Merge from trunk.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2011 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <ctype.h>
48 #include <float.h>
49 #include <limits.h>
50 #include <intprops.h>
51 #include <strftime.h>
52 #include <verify.h>
53
54 #include "intervals.h"
55 #include "buffer.h"
56 #include "character.h"
57 #include "coding.h"
58 #include "frame.h"
59 #include "window.h"
60 #include "blockinput.h"
61
62 #ifndef NULL
63 #define NULL 0
64 #endif
65
66 #ifndef USER_FULL_NAME
67 #define USER_FULL_NAME pw->pw_gecos
68 #endif
69
70 #ifndef USE_CRT_DLL
71 extern char **environ;
72 #endif
73
74 #define TM_YEAR_BASE 1900
75
76 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
77 asctime to have well-defined behavior. */
78 #ifndef TM_YEAR_IN_ASCTIME_RANGE
79 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
80 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
81 #endif
82
83 #ifdef WINDOWSNT
84 extern Lisp_Object w32_get_internal_run_time (void);
85 #endif
86
87 static void time_overflow (void) NO_RETURN;
88 static int tm_diff (struct tm *, struct tm *);
89 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
90
91 static Lisp_Object Qbuffer_access_fontify_functions;
92 static Lisp_Object Fuser_full_name (Lisp_Object);
93
94 /* Symbol for the text property used to mark fields. */
95
96 Lisp_Object Qfield;
97
98 /* A special value for Qfield properties. */
99
100 static Lisp_Object Qboundary;
101
102
103 void
104 init_editfns (void)
105 {
106 const char *user_name;
107 register char *p;
108 struct passwd *pw; /* password entry for the current user */
109 Lisp_Object tem;
110
111 /* Set up system_name even when dumping. */
112 init_system_name ();
113
114 #ifndef CANNOT_DUMP
115 /* Don't bother with this on initial start when just dumping out */
116 if (!initialized)
117 return;
118 #endif /* not CANNOT_DUMP */
119
120 pw = getpwuid (getuid ());
121 #ifdef MSDOS
122 /* We let the real user name default to "root" because that's quite
123 accurate on MSDOG and because it lets Emacs find the init file.
124 (The DVX libraries override the Djgpp libraries here.) */
125 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
126 #else
127 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
128 #endif
129
130 /* Get the effective user name, by consulting environment variables,
131 or the effective uid if those are unset. */
132 user_name = getenv ("LOGNAME");
133 if (!user_name)
134 #ifdef WINDOWSNT
135 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
136 #else /* WINDOWSNT */
137 user_name = getenv ("USER");
138 #endif /* WINDOWSNT */
139 if (!user_name)
140 {
141 pw = getpwuid (geteuid ());
142 user_name = pw ? pw->pw_name : "unknown";
143 }
144 Vuser_login_name = build_string (user_name);
145
146 /* If the user name claimed in the environment vars differs from
147 the real uid, use the claimed name to find the full name. */
148 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
149 if (! NILP (tem))
150 tem = Vuser_login_name;
151 else
152 {
153 uid_t euid = geteuid ();
154 tem = make_fixnum_or_float (euid);
155 }
156 Vuser_full_name = Fuser_full_name (tem);
157
158 p = getenv ("NAME");
159 if (p)
160 Vuser_full_name = build_string (p);
161 else if (NILP (Vuser_full_name))
162 Vuser_full_name = build_string ("unknown");
163
164 #ifdef HAVE_SYS_UTSNAME_H
165 {
166 struct utsname uts;
167 uname (&uts);
168 Voperating_system_release = build_string (uts.release);
169 }
170 #else
171 Voperating_system_release = Qnil;
172 #endif
173 }
174 \f
175 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
176 doc: /* Convert arg CHAR to a string containing that character.
177 usage: (char-to-string CHAR) */)
178 (Lisp_Object character)
179 {
180 int c, len;
181 unsigned char str[MAX_MULTIBYTE_LENGTH];
182
183 CHECK_CHARACTER (character);
184 c = XFASTINT (character);
185
186 len = CHAR_STRING (c, str);
187 return make_string_from_bytes ((char *) str, 1, len);
188 }
189
190 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
191 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
192 (Lisp_Object byte)
193 {
194 unsigned char b;
195 CHECK_NUMBER (byte);
196 if (XINT (byte) < 0 || XINT (byte) > 255)
197 error ("Invalid byte");
198 b = XINT (byte);
199 return make_string_from_bytes ((char *) &b, 1, 1);
200 }
201
202 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
203 doc: /* Return the first character in STRING. */)
204 (register Lisp_Object string)
205 {
206 register Lisp_Object val;
207 CHECK_STRING (string);
208 if (SCHARS (string))
209 {
210 if (STRING_MULTIBYTE (string))
211 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
212 else
213 XSETFASTINT (val, SREF (string, 0));
214 }
215 else
216 XSETFASTINT (val, 0);
217 return val;
218 }
219 \f
220 static Lisp_Object
221 buildmark (ptrdiff_t charpos, ptrdiff_t bytepos)
222 {
223 register Lisp_Object mark;
224 mark = Fmake_marker ();
225 set_marker_both (mark, Qnil, charpos, bytepos);
226 return mark;
227 }
228
229 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
230 doc: /* Return value of point, as an integer.
231 Beginning of buffer is position (point-min). */)
232 (void)
233 {
234 Lisp_Object temp;
235 XSETFASTINT (temp, PT);
236 return temp;
237 }
238
239 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
240 doc: /* Return value of point, as a marker object. */)
241 (void)
242 {
243 return buildmark (PT, PT_BYTE);
244 }
245
246 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
247 doc: /* Set point to POSITION, a number or marker.
248 Beginning of buffer is position (point-min), end is (point-max).
249
250 The return value is POSITION. */)
251 (register Lisp_Object position)
252 {
253 ptrdiff_t pos;
254
255 if (MARKERP (position)
256 && current_buffer == XMARKER (position)->buffer)
257 {
258 pos = marker_position (position);
259 if (pos < BEGV)
260 SET_PT_BOTH (BEGV, BEGV_BYTE);
261 else if (pos > ZV)
262 SET_PT_BOTH (ZV, ZV_BYTE);
263 else
264 SET_PT_BOTH (pos, marker_byte_position (position));
265
266 return position;
267 }
268
269 CHECK_NUMBER_COERCE_MARKER (position);
270
271 pos = clip_to_bounds (BEGV, XINT (position), ZV);
272 SET_PT (pos);
273 return position;
274 }
275
276
277 /* Return the start or end position of the region.
278 BEGINNINGP non-zero means return the start.
279 If there is no region active, signal an error. */
280
281 static Lisp_Object
282 region_limit (int beginningp)
283 {
284 Lisp_Object m;
285
286 if (!NILP (Vtransient_mark_mode)
287 && NILP (Vmark_even_if_inactive)
288 && NILP (BVAR (current_buffer, mark_active)))
289 xsignal0 (Qmark_inactive);
290
291 m = Fmarker_position (BVAR (current_buffer, mark));
292 if (NILP (m))
293 error ("The mark is not set now, so there is no region");
294
295 if ((PT < XFASTINT (m)) == (beginningp != 0))
296 m = make_number (PT);
297 return m;
298 }
299
300 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
301 doc: /* Return the integer value of point or mark, whichever is smaller. */)
302 (void)
303 {
304 return region_limit (1);
305 }
306
307 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
308 doc: /* Return the integer value of point or mark, whichever is larger. */)
309 (void)
310 {
311 return region_limit (0);
312 }
313
314 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
315 doc: /* Return this buffer's mark, as a marker object.
316 Watch out! Moving this marker changes the mark position.
317 If you set the marker not to point anywhere, the buffer will have no mark. */)
318 (void)
319 {
320 return BVAR (current_buffer, mark);
321 }
322
323 \f
324 /* Find all the overlays in the current buffer that touch position POS.
325 Return the number found, and store them in a vector in VEC
326 of length LEN. */
327
328 static ptrdiff_t
329 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
330 {
331 Lisp_Object overlay, start, end;
332 struct Lisp_Overlay *tail;
333 ptrdiff_t startpos, endpos;
334 ptrdiff_t idx = 0;
335
336 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (endpos < pos)
343 break;
344 start = OVERLAY_START (overlay);
345 startpos = OVERLAY_POSITION (start);
346 if (startpos <= pos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 /* Keep counting overlays even if we can't return them all. */
351 idx++;
352 }
353 }
354
355 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
356 {
357 XSETMISC (overlay, tail);
358
359 start = OVERLAY_START (overlay);
360 startpos = OVERLAY_POSITION (start);
361 if (pos < startpos)
362 break;
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (pos <= endpos)
366 {
367 if (idx < len)
368 vec[idx] = overlay;
369 idx++;
370 }
371 }
372
373 return idx;
374 }
375
376 /* Return the value of property PROP, in OBJECT at POSITION.
377 It's the value of PROP that a char inserted at POSITION would get.
378 OBJECT is optional and defaults to the current buffer.
379 If OBJECT is a buffer, then overlay properties are considered as well as
380 text properties.
381 If OBJECT is a window, then that window's buffer is used, but
382 window-specific overlays are considered only if they are associated
383 with OBJECT. */
384 Lisp_Object
385 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
386 {
387 CHECK_NUMBER_COERCE_MARKER (position);
388
389 if (NILP (object))
390 XSETBUFFER (object, current_buffer);
391 else if (WINDOWP (object))
392 object = XWINDOW (object)->buffer;
393
394 if (!BUFFERP (object))
395 /* pos-property only makes sense in buffers right now, since strings
396 have no overlays and no notion of insertion for which stickiness
397 could be obeyed. */
398 return Fget_text_property (position, prop, object);
399 else
400 {
401 EMACS_INT posn = XINT (position);
402 ptrdiff_t noverlays;
403 Lisp_Object *overlay_vec, tem;
404 struct buffer *obuf = current_buffer;
405
406 set_buffer_temp (XBUFFER (object));
407
408 /* First try with room for 40 overlays. */
409 noverlays = 40;
410 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
411 noverlays = overlays_around (posn, overlay_vec, noverlays);
412
413 /* If there are more than 40,
414 make enough space for all, and try again. */
415 if (noverlays > 40)
416 {
417 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
418 noverlays = overlays_around (posn, overlay_vec, noverlays);
419 }
420 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
421
422 set_buffer_temp (obuf);
423
424 /* Now check the overlays in order of decreasing priority. */
425 while (--noverlays >= 0)
426 {
427 Lisp_Object ol = overlay_vec[noverlays];
428 tem = Foverlay_get (ol, prop);
429 if (!NILP (tem))
430 {
431 /* Check the overlay is indeed active at point. */
432 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
433 if ((OVERLAY_POSITION (start) == posn
434 && XMARKER (start)->insertion_type == 1)
435 || (OVERLAY_POSITION (finish) == posn
436 && XMARKER (finish)->insertion_type == 0))
437 ; /* The overlay will not cover a char inserted at point. */
438 else
439 {
440 return tem;
441 }
442 }
443 }
444
445 { /* Now check the text properties. */
446 int stickiness = text_property_stickiness (prop, position, object);
447 if (stickiness > 0)
448 return Fget_text_property (position, prop, object);
449 else if (stickiness < 0
450 && XINT (position) > BUF_BEGV (XBUFFER (object)))
451 return Fget_text_property (make_number (XINT (position) - 1),
452 prop, object);
453 else
454 return Qnil;
455 }
456 }
457 }
458
459 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
460 the value of point is used instead. If BEG or END is null,
461 means don't store the beginning or end of the field.
462
463 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
464 results; they do not effect boundary behavior.
465
466 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
467 position of a field, then the beginning of the previous field is
468 returned instead of the beginning of POS's field (since the end of a
469 field is actually also the beginning of the next input field, this
470 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
471 true case, if two fields are separated by a field with the special
472 value `boundary', and POS lies within it, then the two separated
473 fields are considered to be adjacent, and POS between them, when
474 finding the beginning and ending of the "merged" field.
475
476 Either BEG or END may be 0, in which case the corresponding value
477 is not stored. */
478
479 static void
480 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
481 Lisp_Object beg_limit,
482 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
483 {
484 /* Fields right before and after the point. */
485 Lisp_Object before_field, after_field;
486 /* 1 if POS counts as the start of a field. */
487 int at_field_start = 0;
488 /* 1 if POS counts as the end of a field. */
489 int at_field_end = 0;
490
491 if (NILP (pos))
492 XSETFASTINT (pos, PT);
493 else
494 CHECK_NUMBER_COERCE_MARKER (pos);
495
496 after_field
497 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
498 before_field
499 = (XFASTINT (pos) > BEGV
500 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
501 Qfield, Qnil, NULL)
502 /* Using nil here would be a more obvious choice, but it would
503 fail when the buffer starts with a non-sticky field. */
504 : after_field);
505
506 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
507 and POS is at beginning of a field, which can also be interpreted
508 as the end of the previous field. Note that the case where if
509 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
510 more natural one; then we avoid treating the beginning of a field
511 specially. */
512 if (NILP (merge_at_boundary))
513 {
514 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
515 if (!EQ (field, after_field))
516 at_field_end = 1;
517 if (!EQ (field, before_field))
518 at_field_start = 1;
519 if (NILP (field) && at_field_start && at_field_end)
520 /* If an inserted char would have a nil field while the surrounding
521 text is non-nil, we're probably not looking at a
522 zero-length field, but instead at a non-nil field that's
523 not intended for editing (such as comint's prompts). */
524 at_field_end = at_field_start = 0;
525 }
526
527 /* Note about special `boundary' fields:
528
529 Consider the case where the point (`.') is between the fields `x' and `y':
530
531 xxxx.yyyy
532
533 In this situation, if merge_at_boundary is true, we consider the
534 `x' and `y' fields as forming one big merged field, and so the end
535 of the field is the end of `y'.
536
537 However, if `x' and `y' are separated by a special `boundary' field
538 (a field with a `field' char-property of 'boundary), then we ignore
539 this special field when merging adjacent fields. Here's the same
540 situation, but with a `boundary' field between the `x' and `y' fields:
541
542 xxx.BBBByyyy
543
544 Here, if point is at the end of `x', the beginning of `y', or
545 anywhere in-between (within the `boundary' field), we merge all
546 three fields and consider the beginning as being the beginning of
547 the `x' field, and the end as being the end of the `y' field. */
548
549 if (beg)
550 {
551 if (at_field_start)
552 /* POS is at the edge of a field, and we should consider it as
553 the beginning of the following field. */
554 *beg = XFASTINT (pos);
555 else
556 /* Find the previous field boundary. */
557 {
558 Lisp_Object p = pos;
559 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
560 /* Skip a `boundary' field. */
561 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
562 beg_limit);
563
564 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
565 beg_limit);
566 *beg = NILP (p) ? BEGV : XFASTINT (p);
567 }
568 }
569
570 if (end)
571 {
572 if (at_field_end)
573 /* POS is at the edge of a field, and we should consider it as
574 the end of the previous field. */
575 *end = XFASTINT (pos);
576 else
577 /* Find the next field boundary. */
578 {
579 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
580 /* Skip a `boundary' field. */
581 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
582 end_limit);
583
584 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
585 end_limit);
586 *end = NILP (pos) ? ZV : XFASTINT (pos);
587 }
588 }
589 }
590
591 \f
592 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
593 doc: /* Delete the field surrounding POS.
594 A field is a region of text with the same `field' property.
595 If POS is nil, the value of point is used for POS. */)
596 (Lisp_Object pos)
597 {
598 ptrdiff_t beg, end;
599 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
600 if (beg != end)
601 del_range (beg, end);
602 return Qnil;
603 }
604
605 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
606 doc: /* Return the contents of the field surrounding POS as a string.
607 A field is a region of text with the same `field' property.
608 If POS is nil, the value of point is used for POS. */)
609 (Lisp_Object pos)
610 {
611 ptrdiff_t beg, end;
612 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
613 return make_buffer_string (beg, end, 1);
614 }
615
616 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
617 doc: /* Return the contents of the field around POS, without text properties.
618 A field is a region of text with the same `field' property.
619 If POS is nil, the value of point is used for POS. */)
620 (Lisp_Object pos)
621 {
622 ptrdiff_t beg, end;
623 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
624 return make_buffer_string (beg, end, 0);
625 }
626
627 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
628 doc: /* Return the beginning of the field surrounding POS.
629 A field is a region of text with the same `field' property.
630 If POS is nil, the value of point is used for POS.
631 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
632 field, then the beginning of the *previous* field is returned.
633 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
634 is before LIMIT, then LIMIT will be returned instead. */)
635 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
636 {
637 ptrdiff_t beg;
638 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
639 return make_number (beg);
640 }
641
642 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
643 doc: /* Return the end of the field surrounding POS.
644 A field is a region of text with the same `field' property.
645 If POS is nil, the value of point is used for POS.
646 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
647 then the end of the *following* field is returned.
648 If LIMIT is non-nil, it is a buffer position; if the end of the field
649 is after LIMIT, then LIMIT will be returned instead. */)
650 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
651 {
652 ptrdiff_t end;
653 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
654 return make_number (end);
655 }
656
657 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
658 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
659
660 A field is a region of text with the same `field' property.
661 If NEW-POS is nil, then the current point is used instead, and set to the
662 constrained position if that is different.
663
664 If OLD-POS is at the boundary of two fields, then the allowable
665 positions for NEW-POS depends on the value of the optional argument
666 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
667 constrained to the field that has the same `field' char-property
668 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
669 is non-nil, NEW-POS is constrained to the union of the two adjacent
670 fields. Additionally, if two fields are separated by another field with
671 the special value `boundary', then any point within this special field is
672 also considered to be `on the boundary'.
673
674 If the optional argument ONLY-IN-LINE is non-nil and constraining
675 NEW-POS would move it to a different line, NEW-POS is returned
676 unconstrained. This useful for commands that move by line, like
677 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
678 only in the case where they can still move to the right line.
679
680 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
681 a non-nil property of that name, then any field boundaries are ignored.
