Get rid of funvec.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
114 static pthread_mutex_t alloc_mutex;
115
116 #define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
130 } \
131 while (0)
132
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 /* Value of _bytes_used, when spare_memory was freed. */
141
142 static __malloc_size_t bytes_used_when_full;
143
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
283
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
288
289 extern int message_enable_multibyte;
290
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295 enum mem_type
296 {
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
309 };
310
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325
326 #ifdef GC_MALLOC_CHECK
327
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
413
414
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
418
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
420
421 /* Recording what needs to be marked for gc. */
422
423 struct gcpro *gcprolist;
424
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
427
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
430
431 /* Index of next unused slot in staticvec. */
432
433 static int staticidx = 0;
434
435 static POINTER_TYPE *pure_alloc (size_t, int);
436
437
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
444
445
446 \f
447 /************************************************************************
448 Malloc
449 ************************************************************************/
450
451 /* Function malloc calls this if it finds we are near exhausting storage. */
452
453 void
454 malloc_warning (const char *str)
455 {
456 pending_malloc_warning = str;
457 }
458
459
460 /* Display an already-pending malloc warning. */
461
462 void
463 display_malloc_warning (void)
464 {
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
470 }
471
472
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (void)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
494
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
498 }
499
500
501 #ifdef XMALLOC_OVERRUN_CHECK
502
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512 */
513
514
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
516
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
528 /* Macros to insert and extract the block size in the header. */
529
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
554
555 (time passes).
556
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
561
562 static int check_depth;
563
564 /* Like malloc, but wraps allocated block with header and trailer. */
565
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
569 {
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
572
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
575 {
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
582 }
583 --check_depth;
584 return (POINTER_TYPE *)val;
585 }
586
587
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595 {
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
598
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
604 {
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
615
616 if (val && check_depth == 1)
617 {
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
624 }
625 --check_depth;
626 return (POINTER_TYPE *)val;
627 }
628
629 /* Like free, but checks block for overrun. */
630
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
634 {
635 unsigned char *val = (unsigned char *)block;
636
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
643 {
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
656 }
657
658 free (val);
659 --check_depth;
660 }
661
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
669
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
679
680 /* Like malloc but check for no memory and block interrupt input.. */
681
682 POINTER_TYPE *
683 xmalloc (size_t size)
684 {
685 register POINTER_TYPE *val;
686
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
690
691 if (!val && size)
692 memory_full ();
693 return val;
694 }
695
696
697 /* Like realloc but check for no memory and block interrupt input.. */
698
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
701 {
702 register POINTER_TYPE *val;
703
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
712
713 if (!val && size) memory_full ();
714 return val;
715 }
716
717
718 /* Like free but block interrupt input. */
719
720 void
721 xfree (POINTER_TYPE *block)
722 {
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
731 }
732
733
734 /* Like strdup, but uses xmalloc. */
735
736 char *
737 xstrdup (const char *s)
738 {
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
743 }
744
745
746 /* Unwind for SAFE_ALLOCA */
747
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
750 {
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
758 }
759
760
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
768
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
771 {
772 register void *val;
773
774 MALLOC_BLOCK_INPUT;
775
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
779
780 val = (void *) malloc (nbytes);
781
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
797 #endif
798
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
803
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
808 }
809
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
813 static void
814 lisp_free (POINTER_TYPE *block)
815 {
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
822 }
823
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
834
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
837
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
851
852 /* Internal data structures and constants. */
853
854 #define ABLOCKS_SIZE 16
855
856 /* An aligned block of memory. */
857 struct ablock
858 {
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
879 };
880
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
883 {
884 struct ablock blocks[ABLOCKS_SIZE];
885 };
886
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
889
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
905
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
908
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
914 {
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
920 MALLOC_BLOCK_INPUT;
921
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
925
926 if (!free_ablock)
927 {
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
930
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
937
938 #ifdef USE_POSIX_MEMALIGN
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
944 }
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
949
950 if (base == 0)
951 {
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
954 }
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
964
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
980 }
981 }
982 #endif
983
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
993
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1010
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017 }
1018
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1021 {
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1034
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1057 }
1058 MALLOC_UNBLOCK_INPUT;
1059 }
1060
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064 struct buffer *
1065 allocate_buffer (void)
1066 {
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1073 }
1074
1075 \f
1076 #ifndef SYSTEM_MALLOC
1077
1078 /* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1087
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1091
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1101
1102 static __malloc_size_t bytes_used_when_reconsidered;
1103
1104 /* This function is used as the hook for free to call. */
1105
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1108 {
1109 BLOCK_INPUT_ALLOC;
1110
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1113 {
1114 struct mem_node *m;
1115
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
1129 #endif /* GC_MALLOC_CHECK */
1130
1131 __free_hook = old_free_hook;
1132 free (ptr);
1133
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1146
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1149 }
1150
1151
1152 /* This function is the malloc hook that Emacs uses. */
1153
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1156 {
1157 void *value;
1158
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1167
1168 value = (void *) malloc (size);
1169
1170 #ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189 #endif /* GC_MALLOC_CHECK */
1190
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1193
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1196 }
1197
1198
1199 /* This function is the realloc hook that Emacs uses. */
1200
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1203 {
1204 void *value;
1205
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1208
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
1223
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1225
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1229
1230 value = (void *) realloc (ptr, size);
1231
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
1246
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1249
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1252
1253 return value;
1254 }
1255
1256
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263 void
1264 reset_malloc_hooks ()
1265 {
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1269 }
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
1273 /* Called from main to set up malloc to use our hooks. */
1274
1275 void
1276 uninterrupt_malloc (void)
1277 {
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1293
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1297
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1301
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1305 }
1306
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1309
1310
1311 \f
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1315
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
1325 struct interval_block
1326 {
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1330 };
1331
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
1335 static struct interval_block *interval_block;
1336
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1339
1340 static int interval_block_index;
1341
1342 /* Number of free and live intervals. */
1343
1344 static int total_free_intervals, total_intervals;
1345
1346 /* List of free intervals. */
1347
1348 INTERVAL interval_free_list;
1349
1350 /* Total number of interval blocks now in use. */
1351
1352 static int n_interval_blocks;
1353
1354
1355 /* Initialize interval allocation. */
1356
1357 static void
1358 init_intervals (void)
1359 {
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1364 }
1365
1366
1367 /* Return a new interval. */
1368
1369 INTERVAL
1370 make_interval (void)
1371 {
1372 INTERVAL val;
1373
1374 /* eassert (!handling_signal); */
1375
1376 MALLOC_BLOCK_INPUT;
1377
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
1387 register struct interval_block *newi;
1388
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1391
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
1399
1400 MALLOC_UNBLOCK_INPUT;
1401
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1407 }
1408
1409
1410 /* Mark Lisp objects in interval I. */
1411
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1414 {
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1418 }
1419
1420
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1426 {
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 }
1433
1434
1435 /* Mark the interval tree rooted in I. */
1436
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1442
1443
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1449
1450 \f
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1456 {
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461 }
1462 #endif
1463 \f
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1467
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1474
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1478
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1483
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1490
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1493
1494 #define SBLOCK_SIZE 8188
1495
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1498
1499 #define LARGE_STRING_BYTES 1024
1500
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504 struct sdata
1505 {
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1513
1514 #ifdef GC_CHECK_STRING_BYTES
1515
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1518
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1521
1522 #else /* not GC_CHECK_STRING_BYTES */
1523
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1532
1533
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1536
1537 #endif /* not GC_CHECK_STRING_BYTES */
1538 };
1539
1540
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546 struct sblock
1547 {
1548 /* Next in list. */
1549 struct sblock *next;
1550
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557 };
1558
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568 struct string_block
1569 {
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1573 };
1574
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1578
1579 static struct sblock *oldest_sblock, *current_sblock;
1580
1581 /* List of sblocks for large strings. */
1582
1583 static struct sblock *large_sblocks;
1584
1585 /* List of string_block structures, and how many there are. */
1586
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1589
1590 /* Free-list of Lisp_Strings. */
1591
1592 static struct Lisp_String *string_free_list;
1593
1594 /* Number of live and free Lisp_Strings. */
1595
1596 static int total_strings, total_free_strings;
1597
1598 /* Number of bytes used by live strings. */
1599
1600 static EMACS_INT total_string_size;
1601
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619 #else /* not GC_CHECK_STRING_BYTES */
1620
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
1624 #endif /* not GC_CHECK_STRING_BYTES */
1625
1626
1627 #ifdef GC_CHECK_STRING_OVERRUN
1628
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1632
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1640
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
1645 #ifdef GC_CHECK_STRING_BYTES
1646
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
1654 #else /* not GC_CHECK_STRING_BYTES */
1655
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662 #endif /* not GC_CHECK_STRING_BYTES */
1663
1664 /* Extra bytes to allocate for each string. */
1665
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
1668 /* Initialize string allocation. Called from init_alloc_once. */
1669
1670 static void
1671 init_strings (void)
1672 {
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1689
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1694
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1697 {
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706 }
1707
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1709
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1713 {
1714 struct sdata *from, *end, *from_end;
1715
1716 end = b->next_free;
1717
1718 for (from = &b->first_data; from < end; from = from_end)
1719 {
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1723
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1728
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1733
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1736 }
1737 }
1738
1739
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1747 {
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1757 }
1758
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1761 }
1762 else
1763 check_sblock (current_sblock);
1764 }
1765
1766 #endif /* GC_CHECK_STRING_BYTES */
1767
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1769
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
1773 static void
1774 check_string_free_list ()
1775 {
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786 }
1787 #else
1788 #define check_string_free_list()
1789 #endif
1790
1791 /* Return a new Lisp_String. */
1792
1793 static struct Lisp_String *
1794 allocate_string (void)
1795 {
1796 struct Lisp_String *s;
1797
1798 /* eassert (!handling_signal); */
1799
1800 MALLOC_BLOCK_INPUT;
1801
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1805 {
1806 struct string_block *b;
1807 int i;
1808
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1816 {
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1820 }
1821
1822 total_free_strings += STRING_BLOCK_SIZE;
1823 }
1824
1825 check_string_free_list ();
1826
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1830
1831 MALLOC_UNBLOCK_INPUT;
1832
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1835
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1840
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1843 {
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
1851 }
1852 #endif /* GC_CHECK_STRING_BYTES */
1853
1854 return s;
1855 }
1856
1857
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1863
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1867 {
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1871
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
1878 MALLOC_BLOCK_INPUT;
1879
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1883
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1896
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1898
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1903
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1913 {
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
1928
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
1932 MALLOC_UNBLOCK_INPUT;
1933
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1945
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1950 {
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1953 }
1954
1955 consing_since_gc += needed;
1956 }
1957
1958
1959 /* Sweep and compact strings. */
1960
1961 static void
1962 sweep_strings (void)
1963 {
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1966
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1990
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
2049 check_string_free_list ();
2050
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2054
2055 check_string_free_list ();
2056 }
2057
2058
2059 /* Free dead large strings. */
2060
2061 static void
2062 free_large_strings (void)
2063 {
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2066
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081 }
2082
2083
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087 static void
2088 compact_small_strings (void)
2089 {
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2107
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2113
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2121
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2126
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2129
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2139
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2152 }
2153
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179 }
2180
2181
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2187 {
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2192
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2195
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2211
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2219 {
2220 memcpy (p, str, len);
2221 p += len;
2222 }
2223 }
2224
2225 *p = 0;
2226 return val;
2227 }
2228
2229
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2234 {
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2240
2241 CHECK_NATNUM (length);
2242
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2252
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 return val;
2305 }
2306
2307
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2310
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2314 {
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2319 }
2320
2321
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2328 {
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2335 }
2336
2337
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2342
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2346 {
2347 register Lisp_Object val;
2348
2349 if (nchars < 0)
2350 {
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
2354 else
2355 nchars = nbytes;
2356 }
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2362 }
2363
2364
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2367
2368 Lisp_Object
2369 build_string (const char *str)
2370 {
2371 return make_string (str, strlen (str));
2372 }
2373
2374
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2377
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2380 {
2381 Lisp_Object val;
2382
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2388 }
2389
2390
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2393
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 {
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2399
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2404
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2410 }
2411
2412
2413 \f
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2417
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2422
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2433
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2444
2445 #define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447
2448 struct float_block
2449 {
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2454 };
2455
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464
2465 /* Current float_block. */
2466
2467 struct float_block *float_block;
2468
2469 /* Index of first unused Lisp_Float in the current float_block. */
2470
2471 int float_block_index;
2472
2473 /* Total number of float blocks now in use. */
2474
2475 int n_float_blocks;
2476
2477 /* Free-list of Lisp_Floats. */
2478
2479 struct Lisp_Float *float_free_list;
2480
2481
2482 /* Initialize float allocation. */
2483
2484 static void
2485 init_float (void)
2486 {
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2491 }
2492
2493
2494 /* Return a new float object with value FLOAT_VALUE. */
2495
2496 Lisp_Object
2497 make_float (double float_value)
2498 {
2499 register Lisp_Object val;
2500
2501 /* eassert (!handling_signal); */
2502
2503 MALLOC_BLOCK_INPUT;
2504
2505 if (float_free_list)
2506 {
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2511 }
2512 else
2513 {
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 {
2516 register struct float_block *new;
2517
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2525 }
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2528 }
2529
2530 MALLOC_UNBLOCK_INPUT;
2531
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2537 }
2538
2539
2540 \f
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2544
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2549
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2556
2557 #define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2559
2560 struct cons_block
2561 {
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2566 };
2567
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576
2577 /* Current cons_block. */
2578
2579 struct cons_block *cons_block;
2580
2581 /* Index of first unused Lisp_Cons in the current block. */
2582
2583 int cons_block_index;
2584
2585 /* Free-list of Lisp_Cons structures. */
2586
2587 struct Lisp_Cons *cons_free_list;
2588
2589 /* Total number of cons blocks now in use. */
2590
2591 static int n_cons_blocks;
2592
2593
2594 /* Initialize cons allocation. */
2595
2596 static void
2597 init_cons (void)
2598 {
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2603 }
2604
2605
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2607
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2610 {
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2616 }
2617
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2621 {
2622 register Lisp_Object val;
2623
2624 /* eassert (!handling_signal); */
2625
2626 MALLOC_BLOCK_INPUT;
2627
2628 if (cons_free_list)
2629 {
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2634 }
2635 else
2636 {
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2638 {
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2647 }
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2650 }
2651
2652 MALLOC_UNBLOCK_INPUT;
2653
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2660 }
2661
2662 /* Get an error now if there's any junk in the cons free list. */
2663 void
2664 check_cons_list (void)
2665 {
2666 #ifdef GC_CHECK_CONS_LIST
2667 struct Lisp_Cons *tail = cons_free_list;
2668
2669 while (tail)
2670 tail = tail->u.chain;
2671 #endif
2672 }
2673
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2678 {
2679 return Fcons (arg1, Qnil);
2680 }
2681
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2684 {
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2686 }
2687
2688
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2691 {
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693 }
2694
2695
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2698 {
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700 }
2701
2702
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2705 {
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2708 }
2709
2710
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (int nargs, register Lisp_Object *args)
2716 {
2717 register Lisp_Object val;
2718 val = Qnil;
2719
2720 while (nargs > 0)
2721 {
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2724 }
2725 return val;
2726 }
2727
2728
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2732 {
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2735
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2738
2739 val = Qnil;
2740 while (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
2754
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759
2760 if (size > 0)
2761 {
2762 val = Fcons (init, val);
2763 --size;
2764 }
2765 }
2766 }
2767 }
2768
2769 QUIT;
2770 }
2771
2772 return val;
2773 }
2774
2775
2776 \f
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2780
2781 /* Singly-linked list of all vectors. */
2782
2783 static struct Lisp_Vector *all_vectors;
2784
2785 /* Total number of vector-like objects now in use. */
2786
2787 static int n_vectors;
2788
2789
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2792
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2795 {
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2798
2799 MALLOC_BLOCK_INPUT;
2800
2801 #ifdef DOUG_LEA_MALLOC
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
2805 mallopt (M_MMAP_MAX, 0);
2806 #endif
2807
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2810
2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2813
2814 #ifdef DOUG_LEA_MALLOC
2815 /* Back to a reasonable maximum of mmap'ed areas. */
2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2817 #endif
2818
2819 consing_since_gc += nbytes;
2820 vector_cells_consed += len;
2821
2822 p->next = all_vectors;
2823 all_vectors = p;
2824
2825 MALLOC_UNBLOCK_INPUT;
2826
2827 ++n_vectors;
2828 return p;
2829 }
2830
2831
2832 /* Allocate a vector with NSLOTS slots. */
2833
2834 struct Lisp_Vector *
2835 allocate_vector (EMACS_INT nslots)
2836 {
2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2838 v->size = nslots;
2839 return v;
2840 }
2841
2842
2843 /* Allocate other vector-like structures. */
2844
2845 struct Lisp_Vector *
2846 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2847 {
2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2849 EMACS_INT i;
2850
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
2854 v->contents[i] = Qnil;
2855
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2858 }
2859
2860 struct Lisp_Hash_Table *
2861 allocate_hash_table (void)
2862 {
2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2864 }
2865
2866
2867 struct window *
2868 allocate_window (void)
2869 {
2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2871 }
2872
2873
2874 struct terminal *
2875 allocate_terminal (void)
2876 {
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
2882
2883 return t;
2884 }
2885
2886 struct frame *
2887 allocate_frame (void)
2888 {
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
2894 return f;
2895 }
2896
2897
2898 struct Lisp_Process *
2899 allocate_process (void)
2900 {
2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2902 }
2903
2904
2905 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2907 See also the function `vector'. */)
2908 (register Lisp_Object length, Lisp_Object init)
2909 {
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
2912 register EMACS_INT index;
2913 register struct Lisp_Vector *p;
2914
2915 CHECK_NATNUM (length);
2916 sizei = XFASTINT (length);
2917
2918 p = allocate_vector (sizei);
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2921
2922 XSETVECTOR (vector, p);
2923 return vector;
2924 }
2925
2926
2927 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2928 doc: /* Return a newly created vector with specified arguments as elements.
