Get rid of funvec.
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;; Copyright (C) 1991, 1994, 2000-2011 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9 ;; Package: emacs
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25
26 ;;; Commentary:
27
28 ;; ========================================================================
29 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
30 ;; You can, however, make a faster pig."
31 ;;
32 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
33 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34 ;; still not going to make it go faster than 70 mph, but it might be easier
35 ;; to get it there.
36 ;;
37
38 ;; TO DO:
39 ;;
40 ;; (apply (lambda (x &rest y) ...) 1 (foo))
41 ;;
42 ;; maintain a list of functions known not to access any global variables
43 ;; (actually, give them a 'dynamically-safe property) and then
44 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46 ;; by recursing on this, we might be able to eliminate the entire let.
47 ;; However certain variables should never have their bindings optimized
48 ;; away, because they affect everything.
49 ;; (put 'debug-on-error 'binding-is-magic t)
50 ;; (put 'debug-on-abort 'binding-is-magic t)
51 ;; (put 'debug-on-next-call 'binding-is-magic t)
52 ;; (put 'inhibit-quit 'binding-is-magic t)
53 ;; (put 'quit-flag 'binding-is-magic t)
54 ;; (put 't 'binding-is-magic t)
55 ;; (put 'nil 'binding-is-magic t)
56 ;; possibly also
57 ;; (put 'gc-cons-threshold 'binding-is-magic t)
58 ;; (put 'track-mouse 'binding-is-magic t)
59 ;; others?
60 ;;
61 ;; Simple defsubsts often produce forms like
62 ;; (let ((v1 (f1)) (v2 (f2)) ...)
63 ;; (FN v1 v2 ...))
64 ;; It would be nice if we could optimize this to
65 ;; (FN (f1) (f2) ...)
66 ;; but we can't unless FN is dynamically-safe (it might be dynamically
67 ;; referring to the bindings that the lambda arglist established.)
68 ;; One of the uncountable lossages introduced by dynamic scope...
69 ;;
70 ;; Maybe there should be a control-structure that says "turn on
71 ;; fast-and-loose type-assumptive optimizations here." Then when
72 ;; we see a form like (car foo) we can from then on assume that
73 ;; the variable foo is of type cons, and optimize based on that.
74 ;; But, this won't win much because of (you guessed it) dynamic
75 ;; scope. Anything down the stack could change the value.
76 ;; (Another reason it doesn't work is that it is perfectly valid
77 ;; to call car with a null argument.) A better approach might
78 ;; be to allow type-specification of the form
79 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
80 ;; (put 'foo 'result-type 'bool)
81 ;; It should be possible to have these types checked to a certain
82 ;; degree.
83 ;;
84 ;; collapse common subexpressions
85 ;;
86 ;; It would be nice if redundant sequences could be factored out as well,
87 ;; when they are known to have no side-effects:
88 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
89 ;; but beware of traps like
90 ;; (cons (list x y) (list x y))
91 ;;
92 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
93 ;; Tail-recursion elimination is almost always impossible when all variables
94 ;; have dynamic scope, but given that the "return" byteop requires the
95 ;; binding stack to be empty (rather than emptying it itself), there can be
96 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
97 ;; make any bindings.
98 ;;
99 ;; Here is an example of an Emacs Lisp function which could safely be
100 ;; byte-compiled tail-recursively:
101 ;;
102 ;; (defun tail-map (fn list)
103 ;; (cond (list
104 ;; (funcall fn (car list))
105 ;; (tail-map fn (cdr list)))))
106 ;;
107 ;; However, if there was even a single let-binding around the COND,
108 ;; it could not be byte-compiled, because there would be an "unbind"
109 ;; byte-op between the final "call" and "return." Adding a
110 ;; Bunbind_all byteop would fix this.
111 ;;
112 ;; (defun foo (x y z) ... (foo a b c))
113 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
114 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
115 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
116 ;;
117 ;; this also can be considered tail recursion:
118 ;;
119 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
120 ;; could generalize this by doing the optimization
121 ;; (goto X) ... X: (return) --> (return)
122 ;;
123 ;; But this doesn't solve all of the problems: although by doing tail-
124 ;; recursion elimination in this way, the call-stack does not grow, the
125 ;; binding-stack would grow with each recursive step, and would eventually
126 ;; overflow. I don't believe there is any way around this without lexical
127 ;; scope.
128 ;;
129 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
130 ;;
131 ;; Idea: the form (lexical-scope) in a file means that the file may be
132 ;; compiled lexically. This proclamation is file-local. Then, within
133 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
134 ;; would do things the old way. (Or we could use CL "declare" forms.)
135 ;; We'd have to notice defvars and defconsts, since those variables should
136 ;; always be dynamic, and attempting to do a lexical binding of them
137 ;; should simply do a dynamic binding instead.
138 ;; But! We need to know about variables that were not necessarily defvarred
139 ;; in the file being compiled (doing a boundp check isn't good enough.)
140 ;; Fdefvar() would have to be modified to add something to the plist.
141 ;;
142 ;; A major disadvantage of this scheme is that the interpreter and compiler
143 ;; would have different semantics for files compiled with (dynamic-scope).
144 ;; Since this would be a file-local optimization, there would be no way to
145 ;; modify the interpreter to obey this (unless the loader was hacked
146 ;; in some grody way, but that's a really bad idea.)
147
148 ;; Other things to consider:
149
150 ;; ;; Associative math should recognize subcalls to identical function:
151 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
152 ;; ;; This should generate the same as (1+ x) and (1- x)
153
154 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
155 ;; ;; An awful lot of functions always return a non-nil value. If they're
156 ;; ;; error free also they may act as true-constants.
157
158 ;; (disassemble (lambda (x) (and (point) (foo))))
159 ;; ;; When
160 ;; ;; - all but one arguments to a function are constant
161 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
162 ;; ;; then the outer function can be distributed. If the guarding
163 ;; ;; condition is side-effect-free [assignment-free] then the other
164 ;; ;; arguments may be any expressions. Since, however, the code size
165 ;; ;; can increase this way they should be "simple". Compare:
166
167 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
168 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
169
170 ;; ;; (car (cons A B)) -> (prog1 A B)
171 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
172
173 ;; ;; (cdr (cons A B)) -> (progn A B)
174 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
175
176 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
177 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
178
179 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
180 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
181
182
183 ;;; Code:
184
185 (require 'bytecomp)
186 (eval-when-compile (require 'cl))
187
188 (defun byte-compile-log-lap-1 (format &rest args)
189 ;; Newer byte codes for stack-ref make the slot 0 non-nil again.
190 ;; But the "old disassembler" is *really* ancient by now.
191 ;; (if (aref byte-code-vector 0)
192 ;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
193 (byte-compile-log-1
194 (apply 'format format
195 (let (c a)
196 (mapcar (lambda (arg)
197 (if (not (consp arg))
198 (if (and (symbolp arg)
199 (string-match "^byte-" (symbol-name arg)))
200 (intern (substring (symbol-name arg) 5))
201 arg)
202 (if (integerp (setq c (car arg)))
203 (error "non-symbolic byte-op %s" c))
204 (if (eq c 'TAG)
205 (setq c arg)
206 (setq a (cond ((memq c byte-goto-ops)
207 (car (cdr (cdr arg))))
208 ((memq c byte-constref-ops)
209 (car (cdr arg)))
210 (t (cdr arg))))
211 (setq c (symbol-name c))
212 (if (string-match "^byte-." c)
213 (setq c (intern (substring c 5)))))
214 (if (eq c 'constant) (setq c 'const))
215 (if (and (eq (cdr arg) 0)
216 (not (memq c '(unbind call const))))
217 c
218 (format "(%s %s)" c a))))
219 args)))))
220
221 (defmacro byte-compile-log-lap (format-string &rest args)
222 `(and (memq byte-optimize-log '(t byte))
223 (byte-compile-log-lap-1 ,format-string ,@args)))
224
225 \f
226 ;;; byte-compile optimizers to support inlining
227
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 (lambda (sexp)
235 (let ((f (car-safe sexp)))
236 (if (and (symbolp f)
237 (or (cdr (assq f byte-compile-function-environment))
238 (not (or (not (fboundp f))
239 (cdr (assq f byte-compile-macro-environment))
240 (and (consp (setq f (symbol-function f)))
241 (eq (car f) 'macro))
242 (subrp f)))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 ;; "Replay" the operations: we used to just do
254 ;; (setq byte-compile-output (nconc (nreverse lap) byte-compile-output))
255 ;; but that fails to update byte-compile-depth, so we had to assume
256 ;; that `lap' ends up adding exactly 1 element to the stack. This
257 ;; happens to be true for byte-code generated by bytecomp.el without
258 ;; lexical-binding, but it's not true in general, and it's not true for
259 ;; code output by bytecomp.el with lexical-binding.