682
683 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
684 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
685 {
686 /* If non-zero, then the original point, before re-positioning. */
687 ptrdiff_t orig_point = 0;
688 int fwd;
689 Lisp_Object prev_old, prev_new;
690
691 if (NILP (new_pos))
692 /* Use the current point, and afterwards, set it. */
693 {
694 orig_point = PT;
695 XSETFASTINT (new_pos, PT);
696 }
697
698 CHECK_NUMBER_COERCE_MARKER (new_pos);
699 CHECK_NUMBER_COERCE_MARKER (old_pos);
700
701 fwd = (XINT (new_pos) > XINT (old_pos));
702
703 prev_old = make_number (XINT (old_pos) - 1);
704 prev_new = make_number (XINT (new_pos) - 1);
705
706 if (NILP (Vinhibit_field_text_motion)
707 && !EQ (new_pos, old_pos)
708 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
709 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
710 /* To recognize field boundaries, we must also look at the
711 previous positions; we could use `get_pos_property'
712 instead, but in itself that would fail inside non-sticky
713 fields (like comint prompts). */
714 || (XFASTINT (new_pos) > BEGV
715 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
716 || (XFASTINT (old_pos) > BEGV
717 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
718 && (NILP (inhibit_capture_property)
719 /* Field boundaries are again a problem; but now we must
720 decide the case exactly, so we need to call
721 `get_pos_property' as well. */
722 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
723 && (XFASTINT (old_pos) <= BEGV
724 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
725 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
726 /* It is possible that NEW_POS is not within the same field as
727 OLD_POS; try to move NEW_POS so that it is. */
728 {
729 ptrdiff_t shortage;
730 Lisp_Object field_bound;
731
732 if (fwd)
733 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
734 else
735 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
736
737 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
738 other side of NEW_POS, which would mean that NEW_POS is
739 already acceptable, and it's not necessary to constrain it
740 to FIELD_BOUND. */
741 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
742 /* NEW_POS should be constrained, but only if either
743 ONLY_IN_LINE is nil (in which case any constraint is OK),
744 or NEW_POS and FIELD_BOUND are on the same line (in which
745 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
746 && (NILP (only_in_line)
747 /* This is the ONLY_IN_LINE case, check that NEW_POS and
748 FIELD_BOUND are on the same line by seeing whether
749 there's an intervening newline or not. */
750 || (scan_buffer ('\n',
751 XFASTINT (new_pos), XFASTINT (field_bound),
752 fwd ? -1 : 1, &shortage, 1),
753 shortage != 0)))
754 /* Constrain NEW_POS to FIELD_BOUND. */
755 new_pos = field_bound;
756
757 if (orig_point && XFASTINT (new_pos) != orig_point)
758 /* The NEW_POS argument was originally nil, so automatically set PT. */
759 SET_PT (XFASTINT (new_pos));
760 }
761
762 return new_pos;
763 }
764
765 \f
766 DEFUN ("line-beginning-position",
767 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
768 doc: /* Return the character position of the first character on the current line.
769 With argument N not nil or 1, move forward N - 1 lines first.
770 If scan reaches end of buffer, return that position.
771
772 The returned position is of the first character in the logical order,
773 i.e. the one that has the smallest character position.
774
775 This function constrains the returned position to the current field
776 unless that would be on a different line than the original,
777 unconstrained result. If N is nil or 1, and a front-sticky field
778 starts at point, the scan stops as soon as it starts. To ignore field
779 boundaries bind `inhibit-field-text-motion' to t.
780
781 This function does not move point. */)
782 (Lisp_Object n)
783 {
784 ptrdiff_t orig, orig_byte, end;
785 ptrdiff_t count = SPECPDL_INDEX ();
786 specbind (Qinhibit_point_motion_hooks, Qt);
787
788 if (NILP (n))
789 XSETFASTINT (n, 1);
790 else
791 CHECK_NUMBER (n);
792
793 orig = PT;
794 orig_byte = PT_BYTE;
795 Fforward_line (make_number (XINT (n) - 1));
796 end = PT;
797
798 SET_PT_BOTH (orig, orig_byte);
799
800 unbind_to (count, Qnil);
801
802 /* Return END constrained to the current input field. */
803 return Fconstrain_to_field (make_number (end), make_number (orig),
804 XINT (n) != 1 ? Qt : Qnil,
805 Qt, Qnil);
806 }
807
808 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
809 doc: /* Return the character position of the last character on the current line.
810 With argument N not nil or 1, move forward N - 1 lines first.
811 If scan reaches end of buffer, return that position.
812
813 The returned position is of the last character in the logical order,
814 i.e. the character whose buffer position is the largest one.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a rear-sticky field ends
819 at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (Lisp_Object n)
824 {
825 ptrdiff_t clipped_n;
826 ptrdiff_t end_pos;
827 ptrdiff_t orig = PT;
828
829 if (NILP (n))
830 XSETFASTINT (n, 1);
831 else
832 CHECK_NUMBER (n);
833
834 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
835 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
836
837 /* Return END_POS constrained to the current input field. */
838 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
839 Qnil, Qt, Qnil);
840 }
841
842 \f
843 Lisp_Object
844 save_excursion_save (void)
845 {
846 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
847 == current_buffer);
848
849 return Fcons (Fpoint_marker (),
850 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
851 Fcons (visible ? Qt : Qnil,
852 Fcons (BVAR (current_buffer, mark_active),
853 selected_window))));
854 }
855
856 Lisp_Object
857 save_excursion_restore (Lisp_Object info)
858 {
859 Lisp_Object tem, tem1, omark, nmark;
860 struct gcpro gcpro1, gcpro2, gcpro3;
861 int visible_p;
862
863 tem = Fmarker_buffer (XCAR (info));
864 /* If buffer being returned to is now deleted, avoid error */
865 /* Otherwise could get error here while unwinding to top level
866 and crash */
867 /* In that case, Fmarker_buffer returns nil now. */
868 if (NILP (tem))
869 return Qnil;
870
871 omark = nmark = Qnil;
872 GCPRO3 (info, omark, nmark);
873
874 Fset_buffer (tem);
875
876 /* Point marker. */
877 tem = XCAR (info);
878 Fgoto_char (tem);
879 unchain_marker (XMARKER (tem));
880
881 /* Mark marker. */
882 info = XCDR (info);
883 tem = XCAR (info);
884 omark = Fmarker_position (BVAR (current_buffer, mark));
885 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
886 nmark = Fmarker_position (tem);
887 unchain_marker (XMARKER (tem));
888
889 /* visible */
890 info = XCDR (info);
891 visible_p = !NILP (XCAR (info));
892
893 #if 0 /* We used to make the current buffer visible in the selected window
894 if that was true previously. That avoids some anomalies.
895 But it creates others, and it wasn't documented, and it is simpler
896 and cleaner never to alter the window/buffer connections. */
897 tem1 = Fcar (tem);
898 if (!NILP (tem1)
899 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
900 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
901 #endif /* 0 */
902
903 /* Mark active */
904 info = XCDR (info);
905 tem = XCAR (info);
906 tem1 = BVAR (current_buffer, mark_active);
907 BVAR (current_buffer, mark_active) = tem;
908
909 /* If mark is active now, and either was not active
910 or was at a different place, run the activate hook. */
911 if (! NILP (tem))
912 {
913 if (! EQ (omark, nmark))
914 {
915 tem = intern ("activate-mark-hook");
916 Frun_hooks (1, &tem);
917 }
918 }
919 /* If mark has ceased to be active, run deactivate hook. */
920 else if (! NILP (tem1))
921 {
922 tem = intern ("deactivate-mark-hook");
923 Frun_hooks (1, &tem);
924 }
925
926 /* If buffer was visible in a window, and a different window was
927 selected, and the old selected window is still showing this
928 buffer, restore point in that window. */
929 tem = XCDR (info);
930 if (visible_p
931 && !EQ (tem, selected_window)
932 && (tem1 = XWINDOW (tem)->buffer,
933 (/* Window is live... */
934 BUFFERP (tem1)
935 /* ...and it shows the current buffer. */
936 && XBUFFER (tem1) == current_buffer)))
937 Fset_window_point (tem, make_number (PT));
938
939 UNGCPRO;
940 return Qnil;
941 }
942
943 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
944 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
945 Executes BODY just like `progn'.
946 The values of point, mark and the current buffer are restored
947 even in case of abnormal exit (throw or error).
948 The state of activation of the mark is also restored.
949
950 This construct does not save `deactivate-mark', and therefore
951 functions that change the buffer will still cause deactivation
952 of the mark at the end of the command. To prevent that, bind
953 `deactivate-mark' with `let'.
954
955 If you only want to save the current buffer but not point nor mark,
956 then just use `save-current-buffer', or even `with-current-buffer'.
957
958 usage: (save-excursion &rest BODY) */)
959 (Lisp_Object args)
960 {
961 register Lisp_Object val;
962 ptrdiff_t count = SPECPDL_INDEX ();
963
964 record_unwind_protect (save_excursion_restore, save_excursion_save ());
965
966 val = Fprogn (args);
967 return unbind_to (count, val);
968 }
969
970 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
971 doc: /* Save the current buffer; execute BODY; restore the current buffer.
972 Executes BODY just like `progn'.
973 usage: (save-current-buffer &rest BODY) */)
974 (Lisp_Object args)
975 {
976 Lisp_Object val;
977 ptrdiff_t count = SPECPDL_INDEX ();
978
979 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
980
981 val = Fprogn (args);
982 return unbind_to (count, val);
983 }
984 \f
985 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
986 doc: /* Return the number of characters in the current buffer.
987 If BUFFER, return the number of characters in that buffer instead. */)
988 (Lisp_Object buffer)
989 {
990 if (NILP (buffer))
991 return make_number (Z - BEG);
992 else
993 {
994 CHECK_BUFFER (buffer);
995 return make_number (BUF_Z (XBUFFER (buffer))
996 - BUF_BEG (XBUFFER (buffer)));
997 }
998 }
999
1000 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1001 doc: /* Return the minimum permissible value of point in the current buffer.
1002 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1003 (void)
1004 {
1005 Lisp_Object temp;
1006 XSETFASTINT (temp, BEGV);
1007 return temp;
1008 }
1009
1010 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1011 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1012 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1013 (void)
1014 {
1015 return buildmark (BEGV, BEGV_BYTE);
1016 }
1017
1018 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1019 doc: /* Return the maximum permissible value of point in the current buffer.
1020 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1021 is in effect, in which case it is less. */)
1022 (void)
1023 {
1024 Lisp_Object temp;
1025 XSETFASTINT (temp, ZV);
1026 return temp;
1027 }
1028
1029 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1030 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1031 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1032 is in effect, in which case it is less. */)
1033 (void)
1034 {
1035 return buildmark (ZV, ZV_BYTE);
1036 }
1037
1038 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1039 doc: /* Return the position of the gap, in the current buffer.
1040 See also `gap-size'. */)
1041 (void)
1042 {
1043 Lisp_Object temp;
1044 XSETFASTINT (temp, GPT);
1045 return temp;
1046 }
1047
1048 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1049 doc: /* Return the size of the current buffer's gap.
1050 See also `gap-position'. */)
1051 (void)
1052 {
1053 Lisp_Object temp;
1054 XSETFASTINT (temp, GAP_SIZE);
1055 return temp;
1056 }
1057
1058 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1059 doc: /* Return the byte position for character position POSITION.
1060 If POSITION is out of range, the value is nil. */)
1061 (Lisp_Object position)
1062 {
1063 CHECK_NUMBER_COERCE_MARKER (position);
1064 if (XINT (position) < BEG || XINT (position) > Z)
1065 return Qnil;
1066 return make_number (CHAR_TO_BYTE (XINT (position)));
1067 }
1068
1069 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1070 doc: /* Return the character position for byte position BYTEPOS.
1071 If BYTEPOS is out of range, the value is nil. */)
1072 (Lisp_Object bytepos)
1073 {
1074 CHECK_NUMBER (bytepos);
1075 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1076 return Qnil;
1077 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1078 }
1079 \f
1080 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1081 doc: /* Return the character following point, as a number.
1082 At the end of the buffer or accessible region, return 0. */)
1083 (void)
1084 {
1085 Lisp_Object temp;
1086 if (PT >= ZV)
1087 XSETFASTINT (temp, 0);
1088 else
1089 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1090 return temp;
1091 }
1092
1093 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1094 doc: /* Return the character preceding point, as a number.
1095 At the beginning of the buffer or accessible region, return 0. */)
1096 (void)
1097 {
1098 Lisp_Object temp;
1099 if (PT <= BEGV)
1100 XSETFASTINT (temp, 0);
1101 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1102 {
1103 ptrdiff_t pos = PT_BYTE;
1104 DEC_POS (pos);
1105 XSETFASTINT (temp, FETCH_CHAR (pos));
1106 }
1107 else
1108 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1109 return temp;
1110 }
1111
1112 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1113 doc: /* Return t if point is at the beginning of the buffer.
1114 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1115 (void)
1116 {
1117 if (PT == BEGV)
1118 return Qt;
1119 return Qnil;
1120 }
1121
1122 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1123 doc: /* Return t if point is at the end of the buffer.
1124 If the buffer is narrowed, this means the end of the narrowed part. */)
1125 (void)
1126 {
1127 if (PT == ZV)
1128 return Qt;
1129 return Qnil;
1130 }
1131
1132 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1133 doc: /* Return t if point is at the beginning of a line. */)
1134 (void)
1135 {
1136 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1137 return Qt;
1138 return Qnil;
1139 }
1140
1141 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1142 doc: /* Return t if point is at the end of a line.
1143 `End of a line' includes point being at the end of the buffer. */)
1144 (void)
1145 {
1146 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1147 return Qt;
1148 return Qnil;
1149 }
1150
1151 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1152 doc: /* Return character in current buffer at position POS.
1153 POS is an integer or a marker and defaults to point.
1154 If POS is out of range, the value is nil. */)
1155 (Lisp_Object pos)
1156 {
1157 register ptrdiff_t pos_byte;
1158
1159 if (NILP (pos))
1160 {
1161 pos_byte = PT_BYTE;
1162 XSETFASTINT (pos, PT);
1163 }
1164
1165 if (MARKERP (pos))
1166 {
1167 pos_byte = marker_byte_position (pos);
1168 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1169 return Qnil;
1170 }
1171 else
1172 {
1173 CHECK_NUMBER_COERCE_MARKER (pos);
1174 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1175 return Qnil;
1176
1177 pos_byte = CHAR_TO_BYTE (XINT (pos));
1178 }
1179
1180 return make_number (FETCH_CHAR (pos_byte));
1181 }
1182
1183 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1184 doc: /* Return character in current buffer preceding position POS.
1185 POS is an integer or a marker and defaults to point.
1186 If POS is out of range, the value is nil. */)
1187 (Lisp_Object pos)
1188 {
1189 register Lisp_Object val;
1190 register ptrdiff_t pos_byte;
1191
1192 if (NILP (pos))
1193 {
1194 pos_byte = PT_BYTE;
1195 XSETFASTINT (pos, PT);
1196 }
1197
1198 if (MARKERP (pos))
1199 {
1200 pos_byte = marker_byte_position (pos);
1201
1202 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1203 return Qnil;
1204 }
1205 else
1206 {
1207 CHECK_NUMBER_COERCE_MARKER (pos);
1208
1209 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1210 return Qnil;
1211
1212 pos_byte = CHAR_TO_BYTE (XINT (pos));
1213 }
1214
1215 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1216 {
1217 DEC_POS (pos_byte);
1218 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1219 }
1220 else
1221 {
1222 pos_byte--;
1223 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1224 }
1225 return val;
1226 }
1227 \f
1228 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1229 doc: /* Return the name under which the user logged in, as a string.
1230 This is based on the effective uid, not the real uid.
1231 Also, if the environment variables LOGNAME or USER are set,
1232 that determines the value of this function.
1233
1234 If optional argument UID is an integer or a float, return the login name
1235 of the user with that uid, or nil if there is no such user. */)
1236 (Lisp_Object uid)
1237 {
1238 struct passwd *pw;
1239 uid_t id;
1240
1241 /* Set up the user name info if we didn't do it before.
1242 (That can happen if Emacs is dumpable
1243 but you decide to run `temacs -l loadup' and not dump. */
1244 if (INTEGERP (Vuser_login_name))
1245 init_editfns ();
1246
1247 if (NILP (uid))
1248 return Vuser_login_name;
1249
1250 id = XFLOATINT (uid);
1251 BLOCK_INPUT;
1252 pw = getpwuid (id);
1253 UNBLOCK_INPUT;
1254 return (pw ? build_string (pw->pw_name) : Qnil);
1255 }
1256
1257 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1258 0, 0, 0,
1259 doc: /* Return the name of the user's real uid, as a string.
1260 This ignores the environment variables LOGNAME and USER, so it differs from
1261 `user-login-name' when running under `su'. */)
1262 (void)
1263 {
1264 /* Set up the user name info if we didn't do it before.
1265 (That can happen if Emacs is dumpable
1266 but you decide to run `temacs -l loadup' and not dump. */
1267 if (INTEGERP (Vuser_login_name))
1268 init_editfns ();
1269 return Vuser_real_login_name;
1270 }
1271
1272 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1273 doc: /* Return the effective uid of Emacs.
1274 Value is an integer or a float, depending on the value. */)
1275 (void)
1276 {
1277 uid_t euid = geteuid ();
1278 return make_fixnum_or_float (euid);
1279 }
1280
1281 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1282 doc: /* Return the real uid of Emacs.
1283 Value is an integer or a float, depending on the value. */)
1284 (void)
1285 {
1286 uid_t uid = getuid ();
1287 return make_fixnum_or_float (uid);
1288 }
1289
1290 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1291 doc: /* Return the full name of the user logged in, as a string.
1292 If the full name corresponding to Emacs's userid is not known,
1293 return "unknown".
1294
1295 If optional argument UID is an integer or float, return the full name
1296 of the user with that uid, or nil if there is no such user.