2929 Any number of arguments, even zero arguments, are allowed.
2930 usage: (vector &rest OBJECTS) */)
2931 (register int nargs, Lisp_Object *args)
2932 {
2933 register Lisp_Object len, val;
2934 register int index;
2935 register struct Lisp_Vector *p;
2936
2937 XSETFASTINT (len, nargs);
2938 val = Fmake_vector (len, Qnil);
2939 p = XVECTOR (val);
2940 for (index = 0; index < nargs; index++)
2941 p->contents[index] = args[index];
2942 return val;
2943 }
2944
2945
2946 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2947 doc: /* Create a byte-code object with specified arguments as elements.
2948 The arguments should be the arglist, bytecode-string, constant vector,
2949 stack size, (optional) doc string, and (optional) interactive spec.
2950 The first four arguments are required; at most six have any
2951 significance.
2952 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2953 (register int nargs, Lisp_Object *args)
2954 {
2955 register Lisp_Object len, val;
2956 register int index;
2957 register struct Lisp_Vector *p;
2958
2959 XSETFASTINT (len, nargs);
2960 if (!NILP (Vpurify_flag))
2961 val = make_pure_vector ((EMACS_INT) nargs);
2962 else
2963 val = Fmake_vector (len, Qnil);
2964
2965 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2966 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2967 earlier because they produced a raw 8-bit string for byte-code
2968 and now such a byte-code string is loaded as multibyte while
2969 raw 8-bit characters converted to multibyte form. Thus, now we
2970 must convert them back to the original unibyte form. */
2971 args[1] = Fstring_as_unibyte (args[1]);
2972
2973 p = XVECTOR (val);
2974 for (index = 0; index < nargs; index++)
2975 {
2976 if (!NILP (Vpurify_flag))
2977 args[index] = Fpurecopy (args[index]);
2978 p->contents[index] = args[index];
2979 }
2980 XSETPVECTYPE (p, PVEC_COMPILED);
2981 XSETCOMPILED (val, p);
2982 return val;
2983 }
2984
2985
2986 \f
2987 /***********************************************************************
2988 Symbol Allocation
2989 ***********************************************************************/
2990
2991 /* Each symbol_block is just under 1020 bytes long, since malloc
2992 really allocates in units of powers of two and uses 4 bytes for its
2993 own overhead. */
2994
2995 #define SYMBOL_BLOCK_SIZE \
2996 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997
2998 struct symbol_block
2999 {
3000 /* Place `symbols' first, to preserve alignment. */
3001 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3002 struct symbol_block *next;
3003 };
3004
3005 /* Current symbol block and index of first unused Lisp_Symbol
3006 structure in it. */
3007
3008 static struct symbol_block *symbol_block;
3009 static int symbol_block_index;
3010
3011 /* List of free symbols. */
3012
3013 static struct Lisp_Symbol *symbol_free_list;
3014
3015 /* Total number of symbol blocks now in use. */
3016
3017 static int n_symbol_blocks;
3018
3019
3020 /* Initialize symbol allocation. */
3021
3022 static void
3023 init_symbol (void)
3024 {
3025 symbol_block = NULL;
3026 symbol_block_index = SYMBOL_BLOCK_SIZE;
3027 symbol_free_list = 0;
3028 n_symbol_blocks = 0;
3029 }
3030
3031
3032 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3033 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3034 Its value and function definition are void, and its property list is nil. */)
3035 (Lisp_Object name)
3036 {
3037 register Lisp_Object val;
3038 register struct Lisp_Symbol *p;
3039
3040 CHECK_STRING (name);
3041
3042 /* eassert (!handling_signal); */
3043
3044 MALLOC_BLOCK_INPUT;
3045
3046 if (symbol_free_list)
3047 {
3048 XSETSYMBOL (val, symbol_free_list);
3049 symbol_free_list = symbol_free_list->next;
3050 }
3051 else
3052 {
3053 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3054 {
3055 struct symbol_block *new;
3056 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3057 MEM_TYPE_SYMBOL);
3058 new->next = symbol_block;
3059 symbol_block = new;
3060 symbol_block_index = 0;
3061 n_symbol_blocks++;
3062 }
3063 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3064 symbol_block_index++;
3065 }
3066
3067 MALLOC_UNBLOCK_INPUT;
3068
3069 p = XSYMBOL (val);
3070 p->xname = name;
3071 p->plist = Qnil;
3072 p->redirect = SYMBOL_PLAINVAL;
3073 SET_SYMBOL_VAL (p, Qunbound);
3074 p->function = Qunbound;
3075 p->next = NULL;
3076 p->gcmarkbit = 0;
3077 p->interned = SYMBOL_UNINTERNED;
3078 p->constant = 0;
3079 p->declared_special = 0;
3080 consing_since_gc += sizeof (struct Lisp_Symbol);
3081 symbols_consed++;
3082 return val;
3083 }
3084
3085
3086 \f
3087 /***********************************************************************
3088 Marker (Misc) Allocation
3089 ***********************************************************************/
3090
3091 /* Allocation of markers and other objects that share that structure.
3092 Works like allocation of conses. */
3093
3094 #define MARKER_BLOCK_SIZE \
3095 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3096
3097 struct marker_block
3098 {
3099 /* Place `markers' first, to preserve alignment. */
3100 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3101 struct marker_block *next;
3102 };
3103
3104 static struct marker_block *marker_block;
3105 static int marker_block_index;
3106
3107 static union Lisp_Misc *marker_free_list;
3108
3109 /* Total number of marker blocks now in use. */
3110
3111 static int n_marker_blocks;
3112
3113 static void
3114 init_marker (void)
3115 {
3116 marker_block = NULL;
3117 marker_block_index = MARKER_BLOCK_SIZE;
3118 marker_free_list = 0;
3119 n_marker_blocks = 0;
3120 }
3121
3122 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3123
3124 Lisp_Object
3125 allocate_misc (void)
3126 {
3127 Lisp_Object val;
3128
3129 /* eassert (!handling_signal); */
3130
3131 MALLOC_BLOCK_INPUT;
3132
3133 if (marker_free_list)
3134 {
3135 XSETMISC (val, marker_free_list);
3136 marker_free_list = marker_free_list->u_free.chain;
3137 }
3138 else
3139 {
3140 if (marker_block_index == MARKER_BLOCK_SIZE)
3141 {
3142 struct marker_block *new;
3143 new = (struct marker_block *) lisp_malloc (sizeof *new,
3144 MEM_TYPE_MISC);
3145 new->next = marker_block;
3146 marker_block = new;
3147 marker_block_index = 0;
3148 n_marker_blocks++;
3149 total_free_markers += MARKER_BLOCK_SIZE;
3150 }
3151 XSETMISC (val, &marker_block->markers[marker_block_index]);
3152 marker_block_index++;
3153 }
3154
3155 MALLOC_UNBLOCK_INPUT;
3156
3157 --total_free_markers;
3158 consing_since_gc += sizeof (union Lisp_Misc);
3159 misc_objects_consed++;
3160 XMISCANY (val)->gcmarkbit = 0;
3161 return val;
3162 }
3163
3164 /* Free a Lisp_Misc object */
3165
3166 void
3167 free_misc (Lisp_Object misc)
3168 {
3169 XMISCTYPE (misc) = Lisp_Misc_Free;
3170 XMISC (misc)->u_free.chain = marker_free_list;
3171 marker_free_list = XMISC (misc);
3172
3173 total_free_markers++;
3174 }
3175
3176 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3177 INTEGER. This is used to package C values to call record_unwind_protect.
3178 The unwind function can get the C values back using XSAVE_VALUE. */
3179
3180 Lisp_Object
3181 make_save_value (void *pointer, int integer)
3182 {
3183 register Lisp_Object val;
3184 register struct Lisp_Save_Value *p;
3185
3186 val = allocate_misc ();
3187 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3188 p = XSAVE_VALUE (val);
3189 p->pointer = pointer;
3190 p->integer = integer;
3191 p->dogc = 0;
3192 return val;
3193 }
3194
3195 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3196 doc: /* Return a newly allocated marker which does not point at any place. */)
3197 (void)
3198 {
3199 register Lisp_Object val;
3200 register struct Lisp_Marker *p;
3201
3202 val = allocate_misc ();
3203 XMISCTYPE (val) = Lisp_Misc_Marker;
3204 p = XMARKER (val);
3205 p->buffer = 0;
3206 p->bytepos = 0;
3207 p->charpos = 0;
3208 p->next = NULL;
3209 p->insertion_type = 0;
3210 return val;
3211 }
3212
3213 /* Put MARKER back on the free list after using it temporarily. */
3214
3215 void
3216 free_marker (Lisp_Object marker)
3217 {
3218 unchain_marker (XMARKER (marker));
3219 free_misc (marker);
3220 }
3221
3222 \f
3223 /* Return a newly created vector or string with specified arguments as
3224 elements. If all the arguments are characters that can fit
3225 in a string of events, make a string; otherwise, make a vector.
3226
3227 Any number of arguments, even zero arguments, are allowed. */
3228
3229 Lisp_Object
3230 make_event_array (register int nargs, Lisp_Object *args)
3231 {
3232 int i;
3233
3234 for (i = 0; i < nargs; i++)
3235 /* The things that fit in a string
3236 are characters that are in 0...127,
3237 after discarding the meta bit and all the bits above it. */
3238 if (!INTEGERP (args[i])
3239 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3240 return Fvector (nargs, args);
3241
3242 /* Since the loop exited, we know that all the things in it are
3243 characters, so we can make a string. */
3244 {
3245 Lisp_Object result;
3246
3247 result = Fmake_string (make_number (nargs), make_number (0));
3248 for (i = 0; i < nargs; i++)
3249 {
3250 SSET (result, i, XINT (args[i]));
3251 /* Move the meta bit to the right place for a string char. */
3252 if (XINT (args[i]) & CHAR_META)
3253 SSET (result, i, SREF (result, i) | 0x80);
3254 }
3255
3256 return result;
3257 }
3258 }
3259
3260
3261 \f
3262 /************************************************************************
3263 Memory Full Handling
3264 ************************************************************************/
3265
3266
3267 /* Called if malloc returns zero. */
3268
3269 void
3270 memory_full (void)
3271 {
3272 int i;
3273
3274 Vmemory_full = Qt;
3275
3276 memory_full_cons_threshold = sizeof (struct cons_block);
3277
3278 /* The first time we get here, free the spare memory. */
3279 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3280 if (spare_memory[i])
3281 {
3282 if (i == 0)
3283 free (spare_memory[i]);
3284 else if (i >= 1 && i <= 4)
3285 lisp_align_free (spare_memory[i]);
3286 else
3287 lisp_free (spare_memory[i]);
3288 spare_memory[i] = 0;
3289 }
3290
3291 /* Record the space now used. When it decreases substantially,
3292 we can refill the memory reserve. */
3293 #ifndef SYSTEM_MALLOC
3294 bytes_used_when_full = BYTES_USED;
3295 #endif
3296
3297 /* This used to call error, but if we've run out of memory, we could
3298 get infinite recursion trying to build the string. */
3299 xsignal (Qnil, Vmemory_signal_data);
3300 }
3301
3302 /* If we released our reserve (due to running out of memory),
3303 and we have a fair amount free once again,
3304 try to set aside another reserve in case we run out once more.
