim = SYMBOL_BLOCK_SIZE;
5955 /* If this block contains only free symbols and we have already
5956 seen more than two blocks worth of free symbols then deallocate
5957 this block. */
5958 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5959 {
5960 *sprev = sblk->next;
5961 /* Unhook from the free list. */
5962 symbol_free_list = sblk->symbols[0].next;
5963 lisp_free (sblk);
5964 }
5965 else
5966 {
5967 num_free += this_free;
5968 sprev = &sblk->next;
5969 }
5970 }
5971 total_symbols = num_used;
5972 total_free_symbols = num_free;
5973 }
5974
5975 /* Put all unmarked misc's on free list.
5976 For a marker, first unchain it from the buffer it points into. */
5977 {
5978 register struct marker_block *mblk;
5979 struct marker_block **mprev = &marker_block;
5980 register int lim = marker_block_index;
5981 EMACS_INT num_free = 0, num_used = 0;
5982
5983 marker_free_list = 0;
5984
5985 for (mblk = marker_block; mblk; mblk = *mprev)
5986 {
5987 register int i;
5988 int this_free = 0;
5989
5990 for (i = 0; i < lim; i++)
5991 {
5992 if (!mblk->markers[i].u_any.gcmarkbit)
5993 {
5994 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5995 unchain_marker (&mblk->markers[i].u_marker);
5996 /* Set the type of the freed object to Lisp_Misc_Free.
5997 We could leave the type alone, since nobody checks it,
5998 but this might catch bugs faster. */
5999 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6000 mblk->markers[i].u_free.chain = marker_free_list;
6001 marker_free_list = &mblk->markers[i];
6002 this_free++;
6003 }
6004 else
6005 {
6006 num_used++;
6007 mblk->markers[i].u_any.gcmarkbit = 0;
6008 }
6009 }
6010 lim = MARKER_BLOCK_SIZE;
6011 /* If this block contains only free markers and we have already
6012 seen more than two blocks worth of free markers then deallocate
6013 this block. */
6014 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6015 {
6016 *mprev = mblk->next;
6017 /* Unhook from the free list. */
6018 marker_free_list = mblk->markers[0].u_free.chain;
6019 lisp_free (mblk);
6020 }
6021 else
6022 {
6023 num_free += this_free;
6024 mprev = &mblk->next;
6025 }
6026 }
6027
6028 total_markers = num_used;
6029 total_free_markers = num_free;
6030 }
6031
6032 /* Free all unmarked buffers */
6033 {
6034 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6035
6036 while (buffer)
6037 if (!VECTOR_MARKED_P (buffer))
6038 {
6039 if (prev)
6040 prev->header.next = buffer->header.next;
6041 else
6042 all_buffers = buffer->header.next.buffer;
6043 next = buffer->header.next.buffer;
6044 lisp_free (buffer);
6045 buffer = next;
6046 }
6047 else
6048 {
6049 VECTOR_UNMARK (buffer);
6050 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6051 prev = buffer, buffer = buffer->header.next.buffer;
6052 }
6053 }
6054
6055 /* Free all unmarked vectors */
6056 {
6057 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6058 total_vector_size = 0;
6059
6060 while (vector)
6061 if (!VECTOR_MARKED_P (vector))
6062 {
6063 if (prev)
6064 prev->header.next = vector->header.next;
6065 else
6066 all_vectors = vector->header.next.vector;
6067 next = vector->header.next.vector;
6068 lisp_free (vector);
6069 vector = next;
6070
6071 }
6072 else
6073 {
6074 VECTOR_UNMARK (vector);
6075 if (vector->header.size & PSEUDOVECTOR_FLAG)
6076 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6077 else
6078 total_vector_size += vector->header.size;
6079 prev = vector, vector = vector->header.next.vector;
6080 }
6081 }
6082
6083 #ifdef GC_CHECK_STRING_BYTES
6084 if (!noninteractive)
6085 check_string_bytes (1);
6086 #endif
6087 }
6088
6089
6090
6091 \f
6092 /* Debugging aids. */
6093
6094 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6095 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6096 This may be helpful in debugging Emacs's memory usage.
6097 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6098 (void)
6099 {
6100 Lisp_Object end;
6101
6102 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6103
6104 return end;
6105 }
6106
6107 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6108 doc: /* Return a list of counters that measure how much consing there has been.
6109 Each of these counters increments for a certain kind of object.
6110 The counters wrap around from the largest positive integer to zero.
6111 Garbage collection does not decrease them.
6112 The elements of the value are as follows:
6113 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6114 All are in units of 1 = one object consed
6115 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6116 objects consed.
