(transpose-subr, transpose-subr-1): Rename variables
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48
49 /* The rest of the file is within this conditional. */
50 #ifdef USE_TEXT_PROPERTIES
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 #define min(x, y) ((x) < (y) ? (x) : (y))
58
59 Lisp_Object merge_properties_sticky ();
60 \f
61 /* Utility functions for intervals. */
62
63
64 /* Create the root interval of some object, a buffer or string. */
65
66 INTERVAL
67 create_root_interval (parent)
68 Lisp_Object parent;
69 {
70 INTERVAL new;
71
72 CHECK_IMPURE (parent);
73
74 new = make_interval ();
75
76 if (BUFFERP (parent))
77 {
78 new->total_length = (BUF_Z (XBUFFER (parent))
79 - BUF_BEG (XBUFFER (parent)));
80 BUF_INTERVALS (XBUFFER (parent)) = new;
81 new->position = 1;
82 }
83 else if (STRINGP (parent))
84 {
85 new->total_length = XSTRING (parent)->size;
86 XSTRING (parent)->intervals = new;
87 new->position = 0;
88 }
89
90 new->parent = (INTERVAL) XFASTINT (parent);
91
92 return new;
93 }
94
95 /* Make the interval TARGET have exactly the properties of SOURCE */
96
97 void
98 copy_properties (source, target)
99 register INTERVAL source, target;
100 {
101 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
102 return;
103
104 COPY_INTERVAL_CACHE (source, target);
105 target->plist = Fcopy_sequence (source->plist);
106 }
107
108 /* Merge the properties of interval SOURCE into the properties
109 of interval TARGET. That is to say, each property in SOURCE
110 is added to TARGET if TARGET has no such property as yet. */
111
112 static void
113 merge_properties (source, target)
114 register INTERVAL source, target;
115 {
116 register Lisp_Object o, sym, val;
117
118 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
119 return;
120
121 MERGE_INTERVAL_CACHE (source, target);
122
123 o = source->plist;
124 while (! EQ (o, Qnil))
125 {
126 sym = Fcar (o);
127 val = Fmemq (sym, target->plist);
128
129 if (NILP (val))
130 {
131 o = Fcdr (o);
132 val = Fcar (o);
133 target->plist = Fcons (sym, Fcons (val, target->plist));
134 o = Fcdr (o);
135 }
136 else
137 o = Fcdr (Fcdr (o));
138 }
139 }
140
141 /* Return 1 if the two intervals have the same properties,
142 0 otherwise. */
143
144 int
145 intervals_equal (i0, i1)
146 INTERVAL i0, i1;
147 {
148 register Lisp_Object i0_cdr, i0_sym, i1_val;
149 register int i1_len;
150
151 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
152 return 1;
153
154 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
155 return 0;
156
157 i1_len = XFASTINT (Flength (i1->plist));
158 if (i1_len & 0x1) /* Paranoia -- plists are always even */
159 abort ();
160 i1_len /= 2;
161 i0_cdr = i0->plist;
162 while (!NILP (i0_cdr))
163 {
164 /* Lengths of the two plists were unequal. */
165 if (i1_len == 0)
166 return 0;
167
168 i0_sym = Fcar (i0_cdr);
169 i1_val = Fmemq (i0_sym, i1->plist);
170
171 /* i0 has something i1 doesn't. */
172 if (EQ (i1_val, Qnil))
173 return 0;
174
175 /* i0 and i1 both have sym, but it has different values in each. */
176 i0_cdr = Fcdr (i0_cdr);
177 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
178 return 0;
179
180 i0_cdr = Fcdr (i0_cdr);
181 i1_len--;
182 }
183
184 /* Lengths of the two plists were unequal. */
185 if (i1_len > 0)
186 return 0;
187
188 return 1;
189 }
190 \f
191 static int icount;
192 static int idepth;
193 static int zero_length;
194
195 /* Traverse an interval tree TREE, performing FUNCTION on each node.
196 Pass FUNCTION two args: an interval, and ARG. */
197
198 void
199 traverse_intervals (tree, position, depth, function, arg)
200 INTERVAL tree;
201 int position, depth;
202 void (* function) P_ ((INTERVAL, Lisp_Object));
203 Lisp_Object arg;
204 {
205 if (NULL_INTERVAL_P (tree))
206 return;
207
208 traverse_intervals (tree->left, position, depth + 1, function, arg);
209 position += LEFT_TOTAL_LENGTH (tree);
210 tree->position = position;
211 (*function) (tree, arg);
212 position += LENGTH (tree);
213 traverse_intervals (tree->right, position, depth + 1, function, arg);
214 }
215 \f
216 #if 0
217 /* These functions are temporary, for debugging purposes only. */
218
219 INTERVAL search_interval, found_interval;
220
221 void
222 check_for_interval (i)
223 register INTERVAL i;
224 {
225 if (i == search_interval)
226 {
227 found_interval = i;
228 icount++;
229 }
230 }
231
232 INTERVAL
233 search_for_interval (i, tree)
234 register INTERVAL i, tree;
235 {
236 icount = 0;
237 search_interval = i;
238 found_interval = NULL_INTERVAL;
239 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
240 return found_interval;
241 }
242
243 static void
244 inc_interval_count (i)
245 INTERVAL i;
246 {
247 icount++;
248 if (LENGTH (i) == 0)
249 zero_length++;
250 if (depth > idepth)
251 idepth = depth;
252 }
253
254 int
255 count_intervals (i)
256 register INTERVAL i;
257 {
258 icount = 0;
259 idepth = 0;
260 zero_length = 0;
261 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
262
263 return icount;
264 }
265
266 static INTERVAL
267 root_interval (interval)
268 INTERVAL interval;
269 {
270 register INTERVAL i = interval;
271
272 while (! ROOT_INTERVAL_P (i))
273 i = i->parent;
274
275 return i;
276 }
277 #endif
278 \f
279 /* Assuming that a left child exists, perform the following operation:
280
281 A B
282 / \ / \
283 B => A
284 / \ / \
285 c c
286 */
287
288 static INTERVAL
289 rotate_right (interval)
290 INTERVAL interval;
291 {
292 INTERVAL i;
293 INTERVAL B = interval->left;
294 int old_total = interval->total_length;
295
296 /* Deal with any Parent of A; make it point to B. */
297 if (! ROOT_INTERVAL_P (interval))
298 if (AM_LEFT_CHILD (interval))
299 interval->parent->left = B;
300 else
301 interval->parent->right = B;
302 B->parent = interval->parent;
303
304 /* Make B the parent of A */
305 i = B->right;
306 B->right = interval;
307 interval->parent = B;
308
309 /* Make A point to c */
310 interval->left = i;
311 if (! NULL_INTERVAL_P (i))
312 i->parent = interval;
313
314 /* A's total length is decreased by the length of B and its left child. */
315 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
316
317 /* B must have the same total length of A. */
318 B->total_length = old_total;
319
320 return B;
321 }
322
323 /* Assuming that a right child exists, perform the following operation:
324
325 A B
326 / \ / \
327 B => A
328 / \ / \
329 c c
330 */
331
332 static INTERVAL
333 rotate_left (interval)
334 INTERVAL interval;
335 {
336 INTERVAL i;
337 INTERVAL B = interval->right;
338 int old_total = interval->total_length;
339
340 /* Deal with any parent of A; make it point to B. */
341 if (! ROOT_INTERVAL_P (interval))
342 if (AM_LEFT_CHILD (interval))
343 interval->parent->left = B;
344 else
345 interval->parent->right = B;
346 B->parent = interval->parent;
347
348 /* Make B the parent of A */
349 i = B->left;
350 B->left = interval;
351 interval->parent = B;
352
353 /* Make A point to c */
354 interval->right = i;
355 if (! NULL_INTERVAL_P (i))
356 i->parent = interval;
357
358 /* A's total length is decreased by the length of B and its right child. */
359 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
360
361 /* B must have the same total length of A. */
362 B->total_length = old_total;
363
364 return B;
365 }
366 \f
367 /* Balance an interval tree with the assumption that the subtrees
368 themselves are already balanced. */
369
370 static INTERVAL
371 balance_an_interval (i)
372 INTERVAL i;
373 {
374 register int old_diff, new_diff;
375
376 while (1)
377 {
378 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
379 if (old_diff > 0)
380 {
381 new_diff = i->total_length - i->left->total_length
382 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
383 if (abs (new_diff) >= old_diff)
384 break;
385 i = rotate_right (i);
386 balance_an_interval (i->right);
387 }
388 else if (old_diff < 0)
389 {
390 new_diff = i->total_length - i->right->total_length
391 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
392 if (abs (new_diff) >= -old_diff)
393 break;
394 i = rotate_left (i);
395 balance_an_interval (i->left);
396 }
397 else
398 break;
399 }
400 return i;
401 }
402
403 /* Balance INTERVAL, potentially stuffing it back into its parent
404 Lisp Object. */
405
406 static INLINE INTERVAL
407 balance_possible_root_interval (interval)
408 register INTERVAL interval;
409 {
410 Lisp_Object parent;
411
412 if (interval->parent == NULL_INTERVAL)
413 return interval;
414
415 XSETFASTINT (parent, (EMACS_INT) interval->parent);
416 interval = balance_an_interval (interval);
417
418 if (BUFFERP (parent))
419 BUF_INTERVALS (XBUFFER (parent)) = interval;
420 else if (STRINGP (parent))
421 XSTRING (parent)->intervals = interval;
422
423 return interval;
424 }
425
426 /* Balance the interval tree TREE. Balancing is by weight
427 (the amount of text). */
428
429 static INTERVAL
430 balance_intervals_internal (tree)
431 register INTERVAL tree;
432 {
433 /* Balance within each side. */
434 if (tree->left)
435 balance_intervals_internal (tree->left);
436 if (tree->right)
437 balance_intervals_internal (tree->right);
438 return balance_an_interval (tree);
439 }
440
441 /* Advertised interface to balance intervals. */
442
443 INTERVAL
444 balance_intervals (tree)
445 INTERVAL tree;
446 {
447 if (tree == NULL_INTERVAL)
448 return NULL_INTERVAL;
449
450 return balance_intervals_internal (tree);
451 }
452 \f
453 /* Split INTERVAL into two pieces, starting the second piece at
454 character position OFFSET (counting from 0), relative to INTERVAL.