3305
3306 This is called when a relocatable block is freed in ralloc.c,
3307 and also directly from this file, in case we're not using ralloc.c. */
3308
3309 void
3310 refill_memory_reserve (void)
3311 {
3312 #ifndef SYSTEM_MALLOC
3313 if (spare_memory[0] == 0)
3314 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3315 if (spare_memory[1] == 0)
3316 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3317 MEM_TYPE_CONS);
3318 if (spare_memory[2] == 0)
3319 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[3] == 0)
3322 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[4] == 0)
3325 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[5] == 0)
3328 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3329 MEM_TYPE_STRING);
3330 if (spare_memory[6] == 0)
3331 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3332 MEM_TYPE_STRING);
3333 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3334 Vmemory_full = Qnil;
3335 #endif
3336 }
3337 \f
3338 /************************************************************************
3339 C Stack Marking
3340 ************************************************************************/
3341
3342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3343
3344 /* Conservative C stack marking requires a method to identify possibly
3345 live Lisp objects given a pointer value. We do this by keeping
3346 track of blocks of Lisp data that are allocated in a red-black tree
3347 (see also the comment of mem_node which is the type of nodes in
3348 that tree). Function lisp_malloc adds information for an allocated
3349 block to the red-black tree with calls to mem_insert, and function
3350 lisp_free removes it with mem_delete. Functions live_string_p etc
3351 call mem_find to lookup information about a given pointer in the
3352 tree, and use that to determine if the pointer points to a Lisp
3353 object or not. */
3354
3355 /* Initialize this part of alloc.c. */
3356
3357 static void
3358 mem_init (void)
3359 {
3360 mem_z.left = mem_z.right = MEM_NIL;
3361 mem_z.parent = NULL;
3362 mem_z.color = MEM_BLACK;
3363 mem_z.start = mem_z.end = NULL;
3364 mem_root = MEM_NIL;
3365 }
3366
3367
3368 /* Value is a pointer to the mem_node containing START. Value is
3369 MEM_NIL if there is no node in the tree containing START. */
3370
3371 static INLINE struct mem_node *
3372 mem_find (void *start)
3373 {
3374 struct mem_node *p;
3375
3376 if (start < min_heap_address || start > max_heap_address)
3377 return MEM_NIL;
3378
3379 /* Make the search always successful to speed up the loop below. */
3380 mem_z.start = start;
3381 mem_z.end = (char *) start + 1;
3382
3383 p = mem_root;
3384 while (start < p->start || start >= p->end)
3385 p = start < p->start ? p->left : p->right;
3386 return p;
3387 }
3388
3389
3390 /* Insert a new node into the tree for a block of memory with start
3391 address START, end address END, and type TYPE. Value is a
3392 pointer to the node that was inserted. */
3393
3394 static struct mem_node *
3395 mem_insert (void *start, void *end, enum mem_type type)
3396 {
3397 struct mem_node *c, *parent, *x;
3398
3399 if (min_heap_address == NULL || start < min_heap_address)
3400 min_heap_address = start;
3401 if (max_heap_address == NULL || end > max_heap_address)
3402 max_heap_address = end;
3403
3404 /* See where in the tree a node for START belongs. In this
3405 particular application, it shouldn't happen that a node is already
3406 present. For debugging purposes, let's check that. */
3407 c = mem_root;
3408 parent = NULL;
3409
3410 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3411
3412 while (c != MEM_NIL)
3413 {
3414 if (start >= c->start && start < c->end)
3415 abort ();
3416 parent = c;
3417 c = start < c->start ? c->left : c->right;
3418 }
3419
3420 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3421
3422 while (c != MEM_NIL)
3423 {
3424 parent = c;
3425 c = start < c->start ? c->left : c->right;
3426 }
3427
3428 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429
3430 /* Create a new node. */
3431 #ifdef GC_MALLOC_CHECK
3432 x = (struct mem_node *) _malloc_internal (sizeof *x);
3433 if (x == NULL)
3434 abort ();
3435 #else
3436 x = (struct mem_node *) xmalloc (sizeof *x);
3437 #endif
3438 x->start = start;
3439 x->end = end;
3440 x->type = type;
3441 x->parent = parent;
3442 x->left = x->right = MEM_NIL;
3443 x->color = MEM_RED;
3444
3445 /* Insert it as child of PARENT or install it as root. */
3446 if (parent)
3447 {
3448 if (start < parent->start)
3449 parent->left = x;
3450 else
3451 parent->right = x;
3452 }
3453 else
3454 mem_root = x;
3455
3456 /* Re-establish red-black tree properties. */
3457 mem_insert_fixup (x);
3458
3459 return x;
3460 }
3461
3462
3463 /* Re-establish the red-black properties of the tree, and thereby
3464 balance the tree, after node X has been inserted; X is always red. */
3465
3466 static void
3467 mem_insert_fixup (struct mem_node *x)
3468 {
3469 while (x != mem_root && x->parent->color == MEM_RED)
3470 {
3471 /* X is red and its parent is red. This is a violation of
3472 red-black tree property #3. */
3473
3474 if (x->parent == x->parent->parent->left)
3475 {
3476 /* We're on the left side of our grandparent, and Y is our
3477 "uncle". */
3478 struct mem_node *y = x->parent->parent->right;
3479
3480 if (y->color == MEM_RED)
3481 {
3482 /* Uncle and parent are red but should be black because
3483 X is red. Change the colors accordingly and proceed
3484 with the grandparent. */
3485 x->parent->color = MEM_BLACK;
3486 y->color = MEM_BLACK;
3487 x->parent->parent->color = MEM_RED;
3488 x = x->parent->parent;
3489 }
3490 else
3491 {
3492 /* Parent and uncle have different colors; parent is
3493 red, uncle is black. */
3494 if (x == x->parent->right)
3495 {
3496 x = x->parent;
3497 mem_rotate_left (x);
3498 }
3499
3500 x->parent->color = MEM_BLACK;
3501 x->parent->parent->color = MEM_RED;
3502 mem_rotate_right (x->parent->parent);
3503 }
3504 }
3505 else
3506 {
3507 /* This is the symmetrical case of above. */
3508 struct mem_node *y = x->parent->parent->left;
3509
3510 if (y->color == MEM_RED)
3511 {
3512 x->parent->color = MEM_BLACK;
3513 y->color = MEM_BLACK;
3514 x->parent->parent->color = MEM_RED;
3515 x = x->parent->parent;
3516 }
3517 else
3518 {
3519 if (x == x->parent->left)
3520 {
3521 x = x->parent;
3522 mem_rotate_right (x);
3523 }
3524
3525 x->parent->color = MEM_BLACK;
3526 x->parent->parent->color = MEM_RED;
3527 mem_rotate_left (x->parent->parent);
3528 }
3529 }
3530 }
3531
3532 /* The root may have been changed to red due to the algorithm. Set
3533 it to black so that property #5 is satisfied. */
3534 mem_root->color = MEM_BLACK;
3535 }
3536
3537
3538 /* (x) (y)
3539 / \ / \
3540 a (y) ===> (x) c
3541 / \ / \
3542 b c a b */
3543
3544 static void
3545 mem_rotate_left (struct mem_node *x)
3546 {
3547 struct mem_node *y;
3548
3549 /* Turn y's left sub-tree into x's right sub-tree. */
3550 y = x->right;
3551 x->right = y->left;
3552 if (y->left != MEM_NIL)
3553 y->left->parent = x;
3554
3555 /* Y's parent was x's parent. */
3556 if (y != MEM_NIL)
3557 y->parent = x->parent;
3558
3559 /* Get the parent to point to y instead of x. */
3560 if (x->parent)
3561 {
3562 if (x == x->parent->left)
3563 x->parent->left = y;
3564 else
3565 x->parent->right = y;
3566 }
3567 else
3568 mem_root = y;
3569
3570 /* Put x on y's left. */
3571 y->left = x;
3572 if (x != MEM_NIL)
3573 x->parent = y;
3574 }
3575
3576
3577 /* (x) (Y)
3578 / \ / \
3579 (y) c ===> a (x)
3580 / \ / \
3581 a b b c */
3582
3583 static void
3584 mem_rotate_right (struct mem_node *x)
3585 {
3586 struct mem_node *y = x->left;
3587
3588 x->left = y->right;
3589 if (y->right != MEM_NIL)
3590 y->right->parent = x;
3591
3592 if (y != MEM_NIL)
3593 y->parent = x->parent;
3594 if (x->parent)
3595 {
3596 if (x == x->parent->right)
3597 x->parent->right = y;
3598 else
3599 x->parent->left = y;
3600 }
3601 else
3602 mem_root = y;
3603
3604 y->right = x;
3605 if (x != MEM_NIL)
3606 x->parent = y;
3607 }
3608
3609
3610 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3611
3612 static void
3613 mem_delete (struct mem_node *z)
3614 {
3615 struct mem_node *x, *y;
3616
3617 if (!z || z == MEM_NIL)
3618 return;
3619
3620 if (z->left == MEM_NIL || z->right == MEM_NIL)
3621 y = z;
3622 else
3623 {
3624 y = z->right;
3625 while (y->left != MEM_NIL)
3626 y = y->left;
3627 }
3628
3629 if (y->left != MEM_NIL)
3630 x = y->left;
3631 else
3632 x = y->right;
3633
3634 x->parent = y->parent;
3635 if (y->parent)
3636 {
3637 if (y == y->parent->left)
3638 y->parent->left = x;
3639 else
3640 y->parent->right = x;
3641 }
3642 else
3643 mem_root = x;
3644
3645 if (y != z)
3646 {
3647 z->start = y->start;
3648 z->end = y->end;
3649 z->type = y->type;
3650 }
3651
3652 if (y->color == MEM_BLACK)
3653 mem_delete_fixup (x);
3654
3655 #ifdef GC_MALLOC_CHECK
3656 _free_internal (y);
3657 #else
3658 xfree (y);
3659 #endif
3660 }
3661
3662
3663 /* Re-establish the red-black properties of the tree, after a
3664 deletion. */
3665
3666 static void
3667 mem_delete_fixup (struct mem_node *x)
3668 {
3669 while (x != mem_root && x->color == MEM_BLACK)
3670 {
3671 if (x == x->parent->left)
3672 {
3673 struct mem_node *w = x->parent->right;
3674
3675 if (w->color == MEM_RED)
3676 {
3677 w->color = MEM_BLACK;
3678 x->parent->color = MEM_RED;
3679 mem_rotate_left (x->parent);
3680 w = x->parent->right;
3681 }
3682
3683 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3684 {
3685 w->color = MEM_RED;
3686 x = x->parent;
3687 }
3688 else
3689 {
3690 if (w->right->color == MEM_BLACK)
3691 {
3692 w->left->color = MEM_BLACK;
3693 w->color = MEM_RED;
3694 mem_rotate_right (w);
3695 w = x->parent->right;
3696 }
3697 w->color = x->parent->color;
3698 x->parent->color = MEM_BLACK;
3699 w->right->color = MEM_BLACK;
3700 mem_rotate_left (x->parent);
3701 x = mem_root;
3702 }
3703 }
3704 else
3705 {
3706 struct mem_node *w = x->parent->left;
3707
3708 if (w->color == MEM_RED)
3709 {
3710 w->color = MEM_BLACK;
3711 x->parent->color = MEM_RED;
3712 mem_rotate_right (x->parent);
3713 w = x->parent->left;
3714 }
3715
3716 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3717 {
3718 w->color = MEM_RED;
3719 x = x->parent;
3720 }
3721 else
3722 {
3723 if (w->left->color == MEM_BLACK)
3724 {
3725 w->right->color = MEM_BLACK;
3726 w->color = MEM_RED;
3727 mem_rotate_left (w);
3728 w = x->parent->left;
3729 }
3730
3731 w->color = x->parent->color;
3732 x->parent->color = MEM_BLACK;
3733 w->left->color = MEM_BLACK;
3734 mem_rotate_right (x->parent);
3735 x = mem_root;
3736 }
3737 }
3738 }
3739
3740 x->color = MEM_BLACK;
3741 }
3742
3743
3744 /* Value is non-zero if P is a pointer to a live Lisp string on
3745 the heap. M is a pointer to the mem_block for P. */
3746
3747 static INLINE int
3748 live_string_p (struct mem_node *m, void *p)
3749 {
3750 if (m->type == MEM_TYPE_STRING)
3751 {
3752 struct string_block *b = (struct string_block *) m->start;
3753 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3754
3755 /* P must point to the start of a Lisp_String structure, and it
3756 must not be on the free-list. */
3757 return (offset >= 0
3758 && offset % sizeof b->strings[0] == 0
3759 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3760 && ((struct Lisp_String *) p)->data != NULL);
3761 }
3762 else
3763 return 0;
3764 }
3765
3766
3767 /* Value is non-zero if P is a pointer to a live Lisp cons on
3768 the heap. M is a pointer to the mem_block for P. */
3769
3770 static INLINE int
3771 live_cons_p (struct mem_node *m, void *p)
3772 {
3773 if (m->type == MEM_TYPE_CONS)
3774 {
3775 struct cons_block *b = (struct cons_block *) m->start;
3776 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3777
3778 /* P must point to the start of a Lisp_Cons, not be
3779 one of the unused cells in the current cons block,
3780 and not be on the free-list. */
3781 return (offset >= 0
3782 && offset % sizeof b->conses[0] == 0
3783 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3784 && (b != cons_block
3785 || offset / sizeof b->conses[0] < cons_block_index)
3786 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3787 }
3788 else
3789 return 0;
3790 }
3791
3792
3793 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3794 the heap. M is a pointer to the mem_block for P. */
3795
3796 static INLINE int
3797 live_symbol_p (struct mem_node *m, void *p)
3798 {
3799 if (m->type == MEM_TYPE_SYMBOL)
3800 {
3801 struct symbol_block *b = (struct symbol_block *) m->start;
3802 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3803
3804 /* P must point to the start of a Lisp_Symbol, not be
3805 one of the unused cells in the current symbol block,
3806 and not be on the free-list. */
3807 return (offset >= 0
3808 && offset % sizeof b->symbols[0] == 0
3809 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3810 && (b != symbol_block
3811 || offset / sizeof b->symbols[0] < symbol_block_index)
3812 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3813 }
3814 else
3815 return 0;
3816 }
3817
3818
3819 /* Value is non-zero if P is a pointer to a live Lisp float on
3820 the heap. M is a pointer to the mem_block for P. */
3821
3822 static INLINE int
3823 live_float_p (struct mem_node *m, void *p)
3824 {
3825 if (m->type == MEM_TYPE_FLOAT)
3826 {
3827 struct float_block *b = (struct float_block *) m->start;
3828 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3829
3830 /* P must point to the start of a Lisp_Float and not be
3831 one of the unused cells in the current float block. */
3832 return (offset >= 0
3833 && offset % sizeof b->floats[0] == 0
3834 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3835 && (b != float_block
3836 || offset / sizeof b->floats[0] < float_block_index));
3837 }
3838 else
3839 return 0;
3840 }
3841
3842
3843 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3844 the heap. M is a pointer to the mem_block for P. */
3845
3846 static INLINE int
3847 live_misc_p (struct mem_node *m, void *p)
3848 {
3849 if (m->type == MEM_TYPE_MISC)
3850 {
3851 struct marker_block *b = (struct marker_block *) m->start;
3852 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3853
3854 /* P must point to the start of a Lisp_Misc, not be
3855 one of the unused cells in the current misc block,
3856 and not be on the free-list. */
3857 return (offset >= 0
3858 && offset % sizeof b->markers[0] == 0
3859 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3860 && (b != marker_block
3861 || offset / sizeof b->markers[0] < marker_block_index)
3862 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3863 }
3864 else
3865 return 0;
3866 }
3867
3868
3869 /* Value is non-zero if P is a pointer to a live vector-like object.