6117 MISCS include overlays, markers, and some internal types.
6118 Frames, windows, buffers, and subprocesses count as vectors
6119 (but the contents of a buffer's text do not count here). */)
6120 (void)
6121 {
6122 Lisp_Object consed[8];
6123
6124 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6125 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6126 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6127 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6128 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6129 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6130 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6131 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6132
6133 return Flist (8, consed);
6134 }
6135
6136 #ifdef ENABLE_CHECKING
6137 int suppress_checking;
6138
6139 void
6140 die (const char *msg, const char *file, int line)
6141 {
6142 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6143 file, line, msg);
6144 abort ();
6145 }
6146 #endif
6147 \f
6148 /* Initialization */
6149
6150 void
6151 init_alloc_once (void)
6152 {
6153 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6154 purebeg = PUREBEG;
6155 pure_size = PURESIZE;
6156 pure_bytes_used = 0;
6157 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6158 pure_bytes_used_before_overflow = 0;
6159
6160 /* Initialize the list of free aligned blocks. */
6161 free_ablock = NULL;
6162
6163 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6164 mem_init ();
6165 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6166 #endif
6167
6168 all_vectors = 0;
6169 ignore_warnings = 1;
6170 #ifdef DOUG_LEA_MALLOC
6171 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6172 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6173 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6174 #endif
6175 init_strings ();
6176 init_cons ();
6177 init_symbol ();
6178 init_marker ();
6179 init_float ();
6180 init_intervals ();
6181 init_weak_hash_tables ();
6182
6183 #ifdef REL_ALLOC
6184 malloc_hysteresis = 32;
6185 #else
6186 malloc_hysteresis = 0;
6187 #endif
6188
6189 refill_memory_reserve ();
6190
6191 ignore_warnings = 0;
6192 gcprolist = 0;
6193 byte_stack_list = 0;
6194 staticidx = 0;
6195 consing_since_gc = 0;
6196 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6197 gc_relative_threshold = 0;
6198 }
6199
6200 void
6201 init_alloc (void)
6202 {
6203 gcprolist = 0;
6204 byte_stack_list = 0;
6205 #if GC_MARK_STACK
6206 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6207 setjmp_tested_p = longjmps_done = 0;
6208 #endif
6209 #endif
6210 Vgc_elapsed = make_float (0.0);
6211 gcs_done = 0;
6212 }
6213
6214 void
6215 syms_of_alloc (void)
6216 {
6217 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6218 doc: /* *Number of bytes of consing between garbage collections.
6219 Garbage collection can happen automatically once this many bytes have been
6220 allocated since the last garbage collection. All data types count.
6221
6222 Garbage collection happens automatically only when `eval' is called.
6223
6224 By binding this temporarily to a large number, you can effectively
6225 prevent garbage collection during a part of the program.
6226 See also `gc-cons-percentage'. */);
6227
6228 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6229 doc: /* *Portion of the heap used for allocation.
6230 Garbage collection can happen automatically once this portion of the heap
6231 has been allocated since the last garbage collection.
6232 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6233 Vgc_cons_percentage = make_float (0.1);
6234
6235 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6236 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6237
6238 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6239 doc: /* Number of cons cells that have been consed so far. */);
6240
6241 DEFVAR_INT ("floats-consed", floats_consed,
6242 doc: /* Number of floats that have been consed so far. */);
6243
6244 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6245 doc: /* Number of vector cells that have been consed so far. */);
6246
6247 DEFVAR_INT ("symbols-consed", symbols_consed,
6248 doc: /* Number of symbols that have been consed so far. */);
6249
6250 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6251 doc: /* Number of string characters that have been consed so far. */);
6252
6253 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6254 doc: /* Number of miscellaneous objects that have been consed so far. */);
6255
6256 DEFVAR_INT ("intervals-consed", intervals_consed,
6257 doc: /* Number of intervals that have been consed so far. */);
6258
6259 DEFVAR_INT ("strings-consed", strings_consed,
6260 doc: /* Number of strings that have been consed so far. */);
6261
6262 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6263 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6264 This means that certain objects should be allocated in shared (pure) space.
6265 It can also be set to a hash-table, in which case this table is used to
6266 do hash-consing of the objects allocated to pure space. */);
6267
6268 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6269 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6270 garbage_collection_messages = 0;
6271
6272 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6273 doc: /* Hook run after garbage collection has finished. */);
6274 Vpost_gc_hook = Qnil;
6275 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6276
6277 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6278 doc: /* Precomputed `signal' argument for memory-full error. */);
6279 /* We build this in advance because if we wait until we need it, we might
6280 not be able to allocate the memory to hold it. */
6281 Vmemory_signal_data
6282 = pure_cons (Qerror,
6283 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6284
6285 DEFVAR_LISP ("memory-full", Vmemory_full,
6286 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6287 Vmemory_full = Qnil;
6288
6289 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6290 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6291
6292 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6293 doc: /* Accumulated time elapsed in garbage collections.
6294 The time is in seconds as a floating point value. */);
6295 DEFVAR_INT ("gcs-done", gcs_done,
6296 doc: /* Accumulated number of garbage collections done. */);
6297
6298 defsubr (&Scons);
6299 defsubr (&Slist);
6300 defsubr (&Svector);
6301 defsubr (&Smake_byte_code);
6302 defsubr (&Smake_list);
6303 defsubr (&Smake_vector);
6304 defsubr (&Smake_string);
6305 defsubr (&Smake_bool_vector);
6306 defsubr (&Smake_symbol);
6307 defsubr (&Smake_marker);
6308 defsubr (&Spurecopy);
6309 defsubr (&Sgarbage_collect);
6310 defsubr (&Smemory_limit);
6311 defsubr (&Smemory_use_counts);
6312
6313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6314 defsubr (&Sgc_status);
6315 #endif
6316 }