Merge from emacs-24; up to 2012-12-14T15:22:24Z!monnier@iro.umontreal.ca
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
253
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
256
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
259
260 #ifdef GC_MALLOC_CHECK
261
262 enum mem_type allocated_mem_type;
263
264 #endif /* GC_MALLOC_CHECK */
265
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
270
271 A red-black tree is a balanced binary tree with the following
272 properties:
273
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
280
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
283
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
289
290 struct mem_node
291 {
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
295
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
298
299 /* Start and end of allocated region. */
300 void *start, *end;
301
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
304
305 /* Memory type. */
306 enum mem_type type;
307 };
308
309 /* Base address of stack. Set in main. */
310
311 Lisp_Object *stack_base;
312
313 /* Root of the tree describing allocated Lisp memory. */
314
315 static struct mem_node *mem_root;
316
317 /* Lowest and highest known address in the heap. */
318
319 static void *min_heap_address, *max_heap_address;
320
321 /* Sentinel node of the tree. */
322
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
325
326 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
327 static void lisp_free (void *);
328 static void mark_stack (void);
329 static bool live_vector_p (struct mem_node *, void *);
330 static bool live_buffer_p (struct mem_node *, void *);
331 static bool live_string_p (struct mem_node *, void *);
332 static bool live_cons_p (struct mem_node *, void *);
333 static bool live_symbol_p (struct mem_node *, void *);
334 static bool live_float_p (struct mem_node *, void *);
335 static bool live_misc_p (struct mem_node *, void *);
336 static void mark_maybe_object (Lisp_Object);
337 static void mark_memory (void *, void *);
338 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
339 static void mem_init (void);
340 static struct mem_node *mem_insert (void *, void *, enum mem_type);
341 static void mem_insert_fixup (struct mem_node *);
342 static void mem_rotate_left (struct mem_node *);
343 static void mem_rotate_right (struct mem_node *);
344 static void mem_delete (struct mem_node *);
345 static void mem_delete_fixup (struct mem_node *);
346 static struct mem_node *mem_find (void *);
347 #endif
348
349
350 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
351 static void check_gcpros (void);
352 #endif
353
354 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
355
356 #ifndef DEADP
357 # define DEADP(x) 0
358 #endif
359
360 /* Recording what needs to be marked for gc. */
361
362 struct gcpro *gcprolist;
363
364 /* Addresses of staticpro'd variables. Initialize it to a nonzero
365 value; otherwise some compilers put it into BSS. */
366
367 #define NSTATICS 0x800
368 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
369
370 /* Index of next unused slot in staticvec. */
371
372 static int staticidx;
373
374 static void *pure_alloc (size_t, int);
375
376
377 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
378 ALIGNMENT must be a power of 2. */
379
380 #define ALIGN(ptr, ALIGNMENT) \
381 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
382 & ~ ((ALIGNMENT) - 1)))
383
384
385 \f
386 /************************************************************************
387 Malloc
388 ************************************************************************/
389
390 /* Function malloc calls this if it finds we are near exhausting storage. */
391
392 void
393 malloc_warning (const char *str)
394 {
395 pending_malloc_warning = str;
396 }
397
398
399 /* Display an already-pending malloc warning. */
400
401 void
402 display_malloc_warning (void)
403 {
404 call3 (intern ("display-warning"),
405 intern ("alloc"),
406 build_string (pending_malloc_warning),
407 intern ("emergency"));
408 pending_malloc_warning = 0;
409 }
410 \f
411 /* Called if we can't allocate relocatable space for a buffer. */
412
413 void
414 buffer_memory_full (ptrdiff_t nbytes)
415 {
416 /* If buffers use the relocating allocator, no need to free
417 spare_memory, because we may have plenty of malloc space left
418 that we could get, and if we don't, the malloc that fails will
419 itself cause spare_memory to be freed. If buffers don't use the
420 relocating allocator, treat this like any other failing
421 malloc. */
422
423 #ifndef REL_ALLOC
424 memory_full (nbytes);
425 #endif
426
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 }
431
432 /* A common multiple of the positive integers A and B. Ideally this
433 would be the least common multiple, but there's no way to do that
434 as a constant expression in C, so do the best that we can easily do. */
435 #define COMMON_MULTIPLE(a, b) \
436 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
437
438 #ifndef XMALLOC_OVERRUN_CHECK
439 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
440 #else
441
442 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
443 around each block.
444
445 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
446 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
447 block size in little-endian order. The trailer consists of
448 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
449
450 The header is used to detect whether this block has been allocated
451 through these functions, as some low-level libc functions may
452 bypass the malloc hooks. */
453
454 #define XMALLOC_OVERRUN_CHECK_SIZE 16
455 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
456 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
457
458 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
459 hold a size_t value and (2) the header size is a multiple of the
460 alignment that Emacs needs for C types and for USE_LSB_TAG. */
461 #define XMALLOC_BASE_ALIGNMENT \
462 alignof (union { long double d; intmax_t i; void *p; })
463
464 #if USE_LSB_TAG
465 # define XMALLOC_HEADER_ALIGNMENT \
466 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
467 #else
468 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
469 #endif
470 #define XMALLOC_OVERRUN_SIZE_SIZE \
471 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
472 + XMALLOC_HEADER_ALIGNMENT - 1) \
473 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
474 - XMALLOC_OVERRUN_CHECK_SIZE)
475
476 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
477 { '\x9a', '\x9b', '\xae', '\xaf',
478 '\xbf', '\xbe', '\xce', '\xcf',
479 '\xea', '\xeb', '\xec', '\xed',
480 '\xdf', '\xde', '\x9c', '\x9d' };
481
482 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
483 { '\xaa', '\xab', '\xac', '\xad',
484 '\xba', '\xbb', '\xbc', '\xbd',
485 '\xca', '\xcb', '\xcc', '\xcd',
486 '\xda', '\xdb', '\xdc', '\xdd' };
487
488 /* Insert and extract the block size in the header. */
489
490 static void
491 xmalloc_put_size (unsigned char *ptr, size_t size)
492 {
493 int i;
494 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
495 {
496 *--ptr = size & ((1 << CHAR_BIT) - 1);
497 size >>= CHAR_BIT;
498 }
499 }
500
501 static size_t
502 xmalloc_get_size (unsigned char *ptr)
503 {
504 size_t size = 0;
505 int i;
506 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
507 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
508 {
509 size <<= CHAR_BIT;
510 size += *ptr++;
511 }
512 return size;
513 }
514
515
516 /* Like malloc, but wraps allocated block with header and trailer. */
517
518 static void *
519 overrun_check_malloc (size_t size)
520 {
521 register unsigned char *val;
522 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
523 emacs_abort ();
524
525 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
526 if (val)
527 {
528 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
529 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
530 xmalloc_put_size (val, size);
531 memcpy (val + size, xmalloc_overrun_check_trailer,
532 XMALLOC_OVERRUN_CHECK_SIZE);
533 }
534 return val;
535 }
536
537
538 /* Like realloc, but checks old block for overrun, and wraps new block
539 with header and trailer. */
540
541 static void *
542 overrun_check_realloc (void *block, size_t size)
543 {
544 register unsigned char *val = (unsigned char *) block;
545 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
546 emacs_abort ();
547
548 if (val
549 && memcmp (xmalloc_overrun_check_header,
550 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
551 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
552 {
553 size_t osize = xmalloc_get_size (val);
554 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
555 XMALLOC_OVERRUN_CHECK_SIZE))
556 emacs_abort ();
557 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
558 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
559 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
560 }
561
562 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
563
564 if (val)
565 {
566 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
567 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
568 xmalloc_put_size (val, size);
569 memcpy (val + size, xmalloc_overrun_check_trailer,
570 XMALLOC_OVERRUN_CHECK_SIZE);
571 }
572 return val;
573 }
574
575 /* Like free, but checks block for overrun. */
576
577 static void
578 overrun_check_free (void *block)
579 {
580 unsigned char *val = (unsigned char *) block;
581
582 if (val
583 && memcmp (xmalloc_overrun_check_header,
584 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
585 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
586 {
587 size_t osize = xmalloc_get_size (val);
588 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
589 XMALLOC_OVERRUN_CHECK_SIZE))
590 emacs_abort ();
591 #ifdef XMALLOC_CLEAR_FREE_MEMORY
592 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
593 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 #else
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
598 #endif
599 }
600
601 free (val);
602 }
603
604 #undef malloc
605 #undef realloc
606 #undef free
607 #define malloc overrun_check_malloc
608 #define realloc overrun_check_realloc
609 #define free overrun_check_free
610 #endif
611
612 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
613 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
614 If that variable is set, block input while in one of Emacs's memory
615 allocation functions. There should be no need for this debugging
616 option, since signal handlers do not allocate memory, but Emacs
617 formerly allocated memory in signal handlers and this compile-time
618 option remains as a way to help debug the issue should it rear its
619 ugly head again. */
620 #ifdef XMALLOC_BLOCK_INPUT_CHECK
621 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
622 static void
623 malloc_block_input (void)
624 {
625 if (block_input_in_memory_allocators)
626 block_input ();
627 }
628 static void
629 malloc_unblock_input (void)
630 {
631 if (block_input_in_memory_allocators)
632 unblock_input ();
633 }
634 # define MALLOC_BLOCK_INPUT malloc_block_input ()
635 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
636 #else
637 # define MALLOC_BLOCK_INPUT ((void) 0)
638 # define MALLOC_UNBLOCK_INPUT ((void) 0)
639 #endif
640
641 #define MALLOC_PROBE(size) \
642 do { \
643 if (profiler_memory_running) \
644 malloc_probe (size); \
645 } while (0)
646
647
648 /* Like malloc but check for no memory and block interrupt input.. */
649
650 void *
651 xmalloc (size_t size)
652 {
653 void *val;
654
655 MALLOC_BLOCK_INPUT;
656 val = malloc (size);
657 MALLOC_UNBLOCK_INPUT;
658
659 if (!val && size)
660 memory_full (size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like the above, but zeroes out the memory just allocated. */
666
667 void *
668 xzalloc (size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 val = malloc (size);
674 MALLOC_UNBLOCK_INPUT;
675
676 if (!val && size)
677 memory_full (size);
678 memset (val, 0, size);
679 MALLOC_PROBE (size);
680 return val;
681 }
682
683 /* Like realloc but check for no memory and block interrupt input.. */
684
685 void *
686 xrealloc (void *block, size_t size)
687 {
688 void *val;
689
690 MALLOC_BLOCK_INPUT;
691 /* We must call malloc explicitly when BLOCK is 0, since some
692 reallocs don't do this. */
693 if (! block)
694 val = malloc (size);
695 else
696 val = realloc (block, size);
697 MALLOC_UNBLOCK_INPUT;
698
699 if (!val && size)
700 memory_full (size);
701 MALLOC_PROBE (size);
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (void *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because in practice the call in r_alloc_free seems to suffice. */
718 }
719
720
721 /* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
723 be safe. */
724 verify (INT_MAX <= PTRDIFF_MAX);
725
726
727 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
729
730 void *
731 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
732 {
733 eassert (0 <= nitems && 0 < item_size);
734 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
735 memory_full (SIZE_MAX);
736 return xmalloc (nitems * item_size);
737 }
738
739
740 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
742
743 void *
744 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
745 {
746 eassert (0 <= nitems && 0 < item_size);
747 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
748 memory_full (SIZE_MAX);
749 return xrealloc (pa, nitems * item_size);
750 }
751
752
753 /* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
758
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
761 infinity.
762
763 If PA is null, then allocate a new array instead of reallocating
764 the old one.
765
766 Block interrupt input as needed. If memory exhaustion occurs, set
767 *NITEMS to zero if PA is null, and signal an error (i.e., do not
768 return).
769
770 Thus, to grow an array A without saving its old contents, do
771 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
772 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
773 and signals an error, and later this code is reexecuted and
774 attempts to free A. */
775
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
779 {
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
784
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
791
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
799
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (const char *s)
816 {
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
821 }
822
823 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
824 argument is a const pointer. */
825
826 void
827 xputenv (char const *string)
828 {
829 if (putenv ((char *) string) != 0)
830 memory_full (0);
831 }
832
833 /* Unwind for SAFE_ALLOCA */
834
835 Lisp_Object
836 safe_alloca_unwind (Lisp_Object arg)
837 {
838 free_save_value (arg);
839 return Qnil;
840 }
841
842 /* Return a newly allocated memory block of SIZE bytes, remembering
843 to free it when unwinding. */
844 void *
845 record_xmalloc (size_t size)
846 {
847 void *p = xmalloc (size);
848 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
849 return p;
850 }
851
852
853 /* Like malloc but used for allocating Lisp data. NBYTES is the
854 number of bytes to allocate, TYPE describes the intended use of the
855 allocated memory block (for strings, for conses, ...). */
856
857 #if ! USE_LSB_TAG
858 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
859 #endif
860
861 static void *
862 lisp_malloc (size_t nbytes, enum mem_type type)
863 {
864 register void *val;
865
866 MALLOC_BLOCK_INPUT;
867
868 #ifdef GC_MALLOC_CHECK
869 allocated_mem_type = type;
870 #endif
871
872 val = malloc (nbytes);
873
874 #if ! USE_LSB_TAG
875 /* If the memory just allocated cannot be addressed thru a Lisp
876 object's pointer, and it needs to be,
877 that's equivalent to running out of memory. */
878 if (val && type != MEM_TYPE_NON_LISP)
879 {
880 Lisp_Object tem;
881 XSETCONS (tem, (char *) val + nbytes - 1);
882 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
883 {
884 lisp_malloc_loser = val;
885 free (val);
886 val = 0;
887 }
888 }
889 #endif
890
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 if (val && type != MEM_TYPE_NON_LISP)
893 mem_insert (val, (char *) val + nbytes, type);
894 #endif
895
896 MALLOC_UNBLOCK_INPUT;
897 if (!val && nbytes)
898 memory_full (nbytes);
899 MALLOC_PROBE (nbytes);
900 return val;
901 }
902
903 /* Free BLOCK. This must be called to free memory allocated with a
904 call to lisp_malloc. */
905
906 static void
907 lisp_free (void *block)
908 {
909 MALLOC_BLOCK_INPUT;
910 free (block);
911 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
912 mem_delete (mem_find (block));
913 #endif
914 MALLOC_UNBLOCK_INPUT;
915 }
916
917 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
918
919 /* The entry point is lisp_align_malloc which returns blocks of at most
920 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
921
922 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
923 #define USE_POSIX_MEMALIGN 1
924 #endif
925
926 /* BLOCK_ALIGN has to be a power of 2. */
927 #define BLOCK_ALIGN (1 << 10)
928
929 /* Padding to leave at the end of a malloc'd block. This is to give
930 malloc a chance to minimize the amount of memory wasted to alignment.
931 It should be tuned to the particular malloc library used.
932 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
933 posix_memalign on the other hand would ideally prefer a value of 4
934 because otherwise, there's 1020 bytes wasted between each ablocks.
935 In Emacs, testing shows that those 1020 can most of the time be
936 efficiently used by malloc to place other objects, so a value of 0 can
937 still preferable unless you have a lot of aligned blocks and virtually
938 nothing else. */
939 #define BLOCK_PADDING 0
940 #define BLOCK_BYTES \
941 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
942
943 /* Internal data structures and constants. */
944
945 #define ABLOCKS_SIZE 16
946
947 /* An aligned block of memory. */
948 struct ablock
949 {
950 union
951 {
952 char payload[BLOCK_BYTES];
953 struct ablock *next_free;
954 } x;
955 /* `abase' is the aligned base of the ablocks. */
956 /* It is overloaded to hold the virtual `busy' field that counts
957 the number of used ablock in the parent ablocks.
958 The first ablock has the `busy' field, the others have the `abase'
959 field. To tell the difference, we assume that pointers will have
960 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
961 is used to tell whether the real base of the parent ablocks is `abase'
962 (if not, the word before the first ablock holds a pointer to the
963 real base). */
964 struct ablocks *abase;
965 /* The padding of all but the last ablock is unused. The padding of
966 the last ablock in an ablocks is not allocated. */
967 #if BLOCK_PADDING
968 char padding[BLOCK_PADDING];
969 #endif
970 };
971
972 /* A bunch of consecutive aligned blocks. */
973 struct ablocks
974 {
975 struct ablock blocks[ABLOCKS_SIZE];
976 };
977
978 /* Size of the block requested from malloc or posix_memalign. */
979 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
980
981 #define ABLOCK_ABASE(block) \
982 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
983 ? (struct ablocks *)(block) \
984 : (block)->abase)
985
986 /* Virtual `busy' field. */
987 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
988
989 /* Pointer to the (not necessarily aligned) malloc block. */
990 #ifdef USE_POSIX_MEMALIGN
991 #define ABLOCKS_BASE(abase) (abase)
992 #else
993 #define ABLOCKS_BASE(abase) \
994 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
995 #endif
996
997 /* The list of free ablock. */
998 static struct ablock *free_ablock;
999
1000 /* Allocate an aligned block of nbytes.
1001 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1002 smaller or equal to BLOCK_BYTES. */
1003 static void *
1004 lisp_align_malloc (size_t nbytes, enum mem_type type)
1005 {
1006 void *base, *val;
1007 struct ablocks *abase;
1008
1009 eassert (nbytes <= BLOCK_BYTES);
1010
1011 MALLOC_BLOCK_INPUT;
1012
1013 #ifdef GC_MALLOC_CHECK
1014 allocated_mem_type = type;
1015 #endif
1016
1017 if (!free_ablock)
1018 {
1019 int i;
1020 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1021
1022 #ifdef DOUG_LEA_MALLOC
1023 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1024 because mapped region contents are not preserved in
1025 a dumped Emacs. */
1026 mallopt (M_MMAP_MAX, 0);
1027 #endif
1028
1029 #ifdef USE_POSIX_MEMALIGN
1030 {
1031 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1032 if (err)
1033 base = NULL;
1034 abase = base;
1035 }
1036 #else
1037 base = malloc (ABLOCKS_BYTES);
1038 abase = ALIGN (base, BLOCK_ALIGN);
1039 #endif
1040
1041 if (base == 0)
1042 {
1043 MALLOC_UNBLOCK_INPUT;
1044 memory_full (ABLOCKS_BYTES);
1045 }
1046
1047 aligned = (base == abase);
1048 if (!aligned)
1049 ((void**)abase)[-1] = base;
1050
1051 #ifdef DOUG_LEA_MALLOC
1052 /* Back to a reasonable maximum of mmap'ed areas. */
1053 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1054 #endif
1055
1056 #if ! USE_LSB_TAG
1057 /* If the memory just allocated cannot be addressed thru a Lisp
1058 object's pointer, and it needs to be, that's equivalent to
1059 running out of memory. */
1060 if (type != MEM_TYPE_NON_LISP)
1061 {
1062 Lisp_Object tem;
1063 char *end = (char *) base + ABLOCKS_BYTES - 1;
1064 XSETCONS (tem, end);
1065 if ((char *) XCONS (tem) != end)
1066 {
1067 lisp_malloc_loser = base;
1068 free (base);
1069 MALLOC_UNBLOCK_INPUT;
1070 memory_full (SIZE_MAX);
1071 }
1072 }
1073 #endif
1074
1075 /* Initialize the blocks and put them on the free list.
1076 If `base' was not properly aligned, we can't use the last block. */
1077 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1078 {
1079 abase->blocks[i].abase = abase;
1080 abase->blocks[i].x.next_free = free_ablock;
1081 free_ablock = &abase->blocks[i];
1082 }
1083 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1084
1085 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1086 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1087 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1088 eassert (ABLOCKS_BASE (abase) == base);
1089 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1090 }
1091
1092 abase = ABLOCK_ABASE (free_ablock);
1093 ABLOCKS_BUSY (abase) =
1094 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1095 val = free_ablock;
1096 free_ablock = free_ablock->x.next_free;
1097
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 if (type != MEM_TYPE_NON_LISP)
1100 mem_insert (val, (char *) val + nbytes, type);
1101 #endif
1102
1103 MALLOC_UNBLOCK_INPUT;
1104
1105 MALLOC_PROBE (nbytes);
1106
1107 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1108 return val;
1109 }
1110
1111 static void
1112 lisp_align_free (void *block)
1113 {
1114 struct ablock *ablock = block;
1115 struct ablocks *abase = ABLOCK_ABASE (ablock);
1116
1117 MALLOC_BLOCK_INPUT;
1118 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1119 mem_delete (mem_find (block));
1120 #endif
1121 /* Put on free list. */
1122 ablock->x.next_free = free_ablock;
1123 free_ablock = ablock;
1124 /* Update busy count. */
1125 ABLOCKS_BUSY (abase)
1126 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1127
1128 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1129 { /* All the blocks are free. */
1130 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1131 struct ablock **tem = &free_ablock;
1132 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1133
1134 while (*tem)
1135 {
1136 if (*tem >= (struct ablock *) abase && *tem < atop)
1137 {
1138 i++;
1139 *tem = (*tem)->x.next_free;
1140 }
1141 else
1142 tem = &(*tem)->x.next_free;
1143 }
1144 eassert ((aligned & 1) == aligned);
1145 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1146 #ifdef USE_POSIX_MEMALIGN
1147 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1148 #endif
1149 free (ABLOCKS_BASE (abase));
1150 }
1151 MALLOC_UNBLOCK_INPUT;
1152 }
1153
1154 \f
1155 /***********************************************************************
1156 Interval Allocation
1157 ***********************************************************************/
1158
1159 /* Number of intervals allocated in an interval_block structure.