1297 If UID is a string, return the full name of the user with that login
1298 name, or nil if there is no such user. */)
1299 (Lisp_Object uid)
1300 {
1301 struct passwd *pw;
1302 register char *p, *q;
1303 Lisp_Object full;
1304
1305 if (NILP (uid))
1306 return Vuser_full_name;
1307 else if (NUMBERP (uid))
1308 {
1309 uid_t u = XFLOATINT (uid);
1310 BLOCK_INPUT;
1311 pw = getpwuid (u);
1312 UNBLOCK_INPUT;
1313 }
1314 else if (STRINGP (uid))
1315 {
1316 BLOCK_INPUT;
1317 pw = getpwnam (SSDATA (uid));
1318 UNBLOCK_INPUT;
1319 }
1320 else
1321 error ("Invalid UID specification");
1322
1323 if (!pw)
1324 return Qnil;
1325
1326 p = USER_FULL_NAME;
1327 /* Chop off everything after the first comma. */
1328 q = strchr (p, ',');
1329 full = make_string (p, q ? q - p : strlen (p));
1330
1331 #ifdef AMPERSAND_FULL_NAME
1332 p = SSDATA (full);
1333 q = strchr (p, '&');
1334 /* Substitute the login name for the &, upcasing the first character. */
1335 if (q)
1336 {
1337 register char *r;
1338 Lisp_Object login;
1339
1340 login = Fuser_login_name (make_number (pw->pw_uid));
1341 r = (char *) alloca (strlen (p) + SCHARS (login) + 1);
1342 memcpy (r, p, q - p);
1343 r[q - p] = 0;
1344 strcat (r, SSDATA (login));
1345 r[q - p] = upcase ((unsigned char) r[q - p]);
1346 strcat (r, q + 1);
1347 full = build_string (r);
1348 }
1349 #endif /* AMPERSAND_FULL_NAME */
1350
1351 return full;
1352 }
1353
1354 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1355 doc: /* Return the host name of the machine you are running on, as a string. */)
1356 (void)
1357 {
1358 return Vsystem_name;
1359 }
1360
1361 const char *
1362 get_system_name (void)
1363 {
1364 if (STRINGP (Vsystem_name))
1365 return SSDATA (Vsystem_name);
1366 else
1367 return "";
1368 }
1369
1370 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1371 doc: /* Return the process ID of Emacs, as a number. */)
1372 (void)
1373 {
1374 pid_t pid = getpid ();
1375 return make_fixnum_or_float (pid);
1376 }
1377
1378 \f
1379
1380 #ifndef TIME_T_MIN
1381 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1382 #endif
1383 #ifndef TIME_T_MAX
1384 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1385 #endif
1386
1387 /* Report that a time value is out of range for Emacs. */
1388 static void
1389 time_overflow (void)
1390 {
1391 error ("Specified time is not representable");
1392 }
1393
1394 /* Return the upper part of the time T (everything but the bottom 16 bits),
1395 making sure that it is representable. */
1396 static EMACS_INT
1397 hi_time (time_t t)
1398 {
1399 time_t hi = t >> 16;
1400
1401 /* Check for overflow, helping the compiler for common cases where
1402 no runtime check is needed, and taking care not to convert
1403 negative numbers to unsigned before comparing them. */
1404 if (! ((! TYPE_SIGNED (time_t)
1405 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1406 || MOST_NEGATIVE_FIXNUM <= hi)
1407 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1408 || hi <= MOST_POSITIVE_FIXNUM)))
1409 time_overflow ();
1410
1411 return hi;
1412 }
1413
1414 /* Return the bottom 16 bits of the time T. */
1415 static int
1416 lo_time (time_t t)
1417 {
1418 return t & ((1 << 16) - 1);
1419 }
1420
1421 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1422 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1423 The time is returned as a list of three integers. The first has the
1424 most significant 16 bits of the seconds, while the second has the
1425 least significant 16 bits. The third integer gives the microsecond
1426 count.
1427
1428 The microsecond count is zero on systems that do not provide
1429 resolution finer than a second. */)
1430 (void)
1431 {
1432 EMACS_TIME t;
1433
1434 EMACS_GET_TIME (t);
1435 return list3 (make_number (hi_time (EMACS_SECS (t))),
1436 make_number (lo_time (EMACS_SECS (t))),
1437 make_number (EMACS_USECS (t)));
1438 }
1439
1440 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1441 0, 0, 0,
1442 doc: /* Return the current run time used by Emacs.
1443 The time is returned as a list of three integers. The first has the
1444 most significant 16 bits of the seconds, while the second has the
1445 least significant 16 bits. The third integer gives the microsecond
1446 count.
1447
1448 On systems that can't determine the run time, `get-internal-run-time'
1449 does the same thing as `current-time'. The microsecond count is zero
1450 on systems that do not provide resolution finer than a second. */)
1451 (void)
1452 {
1453 #ifdef HAVE_GETRUSAGE
1454 struct rusage usage;
1455 time_t secs;
1456 int usecs;
1457
1458 if (getrusage (RUSAGE_SELF, &usage) < 0)
1459 /* This shouldn't happen. What action is appropriate? */
1460 xsignal0 (Qerror);
1461
1462 /* Sum up user time and system time. */
1463 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1464 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1465 if (usecs >= 1000000)
1466 {
1467 usecs -= 1000000;
1468 secs++;
1469 }
1470
1471 return list3 (make_number (hi_time (secs)),
1472 make_number (lo_time (secs)),
1473 make_number (usecs));
1474 #else /* ! HAVE_GETRUSAGE */
1475 #ifdef WINDOWSNT
1476 return w32_get_internal_run_time ();
1477 #else /* ! WINDOWSNT */
1478 return Fcurrent_time ();
1479 #endif /* WINDOWSNT */
1480 #endif /* HAVE_GETRUSAGE */
1481 }
1482 \f
1483
1484 /* Make a Lisp list that represents the time T. */
1485 Lisp_Object
1486 make_time (time_t t)
1487 {
1488 return list2 (make_number (hi_time (t)),
1489 make_number (lo_time (t)));
1490 }
1491
1492 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1493 If SPECIFIED_TIME is nil, use the current time.
1494 Set *RESULT to seconds since the Epoch.
1495 If USEC is not null, set *USEC to the microseconds component.
1496 Return nonzero if successful. */
1497 int
1498 lisp_time_argument (Lisp_Object specified_time, time_t *result, int *usec)
1499 {
1500 if (NILP (specified_time))
1501 {
1502 if (usec)
1503 {
1504 EMACS_TIME t;
1505
1506 EMACS_GET_TIME (t);
1507 *usec = EMACS_USECS (t);
1508 *result = EMACS_SECS (t);
1509 return 1;
1510 }
1511 else
1512 return time (result) != -1;
1513 }
1514 else
1515 {
1516 Lisp_Object high, low;
1517 EMACS_INT hi;
1518 high = Fcar (specified_time);
1519 CHECK_NUMBER (high);
1520 low = Fcdr (specified_time);
1521 if (CONSP (low))
1522 {
1523 if (usec)
1524 {
1525 Lisp_Object usec_l = Fcdr (low);
1526 if (CONSP (usec_l))
1527 usec_l = Fcar (usec_l);
1528 if (NILP (usec_l))
1529 *usec = 0;
1530 else
1531 {
1532 CHECK_NUMBER (usec_l);
1533 if (! (0 <= XINT (usec_l) && XINT (usec_l) < 1000000))
1534 return 0;
1535 *usec = XINT (usec_l);
1536 }
1537 }
1538 low = Fcar (low);
1539 }
1540 else if (usec)
1541 *usec = 0;
1542 CHECK_NUMBER (low);
1543 hi = XINT (high);
1544
1545 /* Check for overflow, helping the compiler for common cases
1546 where no runtime check is needed, and taking care not to
1547 convert negative numbers to unsigned before comparing them. */
1548 if (! ((TYPE_SIGNED (time_t)
1549 ? (TIME_T_MIN >> 16 <= MOST_NEGATIVE_FIXNUM
1550 || TIME_T_MIN >> 16 <= hi)
1551 : 0 <= hi)
1552 && (MOST_POSITIVE_FIXNUM <= TIME_T_MAX >> 16
1553 || hi <= TIME_T_MAX >> 16)))
1554 return 0;
1555
1556 *result = (hi << 16) + (XINT (low) & 0xffff);
1557 return 1;
1558 }
1559 }
1560
1561 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1562 doc: /* Return the current time, as a float number of seconds since the epoch.
1563 If SPECIFIED-TIME is given, it is the time to convert to float
1564 instead of the current time. The argument should have the form
1565 (HIGH LOW) or (HIGH LOW USEC). Thus, you can use times obtained from
1566 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1567 have the form (HIGH . LOW), but this is considered obsolete.
1568
1569 WARNING: Since the result is floating point, it may not be exact.
1570 If precise time stamps are required, use either `current-time',
1571 or (if you need time as a string) `format-time-string'. */)
1572 (Lisp_Object specified_time)
1573 {
1574 time_t sec;
1575 int usec;
1576
1577 if (! lisp_time_argument (specified_time, &sec, &usec))
1578 error ("Invalid time specification");
1579
1580 return make_float ((sec * 1e6 + usec) / 1e6);
1581 }
1582
1583 /* Write information into buffer S of size MAXSIZE, according to the
1584 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1585 Default to Universal Time if UT is nonzero, local time otherwise.
1586 Use NS as the number of nanoseconds in the %N directive.
1587 Return the number of bytes written, not including the terminating
1588 '\0'. If S is NULL, nothing will be written anywhere; so to
1589 determine how many bytes would be written, use NULL for S and
1590 ((size_t) -1) for MAXSIZE.
1591
1592 This function behaves like nstrftime, except it allows null
1593 bytes in FORMAT and it does not support nanoseconds. */
1594 static size_t
1595 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1596 size_t format_len, const struct tm *tp, int ut, int ns)
1597 {
1598 size_t total = 0;
1599
1600 /* Loop through all the null-terminated strings in the format
1601 argument. Normally there's just one null-terminated string, but
1602 there can be arbitrarily many, concatenated together, if the
1603 format contains '\0' bytes. nstrftime stops at the first
1604 '\0' byte so we must invoke it separately for each such string. */
1605 for (;;)
1606 {
1607 size_t len;
1608 size_t result;
1609
1610 if (s)
1611 s[0] = '\1';
1612
1613 result = nstrftime (s, maxsize, format, tp, ut, ns);
1614
1615 if (s)
1616 {
1617 if (result == 0 && s[0] != '\0')
1618 return 0;
1619 s += result + 1;
1620 }
1621
1622 maxsize -= result + 1;
1623 total += result;
1624 len = strlen (format);
1625 if (len == format_len)
1626 return total;
1627 total++;
1628 format += len + 1;
1629 format_len -= len + 1;
1630 }
1631 }
1632
1633 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1634 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1635 TIME is specified as (HIGH LOW . IGNORED), as returned by
1636 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1637 is also still accepted.
1638 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1639 as Universal Time; nil means describe TIME in the local time zone.
1640 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1641 by text that describes the specified date and time in TIME:
1642
1643 %Y is the year, %y within the century, %C the century.
1644 %G is the year corresponding to the ISO week, %g within the century.
1645 %m is the numeric month.
1646 %b and %h are the locale's abbreviated month name, %B the full name.
1647 %d is the day of the month, zero-padded, %e is blank-padded.
1648 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1649 %a is the locale's abbreviated name of the day of week, %A the full name.
1650 %U is the week number starting on Sunday, %W starting on Monday,
1651 %V according to ISO 8601.
1652 %j is the day of the year.
1653
1654 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1655 only blank-padded, %l is like %I blank-padded.
1656 %p is the locale's equivalent of either AM or PM.
1657 %M is the minute.
1658 %S is the second.
1659 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1660 %Z is the time zone name, %z is the numeric form.
1661 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1662
1663 %c is the locale's date and time format.
1664 %x is the locale's "preferred" date format.
1665 %D is like "%m/%d/%y".
1666
1667 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1668 %X is the locale's "preferred" time format.
1669
1670 Finally, %n is a newline, %t is a tab, %% is a literal %.
1671
1672 Certain flags and modifiers are available with some format controls.
1673 The flags are `_', `-', `^' and `#'. For certain characters X,
1674 %_X is like %X, but padded with blanks; %-X is like %X,
1675 but without padding. %^X is like %X, but with all textual
1676 characters up-cased; %#X is like %X, but with letter-case of
1677 all textual characters reversed.
1678 %NX (where N stands for an integer) is like %X,
1679 but takes up at least N (a number) positions.
1680 The modifiers are `E' and `O'. For certain characters X,
1681 %EX is a locale's alternative version of %X;
1682 %OX is like %X, but uses the locale's number symbols.
1683
1684 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1685
1686 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1687 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1688 {
1689 time_t value;
1690 ptrdiff_t size;
1691 int usec;
1692 int ns;
1693 struct tm *tm;
1694 int ut = ! NILP (universal);
1695
1696 CHECK_STRING (format_string);
1697
1698 if (! (lisp_time_argument (timeval, &value, &usec)
1699 && 0 <= usec && usec < 1000000))
1700 error ("Invalid time specification");
1701 ns = usec * 1000;
1702
1703 format_string = code_convert_string_norecord (format_string,
1704 Vlocale_coding_system, 1);
1705
1706 /* This is probably enough. */
1707 size = SBYTES (format_string);
1708 if (size <= (STRING_BYTES_BOUND - 50) / 6)
1709 size = size * 6 + 50;
1710
1711 BLOCK_INPUT;
1712 tm = ut ? gmtime (&value) : localtime (&value);
1713 UNBLOCK_INPUT;
1714 if (! tm)
1715 time_overflow ();
1716
1717 synchronize_system_time_locale ();
1718
1719 while (1)
1720 {
1721 char *buf = (char *) alloca (size + 1);
1722 size_t result;
1723
1724 buf[0] = '\1';
1725 BLOCK_INPUT;
1726 result = emacs_nmemftime (buf, size, SSDATA (format_string),
1727 SBYTES (format_string),
1728 tm, ut, ns);
1729 UNBLOCK_INPUT;
1730 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1731 return code_convert_string_norecord (make_unibyte_string (buf, result),
1732 Vlocale_coding_system, 0);
1733
1734 /* If buffer was too small, make it bigger and try again. */
1735 BLOCK_INPUT;
1736 result = emacs_nmemftime (NULL, (size_t) -1,
1737 SSDATA (format_string),
1738 SBYTES (format_string),
1739 tm, ut, ns);
1740 UNBLOCK_INPUT;
1741 if (STRING_BYTES_BOUND <= result)
1742 string_overflow ();
1743 size = result + 1;
1744 }
1745 }
1746
1747 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1748 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1749 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1750 as from `current-time' and `file-attributes', or nil to use the
1751 current time. The obsolete form (HIGH . LOW) is also still accepted.
1752 The list has the following nine members: SEC is an integer between 0
1753 and 60; SEC is 60 for a leap second, which only some operating systems
1754 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1755 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1756 integer between 1 and 12. YEAR is an integer indicating the
1757 four-digit year. DOW is the day of week, an integer between 0 and 6,
1758 where 0 is Sunday. DST is t if daylight saving time is in effect,
1759 otherwise nil. ZONE is an integer indicating the number of seconds
1760 east of Greenwich. (Note that Common Lisp has different meanings for
1761 DOW and ZONE.) */)
1762 (Lisp_Object specified_time)
1763 {
1764 time_t time_spec;
1765 struct tm save_tm;
1766 struct tm *decoded_time;
1767 Lisp_Object list_args[9];
1768
1769 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1770 error ("Invalid time specification");
1771
1772 BLOCK_INPUT;
1773 decoded_time = localtime (&time_spec);
1774 UNBLOCK_INPUT;
1775 if (! (decoded_time
1776 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= decoded_time->tm_year
1777 && decoded_time->tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1778 time_overflow ();
1779 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1780 XSETFASTINT (list_args[1], decoded_time->tm_min);
1781 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1782 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1783 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1784 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1785 cast below avoids overflow in int arithmetics. */
1786 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1787 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1788 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1789
1790 /* Make a copy, in case gmtime modifies the struct. */
1791 save_tm = *decoded_time;
1792 BLOCK_INPUT;
1793 decoded_time = gmtime (&time_spec);
1794 UNBLOCK_INPUT;
1795 if (decoded_time == 0)
1796 list_args[8] = Qnil;
1797 else
1798 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1799 return Flist (9, list_args);
1800 }
1801
1802 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1803 the result is representable as an int. Assume OFFSET is small and
1804 nonnegative. */
1805 static int
1806 check_tm_member (Lisp_Object obj, int offset)
1807 {
1808 EMACS_INT n;
1809 CHECK_NUMBER (obj);
1810 n = XINT (obj);
1811 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1812 time_overflow ();
1813 return n - offset;
1814 }
1815
1816 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1817 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1818 This is the reverse operation of `decode-time', which see.
1819 ZONE defaults to the current time zone rule. This can
1820 be a string or t (as from `set-time-zone-rule'), or it can be a list
1821 \(as from `current-time-zone') or an integer (as from `decode-time')
1822 applied without consideration for daylight saving time.
1823
1824 You can pass more than 7 arguments; then the first six arguments
1825 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1826 The intervening arguments are ignored.
1827 This feature lets (apply 'encode-time (decode-time ...)) work.
1828
1829 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1830 for example, a DAY of 0 means the day preceding the given month.
1831 Year numbers less than 100 are treated just like other year numbers.
1832 If you want them to stand for years in this century, you must do that yourself.
1833
1834 Years before 1970 are not guaranteed to work. On some systems,
1835 year values as low as 1901 do work.
1836
1837 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1838 (ptrdiff_t nargs, Lisp_Object *args)
1839 {
1840 time_t value;
1841 struct tm tm;
1842 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1843
1844 tm.tm_sec = check_tm_member (args[0], 0);
1845 tm.tm_min = check_tm_member (args[1], 0);
1846 tm.tm_hour = check_tm_member (args[2], 0);
1847 tm.tm_mday = check_tm_member (args[3], 0);
1848 tm.tm_mon = check_tm_member (args[4], 1);
1849 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1850 tm.tm_isdst = -1;
1851
1852 if (CONSP (zone))
1853 zone = Fcar (zone);
1854 if (NILP (zone))
1855 {
1856 BLOCK_INPUT;
1857 value = mktime (&tm);
1858 UNBLOCK_INPUT;
1859 }
1860 else
1861 {
1862 char tzbuf[100];
1863 const char *tzstring;
1864 char **oldenv = environ, **newenv;
1865
1866 if (EQ (zone, Qt))
1867 tzstring = "UTC0";
1868 else if (STRINGP (zone))
1869 tzstring = SSDATA (zone);
1870 else if (INTEGERP (zone))
1871 {
1872 EMACS_INT abszone = eabs (XINT (zone));
1873 EMACS_INT zone_hr = abszone / (60*60);
1874 int zone_min = (abszone/60) % 60;
1875 int zone_sec = abszone % 60;
1876 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1877 zone_hr, zone_min, zone_sec);
1878 tzstring = tzbuf;
1879 }
1880 else
1881 error ("Invalid time zone specification");
1882
1883 /* Set TZ before calling mktime; merely adjusting mktime's returned
1884 value doesn't suffice, since that would mishandle leap seconds. */
1885 set_time_zone_rule (tzstring);
1886
1887 BLOCK_INPUT;
1888 value = mktime (&tm);
1889 UNBLOCK_INPUT;
1890
1891 /* Restore TZ to previous value. */
1892 newenv = environ;
1893 environ = oldenv;
1894 xfree (newenv);
1895 #ifdef LOCALTIME_CACHE
1896 tzset ();
1897 #endif
1898 }
1899
1900 if (value == (time_t) -1)
1901 time_overflow ();
1902
1903 return make_time (value);
1904 }
1905
1906 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1907 doc: /* Return the current local time, as a human-readable string.
1908 Programs can use this function to decode a time,
1909 since the number of columns in each field is fixed
1910 if the year is in the range 1000-9999.
1911 The format is `Sun Sep 16 01:03:52 1973'.
1912 However, see also the functions `decode-time' and `format-time-string'
1913 which provide a much more powerful and general facility.
1914
1915 If SPECIFIED-TIME is given, it is a time to format instead of the
1916 current time. The argument should have the form (HIGH LOW . IGNORED).