3870 M is a pointer to the mem_block for P. */
3871
3872 static INLINE int
3873 live_vector_p (struct mem_node *m, void *p)
3874 {
3875 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3876 }
3877
3878
3879 /* Value is non-zero if P is a pointer to a live buffer. M is a
3880 pointer to the mem_block for P. */
3881
3882 static INLINE int
3883 live_buffer_p (struct mem_node *m, void *p)
3884 {
3885 /* P must point to the start of the block, and the buffer
3886 must not have been killed. */
3887 return (m->type == MEM_TYPE_BUFFER
3888 && p == m->start
3889 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3890 }
3891
3892 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3893
3894 #if GC_MARK_STACK
3895
3896 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3897
3898 /* Array of objects that are kept alive because the C stack contains
3899 a pattern that looks like a reference to them . */
3900
3901 #define MAX_ZOMBIES 10
3902 static Lisp_Object zombies[MAX_ZOMBIES];
3903
3904 /* Number of zombie objects. */
3905
3906 static int nzombies;
3907
3908 /* Number of garbage collections. */
3909
3910 static int ngcs;
3911
3912 /* Average percentage of zombies per collection. */
3913
3914 static double avg_zombies;
3915
3916 /* Max. number of live and zombie objects. */
3917
3918 static int max_live, max_zombies;
3919
3920 /* Average number of live objects per GC. */
3921
3922 static double avg_live;
3923
3924 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3925 doc: /* Show information about live and zombie objects. */)
3926 (void)
3927 {
3928 Lisp_Object args[8], zombie_list = Qnil;
3929 int i;
3930 for (i = 0; i < nzombies; i++)
3931 zombie_list = Fcons (zombies[i], zombie_list);
3932 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3933 args[1] = make_number (ngcs);
3934 args[2] = make_float (avg_live);
3935 args[3] = make_float (avg_zombies);
3936 args[4] = make_float (avg_zombies / avg_live / 100);
3937 args[5] = make_number (max_live);
3938 args[6] = make_number (max_zombies);
3939 args[7] = zombie_list;
3940 return Fmessage (8, args);
3941 }
3942
3943 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3944
3945
3946 /* Mark OBJ if we can prove it's a Lisp_Object. */
3947
3948 static INLINE void
3949 mark_maybe_object (Lisp_Object obj)
3950 {
3951 void *po;
3952 struct mem_node *m;
3953
3954 if (INTEGERP (obj))
3955 return;
3956
3957 po = (void *) XPNTR (obj);
3958 m = mem_find (po);
3959
3960 if (m != MEM_NIL)
3961 {
3962 int mark_p = 0;
3963
3964 switch (XTYPE (obj))
3965 {
3966 case Lisp_String:
3967 mark_p = (live_string_p (m, po)
3968 && !STRING_MARKED_P ((struct Lisp_String *) po));
3969 break;
3970
3971 case Lisp_Cons:
3972 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3973 break;
3974
3975 case Lisp_Symbol:
3976 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3977 break;
3978
3979 case Lisp_Float:
3980 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3981 break;
3982
3983 case Lisp_Vectorlike:
3984 /* Note: can't check BUFFERP before we know it's a
3985 buffer because checking that dereferences the pointer
3986 PO which might point anywhere. */
3987 if (live_vector_p (m, po))
3988 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3989 else if (live_buffer_p (m, po))
3990 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3991 break;
3992
3993 case Lisp_Misc:
3994 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3995 break;
3996
3997 default:
3998 break;
3999 }
4000
4001 if (mark_p)
4002 {
4003 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4004 if (nzombies < MAX_ZOMBIES)
4005 zombies[nzombies] = obj;
4006 ++nzombies;
4007 #endif
4008 mark_object (obj);
4009 }
4010 }
4011 }
4012
4013
4014 /* If P points to Lisp data, mark that as live if it isn't already
4015 marked. */
4016
4017 static INLINE void
4018 mark_maybe_pointer (void *p)
4019 {
4020 struct mem_node *m;
4021
4022 /* Quickly rule out some values which can't point to Lisp data. */
4023 if ((EMACS_INT) p %
4024 #ifdef USE_LSB_TAG
4025 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4026 #else
4027 2 /* We assume that Lisp data is aligned on even addresses. */
4028 #endif
4029 )
4030 return;
4031
4032 m = mem_find (p);
4033 if (m != MEM_NIL)
4034 {
4035 Lisp_Object obj = Qnil;
4036
4037 switch (m->type)
4038 {
4039 case MEM_TYPE_NON_LISP:
4040 /* Nothing to do; not a pointer to Lisp memory. */
4041 break;
4042
4043 case MEM_TYPE_BUFFER:
4044 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4045 XSETVECTOR (obj, p);
4046 break;
4047
4048 case MEM_TYPE_CONS:
4049 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4050 XSETCONS (obj, p);
4051 break;
4052
4053 case MEM_TYPE_STRING:
4054 if (live_string_p (m, p)
4055 && !STRING_MARKED_P ((struct Lisp_String *) p))
4056 XSETSTRING (obj, p);
4057 break;
4058
4059 case MEM_TYPE_MISC:
4060 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4061 XSETMISC (obj, p);
4062 break;
4063
4064 case MEM_TYPE_SYMBOL:
4065 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4066 XSETSYMBOL (obj, p);
4067 break;
4068
4069 case MEM_TYPE_FLOAT:
4070 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4071 XSETFLOAT (obj, p);
4072 break;
4073
4074 case MEM_TYPE_VECTORLIKE:
4075 if (live_vector_p (m, p))
4076 {
4077 Lisp_Object tem;
4078 XSETVECTOR (tem, p);
4079 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4080 obj = tem;
4081 }
4082 break;
4083
4084 default:
4085 abort ();
4086 }
4087
4088 if (!NILP (obj))
4089 mark_object (obj);
4090 }
4091 }
4092
4093
4094 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4095 or END+OFFSET..START. */
4096
4097 static void
4098 mark_memory (void *start, void *end, int offset)
4099 {
4100 Lisp_Object *p;
4101 void **pp;
4102
4103 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4104 nzombies = 0;
4105 #endif
4106
4107 /* Make START the pointer to the start of the memory region,
4108 if it isn't already. */
4109 if (end < start)
4110 {
4111 void *tem = start;
4112 start = end;
4113 end = tem;
4114 }
4115
4116 /* Mark Lisp_Objects. */
4117 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4118 mark_maybe_object (*p);
4119
4120 /* Mark Lisp data pointed to. This is necessary because, in some
4121 situations, the C compiler optimizes Lisp objects away, so that
4122 only a pointer to them remains. Example:
4123
4124 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4125 ()
4126 {
4127 Lisp_Object obj = build_string ("test");
4128 struct Lisp_String *s = XSTRING (obj);
4129 Fgarbage_collect ();
4130 fprintf (stderr, "test `%s'\n", s->data);
4131 return Qnil;
4132 }
4133
4134 Here, `obj' isn't really used, and the compiler optimizes it
4135 away. The only reference to the life string is through the
4136 pointer `s'. */
4137
4138 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4139 mark_maybe_pointer (*pp);
4140 }
4141
4142 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4143 the GCC system configuration. In gcc 3.2, the only systems for
4144 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4145 by others?) and ns32k-pc532-min. */
4146
4147 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4148
4149 static int setjmp_tested_p, longjmps_done;
4150
4151 #define SETJMP_WILL_LIKELY_WORK "\
4152 \n\
4153 Emacs garbage collector has been changed to use conservative stack\n\
4154 marking. Emacs has determined that the method it uses to do the\n\
4155 marking will likely work on your system, but this isn't sure.\n\
4156 \n\
4157 If you are a system-programmer, or can get the help of a local wizard\n\
4158 who is, please take a look at the function mark_stack in alloc.c, and\n\
4159 verify that the methods used are appropriate for your system.\n\
4160 \n\
4161 Please mail the result to <emacs-devel@gnu.org>.\n\
4162 "
4163
4164 #define SETJMP_WILL_NOT_WORK "\
4165 \n\
4166 Emacs garbage collector has been changed to use conservative stack\n\
4167 marking. Emacs has determined that the default method it uses to do the\n\
4168 marking will not work on your system. We will need a system-dependent\n\
4169 solution for your system.\n\
4170 \n\
4171 Please take a look at the function mark_stack in alloc.c, and\n\
4172 try to find a way to make it work on your system.\n\
4173 \n\
4174 Note that you may get false negatives, depending on the compiler.\n\
4175 In particular, you need to use -O with GCC for this test.\n\
4176 \n\
4177 Please mail the result to <emacs-devel@gnu.org>.\n\
4178 "
4179
4180
4181 /* Perform a quick check if it looks like setjmp saves registers in a
4182 jmp_buf. Print a message to stderr saying so. When this test
4183 succeeds, this is _not_ a proof that setjmp is sufficient for
4184 conservative stack marking. Only the sources or a disassembly
4185 can prove that. */
4186
4187 static void
4188 test_setjmp (void)
4189 {
4190 char buf[10];
4191 register int x;
4192 jmp_buf jbuf;
4193 int result = 0;
4194
4195 /* Arrange for X to be put in a register. */
4196 sprintf (buf, "1");
4197 x = strlen (buf);
4198 x = 2 * x - 1;
4199
4200 setjmp (jbuf);
4201 if (longjmps_done == 1)
4202 {
4203 /* Came here after the longjmp at the end of the function.
4204
4205 If x == 1, the longjmp has restored the register to its
4206 value before the setjmp, and we can hope that setjmp
4207 saves all such registers in the jmp_buf, although that
4208 isn't sure.
4209
4210 For other values of X, either something really strange is
4211 taking place, or the setjmp just didn't save the register. */
4212
4213 if (x == 1)
4214 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4215 else
4216 {
4217 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4218 exit (1);
4219 }
4220 }
4221
4222 ++longjmps_done;
4223 x = 2;
4224 if (longjmps_done == 1)
4225 longjmp (jbuf, 1);
4226 }
4227
4228 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4229
4230
4231 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4232
4233 /* Abort if anything GCPRO'd doesn't survive the GC. */
4234
4235 static void
4236 check_gcpros (void)
4237 {
4238 struct gcpro *p;
4239 int i;
4240
4241 for (p = gcprolist; p; p = p->next)
4242 for (i = 0; i < p->nvars; ++i)
4243 if (!survives_gc_p (p->var[i]))
4244 /* FIXME: It's not necessarily a bug. It might just be that the
4245 GCPRO is unnecessary or should release the object sooner. */
4246 abort ();
4247 }
4248
4249 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4250
4251 static void
4252 dump_zombies (void)
4253 {
4254 int i;
4255
4256 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4257 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4258 {
4259 fprintf (stderr, " %d = ", i);
4260 debug_print (zombies[i]);
4261 }
4262 }
4263
4264 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265
4266
4267 /* Mark live Lisp objects on the C stack.
4268
4269 There are several system-dependent problems to consider when
4270 porting this to new architectures:
4271
4272 Processor Registers
4273
4274 We have to mark Lisp objects in CPU registers that can hold local
4275 variables or are used to pass parameters.
4276
4277 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4278 something that either saves relevant registers on the stack, or
4279 calls mark_maybe_object passing it each register's contents.
4280
4281 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4282 implementation assumes that calling setjmp saves registers we need
4283 to see in a jmp_buf which itself lies on the stack. This doesn't
4284 have to be true! It must be verified for each system, possibly
4285 by taking a look at the source code of setjmp.
4286
4287 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4288 can use it as a machine independent method to store all registers
4289 to the stack. In this case the macros described in the previous
4290 two paragraphs are not used.
4291
4292 Stack Layout
4293
4294 Architectures differ in the way their processor stack is organized.
4295 For example, the stack might look like this
4296
4297 +----------------+
4298 | Lisp_Object | size = 4
4299 +----------------+
4300 | something else | size = 2
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | ... |
4305
4306 In such a case, not every Lisp_Object will be aligned equally. To
4307 find all Lisp_Object on the stack it won't be sufficient to walk
4308 the stack in steps of 4 bytes. Instead, two passes will be
4309 necessary, one starting at the start of the stack, and a second
4310 pass starting at the start of the stack + 2. Likewise, if the
4311 minimal alignment of Lisp_Objects on the stack is 1, four passes
4312 would be necessary, each one starting with one byte more offset
4313 from the stack start.
4314
4315 The current code assumes by default that Lisp_Objects are aligned
4316 equally on the stack. */
4317
4318 static void
4319 mark_stack (void)
4320 {
4321 int i;
4322 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4323 union aligned_jmpbuf {
4324 Lisp_Object o;
4325 jmp_buf j;
4326 } j;
4327 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4328 void *end;
4329
4330 #ifdef HAVE___BUILTIN_UNWIND_INIT
4331 /* Force callee-saved registers and register windows onto the stack.