1160 The 1020 is 1024 minus malloc overhead. */
1161
1162 #define INTERVAL_BLOCK_SIZE \
1163 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1164
1165 /* Intervals are allocated in chunks in form of an interval_block
1166 structure. */
1167
1168 struct interval_block
1169 {
1170 /* Place `intervals' first, to preserve alignment. */
1171 struct interval intervals[INTERVAL_BLOCK_SIZE];
1172 struct interval_block *next;
1173 };
1174
1175 /* Current interval block. Its `next' pointer points to older
1176 blocks. */
1177
1178 static struct interval_block *interval_block;
1179
1180 /* Index in interval_block above of the next unused interval
1181 structure. */
1182
1183 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1184
1185 /* Number of free and live intervals. */
1186
1187 static EMACS_INT total_free_intervals, total_intervals;
1188
1189 /* List of free intervals. */
1190
1191 static INTERVAL interval_free_list;
1192
1193 /* Return a new interval. */
1194
1195 INTERVAL
1196 make_interval (void)
1197 {
1198 INTERVAL val;
1199
1200 MALLOC_BLOCK_INPUT;
1201
1202 if (interval_free_list)
1203 {
1204 val = interval_free_list;
1205 interval_free_list = INTERVAL_PARENT (interval_free_list);
1206 }
1207 else
1208 {
1209 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1210 {
1211 struct interval_block *newi
1212 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1213
1214 newi->next = interval_block;
1215 interval_block = newi;
1216 interval_block_index = 0;
1217 total_free_intervals += INTERVAL_BLOCK_SIZE;
1218 }
1219 val = &interval_block->intervals[interval_block_index++];
1220 }
1221
1222 MALLOC_UNBLOCK_INPUT;
1223
1224 consing_since_gc += sizeof (struct interval);
1225 intervals_consed++;
1226 total_free_intervals--;
1227 RESET_INTERVAL (val);
1228 val->gcmarkbit = 0;
1229 return val;
1230 }
1231
1232
1233 /* Mark Lisp objects in interval I. */
1234
1235 static void
1236 mark_interval (register INTERVAL i, Lisp_Object dummy)
1237 {
1238 /* Intervals should never be shared. So, if extra internal checking is
1239 enabled, GC aborts if it seems to have visited an interval twice. */
1240 eassert (!i->gcmarkbit);
1241 i->gcmarkbit = 1;
1242 mark_object (i->plist);
1243 }
1244
1245 /* Mark the interval tree rooted in I. */
1246
1247 #define MARK_INTERVAL_TREE(i) \
1248 do { \
1249 if (i && !i->gcmarkbit) \
1250 traverse_intervals_noorder (i, mark_interval, Qnil); \
1251 } while (0)
1252
1253 /***********************************************************************
1254 String Allocation
1255 ***********************************************************************/
1256
1257 /* Lisp_Strings are allocated in string_block structures. When a new
1258 string_block is allocated, all the Lisp_Strings it contains are
1259 added to a free-list string_free_list. When a new Lisp_String is
1260 needed, it is taken from that list. During the sweep phase of GC,
1261 string_blocks that are entirely free are freed, except two which
1262 we keep.
1263
1264 String data is allocated from sblock structures. Strings larger
1265 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1266 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1267
1268 Sblocks consist internally of sdata structures, one for each
1269 Lisp_String. The sdata structure points to the Lisp_String it
1270 belongs to. The Lisp_String points back to the `u.data' member of
1271 its sdata structure.
1272
1273 When a Lisp_String is freed during GC, it is put back on
1274 string_free_list, and its `data' member and its sdata's `string'
1275 pointer is set to null. The size of the string is recorded in the
1276 `u.nbytes' member of the sdata. So, sdata structures that are no
1277 longer used, can be easily recognized, and it's easy to compact the
1278 sblocks of small strings which we do in compact_small_strings. */
1279
1280 /* Size in bytes of an sblock structure used for small strings. This
1281 is 8192 minus malloc overhead. */
1282
1283 #define SBLOCK_SIZE 8188
1284
1285 /* Strings larger than this are considered large strings. String data
1286 for large strings is allocated from individual sblocks. */
1287
1288 #define LARGE_STRING_BYTES 1024
1289
1290 /* Structure describing string memory sub-allocated from an sblock.
1291 This is where the contents of Lisp strings are stored. */
1292
1293 struct sdata
1294 {
1295 /* Back-pointer to the string this sdata belongs to. If null, this
1296 structure is free, and the NBYTES member of the union below
1297 contains the string's byte size (the same value that STRING_BYTES
1298 would return if STRING were non-null). If non-null, STRING_BYTES
1299 (STRING) is the size of the data, and DATA contains the string's
1300 contents. */
1301 struct Lisp_String *string;
1302
1303 #ifdef GC_CHECK_STRING_BYTES
1304
1305 ptrdiff_t nbytes;
1306 unsigned char data[1];
1307
1308 #define SDATA_NBYTES(S) (S)->nbytes
1309 #define SDATA_DATA(S) (S)->data
1310 #define SDATA_SELECTOR(member) member
1311
1312 #else /* not GC_CHECK_STRING_BYTES */
1313
1314 union
1315 {
1316 /* When STRING is non-null. */
1317 unsigned char data[1];
1318
1319 /* When STRING is null. */
1320 ptrdiff_t nbytes;
1321 } u;
1322
1323 #define SDATA_NBYTES(S) (S)->u.nbytes
1324 #define SDATA_DATA(S) (S)->u.data
1325 #define SDATA_SELECTOR(member) u.member
1326
1327 #endif /* not GC_CHECK_STRING_BYTES */
1328
1329 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1330 };
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 struct sdata *next_free;
1346
1347 /* Start of data. */
1348 struct sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 struct sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 struct sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 struct sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->u.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 struct sdata *from, *to, *end, *tb_end;
1879 struct sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1979
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1982
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2006 {
2007 memcpy (p, str, len);
2008 p += len;
2009 }
2010 }
2011
2012 *p = 0;
2013 return val;
2014 }
2015
2016
2017 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2018 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2019 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2020 (Lisp_Object length, Lisp_Object init)
2021 {
2022 register Lisp_Object val;
2023 struct Lisp_Bool_Vector *p;
2024 ptrdiff_t length_in_chars;
2025 EMACS_INT length_in_elts;
2026 int bits_per_value;
2027 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2028 / word_size);
2029
2030 CHECK_NATNUM (length);
2031
2032 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2033
2034 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2035
2036 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2037
2038 /* No Lisp_Object to trace in there. */
2039 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2040
2041 p = XBOOL_VECTOR (val);
2042 p->size = XFASTINT (length);
2043
2044 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2045 / BOOL_VECTOR_BITS_PER_CHAR);
2046 if (length_in_chars)
2047 {
2048 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2049
2050 /* Clear any extraneous bits in the last byte. */
2051 p->data[length_in_chars - 1]
2052 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2053 }
2054
2055 return val;
2056 }
2057
2058
2059 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2060 of characters from the contents. This string may be unibyte or
2061 multibyte, depending on the contents. */
2062
2063 Lisp_Object
2064 make_string (const char *contents, ptrdiff_t nbytes)
2065 {
2066 register Lisp_Object val;
2067 ptrdiff_t nchars, multibyte_nbytes;
2068
2069 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2070 &nchars, &multibyte_nbytes);
2071 if (nbytes == nchars || nbytes != multibyte_nbytes)
2072 /* CONTENTS contains no multibyte sequences or contains an invalid
2073 multibyte sequence. We must make unibyte string. */
2074 val = make_unibyte_string (contents, nbytes);
2075 else
2076 val = make_multibyte_string (contents, nchars, nbytes);
2077 return val;
2078 }
2079
2080
2081 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2082
2083 Lisp_Object
2084 make_unibyte_string (const char *contents, ptrdiff_t length)
2085 {
2086 register Lisp_Object val;
2087 val = make_uninit_string (length);
2088 memcpy (SDATA (val), contents, length);
2089 return val;
2090 }
2091
2092
2093 /* Make a multibyte string from NCHARS characters occupying NBYTES
2094 bytes at CONTENTS. */
2095
2096 Lisp_Object
2097 make_multibyte_string (const char *contents,
2098 ptrdiff_t nchars, ptrdiff_t nbytes)
2099 {
2100 register Lisp_Object val;
2101 val = make_uninit_multibyte_string (nchars, nbytes);
2102 memcpy (SDATA (val), contents, nbytes);
2103 return val;
2104 }
2105
2106
2107 /* Make a string from NCHARS characters occupying NBYTES bytes at
2108 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2109
2110 Lisp_Object
2111 make_string_from_bytes (const char *contents,
2112 ptrdiff_t nchars, ptrdiff_t nbytes)
2113 {
2114 register Lisp_Object val;
2115 val = make_uninit_multibyte_string (nchars, nbytes);
2116 memcpy (SDATA (val), contents, nbytes);
2117 if (SBYTES (val) == SCHARS (val))
2118 STRING_SET_UNIBYTE (val);
2119 return val;
2120 }
2121
2122
2123 /* Make a string from NCHARS characters occupying NBYTES bytes at
2124 CONTENTS. The argument MULTIBYTE controls whether to label the
2125 string as multibyte. If NCHARS is negative, it counts the number of
2126 characters by itself. */
2127
2128 Lisp_Object
2129 make_specified_string (const char *contents,
2130 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2131 {
2132 Lisp_Object val;
2133
2134 if (nchars < 0)
2135 {
2136 if (multibyte)
2137 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2138 nbytes);
2139 else
2140 nchars = nbytes;
2141 }
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 if (!multibyte)
2145 STRING_SET_UNIBYTE (val);
2146 return val;
2147 }
2148
2149
2150 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2151 occupying LENGTH bytes. */
2152
2153 Lisp_Object
2154 make_uninit_string (EMACS_INT length)
2155 {
2156 Lisp_Object val;
2157
2158 if (!length)
2159 return empty_unibyte_string;
2160 val = make_uninit_multibyte_string (length, length);
2161 STRING_SET_UNIBYTE (val);
2162 return val;
2163 }
2164
2165
2166 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2167 which occupy NBYTES bytes. */
2168
2169 Lisp_Object
2170 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2171 {
2172 Lisp_Object string;
2173 struct Lisp_String *s;
2174
2175 if (nchars < 0)
2176 emacs_abort ();
2177 if (!nbytes)
2178 return empty_multibyte_string;
2179
2180 s = allocate_string ();
2181 s->intervals = NULL;
2182 allocate_string_data (s, nchars, nbytes);
2183 XSETSTRING (string, s);
2184 string_chars_consed += nbytes;
2185 return string;
2186 }
2187
2188 /* Print arguments to BUF according to a FORMAT, then return
2189 a Lisp_String initialized with the data from BUF. */
2190
2191 Lisp_Object
2192 make_formatted_string (char *buf, const char *format, ...)
2193 {
2194 va_list ap;
2195 int length;
2196
2197 va_start (ap, format);
2198 length = vsprintf (buf, format, ap);
2199 va_end (ap);
2200 return make_string (buf, length);
2201 }
2202
2203 \f
2204 /***********************************************************************
2205 Float Allocation
2206 ***********************************************************************/
2207
2208 /* We store float cells inside of float_blocks, allocating a new
2209 float_block with malloc whenever necessary. Float cells reclaimed
2210 by GC are put on a free list to be reallocated before allocating
2211 any new float cells from the latest float_block. */
2212
2213 #define FLOAT_BLOCK_SIZE \
2214 (((BLOCK_BYTES - sizeof (struct float_block *) \
2215 /* The compiler might add padding at the end. */ \
2216 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2217 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2218
2219 #define GETMARKBIT(block,n) \
2220 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2221 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2222 & 1)
2223
2224 #define SETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2227
2228 #define UNSETMARKBIT(block,n) \
2229 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2230 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2231
2232 #define FLOAT_BLOCK(fptr) \
2233 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2234
2235 #define FLOAT_INDEX(fptr) \
2236 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2237
2238 struct float_block
2239 {
2240 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2241 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2242 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2243 struct float_block *next;
2244 };
2245
2246 #define FLOAT_MARKED_P(fptr) \
2247 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2248
2249 #define FLOAT_MARK(fptr) \
2250 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2251
2252 #define FLOAT_UNMARK(fptr) \
2253 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2254
2255 /* Current float_block. */
2256
2257 static struct float_block *float_block;
2258
2259 /* Index of first unused Lisp_Float in the current float_block. */
2260
2261 static int float_block_index = FLOAT_BLOCK_SIZE;
2262
2263 /* Free-list of Lisp_Floats. */
2264
2265 static struct Lisp_Float *float_free_list;
2266
2267 /* Return a new float object with value FLOAT_VALUE. */
2268
2269 Lisp_Object
2270 make_float (double float_value)
2271 {
2272 register Lisp_Object val;
2273
2274 MALLOC_BLOCK_INPUT;
2275
2276 if (float_free_list)
2277 {
2278 /* We use the data field for chaining the free list
2279 so that we won't use the same field that has the mark bit. */
2280 XSETFLOAT (val, float_free_list);
2281 float_free_list = float_free_list->u.chain;
2282 }
2283 else
2284 {
2285 if (float_block_index == FLOAT_BLOCK_SIZE)
2286 {
2287 struct float_block *new
2288 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2289 new->next = float_block;
2290 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2291 float_block = new;
2292 float_block_index = 0;
2293 total_free_floats += FLOAT_BLOCK_SIZE;
2294 }
2295 XSETFLOAT (val, &float_block->floats[float_block_index]);
2296 float_block_index++;
2297 }
2298
2299 MALLOC_UNBLOCK_INPUT;
2300
2301 XFLOAT_INIT (val, float_value);
2302 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2303 consing_since_gc += sizeof (struct Lisp_Float);
2304 floats_consed++;
2305 total_free_floats--;
2306 return val;
2307 }
2308
2309
2310 \f
2311 /***********************************************************************
2312 Cons Allocation
2313 ***********************************************************************/
2314
2315 /* We store cons cells inside of cons_blocks, allocating a new
2316 cons_block with malloc whenever necessary. Cons cells reclaimed by
2317 GC are put on a free list to be reallocated before allocating
2318 any new cons cells from the latest cons_block. */
2319
2320 #define CONS_BLOCK_SIZE \
2321 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2322 /* The compiler might add padding at the end. */ \
2323 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2324 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2325
2326 #define CONS_BLOCK(fptr) \
2327 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2328
2329 #define CONS_INDEX(fptr) \
2330 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2331
2332 struct cons_block
2333 {
2334 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2335 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2336 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2337 struct cons_block *next;
2338 };
2339
2340 #define CONS_MARKED_P(fptr) \
2341 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2342
2343 #define CONS_MARK(fptr) \
2344 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2345
2346 #define CONS_UNMARK(fptr) \
2347 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2348
2349 /* Current cons_block. */
2350
2351 static struct cons_block *cons_block;
2352
2353 /* Index of first unused Lisp_Cons in the current block. */
2354
2355 static int cons_block_index = CONS_BLOCK_SIZE;
2356
2357 /* Free-list of Lisp_Cons structures. */
2358
2359 static struct Lisp_Cons *cons_free_list;
2360
2361 /* Explicitly free a cons cell by putting it on the free-list. */
2362
2363 void
2364 free_cons (struct Lisp_Cons *ptr)
2365 {
2366 ptr->u.chain = cons_free_list;
2367 #if GC_MARK_STACK
2368 ptr->car = Vdead;
2369 #endif
2370 cons_free_list = ptr;
2371 consing_since_gc -= sizeof *ptr;
2372 total_free_conses++;
2373 }
2374
2375 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2376 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2377 (Lisp_Object car, Lisp_Object cdr)
2378 {
2379 register Lisp_Object val;
2380
2381 MALLOC_BLOCK_INPUT;
2382
2383 if (cons_free_list)
2384 {
2385 /* We use the cdr for chaining the free list
2386 so that we won't use the same field that has the mark bit. */
2387 XSETCONS (val, cons_free_list);
2388 cons_free_list = cons_free_list->u.chain;
2389 }
2390 else
2391 {
2392 if (cons_block_index == CONS_BLOCK_SIZE)
2393 {
2394 struct cons_block *new
2395 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2396 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2397 new->next = cons_block;
2398 cons_block = new;
2399 cons_block_index = 0;
2400 total_free_conses += CONS_BLOCK_SIZE;
2401 }
2402 XSETCONS (val, &cons_block->conses[cons_block_index]);
2403 cons_block_index++;
2404 }
2405
2406 MALLOC_UNBLOCK_INPUT;
2407
2408 XSETCAR (val, car);
2409 XSETCDR (val, cdr);
2410 eassert (!CONS_MARKED_P (XCONS (val)));
2411 consing_since_gc += sizeof (struct Lisp_Cons);
2412 total_free_conses--;
2413 cons_cells_consed++;
2414 return val;
2415 }
2416
2417 #ifdef GC_CHECK_CONS_LIST
2418 /* Get an error now if there's any junk in the cons free list. */
2419 void
2420 check_cons_list (void)
2421 {
2422 struct Lisp_Cons *tail = cons_free_list;
2423
2424 while (tail)
2425 tail = tail->u.chain;
2426 }
2427 #endif
2428
2429 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2430
2431 Lisp_Object
2432 list1 (Lisp_Object arg1)
2433 {
2434 return Fcons (arg1, Qnil);
2435 }
2436
2437 Lisp_Object
2438 list2 (Lisp_Object arg1, Lisp_Object arg2)
2439 {
2440 return Fcons (arg1, Fcons (arg2, Qnil));
2441 }
2442
2443
2444 Lisp_Object
2445 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2446 {
2447 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2448 }
2449
2450
2451 Lisp_Object
2452 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2453 {
2454 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2455 }
2456
2457
2458 Lisp_Object
2459 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2460 {
2461 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2462 Fcons (arg5, Qnil)))));
2463 }
2464
2465 /* Make a list of COUNT Lisp_Objects, where ARG is the
2466 first one. Allocate conses from pure space if TYPE
2467 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2468
2469 Lisp_Object
2470 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2471 {
2472 va_list ap;
2473 ptrdiff_t i;
2474 Lisp_Object val, *objp;
2475
2476 /* Change to SAFE_ALLOCA if you hit this eassert. */
2477 eassert (count <= MAX_ALLOCA / word_size);
2478
2479 objp = alloca (count * word_size);
2480 objp[0] = arg;
2481 va_start (ap, arg);
2482 for (i = 1; i < count; i++)
2483 objp[i] = va_arg (ap, Lisp_Object);
2484 va_end (ap);
2485
2486 for (val = Qnil, i = count - 1; i >= 0; i--)
2487 {
2488 if (type == CONSTYPE_PURE)
2489 val = pure_cons (objp[i], val);
2490 else if (type == CONSTYPE_HEAP)
2491 val = Fcons (objp[i], val);
2492 else
2493 emacs_abort ();
2494 }
2495 return val;
2496 }
2497
2498 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2499 doc: /* Return a newly created list with specified arguments as elements.