1917 Thus, you can use times obtained from `current-time' and from
1918 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1919 but this is considered obsolete. */)
1920 (Lisp_Object specified_time)
1921 {
1922 time_t value;
1923 struct tm *tm;
1924 register char *tem;
1925
1926 if (! lisp_time_argument (specified_time, &value, NULL))
1927 error ("Invalid time specification");
1928
1929 /* Convert to a string, checking for out-of-range time stamps.
1930 Don't use 'ctime', as that might dump core if VALUE is out of
1931 range. */
1932 BLOCK_INPUT;
1933 tm = localtime (&value);
1934 UNBLOCK_INPUT;
1935 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1936 time_overflow ();
1937
1938 /* Remove the trailing newline. */
1939 tem[strlen (tem) - 1] = '\0';
1940
1941 return build_string (tem);
1942 }
1943
1944 /* Yield A - B, measured in seconds.
1945 This function is copied from the GNU C Library. */
1946 static int
1947 tm_diff (struct tm *a, struct tm *b)
1948 {
1949 /* Compute intervening leap days correctly even if year is negative.
1950 Take care to avoid int overflow in leap day calculations,
1951 but it's OK to assume that A and B are close to each other. */
1952 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1953 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1954 int a100 = a4 / 25 - (a4 % 25 < 0);
1955 int b100 = b4 / 25 - (b4 % 25 < 0);
1956 int a400 = a100 >> 2;
1957 int b400 = b100 >> 2;
1958 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1959 int years = a->tm_year - b->tm_year;
1960 int days = (365 * years + intervening_leap_days
1961 + (a->tm_yday - b->tm_yday));
1962 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1963 + (a->tm_min - b->tm_min))
1964 + (a->tm_sec - b->tm_sec));
1965 }
1966
1967 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1968 doc: /* Return the offset and name for the local time zone.
1969 This returns a list of the form (OFFSET NAME).
1970 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1971 A negative value means west of Greenwich.
1972 NAME is a string giving the name of the time zone.
1973 If SPECIFIED-TIME is given, the time zone offset is determined from it
1974 instead of using the current time. The argument should have the form
1975 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1976 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1977 have the form (HIGH . LOW), but this is considered obsolete.
1978
1979 Some operating systems cannot provide all this information to Emacs;
1980 in this case, `current-time-zone' returns a list containing nil for
1981 the data it can't find. */)
1982 (Lisp_Object specified_time)
1983 {
1984 time_t value;
1985 struct tm *t;
1986 struct tm gmt;
1987
1988 if (!lisp_time_argument (specified_time, &value, NULL))
1989 t = NULL;
1990 else
1991 {
1992 BLOCK_INPUT;
1993 t = gmtime (&value);
1994 if (t)
1995 {
1996 gmt = *t;
1997 t = localtime (&value);
1998 }
1999 UNBLOCK_INPUT;
2000 }
2001
2002 if (t)
2003 {
2004 int offset = tm_diff (t, &gmt);
2005 char *s = 0;
2006 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2007
2008 #ifdef HAVE_TM_ZONE
2009 if (t->tm_zone)
2010 s = (char *)t->tm_zone;
2011 #else /* not HAVE_TM_ZONE */
2012 #ifdef HAVE_TZNAME
2013 if (t->tm_isdst == 0 || t->tm_isdst == 1)
2014 s = tzname[t->tm_isdst];
2015 #endif
2016 #endif /* not HAVE_TM_ZONE */
2017
2018 if (!s)
2019 {
2020 /* No local time zone name is available; use "+-NNNN" instead. */
2021 int m = offset / 60;
2022 int am = offset < 0 ? - m : m;
2023 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
2024 s = buf;
2025 }
2026
2027 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
2028 }
2029 else
2030 return Fmake_list (make_number (2), Qnil);
2031 }
2032
2033 /* This holds the value of `environ' produced by the previous
2034 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2035 has never been called. */
2036 static char **environbuf;
2037
2038 /* This holds the startup value of the TZ environment variable so it
2039 can be restored if the user calls set-time-zone-rule with a nil
2040 argument. */
2041 static char *initial_tz;
2042
2043 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2044 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2045 If TZ is nil, use implementation-defined default time zone information.
2046 If TZ is t, use Universal Time.
2047
2048 Instead of calling this function, you typically want (setenv "TZ" TZ).
2049 That changes both the environment of the Emacs process and the
2050 variable `process-environment', whereas `set-time-zone-rule' affects
2051 only the former. */)
2052 (Lisp_Object tz)
2053 {
2054 const char *tzstring;
2055
2056 /* When called for the first time, save the original TZ. */
2057 if (!environbuf)
2058 initial_tz = (char *) getenv ("TZ");
2059
2060 if (NILP (tz))
2061 tzstring = initial_tz;
2062 else if (EQ (tz, Qt))
2063 tzstring = "UTC0";
2064 else
2065 {
2066 CHECK_STRING (tz);
2067 tzstring = SSDATA (tz);
2068 }
2069
2070 set_time_zone_rule (tzstring);
2071 free (environbuf);
2072 environbuf = environ;
2073
2074 return Qnil;
2075 }
2076
2077 #ifdef LOCALTIME_CACHE
2078
2079 /* These two values are known to load tz files in buggy implementations,
2080 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2081 Their values shouldn't matter in non-buggy implementations.
2082 We don't use string literals for these strings,
2083 since if a string in the environment is in readonly
2084 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2085 See Sun bugs 1113095 and 1114114, ``Timezone routines
2086 improperly modify environment''. */
2087
2088 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2089 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2090
2091 #endif
2092
2093 /* Set the local time zone rule to TZSTRING.
2094 This allocates memory into `environ', which it is the caller's
2095 responsibility to free. */
2096
2097 void
2098 set_time_zone_rule (const char *tzstring)
2099 {
2100 ptrdiff_t envptrs;
2101 char **from, **to, **newenv;
2102
2103 /* Make the ENVIRON vector longer with room for TZSTRING. */
2104 for (from = environ; *from; from++)
2105 continue;
2106 envptrs = from - environ + 2;
2107 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2108 + (tzstring ? strlen (tzstring) + 4 : 0));
2109
2110 /* Add TZSTRING to the end of environ, as a value for TZ. */
2111 if (tzstring)
2112 {
2113 char *t = (char *) (to + envptrs);
2114 strcpy (t, "TZ=");
2115 strcat (t, tzstring);
2116 *to++ = t;
2117 }
2118
2119 /* Copy the old environ vector elements into NEWENV,
2120 but don't copy the TZ variable.
2121 So we have only one definition of TZ, which came from TZSTRING. */
2122 for (from = environ; *from; from++)
2123 if (strncmp (*from, "TZ=", 3) != 0)
2124 *to++ = *from;
2125 *to = 0;
2126
2127 environ = newenv;
2128
2129 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2130 the TZ variable is stored. If we do not have a TZSTRING,
2131 TO points to the vector slot which has the terminating null. */
2132
2133 #ifdef LOCALTIME_CACHE
2134 {
2135 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2136 "US/Pacific" that loads a tz file, then changes to a value like
2137 "XXX0" that does not load a tz file, and then changes back to
2138 its original value, the last change is (incorrectly) ignored.
2139 Also, if TZ changes twice in succession to values that do
2140 not load a tz file, tzset can dump core (see Sun bug#1225179).
2141 The following code works around these bugs. */
2142
2143 if (tzstring)
2144 {
2145 /* Temporarily set TZ to a value that loads a tz file
2146 and that differs from tzstring. */
2147 char *tz = *newenv;
2148 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2149 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2150 tzset ();
2151 *newenv = tz;
2152 }
2153 else
2154 {
2155 /* The implied tzstring is unknown, so temporarily set TZ to
2156 two different values that each load a tz file. */
2157 *to = set_time_zone_rule_tz1;
2158 to[1] = 0;
2159 tzset ();
2160 *to = set_time_zone_rule_tz2;
2161 tzset ();
2162 *to = 0;
2163 }
2164
2165 /* Now TZ has the desired value, and tzset can be invoked safely. */
2166 }
2167
2168 tzset ();
2169 #endif
2170 }
2171 \f
2172 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2173 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2174 type of object is Lisp_String). INHERIT is passed to
2175 INSERT_FROM_STRING_FUNC as the last argument. */
2176
2177 static void
2178 general_insert_function (void (*insert_func)
2179 (const char *, ptrdiff_t),
2180 void (*insert_from_string_func)
2181 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2182 ptrdiff_t, ptrdiff_t, int),
2183 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2184 {
2185 ptrdiff_t argnum;
2186 register Lisp_Object val;
2187
2188 for (argnum = 0; argnum < nargs; argnum++)
2189 {
2190 val = args[argnum];
2191 if (CHARACTERP (val))
2192 {
2193 int c = XFASTINT (val);
2194 unsigned char str[MAX_MULTIBYTE_LENGTH];
2195 int len;
2196
2197 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2198 len = CHAR_STRING (c, str);
2199 else
2200 {
2201 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2202 len = 1;
2203 }
2204 (*insert_func) ((char *) str, len);
2205 }
2206 else if (STRINGP (val))
2207 {
2208 (*insert_from_string_func) (val, 0, 0,
2209 SCHARS (val),
2210 SBYTES (val),
2211 inherit);
2212 }
2213 else
2214 wrong_type_argument (Qchar_or_string_p, val);
2215 }
2216 }
2217
2218 void
2219 insert1 (Lisp_Object arg)
2220 {
2221 Finsert (1, &arg);
2222 }
2223
2224
2225 /* Callers passing one argument to Finsert need not gcpro the
2226 argument "array", since the only element of the array will
2227 not be used after calling insert or insert_from_string, so
2228 we don't care if it gets trashed. */
2229
2230 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2231 doc: /* Insert the arguments, either strings or characters, at point.
2232 Point and before-insertion markers move forward to end up
2233 after the inserted text.
2234 Any other markers at the point of insertion remain before the text.
2235
2236 If the current buffer is multibyte, unibyte strings are converted
2237 to multibyte for insertion (see `string-make-multibyte').
2238 If the current buffer is unibyte, multibyte strings are converted
2239 to unibyte for insertion (see `string-make-unibyte').
2240
2241 When operating on binary data, it may be necessary to preserve the
2242 original bytes of a unibyte string when inserting it into a multibyte
2243 buffer; to accomplish this, apply `string-as-multibyte' to the string
2244 and insert the result.
2245
2246 usage: (insert &rest ARGS) */)
2247 (ptrdiff_t nargs, Lisp_Object *args)
2248 {
2249 general_insert_function (insert, insert_from_string, 0, nargs, args);
2250 return Qnil;
2251 }
2252
2253 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2254 0, MANY, 0,
2255 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2256 Point and before-insertion markers move forward to end up
2257 after the inserted text.
2258 Any other markers at the point of insertion remain before the text.
2259
2260 If the current buffer is multibyte, unibyte strings are converted
2261 to multibyte for insertion (see `unibyte-char-to-multibyte').
2262 If the current buffer is unibyte, multibyte strings are converted
2263 to unibyte for insertion.
2264
2265 usage: (insert-and-inherit &rest ARGS) */)
2266 (ptrdiff_t nargs, Lisp_Object *args)
2267 {
2268 general_insert_function (insert_and_inherit, insert_from_string, 1,
2269 nargs, args);
2270 return Qnil;
2271 }
2272
2273 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2274 doc: /* Insert strings or characters at point, relocating markers after the text.
2275 Point and markers move forward to end up after the inserted text.
2276
2277 If the current buffer is multibyte, unibyte strings are converted
2278 to multibyte for insertion (see `unibyte-char-to-multibyte').
2279 If the current buffer is unibyte, multibyte strings are converted
2280 to unibyte for insertion.
2281
2282 usage: (insert-before-markers &rest ARGS) */)
2283 (ptrdiff_t nargs, Lisp_Object *args)
2284 {
2285 general_insert_function (insert_before_markers,
2286 insert_from_string_before_markers, 0,
2287 nargs, args);
2288 return Qnil;
2289 }
2290
2291 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2292 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2293 doc: /* Insert text at point, relocating markers and inheriting properties.
2294 Point and markers move forward to end up after the inserted text.
2295
2296 If the current buffer is multibyte, unibyte strings are converted
2297 to multibyte for insertion (see `unibyte-char-to-multibyte').
2298 If the current buffer is unibyte, multibyte strings are converted
2299 to unibyte for insertion.
2300
2301 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2302 (ptrdiff_t nargs, Lisp_Object *args)
2303 {
2304 general_insert_function (insert_before_markers_and_inherit,
2305 insert_from_string_before_markers, 1,
2306 nargs, args);
2307 return Qnil;
2308 }
2309 \f
2310 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2311 doc: /* Insert COUNT copies of CHARACTER.
2312 Point, and before-insertion markers, are relocated as in the function `insert'.
2313 The optional third arg INHERIT, if non-nil, says to inherit text properties
2314 from adjoining text, if those properties are sticky. */)
2315 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2316 {
2317 int i, stringlen;
2318 register ptrdiff_t n;
2319 int c, len;
2320 unsigned char str[MAX_MULTIBYTE_LENGTH];
2321 char string[4000];
2322
2323 CHECK_CHARACTER (character);
2324 CHECK_NUMBER (count);
2325 c = XFASTINT (character);
2326
2327 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2328 len = CHAR_STRING (c, str);
2329 else
2330 str[0] = c, len = 1;
2331 if (XINT (count) <= 0)
2332 return Qnil;
2333 if (BUF_BYTES_MAX / len < XINT (count))
2334 buffer_overflow ();
2335 n = XINT (count) * len;
2336 stringlen = min (n, sizeof string - sizeof string % len);
2337 for (i = 0; i < stringlen; i++)
2338 string[i] = str[i % len];
2339 while (n > stringlen)
2340 {
2341 QUIT;
2342 if (!NILP (inherit))
2343 insert_and_inherit (string, stringlen);
2344 else
2345 insert (string, stringlen);
2346 n -= stringlen;
2347 }
2348 if (!NILP (inherit))
2349 insert_and_inherit (string, n);
2350 else
2351 insert (string, n);
2352 return Qnil;
2353 }
2354
2355 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2356 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2357 Both arguments are required.
2358 BYTE is a number of the range 0..255.
2359
2360 If BYTE is 128..255 and the current buffer is multibyte, the
2361 corresponding eight-bit character is inserted.
2362
2363 Point, and before-insertion markers, are relocated as in the function `insert'.
2364 The optional third arg INHERIT, if non-nil, says to inherit text properties
2365 from adjoining text, if those properties are sticky. */)
2366 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2367 {
2368 CHECK_NUMBER (byte);
2369 if (XINT (byte) < 0 || XINT (byte) > 255)
2370 args_out_of_range_3 (byte, make_number (0), make_number (255));
2371 if (XINT (byte) >= 128
2372 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2373 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2374 return Finsert_char (byte, count, inherit);
2375 }
2376
2377 \f
2378 /* Making strings from buffer contents. */
2379
2380 /* Return a Lisp_String containing the text of the current buffer from
2381 START to END. If text properties are in use and the current buffer
2382 has properties in the range specified, the resulting string will also
2383 have them, if PROPS is nonzero.
2384
2385 We don't want to use plain old make_string here, because it calls
2386 make_uninit_string, which can cause the buffer arena to be
2387 compacted. make_string has no way of knowing that the data has
2388 been moved, and thus copies the wrong data into the string. This
2389 doesn't effect most of the other users of make_string, so it should
2390 be left as is. But we should use this function when conjuring
2391 buffer substrings. */
2392
2393 Lisp_Object
2394 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2395 {
2396 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2397 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2398
2399 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2400 }
2401
2402 /* Return a Lisp_String containing the text of the current buffer from
2403 START / START_BYTE to END / END_BYTE.
2404
2405 If text properties are in use and the current buffer
2406 has properties in the range specified, the resulting string will also
2407 have them, if PROPS is nonzero.
2408
2409 We don't want to use plain old make_string here, because it calls
2410 make_uninit_string, which can cause the buffer arena to be
2411 compacted. make_string has no way of knowing that the data has
2412 been moved, and thus copies the wrong data into the string. This
2413 doesn't effect most of the other users of make_string, so it should
2414 be left as is. But we should use this function when conjuring
2415 buffer substrings. */
2416
2417 Lisp_Object
2418 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2419 ptrdiff_t end, ptrdiff_t end_byte, int props)
2420 {
2421 Lisp_Object result, tem, tem1;
2422
2423 if (start < GPT && GPT < end)
2424 move_gap (start);
2425
2426 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2427 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2428 else
2429 result = make_uninit_string (end - start);
2430 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2431
2432 /* If desired, update and copy the text properties. */
2433 if (props)
2434 {
2435 update_buffer_properties (start, end);
2436
2437 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2438 tem1 = Ftext_properties_at (make_number (start), Qnil);
2439
2440 if (XINT (tem) != end || !NILP (tem1))
2441 copy_intervals_to_string (result, current_buffer, start,
2442 end - start);
2443 }
2444
2445 return result;
2446 }
2447
2448 /* Call Vbuffer_access_fontify_functions for the range START ... END
2449 in the current buffer, if necessary. */
2450
2451 static void
2452 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2453 {
2454 /* If this buffer has some access functions,
2455 call them, specifying the range of the buffer being accessed. */
2456 if (!NILP (Vbuffer_access_fontify_functions))
2457 {
2458 Lisp_Object args[3];
2459 Lisp_Object tem;
2460
2461 args[0] = Qbuffer_access_fontify_functions;
2462 XSETINT (args[1], start);
2463 XSETINT (args[2], end);
2464
2465 /* But don't call them if we can tell that the work
2466 has already been done. */
2467 if (!NILP (Vbuffer_access_fontified_property))
2468 {
2469 tem = Ftext_property_any (args[1], args[2],
2470 Vbuffer_access_fontified_property,
2471 Qnil, Qnil);
2472 if (! NILP (tem))
2473 Frun_hook_with_args (3, args);
2474 }
2475 else
2476 Frun_hook_with_args (3, args);
2477 }
2478 }
2479
2480 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2481 doc: /* Return the contents of part of the current buffer as a string.
2482 The two arguments START and END are character positions;
2483 they can be in either order.
2484 The string returned is multibyte if the buffer is multibyte.
2485
2486 This function copies the text properties of that part of the buffer
2487 into the result string; if you don't want the text properties,
2488 use `buffer-substring-no-properties' instead. */)
2489 (Lisp_Object start, Lisp_Object end)
2490 {
2491 register ptrdiff_t b, e;
2492
2493 validate_region (&start, &end);
2494 b = XINT (start);
2495 e = XINT (end);
2496
2497 return make_buffer_string (b, e, 1);
2498 }
2499
2500 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2501 Sbuffer_substring_no_properties, 2, 2, 0,
2502 doc: /* Return the characters of part of the buffer, without the text properties.