4332 This is the preferred method if available, obviating the need for
4333 machine dependent methods. */
4334 __builtin_unwind_init ();
4335 end = &end;
4336 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4337 /* This trick flushes the register windows so that all the state of
4338 the process is contained in the stack. */
4339 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4340 needed on ia64 too. See mach_dep.c, where it also says inline
4341 assembler doesn't work with relevant proprietary compilers. */
4342 #ifdef __sparc__
4343 #if defined (__sparc64__) && defined (__FreeBSD__)
4344 /* FreeBSD does not have a ta 3 handler. */
4345 asm ("flushw");
4346 #else
4347 asm ("ta 3");
4348 #endif
4349 #endif
4350
4351 /* Save registers that we need to see on the stack. We need to see
4352 registers used to hold register variables and registers used to
4353 pass parameters. */
4354 #ifdef GC_SAVE_REGISTERS_ON_STACK
4355 GC_SAVE_REGISTERS_ON_STACK (end);
4356 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4357
4358 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4359 setjmp will definitely work, test it
4360 and print a message with the result
4361 of the test. */
4362 if (!setjmp_tested_p)
4363 {
4364 setjmp_tested_p = 1;
4365 test_setjmp ();
4366 }
4367 #endif /* GC_SETJMP_WORKS */
4368
4369 setjmp (j.j);
4370 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4371 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4372 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4373
4374 /* This assumes that the stack is a contiguous region in memory. If
4375 that's not the case, something has to be done here to iterate
4376 over the stack segments. */
4377 #ifndef GC_LISP_OBJECT_ALIGNMENT
4378 #ifdef __GNUC__
4379 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4380 #else
4381 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4382 #endif
4383 #endif
4384 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4385 mark_memory (stack_base, end, i);
4386 /* Allow for marking a secondary stack, like the register stack on the
4387 ia64. */
4388 #ifdef GC_MARK_SECONDARY_STACK
4389 GC_MARK_SECONDARY_STACK ();
4390 #endif
4391
4392 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4393 check_gcpros ();
4394 #endif
4395 }
4396
4397 #endif /* GC_MARK_STACK != 0 */
4398
4399
4400 /* Determine whether it is safe to access memory at address P. */
4401 static int
4402 valid_pointer_p (void *p)
4403 {
4404 #ifdef WINDOWSNT
4405 return w32_valid_pointer_p (p, 16);
4406 #else
4407 int fd;
4408
4409 /* Obviously, we cannot just access it (we would SEGV trying), so we
4410 trick the o/s to tell us whether p is a valid pointer.
4411 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4412 not validate p in that case. */
4413
4414 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4415 {
4416 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4417 emacs_close (fd);
4418 unlink ("__Valid__Lisp__Object__");
4419 return valid;
4420 }
4421
4422 return -1;
4423 #endif
4424 }
4425
4426 /* Return 1 if OBJ is a valid lisp object.
4427 Return 0 if OBJ is NOT a valid lisp object.
4428 Return -1 if we cannot validate OBJ.
4429 This function can be quite slow,
4430 so it should only be used in code for manual debugging. */
4431
4432 int
4433 valid_lisp_object_p (Lisp_Object obj)
4434 {
4435 void *p;
4436 #if GC_MARK_STACK
4437 struct mem_node *m;
4438 #endif
4439
4440 if (INTEGERP (obj))
4441 return 1;
4442
4443 p = (void *) XPNTR (obj);
4444 if (PURE_POINTER_P (p))
4445 return 1;
4446
4447 #if !GC_MARK_STACK
4448 return valid_pointer_p (p);
4449 #else
4450
4451 m = mem_find (p);
4452
4453 if (m == MEM_NIL)
4454 {
4455 int valid = valid_pointer_p (p);
4456 if (valid <= 0)
4457 return valid;
4458
4459 if (SUBRP (obj))
4460 return 1;
4461
4462 return 0;
4463 }
4464
4465 switch (m->type)
4466 {
4467 case MEM_TYPE_NON_LISP:
4468 return 0;
4469
4470 case MEM_TYPE_BUFFER:
4471 return live_buffer_p (m, p);
4472
4473 case MEM_TYPE_CONS:
4474 return live_cons_p (m, p);
4475
4476 case MEM_TYPE_STRING:
4477 return live_string_p (m, p);
4478
4479 case MEM_TYPE_MISC:
4480 return live_misc_p (m, p);
4481
4482 case MEM_TYPE_SYMBOL:
4483 return live_symbol_p (m, p);
4484
4485 case MEM_TYPE_FLOAT:
4486 return live_float_p (m, p);
4487
4488 case MEM_TYPE_VECTORLIKE:
4489 return live_vector_p (m, p);
4490
4491 default:
4492 break;
4493 }
4494
4495 return 0;
4496 #endif
4497 }
4498
4499
4500
4501 \f
4502 /***********************************************************************
4503 Pure Storage Management
4504 ***********************************************************************/
4505
4506 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4507 pointer to it. TYPE is the Lisp type for which the memory is
4508 allocated. TYPE < 0 means it's not used for a Lisp object. */
4509
4510 static POINTER_TYPE *
4511 pure_alloc (size_t size, int type)
4512 {
4513 POINTER_TYPE *result;
4514 #ifdef USE_LSB_TAG
4515 size_t alignment = (1 << GCTYPEBITS);
4516 #else
4517 size_t alignment = sizeof (EMACS_INT);
4518
4519 /* Give Lisp_Floats an extra alignment. */
4520 if (type == Lisp_Float)
4521 {
4522 #if defined __GNUC__ && __GNUC__ >= 2
4523 alignment = __alignof (struct Lisp_Float);
4524 #else
4525 alignment = sizeof (struct Lisp_Float);
4526 #endif
4527 }
4528 #endif
4529
4530 again:
4531 if (type >= 0)
4532 {
4533 /* Allocate space for a Lisp object from the beginning of the free
4534 space with taking account of alignment. */
4535 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4536 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4537 }
4538 else
4539 {
4540 /* Allocate space for a non-Lisp object from the end of the free
4541 space. */
4542 pure_bytes_used_non_lisp += size;
4543 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4544 }
4545 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4546
4547 if (pure_bytes_used <= pure_size)
4548 return result;
4549
4550 /* Don't allocate a large amount here,
4551 because it might get mmap'd and then its address
4552 might not be usable. */
4553 purebeg = (char *) xmalloc (10000);
4554 pure_size = 10000;
4555 pure_bytes_used_before_overflow += pure_bytes_used - size;
4556 pure_bytes_used = 0;
4557 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4558 goto again;
4559 }
4560
4561
4562 /* Print a warning if PURESIZE is too small. */
4563
4564 void
4565 check_pure_size (void)
4566 {
4567 if (pure_bytes_used_before_overflow)
4568 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4569 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4570 }
4571
4572
4573 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4574 the non-Lisp data pool of the pure storage, and return its start
4575 address. Return NULL if not found. */
4576
4577 static char *
4578 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4579 {
4580 int i;
4581 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4582 const unsigned char *p;
4583 char *non_lisp_beg;
4584
4585 if (pure_bytes_used_non_lisp < nbytes + 1)
4586 return NULL;
4587
4588 /* Set up the Boyer-Moore table. */
4589 skip = nbytes + 1;
4590 for (i = 0; i < 256; i++)
4591 bm_skip[i] = skip;
4592
4593 p = (const unsigned char *) data;
4594 while (--skip > 0)
4595 bm_skip[*p++] = skip;
4596
4597 last_char_skip = bm_skip['\0'];
4598
4599 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4600 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4601
4602 /* See the comments in the function `boyer_moore' (search.c) for the
4603 use of `infinity'. */
4604 infinity = pure_bytes_used_non_lisp + 1;
4605 bm_skip['\0'] = infinity;
4606
4607 p = (const unsigned char *) non_lisp_beg + nbytes;
4608 start = 0;
4609 do
4610 {
4611 /* Check the last character (== '\0'). */
4612 do
4613 {
4614 start += bm_skip[*(p + start)];
4615 }
4616 while (start <= start_max);
4617
4618 if (start < infinity)
4619 /* Couldn't find the last character. */
4620 return NULL;
4621
4622 /* No less than `infinity' means we could find the last
4623 character at `p[start - infinity]'. */
4624 start -= infinity;
4625
4626 /* Check the remaining characters. */
4627 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4628 /* Found. */
4629 return non_lisp_beg + start;
4630
4631 start += last_char_skip;
4632 }
4633 while (start <= start_max);
4634
4635 return NULL;
4636 }
4637
4638
4639 /* Return a string allocated in pure space. DATA is a buffer holding
4640 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4641 non-zero means make the result string multibyte.
4642
4643 Must get an error if pure storage is full, since if it cannot hold
4644 a large string it may be able to hold conses that point to that
4645 string; then the string is not protected from gc. */
4646
4647 Lisp_Object
4648 make_pure_string (const char *data,
4649 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4650 {
4651 Lisp_Object string;
4652 struct Lisp_String *s;
4653
4654 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4655 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4656 if (s->data == NULL)
4657 {
4658 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4659 memcpy (s->data, data, nbytes);
4660 s->data[nbytes] = '\0';
4661 }
4662 s->size = nchars;
4663 s->size_byte = multibyte ? nbytes : -1;
4664 s->intervals = NULL_INTERVAL;
4665 XSETSTRING (string, s);
4666 return string;
4667 }
4668
4669 /* Return a string a string allocated in pure space. Do not allocate
4670 the string data, just point to DATA. */
4671
4672 Lisp_Object
4673 make_pure_c_string (const char *data)
4674 {
4675 Lisp_Object string;
4676 struct Lisp_String *s;
4677 EMACS_INT nchars = strlen (data);
4678
4679 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4680 s->size = nchars;
4681 s->size_byte = -1;
4682 s->data = (unsigned char *) data;
4683 s->intervals = NULL_INTERVAL;
4684 XSETSTRING (string, s);
4685 return string;
4686 }
4687
4688 /* Return a cons allocated from pure space. Give it pure copies
4689 of CAR as car and CDR as cdr. */
4690
4691 Lisp_Object
4692 pure_cons (Lisp_Object car, Lisp_Object cdr)
4693 {
4694 register Lisp_Object new;
4695 struct Lisp_Cons *p;
4696
4697 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4698 XSETCONS (new, p);
4699 XSETCAR (new, Fpurecopy (car));
4700 XSETCDR (new, Fpurecopy (cdr));
4701 return new;
4702 }
4703
4704
4705 /* Value is a float object with value NUM allocated from pure space. */
4706
4707 static Lisp_Object
4708 make_pure_float (double num)
4709 {
4710 register Lisp_Object new;
4711 struct Lisp_Float *p;
4712
4713 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4714 XSETFLOAT (new, p);
4715 XFLOAT_INIT (new, num);
4716 return new;
4717 }
4718
4719
4720 /* Return a vector with room for LEN Lisp_Objects allocated from
4721 pure space. */
4722
4723 Lisp_Object
4724 make_pure_vector (EMACS_INT len)
4725 {
4726 Lisp_Object new;
4727 struct Lisp_Vector *p;
4728 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4729
4730 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4731 XSETVECTOR (new, p);
4732 XVECTOR (new)->size = len;
4733 return new;
4734 }
4735
4736
4737 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4738 doc: /* Make a copy of object OBJ in pure storage.
4739 Recursively copies contents of vectors and cons cells.
4740 Does not copy symbols. Copies strings without text properties. */)
4741 (register Lisp_Object obj)
4742 {
4743 if (NILP (Vpurify_flag))
4744 return obj;
4745
4746 if (PURE_POINTER_P (XPNTR (obj)))
4747 return obj;
4748
4749 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4750 {
4751 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4752 if (!NILP (tmp))
4753 return tmp;
4754 }
4755
4756 if (CONSP (obj))
4757 obj = pure_cons (XCAR (obj), XCDR (obj));
4758 else if (FLOATP (obj))
4759 obj = make_pure_float (XFLOAT_DATA (obj));
4760 else if (STRINGP (obj))
4761 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4762 SBYTES (obj),
4763 STRING_MULTIBYTE (obj));
4764 else if (COMPILEDP (obj) || VECTORP (obj))
4765 {
4766 register struct Lisp_Vector *vec;
4767 register EMACS_INT i;
4768 EMACS_INT size;
4769
4770 size = XVECTOR (obj)->size;
4771 if (size & PSEUDOVECTOR_FLAG)
4772 size &= PSEUDOVECTOR_SIZE_MASK;
4773 vec = XVECTOR (make_pure_vector (size));
4774 for (i = 0; i < size; i++)
4775 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4776 if (COMPILEDP (obj))
4777 {
4778 XSETPVECTYPE (vec, PVEC_COMPILED);
4779 XSETCOMPILED (obj, vec);
4780 }
4781 else
4782 XSETVECTOR (obj, vec);
4783 }
4784 else if (MARKERP (obj))
4785 error ("Attempt to copy a marker to pure storage");
4786 else
4787 /* Not purified, don't hash-cons. */
4788 return obj;
4789
4790 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4791 Fputhash (obj, obj, Vpurify_flag);
4792
4793 return obj;
4794 }
4795
4796
4797 \f
4798 /***********************************************************************
4799 Protection from GC
4800 ***********************************************************************/
4801
4802 /* Put an entry in staticvec, pointing at the variable with address
4803 VARADDRESS. */
4804
4805 void
4806 staticpro (Lisp_Object *varaddress)
4807 {
4808 staticvec[staticidx++] = varaddress;
4809 if (staticidx >= NSTATICS)
4810 abort ();
4811 }
4812
4813 \f
4814 /***********************************************************************
4815 Protection from GC
4816 ***********************************************************************/
4817
4818 /* Temporarily prevent garbage collection. */
4819
4820 int
4821 inhibit_garbage_collection (void)
4822 {
4823 int count = SPECPDL_INDEX ();
4824 int nbits = min (VALBITS, BITS_PER_INT);
4825
4826 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4827 return count;
4828 }
4829
4830
4831 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4832 doc: /* Reclaim storage for Lisp objects no longer needed.