260 (dolist (op lap)
261 (cond
262 ((eq (car op) 'TAG) (byte-compile-out-tag op))
263 ((memq (car op) byte-goto-ops) (byte-compile-goto (car op) (cdr op)))
264 (t (byte-compile-out (car op) (cdr op))))))
265
266 (defun byte-compile-inline-expand (form)
267 (let* ((name (car form))
268 (fn (or (cdr (assq name byte-compile-function-environment))
269 (and (fboundp name) (symbol-function name)))))
270 (if (null fn)
271 (progn
272 (byte-compile-warn "attempt to inline `%s' before it was defined"
273 name)
274 form)
275 ;; else
276 (when (and (consp fn) (eq (car fn) 'autoload))
277 (load (nth 1 fn))
278 (setq fn (or (and (fboundp name) (symbol-function name))
279 (cdr (assq name byte-compile-function-environment)))))
280 (if (and (consp fn) (eq (car fn) 'autoload))
281 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
282 (cond
283 ((and (symbolp fn) (not (eq fn t))) ;A function alias.
284 (byte-compile-inline-expand (cons fn (cdr form))))
285 ((and (byte-code-function-p fn)
286 ;; FIXME: This works to inline old-style-byte-codes into
287 ;; old-style-byte-codes, but not mixed cases (not sure
288 ;; about new-style into new-style).
289 (not lexical-binding)
290 (not (and (>= (length fn) 7)
291 (aref fn 6)))) ;6 = COMPILED_PUSH_ARGS
292 ;; (message "Inlining %S byte-code" name)
293 (fetch-bytecode fn)
294 (let ((string (aref fn 1)))
295 ;; Isn't it an error for `string' not to be unibyte?? --stef
296 (if (fboundp 'string-as-unibyte)
297 (setq string (string-as-unibyte string)))
298 ;; `byte-compile-splice-in-already-compiled-code'
299 ;; takes care of inlining the body.
300 (cons `(lambda ,(aref fn 0)
301 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
302 (cdr form))))
303 ((eq (car-safe fn) 'lambda)
304 (macroexpand-all (cons fn (cdr form))
305 byte-compile-macro-environment))
306 (t ;; Give up on inlining.
307 form)))))
308
309 ;; ((lambda ...) ...)
310 (defun byte-compile-unfold-lambda (form &optional name)
311 (or name (setq name "anonymous lambda"))
312 (let ((lambda (car form))
313 (values (cdr form)))
314 (if (byte-code-function-p lambda)
315 (setq lambda (list 'lambda (aref lambda 0)
316 (list 'byte-code (aref lambda 1)
317 (aref lambda 2) (aref lambda 3)))))
318 (let ((arglist (nth 1 lambda))
319 (body (cdr (cdr lambda)))
320 optionalp restp
321 bindings)
322 (if (and (stringp (car body)) (cdr body))
323 (setq body (cdr body)))
324 (if (and (consp (car body)) (eq 'interactive (car (car body))))
325 (setq body (cdr body)))
326 (while arglist
327 (cond ((eq (car arglist) '&optional)
328 ;; ok, I'll let this slide because funcall_lambda() does...
329 ;; (if optionalp (error "multiple &optional keywords in %s" name))
330 (if restp (error "&optional found after &rest in %s" name))
331 (if (null (cdr arglist))
332 (error "nothing after &optional in %s" name))
333 (setq optionalp t))
334 ((eq (car arglist) '&rest)
335 ;; ...but it is by no stretch of the imagination a reasonable
336 ;; thing that funcall_lambda() allows (&rest x y) and
337 ;; (&rest x &optional y) in arglists.
338 (if (null (cdr arglist))
339 (error "nothing after &rest in %s" name))
340 (if (cdr (cdr arglist))
341 (error "multiple vars after &rest in %s" name))
342 (setq restp t))
343 (restp
344 (setq bindings (cons (list (car arglist)
345 (and values (cons 'list values)))
346 bindings)
347 values nil))
348 ((and (not optionalp) (null values))
349 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
350 (setq arglist nil values 'too-few))
351 (t
352 (setq bindings (cons (list (car arglist) (car values))
353 bindings)
354 values (cdr values))))
355 (setq arglist (cdr arglist)))
356 (if values
357 (progn
358 (or (eq values 'too-few)
359 (byte-compile-warn
360 "attempt to open-code `%s' with too many arguments" name))
361 form)
362
363 ;; The following leads to infinite recursion when loading a
364 ;; file containing `(defsubst f () (f))', and then trying to
365 ;; byte-compile that file.
366 ;(setq body (mapcar 'byte-optimize-form body)))
367
368 (let ((newform
369 (if bindings
370 (cons 'let (cons (nreverse bindings) body))
371 (cons 'progn body))))
372 (byte-compile-log " %s\t==>\t%s" form newform)
373 newform)))))
374
375 \f
376 ;;; implementing source-level optimizers
377
378 (defun byte-optimize-form-code-walker (form for-effect)
379 ;;
380 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
381 ;; we need to have special knowledge of the syntax of the special forms
382 ;; like let and defun (that's why they're special forms :-). (Actually,
383 ;; the important aspect is that they are subrs that don't evaluate all of
384 ;; their args.)
385 ;;
386 (let ((fn (car-safe form))
387 tmp)
388 (cond ((not (consp form))
389 (if (not (and for-effect
390 (or byte-compile-delete-errors
391 (not (symbolp form))
392 (eq form t))))
393 form))
394 ((eq fn 'quote)
395 (if (cdr (cdr form))
396 (byte-compile-warn "malformed quote form: `%s'"
397 (prin1-to-string form)))
398 ;; map (quote nil) to nil to simplify optimizer logic.
399 ;; map quoted constants to nil if for-effect (just because).
400 (and (nth 1 form)
401 (not for-effect)
402 form))
403 ((or (byte-code-function-p fn)
404 (eq 'lambda (car-safe fn)))
405 (let ((newform (byte-compile-unfold-lambda form)))
406 (if (eq newform form)
407 ;; Some error occurred, avoid infinite recursion
408 form
409 (byte-optimize-form-code-walker newform for-effect))))
410 ((memq fn '(let let*))
411 ;; recursively enter the optimizer for the bindings and body
412 ;; of a let or let*. This for depth-firstness: forms that
413 ;; are more deeply nested are optimized first.
414 (cons fn
415 (cons
416 (mapcar (lambda (binding)
417 (if (symbolp binding)
418 binding
419 (if (cdr (cdr binding))
420 (byte-compile-warn "malformed let binding: `%s'"
421 (prin1-to-string binding)))
422 (list (car binding)
423 (byte-optimize-form (nth 1 binding) nil))))
424 (nth 1 form))
425 (byte-optimize-body (cdr (cdr form)) for-effect))))
426 ((eq fn 'cond)
427 (cons fn
428 (mapcar (lambda (clause)
429 (if (consp clause)
430 (cons
431 (byte-optimize-form (car clause) nil)
432 (byte-optimize-body (cdr clause) for-effect))
433 (byte-compile-warn "malformed cond form: `%s'"
434 (prin1-to-string clause))
435 clause))
436 (cdr form))))
437 ((eq fn 'progn)
438 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
439 (if (cdr (cdr form))
440 (progn
441 (setq tmp (byte-optimize-body (cdr form) for-effect))
442 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
443 (byte-optimize-form (nth 1 form) for-effect)))
444 ((eq fn 'prog1)
445 (if (cdr (cdr form))
446 (cons 'prog1
447 (cons (byte-optimize-form (nth 1 form) for-effect)
448 (byte-optimize-body (cdr (cdr form)) t)))
449 (byte-optimize-form (nth 1 form) for-effect)))
450 ((eq fn 'prog2)
451 (cons 'prog2
452 (cons (byte-optimize-form (nth 1 form) t)
453 (cons (byte-optimize-form (nth 2 form) for-effect)
454 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
455
456 ((memq fn '(save-excursion save-restriction save-current-buffer))
457 ;; those subrs which have an implicit progn; it's not quite good
458 ;; enough to treat these like normal function calls.