2503 The two arguments START and END are character positions;
2504 they can be in either order. */)
2505 (Lisp_Object start, Lisp_Object end)
2506 {
2507 register ptrdiff_t b, e;
2508
2509 validate_region (&start, &end);
2510 b = XINT (start);
2511 e = XINT (end);
2512
2513 return make_buffer_string (b, e, 0);
2514 }
2515
2516 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2517 doc: /* Return the contents of the current buffer as a string.
2518 If narrowing is in effect, this function returns only the visible part
2519 of the buffer. */)
2520 (void)
2521 {
2522 return make_buffer_string (BEGV, ZV, 1);
2523 }
2524
2525 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2526 1, 3, 0,
2527 doc: /* Insert before point a substring of the contents of BUFFER.
2528 BUFFER may be a buffer or a buffer name.
2529 Arguments START and END are character positions specifying the substring.
2530 They default to the values of (point-min) and (point-max) in BUFFER. */)
2531 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2532 {
2533 register EMACS_INT b, e, temp;
2534 register struct buffer *bp, *obuf;
2535 Lisp_Object buf;
2536
2537 buf = Fget_buffer (buffer);
2538 if (NILP (buf))
2539 nsberror (buffer);
2540 bp = XBUFFER (buf);
2541 if (NILP (BVAR (bp, name)))
2542 error ("Selecting deleted buffer");
2543
2544 if (NILP (start))
2545 b = BUF_BEGV (bp);
2546 else
2547 {
2548 CHECK_NUMBER_COERCE_MARKER (start);
2549 b = XINT (start);
2550 }
2551 if (NILP (end))
2552 e = BUF_ZV (bp);
2553 else
2554 {
2555 CHECK_NUMBER_COERCE_MARKER (end);
2556 e = XINT (end);
2557 }
2558
2559 if (b > e)
2560 temp = b, b = e, e = temp;
2561
2562 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2563 args_out_of_range (start, end);
2564
2565 obuf = current_buffer;
2566 set_buffer_internal_1 (bp);
2567 update_buffer_properties (b, e);
2568 set_buffer_internal_1 (obuf);
2569
2570 insert_from_buffer (bp, b, e - b, 0);
2571 return Qnil;
2572 }
2573
2574 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2575 6, 6, 0,
2576 doc: /* Compare two substrings of two buffers; return result as number.
2577 the value is -N if first string is less after N-1 chars,
2578 +N if first string is greater after N-1 chars, or 0 if strings match.
2579 Each substring is represented as three arguments: BUFFER, START and END.
2580 That makes six args in all, three for each substring.
2581
2582 The value of `case-fold-search' in the current buffer
2583 determines whether case is significant or ignored. */)
2584 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2585 {
2586 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2587 register struct buffer *bp1, *bp2;
2588 register Lisp_Object trt
2589 = (!NILP (BVAR (current_buffer, case_fold_search))
2590 ? BVAR (current_buffer, case_canon_table) : Qnil);
2591 ptrdiff_t chars = 0;
2592 ptrdiff_t i1, i2, i1_byte, i2_byte;
2593
2594 /* Find the first buffer and its substring. */
2595
2596 if (NILP (buffer1))
2597 bp1 = current_buffer;
2598 else
2599 {
2600 Lisp_Object buf1;
2601 buf1 = Fget_buffer (buffer1);
2602 if (NILP (buf1))
2603 nsberror (buffer1);
2604 bp1 = XBUFFER (buf1);
2605 if (NILP (BVAR (bp1, name)))
2606 error ("Selecting deleted buffer");
2607 }
2608
2609 if (NILP (start1))
2610 begp1 = BUF_BEGV (bp1);
2611 else
2612 {
2613 CHECK_NUMBER_COERCE_MARKER (start1);
2614 begp1 = XINT (start1);
2615 }
2616 if (NILP (end1))
2617 endp1 = BUF_ZV (bp1);
2618 else
2619 {
2620 CHECK_NUMBER_COERCE_MARKER (end1);
2621 endp1 = XINT (end1);
2622 }
2623
2624 if (begp1 > endp1)
2625 temp = begp1, begp1 = endp1, endp1 = temp;
2626
2627 if (!(BUF_BEGV (bp1) <= begp1
2628 && begp1 <= endp1
2629 && endp1 <= BUF_ZV (bp1)))
2630 args_out_of_range (start1, end1);
2631
2632 /* Likewise for second substring. */
2633
2634 if (NILP (buffer2))
2635 bp2 = current_buffer;
2636 else
2637 {
2638 Lisp_Object buf2;
2639 buf2 = Fget_buffer (buffer2);
2640 if (NILP (buf2))
2641 nsberror (buffer2);
2642 bp2 = XBUFFER (buf2);
2643 if (NILP (BVAR (bp2, name)))
2644 error ("Selecting deleted buffer");
2645 }
2646
2647 if (NILP (start2))
2648 begp2 = BUF_BEGV (bp2);
2649 else
2650 {
2651 CHECK_NUMBER_COERCE_MARKER (start2);
2652 begp2 = XINT (start2);
2653 }
2654 if (NILP (end2))
2655 endp2 = BUF_ZV (bp2);
2656 else
2657 {
2658 CHECK_NUMBER_COERCE_MARKER (end2);
2659 endp2 = XINT (end2);
2660 }
2661
2662 if (begp2 > endp2)
2663 temp = begp2, begp2 = endp2, endp2 = temp;
2664
2665 if (!(BUF_BEGV (bp2) <= begp2
2666 && begp2 <= endp2
2667 && endp2 <= BUF_ZV (bp2)))
2668 args_out_of_range (start2, end2);
2669
2670 i1 = begp1;
2671 i2 = begp2;
2672 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2673 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2674
2675 while (i1 < endp1 && i2 < endp2)
2676 {
2677 /* When we find a mismatch, we must compare the
2678 characters, not just the bytes. */
2679 int c1, c2;
2680
2681 QUIT;
2682
2683 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2684 {
2685 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2686 BUF_INC_POS (bp1, i1_byte);
2687 i1++;
2688 }
2689 else
2690 {
2691 c1 = BUF_FETCH_BYTE (bp1, i1);
2692 MAKE_CHAR_MULTIBYTE (c1);
2693 i1++;
2694 }
2695
2696 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2697 {
2698 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2699 BUF_INC_POS (bp2, i2_byte);
2700 i2++;
2701 }
2702 else
2703 {
2704 c2 = BUF_FETCH_BYTE (bp2, i2);
2705 MAKE_CHAR_MULTIBYTE (c2);
2706 i2++;
2707 }
2708
2709 if (!NILP (trt))
2710 {
2711 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2712 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2713 }
2714 if (c1 < c2)
2715 return make_number (- 1 - chars);
2716 if (c1 > c2)
2717 return make_number (chars + 1);
2718
2719 chars++;
2720 }
2721
2722 /* The strings match as far as they go.
2723 If one is shorter, that one is less. */
2724 if (chars < endp1 - begp1)
2725 return make_number (chars + 1);
2726 else if (chars < endp2 - begp2)
2727 return make_number (- chars - 1);
2728
2729 /* Same length too => they are equal. */
2730 return make_number (0);
2731 }
2732 \f
2733 static Lisp_Object
2734 subst_char_in_region_unwind (Lisp_Object arg)
2735 {
2736 return BVAR (current_buffer, undo_list) = arg;
2737 }
2738
2739 static Lisp_Object
2740 subst_char_in_region_unwind_1 (Lisp_Object arg)
2741 {
2742 return BVAR (current_buffer, filename) = arg;
2743 }
2744
2745 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2746 Ssubst_char_in_region, 4, 5, 0,
2747 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2748 If optional arg NOUNDO is non-nil, don't record this change for undo
2749 and don't mark the buffer as really changed.
2750 Both characters must have the same length of multi-byte form. */)
2751 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2752 {
2753 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2754 /* Keep track of the first change in the buffer:
2755 if 0 we haven't found it yet.
2756 if < 0 we've found it and we've run the before-change-function.
2757 if > 0 we've actually performed it and the value is its position. */
2758 ptrdiff_t changed = 0;
2759 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2760 unsigned char *p;
2761 ptrdiff_t count = SPECPDL_INDEX ();
2762 #define COMBINING_NO 0
2763 #define COMBINING_BEFORE 1
2764 #define COMBINING_AFTER 2
2765 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2766 int maybe_byte_combining = COMBINING_NO;
2767 ptrdiff_t last_changed = 0;
2768 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2769 int fromc, toc;
2770
2771 restart:
2772
2773 validate_region (&start, &end);
2774 CHECK_CHARACTER (fromchar);
2775 CHECK_CHARACTER (tochar);
2776 fromc = XFASTINT (fromchar);
2777 toc = XFASTINT (tochar);
2778
2779 if (multibyte_p)
2780 {
2781 len = CHAR_STRING (fromc, fromstr);
2782 if (CHAR_STRING (toc, tostr) != len)
2783 error ("Characters in `subst-char-in-region' have different byte-lengths");
2784 if (!ASCII_BYTE_P (*tostr))
2785 {
2786 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2787 complete multibyte character, it may be combined with the
2788 after bytes. If it is in the range 0xA0..0xFF, it may be
2789 combined with the before and after bytes. */
2790 if (!CHAR_HEAD_P (*tostr))
2791 maybe_byte_combining = COMBINING_BOTH;
2792 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2793 maybe_byte_combining = COMBINING_AFTER;
2794 }
2795 }
2796 else
2797 {
2798 len = 1;
2799 fromstr[0] = fromc;
2800 tostr[0] = toc;
2801 }
2802
2803 pos = XINT (start);
2804 pos_byte = CHAR_TO_BYTE (pos);
2805 stop = CHAR_TO_BYTE (XINT (end));
2806 end_byte = stop;
2807
2808 /* If we don't want undo, turn off putting stuff on the list.
2809 That's faster than getting rid of things,
2810 and it prevents even the entry for a first change.
2811 Also inhibit locking the file. */
2812 if (!changed && !NILP (noundo))
2813 {
2814 record_unwind_protect (subst_char_in_region_unwind,
2815 BVAR (current_buffer, undo_list));
2816 BVAR (current_buffer, undo_list) = Qt;
2817 /* Don't do file-locking. */
2818 record_unwind_protect (subst_char_in_region_unwind_1,
2819 BVAR (current_buffer, filename));
2820 BVAR (current_buffer, filename) = Qnil;
2821 }
2822
2823 if (pos_byte < GPT_BYTE)
2824 stop = min (stop, GPT_BYTE);
2825 while (1)
2826 {
2827 ptrdiff_t pos_byte_next = pos_byte;
2828
2829 if (pos_byte >= stop)
2830 {
2831 if (pos_byte >= end_byte) break;
2832 stop = end_byte;
2833 }
2834 p = BYTE_POS_ADDR (pos_byte);
2835 if (multibyte_p)
2836 INC_POS (pos_byte_next);
2837 else
2838 ++pos_byte_next;
2839 if (pos_byte_next - pos_byte == len
2840 && p[0] == fromstr[0]
2841 && (len == 1
2842 || (p[1] == fromstr[1]
2843 && (len == 2 || (p[2] == fromstr[2]
2844 && (len == 3 || p[3] == fromstr[3]))))))
2845 {
2846 if (changed < 0)
2847 /* We've already seen this and run the before-change-function;
2848 this time we only need to record the actual position. */
2849 changed = pos;
2850 else if (!changed)
2851 {
2852 changed = -1;
2853 modify_region (current_buffer, pos, XINT (end), 0);
2854
2855 if (! NILP (noundo))
2856 {
2857 if (MODIFF - 1 == SAVE_MODIFF)
2858 SAVE_MODIFF++;
2859 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2860 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2861 }
2862
2863 /* The before-change-function may have moved the gap
2864 or even modified the buffer so we should start over. */
2865 goto restart;
2866 }
2867
2868 /* Take care of the case where the new character
2869 combines with neighboring bytes. */
2870 if (maybe_byte_combining
2871 && (maybe_byte_combining == COMBINING_AFTER
2872 ? (pos_byte_next < Z_BYTE
2873 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2874 : ((pos_byte_next < Z_BYTE
2875 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2876 || (pos_byte > BEG_BYTE
2877 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2878 {
2879 Lisp_Object tem, string;
2880
2881 struct gcpro gcpro1;
2882
2883 tem = BVAR (current_buffer, undo_list);
2884 GCPRO1 (tem);
2885
2886 /* Make a multibyte string containing this single character. */
2887 string = make_multibyte_string ((char *) tostr, 1, len);
2888 /* replace_range is less efficient, because it moves the gap,
2889 but it handles combining correctly. */
2890 replace_range (pos, pos + 1, string,
2891 0, 0, 1);
2892 pos_byte_next = CHAR_TO_BYTE (pos);
2893 if (pos_byte_next > pos_byte)
2894 /* Before combining happened. We should not increment
2895 POS. So, to cancel the later increment of POS,
2896 decrease it now. */
2897 pos--;
2898 else
2899 INC_POS (pos_byte_next);
2900
2901 if (! NILP (noundo))
2902 BVAR (current_buffer, undo_list) = tem;
2903
2904 UNGCPRO;
2905 }
2906 else
2907 {
2908 if (NILP (noundo))
2909 record_change (pos, 1);
2910 for (i = 0; i < len; i++) *p++ = tostr[i];
2911 }
2912 last_changed = pos + 1;
2913 }
2914 pos_byte = pos_byte_next;
2915 pos++;
2916 }
2917
2918 if (changed > 0)
2919 {
2920 signal_after_change (changed,
2921 last_changed - changed, last_changed - changed);
2922 update_compositions (changed, last_changed, CHECK_ALL);
2923 }
2924
2925 unbind_to (count, Qnil);
2926 return Qnil;
2927 }
2928
2929
2930 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
2931 Lisp_Object);
2932
2933 /* Helper function for Ftranslate_region_internal.
2934
2935 Check if a character sequence at POS (POS_BYTE) matches an element
2936 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2937 element is found, return it. Otherwise return Qnil. */
2938
2939 static Lisp_Object
2940 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
2941 Lisp_Object val)
2942 {
2943 int buf_size = 16, buf_used = 0;
2944 int *buf = alloca (sizeof (int) * buf_size);
2945
2946 for (; CONSP (val); val = XCDR (val))
2947 {
2948 Lisp_Object elt;
2949 ptrdiff_t len, i;
2950
2951 elt = XCAR (val);
2952 if (! CONSP (elt))
2953 continue;
2954 elt = XCAR (elt);
2955 if (! VECTORP (elt))
2956 continue;
2957 len = ASIZE (elt);
2958 if (len <= end - pos)
2959 {
2960 for (i = 0; i < len; i++)
2961 {
2962 if (buf_used <= i)
2963 {
2964 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2965 int len1;
2966
2967 if (buf_used == buf_size)
2968 {
2969 int *newbuf;
2970
2971 buf_size += 16;
2972 newbuf = alloca (sizeof (int) * buf_size);
2973 memcpy (newbuf, buf, sizeof (int) * buf_used);
2974 buf = newbuf;
2975 }
2976 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
2977 pos_byte += len1;
2978 }
2979 if (XINT (AREF (elt, i)) != buf[i])
2980 break;
2981 }
2982 if (i == len)
2983 return XCAR (val);
2984 }
2985 }
2986 return Qnil;
2987 }
2988
2989
2990 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2991 Stranslate_region_internal, 3, 3, 0,
2992 doc: /* Internal use only.
2993 From START to END, translate characters according to TABLE.
2994 TABLE is a string or a char-table; the Nth character in it is the
2995 mapping for the character with code N.
2996 It returns the number of characters changed. */)
2997 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
2998 {
2999 register unsigned char *tt; /* Trans table. */
3000 register int nc; /* New character. */
3001 int cnt; /* Number of changes made. */
3002 ptrdiff_t size; /* Size of translate table. */
3003 ptrdiff_t pos, pos_byte, end_pos;
3004 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3005 int string_multibyte IF_LINT (= 0);
3006
3007 validate_region (&start, &end);
3008 if (CHAR_TABLE_P (table))
3009 {
3010 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3011 error ("Not a translation table");
3012 size = MAX_CHAR;
3013 tt = NULL;
3014 }
3015 else
3016 {
3017 CHECK_STRING (table);
3018
3019 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3020 table = string_make_unibyte (table);
3021 string_multibyte = SCHARS (table) < SBYTES (table);
3022 size = SBYTES (table);
3023 tt = SDATA (table);
3024 }
3025
3026 pos = XINT (start);
3027 pos_byte = CHAR_TO_BYTE (pos);
3028 end_pos = XINT (end);
3029 modify_region (current_buffer, pos, end_pos, 0);
3030
3031 cnt = 0;
3032 for (; pos < end_pos; )
3033 {
3034 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3035 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3036 int len, str_len;
3037 int oc;
3038 Lisp_Object val;
3039
3040 if (multibyte)
3041 oc = STRING_CHAR_AND_LENGTH (p, len);
3042 else
3043 oc = *p, len = 1;
3044 if (oc < size)
3045 {
3046 if (tt)
3047 {
3048 /* Reload as signal_after_change in last iteration may GC. */
3049 tt = SDATA (table);
3050 if (string_multibyte)
3051 {
3052 str = tt + string_char_to_byte (table, oc);
3053 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3054 }
3055 else
3056 {
3057 nc = tt[oc];
3058 if (! ASCII_BYTE_P (nc) && multibyte)
3059 {
3060 str_len = BYTE8_STRING (nc, buf);
3061 str = buf;
3062 }
3063 else
3064 {
3065 str_len = 1;
3066 str = tt + oc;
3067 }
3068 }
3069 }
3070 else
3071 {
3072 nc = oc;
3073 val = CHAR_TABLE_REF (table, oc);
3074 if (CHARACTERP (val))
3075 {
3076 nc = XFASTINT (val);
3077 str_len = CHAR_STRING (nc, buf);
3078 str = buf;
3079 }
3080 else if (VECTORP (val) || (CONSP (val)))
3081 {
3082 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3083 where TO is TO-CHAR or [TO-CHAR ...]. */
3084 nc = -1;
3085 }
3086 }
3087
3088 if (nc != oc && nc >= 0)
3089 {
3090 /* Simple one char to one char translation. */
3091 if (len != str_len)
3092 {
3093 Lisp_Object string;
3094
3095 /* This is less efficient, because it moves the gap,
3096 but it should handle multibyte characters correctly. */
3097 string = make_multibyte_string ((char *) str, 1, str_len);
3098 replace_range (pos, pos + 1, string, 1, 0, 1);
3099 len = str_len;
3100 }
3101 else
3102 {
3103 record_change (pos, 1);
3104 while (str_len-- > 0)
3105 *p++ = *str++;
3106 signal_after_change (pos, 1, 1);
3107 update_compositions (pos, pos + 1, CHECK_BORDER);
3108 }
3109 ++cnt;
3110 }
3111 else if (nc < 0)
3112 {
3113 Lisp_Object string;
3114
3115 if (CONSP (val))
3116 {
3117 val = check_translation (pos, pos_byte, end_pos, val);
3118 if (NILP (val))
3119 {
3120 pos_byte += len;
3121 pos++;
3122 continue;
3123 }
3124 /* VAL is ([FROM-CHAR ...] . TO). */
3125 len = ASIZE (XCAR (val));
3126 val = XCDR (val);
3127 }
3128 else
3129 len = 1;
3130
3131 if (VECTORP (val))
3132 {
3133 string = Fconcat (1, &val);
3134 }
3135 else
3136 {
3137 string = Fmake_string (make_number (1), val);
3138 }
3139 replace_range (pos, pos + len, string, 1, 0, 1);
3140 pos_byte += SBYTES (string);
3141 pos += SCHARS (string);
3142 cnt += SCHARS (string);
3143 end_pos += SCHARS (string) - len;
3144 continue;
3145 }
3146 }
3147 pos_byte += len;
3148 pos++;
3149 }
3150
3151 return make_number (cnt);
3152 }
3153
3154 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3155 doc: /* Delete the text between START and END.