4833 Garbage collection happens automatically if you cons more than
4834 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4835 `garbage-collect' normally returns a list with info on amount of space in use:
4836 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4837 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4838 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4839 (USED-STRINGS . FREE-STRINGS))
4840 However, if there was overflow in pure space, `garbage-collect'
4841 returns nil, because real GC can't be done. */)
4842 (void)
4843 {
4844 register struct specbinding *bind;
4845 char stack_top_variable;
4846 register int i;
4847 int message_p;
4848 Lisp_Object total[8];
4849 int count = SPECPDL_INDEX ();
4850 EMACS_TIME t1, t2, t3;
4851
4852 if (abort_on_gc)
4853 abort ();
4854
4855 /* Can't GC if pure storage overflowed because we can't determine
4856 if something is a pure object or not. */
4857 if (pure_bytes_used_before_overflow)
4858 return Qnil;
4859
4860 CHECK_CONS_LIST ();
4861
4862 /* Don't keep undo information around forever.
4863 Do this early on, so it is no problem if the user quits. */
4864 {
4865 register struct buffer *nextb = all_buffers;
4866
4867 while (nextb)
4868 {
4869 /* If a buffer's undo list is Qt, that means that undo is
4870 turned off in that buffer. Calling truncate_undo_list on
4871 Qt tends to return NULL, which effectively turns undo back on.
4872 So don't call truncate_undo_list if undo_list is Qt. */
4873 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4874 truncate_undo_list (nextb);
4875
4876 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4877 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4878 && ! nextb->text->inhibit_shrinking)
4879 {
4880 /* If a buffer's gap size is more than 10% of the buffer
4881 size, or larger than 2000 bytes, then shrink it
4882 accordingly. Keep a minimum size of 20 bytes. */
4883 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4884
4885 if (nextb->text->gap_size > size)
4886 {
4887 struct buffer *save_current = current_buffer;
4888 current_buffer = nextb;
4889 make_gap (-(nextb->text->gap_size - size));
4890 current_buffer = save_current;
4891 }
4892 }
4893
4894 nextb = nextb->next;
4895 }
4896 }
4897
4898 EMACS_GET_TIME (t1);
4899
4900 /* In case user calls debug_print during GC,
4901 don't let that cause a recursive GC. */
4902 consing_since_gc = 0;
4903
4904 /* Save what's currently displayed in the echo area. */
4905 message_p = push_message ();
4906 record_unwind_protect (pop_message_unwind, Qnil);
4907
4908 /* Save a copy of the contents of the stack, for debugging. */
4909 #if MAX_SAVE_STACK > 0
4910 if (NILP (Vpurify_flag))
4911 {
4912 i = &stack_top_variable - stack_bottom;
4913 if (i < 0) i = -i;
4914 if (i < MAX_SAVE_STACK)
4915 {
4916 if (stack_copy == 0)
4917 stack_copy = (char *) xmalloc (stack_copy_size = i);
4918 else if (stack_copy_size < i)
4919 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4920 if (stack_copy)
4921 {
4922 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4923 memcpy (stack_copy, stack_bottom, i);
4924 else
4925 memcpy (stack_copy, &stack_top_variable, i);
4926 }
4927 }
4928 }
4929 #endif /* MAX_SAVE_STACK > 0 */
4930
4931 if (garbage_collection_messages)
4932 message1_nolog ("Garbage collecting...");
4933
4934 BLOCK_INPUT;
4935
4936 shrink_regexp_cache ();
4937
4938 gc_in_progress = 1;
4939
4940 /* clear_marks (); */
4941
4942 /* Mark all the special slots that serve as the roots of accessibility. */
4943
4944 for (i = 0; i < staticidx; i++)
4945 mark_object (*staticvec[i]);
4946
4947 for (bind = specpdl; bind != specpdl_ptr; bind++)
4948 {
4949 mark_object (bind->symbol);
4950 mark_object (bind->old_value);
4951 }
4952 mark_terminals ();
4953 mark_kboards ();
4954 mark_ttys ();
4955
4956 #ifdef USE_GTK
4957 {
4958 extern void xg_mark_data (void);
4959 xg_mark_data ();
4960 }
4961 #endif
4962
4963 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4964 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4965 mark_stack ();
4966 #else
4967 {
4968 register struct gcpro *tail;
4969 for (tail = gcprolist; tail; tail = tail->next)
4970 for (i = 0; i < tail->nvars; i++)
4971 mark_object (tail->var[i]);
4972 }
4973 mark_byte_stack ();
4974 {
4975 struct catchtag *catch;
4976 struct handler *handler;
4977
4978 for (catch = catchlist; catch; catch = catch->next)
4979 {
4980 mark_object (catch->tag);
4981 mark_object (catch->val);
4982 }
4983 for (handler = handlerlist; handler; handler = handler->next)
4984 {
4985 mark_object (handler->handler);
4986 mark_object (handler->var);
4987 }
4988 }
4989 mark_backtrace ();
4990 #endif
4991
4992 #ifdef HAVE_WINDOW_SYSTEM
4993 mark_fringe_data ();
4994 #endif
4995
4996 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4997 mark_stack ();
4998 #endif
4999
5000 /* Everything is now marked, except for the things that require special
5001 finalization, i.e. the undo_list.
5002 Look thru every buffer's undo list
5003 for elements that update markers that were not marked,
5004 and delete them. */
5005 {
5006 register struct buffer *nextb = all_buffers;
5007
5008 while (nextb)
5009 {
5010 /* If a buffer's undo list is Qt, that means that undo is
5011 turned off in that buffer. Calling truncate_undo_list on
5012 Qt tends to return NULL, which effectively turns undo back on.
5013 So don't call truncate_undo_list if undo_list is Qt. */
5014 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5015 {
5016 Lisp_Object tail, prev;
5017 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5018 prev = Qnil;
5019 while (CONSP (tail))
5020 {
5021 if (CONSP (XCAR (tail))
5022 && MARKERP (XCAR (XCAR (tail)))
5023 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5024 {
5025 if (NILP (prev))
5026 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5027 else
5028 {
5029 tail = XCDR (tail);
5030 XSETCDR (prev, tail);
5031 }
5032 }
5033 else
5034 {
5035 prev = tail;
5036 tail = XCDR (tail);
5037 }
5038 }
5039 }
5040 /* Now that we have stripped the elements that need not be in the
5041 undo_list any more, we can finally mark the list. */
5042 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5043
5044 nextb = nextb->next;
5045 }
5046 }
5047
5048 gc_sweep ();
5049
5050 /* Clear the mark bits that we set in certain root slots. */
5051
5052 unmark_byte_stack ();
5053 VECTOR_UNMARK (&buffer_defaults);
5054 VECTOR_UNMARK (&buffer_local_symbols);
5055
5056 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5057 dump_zombies ();
5058 #endif
5059
5060 UNBLOCK_INPUT;
5061
5062 CHECK_CONS_LIST ();
5063
5064 /* clear_marks (); */
5065 gc_in_progress = 0;
5066
5067 consing_since_gc = 0;
5068 if (gc_cons_threshold < 10000)
5069 gc_cons_threshold = 10000;
5070
5071 if (FLOATP (Vgc_cons_percentage))
5072 { /* Set gc_cons_combined_threshold. */
5073 EMACS_INT total = 0;
5074
5075 total += total_conses * sizeof (struct Lisp_Cons);
5076 total += total_symbols * sizeof (struct Lisp_Symbol);
5077 total += total_markers * sizeof (union Lisp_Misc);
5078 total += total_string_size;
5079 total += total_vector_size * sizeof (Lisp_Object);
5080 total += total_floats * sizeof (struct Lisp_Float);
5081 total += total_intervals * sizeof (struct interval);
5082 total += total_strings * sizeof (struct Lisp_String);
5083
5084 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5085 }
5086 else
5087 gc_relative_threshold = 0;
5088
5089 if (garbage_collection_messages)
5090 {
5091 if (message_p || minibuf_level > 0)
5092 restore_message ();
5093 else
5094 message1_nolog ("Garbage collecting...done");
5095 }
5096
5097 unbind_to (count, Qnil);
5098
5099 total[0] = Fcons (make_number (total_conses),
5100 make_number (total_free_conses));
5101 total[1] = Fcons (make_number (total_symbols),
5102 make_number (total_free_symbols));
5103 total[2] = Fcons (make_number (total_markers),
5104 make_number (total_free_markers));
5105 total[3] = make_number (total_string_size);
5106 total[4] = make_number (total_vector_size);
5107 total[5] = Fcons (make_number (total_floats),
5108 make_number (total_free_floats));
5109 total[6] = Fcons (make_number (total_intervals),
5110 make_number (total_free_intervals));
5111 total[7] = Fcons (make_number (total_strings),
5112 make_number (total_free_strings));
5113
5114 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5115 {
5116 /* Compute average percentage of zombies. */
5117 double nlive = 0;
5118
5119 for (i = 0; i < 7; ++i)
5120 if (CONSP (total[i]))
5121 nlive += XFASTINT (XCAR (total[i]));
5122
5123 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5124 max_live = max (nlive, max_live);
5125 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5126 max_zombies = max (nzombies, max_zombies);
5127 ++ngcs;
5128 }
5129 #endif
5130
5131 if (!NILP (Vpost_gc_hook))
5132 {
5133 int count = inhibit_garbage_collection ();
5134 safe_run_hooks (Qpost_gc_hook);
5135 unbind_to (count, Qnil);
5136 }
5137
5138 /* Accumulate statistics. */
5139 EMACS_GET_TIME (t2);
5140 EMACS_SUB_TIME (t3, t2, t1);
5141 if (FLOATP (Vgc_elapsed))
5142 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5143 EMACS_SECS (t3) +
5144 EMACS_USECS (t3) * 1.0e-6);
5145 gcs_done++;
5146
5147 return Flist (sizeof total / sizeof *total, total);
5148 }
5149
5150
5151 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5152 only interesting objects referenced from glyphs are strings. */
5153
5154 static void
5155 mark_glyph_matrix (struct glyph_matrix *matrix)
5156 {
5157 struct glyph_row *row = matrix->rows;
5158 struct glyph_row *end = row + matrix->nrows;
5159
5160 for (; row < end; ++row)
5161 if (row->enabled_p)
5162 {
5163 int area;
5164 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5165 {
5166 struct glyph *glyph = row->glyphs[area];
5167 struct glyph *end_glyph = glyph + row->used[area];
5168
5169 for (; glyph < end_glyph; ++glyph)
5170 if (STRINGP (glyph->object)
5171 && !STRING_MARKED_P (XSTRING (glyph->object)))
5172 mark_object (glyph->object);
5173 }
5174 }
5175 }
5176
5177
5178 /* Mark Lisp faces in the face cache C. */
5179
5180 static void
5181 mark_face_cache (struct face_cache *c)
5182 {
5183 if (c)
5184 {
5185 int i, j;
5186 for (i = 0; i < c->used; ++i)
5187 {
5188 struct face *face = FACE_FROM_ID (c->f, i);
5189
5190 if (face)
5191 {
5192 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5193 mark_object (face->lface[j]);
5194 }
5195 }
5196 }
5197 }
5198
5199
5200 \f
5201 /* Mark reference to a Lisp_Object.
5202 If the object referred to has not been seen yet, recursively mark
5203 all the references contained in it. */
5204
5205 #define LAST_MARKED_SIZE 500
5206 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5207 int last_marked_index;
5208
5209 /* For debugging--call abort when we cdr down this many
5210 links of a list, in mark_object. In debugging,
5211 the call to abort will hit a breakpoint.
5212 Normally this is zero and the check never goes off. */
5213 static int mark_object_loop_halt;
5214
5215 static void
5216 mark_vectorlike (struct Lisp_Vector *ptr)
5217 {
5218 register EMACS_UINT size = ptr->size;
5219 register EMACS_UINT i;
5220
5221 eassert (!VECTOR_MARKED_P (ptr));
5222 VECTOR_MARK (ptr); /* Else mark it */
5223 if (size & PSEUDOVECTOR_FLAG)
5224 size &= PSEUDOVECTOR_SIZE_MASK;
5225
5226 /* Note that this size is not the memory-footprint size, but only
5227 the number of Lisp_Object fields that we should trace.