459 ;; This can turn (save-excursion ...) into (save-excursion) which
460 ;; will be optimized away in the lap-optimize pass.
461 (cons fn (byte-optimize-body (cdr form) for-effect)))
462
463 ((eq fn 'with-output-to-temp-buffer)
464 ;; this is just like the above, except for the first argument.
465 (cons fn
466 (cons
467 (byte-optimize-form (nth 1 form) nil)
468 (byte-optimize-body (cdr (cdr form)) for-effect))))
469
470 ((eq fn 'if)
471 (when (< (length form) 3)
472 (byte-compile-warn "too few arguments for `if'"))
473 (cons fn
474 (cons (byte-optimize-form (nth 1 form) nil)
475 (cons
476 (byte-optimize-form (nth 2 form) for-effect)
477 (byte-optimize-body (nthcdr 3 form) for-effect)))))
478
479 ((memq fn '(and or)) ; remember, and/or are control structures.
480 ;; take forms off the back until we can't any more.
481 ;; In the future it could conceivably be a problem that the
482 ;; subexpressions of these forms are optimized in the reverse
483 ;; order, but it's ok for now.
484 (if for-effect
485 (let ((backwards (reverse (cdr form))))
486 (while (and backwards
487 (null (setcar backwards
488 (byte-optimize-form (car backwards)
489 for-effect))))
490 (setq backwards (cdr backwards)))
491 (if (and (cdr form) (null backwards))
492 (byte-compile-log
493 " all subforms of %s called for effect; deleted" form))
494 (and backwards
495 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
496 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
497
498 ((eq fn 'interactive)
499 (byte-compile-warn "misplaced interactive spec: `%s'"
500 (prin1-to-string form))
501 nil)
502
503 ((memq fn '(defun defmacro function condition-case))
504 ;; These forms are compiled as constants or by breaking out
505 ;; all the subexpressions and compiling them separately.
506 form)
507
508 ((eq fn 'unwind-protect)
509 ;; the "protected" part of an unwind-protect is compiled (and thus
510 ;; optimized) as a top-level form, so don't do it here. But the
511 ;; non-protected part has the same for-effect status as the
512 ;; unwind-protect itself. (The protected part is always for effect,
513 ;; but that isn't handled properly yet.)
514 (cons fn
515 (cons (byte-optimize-form (nth 1 form) for-effect)
516 (cdr (cdr form)))))
517
518 ((eq fn 'catch)
519 ;; the body of a catch is compiled (and thus optimized) as a
520 ;; top-level form, so don't do it here. The tag is never
521 ;; for-effect. The body should have the same for-effect status
522 ;; as the catch form itself, but that isn't handled properly yet.
523 (cons fn
524 (cons (byte-optimize-form (nth 1 form) nil)
525 (cdr (cdr form)))))
526
527 ((eq fn 'ignore)
528 ;; Don't treat the args to `ignore' as being
529 ;; computed for effect. We want to avoid the warnings
530 ;; that might occur if they were treated that way.
531 ;; However, don't actually bother calling `ignore'.
532 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
533
534 ((eq fn 'internal-make-closure)
535 form)
536
537 ((not (symbolp fn))
538 (debug)
539 (byte-compile-warn "`%s' is a malformed function"
540 (prin1-to-string fn))
541 form)
542
543 ((and for-effect (setq tmp (get fn 'side-effect-free))
544 (or byte-compile-delete-errors
545 (eq tmp 'error-free)
546 ;; Detect the expansion of (pop foo).
547 ;; There is no need to compile the call to `car' there.
548 (and (eq fn 'car)
549 (eq (car-safe (cadr form)) 'prog1)
550 (let ((var (cadr (cadr form)))
551 (last (nth 2 (cadr form))))
552 (and (symbolp var)
553 (null (nthcdr 3 (cadr form)))
554 (eq (car-safe last) 'setq)
555 (eq (cadr last) var)
556 (eq (car-safe (nth 2 last)) 'cdr)
557 (eq (cadr (nth 2 last)) var))))
558 (progn
559 (byte-compile-warn "value returned from %s is unused"
560 (prin1-to-string form))
561 nil)))
562 (byte-compile-log " %s called for effect; deleted" fn)
563 ;; appending a nil here might not be necessary, but it can't hurt.
564 (byte-optimize-form
565 (cons 'progn (append (cdr form) '(nil))) t))
566
567 (t
568 ;; Otherwise, no args can be considered to be for-effect,
569 ;; even if the called function is for-effect, because we
570 ;; don't know anything about that function.
571 (let ((args (mapcar #'byte-optimize-form (cdr form))))
572 (if (and (get fn 'pure)
573 (byte-optimize-all-constp args))
574 (list 'quote (apply fn (mapcar #'eval args)))
575 (cons fn args)))))))
576
577 (defun byte-optimize-all-constp (list)
578 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
579 (let ((constant t))
580 (while (and list constant)
581 (unless (byte-compile-constp (car list))
582 (setq constant nil))
583 (setq list (cdr list)))
584 constant))
585
586 (defun byte-optimize-form (form &optional for-effect)
587 "The source-level pass of the optimizer."
588 ;;
589 ;; First, optimize all sub-forms of this one.
590 (setq form (byte-optimize-form-code-walker form for-effect))
591 ;;
592 ;; after optimizing all subforms, optimize this form until it doesn't
593 ;; optimize any further. This means that some forms will be passed through
594 ;; the optimizer many times, but that's necessary to make the for-effect
595 ;; processing do as much as possible.
596 ;;
597 (let (opt new)
598 (if (and (consp form)
599 (symbolp (car form))
600 (or (and for-effect
601 ;; we don't have any of these yet, but we might.
602 (setq opt (get (car form) 'byte-for-effect-optimizer)))
603 (setq opt (get (car form) 'byte-optimizer)))
604 (not (eq form (setq new (funcall opt form)))))
605 (progn
606 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
607 (byte-compile-log " %s\t==>\t%s" form new)
608 (setq new (byte-optimize-form new for-effect))
609 new)
610 form)))
611
612
613 (defun byte-optimize-body (forms all-for-effect)
614 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
615 ;; forms, all but the last of which are optimized with the assumption that
616 ;; they are being called for effect. the last is for-effect as well if
617 ;; all-for-effect is true. returns a new list of forms.
618 (let ((rest forms)
619 (result nil)
620 fe new)
621 (while rest
622 (setq fe (or all-for-effect (cdr rest)))
623 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
624 (if (or new (not fe))
625 (setq result (cons new result)))
626 (setq rest (cdr rest)))
627 (nreverse result)))
628
629 \f
630 ;; some source-level optimizers
631 ;;
632 ;; when writing optimizers, be VERY careful that the optimizer returns
633 ;; something not EQ to its argument if and ONLY if it has made a change.
634 ;; This implies that you cannot simply destructively modify the list;
635 ;; you must return something not EQ to it if you make an optimization.
636 ;;
637 ;; It is now safe to optimize code such that it introduces new bindings.
638
639 (defsubst byte-compile-trueconstp (form)
640 "Return non-nil if FORM always evaluates to a non-nil value."
641 (while (eq (car-safe form) 'progn)
642 (setq form (car (last (cdr form)))))
643 (cond ((consp form)
644 (case (car form)
645 (quote (cadr form))
646 ;; Can't use recursion in a defsubst.
647 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
648 ))
649 ((not (symbolp form)))
650 ((eq form t))
651 ((keywordp form))))
652
653 (defsubst byte-compile-nilconstp (form)
654 "Return non-nil if FORM always evaluates to a nil value."
655 (while (eq (car-safe form) 'progn)
656 (setq form (car (last (cdr form)))))
657 (cond ((consp form)
658 (case (car form)
659 (quote (null (cadr form)))
660 ;; Can't use recursion in a defsubst.