455 INTERVAL becomes the left-hand piece, and the right-hand piece
456 (second, lexicographically) is returned.
457
458 The size and position fields of the two intervals are set based upon
459 those of the original interval. The property list of the new interval
460 is reset, thus it is up to the caller to do the right thing with the
461 result.
462
463 Note that this does not change the position of INTERVAL; if it is a root,
464 it is still a root after this operation. */
465
466 INTERVAL
467 split_interval_right (interval, offset)
468 INTERVAL interval;
469 int offset;
470 {
471 INTERVAL new = make_interval ();
472 int position = interval->position;
473 int new_length = LENGTH (interval) - offset;
474
475 new->position = position + offset;
476 new->parent = interval;
477
478 if (NULL_RIGHT_CHILD (interval))
479 {
480 interval->right = new;
481 new->total_length = new_length;
482 }
483 else
484 {
485 /* Insert the new node between INTERVAL and its right child. */
486 new->right = interval->right;
487 interval->right->parent = new;
488 interval->right = new;
489 new->total_length = new_length + new->right->total_length;
490 balance_an_interval (new);
491 }
492
493 balance_possible_root_interval (interval);
494
495 return new;
496 }
497
498 /* Split INTERVAL into two pieces, starting the second piece at
499 character position OFFSET (counting from 0), relative to INTERVAL.
500 INTERVAL becomes the right-hand piece, and the left-hand piece
501 (first, lexicographically) is returned.
502
503 The size and position fields of the two intervals are set based upon
504 those of the original interval. The property list of the new interval
505 is reset, thus it is up to the caller to do the right thing with the
506 result.
507
508 Note that this does not change the position of INTERVAL; if it is a root,
509 it is still a root after this operation. */
510
511 INTERVAL
512 split_interval_left (interval, offset)
513 INTERVAL interval;
514 int offset;
515 {
516 INTERVAL new = make_interval ();
517 int position = interval->position;
518 int new_length = offset;
519
520 new->position = interval->position;
521 interval->position = interval->position + offset;
522 new->parent = interval;
523
524 if (NULL_LEFT_CHILD (interval))
525 {
526 interval->left = new;
527 new->total_length = new_length;
528 }
529 else
530 {
531 /* Insert the new node between INTERVAL and its left child. */
532 new->left = interval->left;
533 new->left->parent = new;
534 interval->left = new;
535 new->total_length = new_length + new->left->total_length;
536 balance_an_interval (new);
537 }
538
539 balance_possible_root_interval (interval);
540
541 return new;
542 }
543 \f
544 /* Return the proper position for the first character
545 described by the interval tree SOURCE.
546 This is 1 if the parent is a buffer,
547 0 if the parent is a string or if there is no parent.
548
549 Don't use this function on an interval which is the child
550 of another interval! */
551
552 int
553 interval_start_pos (source)
554 INTERVAL source;
555 {
556 Lisp_Object parent;
557
558 if (NULL_INTERVAL_P (source))
559 return 0;
560
561 XSETFASTINT (parent, (EMACS_INT) source->parent);
562 if (BUFFERP (parent))
563 return BUF_BEG (XBUFFER (parent));
564 return 0;
565 }
566
567 /* Find the interval containing text position POSITION in the text
568 represented by the interval tree TREE. POSITION is a buffer
569 position (starting from 1) or a string index (starting from 0).
570 If POSITION is at the end of the buffer or string,
571 return the interval containing the last character.
572
573 The `position' field, which is a cache of an interval's position,
574 is updated in the interval found. Other functions (e.g., next_interval)
575 will update this cache based on the result of find_interval. */
576
577 INTERVAL
578 find_interval (tree, position)
579 register INTERVAL tree;
580 register int position;
581 {
582 /* The distance from the left edge of the subtree at TREE
583 to POSITION. */
584 register int relative_position;
585 Lisp_Object parent;
586
587 if (NULL_INTERVAL_P (tree))
588 return NULL_INTERVAL;
589
590 XSETFASTINT (parent, (EMACS_INT) tree->parent);
591 relative_position = position;
592 if (BUFFERP (parent))
593 relative_position -= BUF_BEG (XBUFFER (parent));
594
595 if (relative_position > TOTAL_LENGTH (tree))
596 abort (); /* Paranoia */
597
598 tree = balance_possible_root_interval (tree);
599
600 while (1)
601 {
602 if (relative_position < LEFT_TOTAL_LENGTH (tree))
603 {
604 tree = tree->left;
605 }
606 else if (! NULL_RIGHT_CHILD (tree)
607 && relative_position >= (TOTAL_LENGTH (tree)
608 - RIGHT_TOTAL_LENGTH (tree)))
609 {
610 relative_position -= (TOTAL_LENGTH (tree)
611 - RIGHT_TOTAL_LENGTH (tree));
612 tree = tree->right;
613 }
614 else
615 {
616 tree->position
617 = (position - relative_position /* the left edge of *tree */
618 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
619
620 return tree;
621 }
622 }
623 }
624 \f
625 /* Find the succeeding interval (lexicographically) to INTERVAL.
626 Sets the `position' field based on that of INTERVAL (see
627 find_interval). */
628
629 INTERVAL
630 next_interval (interval)
631 register INTERVAL interval;
632 {
633 register INTERVAL i = interval;
634 register int next_position;
635
636 if (NULL_INTERVAL_P (i))
637 return NULL_INTERVAL;
638 next_position = interval->position + LENGTH (interval);
639
640 if (! NULL_RIGHT_CHILD (i))
641 {
642 i = i->right;
643 while (! NULL_LEFT_CHILD (i))
644 i = i->left;
645
646 i->position = next_position;
647 return i;
648 }
649
650 while (! NULL_PARENT (i))
651 {
652 if (AM_LEFT_CHILD (i))
653 {
654 i = i->parent;
655 i->position = next_position;
656 return i;
657 }
658
659 i = i->parent;
660 }
661
662 return NULL_INTERVAL;
663 }
664
665 /* Find the preceding interval (lexicographically) to INTERVAL.
