Comment fixes.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include <config.h>
22 #include "lisp.h"
23 #include "syntax.h"
24 #include "buffer.h"
25 #include "region-cache.h"
26 #include "commands.h"
27 #include "blockinput.h"
28
29 #include <sys/types.h>
30 #include "regex.h"
31
32 #define REGEXP_CACHE_SIZE 5
33
34 /* If the regexp is non-nil, then the buffer contains the compiled form
35 of that regexp, suitable for searching. */
36 struct regexp_cache {
37 struct regexp_cache *next;
38 Lisp_Object regexp;
39 struct re_pattern_buffer buf;
40 char fastmap[0400];
41 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
42 char posix;
43 };
44
45 /* The instances of that struct. */
46 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
47
48 /* The head of the linked list; points to the most recently used buffer. */
49 struct regexp_cache *searchbuf_head;
50
51
52 /* Every call to re_match, etc., must pass &search_regs as the regs
53 argument unless you can show it is unnecessary (i.e., if re_match
54 is certainly going to be called again before region-around-match
55 can be called).
56
57 Since the registers are now dynamically allocated, we need to make
58 sure not to refer to the Nth register before checking that it has
59 been allocated by checking search_regs.num_regs.
60
61 The regex code keeps track of whether it has allocated the search
62 buffer using bits in the re_pattern_buffer. This means that whenever
63 you compile a new pattern, it completely forgets whether it has
64 allocated any registers, and will allocate new registers the next
65 time you call a searching or matching function. Therefore, we need
66 to call re_set_registers after compiling a new pattern or after
67 setting the match registers, so that the regex functions will be
68 able to free or re-allocate it properly. */
69 static struct re_registers search_regs;
70
71 /* The buffer in which the last search was performed, or
72 Qt if the last search was done in a string;
73 Qnil if no searching has been done yet. */
74 static Lisp_Object last_thing_searched;
75
76 /* error condition signaled when regexp compile_pattern fails */
77
78 Lisp_Object Qinvalid_regexp;
79
80 static void set_search_regs ();
81 static void save_search_regs ();
82
83 static int search_buffer ();
84
85 static void
86 matcher_overflow ()
87 {
88 error ("Stack overflow in regexp matcher");
89 }
90
91 #ifdef __STDC__
92 #define CONST const
93 #else
94 #define CONST
95 #endif
96
97 /* Compile a regexp and signal a Lisp error if anything goes wrong.
98 PATTERN is the pattern to compile.
99 CP is the place to put the result.
100 TRANSLATE is a translation table for ignoring case, or NULL for none.
101 REGP is the structure that says where to store the "register"
102 values that will result from matching this pattern.
103 If it is 0, we should compile the pattern not to record any
104 subexpression bounds.
105 POSIX is nonzero if we want full backtracking (POSIX style)
106 for this pattern. 0 means backtrack only enough to get a valid match. */
107
108 static void
109 compile_pattern_1 (cp, pattern, translate, regp, posix)
110 struct regexp_cache *cp;
111 Lisp_Object pattern;
112 Lisp_Object *translate;
113 struct re_registers *regp;
114 int posix;
115 {
116 CONST char *val;
117 reg_syntax_t old;
118
119 cp->regexp = Qnil;
120 cp->buf.translate = translate;
121 cp->posix = posix;
122 BLOCK_INPUT;
123 old = re_set_syntax (RE_SYNTAX_EMACS
124 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
125 val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
126 XSTRING (pattern)->size, &cp->buf);
127 re_set_syntax (old);
128 UNBLOCK_INPUT;
129 if (val)
130 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
131
132 cp->regexp = Fcopy_sequence (pattern);
133 }
134
135 /* Compile a regexp if necessary, but first check to see if there's one in
136 the cache.
137 PATTERN is the pattern to compile.
138 TRANSLATE is a translation table for ignoring case, or NULL for none.
139 REGP is the structure that says where to store the "register"
140 values that will result from matching this pattern.
141 If it is 0, we should compile the pattern not to record any
142 subexpression bounds.
143 POSIX is nonzero if we want full backtracking (POSIX style)
144 for this pattern. 0 means backtrack only enough to get a valid match. */
145
146 struct re_pattern_buffer *
147 compile_pattern (pattern, regp, translate, posix)
148 Lisp_Object pattern;
149 struct re_registers *regp;
150 Lisp_Object *translate;
151 int posix;
152 {
153 struct regexp_cache *cp, **cpp;
154
155 for (cpp = &searchbuf_head; ; cpp = &cp->next)
156 {
157 cp = *cpp;
158 if (!NILP (Fstring_equal (cp->regexp, pattern))
159 && cp->buf.translate == translate
160 && cp->posix == posix)
161 break;
162
163 /* If we're at the end of the cache, compile into the last cell. */
164 if (cp->next == 0)
165 {
166 compile_pattern_1 (cp, pattern, translate, regp, posix);
167 break;
168 }
169 }
170
171 /* When we get here, cp (aka *cpp) contains the compiled pattern,
172 either because we found it in the cache or because we just compiled it.
173 Move it to the front of the queue to mark it as most recently used. */
174 *cpp = cp->next;
175 cp->next = searchbuf_head;
176 searchbuf_head = cp;
177
178 /* Advise the searching functions about the space we have allocated
179 for register data. */
180 if (regp)
181 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
182
183 return &cp->buf;
184 }
185
186 /* Error condition used for failing searches */
187 Lisp_Object Qsearch_failed;
188
189 Lisp_Object
190 signal_failure (arg)
191 Lisp_Object arg;
192 {
193 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
194 return Qnil;
195 }
196 \f
197 static Lisp_Object
198 looking_at_1 (string, posix)
199 Lisp_Object string;
200 int posix;
201 {
202 Lisp_Object val;
203 unsigned char *p1, *p2;
204 int s1, s2;
205 register int i;
206 struct re_pattern_buffer *bufp;
207
208 if (running_asynch_code)
209 save_search_regs ();
210
211 CHECK_STRING (string, 0);
212 bufp = compile_pattern (string, &search_regs,
213 (!NILP (current_buffer->case_fold_search)
214 ? DOWNCASE_TABLE : 0),
215 posix);
216
217 immediate_quit = 1;
218 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
219
220 /* Get pointers and sizes of the two strings
221 that make up the visible portion of the buffer. */
222
223 p1 = BEGV_ADDR;
224 s1 = GPT - BEGV;
225 p2 = GAP_END_ADDR;
226 s2 = ZV - GPT;
227 if (s1 < 0)
228 {
229 p2 = p1;
230 s2 = ZV - BEGV;
231 s1 = 0;
232 }
233 if (s2 < 0)
234 {
235 s1 = ZV - BEGV;
236 s2 = 0;
237 }
238
239 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
240 point - BEGV, &search_regs,
241 ZV - BEGV);
242 if (i == -2)
243 matcher_overflow ();
244
245 val = (0 <= i ? Qt : Qnil);
246 for (i = 0; i < search_regs.num_regs; i++)
247 if (search_regs.start[i] >= 0)
248 {
249 search_regs.start[i] += BEGV;
250 search_regs.end[i] += BEGV;
251 }
252 XSETBUFFER (last_thing_searched, current_buffer);
253 immediate_quit = 0;
254 return val;
255 }
256
257 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
258 "Return t if text after point matches regular expression REGEXP.\n\
259 This function modifies the match data that `match-beginning',\n\
260 `match-end' and `match-data' access; save and restore the match\n\
261 data if you want to preserve them.")
262 (regexp)
263 Lisp_Object regexp;
264 {
265 return looking_at_1 (regexp, 0);
266 }
267
268 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
269 "Return t if text after point matches regular expression REGEXP.\n\
270 Find the longest match, in accord with Posix regular expression rules.\n\
271 This function modifies the match data that `match-beginning',\n\
272 `match-end' and `match-data' access; save and restore the match\n\
273 data if you want to preserve them.")