661 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
662 ))
663 ((not (symbolp form)) nil)
664 ((null form))))
665
666 ;; If the function is being called with constant numeric args,
667 ;; evaluate as much as possible at compile-time. This optimizer
668 ;; assumes that the function is associative, like + or *.
669 (defun byte-optimize-associative-math (form)
670 (let ((args nil)
671 (constants nil)
672 (rest (cdr form)))
673 (while rest
674 (if (numberp (car rest))
675 (setq constants (cons (car rest) constants))
676 (setq args (cons (car rest) args)))
677 (setq rest (cdr rest)))
678 (if (cdr constants)
679 (if args
680 (list (car form)
681 (apply (car form) constants)
682 (if (cdr args)
683 (cons (car form) (nreverse args))
684 (car args)))
685 (apply (car form) constants))
686 form)))
687
688 ;; If the function is being called with constant numeric args,
689 ;; evaluate as much as possible at compile-time. This optimizer
690 ;; assumes that the function satisfies
691 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
692 ;; like - and /.
693 (defun byte-optimize-nonassociative-math (form)
694 (if (or (not (numberp (car (cdr form))))
695 (not (numberp (car (cdr (cdr form))))))
696 form
697 (let ((constant (car (cdr form)))
698 (rest (cdr (cdr form))))
699 (while (numberp (car rest))
700 (setq constant (funcall (car form) constant (car rest))
701 rest (cdr rest)))
702 (if rest
703 (cons (car form) (cons constant rest))
704 constant))))
705
706 ;;(defun byte-optimize-associative-two-args-math (form)
707 ;; (setq form (byte-optimize-associative-math form))
708 ;; (if (consp form)
709 ;; (byte-optimize-two-args-left form)
710 ;; form))
711
712 ;;(defun byte-optimize-nonassociative-two-args-math (form)
713 ;; (setq form (byte-optimize-nonassociative-math form))
714 ;; (if (consp form)
715 ;; (byte-optimize-two-args-right form)
716 ;; form))
717
718 (defun byte-optimize-approx-equal (x y)
719 (<= (* (abs (- x y)) 100) (abs (+ x y))))
720
721 ;; Collect all the constants from FORM, after the STARTth arg,
722 ;; and apply FUN to them to make one argument at the end.
723 ;; For functions that can handle floats, that optimization
724 ;; can be incorrect because reordering can cause an overflow
725 ;; that would otherwise be avoided by encountering an arg that is a float.
726 ;; We avoid this problem by (1) not moving float constants and
727 ;; (2) not moving anything if it would cause an overflow.
728 (defun byte-optimize-delay-constants-math (form start fun)
729 ;; Merge all FORM's constants from number START, call FUN on them
730 ;; and put the result at the end.
731 (let ((rest (nthcdr (1- start) form))
732 (orig form)
733 ;; t means we must check for overflow.
734 (overflow (memq fun '(+ *))))
735 (while (cdr (setq rest (cdr rest)))
736 (if (integerp (car rest))
737 (let (constants)
738 (setq form (copy-sequence form)
739 rest (nthcdr (1- start) form))
740 (while (setq rest (cdr rest))
741 (cond ((integerp (car rest))
742 (setq constants (cons (car rest) constants))
743 (setcar rest nil))))
744 ;; If necessary, check now for overflow
745 ;; that might be caused by reordering.
746 (if (and overflow
747 ;; We have overflow if the result of doing the arithmetic
748 ;; on floats is not even close to the result
749 ;; of doing it on integers.
750 (not (byte-optimize-approx-equal
751 (apply fun (mapcar 'float constants))
752 (float (apply fun constants)))))
753 (setq form orig)
754 (setq form (nconc (delq nil form)
755 (list (apply fun (nreverse constants)))))))))
756 form))
757
758 (defsubst byte-compile-butlast (form)
759 (nreverse (cdr (reverse form))))
760
761 (defun byte-optimize-plus (form)
762 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
763 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
764 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
765 ;; For (+ constants...), byte-optimize-predicate does the work.
766 (when (memq nil (mapcar 'numberp (cdr form)))
767 (cond
768 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
769 ((and (= (length form) 3)
770 (or (memq (nth 1 form) '(1 -1))
771 (memq (nth 2 form) '(1 -1))))
772 (let (integer other)
773 (if (memq (nth 1 form) '(1 -1))
774 (setq integer (nth 1 form) other (nth 2 form))
775 (setq integer (nth 2 form) other (nth 1 form)))
776 (setq form
777 (list (if (eq integer 1) '1+ '1-) other))))
778 ;; Here, we could also do
779 ;; (+ x y ... 1) --> (1+ (+ x y ...))
780 ;; (+ x y ... -1) --> (1- (+ x y ...))
781 ;; The resulting bytecode is smaller, but is it faster? -- cyd
782 ))
783 (byte-optimize-predicate form))
784
785 (defun byte-optimize-minus (form)
786 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
787 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
788 ;; Remove zeros.
789 (when (and (nthcdr 3 form)
790 (memq 0 (cddr form)))
791 (setq form (nconc (list (car form) (cadr form))
792 (delq 0 (copy-sequence (cddr form)))))
793 ;; After the above, we must turn (- x) back into (- x 0)
794 (or (cddr form)
795 (setq form (nconc form (list 0)))))
796 ;; For (- constants..), byte-optimize-predicate does the work.
797 (when (memq nil (mapcar 'numberp (cdr form)))
798 (cond
799 ;; (- x 1) --> (1- x)
800 ((equal (nthcdr 2 form) '(1))
801 (setq form (list '1- (nth 1 form))))
802 ;; (- x -1) --> (1+ x)
803 ((equal (nthcdr 2 form) '(-1))
804 (setq form (list '1+ (nth 1 form))))
805 ;; (- 0 x) --> (- x)
806 ((and (eq (nth 1 form) 0)
807 (= (length form) 3))
808 (setq form (list '- (nth 2 form))))
809 ;; Here, we could also do
810 ;; (- x y ... 1) --> (1- (- x y ...))
811 ;; (- x y ... -1) --> (1+ (- x y ...))
812 ;; The resulting bytecode is smaller, but is it faster? -- cyd
813 ))
814 (byte-optimize-predicate form))
815
816 (defun byte-optimize-multiply (form)
817 (setq form (byte-optimize-delay-constants-math form 1 '*))
818 ;; For (* constants..), byte-optimize-predicate does the work.
819 (when (memq nil (mapcar 'numberp (cdr form)))
820 ;; After `byte-optimize-predicate', if there is a INTEGER constant
821 ;; in FORM, it is in the last element.
822 (let ((last (car (reverse (cdr form)))))
823 (cond
824 ;; Would handling (* ... 0) here cause floating point errors?
825 ;; See bug#1334.
826 ((eq 1 last) (setq form (byte-compile-butlast form)))
827 ((eq -1 last)
828 (setq form (list '- (if (nthcdr 3 form)
829 (byte-compile-butlast form)
830 (nth 1 form))))))))
831 (byte-optimize-predicate form))
832
833 (defun byte-optimize-divide (form)
834 (setq form (byte-optimize-delay-constants-math form 2 '*))
835 ;; After `byte-optimize-predicate', if there is a INTEGER constant
836 ;; in FORM, it is in the last element.
837 (let ((last (car (reverse (cdr (cdr form))))))
838 (cond
839 ;; Runtime error (leave it intact).
840 ((or (null last)
841 (eq last 0)
842 (memql 0.0 (cddr form))))
843 ;; No constants in expression
844 ((not (numberp last)))
845 ;; For (* constants..), byte-optimize-predicate does the work.
846 ((null (memq nil (mapcar 'numberp (cdr form)))))
847 ;; (/ x y.. 1) --> (/ x y..)
848 ((and (eq last 1) (nthcdr 3 form))
849 (setq form (byte-compile-butlast form)))
850 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
851 ((eq last -1)
852 (setq form (list '- (if (nthcdr 3 form)
853 (byte-compile-butlast form)
854 (nth 1 form)))))))
855 (byte-optimize-predicate form))
856
857 (defun byte-optimize-logmumble (form)
858 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
859 (byte-optimize-predicate
860 (cond ((memq 0 form)
861 (setq form (if (eq (car form) 'logand)
862 (cons 'progn (cdr form))
863 (delq 0 (copy-sequence form)))))
864 ((and (eq (car-safe form) 'logior)
865 (memq -1 form))
866 (cons 'progn (cdr form)))
867 (form))))
868
869
870 (defun byte-optimize-binary-predicate (form)
871 (if (byte-compile-constp (nth 1 form))
872 (if (byte-compile-constp (nth 2 form))
873 (condition-case ()
874 (list 'quote (eval form))
875 (error form))
876 ;; This can enable some lapcode optimizations.