666 Sets the `position' field based on that of INTERVAL (see
667 find_interval). */
668
669 INTERVAL
670 previous_interval (interval)
671 register INTERVAL interval;
672 {
673 register INTERVAL i;
674 register int position_of_previous;
675
676 if (NULL_INTERVAL_P (interval))
677 return NULL_INTERVAL;
678
679 if (! NULL_LEFT_CHILD (interval))
680 {
681 i = interval->left;
682 while (! NULL_RIGHT_CHILD (i))
683 i = i->right;
684
685 i->position = interval->position - LENGTH (i);
686 return i;
687 }
688
689 i = interval;
690 while (! NULL_PARENT (i))
691 {
692 if (AM_RIGHT_CHILD (i))
693 {
694 i = i->parent;
695
696 i->position = interval->position - LENGTH (i);
697 return i;
698 }
699 i = i->parent;
700 }
701
702 return NULL_INTERVAL;
703 }
704
705 /* Find the interval containing POS given some non-NULL INTERVAL
706 in the same tree. Note that we need to update interval->position
707 if we go down the tree. */
708 INTERVAL
709 update_interval (i, pos)
710 register INTERVAL i;
711 int pos;
712 {
713 if (NULL_INTERVAL_P (i))
714 return NULL_INTERVAL;
715
716 while (1)
717 {
718 if (pos < i->position)
719 {
720 /* Move left. */
721 if (pos >= i->position - TOTAL_LENGTH (i->left))
722 {
723 i->left->position = i->position - TOTAL_LENGTH (i->left)
724 + LEFT_TOTAL_LENGTH (i->left);
725 i = i->left; /* Move to the left child */
726 }
727 else if (NULL_PARENT (i))
728 error ("Point before start of properties");
729 else
730 i = i->parent;
731 continue;
732 }
733 else if (pos >= INTERVAL_LAST_POS (i))
734 {
735 /* Move right. */
736 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
737 {
738 i->right->position = INTERVAL_LAST_POS (i) +
739 LEFT_TOTAL_LENGTH (i->right);
740 i = i->right; /* Move to the right child */
741 }
742 else if (NULL_PARENT (i))
743 error ("Point after end of properties");
744 else
745 i = i->parent;
746 continue;
747 }
748 else
749 return i;
750 }
751 }
752
753 \f
754 #if 0
755 /* Traverse a path down the interval tree TREE to the interval
756 containing POSITION, adjusting all nodes on the path for
757 an addition of LENGTH characters. Insertion between two intervals
758 (i.e., point == i->position, where i is second interval) means
759 text goes into second interval.
760
761 Modifications are needed to handle the hungry bits -- after simply
762 finding the interval at position (don't add length going down),
763 if it's the beginning of the interval, get the previous interval
764 and check the hungry bits of both. Then add the length going back up
765 to the root. */
766
767 static INTERVAL
768 adjust_intervals_for_insertion (tree, position, length)
769 INTERVAL tree;
770 int position, length;
771 {
772 register int relative_position;
773 register INTERVAL this;
774
775 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
776 abort ();
777
778 /* If inserting at point-max of a buffer, that position
779 will be out of range */
780 if (position > TOTAL_LENGTH (tree))
781 position = TOTAL_LENGTH (tree);
782 relative_position = position;
783 this = tree;
784
785 while (1)
786 {
787 if (relative_position <= LEFT_TOTAL_LENGTH (this))
788 {
789 this->total_length += length;
790 this = this->left;
791 }
792 else if (relative_position > (TOTAL_LENGTH (this)
793 - RIGHT_TOTAL_LENGTH (this)))
794 {
795 relative_position -= (TOTAL_LENGTH (this)
796 - RIGHT_TOTAL_LENGTH (this));
797 this->total_length += length;
798 this = this->right;
799 }
800 else
801 {
802 /* If we are to use zero-length intervals as buffer pointers,
803 then this code will have to change. */
804 this->total_length += length;
805 this->position = LEFT_TOTAL_LENGTH (this)
806 + position - relative_position + 1;
807 return tree;
808 }
809 }
810 }
811 #endif
812
813 /* Effect an adjustment corresponding to the addition of LENGTH characters
814 of text. Do this by finding the interval containing POSITION in the
815 interval tree TREE, and then adjusting all of its ancestors by adding
816 LENGTH to them.
817
818 If POSITION is the first character of an interval, meaning that point
819 is actually between the two intervals, make the new text belong to
820 the interval which is "sticky".
821
822 If both intervals are "sticky", then make them belong to the left-most
823 interval. Another possibility would be to create a new interval for
824 this text, and make it have the merged properties of both ends. */
825
826 static INTERVAL
827 adjust_intervals_for_insertion (tree, position, length)
828 INTERVAL tree;
829 int position, length;
830 {
831 register INTERVAL i;
832 register INTERVAL temp;
833 int eobp = 0;
834 Lisp_Object parent;
835 int offset;
836
837 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
838 abort ();
839
840 XSETFASTINT (parent, (EMACS_INT) tree->parent);
841 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
842
843 /* If inserting at point-max of a buffer, that position will be out
844 of range. Remember that buffer positions are 1-based. */
845 if (position >= TOTAL_LENGTH (tree) + offset)
846 {
847 position = TOTAL_LENGTH (tree) + offset;
848 eobp = 1;
849 }
850
851 i = find_interval (tree, position);
852
853 /* If in middle of an interval which is not sticky either way,
854 we must not just give its properties to the insertion.
855 So split this interval at the insertion point. */
856 if (! (position == i->position || eobp)
857 && END_NONSTICKY_P (i)
858 && FRONT_NONSTICKY_P (i))
859 {
860 Lisp_Object tail;
861 Lisp_Object front, rear;
862
863 front = textget (i->plist, Qfront_sticky);
864 rear = textget (i->plist, Qrear_nonsticky);
865
866 /* Does any actual property pose an actual problem? */
867 for (tail = i->plist; ! NILP (tail); tail = Fcdr (Fcdr (tail)))
868 {
869 Lisp_Object prop;
870 prop = XCONS (tail)->car;
871
872 /* Is this particular property rear-sticky?
873 Note, if REAR isn't a cons, it must be non-nil,
874 which means that all properties are rear-nonsticky. */
875 if (CONSP (rear) && NILP (Fmemq (prop, rear)))
876 continue;
877
878 /* Is this particular property front-sticky?
879 Note, if FRONT isn't a cons, it must be nil,
880 which means that all properties are front-nonsticky. */
881 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
882 continue;
883
884 /* PROP isn't sticky on either side => it is a real problem. */
885 break;
886 }
887
888 /* If any property is a real problem, split the interval. */
889 if (! NILP (tail))
890 {
891 temp = split_interval_right (i, position - i->position);
892 copy_properties (i, temp);
893 i = temp;
894 }
895 }
896
897 /* If we are positioned between intervals, check the stickiness of
898 both of them. We have to do this too, if we are at BEG or Z. */
899 if (position == i->position || eobp)
900 {
901 register INTERVAL prev;
902
903 if (position == BEG)
904 prev = 0;
905 else if (eobp)
906 {
907 prev = i;
908 i = 0;
909 }
910 else
911 prev = previous_interval (i);
912
913 /* Even if we are positioned between intervals, we default
914 to the left one if it exists. We extend it now and split
915 off a part later, if stickiness demands it. */
916 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
917 {
918 temp->total_length += length;
919 temp = balance_possible_root_interval (temp);
920 }
921
922 /* If at least one interval has sticky properties,
923 we check the stickiness property by property. */
924 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
925 {
926 Lisp_Object pleft, pright;
927 struct interval newi;
928
929 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
930 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
931 newi.plist = merge_properties_sticky (pleft, pright);
932
933 if (! prev) /* i.e. position == BEG */
934 {
935 if (! intervals_equal (i, &newi))
936 {
937 i = split_interval_left (i, length);
938 i->plist = newi.plist;
939 }
940 }
941 else if (! intervals_equal (prev, &newi))
942 {
943 prev = split_interval_right (prev,
944 position - prev->position);
945 prev->plist = newi.plist;
946 if (! NULL_INTERVAL_P (i)
947 && intervals_equal (prev, i))
948 merge_interval_right (prev);
949 }
950
951 /* We will need to update the cache here later. */
952 }
953 else if (! prev && ! NILP (i->plist))
954 {
955 /* Just split off a new interval at the left.