274 (regexp)
275 Lisp_Object regexp;
276 {
277 return looking_at_1 (regexp, 1);
278 }
279 \f
280 static Lisp_Object
281 string_match_1 (regexp, string, start, posix)
282 Lisp_Object regexp, string, start;
283 int posix;
284 {
285 int val;
286 int s;
287 struct re_pattern_buffer *bufp;
288
289 if (running_asynch_code)
290 save_search_regs ();
291
292 CHECK_STRING (regexp, 0);
293 CHECK_STRING (string, 1);
294
295 if (NILP (start))
296 s = 0;
297 else
298 {
299 int len = XSTRING (string)->size;
300
301 CHECK_NUMBER (start, 2);
302 s = XINT (start);
303 if (s < 0 && -s <= len)
304 s = len + s;
305 else if (0 > s || s > len)
306 args_out_of_range (string, start);
307 }
308
309 bufp = compile_pattern (regexp, &search_regs,
310 (!NILP (current_buffer->case_fold_search)
311 ? DOWNCASE_TABLE : 0),
312 posix);
313 immediate_quit = 1;
314 val = re_search (bufp, (char *) XSTRING (string)->data,
315 XSTRING (string)->size, s, XSTRING (string)->size - s,
316 &search_regs);
317 immediate_quit = 0;
318 last_thing_searched = Qt;
319 if (val == -2)
320 matcher_overflow ();
321 if (val < 0) return Qnil;
322 return make_number (val);
323 }
324
325 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
326 "Return index of start of first match for REGEXP in STRING, or nil.\n\
327 If third arg START is non-nil, start search at that index in STRING.\n\
328 For index of first char beyond the match, do (match-end 0).\n\
329 `match-end' and `match-beginning' also give indices of substrings\n\
330 matched by parenthesis constructs in the pattern.")
331 (regexp, string, start)
332 Lisp_Object regexp, string, start;
333 {
334 return string_match_1 (regexp, string, start, 0);
335 }
336
337 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
338 "Return index of start of first match for REGEXP in STRING, or nil.\n\
339 Find the longest match, in accord with Posix regular expression rules.\n\
340 If third arg START is non-nil, start search at that index in STRING.\n\
341 For index of first char beyond the match, do (match-end 0).\n\
342 `match-end' and `match-beginning' also give indices of substrings\n\
343 matched by parenthesis constructs in the pattern.")
344 (regexp, string, start)
345 Lisp_Object regexp, string, start;
346 {
347 return string_match_1 (regexp, string, start, 1);
348 }
349
350 /* Match REGEXP against STRING, searching all of STRING,
351 and return the index of the match, or negative on failure.
352 This does not clobber the match data. */
353
354 int
355 fast_string_match (regexp, string)
356 Lisp_Object regexp, string;
357 {
358 int val;
359 struct re_pattern_buffer *bufp;
360
361 bufp = compile_pattern (regexp, 0, 0, 0);
362 immediate_quit = 1;
363 val = re_search (bufp, (char *) XSTRING (string)->data,
364 XSTRING (string)->size, 0, XSTRING (string)->size,
365 0);
366 immediate_quit = 0;
367 return val;
368 }
369 \f
370 /* max and min. */
371
372 static int
373 max (a, b)
374 int a, b;
375 {
376 return ((a > b) ? a : b);
377 }
378
379 static int
380 min (a, b)
381 int a, b;
382 {
383 return ((a < b) ? a : b);
384 }
385
386 \f
387 /* The newline cache: remembering which sections of text have no newlines. */
388
389 /* If the user has requested newline caching, make sure it's on.
390 Otherwise, make sure it's off.
391 This is our cheezy way of associating an action with the change of
392 state of a buffer-local variable. */
393 static void
394 newline_cache_on_off (buf)
395 struct buffer *buf;
396 {
397 if (NILP (buf->cache_long_line_scans))
398 {
399 /* It should be off. */
400 if (buf->newline_cache)
401 {
402 free_region_cache (buf->newline_cache);
403 buf->newline_cache = 0;
404 }
405 }
406 else
407 {
408 /* It should be on. */
409 if (buf->newline_cache == 0)
410 buf->newline_cache = new_region_cache ();
411 }
412 }
413
414 \f
415 /* Search for COUNT instances of the character TARGET between START and END.
416
417 If COUNT is positive, search forwards; END must be >= START.
418 If COUNT is negative, search backwards for the -COUNTth instance;
419 END must be <= START.
420 If COUNT is zero, do anything you please; run rogue, for all I care.
421
422 If END is zero, use BEGV or ZV instead, as appropriate for the
423 direction indicated by COUNT.
424
425 If we find COUNT instances, set *SHORTAGE to zero, and return the
426 position after the COUNTth match. Note that for reverse motion
427 this is not the same as the usual convention for Emacs motion commands.
428
429 If we don't find COUNT instances before reaching END, set *SHORTAGE
430 to the number of TARGETs left unfound, and return END.
431
432 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
433 except when inside redisplay. */
434
435 scan_buffer (target, start, end, count, shortage, allow_quit)
436 register int target;
437 int start, end;
438 int count;
439 int *shortage;
440 int allow_quit;
441 {
442 struct region_cache *newline_cache;
443 int direction;
444
445 if (count > 0)
446 {
447 direction = 1;
448 if (! end) end = ZV;
449 }
450 else
451 {
452 direction = -1;
453 if (! end) end = BEGV;
454 }
455
456 newline_cache_on_off (current_buffer);
457 newline_cache = current_buffer->newline_cache;
458
459 if (shortage != 0)
460 *shortage = 0;
461
462 immediate_quit = allow_quit;
463
464 if (count > 0)
465 while (start != end)
466 {
467 /* Our innermost scanning loop is very simple; it doesn't know
468 about gaps, buffer ends, or the newline cache. ceiling is
469 the position of the last character before the next such
470 obstacle --- the last character the dumb search loop should
471 examine. */
472 register int ceiling = end - 1;
473
474 /* If we're looking for a newline, consult the newline cache
475 to see where we can avoid some scanning. */
476 if (target == '\n' && newline_cache)
477 {
478 int next_change;
479 immediate_quit = 0;
480 while (region_cache_forward
481 (current_buffer, newline_cache, start, &next_change))
482 start = next_change;
483 immediate_quit = allow_quit;
484
485 /* start should never be after end. */
486 if (start >= end)
487 start = end - 1;
488
489 /* Now the text after start is an unknown region, and
490 next_change is the position of the next known region. */
491 ceiling = min (next_change - 1, ceiling);
492 }
493
494 /* The dumb loop can only scan text stored in contiguous
495 bytes. BUFFER_CEILING_OF returns the last character
496 position that is contiguous, so the ceiling is the
497 position after that. */
498 ceiling = min (BUFFER_CEILING_OF (start), ceiling);
499
500 {
501 /* The termination address of the dumb loop. */
502 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling) + 1;
503 register unsigned char *cursor = &FETCH_CHAR (start);
504 unsigned char *base = cursor;
505
506 while (cursor < ceiling_addr)
507 {
508 unsigned char *scan_start = cursor;
509
510 /* The dumb loop. */
511 while (*cursor != target && ++cursor < ceiling_addr)
512 ;
513
514 /* If we're looking for newlines, cache the fact that
515 the region from start to cursor is free of them. */
516 if (target == '\n' && newline_cache)
517 know_region_cache (current_buffer, newline_cache,
518 start + scan_start - base,
519 start + cursor - base);
520
521 /* Did we find the target character? */
522 if (cursor < ceiling_addr)
523 {
524 if (--count == 0)
525 {
526 immediate_quit = 0;
527 return (start + cursor - base + 1);
528 }
529 cursor++;
530 }
531 }
532
533 start += cursor - base;
534 }
535 }
536 else
537 while (start > end)
538 {
539 /* The last character to check before the next obstacle. */
540 register int ceiling = end;
541
542 /* Consult the newline cache, if appropriate. */
543 if (target == '\n' && newline_cache)
544 {
545 int next_change;
546 immediate_quit = 0;
547 while (region_cache_backward
548 (current_buffer, newline_cache, start, &next_change))
549 start = next_change;
550 immediate_quit = allow_quit;
551
552 /* Start should never be at or before end. */
553 if (start <= end)
554 start = end + 1;
555
556 /* Now the text before start is an unknown region, and
557 next_change is the position of the next known region. */
558 ceiling = max (next_change, ceiling);
559 }
560
561 /* Stop scanning before the gap. */
562 ceiling = max (BUFFER_FLOOR_OF (start - 1), ceiling);
563
564 {
565 /* The termination address of the dumb loop. */
566 register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling);
567 register unsigned char *cursor = &FETCH_CHAR (start - 1);
568 unsigned char *base = cursor;
569
570 while (cursor >= ceiling_addr)
571 {
572 unsigned char *scan_start = cursor;
573
574 while (*cursor != target && --cursor >= ceiling_addr)
575 ;
576
577 /* If we're looking for newlines, cache the fact that
578 the region from after the cursor to start is free of them. */
579 if (target == '\n' && newline_cache)
580 know_region_cache (current_buffer, newline_cache,
581 start + cursor - base,
582 start + scan_start - base);
583
584 /* Did we find the target character? */
585 if (cursor >= ceiling_addr)
586 {
587 if (++count >= 0)
588 {
589 immediate_quit = 0;
590 return (start + cursor - base);
591 }
592 cursor--;
593 }
594 }
595
596 start += cursor - base;
597 }
598 }
599
600 immediate_quit = 0;
601 if (shortage != 0)
602 *shortage = count * direction;
603 return start;
604 }
605
606 int
607 find_next_newline_no_quit (from, cnt)
608 register int from, cnt;
609 {
610 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
611 }
612
613 int
614 find_next_newline (from, cnt)
615 register int from, cnt;
616 {
617 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 1);
618 }
619
620
621 /* Like find_next_newline, but returns position before the newline,
622 not after, and only search up to TO. This isn't just
623 find_next_newline (...)-1, because you might hit TO. */
624 int
625 find_before_next_newline (from, to, cnt)
626 int from, to, cnt;
627 {
628 int shortage;
629 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
630
631 if (shortage == 0)
632 pos--;
633
634 return pos;