2500 Any number of arguments, even zero arguments, are allowed.
2501 usage: (list &rest OBJECTS) */)
2502 (ptrdiff_t nargs, Lisp_Object *args)
2503 {
2504 register Lisp_Object val;
2505 val = Qnil;
2506
2507 while (nargs > 0)
2508 {
2509 nargs--;
2510 val = Fcons (args[nargs], val);
2511 }
2512 return val;
2513 }
2514
2515
2516 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2517 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2518 (register Lisp_Object length, Lisp_Object init)
2519 {
2520 register Lisp_Object val;
2521 register EMACS_INT size;
2522
2523 CHECK_NATNUM (length);
2524 size = XFASTINT (length);
2525
2526 val = Qnil;
2527 while (size > 0)
2528 {
2529 val = Fcons (init, val);
2530 --size;
2531
2532 if (size > 0)
2533 {
2534 val = Fcons (init, val);
2535 --size;
2536
2537 if (size > 0)
2538 {
2539 val = Fcons (init, val);
2540 --size;
2541
2542 if (size > 0)
2543 {
2544 val = Fcons (init, val);
2545 --size;
2546
2547 if (size > 0)
2548 {
2549 val = Fcons (init, val);
2550 --size;
2551 }
2552 }
2553 }
2554 }
2555
2556 QUIT;
2557 }
2558
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Vector Allocation
2566 ***********************************************************************/
2567
2568 /* This value is balanced well enough to avoid too much internal overhead
2569 for the most common cases; it's not required to be a power of two, but
2570 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2571
2572 #define VECTOR_BLOCK_SIZE 4096
2573
2574 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2575 enum
2576 {
2577 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2578 };
2579
2580 /* ROUNDUP_SIZE must be a power of 2. */
2581 verify ((roundup_size & (roundup_size - 1)) == 0);
2582
2583 /* Verify assumptions described above. */
2584 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2585 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2586
2587 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2588
2589 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2590
2591 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2592
2593 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2594
2595 /* Size of the minimal vector allocated from block. */
2596
2597 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2598
2599 /* Size of the largest vector allocated from block. */
2600
2601 #define VBLOCK_BYTES_MAX \
2602 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2603
2604 /* We maintain one free list for each possible block-allocated
2605 vector size, and this is the number of free lists we have. */
2606
2607 #define VECTOR_MAX_FREE_LIST_INDEX \
2608 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2609
2610 /* Common shortcut to advance vector pointer over a block data. */
2611
2612 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2613
2614 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2615
2616 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2617
2618 /* Get and set the next field in block-allocated vectorlike objects on
2619 the free list. Doing it this way respects C's aliasing rules.
2620 We could instead make 'contents' a union, but that would mean
2621 changes everywhere that the code uses 'contents'. */
2622 static struct Lisp_Vector *
2623 next_in_free_list (struct Lisp_Vector *v)
2624 {
2625 intptr_t i = XLI (v->contents[0]);
2626 return (struct Lisp_Vector *) i;
2627 }
2628 static void
2629 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2630 {
2631 v->contents[0] = XIL ((intptr_t) next);
2632 }
2633
2634 /* Common shortcut to setup vector on a free list. */
2635
2636 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2637 do { \
2638 (tmp) = ((nbytes - header_size) / word_size); \
2639 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2640 eassert ((nbytes) % roundup_size == 0); \
2641 (tmp) = VINDEX (nbytes); \
2642 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2643 set_next_in_free_list (v, vector_free_lists[tmp]); \
2644 vector_free_lists[tmp] = (v); \
2645 total_free_vector_slots += (nbytes) / word_size; \
2646 } while (0)
2647
2648 /* This internal type is used to maintain the list of large vectors
2649 which are allocated at their own, e.g. outside of vector blocks. */
2650
2651 struct large_vector
2652 {
2653 union {
2654 struct large_vector *vector;
2655 #if USE_LSB_TAG
2656 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2657 unsigned char c[vroundup (sizeof (struct large_vector *))];
2658 #endif
2659 } next;
2660 struct Lisp_Vector v;
2661 };
2662
2663 /* This internal type is used to maintain an underlying storage
2664 for small vectors. */
2665
2666 struct vector_block
2667 {
2668 char data[VECTOR_BLOCK_BYTES];
2669 struct vector_block *next;
2670 };
2671
2672 /* Chain of vector blocks. */
2673
2674 static struct vector_block *vector_blocks;
2675
2676 /* Vector free lists, where NTH item points to a chain of free
2677 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2678
2679 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2680
2681 /* Singly-linked list of large vectors. */
2682
2683 static struct large_vector *large_vectors;
2684
2685 /* The only vector with 0 slots, allocated from pure space. */
2686
2687 Lisp_Object zero_vector;
2688
2689 /* Number of live vectors. */
2690
2691 static EMACS_INT total_vectors;
2692
2693 /* Total size of live and free vectors, in Lisp_Object units. */
2694
2695 static EMACS_INT total_vector_slots, total_free_vector_slots;
2696
2697 /* Get a new vector block. */
2698
2699 static struct vector_block *
2700 allocate_vector_block (void)
2701 {
2702 struct vector_block *block = xmalloc (sizeof *block);
2703
2704 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2705 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2706 MEM_TYPE_VECTOR_BLOCK);
2707 #endif
2708
2709 block->next = vector_blocks;
2710 vector_blocks = block;
2711 return block;
2712 }
2713
2714 /* Called once to initialize vector allocation. */
2715
2716 static void
2717 init_vectors (void)
2718 {
2719 zero_vector = make_pure_vector (0);
2720 }
2721
2722 /* Allocate vector from a vector block. */
2723
2724 static struct Lisp_Vector *
2725 allocate_vector_from_block (size_t nbytes)
2726 {
2727 struct Lisp_Vector *vector;
2728 struct vector_block *block;
2729 size_t index, restbytes;
2730
2731 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2732 eassert (nbytes % roundup_size == 0);
2733
2734 /* First, try to allocate from a free list
2735 containing vectors of the requested size. */
2736 index = VINDEX (nbytes);
2737 if (vector_free_lists[index])
2738 {
2739 vector = vector_free_lists[index];
2740 vector_free_lists[index] = next_in_free_list (vector);
2741 total_free_vector_slots -= nbytes / word_size;
2742 return vector;
2743 }
2744
2745 /* Next, check free lists containing larger vectors. Since
2746 we will split the result, we should have remaining space
2747 large enough to use for one-slot vector at least. */
2748 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2749 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2750 if (vector_free_lists[index])
2751 {
2752 /* This vector is larger than requested. */
2753 vector = vector_free_lists[index];
2754 vector_free_lists[index] = next_in_free_list (vector);
2755 total_free_vector_slots -= nbytes / word_size;
2756
2757 /* Excess bytes are used for the smaller vector,
2758 which should be set on an appropriate free list. */
2759 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2760 eassert (restbytes % roundup_size == 0);
2761 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2762 return vector;
2763 }
2764
2765 /* Finally, need a new vector block. */
2766 block = allocate_vector_block ();
2767
2768 /* New vector will be at the beginning of this block. */
2769 vector = (struct Lisp_Vector *) block->data;
2770
2771 /* If the rest of space from this block is large enough
2772 for one-slot vector at least, set up it on a free list. */
2773 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2774 if (restbytes >= VBLOCK_BYTES_MIN)
2775 {
2776 eassert (restbytes % roundup_size == 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2778 }
2779 return vector;
2780 }
2781
2782 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2783
2784 #define VECTOR_IN_BLOCK(vector, block) \
2785 ((char *) (vector) <= (block)->data \
2786 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2787
2788 /* Return the memory footprint of V in bytes. */
2789
2790 static ptrdiff_t
2791 vector_nbytes (struct Lisp_Vector *v)
2792 {
2793 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2794
2795 if (size & PSEUDOVECTOR_FLAG)
2796 {
2797 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2798 size = (bool_header_size
2799 + (((struct Lisp_Bool_Vector *) v)->size
2800 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2801 / BOOL_VECTOR_BITS_PER_CHAR);
2802 else
2803 size = (header_size
2804 + ((size & PSEUDOVECTOR_SIZE_MASK)
2805 + ((size & PSEUDOVECTOR_REST_MASK)
2806 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2807 }
2808 else
2809 size = header_size + size * word_size;
2810 return vroundup (size);
2811 }
2812
2813 /* Reclaim space used by unmarked vectors. */
2814
2815 static void
2816 sweep_vectors (void)
2817 {
2818 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2819 struct large_vector *lv, **lvprev = &large_vectors;
2820 struct Lisp_Vector *vector, *next;
2821
2822 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2823 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2824
2825 /* Looking through vector blocks. */
2826
2827 for (block = vector_blocks; block; block = *bprev)
2828 {
2829 bool free_this_block = 0;
2830 ptrdiff_t nbytes;
2831
2832 for (vector = (struct Lisp_Vector *) block->data;
2833 VECTOR_IN_BLOCK (vector, block); vector = next)
2834 {
2835 if (VECTOR_MARKED_P (vector))
2836 {
2837 VECTOR_UNMARK (vector);
2838 total_vectors++;
2839 nbytes = vector_nbytes (vector);
2840 total_vector_slots += nbytes / word_size;
2841 next = ADVANCE (vector, nbytes);
2842 }
2843 else
2844 {
2845 ptrdiff_t total_bytes;
2846
2847 nbytes = vector_nbytes (vector);
2848 total_bytes = nbytes;
2849 next = ADVANCE (vector, nbytes);
2850
2851 /* While NEXT is not marked, try to coalesce with VECTOR,
2852 thus making VECTOR of the largest possible size. */
2853
2854 while (VECTOR_IN_BLOCK (next, block))
2855 {
2856 if (VECTOR_MARKED_P (next))
2857 break;
2858 nbytes = vector_nbytes (next);
2859 total_bytes += nbytes;
2860 next = ADVANCE (next, nbytes);
2861 }
2862
2863 eassert (total_bytes % roundup_size == 0);
2864
2865 if (vector == (struct Lisp_Vector *) block->data
2866 && !VECTOR_IN_BLOCK (next, block))
2867 /* This block should be freed because all of it's
2868 space was coalesced into the only free vector. */
2869 free_this_block = 1;
2870 else
2871 {
2872 int tmp;
2873 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2874 }
2875 }
2876 }
2877
2878 if (free_this_block)
2879 {
2880 *bprev = block->next;
2881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2882 mem_delete (mem_find (block->data));
2883 #endif
2884 xfree (block);
2885 }
2886 else
2887 bprev = &block->next;
2888 }
2889
2890 /* Sweep large vectors. */
2891
2892 for (lv = large_vectors; lv; lv = *lvprev)
2893 {
2894 vector = &lv->v;
2895 if (VECTOR_MARKED_P (vector))
2896 {
2897 VECTOR_UNMARK (vector);
2898 total_vectors++;
2899 if (vector->header.size & PSEUDOVECTOR_FLAG)
2900 {
2901 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2902
2903 /* All non-bool pseudovectors are small enough to be allocated
2904 from vector blocks. This code should be redesigned if some
2905 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2906 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2907
2908 total_vector_slots
2909 += (bool_header_size
2910 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2911 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2912 }
2913 else
2914 total_vector_slots
2915 += header_size / word_size + vector->header.size;
2916 lvprev = &lv->next.vector;
2917 }
2918 else
2919 {
2920 *lvprev = lv->next.vector;
2921 lisp_free (lv);
2922 }
2923 }
2924 }
2925
2926 /* Value is a pointer to a newly allocated Lisp_Vector structure
2927 with room for LEN Lisp_Objects. */
2928
2929 static struct Lisp_Vector *
2930 allocate_vectorlike (ptrdiff_t len)
2931 {
2932 struct Lisp_Vector *p;
2933
2934 MALLOC_BLOCK_INPUT;
2935
2936 if (len == 0)
2937 p = XVECTOR (zero_vector);
2938 else
2939 {
2940 size_t nbytes = header_size + len * word_size;
2941
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2944 because mapped region contents are not preserved in
2945 a dumped Emacs. */
2946 mallopt (M_MMAP_MAX, 0);
2947 #endif
2948
2949 if (nbytes <= VBLOCK_BYTES_MAX)
2950 p = allocate_vector_from_block (vroundup (nbytes));
2951 else
2952 {
2953 struct large_vector *lv
2954 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2955 MEM_TYPE_VECTORLIKE);
2956 lv->next.vector = large_vectors;
2957 large_vectors = lv;
2958 p = &lv->v;
2959 }
2960
2961 #ifdef DOUG_LEA_MALLOC
2962 /* Back to a reasonable maximum of mmap'ed areas. */
2963 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2964 #endif
2965
2966 consing_since_gc += nbytes;
2967 vector_cells_consed += len;
2968 }
2969
2970 MALLOC_UNBLOCK_INPUT;
2971
2972 return p;
2973 }
2974
2975
2976 /* Allocate a vector with LEN slots. */
2977
2978 struct Lisp_Vector *
2979 allocate_vector (EMACS_INT len)
2980 {
2981 struct Lisp_Vector *v;
2982 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2983
2984 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2985 memory_full (SIZE_MAX);
2986 v = allocate_vectorlike (len);
2987 v->header.size = len;
2988 return v;
2989 }
2990
2991
2992 /* Allocate other vector-like structures. */
2993
2994 struct Lisp_Vector *
2995 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2996 {
2997 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2998 int i;
2999
3000 /* Catch bogus values. */
3001 eassert (tag <= PVEC_FONT);
3002 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3003 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3004
3005 /* Only the first lisplen slots will be traced normally by the GC. */
3006 for (i = 0; i < lisplen; ++i)
3007 v->contents[i] = Qnil;
3008
3009 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3010 return v;
3011 }
3012
3013 struct buffer *
3014 allocate_buffer (void)
3015 {
3016 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3017
3018 BUFFER_PVEC_INIT (b);
3019 /* Put B on the chain of all buffers including killed ones. */
3020 b->next = all_buffers;
3021 all_buffers = b;
3022 /* Note that the rest fields of B are not initialized. */
3023 return b;
3024 }
3025
3026 struct Lisp_Hash_Table *
3027 allocate_hash_table (void)
3028 {
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3030 }
3031
3032 struct window *
3033 allocate_window (void)
3034 {
3035 struct window *w;
3036
3037 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3038 /* Users assumes that non-Lisp data is zeroed. */
3039 memset (&w->current_matrix, 0,
3040 sizeof (*w) - offsetof (struct window, current_matrix));
3041 return w;
3042 }
3043
3044 struct terminal *
3045 allocate_terminal (void)
3046 {
3047 struct terminal *t;
3048
3049 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3050 /* Users assumes that non-Lisp data is zeroed. */
3051 memset (&t->next_terminal, 0,
3052 sizeof (*t) - offsetof (struct terminal, next_terminal));
3053 return t;
3054 }
3055
3056 struct frame *
3057 allocate_frame (void)
3058 {
3059 struct frame *f;
3060
3061 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3062 /* Users assumes that non-Lisp data is zeroed. */
3063 memset (&f->face_cache, 0,
3064 sizeof (*f) - offsetof (struct frame, face_cache));
3065 return f;
3066 }
3067
3068 struct Lisp_Process *
3069 allocate_process (void)
3070 {
3071 struct Lisp_Process *p;
3072
3073 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3074 /* Users assumes that non-Lisp data is zeroed. */
3075 memset (&p->pid, 0,
3076 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3077 return p;
3078 }
3079
3080 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3081 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3082 See also the function `vector'. */)
3083 (register Lisp_Object length, Lisp_Object init)
3084 {
3085 Lisp_Object vector;
3086 register ptrdiff_t sizei;
3087 register ptrdiff_t i;
3088 register struct Lisp_Vector *p;
3089
3090 CHECK_NATNUM (length);
3091
3092 p = allocate_vector (XFASTINT (length));
3093 sizei = XFASTINT (length);
3094 for (i = 0; i < sizei; i++)
3095 p->contents[i] = init;
3096
3097 XSETVECTOR (vector, p);
3098 return vector;
3099 }
3100
3101
3102 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3103 doc: /* Return a newly created vector with specified arguments as elements.
3104 Any number of arguments, even zero arguments, are allowed.
3105 usage: (vector &rest OBJECTS) */)
3106 (ptrdiff_t nargs, Lisp_Object *args)
3107 {
3108 register Lisp_Object len, val;
3109 ptrdiff_t i;
3110 register struct Lisp_Vector *p;
3111
3112 XSETFASTINT (len, nargs);
3113 val = Fmake_vector (len, Qnil);
3114 p = XVECTOR (val);
3115 for (i = 0; i < nargs; i++)
3116 p->contents[i] = args[i];
3117 return val;
3118 }
3119
3120 void
3121 make_byte_code (struct Lisp_Vector *v)
3122 {
3123 if (v->header.size > 1 && STRINGP (v->contents[1])
3124 && STRING_MULTIBYTE (v->contents[1]))
3125 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3126 earlier because they produced a raw 8-bit string for byte-code
3127 and now such a byte-code string is loaded as multibyte while
3128 raw 8-bit characters converted to multibyte form. Thus, now we
3129 must convert them back to the original unibyte form. */
3130 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3131 XSETPVECTYPE (v, PVEC_COMPILED);
3132 }
3133
3134 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3135 doc: /* Create a byte-code object with specified arguments as elements.
3136 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3137 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3138 and (optional) INTERACTIVE-SPEC.
3139 The first four arguments are required; at most six have any
3140 significance.
3141 The ARGLIST can be either like the one of `lambda', in which case the arguments
3142 will be dynamically bound before executing the byte code, or it can be an
3143 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3144 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3145 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3146 argument to catch the left-over arguments. If such an integer is used, the
3147 arguments will not be dynamically bound but will be instead pushed on the
3148 stack before executing the byte-code.
3149 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3150 (ptrdiff_t nargs, Lisp_Object *args)
3151 {
3152 register Lisp_Object len, val;
3153 ptrdiff_t i;
3154 register struct Lisp_Vector *p;
3155
3156 /* We used to purecopy everything here, if purify-flag was set. This worked
3157 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3158 dangerous, since make-byte-code is used during execution to build
3159 closures, so any closure built during the preload phase would end up
3160 copied into pure space, including its free variables, which is sometimes
3161 just wasteful and other times plainly wrong (e.g. those free vars may want
3162 to be setcar'd). */
3163
3164 XSETFASTINT (len, nargs);
3165 val = Fmake_vector (len, Qnil);
3166
3167 p = XVECTOR (val);
3168 for (i = 0; i < nargs; i++)
3169 p->contents[i] = args[i];
3170 make_byte_code (p);
3171 XSETCOMPILED (val, p);
3172 return val;
3173 }
3174
3175
3176 \f
3177 /***********************************************************************
3178 Symbol Allocation
3179 ***********************************************************************/
3180
3181 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3182 of the required alignment if LSB tags are used. */
3183
3184 union aligned_Lisp_Symbol
3185 {
3186 struct Lisp_Symbol s;
3187 #if USE_LSB_TAG
3188 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3189 & -GCALIGNMENT];
3190 #endif
3191 };
3192
3193 /* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3195 own overhead. */
3196
3197 #define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3199
3200 struct symbol_block
3201 {
3202 /* Place `symbols' first, to preserve alignment. */
3203 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3204 struct symbol_block *next;
3205 };
3206
3207 /* Current symbol block and index of first unused Lisp_Symbol
3208 structure in it. */
3209
3210 static struct symbol_block *symbol_block;
3211 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3212
3213 /* List of free symbols. */
3214
3215 static struct Lisp_Symbol *symbol_free_list;
3216
3217 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3218 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3219 Its value is void, and its function definition and property list are nil. */)
3220 (Lisp_Object name)
3221 {
3222 register Lisp_Object val;
3223 register struct Lisp_Symbol *p;
3224
3225 CHECK_STRING (name);
3226
3227 MALLOC_BLOCK_INPUT;
3228
3229 if (symbol_free_list)
3230 {
3231 XSETSYMBOL (val, symbol_free_list);
3232 symbol_free_list = symbol_free_list->next;
3233 }
3234 else
3235 {
3236 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3237 {
3238 struct symbol_block *new
3239 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3240 new->next = symbol_block;
3241 symbol_block = new;
3242 symbol_block_index = 0;
3243 total_free_symbols += SYMBOL_BLOCK_SIZE;
3244 }
3245 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3246 symbol_block_index++;
3247 }
3248
3249 MALLOC_UNBLOCK_INPUT;
3250
3251 p = XSYMBOL (val);
3252 set_symbol_name (val, name);
3253 set_symbol_plist (val, Qnil);
3254 p->redirect = SYMBOL_PLAINVAL;
3255 SET_SYMBOL_VAL (p, Qunbound);
3256 set_symbol_function (val, Qnil);
3257 set_symbol_next (val, NULL);
3258 p->gcmarkbit = 0;
3259 p->interned = SYMBOL_UNINTERNED;
3260 p->constant = 0;
3261 p->declared_special = 0;
3262 consing_since_gc += sizeof (struct Lisp_Symbol);
3263 symbols_consed++;
3264 total_free_symbols--;
3265 return val;
3266 }
3267
3268
3269 \f
3270 /***********************************************************************
3271 Marker (Misc) Allocation
3272 ***********************************************************************/
3273
3274 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3275 the required alignment when LSB tags are used. */
3276
3277 union aligned_Lisp_Misc
3278 {
3279 union Lisp_Misc m;
3280 #if USE_LSB_TAG
3281 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3282 & -GCALIGNMENT];
3283 #endif
3284 };
3285
3286 /* Allocation of markers and other objects that share that structure.