5228 The distinction is used e.g. by Lisp_Process which places extra
5229 non-Lisp_Object fields at the end of the structure. */
5230 for (i = 0; i < size; i++) /* and then mark its elements */
5231 mark_object (ptr->contents[i]);
5232 }
5233
5234 /* Like mark_vectorlike but optimized for char-tables (and
5235 sub-char-tables) assuming that the contents are mostly integers or
5236 symbols. */
5237
5238 static void
5239 mark_char_table (struct Lisp_Vector *ptr)
5240 {
5241 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5242 register EMACS_UINT i;
5243
5244 eassert (!VECTOR_MARKED_P (ptr));
5245 VECTOR_MARK (ptr);
5246 for (i = 0; i < size; i++)
5247 {
5248 Lisp_Object val = ptr->contents[i];
5249
5250 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5251 continue;
5252 if (SUB_CHAR_TABLE_P (val))
5253 {
5254 if (! VECTOR_MARKED_P (XVECTOR (val)))
5255 mark_char_table (XVECTOR (val));
5256 }
5257 else
5258 mark_object (val);
5259 }
5260 }
5261
5262 void
5263 mark_object (Lisp_Object arg)
5264 {
5265 register Lisp_Object obj = arg;
5266 #ifdef GC_CHECK_MARKED_OBJECTS
5267 void *po;
5268 struct mem_node *m;
5269 #endif
5270 int cdr_count = 0;
5271
5272 loop:
5273
5274 if (PURE_POINTER_P (XPNTR (obj)))
5275 return;
5276
5277 last_marked[last_marked_index++] = obj;
5278 if (last_marked_index == LAST_MARKED_SIZE)
5279 last_marked_index = 0;
5280
5281 /* Perform some sanity checks on the objects marked here. Abort if
5282 we encounter an object we know is bogus. This increases GC time
5283 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5284 #ifdef GC_CHECK_MARKED_OBJECTS
5285
5286 po = (void *) XPNTR (obj);
5287
5288 /* Check that the object pointed to by PO is known to be a Lisp
5289 structure allocated from the heap. */
5290 #define CHECK_ALLOCATED() \
5291 do { \
5292 m = mem_find (po); \
5293 if (m == MEM_NIL) \
5294 abort (); \
5295 } while (0)
5296
5297 /* Check that the object pointed to by PO is live, using predicate
5298 function LIVEP. */
5299 #define CHECK_LIVE(LIVEP) \
5300 do { \
5301 if (!LIVEP (m, po)) \
5302 abort (); \
5303 } while (0)
5304
5305 /* Check both of the above conditions. */
5306 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5307 do { \
5308 CHECK_ALLOCATED (); \
5309 CHECK_LIVE (LIVEP); \
5310 } while (0) \
5311
5312 #else /* not GC_CHECK_MARKED_OBJECTS */
5313
5314 #define CHECK_ALLOCATED() (void) 0
5315 #define CHECK_LIVE(LIVEP) (void) 0
5316 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5317
5318 #endif /* not GC_CHECK_MARKED_OBJECTS */
5319
5320 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5321 {
5322 case Lisp_String:
5323 {
5324 register struct Lisp_String *ptr = XSTRING (obj);
5325 if (STRING_MARKED_P (ptr))
5326 break;
5327 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5328 MARK_INTERVAL_TREE (ptr->intervals);
5329 MARK_STRING (ptr);
5330 #ifdef GC_CHECK_STRING_BYTES
5331 /* Check that the string size recorded in the string is the
5332 same as the one recorded in the sdata structure. */
5333 CHECK_STRING_BYTES (ptr);
5334 #endif /* GC_CHECK_STRING_BYTES */
5335 }
5336 break;
5337
5338 case Lisp_Vectorlike:
5339 if (VECTOR_MARKED_P (XVECTOR (obj)))
5340 break;
5341 #ifdef GC_CHECK_MARKED_OBJECTS
5342 m = mem_find (po);
5343 if (m == MEM_NIL && !SUBRP (obj)
5344 && po != &buffer_defaults
5345 && po != &buffer_local_symbols)
5346 abort ();
5347 #endif /* GC_CHECK_MARKED_OBJECTS */
5348
5349 if (BUFFERP (obj))
5350 {
5351 #ifdef GC_CHECK_MARKED_OBJECTS
5352 if (po != &buffer_defaults && po != &buffer_local_symbols)
5353 {
5354 struct buffer *b;
5355 for (b = all_buffers; b && b != po; b = b->next)
5356 ;
5357 if (b == NULL)
5358 abort ();
5359 }
5360 #endif /* GC_CHECK_MARKED_OBJECTS */
5361 mark_buffer (obj);
5362 }
5363 else if (SUBRP (obj))
5364 break;
5365 else if (COMPILEDP (obj))
5366 /* We could treat this just like a vector, but it is better to
5367 save the COMPILED_CONSTANTS element for last and avoid
5368 recursion there. */
5369 {
5370 register struct Lisp_Vector *ptr = XVECTOR (obj);
5371 register EMACS_UINT size = ptr->size;
5372 register EMACS_UINT i;
5373
5374 CHECK_LIVE (live_vector_p);
5375 VECTOR_MARK (ptr); /* Else mark it */
5376 size &= PSEUDOVECTOR_SIZE_MASK;
5377 for (i = 0; i < size; i++) /* and then mark its elements */
5378 {
5379 if (i != COMPILED_CONSTANTS)
5380 mark_object (ptr->contents[i]);
5381 }
5382 obj = ptr->contents[COMPILED_CONSTANTS];
5383 goto loop;
5384 }
5385 else if (FRAMEP (obj))
5386 {
5387 register struct frame *ptr = XFRAME (obj);
5388 mark_vectorlike (XVECTOR (obj));
5389 mark_face_cache (ptr->face_cache);
5390 }
5391 else if (WINDOWP (obj))
5392 {
5393 register struct Lisp_Vector *ptr = XVECTOR (obj);
5394 struct window *w = XWINDOW (obj);
5395 mark_vectorlike (ptr);
5396 /* Mark glyphs for leaf windows. Marking window matrices is
5397 sufficient because frame matrices use the same glyph
5398 memory. */
5399 if (NILP (w->hchild)
5400 && NILP (w->vchild)
5401 && w->current_matrix)
5402 {
5403 mark_glyph_matrix (w->current_matrix);
5404 mark_glyph_matrix (w->desired_matrix);
5405 }
5406 }
5407 else if (HASH_TABLE_P (obj))
5408 {
5409 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5410 mark_vectorlike ((struct Lisp_Vector *)h);
5411 /* If hash table is not weak, mark all keys and values.
5412 For weak tables, mark only the vector. */
5413 if (NILP (h->weak))
5414 mark_object (h->key_and_value);
5415 else
5416 VECTOR_MARK (XVECTOR (h->key_and_value));
5417 }
5418 else if (CHAR_TABLE_P (obj))
5419 mark_char_table (XVECTOR (obj));
5420 else
5421 mark_vectorlike (XVECTOR (obj));
5422 break;
5423
5424 case Lisp_Symbol:
5425 {
5426 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5427 struct Lisp_Symbol *ptrx;
5428
5429 if (ptr->gcmarkbit)
5430 break;
5431 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5432 ptr->gcmarkbit = 1;
5433 mark_object (ptr->function);
5434 mark_object (ptr->plist);
5435 switch (ptr->redirect)
5436 {
5437 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5438 case SYMBOL_VARALIAS:
5439 {
5440 Lisp_Object tem;
5441 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5442 mark_object (tem);
5443 break;
5444 }
5445 case SYMBOL_LOCALIZED:
5446 {
5447 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5448 /* If the value is forwarded to a buffer or keyboard field,
5449 these are marked when we see the corresponding object.
5450 And if it's forwarded to a C variable, either it's not
5451 a Lisp_Object var, or it's staticpro'd already. */
5452 mark_object (blv->where);
5453 mark_object (blv->valcell);
5454 mark_object (blv->defcell);
5455 break;
5456 }
5457 case SYMBOL_FORWARDED:
5458 /* If the value is forwarded to a buffer or keyboard field,
5459 these are marked when we see the corresponding object.
5460 And if it's forwarded to a C variable, either it's not
5461 a Lisp_Object var, or it's staticpro'd already. */
5462 break;
5463 default: abort ();
5464 }
5465 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5466 MARK_STRING (XSTRING (ptr->xname));
5467 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5468
5469 ptr = ptr->next;
5470 if (ptr)
5471 {
5472 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5473 XSETSYMBOL (obj, ptrx);
5474 goto loop;
5475 }
5476 }
5477 break;
5478
5479 case Lisp_Misc:
5480 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5481 if (XMISCANY (obj)->gcmarkbit)
5482 break;
5483 XMISCANY (obj)->gcmarkbit = 1;
5484
5485 switch (XMISCTYPE (obj))
5486 {
5487
5488 case Lisp_Misc_Marker:
5489 /* DO NOT mark thru the marker's chain.
5490 The buffer's markers chain does not preserve markers from gc;
5491 instead, markers are removed from the chain when freed by gc. */
5492 break;
5493
5494 case Lisp_Misc_Save_Value:
5495 #if GC_MARK_STACK
5496 {
5497 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5498 /* If DOGC is set, POINTER is the address of a memory
5499 area containing INTEGER potential Lisp_Objects. */
5500 if (ptr->dogc)
5501 {
5502 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5503 int nelt;
5504 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5505 mark_maybe_object (*p);
5506 }
5507 }
5508 #endif
5509 break;
5510
5511 case Lisp_Misc_Overlay:
5512 {
5513 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5514 mark_object (ptr->start);
5515 mark_object (ptr->end);
5516 mark_object (ptr->plist);
5517 if (ptr->next)
5518 {
5519 XSETMISC (obj, ptr->next);
5520 goto loop;
5521 }
5522 }
5523 break;
5524
5525 default:
5526 abort ();
5527 }
5528 break;
5529
5530 case Lisp_Cons:
5531 {
5532 register struct Lisp_Cons *ptr = XCONS (obj);
5533 if (CONS_MARKED_P (ptr))
5534 break;
5535 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5536 CONS_MARK (ptr);
5537 /* If the cdr is nil, avoid recursion for the car. */
5538 if (EQ (ptr->u.cdr, Qnil))
5539 {
5540 obj = ptr->car;
5541 cdr_count = 0;
5542 goto loop;
5543 }
5544 mark_object (ptr->car);
5545 obj = ptr->u.cdr;
5546 cdr_count++;
5547 if (cdr_count == mark_object_loop_halt)
5548 abort ();
5549 goto loop;
5550 }
5551
5552 case Lisp_Float:
5553 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5554 FLOAT_MARK (XFLOAT (obj));
5555 break;
5556
5557 case_Lisp_Int:
5558 break;
5559
5560 default:
5561 abort ();
5562 }
5563
5564 #undef CHECK_LIVE
5565 #undef CHECK_ALLOCATED
5566 #undef CHECK_ALLOCATED_AND_LIVE
5567 }
5568
5569 /* Mark the pointers in a buffer structure. */
5570
5571 static void
5572 mark_buffer (Lisp_Object buf)
5573 {
5574 register struct buffer *buffer = XBUFFER (buf);
5575 register Lisp_Object *ptr, tmp;
5576 Lisp_Object base_buffer;
5577
5578 eassert (!VECTOR_MARKED_P (buffer));
5579 VECTOR_MARK (buffer);
5580
5581 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5582
5583 /* For now, we just don't mark the undo_list. It's done later in
5584 a special way just before the sweep phase, and after stripping
5585 some of its elements that are not needed any more. */
5586
5587 if (buffer->overlays_before)
5588 {
5589 XSETMISC (tmp, buffer->overlays_before);
5590 mark_object (tmp);
5591 }
5592 if (buffer->overlays_after)
5593 {
5594 XSETMISC (tmp, buffer->overlays_after);
5595 mark_object (tmp);
5596 }
5597
5598 /* buffer-local Lisp variables start at `undo_list',
5599 tho only the ones from `name' on are GC'd normally. */
5600 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5601 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5602 ptr++)
5603 mark_object (*ptr);
5604
5605 /* If this is an indirect buffer, mark its base buffer. */
5606 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5607 {
5608 XSETBUFFER (base_buffer, buffer->base_buffer);
5609 mark_buffer (base_buffer);
5610 }
5611 }
5612
5613 /* Mark the Lisp pointers in the terminal objects.
5614 Called by the Fgarbage_collector. */
5615
5616 static void
5617 mark_terminals (void)
5618 {
5619 struct terminal *t;
5620 for (t = terminal_list; t; t = t->next_terminal)
5621 {
5622 eassert (t->name != NULL);
5623 #ifdef HAVE_WINDOW_SYSTEM
5624 /* If a terminal object is reachable from a stacpro'ed object,
5625 it might have been marked already. Make sure the image cache
5626 gets marked. */
5627 mark_image_cache (t->image_cache);
5628 #endif /* HAVE_WINDOW_SYSTEM */
5629 if (!VECTOR_MARKED_P (t))
5630 mark_vectorlike ((struct Lisp_Vector *)t);
5631 }
5632 }
5633
5634
5635
5636 /* Value is non-zero if OBJ will survive the current GC because it's
5637 either marked or does not need to be marked to survive. */
5638
5639 int
5640 survives_gc_p (Lisp_Object obj)
5641 {
5642 int survives_p;
5643
5644 switch (XTYPE (obj))
5645 {
5646 case_Lisp_Int:
5647 survives_p = 1;
5648 break;
5649
5650 case Lisp_Symbol:
5651 survives_p = XSYMBOL (obj)->gcmarkbit;
5652 break;
5653
5654 case Lisp_Misc:
5655 survives_p = XMISCANY (obj)->gcmarkbit;
5656 break;
5657
5658 case Lisp_String:
5659 survives_p = STRING_MARKED_P (XSTRING (obj));
5660 break;
5661
5662 case Lisp_Vectorlike:
5663 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5664 break;
5665
5666 case Lisp_Cons:
5667 survives_p = CONS_MARKED_P (XCONS (obj));
5668 break;
5669
5670 case Lisp_Float:
5671 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5672 break;
5673
5674 default:
5675 abort ();
5676 }
5677
5678 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5679 }
5680
5681
5682 \f
5683 /* Sweep: find all structures not marked, and free them. */
5684
5685 static void
5686 gc_sweep (void)
5687 {
5688 /* Remove or mark entries in weak hash tables.
5689 This must be done before any object is unmarked. */
5690 sweep_weak_hash_tables ();
5691
5692 sweep_strings ();
5693 #ifdef GC_CHECK_STRING_BYTES
5694 if (!noninteractive)
5695 check_string_bytes (1);
5696 #endif
5697
5698 /* Put all unmarked conses on free list */
5699 {
5700 register struct cons_block *cblk;
5701 struct cons_block **cprev = &cons_block;
5702 register int lim = cons_block_index;
5703 register int num_free = 0, num_used = 0;
5704
5705 cons_free_list = 0;
5706
5707 for (cblk = cons_block; cblk; cblk = *cprev)
5708 {
5709 register int i = 0;
5710 int this_free = 0;
5711 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5712
5713 /* Scan the mark bits an int at a time. */
5714 for (i = 0; i <= ilim; i++)
5715 {
5716 if (cblk->gcmarkbits[i] == -1)
5717 {
5718 /* Fast path - all cons cells for this int are marked. */
5719 cblk->gcmarkbits[i] = 0;
5720 num_used += BITS_PER_INT;
5721 }
5722 else
5723 {
5724 /* Some cons cells for this int are not marked.