956 Since I wasn't front-sticky, the empty plist is ok. */
957 i = split_interval_left (i, length);
958 }
959 }
960
961 /* Otherwise just extend the interval. */
962 else
963 {
964 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
965 {
966 temp->total_length += length;
967 temp = balance_possible_root_interval (temp);
968 }
969 }
970
971 return tree;
972 }
973
974 /* Any property might be front-sticky on the left, rear-sticky on the left,
975 front-sticky on the right, or rear-sticky on the right; the 16 combinations
976 can be arranged in a matrix with rows denoting the left conditions and
977 columns denoting the right conditions:
978 _ __ _
979 _ FR FR FR FR
980 FR__ 0 1 2 3
981 _FR 4 5 6 7
982 FR 8 9 A B
983 FR C D E F
984
985 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
986 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
987 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
988 p8 L p9 L pa L pb L pc L pd L pe L pf L)
989 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
990 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
991 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
992 p8 R p9 R pa R pb R pc R pd R pe R pf R)
993
994 We inherit from whoever has a sticky side facing us. If both sides
995 do (cases 2, 3, E, and F), then we inherit from whichever side has a
996 non-nil value for the current property. If both sides do, then we take
997 from the left.
998
999 When we inherit a property, we get its stickiness as well as its value.
1000 So, when we merge the above two lists, we expect to get this:
1001
1002 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1003 rear-nonsticky (p6 pa)
1004 p0 L p1 L p2 L p3 L p6 R p7 R
1005 pa R pb R pc L pd L pe L pf L)
1006
1007 The optimizable special cases are:
1008 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1009 left rear-nonsticky = t, right front-sticky = t (inherit right)
1010 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1011 */
1012
1013 Lisp_Object
1014 merge_properties_sticky (pleft, pright)
1015 Lisp_Object pleft, pright;
1016 {
1017 register Lisp_Object props, front, rear;
1018 Lisp_Object lfront, lrear, rfront, rrear;
1019 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1020 int use_left, use_right;
1021 int lpresent;
1022
1023 props = Qnil;
1024 front = Qnil;
1025 rear = Qnil;
1026 lfront = textget (pleft, Qfront_sticky);
1027 lrear = textget (pleft, Qrear_nonsticky);
1028 rfront = textget (pright, Qfront_sticky);
1029 rrear = textget (pright, Qrear_nonsticky);
1030
1031 /* Go through each element of PRIGHT. */
1032 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1033 {
1034 sym = Fcar (tail1);
1035
1036 /* Sticky properties get special treatment. */
1037 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1038 continue;
1039
1040 rval = Fcar (Fcdr (tail1));
1041 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1042 if (EQ (sym, Fcar (tail2)))
1043 break;
1044
1045 /* Indicate whether the property is explicitly defined on the left.
1046 (We know it is defined explicitly on the right
1047 because otherwise we don't get here.) */
1048 lpresent = ! NILP (tail2);
1049 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1050
1051 use_left = ! TMEM (sym, lrear) && lpresent;
1052 use_right = TMEM (sym, rfront);
1053 if (use_left && use_right)
1054 {
1055 if (NILP (lval))
1056 use_left = 0;
1057 else if (NILP (rval))
1058 use_right = 0;
1059 }
1060 if (use_left)
1061 {
1062 /* We build props as (value sym ...) rather than (sym value ...)
1063 because we plan to nreverse it when we're done. */
1064 props = Fcons (lval, Fcons (sym, props));
1065 if (TMEM (sym, lfront))
1066 front = Fcons (sym, front);
1067 if (TMEM (sym, lrear))
1068 rear = Fcons (sym, rear);
1069 }
1070 else if (use_right)
1071 {
1072 props = Fcons (rval, Fcons (sym, props));
1073 if (TMEM (sym, rfront))
1074 front = Fcons (sym, front);
1075 if (TMEM (sym, rrear))
1076 rear = Fcons (sym, rear);
1077 }
1078 }
1079
1080 /* Now go through each element of PLEFT. */
1081 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1082 {
1083 sym = Fcar (tail2);
1084
1085 /* Sticky properties get special treatment. */
1086 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1087 continue;
1088
1089 /* If sym is in PRIGHT, we've already considered it. */
1090 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1091 if (EQ (sym, Fcar (tail1)))
1092 break;
1093 if (! NILP (tail1))
1094 continue;
1095
1096 lval = Fcar (Fcdr (tail2));
1097
1098 /* Since rval is known to be nil in this loop, the test simplifies. */
1099 if (! TMEM (sym, lrear))
1100 {
1101 props = Fcons (lval, Fcons (sym, props));
1102 if (TMEM (sym, lfront))
1103 front = Fcons (sym, front);
1104 }
1105 else if (TMEM (sym, rfront))
1106 {
1107 /* The value is nil, but we still inherit the stickiness
1108 from the right. */
1109 front = Fcons (sym, front);
1110 if (TMEM (sym, rrear))
1111 rear = Fcons (sym, rear);
1112 }
1113 }
1114 props = Fnreverse (props);
1115 if (! NILP (rear))
1116 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1117
1118 cat = textget (props, Qcategory);
1119 if (! NILP (front)
1120 &&
1121 /* If we have inherited a front-stick category property that is t,
1122 we don't need to set up a detailed one. */
1123 ! (! NILP (cat) && SYMBOLP (cat)
1124 && EQ (Fget (cat, Qfront_sticky), Qt)))
1125 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1126 return props;
1127 }
1128
1129 \f
1130 /* Delete an node I from its interval tree by merging its subtrees
1131 into one subtree which is then returned. Caller is responsible for
1132 storing the resulting subtree into its parent. */
1133
1134 static INTERVAL
1135 delete_node (i)
1136 register INTERVAL i;
1137 {
1138 register INTERVAL migrate, this;
1139 register int migrate_amt;
1140
1141 if (NULL_INTERVAL_P (i->left))
1142 return i->right;
1143 if (NULL_INTERVAL_P (i->right))
1144 return i->left;
1145
1146 migrate = i->left;
1147 migrate_amt = i->left->total_length;
1148 this = i->right;
1149 this->total_length += migrate_amt;
1150 while (! NULL_INTERVAL_P (this->left))
1151 {
1152 this = this->left;
1153 this->total_length += migrate_amt;
1154 }
1155 this->left = migrate;
1156 migrate->parent = this;
1157
1158 return i->right;
1159 }
1160
1161 /* Delete interval I from its tree by calling `delete_node'
1162 and properly connecting the resultant subtree.
1163
1164 I is presumed to be empty; that is, no adjustments are made
1165 for the length of I. */
1166
1167 void
1168 delete_interval (i)
1169 register INTERVAL i;
1170 {
1171 register INTERVAL parent;
1172 int amt = LENGTH (i);
1173
1174 if (amt > 0) /* Only used on zero-length intervals now. */
1175 abort ();
1176
1177 if (ROOT_INTERVAL_P (i))
1178 {
1179 Lisp_Object owner;
1180 XSETFASTINT (owner, (EMACS_INT) i->parent);
1181 parent = delete_node (i);
1182 if (! NULL_INTERVAL_P (parent))
1183 parent->parent = (INTERVAL) XFASTINT (owner);
1184
1185 if (BUFFERP (owner))
1186 BUF_INTERVALS (XBUFFER (owner)) = parent;
1187 else if (STRINGP (owner))
1188 XSTRING (owner)->intervals = parent;
1189 else
1190 abort ();
1191
1192 return;
1193 }
1194
1195 parent = i->parent;
1196 if (AM_LEFT_CHILD (i))
1197 {
1198 parent->left = delete_node (i);
1199 if (! NULL_INTERVAL_P (parent->left))
1200 parent->left->parent = parent;
1201 }
1202 else
1203 {
1204 parent->right = delete_node (i);
1205 if (! NULL_INTERVAL_P (parent->right))
1206 parent->right->parent = parent;
1207 }
1208 }
1209 \f
1210 /* Find the interval in TREE corresponding to the relative position
1211 FROM and delete as much as possible of AMOUNT from that interval.
1212 Return the amount actually deleted, and if the interval was
1213 zeroed-out, delete that interval node from the tree.