635 }
636 \f
637 Lisp_Object skip_chars ();
638
639 DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
640 "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
641 STRING is like the inside of a `[...]' in a regular expression\n\
642 except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
643 Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
644 With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
645 Returns the distance traveled, either zero or positive.")
646 (string, lim)
647 Lisp_Object string, lim;
648 {
649 return skip_chars (1, 0, string, lim);
650 }
651
652 DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
653 "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
654 See `skip-chars-forward' for details.\n\
655 Returns the distance traveled, either zero or negative.")
656 (string, lim)
657 Lisp_Object string, lim;
658 {
659 return skip_chars (0, 0, string, lim);
660 }
661
662 DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
663 "Move point forward across chars in specified syntax classes.\n\
664 SYNTAX is a string of syntax code characters.\n\
665 Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
666 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
667 This function returns the distance traveled, either zero or positive.")
668 (syntax, lim)
669 Lisp_Object syntax, lim;
670 {
671 return skip_chars (1, 1, syntax, lim);
672 }
673
674 DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
675 "Move point backward across chars in specified syntax classes.\n\
676 SYNTAX is a string of syntax code characters.\n\
677 Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
678 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
679 This function returns the distance traveled, either zero or negative.")
680 (syntax, lim)
681 Lisp_Object syntax, lim;
682 {
683 return skip_chars (0, 1, syntax, lim);
684 }
685
686 Lisp_Object
687 skip_chars (forwardp, syntaxp, string, lim)
688 int forwardp, syntaxp;
689 Lisp_Object string, lim;
690 {
691 register unsigned char *p, *pend;
692 register unsigned char c;
693 unsigned char fastmap[0400];
694 int negate = 0;
695 register int i;
696
697 CHECK_STRING (string, 0);
698
699 if (NILP (lim))
700 XSETINT (lim, forwardp ? ZV : BEGV);
701 else
702 CHECK_NUMBER_COERCE_MARKER (lim, 1);
703
704 /* In any case, don't allow scan outside bounds of buffer. */
705 /* jla turned this off, for no known reason.
706 bfox turned the ZV part on, and rms turned the
707 BEGV part back on. */
708 if (XINT (lim) > ZV)
709 XSETFASTINT (lim, ZV);
710 if (XINT (lim) < BEGV)
711 XSETFASTINT (lim, BEGV);
712
713 p = XSTRING (string)->data;
714 pend = p + XSTRING (string)->size;
715 bzero (fastmap, sizeof fastmap);
716
717 if (p != pend && *p == '^')
718 {
719 negate = 1; p++;
720 }
721
722 /* Find the characters specified and set their elements of fastmap.
723 If syntaxp, each character counts as itself.
724 Otherwise, handle backslashes and ranges specially */
725
726 while (p != pend)
727 {
728 c = *p++;
729 if (syntaxp)
730 fastmap[c] = 1;
731 else
732 {
733 if (c == '\\')
734 {
735 if (p == pend) break;
736 c = *p++;
737 }
738 if (p != pend && *p == '-')
739 {
740 p++;
741 if (p == pend) break;
742 while (c <= *p)
743 {
744 fastmap[c] = 1;
745 c++;
746 }
747 p++;
748 }
749 else
750 fastmap[c] = 1;
751 }
752 }
753
754 if (syntaxp && fastmap['-'] != 0)
755 fastmap[' '] = 1;
756
757 /* If ^ was the first character, complement the fastmap. */
758
759 if (negate)
760 for (i = 0; i < sizeof fastmap; i++)
761 fastmap[i] ^= 1;
762
763 {
764 int start_point = point;
765
766 immediate_quit = 1;
767 if (syntaxp)
768 {
769
770 if (forwardp)
771 {
772 while (point < XINT (lim)
773 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
774 SET_PT (point + 1);
775 }
776 else
777 {
778 while (point > XINT (lim)
779 && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
780 SET_PT (point - 1);
781 }
782 }
783 else
784 {
785 if (forwardp)
786 {
787 while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
788 SET_PT (point + 1);
789 }
790 else
791 {
792 while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
793 SET_PT (point - 1);
794 }
795 }
796 immediate_quit = 0;
797
798 return make_number (point - start_point);
799 }
800 }
801 \f
802 /* Subroutines of Lisp buffer search functions. */
803
804 static Lisp_Object
805 search_command (string, bound, noerror, count, direction, RE, posix)
806 Lisp_Object string, bound, noerror, count;
807 int direction;
808 int RE;
809 int posix;
810 {
811 register int np;
812 int lim;
813 int n = direction;
814
815 if (!NILP (count))
816 {
817 CHECK_NUMBER (count, 3);
818 n *= XINT (count);
819 }
820
821 CHECK_STRING (string, 0);
822 if (NILP (bound))
823 lim = n > 0 ? ZV : BEGV;
824 else
825 {
826 CHECK_NUMBER_COERCE_MARKER (bound, 1);
827 lim = XINT (bound);
828 if (n > 0 ? lim < point : lim > point)
829 error ("Invalid search bound (wrong side of point)");
830 if (lim > ZV)
831 lim = ZV;
832 if (lim < BEGV)
833 lim = BEGV;
834 }
835
836 np = search_buffer (string, point, lim, n, RE,
837 (!NILP (current_buffer->case_fold_search)
838 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents
839 : 0),
840 (!NILP (current_buffer->case_fold_search)
841 ? XCHAR_TABLE (current_buffer->case_eqv_table)->contents
842 : 0),
843 posix);
844 if (np <= 0)
845 {
846 if (NILP (noerror))
847 return signal_failure (string);
848 if (!EQ (noerror, Qt))
849 {
850 if (lim < BEGV || lim > ZV)
851 abort ();
852 SET_PT (lim);
853 return Qnil;
854 #if 0 /* This would be clean, but maybe programs depend on
855 a value of nil here. */
856 np = lim;
857 #endif
858 }
859 else
860 return Qnil;
861 }
862
863 if (np < BEGV || np > ZV)
864 abort ();
865
866 SET_PT (np);
867
868 return make_number (np);
869 }
870 \f
871 static int
872 trivial_regexp_p (regexp)
873 Lisp_Object regexp;
874 {
875 int len = XSTRING (regexp)->size;
876 unsigned char *s = XSTRING (regexp)->data;
877 unsigned char c;
878 while (--len >= 0)
879 {
880 switch (*s++)
881 {
882 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
883 return 0;
884 case '\\':
885 if (--len < 0)
886 return 0;
887 switch (*s++)
888 {
889 case '|': case '(': case ')': case '`': case '\'': case 'b':
890 case 'B': case '<': case '>': case 'w': case 'W': case 's':
891 case 'S': case '=':
892 case '1': case '2': case '3': case '4': case '5':
893 case '6': case '7': case '8': case '9':
894 return 0;
895 }
896 }
897 }
898 return 1;
899 }
900
901 /* Search for the n'th occurrence of STRING in the current buffer,
902 starting at position POS and stopping at position LIM,
903 treating STRING as a literal string if RE is false or as
904 a regular expression if RE is true.