5725 Find which ones, and free them. */
5726 int start, pos, stop;
5727
5728 start = i * BITS_PER_INT;
5729 stop = lim - start;
5730 if (stop > BITS_PER_INT)
5731 stop = BITS_PER_INT;
5732 stop += start;
5733
5734 for (pos = start; pos < stop; pos++)
5735 {
5736 if (!CONS_MARKED_P (&cblk->conses[pos]))
5737 {
5738 this_free++;
5739 cblk->conses[pos].u.chain = cons_free_list;
5740 cons_free_list = &cblk->conses[pos];
5741 #if GC_MARK_STACK
5742 cons_free_list->car = Vdead;
5743 #endif
5744 }
5745 else
5746 {
5747 num_used++;
5748 CONS_UNMARK (&cblk->conses[pos]);
5749 }
5750 }
5751 }
5752 }
5753
5754 lim = CONS_BLOCK_SIZE;
5755 /* If this block contains only free conses and we have already
5756 seen more than two blocks worth of free conses then deallocate
5757 this block. */
5758 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5759 {
5760 *cprev = cblk->next;
5761 /* Unhook from the free list. */
5762 cons_free_list = cblk->conses[0].u.chain;
5763 lisp_align_free (cblk);
5764 n_cons_blocks--;
5765 }
5766 else
5767 {
5768 num_free += this_free;
5769 cprev = &cblk->next;
5770 }
5771 }
5772 total_conses = num_used;
5773 total_free_conses = num_free;
5774 }
5775
5776 /* Put all unmarked floats on free list */
5777 {
5778 register struct float_block *fblk;
5779 struct float_block **fprev = &float_block;
5780 register int lim = float_block_index;
5781 register int num_free = 0, num_used = 0;
5782
5783 float_free_list = 0;
5784
5785 for (fblk = float_block; fblk; fblk = *fprev)
5786 {
5787 register int i;
5788 int this_free = 0;
5789 for (i = 0; i < lim; i++)
5790 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5791 {
5792 this_free++;
5793 fblk->floats[i].u.chain = float_free_list;
5794 float_free_list = &fblk->floats[i];
5795 }
5796 else
5797 {
5798 num_used++;
5799 FLOAT_UNMARK (&fblk->floats[i]);
5800 }
5801 lim = FLOAT_BLOCK_SIZE;
5802 /* If this block contains only free floats and we have already
5803 seen more than two blocks worth of free floats then deallocate
5804 this block. */
5805 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5806 {
5807 *fprev = fblk->next;
5808 /* Unhook from the free list. */
5809 float_free_list = fblk->floats[0].u.chain;
5810 lisp_align_free (fblk);
5811 n_float_blocks--;
5812 }
5813 else
5814 {
5815 num_free += this_free;
5816 fprev = &fblk->next;
5817 }
5818 }
5819 total_floats = num_used;
5820 total_free_floats = num_free;
5821 }
5822
5823 /* Put all unmarked intervals on free list */
5824 {
5825 register struct interval_block *iblk;
5826 struct interval_block **iprev = &interval_block;
5827 register int lim = interval_block_index;
5828 register int num_free = 0, num_used = 0;
5829
5830 interval_free_list = 0;
5831
5832 for (iblk = interval_block; iblk; iblk = *iprev)
5833 {
5834 register int i;
5835 int this_free = 0;
5836
5837 for (i = 0; i < lim; i++)
5838 {
5839 if (!iblk->intervals[i].gcmarkbit)
5840 {
5841 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5842 interval_free_list = &iblk->intervals[i];
5843 this_free++;
5844 }
5845 else
5846 {
5847 num_used++;
5848 iblk->intervals[i].gcmarkbit = 0;
5849 }
5850 }
5851 lim = INTERVAL_BLOCK_SIZE;
5852 /* If this block contains only free intervals and we have already
5853 seen more than two blocks worth of free intervals then
5854 deallocate this block. */
5855 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5856 {
5857 *iprev = iblk->next;
5858 /* Unhook from the free list. */
5859 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5860 lisp_free (iblk);
5861 n_interval_blocks--;
5862 }
5863 else
5864 {
5865 num_free += this_free;
5866 iprev = &iblk->next;
5867 }
5868 }
5869 total_intervals = num_used;
5870 total_free_intervals = num_free;
5871 }
5872
5873 /* Put all unmarked symbols on free list */
5874 {
5875 register struct symbol_block *sblk;
5876 struct symbol_block **sprev = &symbol_block;
5877 register int lim = symbol_block_index;
5878 register int num_free = 0, num_used = 0;
5879
5880 symbol_free_list = NULL;
5881
5882 for (sblk = symbol_block; sblk; sblk = *sprev)
5883 {
5884 int this_free = 0;
5885 struct Lisp_Symbol *sym = sblk->symbols;
5886 struct Lisp_Symbol *end = sym + lim;
5887
5888 for (; sym < end; ++sym)
5889 {
5890 /* Check if the symbol was created during loadup. In such a case
5891 it might be pointed to by pure bytecode which we don't trace,
5892 so we conservatively assume that it is live. */
5893 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5894
5895 if (!sym->gcmarkbit && !pure_p)
5896 {
5897 if (sym->redirect == SYMBOL_LOCALIZED)
5898 xfree (SYMBOL_BLV (sym));
5899 sym->next = symbol_free_list;
5900 symbol_free_list = sym;
5901 #if GC_MARK_STACK
5902 symbol_free_list->function = Vdead;
5903 #endif
5904 ++this_free;
5905 }
5906 else
5907 {
5908 ++num_used;
5909 if (!pure_p)
5910 UNMARK_STRING (XSTRING (sym->xname));
5911 sym->gcmarkbit = 0;
5912 }
5913 }
5914
5915 lim = SYMBOL_BLOCK_SIZE;
5916 /* If this block contains only free symbols and we have already
5917 seen more than two blocks worth of free symbols then deallocate
5918 this block. */
5919 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5920 {
5921 *sprev = sblk->next;
5922 /* Unhook from the free list. */
5923 symbol_free_list = sblk->symbols[0].next;
5924 lisp_free (sblk);
5925 n_symbol_blocks--;
5926 }
5927 else
5928 {
5929 num_free += this_free;
5930 sprev = &sblk->next;
5931 }
5932 }
5933 total_symbols = num_used;
5934 total_free_symbols = num_free;
5935 }
5936
5937 /* Put all unmarked misc's on free list.
5938 For a marker, first unchain it from the buffer it points into. */
5939 {
5940 register struct marker_block *mblk;
5941 struct marker_block **mprev = &marker_block;
5942 register int lim = marker_block_index;
5943 register int num_free = 0, num_used = 0;
5944
5945 marker_free_list = 0;
5946
5947 for (mblk = marker_block; mblk; mblk = *mprev)
5948 {
5949 register int i;
5950 int this_free = 0;
5951
5952 for (i = 0; i < lim; i++)
5953 {
5954 if (!mblk->markers[i].u_any.gcmarkbit)
5955 {
5956 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5957 unchain_marker (&mblk->markers[i].u_marker);
5958 /* Set the type of the freed object to Lisp_Misc_Free.
5959 We could leave the type alone, since nobody checks it,
5960 but this might catch bugs faster. */
5961 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5962 mblk->markers[i].u_free.chain = marker_free_list;
5963 marker_free_list = &mblk->markers[i];
5964 this_free++;
5965 }
5966 else
5967 {
5968 num_used++;
5969 mblk->markers[i].u_any.gcmarkbit = 0;
5970 }
5971 }
5972 lim = MARKER_BLOCK_SIZE;
5973 /* If this block contains only free markers and we have already
5974 seen more than two blocks worth of free markers then deallocate
5975 this block. */
5976 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5977 {
5978 *mprev = mblk->next;
5979 /* Unhook from the free list. */
5980 marker_free_list = mblk->markers[0].u_free.chain;
5981 lisp_free (mblk);
5982 n_marker_blocks--;
5983 }
5984 else
5985 {
5986 num_free += this_free;
5987 mprev = &mblk->next;
5988 }
5989 }
5990
5991 total_markers = num_used;
5992 total_free_markers = num_free;
5993 }
5994
5995 /* Free all unmarked buffers */
5996 {
5997 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5998
5999 while (buffer)
6000 if (!VECTOR_MARKED_P (buffer))
6001 {
6002 if (prev)
6003 prev->next = buffer->next;
6004 else
6005 all_buffers = buffer->next;
6006 next = buffer->next;
6007 lisp_free (buffer);
6008 buffer = next;
6009 }
6010 else
6011 {
6012 VECTOR_UNMARK (buffer);
6013 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6014 prev = buffer, buffer = buffer->next;
6015 }
6016 }
6017
6018 /* Free all unmarked vectors */
6019 {
6020 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6021 total_vector_size = 0;
6022
6023 while (vector)
6024 if (!VECTOR_MARKED_P (vector))
6025 {
6026 if (prev)
6027 prev->next = vector->next;
6028 else
6029 all_vectors = vector->next;
6030 next = vector->next;
6031 lisp_free (vector);
6032 n_vectors--;
6033 vector = next;
6034
6035 }
6036 else
6037 {
6038 VECTOR_UNMARK (vector);
6039 if (vector->size & PSEUDOVECTOR_FLAG)
6040 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6041 else
6042 total_vector_size += vector->size;
6043 prev = vector, vector = vector->next;
6044 }
6045 }
6046
6047 #ifdef GC_CHECK_STRING_BYTES
6048 if (!noninteractive)
6049 check_string_bytes (1);
6050 #endif
6051 }
6052
6053
6054
6055 \f
6056 /* Debugging aids. */
6057
6058 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6059 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6060 This may be helpful in debugging Emacs's memory usage.
6061 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6062 (void)
6063 {
6064 Lisp_Object end;
6065
6066 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6067
6068 return end;
6069 }
6070
6071 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6072 doc: /* Return a list of counters that measure how much consing there has been.
6073 Each of these counters increments for a certain kind of object.
6074 The counters wrap around from the largest positive integer to zero.
6075 Garbage collection does not decrease them.
6076 The elements of the value are as follows:
6077 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6078 All are in units of 1 = one object consed
6079 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6080 objects consed.
6081 MISCS include overlays, markers, and some internal types.
6082 Frames, windows, buffers, and subprocesses count as vectors
6083 (but the contents of a buffer's text do not count here). */)
6084 (void)
6085 {
6086 Lisp_Object consed[8];
6087
6088 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6089 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6090 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6091 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6092 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6093 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6094 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6095 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6096
6097 return Flist (8, consed);
6098 }
6099
6100 int suppress_checking;
6101
6102 void
6103 die (const char *msg, const char *file, int line)
6104 {
6105 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6106 file, line, msg);
6107 abort ();
6108 }
6109 \f
6110 /* Initialization */
6111
6112 void
6113 init_alloc_once (void)
6114 {
6115 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6116 purebeg = PUREBEG;
6117 pure_size = PURESIZE;
6118 pure_bytes_used = 0;
6119 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6120 pure_bytes_used_before_overflow = 0;
6121
6122 /* Initialize the list of free aligned blocks. */
6123 free_ablock = NULL;
6124
6125 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6126 mem_init ();
6127 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6128 #endif
6129
6130 all_vectors = 0;
6131 ignore_warnings = 1;
6132 #ifdef DOUG_LEA_MALLOC
6133 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6134 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6135 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6136 #endif
6137 init_strings ();
6138 init_cons ();
6139 init_symbol ();
6140 init_marker ();
6141 init_float ();
6142 init_intervals ();
6143 init_weak_hash_tables ();
6144
6145 #ifdef REL_ALLOC
6146 malloc_hysteresis = 32;
6147 #else
6148 malloc_hysteresis = 0;
6149 #endif
6150
6151 refill_memory_reserve ();
6152
6153 ignore_warnings = 0;
6154 gcprolist = 0;
6155 byte_stack_list = 0;
6156 staticidx = 0;
6157 consing_since_gc = 0;
6158 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6159 gc_relative_threshold = 0;
6160 }
6161
6162 void
6163 init_alloc (void)
6164 {
6165 gcprolist = 0;
6166 byte_stack_list = 0;
6167 #if GC_MARK_STACK
6168 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6169 setjmp_tested_p = longjmps_done = 0;
6170 #endif
6171 #endif
6172 Vgc_elapsed = make_float (0.0);
6173 gcs_done = 0;
6174 }
6175
6176 void
6177 syms_of_alloc (void)
6178 {
6179 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6180 doc: /* *Number of bytes of consing between garbage collections.
6181 Garbage collection can happen automatically once this many bytes have been
6182 allocated since the last garbage collection. All data types count.
6183
6184 Garbage collection happens automatically only when `eval' is called.
6185
6186 By binding this temporarily to a large number, you can effectively
6187 prevent garbage collection during a part of the program.
6188 See also `gc-cons-percentage'. */);
6189
6190 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6191 doc: /* *Portion of the heap used for allocation.
6192 Garbage collection can happen automatically once this portion of the heap
6193 has been allocated since the last garbage collection.
6194 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6195 Vgc_cons_percentage = make_float (0.1);
6196
6197 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6198 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6199
6200 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6201 doc: /* Number of cons cells that have been consed so far. */);
6202
6203 DEFVAR_INT ("floats-consed", floats_consed,
6204 doc: /* Number of floats that have been consed so far. */);
6205
6206 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6207 doc: /* Number of vector cells that have been consed so far. */);
6208
6209 DEFVAR_INT ("symbols-consed", symbols_consed,
6210 doc: /* Number of symbols that have been consed so far. */);
6211
6212 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6213 doc: /* Number of string characters that have been consed so far. */);
6214
6215 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6216 doc: /* Number of miscellaneous objects that have been consed so far. */);
6217
6218 DEFVAR_INT ("intervals-consed", intervals_consed,
6219 doc: /* Number of intervals that have been consed so far. */);
6220
6221 DEFVAR_INT ("strings-consed", strings_consed,
6222 doc: /* Number of strings that have been consed so far. */);
6223
6224 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6225 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6226 This means that certain objects should be allocated in shared (pure) space.
6227 It can also be set to a hash-table, in which case this table is used to
6228 do hash-consing of the objects allocated to pure space. */);
6229
6230 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6231 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6232 garbage_collection_messages = 0;
6233
6234 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6235 doc: /* Hook run after garbage collection has finished. */);
6236 Vpost_gc_hook = Qnil;
6237 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6238 staticpro (&Qpost_gc_hook);
6239
6240 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6241 doc: /* Precomputed `signal' argument for memory-full error. */);
6242 /* We build this in advance because if we wait until we need it, we might
6243 not be able to allocate the memory to hold it. */
6244 Vmemory_signal_data
6245 = pure_cons (Qerror,
6246 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6247
6248 DEFVAR_LISP ("memory-full", Vmemory_full,
6249 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6250 Vmemory_full = Qnil;
6251
6252 staticpro (&Qgc_cons_threshold);
6253 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6254
6255 staticpro (&Qchar_table_extra_slots);
6256 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6257
6258 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6259 doc: /* Accumulated time elapsed in garbage collections.
6260 The time is in seconds as a floating point value. */);
6261 DEFVAR_INT ("gcs-done", gcs_done,
6262 doc: /* Accumulated number of garbage collections done. */);
6263
6264 defsubr (&Scons);
6265 defsubr (&Slist);
6266 defsubr (&Svector);
6267 defsubr (&Smake_byte_code);
6268 defsubr (&Smake_list);
6269 defsubr (&Smake_vector);
6270 defsubr (&Smake_string);
6271 defsubr (&Smake_bool_vector);
6272 defsubr (&Smake_symbol);
6273 defsubr (&Smake_marker);
6274 defsubr (&Spurecopy);
6275 defsubr (&Sgarbage_collect);
6276 defsubr (&Smemory_limit);
6277 defsubr (&Smemory_use_counts);
6278
6279 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6280 defsubr (&Sgc_status);
6281 #endif
6282 }