877 (list (car form) (nth 2 form) (nth 1 form)))
878 form))
879
880 (defun byte-optimize-predicate (form)
881 (let ((ok t)
882 (rest (cdr form)))
883 (while (and rest ok)
884 (setq ok (byte-compile-constp (car rest))
885 rest (cdr rest)))
886 (if ok
887 (condition-case ()
888 (list 'quote (eval form))
889 (error form))
890 form)))
891
892 (defun byte-optimize-identity (form)
893 (if (and (cdr form) (null (cdr (cdr form))))
894 (nth 1 form)
895 (byte-compile-warn "identity called with %d arg%s, but requires 1"
896 (length (cdr form))
897 (if (= 1 (length (cdr form))) "" "s"))
898 form))
899
900 (put 'identity 'byte-optimizer 'byte-optimize-identity)
901
902 (put '+ 'byte-optimizer 'byte-optimize-plus)
903 (put '* 'byte-optimizer 'byte-optimize-multiply)
904 (put '- 'byte-optimizer 'byte-optimize-minus)
905 (put '/ 'byte-optimizer 'byte-optimize-divide)
906 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
907 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
908
909 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
910 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
911 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
912 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
913 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
914
915 (put '< 'byte-optimizer 'byte-optimize-predicate)
916 (put '> 'byte-optimizer 'byte-optimize-predicate)
917 (put '<= 'byte-optimizer 'byte-optimize-predicate)
918 (put '>= 'byte-optimizer 'byte-optimize-predicate)
919 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
920 (put '1- 'byte-optimizer 'byte-optimize-predicate)
921 (put 'not 'byte-optimizer 'byte-optimize-predicate)
922 (put 'null 'byte-optimizer 'byte-optimize-predicate)
923 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
924 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
925 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
926 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
927 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
928 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
929 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
930
931 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
932 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
933 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
934 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
935
936 (put 'car 'byte-optimizer 'byte-optimize-predicate)
937 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
938 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
939 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
940
941
942 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
943 ;; take care of this? - Jamie
944 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
945 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
946 (put 'quote 'byte-optimizer 'byte-optimize-quote)
947 (defun byte-optimize-quote (form)
948 (if (or (consp (nth 1 form))
949 (and (symbolp (nth 1 form))
950 (not (byte-compile-const-symbol-p form))))
951 form
952 (nth 1 form)))
953
954 (defun byte-optimize-zerop (form)
955 (cond ((numberp (nth 1 form))
956 (eval form))
957 (byte-compile-delete-errors
958 (list '= (nth 1 form) 0))
959 (form)))
960
961 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
962
963 (defun byte-optimize-and (form)
964 ;; Simplify if less than 2 args.
965 ;; if there is a literal nil in the args to `and', throw it and following
966 ;; forms away, and surround the `and' with (progn ... nil).
967 (cond ((null (cdr form)))
968 ((memq nil form)
969 (list 'progn
970 (byte-optimize-and
971 (prog1 (setq form (copy-sequence form))
972 (while (nth 1 form)
973 (setq form (cdr form)))
974 (setcdr form nil)))
975 nil))
976 ((null (cdr (cdr form)))
977 (nth 1 form))
978 ((byte-optimize-predicate form))))
979
980 (defun byte-optimize-or (form)
981 ;; Throw away nil's, and simplify if less than 2 args.
982 ;; If there is a literal non-nil constant in the args to `or', throw away all
983 ;; following forms.
984 (if (memq nil form)
985 (setq form (delq nil (copy-sequence form))))
986 (let ((rest form))
987 (while (cdr (setq rest (cdr rest)))
988 (if (byte-compile-trueconstp (car rest))
989 (setq form (copy-sequence form)
990 rest (setcdr (memq (car rest) form) nil))))
991 (if (cdr (cdr form))
992 (byte-optimize-predicate form)
993 (nth 1 form))))
994
995 (defun byte-optimize-cond (form)
996 ;; if any clauses have a literal nil as their test, throw them away.
997 ;; if any clause has a literal non-nil constant as its test, throw
998 ;; away all following clauses.
999 (let (rest)
1000 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
1001 (while (setq rest (assq nil (cdr form)))
1002 (setq form (delq rest (copy-sequence form))))
1003 (if (memq nil (cdr form))
1004 (setq form (delq nil (copy-sequence form))))
1005 (setq rest form)
1006 (while (setq rest (cdr rest))
1007 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1008 ;; This branch will always be taken: kill the subsequent ones.
1009 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1010 (setq form `(progn ,@(car rest))))
1011 ((cdr rest)
1012 (setq form (copy-sequence form))
1013 (setcdr (memq (car rest) form) nil)))
1014 (setq rest nil))
1015 ((and (consp (car rest))
1016 (byte-compile-nilconstp (caar rest)))
1017 ;; This branch will never be taken: kill its body.
1018 (setcdr (car rest) nil)))))
1019 ;;
1020 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1021 (if (eq 'cond (car-safe form))
1022 (let ((clauses (cdr form)))
1023 (if (and (consp (car clauses))
1024 (null (cdr (car clauses))))
1025 (list 'or (car (car clauses))
1026 (byte-optimize-cond
1027 (cons (car form) (cdr (cdr form)))))
1028 form))
1029 form))
1030
1031 (defun byte-optimize-if (form)
1032 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1033 ;; (if <true-constant> <then> <else...>) ==> <then>
1034 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1035 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1036 ;; (if <test> <then> nil) ==> (if <test> <then>)
1037 (let ((clause (nth 1 form)))
1038 (cond ((and (eq (car-safe clause) 'progn)
1039 ;; `clause' is a proper list.
1040 (null (cdr (last clause))))
1041 (if (null (cddr clause))
1042 ;; A trivial `progn'.
1043 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1044 (nconc (butlast clause)
1045 (list
1046 (byte-optimize-if
1047 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1048 ((byte-compile-trueconstp clause)
1049 `(progn ,clause ,(nth 2 form)))
1050 ((byte-compile-nilconstp clause)
1051 `(progn ,clause ,@(nthcdr 3 form)))
1052 ((nth 2 form)
1053 (if (equal '(nil) (nthcdr 3 form))
1054 (list 'if clause (nth 2 form))
1055 form))
1056 ((or (nth 3 form) (nthcdr 4 form))
1057 (list 'if
1058 ;; Don't make a double negative;
1059 ;; instead, take away the one that is there.
1060 (if (and (consp clause) (memq (car clause) '(not null))
1061 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1062 (nth 1 clause)
1063 (list 'not clause))
1064 (if (nthcdr 4 form)
1065 (cons 'progn (nthcdr 3 form))
1066 (nth 3 form))))
1067 (t
1068 (list 'progn clause nil)))))
1069
1070 (defun byte-optimize-while (form)
1071 (when (< (length form) 2)
1072 (byte-compile-warn "too few arguments for `while'"))
1073 (if (nth 1 form)
1074 form))
1075
1076 (put 'and 'byte-optimizer 'byte-optimize-and)
1077 (put 'or 'byte-optimizer 'byte-optimize-or)
1078 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1079 (put 'if 'byte-optimizer 'byte-optimize-if)
1080 (put 'while 'byte-optimizer 'byte-optimize-while)
1081
1082 ;; byte-compile-negation-optimizer lives in bytecomp.el
1083 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1084 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1085 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1086
1087
1088 (defun byte-optimize-funcall (form)
1089 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1090 ;; (funcall foo ...) ==> (foo ...)
1091 (let ((fn (nth 1 form)))
1092 (if (memq (car-safe fn) '(quote function))
1093 (cons (nth 1 fn) (cdr (cdr form)))
1094 form)))
1095
1096 (defun byte-optimize-apply (form)
1097 ;; If the last arg is a literal constant, turn this into a funcall.