905
906 If N is positive, searching is forward and LIM must be greater than POS.
907 If N is negative, searching is backward and LIM must be less than POS.
908
909 Returns -x if only N-x occurrences found (x > 0),
910 or else the position at the beginning of the Nth occurrence
911 (if searching backward) or the end (if searching forward).
912
913 POSIX is nonzero if we want full backtracking (POSIX style)
914 for this pattern. 0 means backtrack only enough to get a valid match. */
915
916 static int
917 search_buffer (string, pos, lim, n, RE, trt, inverse_trt, posix)
918 Lisp_Object string;
919 int pos;
920 int lim;
921 int n;
922 int RE;
923 Lisp_Object *trt;
924 Lisp_Object *inverse_trt;
925 int posix;
926 {
927 int len = XSTRING (string)->size;
928 unsigned char *base_pat = XSTRING (string)->data;
929 register int *BM_tab;
930 int *BM_tab_base;
931 register int direction = ((n > 0) ? 1 : -1);
932 register int dirlen;
933 int infinity, limit, k, stride_for_teases;
934 register unsigned char *pat, *cursor, *p_limit;
935 register int i, j;
936 unsigned char *p1, *p2;
937 int s1, s2;
938
939 if (running_asynch_code)
940 save_search_regs ();
941
942 /* Null string is found at starting position. */
943 if (len == 0)
944 {
945 set_search_regs (pos, 0);
946 return pos;
947 }
948
949 /* Searching 0 times means don't move. */
950 if (n == 0)
951 return pos;
952
953 if (RE && !trivial_regexp_p (string))
954 {
955 struct re_pattern_buffer *bufp;
956
957 bufp = compile_pattern (string, &search_regs, trt, posix);
958
959 immediate_quit = 1; /* Quit immediately if user types ^G,
960 because letting this function finish
961 can take too long. */
962 QUIT; /* Do a pending quit right away,
963 to avoid paradoxical behavior */
964 /* Get pointers and sizes of the two strings
965 that make up the visible portion of the buffer. */
966
967 p1 = BEGV_ADDR;
968 s1 = GPT - BEGV;
969 p2 = GAP_END_ADDR;
970 s2 = ZV - GPT;
971 if (s1 < 0)
972 {
973 p2 = p1;
974 s2 = ZV - BEGV;
975 s1 = 0;
976 }
977 if (s2 < 0)
978 {
979 s1 = ZV - BEGV;
980 s2 = 0;
981 }
982 while (n < 0)
983 {
984 int val;
985 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
986 pos - BEGV, lim - pos, &search_regs,
987 /* Don't allow match past current point */
988 pos - BEGV);
989 if (val == -2)
990 {
991 matcher_overflow ();
992 }
993 if (val >= 0)
994 {
995 j = BEGV;
996 for (i = 0; i < search_regs.num_regs; i++)
997 if (search_regs.start[i] >= 0)
998 {
999 search_regs.start[i] += j;
1000 search_regs.end[i] += j;
1001 }
1002 XSETBUFFER (last_thing_searched, current_buffer);
1003 /* Set pos to the new position. */
1004 pos = search_regs.start[0];
1005 }
1006 else
1007 {
1008 immediate_quit = 0;
1009 return (n);
1010 }
1011 n++;
1012 }
1013 while (n > 0)
1014 {
1015 int val;
1016 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1017 pos - BEGV, lim - pos, &search_regs,
1018 lim - BEGV);
1019 if (val == -2)
1020 {
1021 matcher_overflow ();
1022 }
1023 if (val >= 0)
1024 {
1025 j = BEGV;
1026 for (i = 0; i < search_regs.num_regs; i++)
1027 if (search_regs.start[i] >= 0)
1028 {
1029 search_regs.start[i] += j;
1030 search_regs.end[i] += j;
1031 }
1032 XSETBUFFER (last_thing_searched, current_buffer);
1033 pos = search_regs.end[0];
1034 }
1035 else
1036 {
1037 immediate_quit = 0;
1038 return (0 - n);
1039 }
1040 n--;
1041 }
1042 immediate_quit = 0;
1043 return (pos);
1044 }
1045 else /* non-RE case */
1046 {
1047 #ifdef C_ALLOCA
1048 int BM_tab_space[0400];
1049 BM_tab = &BM_tab_space[0];
1050 #else
1051 BM_tab = (int *) alloca (0400 * sizeof (int));
1052 #endif
1053 {
1054 unsigned char *patbuf = (unsigned char *) alloca (len);
1055 pat = patbuf;
1056 while (--len >= 0)
1057 {
1058 /* If we got here and the RE flag is set, it's because we're
1059 dealing with a regexp known to be trivial, so the backslash
1060 just quotes the next character. */
1061 if (RE && *base_pat == '\\')
1062 {
1063 len--;
1064 base_pat++;
1065 }
1066 *pat++ = (trt ? trt[*base_pat++] : *base_pat++);
1067 }
1068 len = pat - patbuf;
1069 pat = base_pat = patbuf;
1070 }
1071 /* The general approach is that we are going to maintain that we know */
1072 /* the first (closest to the present position, in whatever direction */
1073 /* we're searching) character that could possibly be the last */
1074 /* (furthest from present position) character of a valid match. We */
1075 /* advance the state of our knowledge by looking at that character */
1076 /* and seeing whether it indeed matches the last character of the */
1077 /* pattern. If it does, we take a closer look. If it does not, we */
1078 /* move our pointer (to putative last characters) as far as is */
1079 /* logically possible. This amount of movement, which I call a */
1080 /* stride, will be the length of the pattern if the actual character */
1081 /* appears nowhere in the pattern, otherwise it will be the distance */
1082 /* from the last occurrence of that character to the end of the */
1083 /* pattern. */
1084 /* As a coding trick, an enormous stride is coded into the table for */
1085 /* characters that match the last character. This allows use of only */
1086 /* a single test, a test for having gone past the end of the */
1087 /* permissible match region, to test for both possible matches (when */
1088 /* the stride goes past the end immediately) and failure to */
1089 /* match (where you get nudged past the end one stride at a time). */
1090
1091 /* Here we make a "mickey mouse" BM table. The stride of the search */
1092 /* is determined only by the last character of the putative match. */
1093 /* If that character does not match, we will stride the proper */
1094 /* distance to propose a match that superimposes it on the last */
1095 /* instance of a character that matches it (per trt), or misses */
1096 /* it entirely if there is none. */
1097
1098 dirlen = len * direction;
1099 infinity = dirlen - (lim + pos + len + len) * direction;
1100 if (direction < 0)
1101 pat = (base_pat += len - 1);
1102 BM_tab_base = BM_tab;
1103 BM_tab += 0400;
1104 j = dirlen; /* to get it in a register */
1105 /* A character that does not appear in the pattern induces a */
1106 /* stride equal to the pattern length. */
1107 while (BM_tab_base != BM_tab)
1108 {
1109 *--BM_tab = j;
1110 *--BM_tab = j;
1111 *--BM_tab = j;
1112 *--BM_tab = j;
1113 }
1114 i = 0;
1115 while (i != infinity)
1116 {
1117 j = pat[i]; i += direction;
1118 if (i == dirlen) i = infinity;
1119 if (trt != 0)
1120 {
1121 k = (j = trt[j]);
1122 if (i == infinity)
1123 stride_for_teases = BM_tab[j];
1124 BM_tab[j] = dirlen - i;
1125 /* A translation table is accompanied by its inverse -- see */
1126 /* comment following downcase_table for details */
1127 while ((j = (unsigned char) inverse_trt[j]) != k)
1128 BM_tab[j] = dirlen - i;
1129 }
1130 else
1131 {
1132 if (i == infinity)
1133 stride_for_teases = BM_tab[j];
1134 BM_tab[j] = dirlen - i;
1135 }
1136 /* stride_for_teases tells how much to stride if we get a */
1137 /* match on the far character but are subsequently */
1138 /* disappointed, by recording what the stride would have been */
1139 /* for that character if the last character had been */
1140 /* different. */
1141 }
1142 infinity = dirlen - infinity;
1143 pos += dirlen - ((direction > 0) ? direction : 0);
1144 /* loop invariant - pos points at where last char (first char if reverse)
1145 of pattern would align in a possible match. */
1146 while (n != 0)