3156 If called interactively, delete the region between point and mark.
3157 This command deletes buffer text without modifying the kill ring. */)
3158 (Lisp_Object start, Lisp_Object end)
3159 {
3160 validate_region (&start, &end);
3161 del_range (XINT (start), XINT (end));
3162 return Qnil;
3163 }
3164
3165 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3166 Sdelete_and_extract_region, 2, 2, 0,
3167 doc: /* Delete the text between START and END and return it. */)
3168 (Lisp_Object start, Lisp_Object end)
3169 {
3170 validate_region (&start, &end);
3171 if (XINT (start) == XINT (end))
3172 return empty_unibyte_string;
3173 return del_range_1 (XINT (start), XINT (end), 1, 1);
3174 }
3175 \f
3176 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3177 doc: /* Remove restrictions (narrowing) from current buffer.
3178 This allows the buffer's full text to be seen and edited. */)
3179 (void)
3180 {
3181 if (BEG != BEGV || Z != ZV)
3182 current_buffer->clip_changed = 1;
3183 BEGV = BEG;
3184 BEGV_BYTE = BEG_BYTE;
3185 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3186 /* Changing the buffer bounds invalidates any recorded current column. */
3187 invalidate_current_column ();
3188 return Qnil;
3189 }
3190
3191 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3192 doc: /* Restrict editing in this buffer to the current region.
3193 The rest of the text becomes temporarily invisible and untouchable
3194 but is not deleted; if you save the buffer in a file, the invisible
3195 text is included in the file. \\[widen] makes all visible again.
3196 See also `save-restriction'.
3197
3198 When calling from a program, pass two arguments; positions (integers
3199 or markers) bounding the text that should remain visible. */)
3200 (register Lisp_Object start, Lisp_Object end)
3201 {
3202 CHECK_NUMBER_COERCE_MARKER (start);
3203 CHECK_NUMBER_COERCE_MARKER (end);
3204
3205 if (XINT (start) > XINT (end))
3206 {
3207 Lisp_Object tem;
3208 tem = start; start = end; end = tem;
3209 }
3210
3211 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3212 args_out_of_range (start, end);
3213
3214 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3215 current_buffer->clip_changed = 1;
3216
3217 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3218 SET_BUF_ZV (current_buffer, XFASTINT (end));
3219 if (PT < XFASTINT (start))
3220 SET_PT (XFASTINT (start));
3221 if (PT > XFASTINT (end))
3222 SET_PT (XFASTINT (end));
3223 /* Changing the buffer bounds invalidates any recorded current column. */
3224 invalidate_current_column ();
3225 return Qnil;
3226 }
3227
3228 Lisp_Object
3229 save_restriction_save (void)
3230 {
3231 if (BEGV == BEG && ZV == Z)
3232 /* The common case that the buffer isn't narrowed.
3233 We return just the buffer object, which save_restriction_restore
3234 recognizes as meaning `no restriction'. */
3235 return Fcurrent_buffer ();
3236 else
3237 /* We have to save a restriction, so return a pair of markers, one
3238 for the beginning and one for the end. */
3239 {
3240 Lisp_Object beg, end;
3241
3242 beg = buildmark (BEGV, BEGV_BYTE);
3243 end = buildmark (ZV, ZV_BYTE);
3244
3245 /* END must move forward if text is inserted at its exact location. */
3246 XMARKER (end)->insertion_type = 1;
3247
3248 return Fcons (beg, end);
3249 }
3250 }
3251
3252 Lisp_Object
3253 save_restriction_restore (Lisp_Object data)
3254 {
3255 struct buffer *cur = NULL;
3256 struct buffer *buf = (CONSP (data)
3257 ? XMARKER (XCAR (data))->buffer
3258 : XBUFFER (data));
3259
3260 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3261 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3262 is the case if it is or has an indirect buffer), then make
3263 sure it is current before we update BEGV, so
3264 set_buffer_internal takes care of managing those markers. */
3265 cur = current_buffer;
3266 set_buffer_internal (buf);
3267 }
3268
3269 if (CONSP (data))
3270 /* A pair of marks bounding a saved restriction. */
3271 {
3272 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3273 struct Lisp_Marker *end = XMARKER (XCDR (data));
3274 eassert (buf == end->buffer);
3275
3276 if (buf /* Verify marker still points to a buffer. */
3277 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3278 /* The restriction has changed from the saved one, so restore
3279 the saved restriction. */
3280 {
3281 ptrdiff_t pt = BUF_PT (buf);
3282
3283 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3284 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3285
3286 if (pt < beg->charpos || pt > end->charpos)
3287 /* The point is outside the new visible range, move it inside. */
3288 SET_BUF_PT_BOTH (buf,
3289 clip_to_bounds (beg->charpos, pt, end->charpos),
3290 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3291 end->bytepos));
3292
3293 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3294 }
3295 }
3296 else
3297 /* A buffer, which means that there was no old restriction. */
3298 {
3299 if (buf /* Verify marker still points to a buffer. */
3300 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3301 /* The buffer has been narrowed, get rid of the narrowing. */
3302 {
3303 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3304 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3305
3306 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3307 }
3308 }
3309
3310 /* Changing the buffer bounds invalidates any recorded current column. */
3311 invalidate_current_column ();
3312
3313 if (cur)
3314 set_buffer_internal (cur);
3315
3316 return Qnil;
3317 }
3318
3319 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3320 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3321 The buffer's restrictions make parts of the beginning and end invisible.
3322 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3323 This special form, `save-restriction', saves the current buffer's restrictions
3324 when it is entered, and restores them when it is exited.
3325 So any `narrow-to-region' within BODY lasts only until the end of the form.
3326 The old restrictions settings are restored
3327 even in case of abnormal exit (throw or error).
3328
3329 The value returned is the value of the last form in BODY.
3330
3331 Note: if you are using both `save-excursion' and `save-restriction',
3332 use `save-excursion' outermost:
3333 (save-excursion (save-restriction ...))
3334
3335 usage: (save-restriction &rest BODY) */)
3336 (Lisp_Object body)
3337 {
3338 register Lisp_Object val;
3339 ptrdiff_t count = SPECPDL_INDEX ();
3340
3341 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3342 val = Fprogn (body);
3343 return unbind_to (count, val);
3344 }
3345 \f
3346 /* Buffer for the most recent text displayed by Fmessage_box. */
3347 static char *message_text;
3348
3349 /* Allocated length of that buffer. */
3350 static ptrdiff_t message_length;
3351
3352 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3353 doc: /* Display a message at the bottom of the screen.
3354 The message also goes into the `*Messages*' buffer.
3355 \(In keyboard macros, that's all it does.)
3356 Return the message.
3357
3358 The first argument is a format control string, and the rest are data
3359 to be formatted under control of the string. See `format' for details.
3360
3361 Note: Use (message "%s" VALUE) to print the value of expressions and
3362 variables to avoid accidentally interpreting `%' as format specifiers.
3363
3364 If the first argument is nil or the empty string, the function clears
3365 any existing message; this lets the minibuffer contents show. See
3366 also `current-message'.
3367
3368 usage: (message FORMAT-STRING &rest ARGS) */)
3369 (ptrdiff_t nargs, Lisp_Object *args)
3370 {
3371 if (NILP (args[0])
3372 || (STRINGP (args[0])
3373 && SBYTES (args[0]) == 0))
3374 {
3375 message (0);
3376 return args[0];
3377 }
3378 else
3379 {
3380 register Lisp_Object val;
3381 val = Fformat (nargs, args);
3382 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3383 return val;
3384 }
3385 }
3386
3387 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3388 doc: /* Display a message, in a dialog box if possible.
3389 If a dialog box is not available, use the echo area.
3390 The first argument is a format control string, and the rest are data
3391 to be formatted under control of the string. See `format' for details.
3392
3393 If the first argument is nil or the empty string, clear any existing
3394 message; let the minibuffer contents show.
3395
3396 usage: (message-box FORMAT-STRING &rest ARGS) */)
3397 (ptrdiff_t nargs, Lisp_Object *args)
3398 {
3399 if (NILP (args[0]))
3400 {
3401 message (0);
3402 return Qnil;
3403 }
3404 else
3405 {
3406 register Lisp_Object val;
3407 val = Fformat (nargs, args);
3408 #ifdef HAVE_MENUS
3409 /* The MS-DOS frames support popup menus even though they are
3410 not FRAME_WINDOW_P. */
3411 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3412 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3413 {
3414 Lisp_Object pane, menu;
3415 struct gcpro gcpro1;
3416 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3417 GCPRO1 (pane);
3418 menu = Fcons (val, pane);
3419 Fx_popup_dialog (Qt, menu, Qt);
3420 UNGCPRO;
3421 return val;
3422 }
3423 #endif /* HAVE_MENUS */
3424 /* Copy the data so that it won't move when we GC. */
3425 if (! message_text)
3426 {
3427 message_text = (char *)xmalloc (80);
3428 message_length = 80;
3429 }
3430 if (SBYTES (val) > message_length)
3431 {
3432 message_text = (char *) xrealloc (message_text, SBYTES (val));
3433 message_length = SBYTES (val);
3434 }
3435 memcpy (message_text, SDATA (val), SBYTES (val));
3436 message2 (message_text, SBYTES (val),
3437 STRING_MULTIBYTE (val));
3438 return val;
3439 }
3440 }
3441
3442 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3443 doc: /* Display a message in a dialog box or in the echo area.
3444 If this command was invoked with the mouse, use a dialog box if
3445 `use-dialog-box' is non-nil.
3446 Otherwise, use the echo area.
3447 The first argument is a format control string, and the rest are data
3448 to be formatted under control of the string. See `format' for details.
3449
3450 If the first argument is nil or the empty string, clear any existing
3451 message; let the minibuffer contents show.
3452
3453 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3454 (ptrdiff_t nargs, Lisp_Object *args)
3455 {
3456 #ifdef HAVE_MENUS
3457 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3458 && use_dialog_box)
3459 return Fmessage_box (nargs, args);
3460 #endif
3461 return Fmessage (nargs, args);
3462 }
3463
3464 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3465 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3466 (void)
3467 {
3468 return current_message ();
3469 }
3470
3471
3472 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3473 doc: /* Return a copy of STRING with text properties added.
3474 First argument is the string to copy.
3475 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3476 properties to add to the result.
3477 usage: (propertize STRING &rest PROPERTIES) */)
3478 (ptrdiff_t nargs, Lisp_Object *args)
3479 {
3480 Lisp_Object properties, string;
3481 struct gcpro gcpro1, gcpro2;
3482 ptrdiff_t i;
3483
3484 /* Number of args must be odd. */
3485 if ((nargs & 1) == 0)
3486 error ("Wrong number of arguments");
3487
3488 properties = string = Qnil;
3489 GCPRO2 (properties, string);
3490
3491 /* First argument must be a string. */
3492 CHECK_STRING (args[0]);
3493 string = Fcopy_sequence (args[0]);
3494
3495 for (i = 1; i < nargs; i += 2)
3496 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3497
3498 Fadd_text_properties (make_number (0),
3499 make_number (SCHARS (string)),
3500 properties, string);
3501 RETURN_UNGCPRO (string);
3502 }
3503
3504 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3505 doc: /* Format a string out of a format-string and arguments.
3506 The first argument is a format control string.
3507 The other arguments are substituted into it to make the result, a string.
3508
3509 The format control string may contain %-sequences meaning to substitute
3510 the next available argument:
3511
3512 %s means print a string argument. Actually, prints any object, with `princ'.
3513 %d means print as number in decimal (%o octal, %x hex).
3514 %X is like %x, but uses upper case.
3515 %e means print a number in exponential notation.
3516 %f means print a number in decimal-point notation.
3517 %g means print a number in exponential notation
3518 or decimal-point notation, whichever uses fewer characters.
3519 %c means print a number as a single character.
3520 %S means print any object as an s-expression (using `prin1').
3521
3522 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3523 Use %% to put a single % into the output.
3524
3525 A %-sequence may contain optional flag, width, and precision
3526 specifiers, as follows:
3527
3528 %<flags><width><precision>character
3529
3530 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3531
3532 The + flag character inserts a + before any positive number, while a
3533 space inserts a space before any positive number; these flags only
3534 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3535 The # flag means to use an alternate display form for %o, %x, %X, %e,
3536 %f, and %g sequences. The - and 0 flags affect the width specifier,
3537 as described below.
3538
3539 The width specifier supplies a lower limit for the length of the
3540 printed representation. The padding, if any, normally goes on the
3541 left, but it goes on the right if the - flag is present. The padding
3542 character is normally a space, but it is 0 if the 0 flag is present.
3543 The 0 flag is ignored if the - flag is present, or the format sequence
3544 is something other than %d, %e, %f, and %g.
3545
3546 For %e, %f, and %g sequences, the number after the "." in the
3547 precision specifier says how many decimal places to show; if zero, the
3548 decimal point itself is omitted. For %s and %S, the precision
3549 specifier truncates the string to the given width.
3550
3551 usage: (format STRING &rest OBJECTS) */)
3552 (ptrdiff_t nargs, Lisp_Object *args)
3553 {
3554 ptrdiff_t n; /* The number of the next arg to substitute */
3555 char initial_buffer[4000];
3556 char *buf = initial_buffer;
3557 ptrdiff_t bufsize = sizeof initial_buffer;
3558 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3559 char *p;
3560 Lisp_Object buf_save_value IF_LINT (= {0});
3561 register char *format, *end, *format_start;
3562 ptrdiff_t formatlen, nchars;
3563 /* Nonzero if the format is multibyte. */
3564 int multibyte_format = 0;
3565 /* Nonzero if the output should be a multibyte string,
3566 which is true if any of the inputs is one. */
3567 int multibyte = 0;
3568 /* When we make a multibyte string, we must pay attention to the
3569 byte combining problem, i.e., a byte may be combined with a
3570 multibyte character of the previous string. This flag tells if we
3571 must consider such a situation or not. */
3572 int maybe_combine_byte;
3573 Lisp_Object val;
3574 int arg_intervals = 0;
3575 USE_SAFE_ALLOCA;
3576
3577 /* discarded[I] is 1 if byte I of the format
3578 string was not copied into the output.
3579 It is 2 if byte I was not the first byte of its character. */
3580 char *discarded;
3581
3582 /* Each element records, for one argument,
3583 the start and end bytepos in the output string,
3584 whether the argument has been converted to string (e.g., due to "%S"),
3585 and whether the argument is a string with intervals.
3586 info[0] is unused. Unused elements have -1 for start. */
3587 struct info
3588 {
3589 ptrdiff_t start, end;
3590 int converted_to_string;
3591 int intervals;
3592 } *info = 0;
3593
3594 /* It should not be necessary to GCPRO ARGS, because
3595 the caller in the interpreter should take care of that. */
3596
3597 CHECK_STRING (args[0]);
3598 format_start = SSDATA (args[0]);
3599 formatlen = SBYTES (args[0]);
3600
3601 /* Allocate the info and discarded tables. */
3602 {
3603 ptrdiff_t i;
3604 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3605 memory_full (SIZE_MAX);
3606 SAFE_ALLOCA (info, struct info *, (nargs + 1) * sizeof *info + formatlen);
3607 discarded = (char *) &info[nargs + 1];
3608 for (i = 0; i < nargs + 1; i++)
3609 {
3610 info[i].start = -1;
3611 info[i].intervals = info[i].converted_to_string = 0;
3612 }
3613 memset (discarded, 0, formatlen);
3614 }
3615
3616 /* Try to determine whether the result should be multibyte.
3617 This is not always right; sometimes the result needs to be multibyte
3618 because of an object that we will pass through prin1,
3619 and in that case, we won't know it here. */
3620 multibyte_format = STRING_MULTIBYTE (args[0]);
3621 multibyte = multibyte_format;
3622 for (n = 1; !multibyte && n < nargs; n++)
3623 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3624 multibyte = 1;
3625
3626 /* If we start out planning a unibyte result,
3627 then discover it has to be multibyte, we jump back to retry. */
3628 retry:
3629
3630 p = buf;
3631 nchars = 0;
3632 n = 0;
3633
3634 /* Scan the format and store result in BUF. */
3635 format = format_start;
3636 end = format + formatlen;
3637 maybe_combine_byte = 0;
3638
3639 while (format != end)
3640 {
3641 /* The values of N and FORMAT when the loop body is entered. */
3642 ptrdiff_t n0 = n;
3643 char *format0 = format;
3644
3645 /* Bytes needed to represent the output of this conversion. */
3646 ptrdiff_t convbytes;
3647
3648 if (*format == '%')
3649 {
3650 /* General format specifications look like
3651
3652 '%' [flags] [field-width] [precision] format
3653
3654 where
3655
3656 flags ::= [-+0# ]+
3657 field-width ::= [0-9]+
3658 precision ::= '.' [0-9]*
3659
3660 If a field-width is specified, it specifies to which width
3661 the output should be padded with blanks, if the output
3662 string is shorter than field-width.
3663
3664 If precision is specified, it specifies the number of
3665 digits to print after the '.' for floats, or the max.