1098 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1099 (let ((fn (nth 1 form))
1100 (last (nth (1- (length form)) form))) ; I think this really is fastest
1101 (or (if (or (null last)
1102 (eq (car-safe last) 'quote))
1103 (if (listp (nth 1 last))
1104 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1105 (nconc (list 'funcall fn) butlast
1106 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1107 (byte-compile-warn
1108 "last arg to apply can't be a literal atom: `%s'"
1109 (prin1-to-string last))
1110 nil))
1111 form)))
1112
1113 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1114 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1115
1116
1117 (put 'let 'byte-optimizer 'byte-optimize-letX)
1118 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1119 (defun byte-optimize-letX (form)
1120 (cond ((null (nth 1 form))
1121 ;; No bindings
1122 (cons 'progn (cdr (cdr form))))
1123 ((or (nth 2 form) (nthcdr 3 form))
1124 form)
1125 ;; The body is nil
1126 ((eq (car form) 'let)
1127 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1128 '(nil)))
1129 (t
1130 (let ((binds (reverse (nth 1 form))))
1131 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1132
1133
1134 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1135 (defun byte-optimize-nth (form)
1136 (if (= (safe-length form) 3)
1137 (if (memq (nth 1 form) '(0 1))
1138 (list 'car (if (zerop (nth 1 form))
1139 (nth 2 form)
1140 (list 'cdr (nth 2 form))))
1141 (byte-optimize-predicate form))
1142 form))
1143
1144 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1145 (defun byte-optimize-nthcdr (form)
1146 (if (= (safe-length form) 3)
1147 (if (memq (nth 1 form) '(0 1 2))
1148 (let ((count (nth 1 form)))
1149 (setq form (nth 2 form))
1150 (while (>= (setq count (1- count)) 0)
1151 (setq form (list 'cdr form)))
1152 form)
1153 (byte-optimize-predicate form))
1154 form))
1155
1156 ;; Fixme: delete-char -> delete-region (byte-coded)
1157 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1158 ;; string-make-multibyte for constant args.
1159
1160 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1161 (defun byte-optimize-featurep (form)
1162 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1163 ;; can safely optimize away this test.
1164 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1165 nil
1166 (if (member (cdr-safe form) '(((quote emacs))))
1167 t
1168 form)))
1169
1170 (put 'set 'byte-optimizer 'byte-optimize-set)
1171 (defun byte-optimize-set (form)
1172 (let ((var (car-safe (cdr-safe form))))
1173 (cond
1174 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1175 `(setq ,(cadr var) ,@(cddr form)))
1176 ((and (eq (car-safe var) 'make-local-variable)
1177 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1178 (consp (cdr var)))
1179 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1180 (t form))))
1181 \f
1182 ;; enumerating those functions which need not be called if the returned
1183 ;; value is not used. That is, something like
1184 ;; (progn (list (something-with-side-effects) (yow))
1185 ;; (foo))
1186 ;; may safely be turned into
1187 ;; (progn (progn (something-with-side-effects) (yow))
1188 ;; (foo))
1189 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1190
1191 ;; Some of these functions have the side effect of allocating memory
1192 ;; and it would be incorrect to replace two calls with one.
1193 ;; But we don't try to do those kinds of optimizations,
1194 ;; so it is safe to list such functions here.
1195 ;; Some of these functions return values that depend on environment
1196 ;; state, so that constant folding them would be wrong,
1197 ;; but we don't do constant folding based on this list.
1198
1199 ;; However, at present the only optimization we normally do
1200 ;; is delete calls that need not occur, and we only do that
1201 ;; with the error-free functions.
1202
1203 ;; I wonder if I missed any :-\)
1204 (let ((side-effect-free-fns
1205 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1206 assoc assq
1207 boundp buffer-file-name buffer-local-variables buffer-modified-p
1208 buffer-substring byte-code-function-p
1209 capitalize car-less-than-car car cdr ceiling char-after char-before
1210 char-equal char-to-string char-width
1211 compare-strings concat coordinates-in-window-p
1212 copy-alist copy-sequence copy-marker cos count-lines
1213 decode-char
1214 decode-time default-boundp default-value documentation downcase
1215 elt encode-char exp expt encode-time error-message-string
1216 fboundp fceiling featurep ffloor
1217 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1218 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1219 float float-time floor format format-time-string frame-visible-p
1220 fround ftruncate
1221 get gethash get-buffer get-buffer-window getenv get-file-buffer
1222 hash-table-count
1223 int-to-string intern-soft
1224 keymap-parent
1225 length local-variable-if-set-p local-variable-p log log10 logand
1226 logb logior lognot logxor lsh langinfo
1227 make-list make-string make-symbol
1228 marker-buffer max member memq min mod multibyte-char-to-unibyte
1229 next-window nth nthcdr number-to-string
1230 parse-colon-path plist-get plist-member
1231 prefix-numeric-value previous-window prin1-to-string propertize
1232 degrees-to-radians
1233 radians-to-degrees rassq rassoc read-from-string regexp-quote
1234 region-beginning region-end reverse round
1235 sin sqrt string string< string= string-equal string-lessp string-to-char
1236 string-to-int string-to-number substring sxhash symbol-function
1237 symbol-name symbol-plist symbol-value string-make-unibyte
1238 string-make-multibyte string-as-multibyte string-as-unibyte
1239 string-to-multibyte
1240 tan truncate
1241 unibyte-char-to-multibyte upcase user-full-name
1242 user-login-name user-original-login-name user-variable-p
1243 vconcat
1244 window-buffer window-dedicated-p window-edges window-height
1245 window-hscroll window-minibuffer-p window-width
1246 zerop))
1247 (side-effect-and-error-free-fns
1248 '(arrayp atom
1249 bobp bolp bool-vector-p
1250 buffer-end buffer-list buffer-size buffer-string bufferp
1251 car-safe case-table-p cdr-safe char-or-string-p characterp
1252 charsetp commandp cons consp
1253 current-buffer current-global-map current-indentation
1254 current-local-map current-minor-mode-maps current-time
1255 current-time-string current-time-zone
1256 eobp eolp eq equal eventp
1257 floatp following-char framep
1258 get-largest-window get-lru-window
1259 hash-table-p
1260 identity ignore integerp integer-or-marker-p interactive-p
1261 invocation-directory invocation-name
1262 keymapp
1263 line-beginning-position line-end-position list listp
1264 make-marker mark mark-marker markerp max-char
1265 memory-limit minibuffer-window
1266 mouse-movement-p
1267 natnump nlistp not null number-or-marker-p numberp
1268 one-window-p overlayp
1269 point point-marker point-min point-max preceding-char primary-charset
1270 processp
1271 recent-keys recursion-depth
1272 safe-length selected-frame selected-window sequencep
1273 standard-case-table standard-syntax-table stringp subrp symbolp
1274 syntax-table syntax-table-p
1275 this-command-keys this-command-keys-vector this-single-command-keys
1276 this-single-command-raw-keys
1277 user-real-login-name user-real-uid user-uid
1278 vector vectorp visible-frame-list
1279 wholenump window-configuration-p window-live-p windowp)))
1280 (while side-effect-free-fns
1281 (put (car side-effect-free-fns) 'side-effect-free t)
1282 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1283 (while side-effect-and-error-free-fns
1284 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1285 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1286 nil)
1287
1288 \f
1289 ;; pure functions are side-effect free functions whose values depend
1290 ;; only on their arguments. For these functions, calls with constant
1291 ;; arguments can be evaluated at compile time. This may shift run time
1292 ;; errors to compile time.
1293
1294 (let ((pure-fns
1295 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1296 (while pure-fns
1297 (put (car pure-fns) 'pure t)
1298 (setq pure-fns (cdr pure-fns)))
1299 nil)
1300
1301 (defun byte-compile-splice-in-already-compiled-code (form)
1302 ;; form is (byte-code "..." [...] n)
1303 (if (not (memq byte-optimize '(t lap)))
1304 (byte-compile-normal-call form)
1305 (byte-inline-lapcode
1306 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))))
1307
1308 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1309
1310 \f
1311 (defconst byte-constref-ops
1312 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1313
1314 ;; Used and set dynamically in byte-decompile-bytecode-1.