1147 {
1148 /* It's been reported that some (broken) compiler thinks that
1149 Boolean expressions in an arithmetic context are unsigned.
1150 Using an explicit ?1:0 prevents this. */
1151 if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
1152 return (n * (0 - direction));
1153 /* First we do the part we can by pointers (maybe nothing) */
1154 QUIT;
1155 pat = base_pat;
1156 limit = pos - dirlen + direction;
1157 limit = ((direction > 0)
1158 ? BUFFER_CEILING_OF (limit)
1159 : BUFFER_FLOOR_OF (limit));
1160 /* LIMIT is now the last (not beyond-last!) value
1161 POS can take on without hitting edge of buffer or the gap. */
1162 limit = ((direction > 0)
1163 ? min (lim - 1, min (limit, pos + 20000))
1164 : max (lim, max (limit, pos - 20000)));
1165 if ((limit - pos) * direction > 20)
1166 {
1167 p_limit = &FETCH_CHAR (limit);
1168 p2 = (cursor = &FETCH_CHAR (pos));
1169 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1170 while (1) /* use one cursor setting as long as i can */
1171 {
1172 if (direction > 0) /* worth duplicating */
1173 {
1174 /* Use signed comparison if appropriate
1175 to make cursor+infinity sure to be > p_limit.
1176 Assuming that the buffer lies in a range of addresses
1177 that are all "positive" (as ints) or all "negative",
1178 either kind of comparison will work as long
1179 as we don't step by infinity. So pick the kind
1180 that works when we do step by infinity. */
1181 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1182 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1183 cursor += BM_tab[*cursor];
1184 else
1185 while ((unsigned EMACS_INT) cursor <= (unsigned EMACS_INT) p_limit)
1186 cursor += BM_tab[*cursor];
1187 }
1188 else
1189 {
1190 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1191 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1192 cursor += BM_tab[*cursor];
1193 else
1194 while ((unsigned EMACS_INT) cursor >= (unsigned EMACS_INT) p_limit)
1195 cursor += BM_tab[*cursor];
1196 }
1197 /* If you are here, cursor is beyond the end of the searched region. */
1198 /* This can happen if you match on the far character of the pattern, */
1199 /* because the "stride" of that character is infinity, a number able */
1200 /* to throw you well beyond the end of the search. It can also */
1201 /* happen if you fail to match within the permitted region and would */
1202 /* otherwise try a character beyond that region */
1203 if ((cursor - p_limit) * direction <= len)
1204 break; /* a small overrun is genuine */
1205 cursor -= infinity; /* large overrun = hit */
1206 i = dirlen - direction;
1207 if (trt != 0)
1208 {
1209 while ((i -= direction) + direction != 0)
1210 if (pat[i] != trt[*(cursor -= direction)])
1211 break;
1212 }
1213 else
1214 {
1215 while ((i -= direction) + direction != 0)
1216 if (pat[i] != *(cursor -= direction))
1217 break;
1218 }
1219 cursor += dirlen - i - direction; /* fix cursor */
1220 if (i + direction == 0)
1221 {
1222 cursor -= direction;
1223
1224 set_search_regs (pos + cursor - p2 + ((direction > 0)
1225 ? 1 - len : 0),
1226 len);
1227
1228 if ((n -= direction) != 0)
1229 cursor += dirlen; /* to resume search */
1230 else
1231 return ((direction > 0)
1232 ? search_regs.end[0] : search_regs.start[0]);
1233 }
1234 else
1235 cursor += stride_for_teases; /* <sigh> we lose - */
1236 }
1237 pos += cursor - p2;
1238 }
1239 else
1240 /* Now we'll pick up a clump that has to be done the hard */
1241 /* way because it covers a discontinuity */
1242 {
1243 limit = ((direction > 0)
1244 ? BUFFER_CEILING_OF (pos - dirlen + 1)
1245 : BUFFER_FLOOR_OF (pos - dirlen - 1));
1246 limit = ((direction > 0)
1247 ? min (limit + len, lim - 1)
1248 : max (limit - len, lim));
1249 /* LIMIT is now the last value POS can have
1250 and still be valid for a possible match. */
1251 while (1)
1252 {
1253 /* This loop can be coded for space rather than */
1254 /* speed because it will usually run only once. */
1255 /* (the reach is at most len + 21, and typically */
1256 /* does not exceed len) */
1257 while ((limit - pos) * direction >= 0)
1258 pos += BM_tab[FETCH_CHAR(pos)];
1259 /* now run the same tests to distinguish going off the */
1260 /* end, a match or a phony match. */
1261 if ((pos - limit) * direction <= len)
1262 break; /* ran off the end */
1263 /* Found what might be a match.
1264 Set POS back to last (first if reverse) char pos. */
1265 pos -= infinity;
1266 i = dirlen - direction;
1267 while ((i -= direction) + direction != 0)
1268 {
1269 pos -= direction;
1270 if (pat[i] != (trt != 0
1271 ? trt[FETCH_CHAR(pos)]
1272 : FETCH_CHAR (pos)))
1273 break;
1274 }
1275 /* Above loop has moved POS part or all the way
1276 back to the first char pos (last char pos if reverse).
1277 Set it once again at the last (first if reverse) char. */
1278 pos += dirlen - i- direction;
1279 if (i + direction == 0)
1280 {
1281 pos -= direction;
1282
1283 set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
1284 len);
1285
1286 if ((n -= direction) != 0)
1287 pos += dirlen; /* to resume search */
1288 else
1289 return ((direction > 0)
1290 ? search_regs.end[0] : search_regs.start[0]);
1291 }
1292 else
1293 pos += stride_for_teases;
1294 }
1295 }
1296 /* We have done one clump. Can we continue? */
1297 if ((lim - pos) * direction < 0)
1298 return ((0 - n) * direction);
1299 }
1300 return pos;
1301 }
1302 }
1303
1304 /* Record beginning BEG and end BEG + LEN
1305 for a match just found in the current buffer. */
1306
1307 static void
1308 set_search_regs (beg, len)
1309 int beg, len;
1310 {
1311 /* Make sure we have registers in which to store
1312 the match position. */
1313 if (search_regs.num_regs == 0)
1314 {
1315 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1316 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1317 search_regs.num_regs = 2;
1318 }
1319
1320 search_regs.start[0] = beg;
1321 search_regs.end[0] = beg + len;
1322 XSETBUFFER (last_thing_searched, current_buffer);
1323 }
1324 \f
1325 /* Given a string of words separated by word delimiters,
1326 compute a regexp that matches those exact words
1327 separated by arbitrary punctuation. */
1328
1329 static Lisp_Object
1330 wordify (string)
1331 Lisp_Object string;
1332 {
1333 register unsigned char *p, *o;
1334 register int i, len, punct_count = 0, word_count = 0;
1335 Lisp_Object val;
1336
1337 CHECK_STRING (string, 0);
1338 p = XSTRING (string)->data;
1339 len = XSTRING (string)->size;
1340
1341 for (i = 0; i < len; i++)
1342 if (SYNTAX (p[i]) != Sword)
1343 {
1344 punct_count++;
1345 if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
1346 }
1347 if (SYNTAX (p[len-1]) == Sword) word_count++;
1348 if (!word_count) return build_string ("");
1349
1350 val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
1351
1352 o = XSTRING (val)->data;
1353 *o++ = '\\';
1354 *o++ = 'b';
1355
1356 for (i = 0; i < len; i++)
1357 if (SYNTAX (p[i]) == Sword)
1358 *o++ = p[i];
1359 else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
1360 {
1361 *o++ = '\\';
1362 *o++ = 'W';
1363 *o++ = '\\';
1364 *o++ = 'W';
1365 *o++ = '*';
1366 }
1367
1368 *o++ = '\\';
1369 *o++ = 'b';
1370
1371 return val;