3287 Works like allocation of conses. */
3288
3289 #define MARKER_BLOCK_SIZE \
3290 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3291
3292 struct marker_block
3293 {
3294 /* Place `markers' first, to preserve alignment. */
3295 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3296 struct marker_block *next;
3297 };
3298
3299 static struct marker_block *marker_block;
3300 static int marker_block_index = MARKER_BLOCK_SIZE;
3301
3302 static union Lisp_Misc *marker_free_list;
3303
3304 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3305
3306 static Lisp_Object
3307 allocate_misc (enum Lisp_Misc_Type type)
3308 {
3309 Lisp_Object val;
3310
3311 MALLOC_BLOCK_INPUT;
3312
3313 if (marker_free_list)
3314 {
3315 XSETMISC (val, marker_free_list);
3316 marker_free_list = marker_free_list->u_free.chain;
3317 }
3318 else
3319 {
3320 if (marker_block_index == MARKER_BLOCK_SIZE)
3321 {
3322 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3323 new->next = marker_block;
3324 marker_block = new;
3325 marker_block_index = 0;
3326 total_free_markers += MARKER_BLOCK_SIZE;
3327 }
3328 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3329 marker_block_index++;
3330 }
3331
3332 MALLOC_UNBLOCK_INPUT;
3333
3334 --total_free_markers;
3335 consing_since_gc += sizeof (union Lisp_Misc);
3336 misc_objects_consed++;
3337 XMISCTYPE (val) = type;
3338 XMISCANY (val)->gcmarkbit = 0;
3339 return val;
3340 }
3341
3342 /* Free a Lisp_Misc object. */
3343
3344 void
3345 free_misc (Lisp_Object misc)
3346 {
3347 XMISCTYPE (misc) = Lisp_Misc_Free;
3348 XMISC (misc)->u_free.chain = marker_free_list;
3349 marker_free_list = XMISC (misc);
3350 consing_since_gc -= sizeof (union Lisp_Misc);
3351 total_free_markers++;
3352 }
3353
3354 /* Return a Lisp_Save_Value object with the data saved according to
3355 FMT. Format specifiers are `i' for an integer, `p' for a pointer
3356 and `o' for Lisp_Object. Up to 4 objects can be specified. */
3357
3358 Lisp_Object
3359 make_save_value (const char *fmt, ...)
3360 {
3361 va_list ap;
3362 int len = strlen (fmt);
3363 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3364 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3365
3366 eassert (0 < len && len < 5);
3367 va_start (ap, fmt);
3368
3369 #define INITX(index) \
3370 do { \
3371 if (len <= index) \
3372 p->type ## index = SAVE_UNUSED; \
3373 else \
3374 { \
3375 if (fmt[index] == 'i') \
3376 { \
3377 p->type ## index = SAVE_INTEGER; \
3378 p->data[index].integer = va_arg (ap, ptrdiff_t); \
3379 } \
3380 else if (fmt[index] == 'p') \
3381 { \
3382 p->type ## index = SAVE_POINTER; \
3383 p->data[index].pointer = va_arg (ap, void *); \
3384 } \
3385 else if (fmt[index] == 'o') \
3386 { \
3387 p->type ## index = SAVE_OBJECT; \
3388 p->data[index].object = va_arg (ap, Lisp_Object); \
3389 } \
3390 else \
3391 emacs_abort (); \
3392 } \
3393 } while (0)
3394
3395 INITX (0);
3396 INITX (1);
3397 INITX (2);
3398 INITX (3);
3399
3400 #undef INITX
3401
3402 va_end (ap);
3403 p->area = 0;
3404 return val;
3405 }
3406
3407 /* The most common task it to save just one C pointer. */
3408
3409 Lisp_Object
3410 make_save_pointer (void *pointer)
3411 {
3412 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3413 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3414
3415 p->area = 0;
3416 p->type0 = SAVE_POINTER;
3417 p->data[0].pointer = pointer;
3418 p->type1 = p->type2 = p->type3 = SAVE_UNUSED;
3419 return val;
3420 }
3421
3422 /* Free a Lisp_Save_Value object. Do not use this function
3423 if SAVE contains pointer other than returned by xmalloc. */
3424
3425 static void
3426 free_save_value (Lisp_Object save)
3427 {
3428 xfree (XSAVE_POINTER (save, 0));
3429 free_misc (save);
3430 }
3431
3432 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3433
3434 Lisp_Object
3435 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3436 {
3437 register Lisp_Object overlay;
3438
3439 overlay = allocate_misc (Lisp_Misc_Overlay);
3440 OVERLAY_START (overlay) = start;
3441 OVERLAY_END (overlay) = end;
3442 set_overlay_plist (overlay, plist);
3443 XOVERLAY (overlay)->next = NULL;
3444 return overlay;
3445 }
3446
3447 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3448 doc: /* Return a newly allocated marker which does not point at any place. */)
3449 (void)
3450 {
3451 register Lisp_Object val;
3452 register struct Lisp_Marker *p;
3453
3454 val = allocate_misc (Lisp_Misc_Marker);
3455 p = XMARKER (val);
3456 p->buffer = 0;
3457 p->bytepos = 0;
3458 p->charpos = 0;
3459 p->next = NULL;
3460 p->insertion_type = 0;
3461 return val;
3462 }
3463
3464 /* Return a newly allocated marker which points into BUF
3465 at character position CHARPOS and byte position BYTEPOS. */
3466
3467 Lisp_Object
3468 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3469 {
3470 Lisp_Object obj;
3471 struct Lisp_Marker *m;
3472
3473 /* No dead buffers here. */
3474 eassert (BUFFER_LIVE_P (buf));
3475
3476 /* Every character is at least one byte. */
3477 eassert (charpos <= bytepos);
3478
3479 obj = allocate_misc (Lisp_Misc_Marker);
3480 m = XMARKER (obj);
3481 m->buffer = buf;
3482 m->charpos = charpos;
3483 m->bytepos = bytepos;
3484 m->insertion_type = 0;
3485 m->next = BUF_MARKERS (buf);
3486 BUF_MARKERS (buf) = m;
3487 return obj;
3488 }
3489
3490 /* Put MARKER back on the free list after using it temporarily. */
3491
3492 void
3493 free_marker (Lisp_Object marker)
3494 {
3495 unchain_marker (XMARKER (marker));
3496 free_misc (marker);
3497 }
3498
3499 \f
3500 /* Return a newly created vector or string with specified arguments as
3501 elements. If all the arguments are characters that can fit
3502 in a string of events, make a string; otherwise, make a vector.
3503
3504 Any number of arguments, even zero arguments, are allowed. */
3505
3506 Lisp_Object
3507 make_event_array (register int nargs, Lisp_Object *args)
3508 {
3509 int i;
3510
3511 for (i = 0; i < nargs; i++)
3512 /* The things that fit in a string
3513 are characters that are in 0...127,
3514 after discarding the meta bit and all the bits above it. */
3515 if (!INTEGERP (args[i])
3516 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3517 return Fvector (nargs, args);
3518
3519 /* Since the loop exited, we know that all the things in it are
3520 characters, so we can make a string. */
3521 {
3522 Lisp_Object result;
3523
3524 result = Fmake_string (make_number (nargs), make_number (0));
3525 for (i = 0; i < nargs; i++)
3526 {
3527 SSET (result, i, XINT (args[i]));
3528 /* Move the meta bit to the right place for a string char. */
3529 if (XINT (args[i]) & CHAR_META)
3530 SSET (result, i, SREF (result, i) | 0x80);
3531 }
3532
3533 return result;
3534 }
3535 }
3536
3537
3538 \f
3539 /************************************************************************
3540 Memory Full Handling
3541 ************************************************************************/
3542
3543
3544 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3545 there may have been size_t overflow so that malloc was never
3546 called, or perhaps malloc was invoked successfully but the
3547 resulting pointer had problems fitting into a tagged EMACS_INT. In
3548 either case this counts as memory being full even though malloc did
3549 not fail. */
3550
3551 void
3552 memory_full (size_t nbytes)
3553 {
3554 /* Do not go into hysterics merely because a large request failed. */
3555 bool enough_free_memory = 0;
3556 if (SPARE_MEMORY < nbytes)
3557 {
3558 void *p;
3559
3560 MALLOC_BLOCK_INPUT;
3561 p = malloc (SPARE_MEMORY);
3562 if (p)
3563 {
3564 free (p);
3565 enough_free_memory = 1;
3566 }
3567 MALLOC_UNBLOCK_INPUT;
3568 }
3569
3570 if (! enough_free_memory)
3571 {
3572 int i;
3573
3574 Vmemory_full = Qt;
3575
3576 memory_full_cons_threshold = sizeof (struct cons_block);
3577
3578 /* The first time we get here, free the spare memory. */
3579 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3580 if (spare_memory[i])
3581 {
3582 if (i == 0)
3583 free (spare_memory[i]);
3584 else if (i >= 1 && i <= 4)
3585 lisp_align_free (spare_memory[i]);
3586 else
3587 lisp_free (spare_memory[i]);
3588 spare_memory[i] = 0;
3589 }
3590 }
3591
3592 /* This used to call error, but if we've run out of memory, we could
3593 get infinite recursion trying to build the string. */
3594 xsignal (Qnil, Vmemory_signal_data);
3595 }
3596
3597 /* If we released our reserve (due to running out of memory),
3598 and we have a fair amount free once again,
3599 try to set aside another reserve in case we run out once more.
3600
3601 This is called when a relocatable block is freed in ralloc.c,
3602 and also directly from this file, in case we're not using ralloc.c. */
3603
3604 void
3605 refill_memory_reserve (void)
3606 {
3607 #ifndef SYSTEM_MALLOC
3608 if (spare_memory[0] == 0)
3609 spare_memory[0] = malloc (SPARE_MEMORY);
3610 if (spare_memory[1] == 0)
3611 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3612 MEM_TYPE_SPARE);
3613 if (spare_memory[2] == 0)
3614 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3615 MEM_TYPE_SPARE);
3616 if (spare_memory[3] == 0)
3617 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3618 MEM_TYPE_SPARE);
3619 if (spare_memory[4] == 0)
3620 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3621 MEM_TYPE_SPARE);
3622 if (spare_memory[5] == 0)
3623 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3624 MEM_TYPE_SPARE);
3625 if (spare_memory[6] == 0)
3626 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3627 MEM_TYPE_SPARE);
3628 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3629 Vmemory_full = Qnil;
3630 #endif
3631 }
3632 \f
3633 /************************************************************************
3634 C Stack Marking
3635 ************************************************************************/
3636
3637 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3638
3639 /* Conservative C stack marking requires a method to identify possibly
3640 live Lisp objects given a pointer value. We do this by keeping
3641 track of blocks of Lisp data that are allocated in a red-black tree
3642 (see also the comment of mem_node which is the type of nodes in
3643 that tree). Function lisp_malloc adds information for an allocated
3644 block to the red-black tree with calls to mem_insert, and function
3645 lisp_free removes it with mem_delete. Functions live_string_p etc
3646 call mem_find to lookup information about a given pointer in the
3647 tree, and use that to determine if the pointer points to a Lisp
3648 object or not. */
3649
3650 /* Initialize this part of alloc.c. */
3651
3652 static void
3653 mem_init (void)
3654 {
3655 mem_z.left = mem_z.right = MEM_NIL;
3656 mem_z.parent = NULL;
3657 mem_z.color = MEM_BLACK;
3658 mem_z.start = mem_z.end = NULL;
3659 mem_root = MEM_NIL;
3660 }
3661
3662
3663 /* Value is a pointer to the mem_node containing START. Value is
3664 MEM_NIL if there is no node in the tree containing START. */
3665
3666 static struct mem_node *
3667 mem_find (void *start)
3668 {
3669 struct mem_node *p;
3670
3671 if (start < min_heap_address || start > max_heap_address)
3672 return MEM_NIL;
3673
3674 /* Make the search always successful to speed up the loop below. */
3675 mem_z.start = start;
3676 mem_z.end = (char *) start + 1;
3677
3678 p = mem_root;
3679 while (start < p->start || start >= p->end)
3680 p = start < p->start ? p->left : p->right;
3681 return p;
3682 }
3683
3684
3685 /* Insert a new node into the tree for a block of memory with start
3686 address START, end address END, and type TYPE. Value is a
3687 pointer to the node that was inserted. */
3688
3689 static struct mem_node *
3690 mem_insert (void *start, void *end, enum mem_type type)
3691 {
3692 struct mem_node *c, *parent, *x;
3693
3694 if (min_heap_address == NULL || start < min_heap_address)
3695 min_heap_address = start;
3696 if (max_heap_address == NULL || end > max_heap_address)
3697 max_heap_address = end;
3698
3699 /* See where in the tree a node for START belongs. In this
3700 particular application, it shouldn't happen that a node is already
3701 present. For debugging purposes, let's check that. */
3702 c = mem_root;
3703 parent = NULL;
3704
3705 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3706
3707 while (c != MEM_NIL)
3708 {
3709 if (start >= c->start && start < c->end)
3710 emacs_abort ();
3711 parent = c;
3712 c = start < c->start ? c->left : c->right;
3713 }
3714
3715 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3716
3717 while (c != MEM_NIL)
3718 {
3719 parent = c;
3720 c = start < c->start ? c->left : c->right;
3721 }
3722
3723 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3724
3725 /* Create a new node. */
3726 #ifdef GC_MALLOC_CHECK
3727 x = malloc (sizeof *x);
3728 if (x == NULL)
3729 emacs_abort ();
3730 #else
3731 x = xmalloc (sizeof *x);
3732 #endif
3733 x->start = start;
3734 x->end = end;
3735 x->type = type;
3736 x->parent = parent;
3737 x->left = x->right = MEM_NIL;
3738 x->color = MEM_RED;
3739
3740 /* Insert it as child of PARENT or install it as root. */
3741 if (parent)
3742 {
3743 if (start < parent->start)
3744 parent->left = x;
3745 else
3746 parent->right = x;
3747 }
3748 else
3749 mem_root = x;
3750
3751 /* Re-establish red-black tree properties. */
3752 mem_insert_fixup (x);
3753
3754 return x;
3755 }
3756
3757
3758 /* Re-establish the red-black properties of the tree, and thereby
3759 balance the tree, after node X has been inserted; X is always red. */
3760
3761 static void
3762 mem_insert_fixup (struct mem_node *x)
3763 {
3764 while (x != mem_root && x->parent->color == MEM_RED)
3765 {
3766 /* X is red and its parent is red. This is a violation of
3767 red-black tree property #3. */
3768
3769 if (x->parent == x->parent->parent->left)
3770 {
3771 /* We're on the left side of our grandparent, and Y is our
3772 "uncle". */
3773 struct mem_node *y = x->parent->parent->right;
3774
3775 if (y->color == MEM_RED)
3776 {
3777 /* Uncle and parent are red but should be black because
3778 X is red. Change the colors accordingly and proceed
3779 with the grandparent. */
3780 x->parent->color = MEM_BLACK;
3781 y->color = MEM_BLACK;
3782 x->parent->parent->color = MEM_RED;
3783 x = x->parent->parent;
3784 }
3785 else
3786 {
3787 /* Parent and uncle have different colors; parent is
3788 red, uncle is black. */
3789 if (x == x->parent->right)
3790 {
3791 x = x->parent;
3792 mem_rotate_left (x);
3793 }
3794
3795 x->parent->color = MEM_BLACK;
3796 x->parent->parent->color = MEM_RED;
3797 mem_rotate_right (x->parent->parent);
3798 }
3799 }
3800 else
3801 {
3802 /* This is the symmetrical case of above. */
3803 struct mem_node *y = x->parent->parent->left;
3804
3805 if (y->color == MEM_RED)
3806 {
3807 x->parent->color = MEM_BLACK;
3808 y->color = MEM_BLACK;
3809 x->parent->parent->color = MEM_RED;
3810 x = x->parent->parent;
3811 }
3812 else
3813 {
3814 if (x == x->parent->left)
3815 {
3816 x = x->parent;
3817 mem_rotate_right (x);
3818 }
3819
3820 x->parent->color = MEM_BLACK;
3821 x->parent->parent->color = MEM_RED;
3822 mem_rotate_left (x->parent->parent);
3823 }
3824 }
3825 }
3826
3827 /* The root may have been changed to red due to the algorithm. Set
3828 it to black so that property #5 is satisfied. */
3829 mem_root->color = MEM_BLACK;
3830 }
3831
3832
3833 /* (x) (y)
3834 / \ / \
3835 a (y) ===> (x) c
3836 / \ / \
3837 b c a b */
3838
3839 static void
3840 mem_rotate_left (struct mem_node *x)
3841 {
3842 struct mem_node *y;
3843
3844 /* Turn y's left sub-tree into x's right sub-tree. */
3845 y = x->right;
3846 x->right = y->left;
3847 if (y->left != MEM_NIL)
3848 y->left->parent = x;
3849
3850 /* Y's parent was x's parent. */
3851 if (y != MEM_NIL)
3852 y->parent = x->parent;
3853
3854 /* Get the parent to point to y instead of x. */
3855 if (x->parent)
3856 {
3857 if (x == x->parent->left)
3858 x->parent->left = y;
3859 else
3860 x->parent->right = y;
3861 }
3862 else
3863 mem_root = y;
3864
3865 /* Put x on y's left. */
3866 y->left = x;
3867 if (x != MEM_NIL)
3868 x->parent = y;
3869 }
3870
3871
3872 /* (x) (Y)
3873 / \ / \
3874 (y) c ===> a (x)
3875 / \ / \
3876 a b b c */
3877
3878 static void
3879 mem_rotate_right (struct mem_node *x)
3880 {
3881 struct mem_node *y = x->left;
3882
3883 x->left = y->right;
3884 if (y->right != MEM_NIL)
3885 y->right->parent = x;
3886
3887 if (y != MEM_NIL)
3888 y->parent = x->parent;
3889 if (x->parent)
3890 {
3891 if (x == x->parent->right)
3892 x->parent->right = y;
3893 else
3894 x->parent->left = y;
3895 }
3896 else
3897 mem_root = y;
3898
3899 y->right = x;
3900 if (x != MEM_NIL)
3901 x->parent = y;
3902 }
3903
3904
3905 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3906
3907 static void
3908 mem_delete (struct mem_node *z)
3909 {
3910 struct mem_node *x, *y;
3911
3912 if (!z || z == MEM_NIL)
3913 return;
3914
3915 if (z->left == MEM_NIL || z->right == MEM_NIL)
3916 y = z;
3917 else
3918 {
3919 y = z->right;
3920 while (y->left != MEM_NIL)
3921 y = y->left;
3922 }
3923
3924 if (y->left != MEM_NIL)
3925 x = y->left;
3926 else
3927 x = y->right;
3928
3929 x->parent = y->parent;
3930 if (y->parent)
3931 {
3932 if (y == y->parent->left)
3933 y->parent->left = x;
3934 else
3935 y->parent->right = x;
3936 }
3937 else
3938 mem_root = x;
3939
3940 if (y != z)
3941 {
3942 z->start = y->start;
3943 z->end = y->end;
3944 z->type = y->type;
3945 }
3946
3947 if (y->color == MEM_BLACK)
3948 mem_delete_fixup (x);
3949
3950 #ifdef GC_MALLOC_CHECK
3951 free (y);
3952 #else
3953 xfree (y);
3954 #endif
3955 }
3956
3957
3958 /* Re-establish the red-black properties of the tree, after a
3959 deletion. */
3960
3961 static void
3962 mem_delete_fixup (struct mem_node *x)
3963 {
3964 while (x != mem_root && x->color == MEM_BLACK)
3965 {
3966 if (x == x->parent->left)
3967 {
3968 struct mem_node *w = x->parent->right;
3969
3970 if (w->color == MEM_RED)
3971 {
3972 w->color = MEM_BLACK;
3973 x->parent->color = MEM_RED;
3974 mem_rotate_left (x->parent);
3975 w = x->parent->right;
3976 }
3977
3978 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3979 {
3980 w->color = MEM_RED;
3981 x = x->parent;
3982 }
3983 else
3984 {
3985 if (w->right->color == MEM_BLACK)
3986 {
3987 w->left->color = MEM_BLACK;
3988 w->color = MEM_RED;
3989 mem_rotate_right (w);
3990 w = x->parent->right;
3991 }
3992 w->color = x->parent->color;
3993 x->parent->color = MEM_BLACK;
3994 w->right->color = MEM_BLACK;
3995 mem_rotate_left (x->parent);
3996 x = mem_root;
3997 }
3998 }
3999 else
4000 {
4001 struct mem_node *w = x->parent->left;
4002
4003 if (w->color == MEM_RED)
4004 {
4005 w->color = MEM_BLACK;
4006 x->parent->color = MEM_RED;
4007 mem_rotate_right (x->parent);
4008 w = x->parent->left;
4009 }
4010
4011 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4012 {
4013 w->color = MEM_RED;
4014 x = x->parent;
4015 }
4016 else
4017 {
4018 if (w->left->color == MEM_BLACK)
4019 {
4020 w->right->color = MEM_BLACK;
4021 w->color = MEM_RED;
4022 mem_rotate_left (w);
4023 w = x->parent->left;
4024 }
4025
4026 w->color = x->parent->color;
4027 x->parent->color = MEM_BLACK;
4028 w->left->color = MEM_BLACK;
4029 mem_rotate_right (x->parent);
4030 x = mem_root;
4031 }
4032 }
4033 }
4034
4035 x->color = MEM_BLACK;
4036 }
4037
4038
4039 /* Value is non-zero if P is a pointer to a live Lisp string on
4040 the heap. M is a pointer to the mem_block for P. */
4041
4042 static bool
4043 live_string_p (struct mem_node *m, void *p)
4044 {
4045 if (m->type == MEM_TYPE_STRING)
4046 {
4047 struct string_block *b = (struct string_block *) m->start;
4048 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4049
4050 /* P must point to the start of a Lisp_String structure, and it
4051 must not be on the free-list. */
4052 return (offset >= 0
4053 && offset % sizeof b->strings[0] == 0
4054 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4055 && ((struct Lisp_String *) p)->data != NULL);
4056 }
4057 else
4058 return 0;
4059 }
4060
4061
4062 /* Value is non-zero if P is a pointer to a live Lisp cons on
4063 the heap. M is a pointer to the mem_block for P. */
4064
4065 static bool
4066 live_cons_p (struct mem_node *m, void *p)
4067 {
4068 if (m->type == MEM_TYPE_CONS)
4069 {
4070 struct cons_block *b = (struct cons_block *) m->start;
4071 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4072
4073 /* P must point to the start of a Lisp_Cons, not be
4074 one of the unused cells in the current cons block,
4075 and not be on the free-list. */
4076 return (offset >= 0
4077 && offset % sizeof b->conses[0] == 0
4078 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4079 && (b != cons_block
4080 || offset / sizeof b->conses[0] < cons_block_index)
4081 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4082 }
4083 else
4084 return 0;
4085 }
4086
4087
4088 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4089 the heap. M is a pointer to the mem_block for P. */
4090
4091 static bool
4092 live_symbol_p (struct mem_node *m, void *p)
4093 {
4094 if (m->type == MEM_TYPE_SYMBOL)
4095 {
4096 struct symbol_block *b = (struct symbol_block *) m->start;
4097 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4098
4099 /* P must point to the start of a Lisp_Symbol, not be
4100 one of the unused cells in the current symbol block,
4101 and not be on the free-list. */
4102 return (offset >= 0
4103 && offset % sizeof b->symbols[0] == 0
4104 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4105 && (b != symbol_block
4106 || offset / sizeof b->symbols[0] < symbol_block_index)
4107 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4108 }
4109 else
4110 return 0;
4111 }
4112
4113
4114 /* Value is non-zero if P is a pointer to a live Lisp float on
4115 the heap. M is a pointer to the mem_block for P. */
4116
4117 static bool
4118 live_float_p (struct mem_node *m, void *p)
4119 {
4120 if (m->type == MEM_TYPE_FLOAT)
4121 {
4122 struct float_block *b = (struct float_block *) m->start;
4123 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4124
4125 /* P must point to the start of a Lisp_Float and not be
4126 one of the unused cells in the current float block. */
4127 return (offset >= 0
4128 && offset % sizeof b->floats[0] == 0
4129 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4130 && (b != float_block
4131 || offset / sizeof b->floats[0] < float_block_index));
4132 }
4133 else
4134 return 0;
4135 }
4136
4137
4138 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4139 the heap. M is a pointer to the mem_block for P. */
4140
4141 static bool
4142 live_misc_p (struct mem_node *m, void *p)
4143 {
4144 if (m->type == MEM_TYPE_MISC)
4145 {
4146 struct marker_block *b = (struct marker_block *) m->start;
4147 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4148
4149 /* P must point to the start of a Lisp_Misc, not be
4150 one of the unused cells in the current misc block,
4151 and not be on the free-list. */
4152 return (offset >= 0
4153 && offset % sizeof b->markers[0] == 0
4154 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4155 && (b != marker_block
4156 || offset / sizeof b->markers[0] < marker_block_index)
4157 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4158 }
4159 else
4160 return 0;
4161 }
4162
4163
4164 /* Value is non-zero if P is a pointer to a live vector-like object.