1315 (defvar bytedecomp-op)
1316 (defvar bytedecomp-ptr)
1317 (defvar bytedecomp-bytes)
1318
1319 ;; This function extracts the bitfields from variable-length opcodes.
1320 ;; Originally defined in disass.el (which no longer uses it.)
1321 (defun disassemble-offset ()
1322 "Don't call this!"
1323 ;; fetch and return the offset for the current opcode.
1324 ;; return nil if this opcode has no offset
1325 (cond ((< bytedecomp-op byte-nth)
1326 (let ((tem (logand bytedecomp-op 7)))
1327 (setq bytedecomp-op (logand bytedecomp-op 248))
1328 (cond ((eq tem 6)
1329 ;; Offset in next byte.
1330 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1331 (aref bytedecomp-bytes bytedecomp-ptr))
1332 ((eq tem 7)
1333 ;; Offset in next 2 bytes.
1334 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1335 (+ (aref bytedecomp-bytes bytedecomp-ptr)
1336 (progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1337 (lsh (aref bytedecomp-bytes bytedecomp-ptr) 8))))
1338 (t tem)))) ;offset was in opcode
1339 ((>= bytedecomp-op byte-constant)
1340 (prog1 (- bytedecomp-op byte-constant) ;offset in opcode
1341 (setq bytedecomp-op byte-constant)))
1342 ((or (and (>= bytedecomp-op byte-constant2)
1343 (<= bytedecomp-op byte-goto-if-not-nil-else-pop))
1344 (= bytedecomp-op byte-stack-set2))
1345 ;; Offset in next 2 bytes.
1346 (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1347 (+ (aref bytedecomp-bytes bytedecomp-ptr)
1348 (progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
1349 (lsh (aref bytedecomp-bytes bytedecomp-ptr) 8))))
1350 ((and (>= bytedecomp-op byte-listN)
1351 (<= bytedecomp-op byte-discardN))
1352 (setq bytedecomp-ptr (1+ bytedecomp-ptr)) ;offset in next byte
1353 (aref bytedecomp-bytes bytedecomp-ptr))))
1354
1355
1356 ;; This de-compiler is used for inline expansion of compiled functions,
1357 ;; and by the disassembler.
1358 ;;
1359 ;; This list contains numbers, which are pc values,
1360 ;; before each instruction.
1361 (defun byte-decompile-bytecode (bytes constvec)
1362 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1363 (let ((byte-compile-constants nil)
1364 (byte-compile-variables nil)
1365 (byte-compile-tag-number 0))
1366 (byte-decompile-bytecode-1 bytes constvec)))
1367
1368 ;; As byte-decompile-bytecode, but updates
1369 ;; byte-compile-{constants, variables, tag-number}.
1370 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1371 ;; with `goto's destined for the end of the code.
1372 ;; That is for use by the compiler.
1373 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1374 ;; In that case, we put a pc value into the list
1375 ;; before each insn (or its label).
1376 (defun byte-decompile-bytecode-1 (bytedecomp-bytes constvec
1377 &optional make-spliceable)
1378 (let ((length (length bytedecomp-bytes))
1379 (bytedecomp-ptr 0) optr tags bytedecomp-op offset
1380 lap tmp
1381 endtag)
1382 (while (not (= bytedecomp-ptr length))
1383 (or make-spliceable
1384 (setq lap (cons bytedecomp-ptr lap)))
1385 (setq bytedecomp-op (aref bytedecomp-bytes bytedecomp-ptr)
1386 optr bytedecomp-ptr
1387 offset (disassemble-offset)) ; this does dynamic-scope magic
1388 (setq bytedecomp-op (aref byte-code-vector bytedecomp-op))
1389 (cond ((memq bytedecomp-op byte-goto-ops)
1390 ;; it's a pc
1391 (setq offset
1392 (cdr (or (assq offset tags)
1393 (car (setq tags
1394 (cons (cons offset
1395 (byte-compile-make-tag))
1396 tags)))))))
1397 ((cond ((eq bytedecomp-op 'byte-constant2)
1398 (setq bytedecomp-op 'byte-constant) t)
1399 ((memq bytedecomp-op byte-constref-ops)))
1400 (setq tmp (if (>= offset (length constvec))
1401 (list 'out-of-range offset)
1402 (aref constvec offset))
1403 offset (if (eq bytedecomp-op 'byte-constant)
1404 (byte-compile-get-constant tmp)
1405 (or (assq tmp byte-compile-variables)
1406 (car (setq byte-compile-variables
1407 (cons (list tmp)
1408 byte-compile-variables)))))))
1409 ((and make-spliceable
1410 (eq bytedecomp-op 'byte-return))
1411 (if (= bytedecomp-ptr (1- length))
1412 (setq bytedecomp-op nil)
1413 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1414 bytedecomp-op 'byte-goto)))
1415 ((eq bytedecomp-op 'byte-stack-set2)
1416 (setq bytedecomp-op 'byte-stack-set))
1417 ((and (eq bytedecomp-op 'byte-discardN) (>= offset #x80))
1418 ;; The top bit of the operand for byte-discardN is a flag,
1419 ;; saying whether the top-of-stack is preserved. In
1420 ;; lapcode, we represent this by using a different opcode
1421 ;; (with the flag removed from the operand).
1422 (setq bytedecomp-op 'byte-discardN-preserve-tos)
1423 (setq offset (- offset #x80))))
1424 ;; lap = ( [ (pc . (op . arg)) ]* )
1425 (setq lap (cons (cons optr (cons bytedecomp-op (or offset 0)))
1426 lap))
1427 (setq bytedecomp-ptr (1+ bytedecomp-ptr)))
1428 ;; take off the dummy nil op that we replaced a trailing "return" with.
1429 (let ((rest lap))
1430 (while rest
1431 (cond ((numberp (car rest)))
1432 ((setq tmp (assq (car (car rest)) tags))
1433 ;; this addr is jumped to
1434 (setcdr rest (cons (cons nil (cdr tmp))
1435 (cdr rest)))
1436 (setq tags (delq tmp tags))
1437 (setq rest (cdr rest))))
1438 (setq rest (cdr rest))))
1439 (if tags (error "optimizer error: missed tags %s" tags))
1440 (if (null (car (cdr (car lap))))
1441 (setq lap (cdr lap)))
1442 (if endtag
1443 (setq lap (cons (cons nil endtag) lap)))
1444 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1445 (mapcar (function (lambda (elt)
1446 (if (numberp elt)
1447 elt
1448 (cdr elt))))
1449 (nreverse lap))))
1450
1451 \f
1452 ;;; peephole optimizer
1453
1454 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1455
1456 (defconst byte-conditional-ops
1457 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1458 byte-goto-if-not-nil-else-pop))
1459
1460 (defconst byte-after-unbind-ops
1461 '(byte-constant byte-dup
1462 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1463 byte-eq byte-not
1464 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1465 byte-interactive-p)
1466 ;; How about other side-effect-free-ops? Is it safe to move an
1467 ;; error invocation (such as from nth) out of an unwind-protect?
1468 ;; No, it is not, because the unwind-protect forms can alter
1469 ;; the inside of the object to which nth would apply.
1470 ;; For the same reason, byte-equal was deleted from this list.
1471 "Byte-codes that can be moved past an unbind.")
1472
1473 (defconst byte-compile-side-effect-and-error-free-ops
1474 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1475 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1476 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1477 byte-point-min byte-following-char byte-preceding-char
1478 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1479 byte-current-buffer byte-stack-ref ;; byte-closed-var
1480 ))
1481
1482 (defconst byte-compile-side-effect-free-ops
1483 (nconc
1484 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1485 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1486 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1487 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1488 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1489 byte-member byte-assq byte-quo byte-rem)
1490 byte-compile-side-effect-and-error-free-ops))
1491
1492 ;; This crock is because of the way DEFVAR_BOOL variables work.
1493 ;; Consider the code
1494 ;;
1495 ;; (defun foo (flag)
1496 ;; (let ((old-pop-ups pop-up-windows)
1497 ;; (pop-up-windows flag))
1498 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1499 ;; (setq old-pop-ups pop-up-windows)
1500 ;; ...))))