1214
1215 Note that FROM is actually origin zero, aka relative to the
1216 leftmost edge of tree. This is appropriate since we call ourselves
1217 recursively on subtrees.
1218
1219 Do this by recursing down TREE to the interval in question, and
1220 deleting the appropriate amount of text. */
1221
1222 static int
1223 interval_deletion_adjustment (tree, from, amount)
1224 register INTERVAL tree;
1225 register int from, amount;
1226 {
1227 register int relative_position = from;
1228
1229 if (NULL_INTERVAL_P (tree))
1230 return 0;
1231
1232 /* Left branch */
1233 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1234 {
1235 int subtract = interval_deletion_adjustment (tree->left,
1236 relative_position,
1237 amount);
1238 tree->total_length -= subtract;
1239 return subtract;
1240 }
1241 /* Right branch */
1242 else if (relative_position >= (TOTAL_LENGTH (tree)
1243 - RIGHT_TOTAL_LENGTH (tree)))
1244 {
1245 int subtract;
1246
1247 relative_position -= (tree->total_length
1248 - RIGHT_TOTAL_LENGTH (tree));
1249 subtract = interval_deletion_adjustment (tree->right,
1250 relative_position,
1251 amount);
1252 tree->total_length -= subtract;
1253 return subtract;
1254 }
1255 /* Here -- this node. */
1256 else
1257 {
1258 /* How much can we delete from this interval? */
1259 int my_amount = ((tree->total_length
1260 - RIGHT_TOTAL_LENGTH (tree))
1261 - relative_position);
1262
1263 if (amount > my_amount)
1264 amount = my_amount;
1265
1266 tree->total_length -= amount;
1267 if (LENGTH (tree) == 0)
1268 delete_interval (tree);
1269
1270 return amount;
1271 }
1272
1273 /* Never reach here. */
1274 }
1275
1276 /* Effect the adjustments necessary to the interval tree of BUFFER to
1277 correspond to the deletion of LENGTH characters from that buffer
1278 text. The deletion is effected at position START (which is a
1279 buffer position, i.e. origin 1). */
1280
1281 static void
1282 adjust_intervals_for_deletion (buffer, start, length)
1283 struct buffer *buffer;
1284 int start, length;
1285 {
1286 register int left_to_delete = length;
1287 register INTERVAL tree = BUF_INTERVALS (buffer);
1288 register int deleted;
1289 Lisp_Object parent;
1290 int offset;
1291
1292 XSETFASTINT (parent, (EMACS_INT) tree->parent);
1293 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1294
1295 if (NULL_INTERVAL_P (tree))
1296 return;
1297
1298 if (start > offset + TOTAL_LENGTH (tree)
1299 || start + length > offset + TOTAL_LENGTH (tree))
1300 abort ();
1301
1302 if (length == TOTAL_LENGTH (tree))
1303 {
1304 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1305 return;
1306 }
1307
1308 if (ONLY_INTERVAL_P (tree))
1309 {
1310 tree->total_length -= length;
1311 return;
1312 }
1313
1314 if (start > offset + TOTAL_LENGTH (tree))
1315 start = offset + TOTAL_LENGTH (tree);
1316 while (left_to_delete > 0)
1317 {
1318 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1319 left_to_delete);
1320 tree = BUF_INTERVALS (buffer);
1321 if (left_to_delete == tree->total_length)
1322 {
1323 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1324 return;
1325 }
1326 }
1327 }
1328 \f
1329 /* Make the adjustments necessary to the interval tree of BUFFER to
1330 represent an addition or deletion of LENGTH characters starting
1331 at position START. Addition or deletion is indicated by the sign
1332 of LENGTH. */
1333
1334 INLINE void
1335 offset_intervals (buffer, start, length)
1336 struct buffer *buffer;
1337 int start, length;
1338 {
1339 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1340 return;
1341
1342 if (length > 0)
1343 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1344 else
1345 adjust_intervals_for_deletion (buffer, start, -length);
1346 }
1347 \f
1348 /* Merge interval I with its lexicographic successor. The resulting
1349 interval is returned, and has the properties of the original
1350 successor. The properties of I are lost. I is removed from the
1351 interval tree.
1352
1353 IMPORTANT:
1354 The caller must verify that this is not the last (rightmost)
1355 interval. */
1356
1357 INTERVAL
1358 merge_interval_right (i)
1359 register INTERVAL i;
1360 {
1361 register int absorb = LENGTH (i);
1362 register INTERVAL successor;
1363
1364 /* Zero out this interval. */
1365 i->total_length -= absorb;
1366
1367 /* Find the succeeding interval. */
1368 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1369 as we descend. */
1370 {
1371 successor = i->right;
1372 while (! NULL_LEFT_CHILD (successor))
1373 {
1374 successor->total_length += absorb;
1375 successor = successor->left;
1376 }
1377
1378 successor->total_length += absorb;
1379 delete_interval (i);
1380 return successor;
1381 }
1382
1383 successor = i;
1384 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1385 we ascend. */
1386 {
1387 if (AM_LEFT_CHILD (successor))
1388 {
1389 successor = successor->parent;
1390 delete_interval (i);
1391 return successor;
1392 }
1393
1394 successor = successor->parent;
1395 successor->total_length -= absorb;
1396 }
1397
1398 /* This must be the rightmost or last interval and cannot
1399 be merged right. The caller should have known. */
1400 abort ();
1401 }
1402 \f
1403 /* Merge interval I with its lexicographic predecessor. The resulting
1404 interval is returned, and has the properties of the original predecessor.
1405 The properties of I are lost. Interval node I is removed from the tree.
1406
1407 IMPORTANT:
1408 The caller must verify that this is not the first (leftmost) interval. */
1409
1410 INTERVAL
1411 merge_interval_left (i)
1412 register INTERVAL i;
1413 {
1414 register int absorb = LENGTH (i);
1415 register INTERVAL predecessor;
1416
1417 /* Zero out this interval. */
1418 i->total_length -= absorb;
1419
1420 /* Find the preceding interval. */
1421 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1422 adding ABSORB as we go. */
1423 {
1424 predecessor = i->left;
1425 while (! NULL_RIGHT_CHILD (predecessor))
1426 {
1427 predecessor->total_length += absorb;
1428 predecessor = predecessor->right;
1429 }
1430
1431 predecessor->total_length += absorb;
1432 delete_interval (i);
1433 return predecessor;
1434 }
1435
1436 predecessor = i;
1437 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1438 subtracting ABSORB. */
1439 {
1440 if (AM_RIGHT_CHILD (predecessor))
1441 {
1442 predecessor = predecessor->parent;
1443 delete_interval (i);
1444 return predecessor;
1445 }
1446
1447 predecessor = predecessor->parent;
1448 predecessor->total_length -= absorb;
1449 }
1450
1451 /* This must be the leftmost or first interval and cannot
1452 be merged left. The caller should have known. */
1453 abort ();
1454 }
1455 \f
1456 /* Make an exact copy of interval tree SOURCE which descends from
1457 PARENT. This is done by recursing through SOURCE, copying
1458 the current interval and its properties, and then adjusting
1459 the pointers of the copy. */
1460
1461 static INTERVAL
1462 reproduce_tree (source, parent)
1463 INTERVAL source, parent;
1464 {
1465 register INTERVAL t = make_interval ();
1466
1467 bcopy (source, t, INTERVAL_SIZE);
1468 copy_properties (source, t);
1469 t->parent = parent;
1470 if (! NULL_LEFT_CHILD (source))
1471 t->left = reproduce_tree (source->left, t);
1472 if (! NULL_RIGHT_CHILD (source))
1473 t->right = reproduce_tree (source->right, t);
1474
1475 return t;
1476 }
1477
1478 #if 0
1479 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1480
1481 /* Make a new interval of length LENGTH starting at START in the
1482 group of intervals INTERVALS, which is actually an interval tree.