3666 number of chars to print from a string. */
3667
3668 int minus_flag = 0;
3669 int plus_flag = 0;
3670 int space_flag = 0;
3671 int sharp_flag = 0;
3672 int zero_flag = 0;
3673 ptrdiff_t field_width;
3674 int precision_given;
3675 uintmax_t precision = UINTMAX_MAX;
3676 char *num_end;
3677 char conversion;
3678
3679 while (1)
3680 {
3681 switch (*++format)
3682 {
3683 case '-': minus_flag = 1; continue;
3684 case '+': plus_flag = 1; continue;
3685 case ' ': space_flag = 1; continue;
3686 case '#': sharp_flag = 1; continue;
3687 case '0': zero_flag = 1; continue;
3688 }
3689 break;
3690 }
3691
3692 /* Ignore flags when sprintf ignores them. */
3693 space_flag &= ~ plus_flag;
3694 zero_flag &= ~ minus_flag;
3695
3696 {
3697 uintmax_t w = strtoumax (format, &num_end, 10);
3698 if (max_bufsize <= w)
3699 string_overflow ();
3700 field_width = w;
3701 }
3702 precision_given = *num_end == '.';
3703 if (precision_given)
3704 precision = strtoumax (num_end + 1, &num_end, 10);
3705 format = num_end;
3706
3707 if (format == end)
3708 error ("Format string ends in middle of format specifier");
3709
3710 memset (&discarded[format0 - format_start], 1, format - format0);
3711 conversion = *format;
3712 if (conversion == '%')
3713 goto copy_char;
3714 discarded[format - format_start] = 1;
3715 format++;
3716
3717 ++n;
3718 if (! (n < nargs))
3719 error ("Not enough arguments for format string");
3720
3721 /* For 'S', prin1 the argument, and then treat like 's'.
3722 For 's', princ any argument that is not a string or
3723 symbol. But don't do this conversion twice, which might
3724 happen after retrying. */
3725 if ((conversion == 'S'
3726 || (conversion == 's'
3727 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3728 {
3729 if (! info[n].converted_to_string)
3730 {
3731 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3732 args[n] = Fprin1_to_string (args[n], noescape);
3733 info[n].converted_to_string = 1;
3734 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3735 {
3736 multibyte = 1;
3737 goto retry;
3738 }
3739 }
3740 conversion = 's';
3741 }
3742 else if (conversion == 'c')
3743 {
3744 if (FLOATP (args[n]))
3745 {
3746 double d = XFLOAT_DATA (args[n]);
3747 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3748 }
3749
3750 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3751 {
3752 if (!multibyte)
3753 {
3754 multibyte = 1;
3755 goto retry;
3756 }
3757 args[n] = Fchar_to_string (args[n]);
3758 info[n].converted_to_string = 1;
3759 }
3760
3761 if (info[n].converted_to_string)
3762 conversion = 's';
3763 zero_flag = 0;
3764 }
3765
3766 if (SYMBOLP (args[n]))
3767 {
3768 args[n] = SYMBOL_NAME (args[n]);
3769 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3770 {
3771 multibyte = 1;
3772 goto retry;
3773 }
3774 }
3775
3776 if (conversion == 's')
3777 {
3778 /* handle case (precision[n] >= 0) */
3779
3780 ptrdiff_t width, padding, nbytes;
3781 ptrdiff_t nchars_string;
3782
3783 ptrdiff_t prec = -1;
3784 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3785 prec = precision;
3786
3787 /* lisp_string_width ignores a precision of 0, but GNU
3788 libc functions print 0 characters when the precision
3789 is 0. Imitate libc behavior here. Changing
3790 lisp_string_width is the right thing, and will be
3791 done, but meanwhile we work with it. */
3792
3793 if (prec == 0)
3794 width = nchars_string = nbytes = 0;
3795 else
3796 {
3797 ptrdiff_t nch, nby;
3798 width = lisp_string_width (args[n], prec, &nch, &nby);
3799 if (prec < 0)
3800 {
3801 nchars_string = SCHARS (args[n]);
3802 nbytes = SBYTES (args[n]);
3803 }
3804 else
3805 {
3806 nchars_string = nch;
3807 nbytes = nby;
3808 }
3809 }
3810
3811 convbytes = nbytes;
3812 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3813 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3814
3815 padding = width < field_width ? field_width - width : 0;
3816
3817 if (max_bufsize - padding <= convbytes)
3818 string_overflow ();
3819 convbytes += padding;
3820 if (convbytes <= buf + bufsize - p)
3821 {
3822 if (! minus_flag)
3823 {
3824 memset (p, ' ', padding);
3825 p += padding;
3826 nchars += padding;
3827 }
3828
3829 if (p > buf
3830 && multibyte
3831 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3832 && STRING_MULTIBYTE (args[n])
3833 && !CHAR_HEAD_P (SREF (args[n], 0)))
3834 maybe_combine_byte = 1;
3835
3836 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3837 nbytes,
3838 STRING_MULTIBYTE (args[n]), multibyte);
3839
3840 info[n].start = nchars;
3841 nchars += nchars_string;
3842 info[n].end = nchars;
3843
3844 if (minus_flag)
3845 {
3846 memset (p, ' ', padding);
3847 p += padding;
3848 nchars += padding;
3849 }
3850
3851 /* If this argument has text properties, record where
3852 in the result string it appears. */
3853 if (STRING_INTERVALS (args[n]))
3854 info[n].intervals = arg_intervals = 1;
3855
3856 continue;
3857 }
3858 }
3859 else if (! (conversion == 'c' || conversion == 'd'
3860 || conversion == 'e' || conversion == 'f'
3861 || conversion == 'g' || conversion == 'i'
3862 || conversion == 'o' || conversion == 'x'
3863 || conversion == 'X'))
3864 error ("Invalid format operation %%%c",
3865 STRING_CHAR ((unsigned char *) format - 1));
3866 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3867 error ("Format specifier doesn't match argument type");
3868 else
3869 {
3870 enum
3871 {
3872 /* Maximum precision for a %f conversion such that the
3873 trailing output digit might be nonzero. Any precisions
3874 larger than this will not yield useful information. */
3875 USEFUL_PRECISION_MAX =
3876 ((1 - DBL_MIN_EXP)
3877 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3878 : FLT_RADIX == 16 ? 4
3879 : -1)),
3880
3881 /* Maximum number of bytes generated by any format, if
3882 precision is no more than USEFUL_PRECISION_MAX.
3883 On all practical hosts, %f is the worst case. */
3884 SPRINTF_BUFSIZE =
3885 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3886
3887 /* Length of pM (that is, of pMd without the
3888 trailing "d"). */
3889 pMlen = sizeof pMd - 2
3890 };
3891 verify (0 < USEFUL_PRECISION_MAX);
3892
3893 int prec;
3894 ptrdiff_t padding, sprintf_bytes;
3895 uintmax_t excess_precision, numwidth;
3896 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3897
3898 char sprintf_buf[SPRINTF_BUFSIZE];
3899
3900 /* Copy of conversion specification, modified somewhat.
3901 At most three flags F can be specified at once. */
3902 char convspec[sizeof "%FFF.*d" + pMlen];
3903
3904 /* Avoid undefined behavior in underlying sprintf. */
3905 if (conversion == 'd' || conversion == 'i')
3906 sharp_flag = 0;
3907
3908 /* Create the copy of the conversion specification, with
3909 any width and precision removed, with ".*" inserted,
3910 and with pM inserted for integer formats. */
3911 {
3912 char *f = convspec;
3913 *f++ = '%';
3914 *f = '-'; f += minus_flag;
3915 *f = '+'; f += plus_flag;
3916 *f = ' '; f += space_flag;
3917 *f = '#'; f += sharp_flag;
3918 *f = '0'; f += zero_flag;
3919 *f++ = '.';
3920 *f++ = '*';
3921 if (conversion == 'd' || conversion == 'i'
3922 || conversion == 'o' || conversion == 'x'
3923 || conversion == 'X')
3924 {
3925 memcpy (f, pMd, pMlen);
3926 f += pMlen;
3927 zero_flag &= ~ precision_given;
3928 }
3929 *f++ = conversion;
3930 *f = '\0';
3931 }
3932
3933 prec = -1;
3934 if (precision_given)
3935 prec = min (precision, USEFUL_PRECISION_MAX);
3936
3937 /* Use sprintf to format this number into sprintf_buf. Omit
3938 padding and excess precision, though, because sprintf limits
3939 output length to INT_MAX.
3940
3941 There are four types of conversion: double, unsigned
3942 char (passed as int), wide signed int, and wide
3943 unsigned int. Treat them separately because the
3944 sprintf ABI is sensitive to which type is passed. Be
3945 careful about integer overflow, NaNs, infinities, and
3946 conversions; for example, the min and max macros are
3947 not suitable here. */
3948 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3949 {
3950 double x = (INTEGERP (args[n])
3951 ? XINT (args[n])
3952 : XFLOAT_DATA (args[n]));
3953 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
3954 }
3955 else if (conversion == 'c')
3956 {
3957 /* Don't use sprintf here, as it might mishandle prec. */
3958 sprintf_buf[0] = XINT (args[n]);
3959 sprintf_bytes = prec != 0;
3960 }
3961 else if (conversion == 'd')
3962 {
3963 /* For float, maybe we should use "%1.0f"
3964 instead so it also works for values outside
3965 the integer range. */
3966 printmax_t x;
3967 if (INTEGERP (args[n]))
3968 x = XINT (args[n]);
3969 else
3970 {
3971 double d = XFLOAT_DATA (args[n]);
3972 if (d < 0)
3973 {
3974 x = TYPE_MINIMUM (printmax_t);
3975 if (x < d)
3976 x = d;
3977 }
3978 else
3979 {
3980 x = TYPE_MAXIMUM (printmax_t);
3981 if (d < x)
3982 x = d;
3983 }
3984 }
3985 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
3986 }
3987 else
3988 {
3989 /* Don't sign-extend for octal or hex printing. */
3990 uprintmax_t x;
3991 if (INTEGERP (args[n]))
3992 x = XUINT (args[n]);
3993 else
3994 {
3995 double d = XFLOAT_DATA (args[n]);
3996 if (d < 0)
3997 x = 0;
3998 else
3999 {
4000 x = TYPE_MAXIMUM (uprintmax_t);
4001 if (d < x)
4002 x = d;
4003 }
4004 }
4005 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4006 }
4007
4008 /* Now the length of the formatted item is known, except it omits
4009 padding and excess precision. Deal with excess precision
4010 first. This happens only when the format specifies
4011 ridiculously large precision. */
4012 excess_precision = precision - prec;
4013 if (excess_precision)
4014 {
4015 if (conversion == 'e' || conversion == 'f'
4016 || conversion == 'g')
4017 {
4018 if ((conversion == 'g' && ! sharp_flag)
4019 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4020 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4021 excess_precision = 0;
4022 else
4023 {
4024 if (conversion == 'g')
4025 {
4026 char *dot = strchr (sprintf_buf, '.');
4027 if (!dot)
4028 excess_precision = 0;
4029 }
4030 }
4031 trailing_zeros = excess_precision;
4032 }
4033 else
4034 leading_zeros = excess_precision;
4035 }
4036
4037 /* Compute the total bytes needed for this item, including
4038 excess precision and padding. */
4039 numwidth = sprintf_bytes + excess_precision;
4040 padding = numwidth < field_width ? field_width - numwidth : 0;
4041 if (max_bufsize - sprintf_bytes <= excess_precision
4042 || max_bufsize - padding <= numwidth)
4043 string_overflow ();
4044 convbytes = numwidth + padding;
4045
4046 if (convbytes <= buf + bufsize - p)
4047 {
4048 /* Copy the formatted item from sprintf_buf into buf,
4049 inserting padding and excess-precision zeros. */
4050
4051 char *src = sprintf_buf;
4052 char src0 = src[0];
4053 int exponent_bytes = 0;
4054 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4055 int significand_bytes;
4056 if (zero_flag
4057 && ((src[signedp] >= '0' && src[signedp] <= '9')
4058 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4059 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4060 {
4061 leading_zeros += padding;
4062 padding = 0;
4063 }
4064
4065 if (excess_precision
4066 && (conversion == 'e' || conversion == 'g'))
4067 {
4068 char *e = strchr (src, 'e');
4069 if (e)
4070 exponent_bytes = src + sprintf_bytes - e;
4071 }
4072
4073 if (! minus_flag)
4074 {
4075 memset (p, ' ', padding);
4076 p += padding;
4077 nchars += padding;
4078 }
4079
4080 *p = src0;
4081 src += signedp;
4082 p += signedp;
4083 memset (p, '0', leading_zeros);
4084 p += leading_zeros;
4085 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4086 memcpy (p, src, significand_bytes);
4087 p += significand_bytes;
4088 src += significand_bytes;
4089 memset (p, '0', trailing_zeros);
4090 p += trailing_zeros;
4091 memcpy (p, src, exponent_bytes);
4092 p += exponent_bytes;
4093
4094 info[n].start = nchars;
4095 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4096 info[n].end = nchars;
4097
4098 if (minus_flag)
4099 {
4100 memset (p, ' ', padding);
4101 p += padding;
4102 nchars += padding;
4103 }
4104
4105 continue;
4106 }
4107 }
4108 }
4109 else
4110 copy_char:
4111 {
4112 /* Copy a single character from format to buf. */
4113
4114 char *src = format;
4115 unsigned char str[MAX_MULTIBYTE_LENGTH];
4116
4117 if (multibyte_format)
4118 {
4119 /* Copy a whole multibyte character. */
4120 if (p > buf
4121 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4122 && !CHAR_HEAD_P (*format))
4123 maybe_combine_byte = 1;
4124
4125 do
4126 format++;
4127 while (! CHAR_HEAD_P (*format));
4128
4129 convbytes = format - src;
4130 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4131 }
4132 else
4133 {
4134 unsigned char uc = *format++;
4135 if (! multibyte || ASCII_BYTE_P (uc))
4136 convbytes = 1;
4137 else
4138 {
4139 int c = BYTE8_TO_CHAR (uc);
4140 convbytes = CHAR_STRING (c, str);
4141 src = (char *) str;
4142 }
4143 }
4144
4145 if (convbytes <= buf + bufsize - p)
4146 {
4147 memcpy (p, src, convbytes);
4148 p += convbytes;
4149 nchars++;
4150 continue;
4151 }
4152 }
4153
4154 /* There wasn't enough room to store this conversion or single
4155 character. CONVBYTES says how much room is needed. Allocate
4156 enough room (and then some) and do it again. */
4157 {
4158 ptrdiff_t used = p - buf;
4159
4160 if (max_bufsize - used < convbytes)
4161 string_overflow ();
4162 bufsize = used + convbytes;
4163 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4164
4165 if (buf == initial_buffer)
4166 {
4167 buf = xmalloc (bufsize);
4168 sa_must_free = 1;
4169 buf_save_value = make_save_value (buf, 0);
4170 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4171 memcpy (buf, initial_buffer, used);
4172 }
4173 else
4174 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4175
4176 p = buf + used;
4177 }
4178
4179 format = format0;
4180 n = n0;
4181 }
4182
4183 if (bufsize < p - buf)
4184 abort ();
4185
4186 if (maybe_combine_byte)
4187 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4188 val = make_specified_string (buf, nchars, p - buf, multibyte);
4189
4190 /* If we allocated BUF with malloc, free it too. */
4191 SAFE_FREE ();
4192
4193 /* If the format string has text properties, or any of the string
4194 arguments has text properties, set up text properties of the
4195 result string. */
4196
4197 if (STRING_INTERVALS (args[0]) || arg_intervals)
4198 {
4199 Lisp_Object len, new_len, props;
4200 struct gcpro gcpro1;
4201
4202 /* Add text properties from the format string. */
4203 len = make_number (SCHARS (args[0]));
4204 props = text_property_list (args[0], make_number (0), len, Qnil);
4205 GCPRO1 (props);
4206
4207 if (CONSP (props))
4208 {
4209 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4210 ptrdiff_t argn = 1;
4211 Lisp_Object list;
4212
4213 /* Adjust the bounds of each text property
4214 to the proper start and end in the output string. */
4215
4216 /* Put the positions in PROPS in increasing order, so that
4217 we can do (effectively) one scan through the position
4218 space of the format string. */
4219 props = Fnreverse (props);
4220
4221 /* BYTEPOS is the byte position in the format string,
4222 POSITION is the untranslated char position in it,
4223 TRANSLATED is the translated char position in BUF,
4224 and ARGN is the number of the next arg we will come to. */
4225 for (list = props; CONSP (list); list = XCDR (list))
4226 {
4227 Lisp_Object item;
4228 ptrdiff_t pos;
4229
4230 item = XCAR (list);
4231
4232 /* First adjust the property start position. */
4233 pos = XINT (XCAR (item));
4234
4235 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4236 up to this position. */
4237 for (; position < pos; bytepos++)
4238 {
4239 if (! discarded[bytepos])
4240 position++, translated++;
4241 else if (discarded[bytepos] == 1)
4242 {
4243 position++;
4244 if (translated == info[argn].start)
4245 {
4246 translated += info[argn].end - info[argn].start;
4247 argn++;
4248 }
4249 }
4250 }
4251
4252 XSETCAR (item, make_number (translated));
4253
4254 /* Likewise adjust the property end position. */
4255 pos = XINT (XCAR (XCDR (item)));
4256
4257 for (; position < pos; bytepos++)
4258 {
4259 if (! discarded[bytepos])
4260 position++, translated++;
4261 else if (discarded[bytepos] == 1)
4262 {
4263 position++;
4264 if (translated == info[argn].start)
4265 {
4266 translated += info[argn].end - info[argn].start;
4267 argn++;
4268 }
4269 }
4270 }
4271
4272 XSETCAR (XCDR (item), make_number (translated));
4273 }
4274
4275 add_text_properties_from_list (val, props, make_number (0));
4276 }
4277
4278 /* Add text properties from arguments. */
4279 if (arg_intervals)
4280 for (n = 1; n < nargs; ++n)
4281 if (info[n].intervals)
4282 {
4283 len = make_number (SCHARS (args[n]));
4284 new_len = make_number (info[n].end - info[n].start);
4285 props = text_property_list (args[n], make_number (0), len, Qnil);
4286 props = extend_property_ranges (props, new_len);
4287 /* If successive arguments have properties, be sure that
4288 the value of `composition' property be the copy. */
4289 if (n > 1 && info[n - 1].end)
4290 make_composition_value_copy (props);
4291 add_text_properties_from_list (val, props,
4292 make_number (info[n].start));
4293 }
4294
4295 UNGCPRO;
4296 }
4297
4298 return val;
4299 }
4300
4301 Lisp_Object
4302 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4303 {
4304 Lisp_Object args[3];
4305 args[0] = build_string (string1);
4306 args[1] = arg0;
4307 args[2] = arg1;
4308 return Fformat (3, args);
4309 }
4310 \f
4311 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4312 doc: /* Return t if two characters match, optionally ignoring case.