4165 M is a pointer to the mem_block for P. */
4166
4167 static bool
4168 live_vector_p (struct mem_node *m, void *p)
4169 {
4170 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4171 {
4172 /* This memory node corresponds to a vector block. */
4173 struct vector_block *block = (struct vector_block *) m->start;
4174 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4175
4176 /* P is in the block's allocation range. Scan the block
4177 up to P and see whether P points to the start of some
4178 vector which is not on a free list. FIXME: check whether
4179 some allocation patterns (probably a lot of short vectors)
4180 may cause a substantial overhead of this loop. */
4181 while (VECTOR_IN_BLOCK (vector, block)
4182 && vector <= (struct Lisp_Vector *) p)
4183 {
4184 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4185 return 1;
4186 else
4187 vector = ADVANCE (vector, vector_nbytes (vector));
4188 }
4189 }
4190 else if (m->type == MEM_TYPE_VECTORLIKE
4191 && (char *) p == ((char *) m->start
4192 + offsetof (struct large_vector, v)))
4193 /* This memory node corresponds to a large vector. */
4194 return 1;
4195 return 0;
4196 }
4197
4198
4199 /* Value is non-zero if P is a pointer to a live buffer. M is a
4200 pointer to the mem_block for P. */
4201
4202 static bool
4203 live_buffer_p (struct mem_node *m, void *p)
4204 {
4205 /* P must point to the start of the block, and the buffer
4206 must not have been killed. */
4207 return (m->type == MEM_TYPE_BUFFER
4208 && p == m->start
4209 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4210 }
4211
4212 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4213
4214 #if GC_MARK_STACK
4215
4216 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4217
4218 /* Array of objects that are kept alive because the C stack contains
4219 a pattern that looks like a reference to them . */
4220
4221 #define MAX_ZOMBIES 10
4222 static Lisp_Object zombies[MAX_ZOMBIES];
4223
4224 /* Number of zombie objects. */
4225
4226 static EMACS_INT nzombies;
4227
4228 /* Number of garbage collections. */
4229
4230 static EMACS_INT ngcs;
4231
4232 /* Average percentage of zombies per collection. */
4233
4234 static double avg_zombies;
4235
4236 /* Max. number of live and zombie objects. */
4237
4238 static EMACS_INT max_live, max_zombies;
4239
4240 /* Average number of live objects per GC. */
4241
4242 static double avg_live;
4243
4244 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4245 doc: /* Show information about live and zombie objects. */)
4246 (void)
4247 {
4248 Lisp_Object args[8], zombie_list = Qnil;
4249 EMACS_INT i;
4250 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4251 zombie_list = Fcons (zombies[i], zombie_list);
4252 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4253 args[1] = make_number (ngcs);
4254 args[2] = make_float (avg_live);
4255 args[3] = make_float (avg_zombies);
4256 args[4] = make_float (avg_zombies / avg_live / 100);
4257 args[5] = make_number (max_live);
4258 args[6] = make_number (max_zombies);
4259 args[7] = zombie_list;
4260 return Fmessage (8, args);
4261 }
4262
4263 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4264
4265
4266 /* Mark OBJ if we can prove it's a Lisp_Object. */
4267
4268 static void
4269 mark_maybe_object (Lisp_Object obj)
4270 {
4271 void *po;
4272 struct mem_node *m;
4273
4274 if (INTEGERP (obj))
4275 return;
4276
4277 po = (void *) XPNTR (obj);
4278 m = mem_find (po);
4279
4280 if (m != MEM_NIL)
4281 {
4282 bool mark_p = 0;
4283
4284 switch (XTYPE (obj))
4285 {
4286 case Lisp_String:
4287 mark_p = (live_string_p (m, po)
4288 && !STRING_MARKED_P ((struct Lisp_String *) po));
4289 break;
4290
4291 case Lisp_Cons:
4292 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4293 break;
4294
4295 case Lisp_Symbol:
4296 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4297 break;
4298
4299 case Lisp_Float:
4300 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4301 break;
4302
4303 case Lisp_Vectorlike:
4304 /* Note: can't check BUFFERP before we know it's a
4305 buffer because checking that dereferences the pointer
4306 PO which might point anywhere. */
4307 if (live_vector_p (m, po))
4308 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4309 else if (live_buffer_p (m, po))
4310 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4311 break;
4312
4313 case Lisp_Misc:
4314 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4315 break;
4316
4317 default:
4318 break;
4319 }
4320
4321 if (mark_p)
4322 {
4323 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4324 if (nzombies < MAX_ZOMBIES)
4325 zombies[nzombies] = obj;
4326 ++nzombies;
4327 #endif
4328 mark_object (obj);
4329 }
4330 }
4331 }
4332
4333
4334 /* If P points to Lisp data, mark that as live if it isn't already
4335 marked. */
4336
4337 static void
4338 mark_maybe_pointer (void *p)
4339 {
4340 struct mem_node *m;
4341
4342 /* Quickly rule out some values which can't point to Lisp data.
4343 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4344 Otherwise, assume that Lisp data is aligned on even addresses. */
4345 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4346 return;
4347
4348 m = mem_find (p);
4349 if (m != MEM_NIL)
4350 {
4351 Lisp_Object obj = Qnil;
4352
4353 switch (m->type)
4354 {
4355 case MEM_TYPE_NON_LISP:
4356 case MEM_TYPE_SPARE:
4357 /* Nothing to do; not a pointer to Lisp memory. */
4358 break;
4359
4360 case MEM_TYPE_BUFFER:
4361 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4362 XSETVECTOR (obj, p);
4363 break;
4364
4365 case MEM_TYPE_CONS:
4366 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4367 XSETCONS (obj, p);
4368 break;
4369
4370 case MEM_TYPE_STRING:
4371 if (live_string_p (m, p)
4372 && !STRING_MARKED_P ((struct Lisp_String *) p))
4373 XSETSTRING (obj, p);
4374 break;
4375
4376 case MEM_TYPE_MISC:
4377 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4378 XSETMISC (obj, p);
4379 break;
4380
4381 case MEM_TYPE_SYMBOL:
4382 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4383 XSETSYMBOL (obj, p);
4384 break;
4385
4386 case MEM_TYPE_FLOAT:
4387 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4388 XSETFLOAT (obj, p);
4389 break;
4390
4391 case MEM_TYPE_VECTORLIKE:
4392 case MEM_TYPE_VECTOR_BLOCK:
4393 if (live_vector_p (m, p))
4394 {
4395 Lisp_Object tem;
4396 XSETVECTOR (tem, p);
4397 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4398 obj = tem;
4399 }
4400 break;
4401
4402 default:
4403 emacs_abort ();
4404 }
4405
4406 if (!NILP (obj))
4407 mark_object (obj);
4408 }
4409 }
4410
4411
4412 /* Alignment of pointer values. Use alignof, as it sometimes returns
4413 a smaller alignment than GCC's __alignof__ and mark_memory might
4414 miss objects if __alignof__ were used. */
4415 #define GC_POINTER_ALIGNMENT alignof (void *)
4416
4417 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4418 not suffice, which is the typical case. A host where a Lisp_Object is
4419 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4420 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4421 suffice to widen it to to a Lisp_Object and check it that way. */
4422 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4423 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4424 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4425 nor mark_maybe_object can follow the pointers. This should not occur on
4426 any practical porting target. */
4427 # error "MSB type bits straddle pointer-word boundaries"
4428 # endif
4429 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4430 pointer words that hold pointers ORed with type bits. */
4431 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4432 #else
4433 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4434 words that hold unmodified pointers. */
4435 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4436 #endif
4437
4438 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4439 or END+OFFSET..START. */
4440
4441 static void
4442 mark_memory (void *start, void *end)
4443 #if defined (__clang__) && defined (__has_feature)
4444 #if __has_feature(address_sanitizer)
4445 /* Do not allow -faddress-sanitizer to check this function, since it
4446 crosses the function stack boundary, and thus would yield many
4447 false positives. */
4448 __attribute__((no_address_safety_analysis))
4449 #endif
4450 #endif
4451 {
4452 void **pp;
4453 int i;
4454
4455 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4456 nzombies = 0;
4457 #endif
4458
4459 /* Make START the pointer to the start of the memory region,
4460 if it isn't already. */
4461 if (end < start)
4462 {
4463 void *tem = start;
4464 start = end;
4465 end = tem;
4466 }
4467
4468 /* Mark Lisp data pointed to. This is necessary because, in some
4469 situations, the C compiler optimizes Lisp objects away, so that
4470 only a pointer to them remains. Example:
4471
4472 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4473 ()
4474 {
4475 Lisp_Object obj = build_string ("test");
4476 struct Lisp_String *s = XSTRING (obj);
4477 Fgarbage_collect ();
4478 fprintf (stderr, "test `%s'\n", s->data);
4479 return Qnil;
4480 }
4481
4482 Here, `obj' isn't really used, and the compiler optimizes it
4483 away. The only reference to the life string is through the
4484 pointer `s'. */
4485
4486 for (pp = start; (void *) pp < end; pp++)
4487 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4488 {
4489 void *p = *(void **) ((char *) pp + i);
4490 mark_maybe_pointer (p);
4491 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4492 mark_maybe_object (XIL ((intptr_t) p));
4493 }
4494 }
4495
4496 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4497
4498 static bool setjmp_tested_p;
4499 static int longjmps_done;
4500
4501 #define SETJMP_WILL_LIKELY_WORK "\
4502 \n\
4503 Emacs garbage collector has been changed to use conservative stack\n\
4504 marking. Emacs has determined that the method it uses to do the\n\
4505 marking will likely work on your system, but this isn't sure.\n\
4506 \n\
4507 If you are a system-programmer, or can get the help of a local wizard\n\
4508 who is, please take a look at the function mark_stack in alloc.c, and\n\
4509 verify that the methods used are appropriate for your system.\n\
4510 \n\
4511 Please mail the result to <emacs-devel@gnu.org>.\n\
4512 "
4513
4514 #define SETJMP_WILL_NOT_WORK "\
4515 \n\
4516 Emacs garbage collector has been changed to use conservative stack\n\
4517 marking. Emacs has determined that the default method it uses to do the\n\
4518 marking will not work on your system. We will need a system-dependent\n\
4519 solution for your system.\n\
4520 \n\
4521 Please take a look at the function mark_stack in alloc.c, and\n\
4522 try to find a way to make it work on your system.\n\
4523 \n\
4524 Note that you may get false negatives, depending on the compiler.\n\
4525 In particular, you need to use -O with GCC for this test.\n\
4526 \n\
4527 Please mail the result to <emacs-devel@gnu.org>.\n\
4528 "
4529
4530
4531 /* Perform a quick check if it looks like setjmp saves registers in a
4532 jmp_buf. Print a message to stderr saying so. When this test
4533 succeeds, this is _not_ a proof that setjmp is sufficient for
4534 conservative stack marking. Only the sources or a disassembly
4535 can prove that. */
4536
4537 static void
4538 test_setjmp (void)
4539 {
4540 char buf[10];
4541 register int x;
4542 sys_jmp_buf jbuf;
4543
4544 /* Arrange for X to be put in a register. */
4545 sprintf (buf, "1");
4546 x = strlen (buf);
4547 x = 2 * x - 1;
4548
4549 sys_setjmp (jbuf);
4550 if (longjmps_done == 1)
4551 {
4552 /* Came here after the longjmp at the end of the function.
4553
4554 If x == 1, the longjmp has restored the register to its
4555 value before the setjmp, and we can hope that setjmp
4556 saves all such registers in the jmp_buf, although that
4557 isn't sure.
4558
4559 For other values of X, either something really strange is
4560 taking place, or the setjmp just didn't save the register. */
4561
4562 if (x == 1)
4563 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4564 else
4565 {
4566 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4567 exit (1);
4568 }
4569 }
4570
4571 ++longjmps_done;
4572 x = 2;
4573 if (longjmps_done == 1)
4574 sys_longjmp (jbuf, 1);
4575 }
4576
4577 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4578
4579
4580 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4581
4582 /* Abort if anything GCPRO'd doesn't survive the GC. */
4583
4584 static void
4585 check_gcpros (void)
4586 {
4587 struct gcpro *p;
4588 ptrdiff_t i;
4589
4590 for (p = gcprolist; p; p = p->next)
4591 for (i = 0; i < p->nvars; ++i)
4592 if (!survives_gc_p (p->var[i]))
4593 /* FIXME: It's not necessarily a bug. It might just be that the
4594 GCPRO is unnecessary or should release the object sooner. */
4595 emacs_abort ();
4596 }
4597
4598 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4599
4600 static void
4601 dump_zombies (void)
4602 {
4603 int i;
4604
4605 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4606 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4607 {
4608 fprintf (stderr, " %d = ", i);
4609 debug_print (zombies[i]);
4610 }
4611 }
4612
4613 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4614
4615
4616 /* Mark live Lisp objects on the C stack.
4617
4618 There are several system-dependent problems to consider when
4619 porting this to new architectures:
4620
4621 Processor Registers
4622
4623 We have to mark Lisp objects in CPU registers that can hold local
4624 variables or are used to pass parameters.
4625
4626 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4627 something that either saves relevant registers on the stack, or
4628 calls mark_maybe_object passing it each register's contents.
4629
4630 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4631 implementation assumes that calling setjmp saves registers we need
4632 to see in a jmp_buf which itself lies on the stack. This doesn't
4633 have to be true! It must be verified for each system, possibly
4634 by taking a look at the source code of setjmp.
4635
4636 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4637 can use it as a machine independent method to store all registers
4638 to the stack. In this case the macros described in the previous
4639 two paragraphs are not used.
4640
4641 Stack Layout
4642
4643 Architectures differ in the way their processor stack is organized.
4644 For example, the stack might look like this
4645
4646 +----------------+
4647 | Lisp_Object | size = 4
4648 +----------------+
4649 | something else | size = 2
4650 +----------------+
4651 | Lisp_Object | size = 4
4652 +----------------+
4653 | ... |
4654
4655 In such a case, not every Lisp_Object will be aligned equally. To
4656 find all Lisp_Object on the stack it won't be sufficient to walk
4657 the stack in steps of 4 bytes. Instead, two passes will be
4658 necessary, one starting at the start of the stack, and a second
4659 pass starting at the start of the stack + 2. Likewise, if the
4660 minimal alignment of Lisp_Objects on the stack is 1, four passes
4661 would be necessary, each one starting with one byte more offset
4662 from the stack start. */
4663
4664 static void
4665 mark_stack (void)
4666 {
4667 void *end;
4668
4669 #ifdef HAVE___BUILTIN_UNWIND_INIT
4670 /* Force callee-saved registers and register windows onto the stack.