1483 Returns the new interval.
1484
1485 Generate an error if the new positions would overlap an existing
1486 interval. */
1487
1488 static INTERVAL
1489 make_new_interval (intervals, start, length)
1490 INTERVAL intervals;
1491 int start, length;
1492 {
1493 INTERVAL slot;
1494
1495 slot = find_interval (intervals, start);
1496 if (start + length > slot->position + LENGTH (slot))
1497 error ("Interval would overlap");
1498
1499 if (start == slot->position && length == LENGTH (slot))
1500 return slot;
1501
1502 if (slot->position == start)
1503 {
1504 /* New right node. */
1505 split_interval_right (slot, length);
1506 return slot;
1507 }
1508
1509 if (slot->position + LENGTH (slot) == start + length)
1510 {
1511 /* New left node. */
1512 split_interval_left (slot, LENGTH (slot) - length);
1513 return slot;
1514 }
1515
1516 /* Convert interval SLOT into three intervals. */
1517 split_interval_left (slot, start - slot->position);
1518 split_interval_right (slot, length);
1519 return slot;
1520 }
1521 #endif
1522 \f
1523 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1524 LENGTH is the length of the text in SOURCE.
1525
1526 The `position' field of the SOURCE intervals is assumed to be
1527 consistent with its parent; therefore, SOURCE must be an
1528 interval tree made with copy_interval or must be the whole
1529 tree of a buffer or a string.
1530
1531 This is used in insdel.c when inserting Lisp_Strings into the
1532 buffer. The text corresponding to SOURCE is already in the buffer
1533 when this is called. The intervals of new tree are a copy of those
1534 belonging to the string being inserted; intervals are never
1535 shared.
1536
1537 If the inserted text had no intervals associated, and we don't
1538 want to inherit the surrounding text's properties, this function
1539 simply returns -- offset_intervals should handle placing the
1540 text in the correct interval, depending on the sticky bits.
1541
1542 If the inserted text had properties (intervals), then there are two
1543 cases -- either insertion happened in the middle of some interval,
1544 or between two intervals.
1545
1546 If the text goes into the middle of an interval, then new
1547 intervals are created in the middle with only the properties of
1548 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1549 which case the new text has the union of its properties and those
1550 of the text into which it was inserted.
1551
1552 If the text goes between two intervals, then if neither interval
1553 had its appropriate sticky property set (front_sticky, rear_sticky),
1554 the new text has only its properties. If one of the sticky properties
1555 is set, then the new text "sticks" to that region and its properties
1556 depend on merging as above. If both the preceding and succeeding
1557 intervals to the new text are "sticky", then the new text retains
1558 only its properties, as if neither sticky property were set. Perhaps
1559 we should consider merging all three sets of properties onto the new
1560 text... */
1561
1562 void
1563 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1564 INTERVAL source;
1565 int position, length;
1566 struct buffer *buffer;
1567 int inherit;
1568 {
1569 register INTERVAL under, over, this, prev;
1570 register INTERVAL tree;
1571 int middle;
1572
1573 tree = BUF_INTERVALS (buffer);
1574
1575 /* If the new text has no properties, it becomes part of whatever
1576 interval it was inserted into. */
1577 if (NULL_INTERVAL_P (source))
1578 {
1579 Lisp_Object buf;
1580 if (!inherit && ! NULL_INTERVAL_P (tree))
1581 {
1582 XSETBUFFER (buf, buffer);
1583 Fset_text_properties (make_number (position),
1584 make_number (position + length),
1585 Qnil, buf);
1586 }
1587 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1588 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1589 return;
1590 }
1591
1592 if (NULL_INTERVAL_P (tree))
1593 {
1594 /* The inserted text constitutes the whole buffer, so
1595 simply copy over the interval structure. */
1596 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1597 {
1598 Lisp_Object buf;
1599 XSETBUFFER (buf, buffer);
1600 BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
1601 BUF_INTERVALS (buffer)->position = 1;
1602
1603 /* Explicitly free the old tree here? */
1604
1605 return;
1606 }
1607
1608 /* Create an interval tree in which to place a copy
1609 of the intervals of the inserted string. */
1610 {
1611 Lisp_Object buf;
1612 XSETBUFFER (buf, buffer);
1613 tree = create_root_interval (buf);
1614 }
1615 }
1616 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1617 /* If the buffer contains only the new string, but
1618 there was already some interval tree there, then it may be
1619 some zero length intervals. Eventually, do something clever
1620 about inserting properly. For now, just waste the old intervals. */
1621 {
1622 BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
1623 BUF_INTERVALS (buffer)->position = 1;
1624 /* Explicitly free the old tree here. */
1625
1626 return;
1627 }
1628 /* Paranoia -- the text has already been added, so this buffer
1629 should be of non-zero length. */
1630 else if (TOTAL_LENGTH (tree) == 0)
1631 abort ();
1632
1633 this = under = find_interval (tree, position);
1634 if (NULL_INTERVAL_P (under)) /* Paranoia */
1635 abort ();
1636 over = find_interval (source, interval_start_pos (source));
1637
1638 /* Here for insertion in the middle of an interval.
1639 Split off an equivalent interval to the right,
1640 then don't bother with it any more. */
1641
1642 if (position > under->position)
1643 {
1644 INTERVAL end_unchanged
1645 = split_interval_left (this, position - under->position);
1646 copy_properties (under, end_unchanged);
1647 under->position = position;
1648 prev = 0;
1649 middle = 1;
1650 }
1651 else
1652 {
1653 prev = previous_interval (under);
1654 if (prev && !END_NONSTICKY_P (prev))
1655 prev = 0;
1656 }
1657
1658 /* Insertion is now at beginning of UNDER. */
1659
1660 /* The inserted text "sticks" to the interval `under',
1661 which means it gets those properties.
1662 The properties of under are the result of
1663 adjust_intervals_for_insertion, so stickiness has
1664 already been taken care of. */
1665
1666 while (! NULL_INTERVAL_P (over))
1667 {
1668 if (LENGTH (over) < LENGTH (under))
1669 {
1670 this = split_interval_left (under, LENGTH (over));
1671 copy_properties (under, this);
1672 }
1673 else
1674 this = under;
1675 copy_properties (over, this);
1676 if (inherit)
1677 merge_properties (over, this);
1678 else
1679 copy_properties (over, this);
1680 over = next_interval (over);
1681 }
1682
1683 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1684 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1685 return;
1686 }
1687
1688 /* Get the value of property PROP from PLIST,
1689 which is the plist of an interval.