1372 }
1373 \f
1374 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
1375 "sSearch backward: ",
1376 "Search backward from point for STRING.\n\
1377 Set point to the beginning of the occurrence found, and return point.\n\
1378 An optional second argument bounds the search; it is a buffer position.\n\
1379 The match found must not extend before that position.\n\
1380 Optional third argument, if t, means if fail just return nil (no error).\n\
1381 If not nil and not t, position at limit of search and return nil.\n\
1382 Optional fourth argument is repeat count--search for successive occurrences.\n\
1383 See also the functions `match-beginning', `match-end' and `replace-match'.")
1384 (string, bound, noerror, count)
1385 Lisp_Object string, bound, noerror, count;
1386 {
1387 return search_command (string, bound, noerror, count, -1, 0, 0);
1388 }
1389
1390 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
1391 "Search forward from point for STRING.\n\
1392 Set point to the end of the occurrence found, and return point.\n\
1393 An optional second argument bounds the search; it is a buffer position.\n\
1394 The match found must not extend after that position. nil is equivalent\n\
1395 to (point-max).\n\
1396 Optional third argument, if t, means if fail just return nil (no error).\n\
1397 If not nil and not t, move to limit of search and return nil.\n\
1398 Optional fourth argument is repeat count--search for successive occurrences.\n\
1399 See also the functions `match-beginning', `match-end' and `replace-match'.")
1400 (string, bound, noerror, count)
1401 Lisp_Object string, bound, noerror, count;
1402 {
1403 return search_command (string, bound, noerror, count, 1, 0, 0);
1404 }
1405
1406 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
1407 "sWord search backward: ",
1408 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1409 Set point to the beginning of the occurrence found, and return point.\n\
1410 An optional second argument bounds the search; it is a buffer position.\n\
1411 The match found must not extend before that position.\n\
1412 Optional third argument, if t, means if fail just return nil (no error).\n\
1413 If not nil and not t, move to limit of search and return nil.\n\
1414 Optional fourth argument is repeat count--search for successive occurrences.")
1415 (string, bound, noerror, count)
1416 Lisp_Object string, bound, noerror, count;
1417 {
1418 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
1419 }
1420
1421 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
1422 "sWord search: ",
1423 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1424 Set point to the end of the occurrence found, and return point.\n\
1425 An optional second argument bounds the search; it is a buffer position.\n\
1426 The match found must not extend after that position.\n\
1427 Optional third argument, if t, means if fail just return nil (no error).\n\
1428 If not nil and not t, move to limit of search and return nil.\n\
1429 Optional fourth argument is repeat count--search for successive occurrences.")
1430 (string, bound, noerror, count)
1431 Lisp_Object string, bound, noerror, count;
1432 {
1433 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
1434 }
1435
1436 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
1437 "sRE search backward: ",
1438 "Search backward from point for match for regular expression REGEXP.\n\
1439 Set point to the beginning of the match, and return point.\n\
1440 The match found is the one starting last in the buffer\n\
1441 and yet ending before the origin of the search.\n\
1442 An optional second argument bounds the search; it is a buffer position.\n\
1443 The match found must start at or after that position.\n\
1444 Optional third argument, if t, means if fail just return nil (no error).\n\
1445 If not nil and not t, move to limit of search and return nil.\n\
1446 Optional fourth argument is repeat count--search for successive occurrences.\n\
1447 See also the functions `match-beginning', `match-end' and `replace-match'.")
1448 (regexp, bound, noerror, count)
1449 Lisp_Object regexp, bound, noerror, count;
1450 {
1451 return search_command (regexp, bound, noerror, count, -1, 1, 0);
1452 }
1453
1454 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
1455 "sRE search: ",
1456 "Search forward from point for regular expression REGEXP.\n\
1457 Set point to the end of the occurrence found, and return point.\n\
1458 An optional second argument bounds the search; it is a buffer position.\n\
1459 The match found must not extend after that position.\n\
1460 Optional third argument, if t, means if fail just return nil (no error).\n\
1461 If not nil and not t, move to limit of search and return nil.\n\
1462 Optional fourth argument is repeat count--search for successive occurrences.\n\
1463 See also the functions `match-beginning', `match-end' and `replace-match'.")
1464 (regexp, bound, noerror, count)
1465 Lisp_Object regexp, bound, noerror, count;
1466 {
1467 return search_command (regexp, bound, noerror, count, 1, 1, 0);
1468 }
1469
1470 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
1471 "sPosix search backward: ",
1472 "Search backward from point for match for regular expression REGEXP.\n\
1473 Find the longest match in accord with Posix regular expression rules.\n\
1474 Set point to the beginning of the match, and return point.\n\
1475 The match found is the one starting last in the buffer\n\
1476 and yet ending before the origin of the search.\n\
1477 An optional second argument bounds the search; it is a buffer position.\n\
1478 The match found must start at or after that position.\n\
1479 Optional third argument, if t, means if fail just return nil (no error).\n\
1480 If not nil and not t, move to limit of search and return nil.\n\
1481 Optional fourth argument is repeat count--search for successive occurrences.\n\
1482 See also the functions `match-beginning', `match-end' and `replace-match'.")
1483 (regexp, bound, noerror, count)
1484 Lisp_Object regexp, bound, noerror, count;
1485 {
1486 return search_command (regexp, bound, noerror, count, -1, 1, 1);
1487 }
1488
1489 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
1490 "sPosix search: ",
1491 "Search forward from point for regular expression REGEXP.\n\
1492 Find the longest match in accord with Posix regular expression rules.\n\
1493 Set point to the end of the occurrence found, and return point.\n\
1494 An optional second argument bounds the search; it is a buffer position.\n\
1495 The match found must not extend after that position.\n\
1496 Optional third argument, if t, means if fail just return nil (no error).\n\
1497 If not nil and not t, move to limit of search and return nil.\n\
1498 Optional fourth argument is repeat count--search for successive occurrences.\n\
1499 See also the functions `match-beginning', `match-end' and `replace-match'.")
1500 (regexp, bound, noerror, count)
1501 Lisp_Object regexp, bound, noerror, count;
1502 {
1503 return search_command (regexp, bound, noerror, count, 1, 1, 1);
1504 }
1505 \f
1506 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
1507 "Replace text matched by last search with NEWTEXT.\n\
1508 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
1509 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
1510 based on the replaced text.\n\
1511 If the replaced text has only capital letters\n\
1512 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
1513 If the replaced text has at least one word starting with a capital letter,\n\
1514 then capitalize each word in NEWTEXT.\n\n\
1515 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1516 Otherwise treat `\\' as special:\n\
1517 `\\&' in NEWTEXT means substitute original matched text.\n\
1518 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1519 If Nth parens didn't match, substitute nothing.\n\
1520 `\\\\' means insert one `\\'.\n\
1521 FIXEDCASE and LITERAL are optional arguments.\n\
1522 Leaves point at end of replacement text.\n\
1523 \n\
1524 The optional fourth argument STRING can be a string to modify.\n\
1525 In that case, this function creates and returns a new string\n\
1526 which is made by replacing the part of STRING that was matched.\n\
1527 \n\
1528 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
1529 It says to replace just that subexpression instead of the whole match.\n\
1530 This is useful only after a regular expression search or match\n\
1531 since only regular expressions have distinguished subexpressions.")