4671 This is the preferred method if available, obviating the need for
4672 machine dependent methods. */
4673 __builtin_unwind_init ();
4674 end = &end;
4675 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4676 #ifndef GC_SAVE_REGISTERS_ON_STACK
4677 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4678 union aligned_jmpbuf {
4679 Lisp_Object o;
4680 sys_jmp_buf j;
4681 } j;
4682 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4683 #endif
4684 /* This trick flushes the register windows so that all the state of
4685 the process is contained in the stack. */
4686 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4687 needed on ia64 too. See mach_dep.c, where it also says inline
4688 assembler doesn't work with relevant proprietary compilers. */
4689 #ifdef __sparc__
4690 #if defined (__sparc64__) && defined (__FreeBSD__)
4691 /* FreeBSD does not have a ta 3 handler. */
4692 asm ("flushw");
4693 #else
4694 asm ("ta 3");
4695 #endif
4696 #endif
4697
4698 /* Save registers that we need to see on the stack. We need to see
4699 registers used to hold register variables and registers used to
4700 pass parameters. */
4701 #ifdef GC_SAVE_REGISTERS_ON_STACK
4702 GC_SAVE_REGISTERS_ON_STACK (end);
4703 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4704
4705 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4706 setjmp will definitely work, test it
4707 and print a message with the result
4708 of the test. */
4709 if (!setjmp_tested_p)
4710 {
4711 setjmp_tested_p = 1;
4712 test_setjmp ();
4713 }
4714 #endif /* GC_SETJMP_WORKS */
4715
4716 sys_setjmp (j.j);
4717 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4718 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4719 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4720
4721 /* This assumes that the stack is a contiguous region in memory. If
4722 that's not the case, something has to be done here to iterate
4723 over the stack segments. */
4724 mark_memory (stack_base, end);
4725
4726 /* Allow for marking a secondary stack, like the register stack on the
4727 ia64. */
4728 #ifdef GC_MARK_SECONDARY_STACK
4729 GC_MARK_SECONDARY_STACK ();
4730 #endif
4731
4732 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4733 check_gcpros ();
4734 #endif
4735 }
4736
4737 #endif /* GC_MARK_STACK != 0 */
4738
4739
4740 /* Determine whether it is safe to access memory at address P. */
4741 static int
4742 valid_pointer_p (void *p)
4743 {
4744 #ifdef WINDOWSNT
4745 return w32_valid_pointer_p (p, 16);
4746 #else
4747 int fd[2];
4748
4749 /* Obviously, we cannot just access it (we would SEGV trying), so we
4750 trick the o/s to tell us whether p is a valid pointer.
4751 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4752 not validate p in that case. */
4753
4754 if (pipe (fd) == 0)
4755 {
4756 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4757 emacs_close (fd[1]);
4758 emacs_close (fd[0]);
4759 return valid;
4760 }
4761
4762 return -1;
4763 #endif
4764 }
4765
4766 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4767 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4768 cannot validate OBJ. This function can be quite slow, so its primary
4769 use is the manual debugging. The only exception is print_object, where
4770 we use it to check whether the memory referenced by the pointer of
4771 Lisp_Save_Value object contains valid objects. */
4772
4773 int
4774 valid_lisp_object_p (Lisp_Object obj)
4775 {
4776 void *p;
4777 #if GC_MARK_STACK
4778 struct mem_node *m;
4779 #endif
4780
4781 if (INTEGERP (obj))
4782 return 1;
4783
4784 p = (void *) XPNTR (obj);
4785 if (PURE_POINTER_P (p))
4786 return 1;
4787
4788 if (p == &buffer_defaults || p == &buffer_local_symbols)
4789 return 2;
4790
4791 #if !GC_MARK_STACK
4792 return valid_pointer_p (p);
4793 #else
4794
4795 m = mem_find (p);
4796
4797 if (m == MEM_NIL)
4798 {
4799 int valid = valid_pointer_p (p);
4800 if (valid <= 0)
4801 return valid;
4802
4803 if (SUBRP (obj))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 switch (m->type)
4810 {
4811 case MEM_TYPE_NON_LISP:
4812 case MEM_TYPE_SPARE:
4813 return 0;
4814
4815 case MEM_TYPE_BUFFER:
4816 return live_buffer_p (m, p) ? 1 : 2;
4817
4818 case MEM_TYPE_CONS:
4819 return live_cons_p (m, p);
4820
4821 case MEM_TYPE_STRING:
4822 return live_string_p (m, p);
4823
4824 case MEM_TYPE_MISC:
4825 return live_misc_p (m, p);
4826
4827 case MEM_TYPE_SYMBOL:
4828 return live_symbol_p (m, p);
4829
4830 case MEM_TYPE_FLOAT:
4831 return live_float_p (m, p);
4832
4833 case MEM_TYPE_VECTORLIKE:
4834 case MEM_TYPE_VECTOR_BLOCK:
4835 return live_vector_p (m, p);
4836
4837 default:
4838 break;
4839 }
4840
4841 return 0;
4842 #endif
4843 }
4844
4845
4846
4847 \f
4848 /***********************************************************************
4849 Pure Storage Management
4850 ***********************************************************************/
4851
4852 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4853 pointer to it. TYPE is the Lisp type for which the memory is
4854 allocated. TYPE < 0 means it's not used for a Lisp object. */
4855
4856 static void *
4857 pure_alloc (size_t size, int type)
4858 {
4859 void *result;
4860 #if USE_LSB_TAG
4861 size_t alignment = GCALIGNMENT;
4862 #else
4863 size_t alignment = alignof (EMACS_INT);
4864
4865 /* Give Lisp_Floats an extra alignment. */
4866 if (type == Lisp_Float)
4867 alignment = alignof (struct Lisp_Float);
4868 #endif
4869
4870 again:
4871 if (type >= 0)
4872 {
4873 /* Allocate space for a Lisp object from the beginning of the free
4874 space with taking account of alignment. */
4875 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4876 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4877 }
4878 else
4879 {
4880 /* Allocate space for a non-Lisp object from the end of the free
4881 space. */
4882 pure_bytes_used_non_lisp += size;
4883 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4884 }
4885 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4886
4887 if (pure_bytes_used <= pure_size)
4888 return result;
4889
4890 /* Don't allocate a large amount here,
4891 because it might get mmap'd and then its address
4892 might not be usable. */
4893 purebeg = xmalloc (10000);
4894 pure_size = 10000;
4895 pure_bytes_used_before_overflow += pure_bytes_used - size;
4896 pure_bytes_used = 0;
4897 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4898 goto again;
4899 }
4900
4901
4902 /* Print a warning if PURESIZE is too small. */
4903
4904 void
4905 check_pure_size (void)
4906 {
4907 if (pure_bytes_used_before_overflow)
4908 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4909 " bytes needed)"),
4910 pure_bytes_used + pure_bytes_used_before_overflow);
4911 }
4912
4913
4914 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4915 the non-Lisp data pool of the pure storage, and return its start
4916 address. Return NULL if not found. */
4917
4918 static char *
4919 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4920 {
4921 int i;
4922 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4923 const unsigned char *p;
4924 char *non_lisp_beg;
4925
4926 if (pure_bytes_used_non_lisp <= nbytes)
4927 return NULL;
4928
4929 /* Set up the Boyer-Moore table. */
4930 skip = nbytes + 1;
4931 for (i = 0; i < 256; i++)
4932 bm_skip[i] = skip;
4933
4934 p = (const unsigned char *) data;
4935 while (--skip > 0)
4936 bm_skip[*p++] = skip;
4937
4938 last_char_skip = bm_skip['\0'];
4939
4940 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4941 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4942
4943 /* See the comments in the function `boyer_moore' (search.c) for the
4944 use of `infinity'. */
4945 infinity = pure_bytes_used_non_lisp + 1;
4946 bm_skip['\0'] = infinity;
4947
4948 p = (const unsigned char *) non_lisp_beg + nbytes;
4949 start = 0;
4950 do
4951 {
4952 /* Check the last character (== '\0'). */
4953 do
4954 {
4955 start += bm_skip[*(p + start)];
4956 }
4957 while (start <= start_max);
4958
4959 if (start < infinity)
4960 /* Couldn't find the last character. */
4961 return NULL;
4962
4963 /* No less than `infinity' means we could find the last
4964 character at `p[start - infinity]'. */
4965 start -= infinity;
4966
4967 /* Check the remaining characters. */
4968 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4969 /* Found. */
4970 return non_lisp_beg + start;
4971
4972 start += last_char_skip;
4973 }
4974 while (start <= start_max);
4975
4976 return NULL;
4977 }
4978
4979
4980 /* Return a string allocated in pure space. DATA is a buffer holding
4981 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4982 means make the result string multibyte.
4983
4984 Must get an error if pure storage is full, since if it cannot hold
4985 a large string it may be able to hold conses that point to that
4986 string; then the string is not protected from gc. */
4987
4988 Lisp_Object
4989 make_pure_string (const char *data,
4990 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4991 {
4992 Lisp_Object string;
4993 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4994 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4995 if (s->data == NULL)
4996 {
4997 s->data = pure_alloc (nbytes + 1, -1);
4998 memcpy (s->data, data, nbytes);
4999 s->data[nbytes] = '\0';
5000 }
5001 s->size = nchars;
5002 s->size_byte = multibyte ? nbytes : -1;
5003 s->intervals = NULL;
5004 XSETSTRING (string, s);
5005 return string;
5006 }
5007
5008 /* Return a string allocated in pure space. Do not
5009 allocate the string data, just point to DATA. */
5010
5011 Lisp_Object
5012 make_pure_c_string (const char *data, ptrdiff_t nchars)
5013 {
5014 Lisp_Object string;
5015 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5016 s->size = nchars;
5017 s->size_byte = -1;
5018 s->data = (unsigned char *) data;
5019 s->intervals = NULL;
5020 XSETSTRING (string, s);
5021 return string;
5022 }
5023
5024 /* Return a cons allocated from pure space. Give it pure copies
5025 of CAR as car and CDR as cdr. */
5026
5027 Lisp_Object
5028 pure_cons (Lisp_Object car, Lisp_Object cdr)
5029 {
5030 Lisp_Object new;
5031 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5032 XSETCONS (new, p);
5033 XSETCAR (new, Fpurecopy (car));
5034 XSETCDR (new, Fpurecopy (cdr));
5035 return new;
5036 }
5037
5038
5039 /* Value is a float object with value NUM allocated from pure space. */
5040
5041 static Lisp_Object
5042 make_pure_float (double num)
5043 {
5044 Lisp_Object new;
5045 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5046 XSETFLOAT (new, p);
5047 XFLOAT_INIT (new, num);
5048 return new;
5049 }
5050
5051
5052 /* Return a vector with room for LEN Lisp_Objects allocated from
5053 pure space. */
5054
5055 static Lisp_Object
5056 make_pure_vector (ptrdiff_t len)
5057 {
5058 Lisp_Object new;
5059 size_t size = header_size + len * word_size;
5060 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5061 XSETVECTOR (new, p);
5062 XVECTOR (new)->header.size = len;
5063 return new;
5064 }
5065
5066
5067 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5068 doc: /* Make a copy of object OBJ in pure storage.
5069 Recursively copies contents of vectors and cons cells.
5070 Does not copy symbols. Copies strings without text properties. */)
5071 (register Lisp_Object obj)
5072 {
5073 if (NILP (Vpurify_flag))
5074 return obj;
5075
5076 if (PURE_POINTER_P (XPNTR (obj)))
5077 return obj;
5078
5079 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5080 {
5081 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5082 if (!NILP (tmp))
5083 return tmp;
5084 }
5085
5086 if (CONSP (obj))
5087 obj = pure_cons (XCAR (obj), XCDR (obj));
5088 else if (FLOATP (obj))
5089 obj = make_pure_float (XFLOAT_DATA (obj));
5090 else if (STRINGP (obj))
5091 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5092 SBYTES (obj),
5093 STRING_MULTIBYTE (obj));
5094 else if (COMPILEDP (obj) || VECTORP (obj))
5095 {
5096 register struct Lisp_Vector *vec;
5097 register ptrdiff_t i;
5098 ptrdiff_t size;
5099
5100 size = ASIZE (obj);
5101 if (size & PSEUDOVECTOR_FLAG)
5102 size &= PSEUDOVECTOR_SIZE_MASK;
5103 vec = XVECTOR (make_pure_vector (size));
5104 for (i = 0; i < size; i++)
5105 vec->contents[i] = Fpurecopy (AREF (obj, i));
5106 if (COMPILEDP (obj))
5107 {
5108 XSETPVECTYPE (vec, PVEC_COMPILED);
5109 XSETCOMPILED (obj, vec);
5110 }
5111 else
5112 XSETVECTOR (obj, vec);
5113 }
5114 else if (MARKERP (obj))
5115 error ("Attempt to copy a marker to pure storage");
5116 else
5117 /* Not purified, don't hash-cons. */
5118 return obj;
5119
5120 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5121 Fputhash (obj, obj, Vpurify_flag);
5122
5123 return obj;
5124 }
5125
5126
5127 \f
5128 /***********************************************************************
5129 Protection from GC
5130 ***********************************************************************/
5131
5132 /* Put an entry in staticvec, pointing at the variable with address
5133 VARADDRESS. */
5134
5135 void
5136 staticpro (Lisp_Object *varaddress)
5137 {
5138 staticvec[staticidx++] = varaddress;
5139 if (staticidx >= NSTATICS)
5140 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5141 }
5142
5143 \f
5144 /***********************************************************************
5145 Protection from GC
5146 ***********************************************************************/
5147
5148 /* Temporarily prevent garbage collection. */
5149
5150 ptrdiff_t
5151 inhibit_garbage_collection (void)
5152 {
5153 ptrdiff_t count = SPECPDL_INDEX ();
5154
5155 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5156 return count;
5157 }
5158
5159 /* Used to avoid possible overflows when
5160 converting from C to Lisp integers. */
5161
5162 static Lisp_Object
5163 bounded_number (EMACS_INT number)
5164 {
5165 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5166 }
5167
5168 /* Calculate total bytes of live objects. */
5169
5170 static size_t
5171 total_bytes_of_live_objects (void)
5172 {
5173 size_t tot = 0;
5174 tot += total_conses * sizeof (struct Lisp_Cons);
5175 tot += total_symbols * sizeof (struct Lisp_Symbol);
5176 tot += total_markers * sizeof (union Lisp_Misc);
5177 tot += total_string_bytes;
5178 tot += total_vector_slots * word_size;
5179 tot += total_floats * sizeof (struct Lisp_Float);
5180 tot += total_intervals * sizeof (struct interval);
5181 tot += total_strings * sizeof (struct Lisp_String);
5182 return tot;
5183 }
5184
5185 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5186 doc: /* Reclaim storage for Lisp objects no longer needed.
5187 Garbage collection happens automatically if you cons more than
5188 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5189 `garbage-collect' normally returns a list with info on amount of space in use,
5190 where each entry has the form (NAME SIZE USED FREE), where:
5191 - NAME is a symbol describing the kind of objects this entry represents,
5192 - SIZE is the number of bytes used by each one,
5193 - USED is the number of those objects that were found live in the heap,
5194 - FREE is the number of those objects that are not live but that Emacs
5195 keeps around for future allocations (maybe because it does not know how
5196 to return them to the OS).
5197 However, if there was overflow in pure space, `garbage-collect'
5198 returns nil, because real GC can't be done.
5199 See Info node `(elisp)Garbage Collection'. */)
5200 (void)
5201 {
5202 struct specbinding *bind;
5203 struct buffer *nextb;
5204 char stack_top_variable;
5205 ptrdiff_t i;
5206 bool message_p;
5207 ptrdiff_t count = SPECPDL_INDEX ();
5208 EMACS_TIME start;
5209 Lisp_Object retval = Qnil;
5210 size_t tot_before = 0;
5211 struct backtrace backtrace;
5212
5213 if (abort_on_gc)
5214 emacs_abort ();
5215
5216 /* Can't GC if pure storage overflowed because we can't determine
5217 if something is a pure object or not. */
5218 if (pure_bytes_used_before_overflow)
5219 return Qnil;
5220
5221 /* Record this function, so it appears on the profiler's backtraces. */
5222 backtrace.next = backtrace_list;
5223 backtrace.function = Qautomatic_gc;
5224 backtrace.args = &Qnil;
5225 backtrace.nargs = 0;
5226 backtrace.debug_on_exit = 0;
5227 backtrace_list = &backtrace;
5228
5229 check_cons_list ();
5230
5231 /* Don't keep undo information around forever.
5232 Do this early on, so it is no problem if the user quits. */
5233 FOR_EACH_BUFFER (nextb)
5234 compact_buffer (nextb);
5235
5236 if (profiler_memory_running)
5237 tot_before = total_bytes_of_live_objects ();
5238
5239 start = current_emacs_time ();
5240
5241 /* In case user calls debug_print during GC,
5242 don't let that cause a recursive GC. */
5243 consing_since_gc = 0;
5244
5245 /* Save what's currently displayed in the echo area. */
5246 message_p = push_message ();
5247 record_unwind_protect (pop_message_unwind, Qnil);
5248
5249 /* Save a copy of the contents of the stack, for debugging. */
5250 #if MAX_SAVE_STACK > 0
5251 if (NILP (Vpurify_flag))
5252 {
5253 char *stack;
5254 ptrdiff_t stack_size;
5255 if (&stack_top_variable < stack_bottom)
5256 {
5257 stack = &stack_top_variable;
5258 stack_size = stack_bottom - &stack_top_variable;
5259 }
5260 else
5261 {
5262 stack = stack_bottom;
5263 stack_size = &stack_top_variable - stack_bottom;
5264 }
5265 if (stack_size <= MAX_SAVE_STACK)
5266 {
5267 if (stack_copy_size < stack_size)
5268 {
5269 stack_copy = xrealloc (stack_copy, stack_size);
5270 stack_copy_size = stack_size;
5271 }
5272 memcpy (stack_copy, stack, stack_size);
5273 }
5274 }
5275 #endif /* MAX_SAVE_STACK > 0 */
5276
5277 if (garbage_collection_messages)
5278 message1_nolog ("Garbage collecting...");
5279
5280 block_input ();
5281
5282 shrink_regexp_cache ();
5283
5284 gc_in_progress = 1;
5285
5286 /* Mark all the special slots that serve as the roots of accessibility. */
5287
5288 mark_buffer (&buffer_defaults);
5289 mark_buffer (&buffer_local_symbols);
5290
5291 for (i = 0; i < staticidx; i++)
5292 mark_object (*staticvec[i]);
5293
5294 for (bind = specpdl; bind != specpdl_ptr; bind++)
5295 {
5296 mark_object (bind->symbol);
5297 mark_object (bind->old_value);
5298 }
5299 mark_terminals ();
5300 mark_kboards ();
5301
5302 #ifdef USE_GTK
5303 xg_mark_data ();
5304 #endif
5305
5306 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5307 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5308 mark_stack ();
5309 #else
5310 {
5311 register struct gcpro *tail;
5312 for (tail = gcprolist; tail; tail = tail->next)
5313 for (i = 0; i < tail->nvars; i++)
5314 mark_object (tail->var[i]);
5315 }
5316 mark_byte_stack ();
5317 {
5318 struct catchtag *catch;
5319 struct handler *handler;
5320
5321 for (catch = catchlist; catch; catch = catch->next)
5322 {
5323 mark_object (catch->tag);
5324 mark_object (catch->val);
5325 }
5326 for (handler = handlerlist; handler; handler = handler->next)
5327 {
5328 mark_object (handler->handler);
5329 mark_object (handler->var);
5330 }
5331 }
5332 mark_backtrace ();
5333 #endif
5334
5335 #ifdef HAVE_WINDOW_SYSTEM
5336 mark_fringe_data ();
5337 #endif
5338
5339 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5340 mark_stack ();
5341 #endif
5342
5343 /* Everything is now marked, except for the things that require special
5344 finalization, i.e. the undo_list.