4313 Both arguments must be characters (i.e. integers).
4314 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4315 (register Lisp_Object c1, Lisp_Object c2)
4316 {
4317 int i1, i2;
4318 /* Check they're chars, not just integers, otherwise we could get array
4319 bounds violations in downcase. */
4320 CHECK_CHARACTER (c1);
4321 CHECK_CHARACTER (c2);
4322
4323 if (XINT (c1) == XINT (c2))
4324 return Qt;
4325 if (NILP (BVAR (current_buffer, case_fold_search)))
4326 return Qnil;
4327
4328 i1 = XFASTINT (c1);
4329 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4330 && ! ASCII_CHAR_P (i1))
4331 {
4332 MAKE_CHAR_MULTIBYTE (i1);
4333 }
4334 i2 = XFASTINT (c2);
4335 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4336 && ! ASCII_CHAR_P (i2))
4337 {
4338 MAKE_CHAR_MULTIBYTE (i2);
4339 }
4340 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4341 }
4342 \f
4343 /* Transpose the markers in two regions of the current buffer, and
4344 adjust the ones between them if necessary (i.e.: if the regions
4345 differ in size).
4346
4347 START1, END1 are the character positions of the first region.
4348 START1_BYTE, END1_BYTE are the byte positions.
4349 START2, END2 are the character positions of the second region.
4350 START2_BYTE, END2_BYTE are the byte positions.
4351
4352 Traverses the entire marker list of the buffer to do so, adding an
4353 appropriate amount to some, subtracting from some, and leaving the
4354 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4355
4356 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4357
4358 static void
4359 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4360 ptrdiff_t start2, ptrdiff_t end2,
4361 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4362 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4363 {
4364 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4365 register struct Lisp_Marker *marker;
4366
4367 /* Update point as if it were a marker. */
4368 if (PT < start1)
4369 ;
4370 else if (PT < end1)
4371 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4372 PT_BYTE + (end2_byte - end1_byte));
4373 else if (PT < start2)
4374 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4375 (PT_BYTE + (end2_byte - start2_byte)
4376 - (end1_byte - start1_byte)));
4377 else if (PT < end2)
4378 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4379 PT_BYTE - (start2_byte - start1_byte));
4380
4381 /* We used to adjust the endpoints here to account for the gap, but that
4382 isn't good enough. Even if we assume the caller has tried to move the
4383 gap out of our way, it might still be at start1 exactly, for example;
4384 and that places it `inside' the interval, for our purposes. The amount
4385 of adjustment is nontrivial if there's a `denormalized' marker whose
4386 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4387 the dirty work to Fmarker_position, below. */
4388
4389 /* The difference between the region's lengths */
4390 diff = (end2 - start2) - (end1 - start1);
4391 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4392
4393 /* For shifting each marker in a region by the length of the other
4394 region plus the distance between the regions. */
4395 amt1 = (end2 - start2) + (start2 - end1);
4396 amt2 = (end1 - start1) + (start2 - end1);
4397 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4398 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4399
4400 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4401 {
4402 mpos = marker->bytepos;
4403 if (mpos >= start1_byte && mpos < end2_byte)
4404 {
4405 if (mpos < end1_byte)
4406 mpos += amt1_byte;
4407 else if (mpos < start2_byte)
4408 mpos += diff_byte;
4409 else
4410 mpos -= amt2_byte;
4411 marker->bytepos = mpos;
4412 }
4413 mpos = marker->charpos;
4414 if (mpos >= start1 && mpos < end2)
4415 {
4416 if (mpos < end1)
4417 mpos += amt1;
4418 else if (mpos < start2)
4419 mpos += diff;
4420 else
4421 mpos -= amt2;
4422 }
4423 marker->charpos = mpos;
4424 }
4425 }
4426
4427 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4428 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4429 The regions should not be overlapping, because the size of the buffer is
4430 never changed in a transposition.
4431
4432 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4433 any markers that happen to be located in the regions.
4434
4435 Transposing beyond buffer boundaries is an error. */)
4436 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4437 {
4438 register ptrdiff_t start1, end1, start2, end2;
4439 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4440 ptrdiff_t gap, len1, len_mid, len2;
4441 unsigned char *start1_addr, *start2_addr, *temp;
4442
4443 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4444 Lisp_Object buf;
4445
4446 XSETBUFFER (buf, current_buffer);
4447 cur_intv = BUF_INTERVALS (current_buffer);
4448
4449 validate_region (&startr1, &endr1);
4450 validate_region (&startr2, &endr2);
4451
4452 start1 = XFASTINT (startr1);
4453 end1 = XFASTINT (endr1);
4454 start2 = XFASTINT (startr2);
4455 end2 = XFASTINT (endr2);
4456 gap = GPT;
4457
4458 /* Swap the regions if they're reversed. */
4459 if (start2 < end1)
4460 {
4461 register ptrdiff_t glumph = start1;
4462 start1 = start2;
4463 start2 = glumph;
4464 glumph = end1;
4465 end1 = end2;
4466 end2 = glumph;
4467 }
4468
4469 len1 = end1 - start1;
4470 len2 = end2 - start2;
4471
4472 if (start2 < end1)
4473 error ("Transposed regions overlap");
4474 /* Nothing to change for adjacent regions with one being empty */
4475 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4476 return Qnil;
4477
4478 /* The possibilities are:
4479 1. Adjacent (contiguous) regions, or separate but equal regions
4480 (no, really equal, in this case!), or
4481 2. Separate regions of unequal size.
4482
4483 The worst case is usually No. 2. It means that (aside from
4484 potential need for getting the gap out of the way), there also
4485 needs to be a shifting of the text between the two regions. So
4486 if they are spread far apart, we are that much slower... sigh. */
4487
4488 /* It must be pointed out that the really studly thing to do would
4489 be not to move the gap at all, but to leave it in place and work
4490 around it if necessary. This would be extremely efficient,
4491 especially considering that people are likely to do
4492 transpositions near where they are working interactively, which
4493 is exactly where the gap would be found. However, such code
4494 would be much harder to write and to read. So, if you are
4495 reading this comment and are feeling squirrely, by all means have
4496 a go! I just didn't feel like doing it, so I will simply move
4497 the gap the minimum distance to get it out of the way, and then
4498 deal with an unbroken array. */
4499
4500 /* Make sure the gap won't interfere, by moving it out of the text
4501 we will operate on. */
4502 if (start1 < gap && gap < end2)
4503 {
4504 if (gap - start1 < end2 - gap)
4505 move_gap (start1);
4506 else
4507 move_gap (end2);
4508 }
4509
4510 start1_byte = CHAR_TO_BYTE (start1);
4511 start2_byte = CHAR_TO_BYTE (start2);
4512 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4513 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4514
4515 #ifdef BYTE_COMBINING_DEBUG
4516 if (end1 == start2)
4517 {
4518 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4519 len2_byte, start1, start1_byte)
4520 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4521 len1_byte, end2, start2_byte + len2_byte)
4522 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4523 len1_byte, end2, start2_byte + len2_byte))
4524 abort ();
4525 }
4526 else
4527 {
4528 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4529 len2_byte, start1, start1_byte)
4530 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4531 len1_byte, start2, start2_byte)
4532 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4533 len2_byte, end1, start1_byte + len1_byte)
4534 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4535 len1_byte, end2, start2_byte + len2_byte))
4536 abort ();
4537 }
4538 #endif
4539
4540 /* Hmmm... how about checking to see if the gap is large
4541 enough to use as the temporary storage? That would avoid an
4542 allocation... interesting. Later, don't fool with it now. */
4543
4544 /* Working without memmove, for portability (sigh), so must be
4545 careful of overlapping subsections of the array... */
4546
4547 if (end1 == start2) /* adjacent regions */
4548 {
4549 modify_region (current_buffer, start1, end2, 0);
4550 record_change (start1, len1 + len2);
4551
4552 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4553 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4554 /* Don't use Fset_text_properties: that can cause GC, which can
4555 clobber objects stored in the tmp_intervals. */
4556 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4557 if (!NULL_INTERVAL_P (tmp_interval3))
4558 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4559
4560 /* First region smaller than second. */
4561 if (len1_byte < len2_byte)
4562 {
4563 USE_SAFE_ALLOCA;
4564
4565 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4566
4567 /* Don't precompute these addresses. We have to compute them
4568 at the last minute, because the relocating allocator might
4569 have moved the buffer around during the xmalloc. */
4570 start1_addr = BYTE_POS_ADDR (start1_byte);
4571 start2_addr = BYTE_POS_ADDR (start2_byte);
4572
4573 memcpy (temp, start2_addr, len2_byte);
4574 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4575 memcpy (start1_addr, temp, len2_byte);
4576 SAFE_FREE ();
4577 }
4578 else
4579 /* First region not smaller than second. */
4580 {
4581 USE_SAFE_ALLOCA;
4582
4583 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4584 start1_addr = BYTE_POS_ADDR (start1_byte);
4585 start2_addr = BYTE_POS_ADDR (start2_byte);
4586 memcpy (temp, start1_addr, len1_byte);
4587 memcpy (start1_addr, start2_addr, len2_byte);
4588 memcpy (start1_addr + len2_byte, temp, len1_byte);
4589 SAFE_FREE ();
4590 }
4591 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4592 len1, current_buffer, 0);
4593 graft_intervals_into_buffer (tmp_interval2, start1,
4594 len2, current_buffer, 0);
4595 update_compositions (start1, start1 + len2, CHECK_BORDER);
4596 update_compositions (start1 + len2, end2, CHECK_TAIL);
4597 }
4598 /* Non-adjacent regions, because end1 != start2, bleagh... */
4599 else
4600 {
4601 len_mid = start2_byte - (start1_byte + len1_byte);
4602
4603 if (len1_byte == len2_byte)
4604 /* Regions are same size, though, how nice. */
4605 {
4606 USE_SAFE_ALLOCA;
4607
4608 modify_region (current_buffer, start1, end1, 0);
4609 modify_region (current_buffer, start2, end2, 0);
4610 record_change (start1, len1);
4611 record_change (start2, len2);
4612 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4613 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4614
4615 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4616 if (!NULL_INTERVAL_P (tmp_interval3))
4617 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4618
4619 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4620 if (!NULL_INTERVAL_P (tmp_interval3))
4621 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4622
4623 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4624 start1_addr = BYTE_POS_ADDR (start1_byte);
4625 start2_addr = BYTE_POS_ADDR (start2_byte);
4626 memcpy (temp, start1_addr, len1_byte);
4627 memcpy (start1_addr, start2_addr, len2_byte);
4628 memcpy (start2_addr, temp, len1_byte);
4629 SAFE_FREE ();
4630
4631 graft_intervals_into_buffer (tmp_interval1, start2,
4632 len1, current_buffer, 0);
4633 graft_intervals_into_buffer (tmp_interval2, start1,
4634 len2, current_buffer, 0);
4635 }
4636
4637 else if (len1_byte < len2_byte) /* Second region larger than first */
4638 /* Non-adjacent & unequal size, area between must also be shifted. */
4639 {
4640 USE_SAFE_ALLOCA;
4641
4642 modify_region (current_buffer, start1, end2, 0);
4643 record_change (start1, (end2 - start1));
4644 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4645 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4646 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4647
4648 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4649 if (!NULL_INTERVAL_P (tmp_interval3))
4650 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4651
4652 /* holds region 2 */
4653 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4654 start1_addr = BYTE_POS_ADDR (start1_byte);
4655 start2_addr = BYTE_POS_ADDR (start2_byte);
4656 memcpy (temp, start2_addr, len2_byte);
4657 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4658 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4659 memcpy (start1_addr, temp, len2_byte);
4660 SAFE_FREE ();
4661
4662 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4663 len1, current_buffer, 0);
4664 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4665 len_mid, current_buffer, 0);
4666 graft_intervals_into_buffer (tmp_interval2, start1,
4667 len2, current_buffer, 0);
4668 }
4669 else
4670 /* Second region smaller than first. */
4671 {
4672 USE_SAFE_ALLOCA;
4673
4674 record_change (start1, (end2 - start1));
4675 modify_region (current_buffer, start1, end2, 0);
4676
4677 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4678 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4679 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4680
4681 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4682 if (!NULL_INTERVAL_P (tmp_interval3))
4683 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4684
4685 /* holds region 1 */
4686 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4687 start1_addr = BYTE_POS_ADDR (start1_byte);
4688 start2_addr = BYTE_POS_ADDR (start2_byte);
4689 memcpy (temp, start1_addr, len1_byte);
4690 memcpy (start1_addr, start2_addr, len2_byte);
4691 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4692 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4693 SAFE_FREE ();
4694
4695 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4696 len1, current_buffer, 0);
4697 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4698 len_mid, current_buffer, 0);
4699 graft_intervals_into_buffer (tmp_interval2, start1,
4700 len2, current_buffer, 0);
4701 }
4702
4703 update_compositions (start1, start1 + len2, CHECK_BORDER);
4704 update_compositions (end2 - len1, end2, CHECK_BORDER);
4705 }
4706
4707 /* When doing multiple transpositions, it might be nice
4708 to optimize this. Perhaps the markers in any one buffer
4709 should be organized in some sorted data tree. */
4710 if (NILP (leave_markers))
4711 {
4712 transpose_markers (start1, end1, start2, end2,
4713 start1_byte, start1_byte + len1_byte,
4714 start2_byte, start2_byte + len2_byte);
4715 fix_start_end_in_overlays (start1, end2);
4716 }
4717
4718 signal_after_change (start1, end2 - start1, end2 - start1);
4719 return Qnil;
4720 }
4721
4722 \f
4723 void
4724 syms_of_editfns (void)
4725 {
4726 environbuf = 0;
4727 initial_tz = 0;
4728
4729 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4730
4731 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4732 doc: /* Non-nil means text motion commands don't notice fields. */);
4733 Vinhibit_field_text_motion = Qnil;
4734
4735 DEFVAR_LISP ("buffer-access-fontify-functions",
4736 Vbuffer_access_fontify_functions,
4737 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4738 Each function is called with two arguments which specify the range
4739 of the buffer being accessed. */);
4740 Vbuffer_access_fontify_functions = Qnil;
4741
4742 {
4743 Lisp_Object obuf;
4744 obuf = Fcurrent_buffer ();
4745 /* Do this here, because init_buffer_once is too early--it won't work. */
4746 Fset_buffer (Vprin1_to_string_buffer);
4747 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4748 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4749 Qnil);
4750 Fset_buffer (obuf);
4751 }
4752
4753 DEFVAR_LISP ("buffer-access-fontified-property",
4754 Vbuffer_access_fontified_property,
4755 doc: /* Property which (if non-nil) indicates text has been fontified.
4756 `buffer-substring' need not call the `buffer-access-fontify-functions'
4757 functions if all the text being accessed has this property. */);
4758 Vbuffer_access_fontified_property = Qnil;
4759
4760 DEFVAR_LISP ("system-name", Vsystem_name,
4761 doc: /* The host name of the machine Emacs is running on. */);
4762
4763 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4764 doc: /* The full name of the user logged in. */);
4765
4766 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4767 doc: /* The user's name, taken from environment variables if possible. */);
4768
4769 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4770 doc: /* The user's name, based upon the real uid only. */);
4771
4772 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4773 doc: /* The release of the operating system Emacs is running on. */);
4774
4775 defsubr (&Spropertize);
4776 defsubr (&Schar_equal);
4777 defsubr (&Sgoto_char);
4778 defsubr (&Sstring_to_char);
4779 defsubr (&Schar_to_string);
4780 defsubr (&Sbyte_to_string);
4781 defsubr (&Sbuffer_substring);
4782 defsubr (&Sbuffer_substring_no_properties);
4783 defsubr (&Sbuffer_string);
4784
4785 defsubr (&Spoint_marker);
4786 defsubr (&Smark_marker);
4787 defsubr (&Spoint);
4788 defsubr (&Sregion_beginning);
4789 defsubr (&Sregion_end);
4790
4791 DEFSYM (Qfield, "field");
4792 DEFSYM (Qboundary, "boundary");
4793 defsubr (&Sfield_beginning);
4794 defsubr (&Sfield_end);
4795 defsubr (&Sfield_string);
4796 defsubr (&Sfield_string_no_properties);
4797 defsubr (&Sdelete_field);
4798 defsubr (&Sconstrain_to_field);
4799
4800 defsubr (&Sline_beginning_position);
4801 defsubr (&Sline_end_position);
4802
4803 /* defsubr (&Smark); */
4804 /* defsubr (&Sset_mark); */
4805 defsubr (&Ssave_excursion);
4806 defsubr (&Ssave_current_buffer);
4807
4808 defsubr (&Sbufsize);
4809 defsubr (&Spoint_max);
4810 defsubr (&Spoint_min);
4811 defsubr (&Spoint_min_marker);
4812 defsubr (&Spoint_max_marker);
4813 defsubr (&Sgap_position);
4814 defsubr (&Sgap_size);
4815 defsubr (&Sposition_bytes);
4816 defsubr (&Sbyte_to_position);
4817
4818 defsubr (&Sbobp);
4819 defsubr (&Seobp);
4820 defsubr (&Sbolp);
4821 defsubr (&Seolp);
4822 defsubr (&Sfollowing_char);
4823 defsubr (&Sprevious_char);
4824 defsubr (&Schar_after);
4825 defsubr (&Schar_before);
4826 defsubr (&Sinsert);
4827 defsubr (&Sinsert_before_markers);
4828 defsubr (&Sinsert_and_inherit);
4829 defsubr (&Sinsert_and_inherit_before_markers);
4830 defsubr (&Sinsert_char);
4831 defsubr (&Sinsert_byte);
4832
4833 defsubr (&Suser_login_name);
4834 defsubr (&Suser_real_login_name);
4835 defsubr (&Suser_uid);
4836 defsubr (&Suser_real_uid);
4837 defsubr (&Suser_full_name);
4838 defsubr (&Semacs_pid);
4839 defsubr (&Scurrent_time);
4840 defsubr (&Sget_internal_run_time);
4841 defsubr (&Sformat_time_string);
4842 defsubr (&Sfloat_time);
4843 defsubr (&Sdecode_time);
4844 defsubr (&Sencode_time);
4845 defsubr (&Scurrent_time_string);
4846 defsubr (&Scurrent_time_zone);
4847 defsubr (&Sset_time_zone_rule);
4848 defsubr (&Ssystem_name);
4849 defsubr (&Smessage);
4850 defsubr (&Smessage_box);
4851 defsubr (&Smessage_or_box);
4852 defsubr (&Scurrent_message);
4853 defsubr (&Sformat);
4854
4855 defsubr (&Sinsert_buffer_substring);
4856 defsubr (&Scompare_buffer_substrings);
4857 defsubr (&Ssubst_char_in_region);
4858 defsubr (&Stranslate_region_internal);
4859 defsubr (&Sdelete_region);
4860 defsubr (&Sdelete_and_extract_region);
4861 defsubr (&Swiden);
4862 defsubr (&Snarrow_to_region);
4863 defsubr (&Ssave_restriction);
4864 defsubr (&Stranspose_regions);
4865 }