1532 (newtext, fixedcase, literal, string, subexp)
1533 Lisp_Object newtext, fixedcase, literal, string, subexp;
1534 {
1535 enum { nochange, all_caps, cap_initial } case_action;
1536 register int pos, last;
1537 int some_multiletter_word;
1538 int some_lowercase;
1539 int some_uppercase;
1540 int some_nonuppercase_initial;
1541 register int c, prevc;
1542 int inslen;
1543 int sub;
1544
1545 CHECK_STRING (newtext, 0);
1546
1547 if (! NILP (string))
1548 CHECK_STRING (string, 4);
1549
1550 case_action = nochange; /* We tried an initialization */
1551 /* but some C compilers blew it */
1552
1553 if (search_regs.num_regs <= 0)
1554 error ("replace-match called before any match found");
1555
1556 if (NILP (subexp))
1557 sub = 0;
1558 else
1559 {
1560 CHECK_NUMBER (subexp, 3);
1561 sub = XINT (subexp);
1562 if (sub < 0 || sub >= search_regs.num_regs)
1563 args_out_of_range (subexp, make_number (search_regs.num_regs));
1564 }
1565
1566 if (NILP (string))
1567 {
1568 if (search_regs.start[sub] < BEGV
1569 || search_regs.start[sub] > search_regs.end[sub]
1570 || search_regs.end[sub] > ZV)
1571 args_out_of_range (make_number (search_regs.start[sub]),
1572 make_number (search_regs.end[sub]));
1573 }
1574 else
1575 {
1576 if (search_regs.start[sub] < 0
1577 || search_regs.start[sub] > search_regs.end[sub]
1578 || search_regs.end[sub] > XSTRING (string)->size)
1579 args_out_of_range (make_number (search_regs.start[sub]),
1580 make_number (search_regs.end[sub]));
1581 }
1582
1583 if (NILP (fixedcase))
1584 {
1585 /* Decide how to casify by examining the matched text. */
1586
1587 last = search_regs.end[sub];
1588 prevc = '\n';
1589 case_action = all_caps;
1590
1591 /* some_multiletter_word is set nonzero if any original word
1592 is more than one letter long. */
1593 some_multiletter_word = 0;
1594 some_lowercase = 0;
1595 some_nonuppercase_initial = 0;
1596 some_uppercase = 0;
1597
1598 for (pos = search_regs.start[sub]; pos < last; pos++)
1599 {
1600 if (NILP (string))
1601 c = FETCH_CHAR (pos);
1602 else
1603 c = XSTRING (string)->data[pos];
1604
1605 if (LOWERCASEP (c))
1606 {
1607 /* Cannot be all caps if any original char is lower case */
1608
1609 some_lowercase = 1;
1610 if (SYNTAX (prevc) != Sword)
1611 some_nonuppercase_initial = 1;
1612 else
1613 some_multiletter_word = 1;
1614 }
1615 else if (!NOCASEP (c))
1616 {
1617 some_uppercase = 1;
1618 if (SYNTAX (prevc) != Sword)
1619 ;
1620 else
1621 some_multiletter_word = 1;
1622 }
1623 else
1624 {
1625 /* If the initial is a caseless word constituent,
1626 treat that like a lowercase initial. */
1627 if (SYNTAX (prevc) != Sword)
1628 some_nonuppercase_initial = 1;
1629 }
1630
1631 prevc = c;
1632 }
1633
1634 /* Convert to all caps if the old text is all caps
1635 and has at least one multiletter word. */
1636 if (! some_lowercase && some_multiletter_word)
1637 case_action = all_caps;
1638 /* Capitalize each word, if the old text has all capitalized words. */
1639 else if (!some_nonuppercase_initial && some_multiletter_word)
1640 case_action = cap_initial;
1641 else if (!some_nonuppercase_initial && some_uppercase)
1642 /* Should x -> yz, operating on X, give Yz or YZ?
1643 We'll assume the latter. */
1644 case_action = all_caps;
1645 else
1646 case_action = nochange;
1647 }
1648
1649 /* Do replacement in a string. */
1650 if (!NILP (string))
1651 {
1652 Lisp_Object before, after;
1653
1654 before = Fsubstring (string, make_number (0),
1655 make_number (search_regs.start[sub]));
1656 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
1657
1658 /* Do case substitution into NEWTEXT if desired. */
1659 if (NILP (literal))
1660 {
1661 int lastpos = -1;
1662 /* We build up the substituted string in ACCUM. */
1663 Lisp_Object accum;
1664 Lisp_Object middle;
1665
1666 accum = Qnil;
1667
1668 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1669 {
1670 int substart = -1;
1671 int subend;
1672 int delbackslash = 0;
1673
1674 c = XSTRING (newtext)->data[pos];
1675 if (c == '\\')
1676 {
1677 c = XSTRING (newtext)->data[++pos];
1678 if (c == '&')
1679 {
1680 substart = search_regs.start[sub];
1681 subend = search_regs.end[sub];
1682 }
1683 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1684 {
1685 if (search_regs.start[c - '0'] >= 0)
1686 {
1687 substart = search_regs.start[c - '0'];
1688 subend = search_regs.end[c - '0'];
1689 }
1690 }
1691 else if (c == '\\')
1692 delbackslash = 1;
1693 }
1694 if (substart >= 0)
1695 {
1696 if (pos - 1 != lastpos + 1)
1697 middle = Fsubstring (newtext,
1698 make_number (lastpos + 1),
1699 make_number (pos - 1));
1700 else
1701 middle = Qnil;
1702 accum = concat3 (accum, middle,
1703 Fsubstring (string, make_number (substart),
1704 make_number (subend)));
1705 lastpos = pos;
1706 }
1707 else if (delbackslash)
1708 {
1709 middle = Fsubstring (newtext, make_number (lastpos + 1),
1710 make_number (pos));
1711 accum = concat2 (accum, middle);
1712 lastpos = pos;
1713 }
1714 }
1715
1716 if (pos != lastpos + 1)
1717 middle = Fsubstring (newtext, make_number (lastpos + 1),
1718 make_number (pos));
1719 else
1720 middle = Qnil;
1721
1722 newtext = concat2 (accum, middle);
1723 }
1724
1725 if (case_action == all_caps)
1726 newtext = Fupcase (newtext);
1727 else if (case_action == cap_initial)
1728 newtext = Fupcase_initials (newtext);
1729
1730 return concat3 (before, newtext, after);
1731 }
1732
1733 /* We insert the replacement text before the old text, and then
1734 delete the original text. This means that markers at the
1735 beginning or end of the original will float to the corresponding
1736 position in the replacement. */
1737 SET_PT (search_regs.start[sub]);
1738 if (!NILP (literal))
1739 Finsert_and_inherit (1, &newtext);
1740 else
1741 {
1742 struct gcpro gcpro1;
1743 GCPRO1 (newtext);
1744
1745 for (pos = 0; pos < XSTRING (newtext)->size; pos++)
1746 {
1747 int offset = point - search_regs.start[sub];
1748
1749 c = XSTRING (newtext)->data[pos];
1750 if (c == '\\')
1751 {
1752 c = XSTRING (newtext)->data[++pos];
1753 if (c == '&')
1754 Finsert_buffer_substring
1755 (Fcurrent_buffer (),
1756 make_number (search_regs.start[sub] + offset),
1757 make_number (search_regs.end[sub] + offset));
1758 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
1759 {
1760 if (search_regs.start[c - '0'] >= 1)
1761 Finsert_buffer_substring
1762 (Fcurrent_buffer (),
1763 make_number (search_regs.start[c - '0'] + offset),
1764 make_number (search_regs.end[c - '0'] + offset));
1765 }
1766 else
1767 insert_char (c);
1768 }
1769 else
1770 insert_char (c);
1771 }
1772 UNGCPRO;
1773 }
1774
1775 inslen = point - (search_regs.start[sub]);
1776 del_range (search_regs.start[sub] + inslen, search_regs.end[sub] + inslen);
1777
1778 if (case_action == all_caps)
1779 Fupcase_region (make_number (point - inslen), make_number (point));
1780 else if (case_action == cap_initial)
1781 Fupcase_initials_region (make_number (point - inslen), make_number (point));
1782 return Qnil;
1783 }
1784 \f
1785 static Lisp_Object
1786 match_limit (num, beginningp)
1787 Lisp_Object num;
1788 int beginningp;
1789 {
1790 register int n;
1791
1792 CHECK_NUMBER (num, 0);
1793 n = XINT (num);
1794 if (n < 0 || n >= search_regs.num_regs)
1795 args_out_of_range (num, make_number (search_regs.num_regs));
1796 if (search_regs.num_regs <= 0
1797 || search_regs.start[n] < 0)
1798 return Qnil;
1799 return (make_number ((beginningp) ? search_regs.start[n]
1800 : search_regs.end[n]));
1801 }
1802
1803 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
1804 "Return position of start of text matched by last search.\n\
1805 NUM specifies which parenthesized expression in the last regexp.\n\
1806 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
1807 Zero means the entire text matched by the whole regexp or whole string.")
1808 (num)
1809 Lisp_Object num;
1810 {
1811 return match_limit (num, 1);
1812 }
1813
1814 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
1815 "Return position of end of text matched by last search.\n\
1816 ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1817 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1818 Zero means the entire text matched by the whole regexp or whole string.")