5345 Look thru every buffer's undo list
5346 for elements that update markers that were not marked,
5347 and delete them. */
5348 FOR_EACH_BUFFER (nextb)
5349 {
5350 /* If a buffer's undo list is Qt, that means that undo is
5351 turned off in that buffer. Calling truncate_undo_list on
5352 Qt tends to return NULL, which effectively turns undo back on.
5353 So don't call truncate_undo_list if undo_list is Qt. */
5354 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5355 {
5356 Lisp_Object tail, prev;
5357 tail = nextb->INTERNAL_FIELD (undo_list);
5358 prev = Qnil;
5359 while (CONSP (tail))
5360 {
5361 if (CONSP (XCAR (tail))
5362 && MARKERP (XCAR (XCAR (tail)))
5363 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5364 {
5365 if (NILP (prev))
5366 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5367 else
5368 {
5369 tail = XCDR (tail);
5370 XSETCDR (prev, tail);
5371 }
5372 }
5373 else
5374 {
5375 prev = tail;
5376 tail = XCDR (tail);
5377 }
5378 }
5379 }
5380 /* Now that we have stripped the elements that need not be in the
5381 undo_list any more, we can finally mark the list. */
5382 mark_object (nextb->INTERNAL_FIELD (undo_list));
5383 }
5384
5385 gc_sweep ();
5386
5387 /* Clear the mark bits that we set in certain root slots. */
5388
5389 unmark_byte_stack ();
5390 VECTOR_UNMARK (&buffer_defaults);
5391 VECTOR_UNMARK (&buffer_local_symbols);
5392
5393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5394 dump_zombies ();
5395 #endif
5396
5397 check_cons_list ();
5398
5399 gc_in_progress = 0;
5400
5401 unblock_input ();
5402
5403 consing_since_gc = 0;
5404 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5405 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5406
5407 gc_relative_threshold = 0;
5408 if (FLOATP (Vgc_cons_percentage))
5409 { /* Set gc_cons_combined_threshold. */
5410 double tot = total_bytes_of_live_objects ();
5411
5412 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5413 if (0 < tot)
5414 {
5415 if (tot < TYPE_MAXIMUM (EMACS_INT))
5416 gc_relative_threshold = tot;
5417 else
5418 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5419 }
5420 }
5421
5422 if (garbage_collection_messages)
5423 {
5424 if (message_p || minibuf_level > 0)
5425 restore_message ();
5426 else
5427 message1_nolog ("Garbage collecting...done");
5428 }
5429
5430 unbind_to (count, Qnil);
5431 {
5432 Lisp_Object total[11];
5433 int total_size = 10;
5434
5435 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5436 bounded_number (total_conses),
5437 bounded_number (total_free_conses));
5438
5439 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5440 bounded_number (total_symbols),
5441 bounded_number (total_free_symbols));
5442
5443 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5444 bounded_number (total_markers),
5445 bounded_number (total_free_markers));
5446
5447 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5448 bounded_number (total_strings),
5449 bounded_number (total_free_strings));
5450
5451 total[4] = list3 (Qstring_bytes, make_number (1),
5452 bounded_number (total_string_bytes));
5453
5454 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5455 bounded_number (total_vectors));
5456
5457 total[6] = list4 (Qvector_slots, make_number (word_size),
5458 bounded_number (total_vector_slots),
5459 bounded_number (total_free_vector_slots));
5460
5461 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5462 bounded_number (total_floats),
5463 bounded_number (total_free_floats));
5464
5465 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5466 bounded_number (total_intervals),
5467 bounded_number (total_free_intervals));
5468
5469 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5470 bounded_number (total_buffers));
5471
5472 #ifdef DOUG_LEA_MALLOC
5473 total_size++;
5474 total[10] = list4 (Qheap, make_number (1024),
5475 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5476 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5477 #endif
5478 retval = Flist (total_size, total);
5479 }
5480
5481 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5482 {
5483 /* Compute average percentage of zombies. */
5484 double nlive
5485 = (total_conses + total_symbols + total_markers + total_strings
5486 + total_vectors + total_floats + total_intervals + total_buffers);
5487
5488 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5489 max_live = max (nlive, max_live);
5490 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5491 max_zombies = max (nzombies, max_zombies);
5492 ++ngcs;
5493 }
5494 #endif
5495
5496 if (!NILP (Vpost_gc_hook))
5497 {
5498 ptrdiff_t gc_count = inhibit_garbage_collection ();
5499 safe_run_hooks (Qpost_gc_hook);
5500 unbind_to (gc_count, Qnil);
5501 }
5502
5503 /* Accumulate statistics. */
5504 if (FLOATP (Vgc_elapsed))
5505 {
5506 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5507 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5508 + EMACS_TIME_TO_DOUBLE (since_start));
5509 }
5510
5511 gcs_done++;
5512
5513 /* Collect profiling data. */
5514 if (profiler_memory_running)
5515 {
5516 size_t swept = 0;
5517 size_t tot_after = total_bytes_of_live_objects ();
5518 if (tot_before > tot_after)
5519 swept = tot_before - tot_after;
5520 malloc_probe (swept);
5521 }
5522
5523 backtrace_list = backtrace.next;
5524 return retval;
5525 }
5526
5527
5528 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5529 only interesting objects referenced from glyphs are strings. */
5530
5531 static void
5532 mark_glyph_matrix (struct glyph_matrix *matrix)
5533 {
5534 struct glyph_row *row = matrix->rows;
5535 struct glyph_row *end = row + matrix->nrows;
5536
5537 for (; row < end; ++row)
5538 if (row->enabled_p)
5539 {
5540 int area;
5541 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5542 {
5543 struct glyph *glyph = row->glyphs[area];
5544 struct glyph *end_glyph = glyph + row->used[area];
5545
5546 for (; glyph < end_glyph; ++glyph)
5547 if (STRINGP (glyph->object)
5548 && !STRING_MARKED_P (XSTRING (glyph->object)))
5549 mark_object (glyph->object);
5550 }
5551 }
5552 }
5553
5554
5555 /* Mark Lisp faces in the face cache C. */
5556
5557 static void
5558 mark_face_cache (struct face_cache *c)
5559 {
5560 if (c)
5561 {
5562 int i, j;
5563 for (i = 0; i < c->used; ++i)
5564 {
5565 struct face *face = FACE_FROM_ID (c->f, i);
5566
5567 if (face)
5568 {
5569 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5570 mark_object (face->lface[j]);
5571 }
5572 }
5573 }
5574 }
5575
5576
5577 \f
5578 /* Mark reference to a Lisp_Object.
5579 If the object referred to has not been seen yet, recursively mark
5580 all the references contained in it. */
5581
5582 #define LAST_MARKED_SIZE 500
5583 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5584 static int last_marked_index;
5585
5586 /* For debugging--call abort when we cdr down this many
5587 links of a list, in mark_object. In debugging,
5588 the call to abort will hit a breakpoint.
5589 Normally this is zero and the check never goes off. */
5590 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5591
5592 static void
5593 mark_vectorlike (struct Lisp_Vector *ptr)
5594 {
5595 ptrdiff_t size = ptr->header.size;
5596 ptrdiff_t i;
5597
5598 eassert (!VECTOR_MARKED_P (ptr));
5599 VECTOR_MARK (ptr); /* Else mark it. */
5600 if (size & PSEUDOVECTOR_FLAG)
5601 size &= PSEUDOVECTOR_SIZE_MASK;
5602
5603 /* Note that this size is not the memory-footprint size, but only
5604 the number of Lisp_Object fields that we should trace.
5605 The distinction is used e.g. by Lisp_Process which places extra
5606 non-Lisp_Object fields at the end of the structure... */
5607 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5608 mark_object (ptr->contents[i]);
5609 }
5610
5611 /* Like mark_vectorlike but optimized for char-tables (and
5612 sub-char-tables) assuming that the contents are mostly integers or
5613 symbols. */
5614
5615 static void
5616 mark_char_table (struct Lisp_Vector *ptr)
5617 {
5618 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5619 int i;
5620
5621 eassert (!VECTOR_MARKED_P (ptr));
5622 VECTOR_MARK (ptr);
5623 for (i = 0; i < size; i++)
5624 {
5625 Lisp_Object val = ptr->contents[i];
5626
5627 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5628 continue;
5629 if (SUB_CHAR_TABLE_P (val))
5630 {
5631 if (! VECTOR_MARKED_P (XVECTOR (val)))
5632 mark_char_table (XVECTOR (val));
5633 }
5634 else
5635 mark_object (val);
5636 }
5637 }
5638
5639 /* Mark the chain of overlays starting at PTR. */
5640
5641 static void
5642 mark_overlay (struct Lisp_Overlay *ptr)
5643 {
5644 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5645 {
5646 ptr->gcmarkbit = 1;
5647 mark_object (ptr->start);
5648 mark_object (ptr->end);
5649 mark_object (ptr->plist);
5650 }
5651 }
5652
5653 /* Mark Lisp_Objects and special pointers in BUFFER. */
5654
5655 static void
5656 mark_buffer (struct buffer *buffer)
5657 {
5658 /* This is handled much like other pseudovectors... */
5659 mark_vectorlike ((struct Lisp_Vector *) buffer);
5660
5661 /* ...but there are some buffer-specific things. */
5662
5663 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5664
5665 /* For now, we just don't mark the undo_list. It's done later in
5666 a special way just before the sweep phase, and after stripping
5667 some of its elements that are not needed any more. */
5668
5669 mark_overlay (buffer->overlays_before);
5670 mark_overlay (buffer->overlays_after);
5671
5672 /* If this is an indirect buffer, mark its base buffer. */
5673 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5674 mark_buffer (buffer->base_buffer);
5675 }
5676
5677 /* Remove killed buffers or items whose car is a killed buffer from
5678 LIST, and mark other items. Return changed LIST, which is marked. */
5679
5680 static Lisp_Object
5681 mark_discard_killed_buffers (Lisp_Object list)
5682 {
5683 Lisp_Object tail, *prev = &list;
5684
5685 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5686 tail = XCDR (tail))
5687 {
5688 Lisp_Object tem = XCAR (tail);
5689 if (CONSP (tem))
5690 tem = XCAR (tem);
5691 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5692 *prev = XCDR (tail);
5693 else
5694 {
5695 CONS_MARK (XCONS (tail));
5696 mark_object (XCAR (tail));
5697 prev = &XCDR_AS_LVALUE (tail);
5698 }
5699 }
5700 mark_object (tail);
5701 return list;
5702 }
5703
5704 /* Determine type of generic Lisp_Object and mark it accordingly. */
5705
5706 void
5707 mark_object (Lisp_Object arg)
5708 {
5709 register Lisp_Object obj = arg;
5710 #ifdef GC_CHECK_MARKED_OBJECTS
5711 void *po;
5712 struct mem_node *m;
5713 #endif
5714 ptrdiff_t cdr_count = 0;
5715
5716 loop:
5717
5718 if (PURE_POINTER_P (XPNTR (obj)))
5719 return;
5720
5721 last_marked[last_marked_index++] = obj;
5722 if (last_marked_index == LAST_MARKED_SIZE)
5723 last_marked_index = 0;
5724
5725 /* Perform some sanity checks on the objects marked here. Abort if
5726 we encounter an object we know is bogus. This increases GC time
5727 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5728 #ifdef GC_CHECK_MARKED_OBJECTS
5729
5730 po = (void *) XPNTR (obj);
5731
5732 /* Check that the object pointed to by PO is known to be a Lisp
5733 structure allocated from the heap. */
5734 #define CHECK_ALLOCATED() \
5735 do { \
5736 m = mem_find (po); \
5737 if (m == MEM_NIL) \
5738 emacs_abort (); \
5739 } while (0)
5740
5741 /* Check that the object pointed to by PO is live, using predicate
5742 function LIVEP. */
5743 #define CHECK_LIVE(LIVEP) \
5744 do { \
5745 if (!LIVEP (m, po)) \
5746 emacs_abort (); \
5747 } while (0)
5748
5749 /* Check both of the above conditions. */
5750 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5751 do { \
5752 CHECK_ALLOCATED (); \
5753 CHECK_LIVE (LIVEP); \
5754 } while (0) \
5755
5756 #else /* not GC_CHECK_MARKED_OBJECTS */
5757
5758 #define CHECK_LIVE(LIVEP) (void) 0
5759 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5760
5761 #endif /* not GC_CHECK_MARKED_OBJECTS */
5762
5763 switch (XTYPE (obj))
5764 {
5765 case Lisp_String:
5766 {
5767 register struct Lisp_String *ptr = XSTRING (obj);
5768 if (STRING_MARKED_P (ptr))
5769 break;
5770 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5771 MARK_STRING (ptr);
5772 MARK_INTERVAL_TREE (ptr->intervals);
5773 #ifdef GC_CHECK_STRING_BYTES
5774 /* Check that the string size recorded in the string is the
5775 same as the one recorded in the sdata structure. */
5776 string_bytes (ptr);
5777 #endif /* GC_CHECK_STRING_BYTES */
5778 }
5779 break;
5780
5781 case Lisp_Vectorlike:
5782 {
5783 register struct Lisp_Vector *ptr = XVECTOR (obj);
5784 register ptrdiff_t pvectype;
5785
5786 if (VECTOR_MARKED_P (ptr))
5787 break;
5788
5789 #ifdef GC_CHECK_MARKED_OBJECTS
5790 m = mem_find (po);
5791 if (m == MEM_NIL && !SUBRP (obj))
5792 emacs_abort ();
5793 #endif /* GC_CHECK_MARKED_OBJECTS */
5794
5795 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5796 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5797 >> PSEUDOVECTOR_AREA_BITS);
5798 else
5799 pvectype = PVEC_NORMAL_VECTOR;
5800
5801 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5802 CHECK_LIVE (live_vector_p);
5803
5804 switch (pvectype)
5805 {
5806 case PVEC_BUFFER:
5807 #ifdef GC_CHECK_MARKED_OBJECTS
5808 {
5809 struct buffer *b;
5810 FOR_EACH_BUFFER (b)
5811 if (b == po)
5812 break;
5813 if (b == NULL)
5814 emacs_abort ();
5815 }
5816 #endif /* GC_CHECK_MARKED_OBJECTS */
5817 mark_buffer ((struct buffer *) ptr);
5818 break;
5819
5820 case PVEC_COMPILED:
5821 { /* We could treat this just like a vector, but it is better
5822 to save the COMPILED_CONSTANTS element for last and avoid
5823 recursion there. */
5824 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5825 int i;
5826
5827 VECTOR_MARK (ptr);
5828 for (i = 0; i < size; i++)
5829 if (i != COMPILED_CONSTANTS)
5830 mark_object (ptr->contents[i]);
5831 if (size > COMPILED_CONSTANTS)
5832 {
5833 obj = ptr->contents[COMPILED_CONSTANTS];
5834 goto loop;
5835 }
5836 }
5837 break;
5838
5839 case PVEC_FRAME:
5840 mark_vectorlike (ptr);
5841 mark_face_cache (((struct frame *) ptr)->face_cache);
5842 break;
5843
5844 case PVEC_WINDOW:
5845 {
5846 struct window *w = (struct window *) ptr;
5847 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5848
5849 mark_vectorlike (ptr);
5850
5851 /* Mark glyphs for leaf windows. Marking window
5852 matrices is sufficient because frame matrices
5853 use the same glyph memory. */
5854 if (leaf && w->current_matrix)
5855 {
5856 mark_glyph_matrix (w->current_matrix);
5857 mark_glyph_matrix (w->desired_matrix);
5858 }
5859
5860 /* Filter out killed buffers from both buffer lists
5861 in attempt to help GC to reclaim killed buffers faster.
5862 We can do it elsewhere for live windows, but this is the
5863 best place to do it for dead windows. */
5864 wset_prev_buffers
5865 (w, mark_discard_killed_buffers (w->prev_buffers));
5866 wset_next_buffers
5867 (w, mark_discard_killed_buffers (w->next_buffers));
5868 }
5869 break;
5870
5871 case PVEC_HASH_TABLE:
5872 {
5873 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5874
5875 mark_vectorlike (ptr);
5876 mark_object (h->test.name);
5877 mark_object (h->test.user_hash_function);
5878 mark_object (h->test.user_cmp_function);
5879 /* If hash table is not weak, mark all keys and values.
5880 For weak tables, mark only the vector. */
5881 if (NILP (h->weak))
5882 mark_object (h->key_and_value);
5883 else
5884 VECTOR_MARK (XVECTOR (h->key_and_value));
5885 }
5886 break;
5887
5888 case PVEC_CHAR_TABLE:
5889 mark_char_table (ptr);
5890 break;
5891
5892 case PVEC_BOOL_VECTOR:
5893 /* No Lisp_Objects to mark in a bool vector. */
5894 VECTOR_MARK (ptr);
5895 break;
5896
5897 case PVEC_SUBR:
5898 break;
5899
5900 case PVEC_FREE:
5901 emacs_abort ();
5902
5903 default:
5904 mark_vectorlike (ptr);
5905 }
5906 }
5907 break;
5908
5909 case Lisp_Symbol:
5910 {
5911 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5912 struct Lisp_Symbol *ptrx;
5913
5914 if (ptr->gcmarkbit)
5915 break;
5916 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5917 ptr->gcmarkbit = 1;
5918 mark_object (ptr->function);
5919 mark_object (ptr->plist);
5920 switch (ptr->redirect)
5921 {
5922 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5923 case SYMBOL_VARALIAS:
5924 {
5925 Lisp_Object tem;
5926 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5927 mark_object (tem);
5928 break;
5929 }
5930 case SYMBOL_LOCALIZED:
5931 {
5932 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5933 Lisp_Object where = blv->where;
5934 /* If the value is set up for a killed buffer or deleted
5935 frame, restore it's global binding. If the value is
5936 forwarded to a C variable, either it's not a Lisp_Object
5937 var, or it's staticpro'd already. */
5938 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5939 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5940 swap_in_global_binding (ptr);
5941 mark_object (blv->where);
5942 mark_object (blv->valcell);
5943 mark_object (blv->defcell);
5944 break;
5945 }
5946 case SYMBOL_FORWARDED:
5947 /* If the value is forwarded to a buffer or keyboard field,
5948 these are marked when we see the corresponding object.
5949 And if it's forwarded to a C variable, either it's not
5950 a Lisp_Object var, or it's staticpro'd already. */
5951 break;
5952 default: emacs_abort ();
5953 }
5954 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5955 MARK_STRING (XSTRING (ptr->name));
5956 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5957
5958 ptr = ptr->next;
5959 if (ptr)
5960 {
5961 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5962 XSETSYMBOL (obj, ptrx);
5963 goto loop;
5964 }
5965 }
5966 break;
5967
5968 case Lisp_Misc:
5969 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5970
5971 if (XMISCANY (obj)->gcmarkbit)
5972 break;
5973
5974 switch (XMISCTYPE (obj))
5975 {
5976 case Lisp_Misc_Marker:
5977 /* DO NOT mark thru the marker's chain.
5978 The buffer's markers chain does not preserve markers from gc;
5979 instead, markers are removed from the chain when freed by gc. */
5980 XMISCANY (obj)->gcmarkbit = 1;
5981 break;
5982
5983 case Lisp_Misc_Save_Value:
5984 XMISCANY (obj)->gcmarkbit = 1;
5985 {
5986 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5987 /* If `area' is nonzero, `data[0].pointer' is the address
5988 of a memory area containing `data[1].integer' potential
5989 Lisp_Objects. */
5990 #if GC_MARK_STACK
5991 if (ptr->area)
5992 {
5993 Lisp_Object *p = ptr->data[0].pointer;
5994 ptrdiff_t nelt;
5995 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5996 mark_maybe_object (*p);
5997 }
5998 else
5999 #endif /* GC_MARK_STACK */
6000 {
6001 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6002 if (ptr->type0 == SAVE_OBJECT)
6003 mark_object (ptr->data[0].object);
6004 if (ptr->type1 == SAVE_OBJECT)
6005 mark_object (ptr->data[1].object);
6006 if (ptr->type2 == SAVE_OBJECT)
6007 mark_object (ptr->data[2].object);
6008 if (ptr->type3 == SAVE_OBJECT)
6009 mark_object (ptr->data[3].object);
6010 }
6011 }
6012 break;
6013
6014 case Lisp_Misc_Overlay:
6015 mark_overlay (XOVERLAY (obj));
6016 break;
6017
6018 default:
6019 emacs_abort ();
6020 }
6021 break;
6022
6023 case Lisp_Cons:
6024 {
6025 register struct Lisp_Cons *ptr = XCONS (obj);
6026 if (CONS_MARKED_P (ptr))
6027 break;
6028 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6029 CONS_MARK (ptr);
6030 /* If the cdr is nil, avoid recursion for the car. */
6031 if (EQ (ptr->u.cdr, Qnil))
6032 {
6033 obj = ptr->car;
6034 cdr_count = 0;
6035 goto loop;
6036 }
6037 mark_object (ptr->car);
6038 obj = ptr->u.cdr;
6039 cdr_count++;
6040 if (cdr_count == mark_object_loop_halt)
6041 emacs_abort ();
6042 goto loop;
6043 }
6044
6045 case Lisp_Float:
6046 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6047 FLOAT_MARK (XFLOAT (obj));
6048 break;
6049
6050 case_Lisp_Int:
6051 break;
6052
6053 default:
6054 emacs_abort ();
6055 }
6056
6057 #undef CHECK_LIVE
6058 #undef CHECK_ALLOCATED
6059 #undef CHECK_ALLOCATED_AND_LIVE
6060 }
6061 /* Mark the Lisp pointers in the terminal objects.