1690 We check for direct properties, for categories with property PROP,
1691 and for PROP appearing on the default-text-properties list. */
1692
1693 Lisp_Object
1694 textget (plist, prop)
1695 Lisp_Object plist;
1696 register Lisp_Object prop;
1697 {
1698 register Lisp_Object tail, fallback;
1699 fallback = Qnil;
1700
1701 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1702 {
1703 register Lisp_Object tem;
1704 tem = Fcar (tail);
1705 if (EQ (prop, tem))
1706 return Fcar (Fcdr (tail));
1707 if (EQ (tem, Qcategory))
1708 {
1709 tem = Fcar (Fcdr (tail));
1710 if (SYMBOLP (tem))
1711 fallback = Fget (tem, prop);
1712 }
1713 }
1714
1715 if (! NILP (fallback))
1716 return fallback;
1717 if (CONSP (Vdefault_text_properties))
1718 return Fplist_get (Vdefault_text_properties, prop);
1719 return Qnil;
1720 }
1721
1722 \f
1723 /* Set point "temporarily", without checking any text properties. */
1724
1725 INLINE void
1726 temp_set_point (buffer, charpos)
1727 struct buffer *buffer;
1728 int charpos;
1729 {
1730 temp_set_point_both (buffer, charpos,
1731 buf_charpos_to_bytepos (buffer, charpos));
1732 }
1733
1734 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1735 byte position BYTEPOS. */
1736
1737 INLINE void
1738 temp_set_point_both (buffer, charpos, bytepos)
1739 int charpos, bytepos;
1740 struct buffer *buffer;
1741 {
1742 /* In a single-byte buffer, the two positions must be equal. */
1743 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1744 && charpos != bytepos)
1745 abort ();
1746
1747 if (charpos > bytepos)
1748 abort ();
1749
1750 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1751 abort ();
1752
1753 BUF_PT_BYTE (buffer) = bytepos;
1754 BUF_PT (buffer) = charpos;
1755 }
1756
1757 /* Set point in BUFFER to CHARPOS. If the target position is
1758 before an intangible character, move to an ok place. */
1759
1760 void
1761 set_point (buffer, charpos)
1762 register struct buffer *buffer;
1763 register int charpos;
1764 {
1765 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1766 }
1767
1768 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1769 position BYTEPOS. If the target position is
1770 before an intangible character, move to an ok place. */
1771
1772 void
1773 set_point_both (buffer, charpos, bytepos)
1774 register struct buffer *buffer;
1775 register int charpos, bytepos;
1776 {
1777 register INTERVAL to, from, toprev, fromprev, target;
1778 int buffer_point;
1779 register Lisp_Object obj;
1780 int old_position = BUF_PT (buffer);
1781 int backwards = (charpos < old_position ? 1 : 0);
1782 int have_overlays;
1783 int original_position;
1784
1785 buffer->point_before_scroll = Qnil;
1786
1787 if (charpos == BUF_PT (buffer))
1788 return;
1789
1790 /* In a single-byte buffer, the two positions must be equal. */
1791 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1792 && charpos != bytepos)
1793 abort ();
1794
1795 /* Check this now, before checking if the buffer has any intervals.
1796 That way, we can catch conditions which break this sanity check
1797 whether or not there are intervals in the buffer. */
1798 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1799 abort ();
1800
1801 have_overlays = (! NILP (buffer->overlays_before)
1802 || ! NILP (buffer->overlays_after));
1803
1804 /* If we have no text properties and overlays,
1805 then we can do it quickly. */
1806 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1807 {
1808 temp_set_point_both (buffer, charpos, bytepos);
1809 return;
1810 }
1811
1812 /* Set TO to the interval containing the char after CHARPOS,
1813 and TOPREV to the interval containing the char before CHARPOS.
1814 Either one may be null. They may be equal. */
1815 to = find_interval (BUF_INTERVALS (buffer), charpos);
1816 if (charpos == BUF_BEGV (buffer))
1817 toprev = 0;
1818 else if (to && to->position == charpos)
1819 toprev = previous_interval (to);
1820 else
1821 toprev = to;
1822
1823 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1824 ? BUF_ZV (buffer) - 1
1825 : BUF_PT (buffer));
1826
1827 /* Set FROM to the interval containing the char after PT,
1828 and FROMPREV to the interval containing the char before PT.
1829 Either one may be null. They may be equal. */
1830 /* We could cache this and save time. */
1831 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1832 if (buffer_point == BUF_BEGV (buffer))
1833 fromprev = 0;
1834 else if (from && from->position == BUF_PT (buffer))
1835 fromprev = previous_interval (from);
1836 else if (buffer_point != BUF_PT (buffer))
1837 fromprev = from, from = 0;
1838 else
1839 fromprev = from;
1840
1841 /* Moving within an interval. */
1842 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1843 && ! have_overlays)
1844 {
1845 temp_set_point_both (buffer, charpos, bytepos);
1846 return;
1847 }
1848
1849 original_position = charpos;
1850
1851 /* If the new position is between two intangible characters
1852 with the same intangible property value,
1853 move forward or backward until a change in that property. */
1854 if (NILP (Vinhibit_point_motion_hooks)
1855 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1856 || have_overlays)
1857 /* Intangibility never stops us from positioning at the beginning
1858 or end of the buffer, so don't bother checking in that case. */
1859 && charpos != BEGV && charpos != ZV)
1860 {
1861 Lisp_Object intangible_propval;
1862 Lisp_Object pos;
1863
1864 XSETINT (pos, charpos);
1865
1866 if (backwards)
1867 {
1868 intangible_propval = Fget_char_property (make_number (charpos),
1869 Qintangible, Qnil);
1870
1871 /* If following char is intangible,
1872 skip back over all chars with matching intangible property. */
1873 if (! NILP (intangible_propval))
1874 while (XINT (pos) > BUF_BEGV (buffer)
1875 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1876 Qintangible, Qnil),
1877 intangible_propval))
1878 pos = Fprevious_char_property_change (pos, Qnil);
1879 }
1880 else
1881 {
1882 intangible_propval = Fget_char_property (make_number (charpos - 1),
1883 Qintangible, Qnil);
1884
1885 /* If following char is intangible,
1886 skip back over all chars with matching intangible property. */
1887 if (! NILP (intangible_propval))
1888 while (XINT (pos) < BUF_ZV (buffer)
1889 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1890 intangible_propval))
1891 pos = Fnext_char_property_change (pos, Qnil);
1892
1893 }
1894
1895 charpos = XINT (pos);
1896 bytepos = buf_charpos_to_bytepos (buffer, charpos);
1897 }
1898
1899 if (charpos != original_position)
1900 {
1901 /* Set TO to the interval containing the char after CHARPOS,
1902 and TOPREV to the interval containing the char before CHARPOS.
1903 Either one may be null. They may be equal. */
1904 to = find_interval (BUF_INTERVALS (buffer), charpos);
1905 if (charpos == BUF_BEGV (buffer))
1906 toprev = 0;
1907 else if (to && to->position == charpos)
1908 toprev = previous_interval (to);
1909 else
1910 toprev = to;
1911 }
1912
1913 /* Here TO is the interval after the stopping point
1914 and TOPREV is the interval before the stopping point.
1915 One or the other may be null. */
1916
1917 temp_set_point_both (buffer, charpos, bytepos);
1918
1919 /* We run point-left and point-entered hooks here, iff the
1920 two intervals are not equivalent. These hooks take
1921 (old_point, new_point) as arguments. */
1922 if (NILP (Vinhibit_point_motion_hooks)
1923 && (! intervals_equal (from, to)
1924 || ! intervals_equal (fromprev, toprev)))
1925 {
1926 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1927
1928 if (fromprev)
1929 leave_after = textget (fromprev->plist, Qpoint_left);
1930 else
1931 leave_after = Qnil;
1932 if (from)
1933 leave_before = textget (from->plist, Qpoint_left);
1934 else
1935 leave_before = Qnil;
1936
1937 if (toprev)
1938 enter_after = textget (toprev->plist, Qpoint_entered);
1939 else
1940 enter_after = Qnil;
1941 if (to)
1942 enter_before = textget (to->plist, Qpoint_entered);
1943 else
1944 enter_before = Qnil;
1945
1946 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1947 call2 (leave_before, make_number (old_position),
1948 make_number (charpos));
1949 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1950 call2 (leave_after, make_number (old_position),
1951 make_number (charpos));
1952
1953 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1954 call2 (enter_before, make_number (old_position),
1955 make_number (charpos));
1956 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1957 call2 (enter_after, make_number (old_position),
1958 make_number (charpos));
1959 }
1960 }
1961 \f
1962 /* Move point to POSITION, unless POSITION is inside an intangible
1963 segment that reaches all the way to point. */
1964
1965 void
1966 move_if_not_intangible (position)
1967 int position;
1968 {
1969 Lisp_Object pos;
1970 Lisp_Object intangible_propval;
1971
1972 XSETINT (pos, position);
1973
1974 if (! NILP (Vinhibit_point_motion_hooks))
1975 /* If intangible is inhibited, always move point to POSITION. */
1976 ;
1977 else if (PT < position && XINT (pos) < ZV)
1978 {
1979 /* We want to move forward, so check the text before POSITION. */
1980
1981 intangible_propval = Fget_char_property (pos,
1982 Qintangible, Qnil);
1983
1984 /* If following char is intangible,
1985 skip back over all chars with matching intangible property. */
1986 if (! NILP (intangible_propval))
1987 while (XINT (pos) > BEGV
1988 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1989 Qintangible, Qnil),
1990 intangible_propval))
1991 pos = Fprevious_char_property_change (pos, Qnil);
1992 }
1993 else if (XINT (pos) > BEGV)
1994 {
1995 /* We want to move backward, so check the text after POSITION. */
1996
1997 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
1998 Qintangible, Qnil);
1999
2000 /* If following char is intangible,
2001 skip back over all chars with matching intangible property. */
2002 if (! NILP (intangible_propval))
2003 while (XINT (pos) < ZV
2004 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2005 intangible_propval))
2006 pos = Fnext_char_property_change (pos, Qnil);
2007
2008 }
2009
2010 /* If the whole stretch between PT and POSITION isn't intangible,
2011 try moving to POSITION (which means we actually move farther
2012 if POSITION is inside of intangible text). */
2013
2014 if (XINT (pos) != PT)
2015 SET_PT (position);
2016 }
2017 \f
2018 /* Return the proper local map for position POSITION in BUFFER.