1819 (num)
1820 Lisp_Object num;
1821 {
1822 return match_limit (num, 0);
1823 }
1824
1825 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
1826 "Return a list containing all info on what the last search matched.\n\
1827 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1828 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1829 if the last match was on a buffer; integers or nil if a string was matched.\n\
1830 Use `store-match-data' to reinstate the data in this list.")
1831 ()
1832 {
1833 Lisp_Object *data;
1834 int i, len;
1835
1836 if (NILP (last_thing_searched))
1837 error ("match-data called before any match found");
1838
1839 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
1840 * sizeof (Lisp_Object));
1841
1842 len = -1;
1843 for (i = 0; i < search_regs.num_regs; i++)
1844 {
1845 int start = search_regs.start[i];
1846 if (start >= 0)
1847 {
1848 if (EQ (last_thing_searched, Qt))
1849 {
1850 XSETFASTINT (data[2 * i], start);
1851 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
1852 }
1853 else if (BUFFERP (last_thing_searched))
1854 {
1855 data[2 * i] = Fmake_marker ();
1856 Fset_marker (data[2 * i],
1857 make_number (start),
1858 last_thing_searched);
1859 data[2 * i + 1] = Fmake_marker ();
1860 Fset_marker (data[2 * i + 1],
1861 make_number (search_regs.end[i]),
1862 last_thing_searched);
1863 }
1864 else
1865 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1866 abort ();
1867
1868 len = i;
1869 }
1870 else
1871 data[2 * i] = data [2 * i + 1] = Qnil;
1872 }
1873 return Flist (2 * len + 2, data);
1874 }
1875
1876
1877 DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
1878 "Set internal data on last search match from elements of LIST.\n\
1879 LIST should have been created by calling `match-data' previously.")
1880 (list)
1881 register Lisp_Object list;
1882 {
1883 register int i;
1884 register Lisp_Object marker;
1885
1886 if (running_asynch_code)
1887 save_search_regs ();
1888
1889 if (!CONSP (list) && !NILP (list))
1890 list = wrong_type_argument (Qconsp, list);
1891
1892 /* Unless we find a marker with a buffer in LIST, assume that this
1893 match data came from a string. */
1894 last_thing_searched = Qt;
1895
1896 /* Allocate registers if they don't already exist. */
1897 {
1898 int length = XFASTINT (Flength (list)) / 2;
1899
1900 if (length > search_regs.num_regs)
1901 {
1902 if (search_regs.num_regs == 0)
1903 {
1904 search_regs.start
1905 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1906 search_regs.end
1907 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
1908 }
1909 else
1910 {
1911 search_regs.start
1912 = (regoff_t *) xrealloc (search_regs.start,
1913 length * sizeof (regoff_t));
1914 search_regs.end
1915 = (regoff_t *) xrealloc (search_regs.end,
1916 length * sizeof (regoff_t));
1917 }
1918
1919 search_regs.num_regs = length;
1920 }
1921 }
1922
1923 for (i = 0; i < search_regs.num_regs; i++)
1924 {
1925 marker = Fcar (list);
1926 if (NILP (marker))
1927 {
1928 search_regs.start[i] = -1;
1929 list = Fcdr (list);
1930 }
1931 else
1932 {
1933 if (MARKERP (marker))
1934 {
1935 if (XMARKER (marker)->buffer == 0)
1936 XSETFASTINT (marker, 0);
1937 else
1938 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
1939 }
1940
1941 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1942 search_regs.start[i] = XINT (marker);
1943 list = Fcdr (list);
1944
1945 marker = Fcar (list);
1946 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
1947 XSETFASTINT (marker, 0);
1948
1949 CHECK_NUMBER_COERCE_MARKER (marker, 0);
1950 search_regs.end[i] = XINT (marker);
1951 }
1952 list = Fcdr (list);
1953 }
1954
1955 return Qnil;
1956 }
1957
1958 /* If non-zero the match data have been saved in saved_search_regs
1959 during the execution of a sentinel or filter. */
1960 static int search_regs_saved;
1961 static struct re_registers saved_search_regs;
1962
1963 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
1964 if asynchronous code (filter or sentinel) is running. */
1965 static void
1966 save_search_regs ()
1967 {
1968 if (!search_regs_saved)
1969 {
1970 saved_search_regs.num_regs = search_regs.num_regs;
1971 saved_search_regs.start = search_regs.start;
1972 saved_search_regs.end = search_regs.end;
1973 search_regs.num_regs = 0;
1974 search_regs.start = 0;
1975 search_regs.end = 0;
1976
1977 search_regs_saved = 1;
1978 }
1979 }
1980
1981 /* Called upon exit from filters and sentinels. */
1982 void
1983 restore_match_data ()
1984 {
1985 if (search_regs_saved)
1986 {
1987 if (search_regs.num_regs > 0)
1988 {
1989 xfree (search_regs.start);
1990 xfree (search_regs.end);
1991 }
1992 search_regs.num_regs = saved_search_regs.num_regs;
1993 search_regs.start = saved_search_regs.start;
1994 search_regs.end = saved_search_regs.end;
1995
1996 search_regs_saved = 0;
1997 }
1998 }
1999
2000 /* Quote a string to inactivate reg-expr chars */
2001
2002 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2003 "Return a regexp string which matches exactly STRING and nothing else.")
2004 (str)
2005 Lisp_Object str;
2006 {
2007 register unsigned char *in, *out, *end;
2008 register unsigned char *temp;
2009
2010 CHECK_STRING (str, 0);
2011
2012 temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
2013
2014 /* Now copy the data into the new string, inserting escapes. */
2015
2016 in = XSTRING (str)->data;
2017 end = in + XSTRING (str)->size;
2018 out = temp;
2019
2020 for (; in != end; in++)
2021 {
2022 if (*in == '[' || *in == ']'
2023 || *in == '*' || *in == '.' || *in == '\\'
2024 || *in == '?' || *in == '+'
2025 || *in == '^' || *in == '$')
2026 *out++ = '\\';
2027 *out++ = *in;
2028 }
2029
2030 return make_string (temp, out - temp);
2031 }
2032 \f
2033 syms_of_search ()
2034 {
2035 register int i;
2036
2037 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2038 {
2039 searchbufs[i].buf.allocated = 100;
2040 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2041 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2042 searchbufs[i].regexp = Qnil;
2043 staticpro (&searchbufs[i].regexp);
2044 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2045 }
2046 searchbuf_head = &searchbufs[0];
2047
2048 Qsearch_failed = intern ("search-failed");
2049 staticpro (&Qsearch_failed);
2050 Qinvalid_regexp = intern ("invalid-regexp");
2051 staticpro (&Qinvalid_regexp);
2052
2053 Fput (Qsearch_failed, Qerror_conditions,
2054 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2055 Fput (Qsearch_failed, Qerror_message,
2056 build_string ("Search failed"));
2057
2058 Fput (Qinvalid_regexp, Qerror_conditions,
2059 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2060 Fput (Qinvalid_regexp, Qerror_message,
2061 build_string ("Invalid regexp"));
2062
2063 last_thing_searched = Qnil;
2064 staticpro (&last_thing_searched);
2065
2066 defsubr (&Slooking_at);
2067 defsubr (&Sposix_looking_at);
2068 defsubr (&Sstring_match);
2069 defsubr (&Sposix_string_match);
2070 defsubr (&Sskip_chars_forward);
2071 defsubr (&Sskip_chars_backward);
2072 defsubr (&Sskip_syntax_forward);
2073 defsubr (&Sskip_syntax_backward);
2074 defsubr (&Ssearch_forward);
2075 defsubr (&Ssearch_backward);
2076 defsubr (&Sword_search_forward);
2077 defsubr (&Sword_search_backward);
2078 defsubr (&Sre_search_forward);
2079 defsubr (&Sre_search_backward);
2080 defsubr (&Sposix_search_forward);
2081 defsubr (&Sposix_search_backward);
2082 defsubr (&Sreplace_match);
2083 defsubr (&Smatch_beginning);
2084 defsubr (&Smatch_end);
2085 defsubr (&Smatch_data);
2086 defsubr (&Sstore_match_data);
2087 defsubr (&Sregexp_quote);
2088 }