6062 Called by Fgarbage_collect. */
6063
6064 static void
6065 mark_terminals (void)
6066 {
6067 struct terminal *t;
6068 for (t = terminal_list; t; t = t->next_terminal)
6069 {
6070 eassert (t->name != NULL);
6071 #ifdef HAVE_WINDOW_SYSTEM
6072 /* If a terminal object is reachable from a stacpro'ed object,
6073 it might have been marked already. Make sure the image cache
6074 gets marked. */
6075 mark_image_cache (t->image_cache);
6076 #endif /* HAVE_WINDOW_SYSTEM */
6077 if (!VECTOR_MARKED_P (t))
6078 mark_vectorlike ((struct Lisp_Vector *)t);
6079 }
6080 }
6081
6082
6083
6084 /* Value is non-zero if OBJ will survive the current GC because it's
6085 either marked or does not need to be marked to survive. */
6086
6087 bool
6088 survives_gc_p (Lisp_Object obj)
6089 {
6090 bool survives_p;
6091
6092 switch (XTYPE (obj))
6093 {
6094 case_Lisp_Int:
6095 survives_p = 1;
6096 break;
6097
6098 case Lisp_Symbol:
6099 survives_p = XSYMBOL (obj)->gcmarkbit;
6100 break;
6101
6102 case Lisp_Misc:
6103 survives_p = XMISCANY (obj)->gcmarkbit;
6104 break;
6105
6106 case Lisp_String:
6107 survives_p = STRING_MARKED_P (XSTRING (obj));
6108 break;
6109
6110 case Lisp_Vectorlike:
6111 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6112 break;
6113
6114 case Lisp_Cons:
6115 survives_p = CONS_MARKED_P (XCONS (obj));
6116 break;
6117
6118 case Lisp_Float:
6119 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6120 break;
6121
6122 default:
6123 emacs_abort ();
6124 }
6125
6126 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6127 }
6128
6129
6130 \f
6131 /* Sweep: find all structures not marked, and free them. */
6132
6133 static void
6134 gc_sweep (void)
6135 {
6136 /* Remove or mark entries in weak hash tables.
6137 This must be done before any object is unmarked. */
6138 sweep_weak_hash_tables ();
6139
6140 sweep_strings ();
6141 check_string_bytes (!noninteractive);
6142
6143 /* Put all unmarked conses on free list */
6144 {
6145 register struct cons_block *cblk;
6146 struct cons_block **cprev = &cons_block;
6147 register int lim = cons_block_index;
6148 EMACS_INT num_free = 0, num_used = 0;
6149
6150 cons_free_list = 0;
6151
6152 for (cblk = cons_block; cblk; cblk = *cprev)
6153 {
6154 register int i = 0;
6155 int this_free = 0;
6156 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6157
6158 /* Scan the mark bits an int at a time. */
6159 for (i = 0; i < ilim; i++)
6160 {
6161 if (cblk->gcmarkbits[i] == -1)
6162 {
6163 /* Fast path - all cons cells for this int are marked. */
6164 cblk->gcmarkbits[i] = 0;
6165 num_used += BITS_PER_INT;
6166 }
6167 else
6168 {
6169 /* Some cons cells for this int are not marked.
6170 Find which ones, and free them. */
6171 int start, pos, stop;
6172
6173 start = i * BITS_PER_INT;
6174 stop = lim - start;
6175 if (stop > BITS_PER_INT)
6176 stop = BITS_PER_INT;
6177 stop += start;
6178
6179 for (pos = start; pos < stop; pos++)
6180 {
6181 if (!CONS_MARKED_P (&cblk->conses[pos]))
6182 {
6183 this_free++;
6184 cblk->conses[pos].u.chain = cons_free_list;
6185 cons_free_list = &cblk->conses[pos];
6186 #if GC_MARK_STACK
6187 cons_free_list->car = Vdead;
6188 #endif
6189 }
6190 else
6191 {
6192 num_used++;
6193 CONS_UNMARK (&cblk->conses[pos]);
6194 }
6195 }
6196 }
6197 }
6198
6199 lim = CONS_BLOCK_SIZE;
6200 /* If this block contains only free conses and we have already
6201 seen more than two blocks worth of free conses then deallocate
6202 this block. */
6203 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6204 {
6205 *cprev = cblk->next;
6206 /* Unhook from the free list. */
6207 cons_free_list = cblk->conses[0].u.chain;
6208 lisp_align_free (cblk);
6209 }
6210 else
6211 {
6212 num_free += this_free;
6213 cprev = &cblk->next;
6214 }
6215 }
6216 total_conses = num_used;
6217 total_free_conses = num_free;
6218 }
6219
6220 /* Put all unmarked floats on free list */
6221 {
6222 register struct float_block *fblk;
6223 struct float_block **fprev = &float_block;
6224 register int lim = float_block_index;
6225 EMACS_INT num_free = 0, num_used = 0;
6226
6227 float_free_list = 0;
6228
6229 for (fblk = float_block; fblk; fblk = *fprev)
6230 {
6231 register int i;
6232 int this_free = 0;
6233 for (i = 0; i < lim; i++)
6234 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6235 {
6236 this_free++;
6237 fblk->floats[i].u.chain = float_free_list;
6238 float_free_list = &fblk->floats[i];
6239 }
6240 else
6241 {
6242 num_used++;
6243 FLOAT_UNMARK (&fblk->floats[i]);
6244 }
6245 lim = FLOAT_BLOCK_SIZE;
6246 /* If this block contains only free floats and we have already
6247 seen more than two blocks worth of free floats then deallocate
6248 this block. */
6249 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6250 {
6251 *fprev = fblk->next;
6252 /* Unhook from the free list. */
6253 float_free_list = fblk->floats[0].u.chain;
6254 lisp_align_free (fblk);
6255 }
6256 else
6257 {
6258 num_free += this_free;
6259 fprev = &fblk->next;
6260 }
6261 }
6262 total_floats = num_used;
6263 total_free_floats = num_free;
6264 }
6265
6266 /* Put all unmarked intervals on free list */
6267 {
6268 register struct interval_block *iblk;
6269 struct interval_block **iprev = &interval_block;
6270 register int lim = interval_block_index;
6271 EMACS_INT num_free = 0, num_used = 0;
6272
6273 interval_free_list = 0;
6274
6275 for (iblk = interval_block; iblk; iblk = *iprev)
6276 {
6277 register int i;
6278 int this_free = 0;
6279
6280 for (i = 0; i < lim; i++)
6281 {
6282 if (!iblk->intervals[i].gcmarkbit)
6283 {
6284 set_interval_parent (&iblk->intervals[i], interval_free_list);
6285 interval_free_list = &iblk->intervals[i];
6286 this_free++;
6287 }
6288 else
6289 {
6290 num_used++;
6291 iblk->intervals[i].gcmarkbit = 0;
6292 }
6293 }
6294 lim = INTERVAL_BLOCK_SIZE;
6295 /* If this block contains only free intervals and we have already
6296 seen more than two blocks worth of free intervals then
6297 deallocate this block. */
6298 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6299 {
6300 *iprev = iblk->next;
6301 /* Unhook from the free list. */
6302 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6303 lisp_free (iblk);
6304 }
6305 else
6306 {
6307 num_free += this_free;
6308 iprev = &iblk->next;
6309 }
6310 }
6311 total_intervals = num_used;
6312 total_free_intervals = num_free;
6313 }
6314
6315 /* Put all unmarked symbols on free list */
6316 {
6317 register struct symbol_block *sblk;
6318 struct symbol_block **sprev = &symbol_block;
6319 register int lim = symbol_block_index;
6320 EMACS_INT num_free = 0, num_used = 0;
6321
6322 symbol_free_list = NULL;
6323
6324 for (sblk = symbol_block; sblk; sblk = *sprev)
6325 {
6326 int this_free = 0;
6327 union aligned_Lisp_Symbol *sym = sblk->symbols;
6328 union aligned_Lisp_Symbol *end = sym + lim;
6329
6330 for (; sym < end; ++sym)
6331 {
6332 /* Check if the symbol was created during loadup. In such a case
6333 it might be pointed to by pure bytecode which we don't trace,
6334 so we conservatively assume that it is live. */
6335 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6336
6337 if (!sym->s.gcmarkbit && !pure_p)
6338 {
6339 if (sym->s.redirect == SYMBOL_LOCALIZED)
6340 xfree (SYMBOL_BLV (&sym->s));
6341 sym->s.next = symbol_free_list;
6342 symbol_free_list = &sym->s;
6343 #if GC_MARK_STACK
6344 symbol_free_list->function = Vdead;
6345 #endif
6346 ++this_free;
6347 }
6348 else
6349 {
6350 ++num_used;
6351 if (!pure_p)
6352 UNMARK_STRING (XSTRING (sym->s.name));
6353 sym->s.gcmarkbit = 0;
6354 }
6355 }
6356
6357 lim = SYMBOL_BLOCK_SIZE;
6358 /* If this block contains only free symbols and we have already
6359 seen more than two blocks worth of free symbols then deallocate
6360 this block. */
6361 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6362 {
6363 *sprev = sblk->next;
6364 /* Unhook from the free list. */
6365 symbol_free_list = sblk->symbols[0].s.next;
6366 lisp_free (sblk);
6367 }
6368 else
6369 {
6370 num_free += this_free;
6371 sprev = &sblk->next;
6372 }
6373 }
6374 total_symbols = num_used;
6375 total_free_symbols = num_free;
6376 }
6377
6378 /* Put all unmarked misc's on free list.
6379 For a marker, first unchain it from the buffer it points into. */
6380 {
6381 register struct marker_block *mblk;
6382 struct marker_block **mprev = &marker_block;
6383 register int lim = marker_block_index;
6384 EMACS_INT num_free = 0, num_used = 0;
6385
6386 marker_free_list = 0;
6387
6388 for (mblk = marker_block; mblk; mblk = *mprev)
6389 {
6390 register int i;
6391 int this_free = 0;
6392
6393 for (i = 0; i < lim; i++)
6394 {
6395 if (!mblk->markers[i].m.u_any.gcmarkbit)
6396 {
6397 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6398 unchain_marker (&mblk->markers[i].m.u_marker);
6399 /* Set the type of the freed object to Lisp_Misc_Free.
6400 We could leave the type alone, since nobody checks it,
6401 but this might catch bugs faster. */
6402 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6403 mblk->markers[i].m.u_free.chain = marker_free_list;
6404 marker_free_list = &mblk->markers[i].m;
6405 this_free++;
6406 }
6407 else
6408 {
6409 num_used++;
6410 mblk->markers[i].m.u_any.gcmarkbit = 0;
6411 }
6412 }
6413 lim = MARKER_BLOCK_SIZE;
6414 /* If this block contains only free markers and we have already
6415 seen more than two blocks worth of free markers then deallocate
6416 this block. */
6417 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6418 {
6419 *mprev = mblk->next;
6420 /* Unhook from the free list. */
6421 marker_free_list = mblk->markers[0].m.u_free.chain;
6422 lisp_free (mblk);
6423 }
6424 else
6425 {
6426 num_free += this_free;
6427 mprev = &mblk->next;
6428 }
6429 }
6430
6431 total_markers = num_used;
6432 total_free_markers = num_free;
6433 }
6434
6435 /* Free all unmarked buffers */
6436 {
6437 register struct buffer *buffer, **bprev = &all_buffers;
6438
6439 total_buffers = 0;
6440 for (buffer = all_buffers; buffer; buffer = *bprev)
6441 if (!VECTOR_MARKED_P (buffer))
6442 {
6443 *bprev = buffer->next;
6444 lisp_free (buffer);
6445 }
6446 else
6447 {
6448 VECTOR_UNMARK (buffer);
6449 /* Do not use buffer_(set|get)_intervals here. */
6450 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6451 total_buffers++;
6452 bprev = &buffer->next;
6453 }
6454 }
6455
6456 sweep_vectors ();
6457 check_string_bytes (!noninteractive);
6458 }
6459
6460
6461
6462 \f
6463 /* Debugging aids. */
6464
6465 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6466 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6467 This may be helpful in debugging Emacs's memory usage.
6468 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6469 (void)
6470 {
6471 Lisp_Object end;
6472
6473 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6474
6475 return end;
6476 }
6477
6478 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6479 doc: /* Return a list of counters that measure how much consing there has been.
6480 Each of these counters increments for a certain kind of object.
6481 The counters wrap around from the largest positive integer to zero.
6482 Garbage collection does not decrease them.
6483 The elements of the value are as follows:
6484 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6485 All are in units of 1 = one object consed
6486 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6487 objects consed.
6488 MISCS include overlays, markers, and some internal types.
6489 Frames, windows, buffers, and subprocesses count as vectors
6490 (but the contents of a buffer's text do not count here). */)
6491 (void)
6492 {
6493 return listn (CONSTYPE_HEAP, 8,
6494 bounded_number (cons_cells_consed),
6495 bounded_number (floats_consed),
6496 bounded_number (vector_cells_consed),
6497 bounded_number (symbols_consed),
6498 bounded_number (string_chars_consed),
6499 bounded_number (misc_objects_consed),
6500 bounded_number (intervals_consed),
6501 bounded_number (strings_consed));
6502 }
6503
6504 /* Find at most FIND_MAX symbols which have OBJ as their value or
6505 function. This is used in gdbinit's `xwhichsymbols' command. */
6506
6507 Lisp_Object
6508 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6509 {
6510 struct symbol_block *sblk;
6511 ptrdiff_t gc_count = inhibit_garbage_collection ();
6512 Lisp_Object found = Qnil;
6513
6514 if (! DEADP (obj))
6515 {
6516 for (sblk = symbol_block; sblk; sblk = sblk->next)
6517 {
6518 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6519 int bn;
6520
6521 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6522 {
6523 struct Lisp_Symbol *sym = &aligned_sym->s;
6524 Lisp_Object val;
6525 Lisp_Object tem;
6526
6527 if (sblk == symbol_block && bn >= symbol_block_index)
6528 break;
6529
6530 XSETSYMBOL (tem, sym);
6531 val = find_symbol_value (tem);
6532 if (EQ (val, obj)
6533 || EQ (sym->function, obj)
6534 || (!NILP (sym->function)
6535 && COMPILEDP (sym->function)
6536 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6537 || (!NILP (val)
6538 && COMPILEDP (val)
6539 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6540 {
6541 found = Fcons (tem, found);
6542 if (--find_max == 0)
6543 goto out;
6544 }
6545 }
6546 }
6547 }
6548
6549 out:
6550 unbind_to (gc_count, Qnil);
6551 return found;
6552 }
6553
6554 #ifdef ENABLE_CHECKING
6555
6556 bool suppress_checking;
6557
6558 void
6559 die (const char *msg, const char *file, int line)
6560 {
6561 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6562 file, line, msg);
6563 terminate_due_to_signal (SIGABRT, INT_MAX);
6564 }
6565 #endif
6566 \f
6567 /* Initialization. */
6568
6569 void
6570 init_alloc_once (void)
6571 {
6572 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6573 purebeg = PUREBEG;
6574 pure_size = PURESIZE;
6575
6576 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6577 mem_init ();
6578 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6579 #endif
6580
6581 #ifdef DOUG_LEA_MALLOC
6582 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6583 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6584 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6585 #endif
6586 init_strings ();
6587 init_vectors ();
6588
6589 refill_memory_reserve ();
6590 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6591 }
6592
6593 void
6594 init_alloc (void)
6595 {
6596 gcprolist = 0;
6597 byte_stack_list = 0;
6598 #if GC_MARK_STACK
6599 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6600 setjmp_tested_p = longjmps_done = 0;
6601 #endif
6602 #endif
6603 Vgc_elapsed = make_float (0.0);
6604 gcs_done = 0;
6605 }
6606
6607 void
6608 syms_of_alloc (void)
6609 {
6610 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6611 doc: /* Number of bytes of consing between garbage collections.
6612 Garbage collection can happen automatically once this many bytes have been
6613 allocated since the last garbage collection. All data types count.
6614
6615 Garbage collection happens automatically only when `eval' is called.
6616
6617 By binding this temporarily to a large number, you can effectively
6618 prevent garbage collection during a part of the program.
6619 See also `gc-cons-percentage'. */);
6620
6621 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6622 doc: /* Portion of the heap used for allocation.
6623 Garbage collection can happen automatically once this portion of the heap
6624 has been allocated since the last garbage collection.
6625 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6626 Vgc_cons_percentage = make_float (0.1);
6627
6628 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6629 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6630
6631 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6632 doc: /* Number of cons cells that have been consed so far. */);
6633
6634 DEFVAR_INT ("floats-consed", floats_consed,
6635 doc: /* Number of floats that have been consed so far. */);
6636
6637 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6638 doc: /* Number of vector cells that have been consed so far. */);
6639
6640 DEFVAR_INT ("symbols-consed", symbols_consed,
6641 doc: /* Number of symbols that have been consed so far. */);
6642
6643 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6644 doc: /* Number of string characters that have been consed so far. */);
6645
6646 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6647 doc: /* Number of miscellaneous objects that have been consed so far.
6648 These include markers and overlays, plus certain objects not visible
6649 to users. */);
6650
6651 DEFVAR_INT ("intervals-consed", intervals_consed,
6652 doc: /* Number of intervals that have been consed so far. */);
6653
6654 DEFVAR_INT ("strings-consed", strings_consed,
6655 doc: /* Number of strings that have been consed so far. */);
6656
6657 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6658 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6659 This means that certain objects should be allocated in shared (pure) space.
6660 It can also be set to a hash-table, in which case this table is used to
6661 do hash-consing of the objects allocated to pure space. */);
6662
6663 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6664 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6665 garbage_collection_messages = 0;
6666
6667 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6668 doc: /* Hook run after garbage collection has finished. */);
6669 Vpost_gc_hook = Qnil;
6670 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6671
6672 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6673 doc: /* Precomputed `signal' argument for memory-full error. */);
6674 /* We build this in advance because if we wait until we need it, we might
6675 not be able to allocate the memory to hold it. */
6676 Vmemory_signal_data
6677 = listn (CONSTYPE_PURE, 2, Qerror,
6678 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6679
6680 DEFVAR_LISP ("memory-full", Vmemory_full,
6681 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6682 Vmemory_full = Qnil;
6683
6684 DEFSYM (Qconses, "conses");
6685 DEFSYM (Qsymbols, "symbols");
6686 DEFSYM (Qmiscs, "miscs");
6687 DEFSYM (Qstrings, "strings");
6688 DEFSYM (Qvectors, "vectors");
6689 DEFSYM (Qfloats, "floats");
6690 DEFSYM (Qintervals, "intervals");
6691 DEFSYM (Qbuffers, "buffers");
6692 DEFSYM (Qstring_bytes, "string-bytes");
6693 DEFSYM (Qvector_slots, "vector-slots");
6694 DEFSYM (Qheap, "heap");
6695 DEFSYM (Qautomatic_gc, "Automatic GC");
6696
6697 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6698 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6699
6700 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6701 doc: /* Accumulated time elapsed in garbage collections.
6702 The time is in seconds as a floating point value. */);
6703 DEFVAR_INT ("gcs-done", gcs_done,
6704 doc: /* Accumulated number of garbage collections done. */);
6705
6706 defsubr (&Scons);
6707 defsubr (&Slist);
6708 defsubr (&Svector);
6709 defsubr (&Smake_byte_code);
6710 defsubr (&Smake_list);
6711 defsubr (&Smake_vector);
6712 defsubr (&Smake_string);
6713 defsubr (&Smake_bool_vector);
6714 defsubr (&Smake_symbol);
6715 defsubr (&Smake_marker);
6716 defsubr (&Spurecopy);
6717 defsubr (&Sgarbage_collect);
6718 defsubr (&Smemory_limit);
6719 defsubr (&Smemory_use_counts);
6720
6721 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6722 defsubr (&Sgc_status);
6723 #endif
6724 }
6725
6726 /* When compiled with GCC, GDB might say "No enum type named
6727 pvec_type" if we don't have at least one symbol with that type, and
6728 then xbacktrace could fail. Similarly for the other enums and
6729 their values. Some non-GCC compilers don't like these constructs. */
6730 #ifdef __GNUC__
6731 union
6732 {
6733 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6734 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6735 enum char_bits char_bits;
6736 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6737 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6738 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6739 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6740 enum Lisp_Bits Lisp_Bits;
6741 enum Lisp_Compiled Lisp_Compiled;
6742 enum maxargs maxargs;
6743 enum MAX_ALLOCA MAX_ALLOCA;
6744 enum More_Lisp_Bits More_Lisp_Bits;
6745 enum pvec_type pvec_type;
6746 #if USE_LSB_TAG
6747 enum lsb_bits lsb_bits;
6748 #endif
6749 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6750 #endif /* __GNUC__ */