2019 Use the map specified by the local-map property, if any.
2020 Otherwise, use BUFFER's local map. */
2021
2022 Lisp_Object
2023 get_local_map (position, buffer)
2024 register int position;
2025 register struct buffer *buffer;
2026 {
2027 Lisp_Object prop, tem, lispy_position, lispy_buffer;
2028 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2029
2030 /* Perhaps we should just change `position' to the limit. */
2031 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2032 abort ();
2033
2034 /* Ignore narrowing, so that a local map continues to be valid even if
2035 the visible region contains no characters and hence no properties. */
2036 old_begv = BUF_BEGV (buffer);
2037 old_zv = BUF_ZV (buffer);
2038 old_begv_byte = BUF_BEGV_BYTE (buffer);
2039 old_zv_byte = BUF_ZV_BYTE (buffer);
2040 BUF_BEGV (buffer) = BUF_BEG (buffer);
2041 BUF_ZV (buffer) = BUF_Z (buffer);
2042 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2043 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2044
2045 /* There are no properties at the end of the buffer, so in that case
2046 check for a local map on the last character of the buffer instead. */
2047 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
2048 --position;
2049 XSETFASTINT (lispy_position, position);
2050 XSETBUFFER (lispy_buffer, buffer);
2051 prop = Fget_char_property (lispy_position, Qlocal_map, lispy_buffer);
2052
2053 BUF_BEGV (buffer) = old_begv;
2054 BUF_ZV (buffer) = old_zv;
2055 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2056 BUF_ZV_BYTE (buffer) = old_zv_byte;
2057
2058 /* Use the local map only if it is valid. */
2059 /* Do allow symbols that are defined as keymaps. */
2060 if (SYMBOLP (prop) && !NILP (prop))
2061 prop = Findirect_function (prop);
2062 if (!NILP (prop)
2063 && (tem = Fkeymapp (prop), !NILP (tem)))
2064 return prop;
2065
2066 return buffer->keymap;
2067 }
2068 \f
2069 /* Produce an interval tree reflecting the intervals in
2070 TREE from START to START + LENGTH.
2071 The new interval tree has no parent and has a starting-position of 0. */
2072
2073 INTERVAL
2074 copy_intervals (tree, start, length)
2075 INTERVAL tree;
2076 int start, length;
2077 {
2078 register INTERVAL i, new, t;
2079 register int got, prevlen;
2080
2081 if (NULL_INTERVAL_P (tree) || length <= 0)
2082 return NULL_INTERVAL;
2083
2084 i = find_interval (tree, start);
2085 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2086 abort ();
2087
2088 /* If there is only one interval and it's the default, return nil. */
2089 if ((start - i->position + 1 + length) < LENGTH (i)
2090 && DEFAULT_INTERVAL_P (i))
2091 return NULL_INTERVAL;
2092
2093 new = make_interval ();
2094 new->position = 0;
2095 got = (LENGTH (i) - (start - i->position));
2096 new->total_length = length;
2097 copy_properties (i, new);
2098
2099 t = new;
2100 prevlen = got;
2101 while (got < length)
2102 {
2103 i = next_interval (i);
2104 t = split_interval_right (t, prevlen);
2105 copy_properties (i, t);
2106 prevlen = LENGTH (i);
2107 got += prevlen;
2108 }
2109
2110 return balance_an_interval (new);
2111 }
2112
2113 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2114
2115 INLINE void
2116 copy_intervals_to_string (string, buffer, position, length)
2117 Lisp_Object string;
2118 struct buffer *buffer;
2119 int position, length;
2120 {
2121 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2122 position, length);
2123 if (NULL_INTERVAL_P (interval_copy))
2124 return;
2125
2126 interval_copy->parent = (INTERVAL) XFASTINT (string);
2127 XSTRING (string)->intervals = interval_copy;
2128 }
2129 \f
2130 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2131 Assume they have identical characters. */
2132
2133 int
2134 compare_string_intervals (s1, s2)
2135 Lisp_Object s1, s2;
2136 {
2137 INTERVAL i1, i2;
2138 int pos = 0;
2139 int end = XSTRING (s1)->size;
2140
2141 i1 = find_interval (XSTRING (s1)->intervals, 0);
2142 i2 = find_interval (XSTRING (s2)->intervals, 0);
2143
2144 while (pos < end)
2145 {
2146 /* Determine how far we can go before we reach the end of I1 or I2. */
2147 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2148 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2149 int distance = min (len1, len2);
2150
2151 /* If we ever find a mismatch between the strings,
2152 they differ. */
2153 if (! intervals_equal (i1, i2))
2154 return 0;
2155
2156 /* Advance POS till the end of the shorter interval,
2157 and advance one or both interval pointers for the new position. */
2158 pos += distance;
2159 if (len1 == distance)
2160 i1 = next_interval (i1);
2161 if (len2 == distance)
2162 i2 = next_interval (i2);
2163 }
2164 return 1;
2165 }
2166 \f
2167 /* Recursively adjust interval I in the current buffer
2168 for setting enable_multibyte_characters to MULTI_FLAG.
2169 The range of interval I is START ... END in characters,
2170 START_BYTE ... END_BYTE in bytes. */
2171
2172 static void
2173 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2174 INTERVAL i;
2175 int multi_flag;
2176 int start, start_byte, end, end_byte;
2177 {
2178 INTERVAL left, right;
2179
2180 /* Fix the length of this interval. */
2181 if (multi_flag)
2182 i->total_length = end - start;
2183 else
2184 i->total_length = end_byte - start_byte;
2185
2186 /* Recursively fix the length of the subintervals. */
2187 if (i->left)
2188 {
2189 int left_end, left_end_byte;
2190
2191 if (multi_flag)
2192 {
2193 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2194 left_end = BYTE_TO_CHAR (left_end_byte);
2195 }
2196 else
2197 {
2198 left_end = start + LEFT_TOTAL_LENGTH (i);
2199 left_end_byte = CHAR_TO_BYTE (left_end);
2200 }
2201
2202 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2203 left_end, left_end_byte);
2204 }
2205 if (i->right)
2206 {
2207 int right_start_byte, right_start;
2208
2209 if (multi_flag)
2210 {
2211 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2212 right_start = BYTE_TO_CHAR (right_start_byte);
2213 }
2214 else
2215 {
2216 right_start = end - RIGHT_TOTAL_LENGTH (i);
2217 right_start_byte = CHAR_TO_BYTE (right_start);
2218 }
2219
2220 set_intervals_multibyte_1 (i->right, multi_flag,
2221 right_start, right_start_byte,
2222 end, end_byte);
2223 }
2224 }
2225
2226 /* Update the intervals of the current buffer
2227 to fit the contents as multibyte (if MULTI_FLAG is 1)
2228 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2229
2230 void
2231 set_intervals_multibyte (multi_flag)
2232 int multi_flag;
2233 {
2234 if (BUF_INTERVALS (current_buffer))
2235 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2236 BEG, BEG_BYTE, Z, Z_BYTE);
2237 }
2238
2239 #endif /* USE_TEXT_PROPERTIES */