1501 ;;
1502 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1503 ;; something else. But if we optimize
1504 ;;
1505 ;; varref flag
1506 ;; varbind pop-up-windows
1507 ;; varref pop-up-windows
1508 ;; not
1509 ;; to
1510 ;; varref flag
1511 ;; dup
1512 ;; varbind pop-up-windows
1513 ;; not
1514 ;;
1515 ;; we break the program, because it will appear that pop-up-windows and
1516 ;; old-pop-ups are not EQ when really they are. So we have to know what
1517 ;; the BOOL variables are, and not perform this optimization on them.
1518
1519 ;; The variable `byte-boolean-vars' is now primitive and updated
1520 ;; automatically by DEFVAR_BOOL.
1521
1522 (defun byte-optimize-lapcode (lap &optional for-effect)
1523 "Simple peephole optimizer. LAP is both modified and returned.
1524 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1525 (let (lap0
1526 lap1
1527 lap2
1528 (keep-going 'first-time)
1529 (add-depth 0)
1530 rest tmp tmp2 tmp3
1531 (side-effect-free (if byte-compile-delete-errors
1532 byte-compile-side-effect-free-ops
1533 byte-compile-side-effect-and-error-free-ops)))
1534 (while keep-going
1535 (or (eq keep-going 'first-time)
1536 (byte-compile-log-lap " ---- next pass"))
1537 (setq rest lap
1538 keep-going nil)
1539 (while rest
1540 (setq lap0 (car rest)
1541 lap1 (nth 1 rest)
1542 lap2 (nth 2 rest))
1543
1544 ;; You may notice that sequences like "dup varset discard" are
1545 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1546 ;; You may be tempted to change this; resist that temptation.
1547 (cond ;;
1548 ;; <side-effect-free> pop --> <deleted>
1549 ;; ...including:
1550 ;; const-X pop --> <deleted>
1551 ;; varref-X pop --> <deleted>
1552 ;; dup pop --> <deleted>
1553 ;;
1554 ((and (eq 'byte-discard (car lap1))
1555 (memq (car lap0) side-effect-free))
1556 (setq keep-going t)
1557 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1558 (setq rest (cdr rest))
1559 (cond ((= tmp 1)
1560 (byte-compile-log-lap
1561 " %s discard\t-->\t<deleted>" lap0)
1562 (setq lap (delq lap0 (delq lap1 lap))))
1563 ((= tmp 0)
1564 (byte-compile-log-lap
1565 " %s discard\t-->\t<deleted> discard" lap0)
1566 (setq lap (delq lap0 lap)))
1567 ((= tmp -1)
1568 (byte-compile-log-lap
1569 " %s discard\t-->\tdiscard discard" lap0)
1570 (setcar lap0 'byte-discard)
1571 (setcdr lap0 0))
1572 ((error "Optimizer error: too much on the stack"))))
1573 ;;
1574 ;; goto*-X X: --> X:
1575 ;;
1576 ((and (memq (car lap0) byte-goto-ops)
1577 (eq (cdr lap0) lap1))
1578 (cond ((eq (car lap0) 'byte-goto)
1579 (setq lap (delq lap0 lap))
1580 (setq tmp "<deleted>"))
1581 ((memq (car lap0) byte-goto-always-pop-ops)
1582 (setcar lap0 (setq tmp 'byte-discard))
1583 (setcdr lap0 0))
1584 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1585 (and (memq byte-optimize-log '(t byte))
1586 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1587 (nth 1 lap1) (nth 1 lap1)
1588 tmp (nth 1 lap1)))
1589 (setq keep-going t))
1590 ;;
1591 ;; varset-X varref-X --> dup varset-X
1592 ;; varbind-X varref-X --> dup varbind-X
1593 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1594 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1595 ;; The latter two can enable other optimizations.
1596 ;;
1597 ;; For lexical variables, we could do the same
1598 ;; stack-set-X+1 stack-ref-X --> dup stack-set-X+2
1599 ;; but this is a very minor gain, since dup is stack-ref-0,
1600 ;; i.e. it's only better if X>5, and even then it comes
1601 ;; at the cost cost of an extra stack slot. Let's not bother.
1602 ((and (eq 'byte-varref (car lap2))
1603 (eq (cdr lap1) (cdr lap2))
1604 (memq (car lap1) '(byte-varset byte-varbind)))
1605 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1606 (not (eq (car lap0) 'byte-constant)))
1607 nil
1608 (setq keep-going t)
1609 (if (memq (car lap0) '(byte-constant byte-dup))
1610 (progn
1611 (setq tmp (if (or (not tmp)
1612 (byte-compile-const-symbol-p
1613 (car (cdr lap0))))
1614 (cdr lap0)
1615 (byte-compile-get-constant t)))
1616 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1617 lap0 lap1 lap2 lap0 lap1
1618 (cons (car lap0) tmp))
1619 (setcar lap2 (car lap0))
1620 (setcdr lap2 tmp))
1621 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1622 (setcar lap2 (car lap1))
1623 (setcar lap1 'byte-dup)
1624 (setcdr lap1 0)
1625 ;; The stack depth gets locally increased, so we will
1626 ;; increase maxdepth in case depth = maxdepth here.
1627 ;; This can cause the third argument to byte-code to
1628 ;; be larger than necessary.
1629 (setq add-depth 1))))
1630 ;;
1631 ;; dup varset-X discard --> varset-X
1632 ;; dup varbind-X discard --> varbind-X
1633 ;; dup stack-set-X discard --> stack-set-X-1
1634 ;; (the varbind variant can emerge from other optimizations)
1635 ;;
1636 ((and (eq 'byte-dup (car lap0))
1637 (eq 'byte-discard (car lap2))
1638 (memq (car lap1) '(byte-varset byte-varbind
1639 byte-stack-set)))
1640 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1641 (setq keep-going t
1642 rest (cdr rest))
1643 (if (eq 'byte-stack-set (car lap1)) (decf (cdr lap1)))
1644 (setq lap (delq lap0 (delq lap2 lap))))
1645 ;;
1646 ;; not goto-X-if-nil --> goto-X-if-non-nil
1647 ;; not goto-X-if-non-nil --> goto-X-if-nil
1648 ;;
1649 ;; it is wrong to do the same thing for the -else-pop variants.
1650 ;;
1651 ((and (eq 'byte-not (car lap0))
1652 (or (eq 'byte-goto-if-nil (car lap1))
1653 (eq 'byte-goto-if-not-nil (car lap1))))
1654 (byte-compile-log-lap " not %s\t-->\t%s"
1655 lap1
1656 (cons
1657 (if (eq (car lap1) 'byte-goto-if-nil)
1658 'byte-goto-if-not-nil
1659 'byte-goto-if-nil)
1660 (cdr lap1)))
1661 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1662 'byte-goto-if-not-nil
1663 'byte-goto-if-nil))
1664 (setq lap (delq lap0 lap))
1665 (setq keep-going t))
1666 ;;
1667 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1668 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1669 ;;
1670 ;; it is wrong to do the same thing for the -else-pop variants.
1671 ;;
1672 ((and (or (eq 'byte-goto-if-nil (car lap0))
1673 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1674 (eq 'byte-goto (car lap1)) ; gotoY
1675 (eq (cdr lap0) lap2)) ; TAG X
1676 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1677 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1678 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1679 lap0 lap1 lap2
1680 (cons inverse (cdr lap1)) lap2)
1681 (setq lap (delq lap0 lap))
1682 (setcar lap1 inverse)
1683 (setq keep-going t)))
1684 ;;
1685 ;; const goto-if-* --> whatever
1686 ;;
1687 ((and (eq 'byte-constant (car lap0))
1688 (memq (car lap1) byte-conditional-ops)
1689 ;; If the `byte-constant's cdr is not a cons cell, it has
1690 ;; to be an index into the constant pool); even though
1691 ;; it'll be a constant, that constant is not known yet
1692 ;; (it's typically a free variable of a closure, so will
1693 ;; only be known when the closure will be built at
1694 ;; run-time).
1695 (consp (cdr lap0)))
1696 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1697 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1698 (car (cdr lap0))
1699 (not (car (cdr lap0))))
1700 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1701 lap0 lap1)
1702 (setq rest (cdr rest)
1703 lap (delq lap0 (delq lap1 lap))))
1704 (t
1705 (byte-compile-log-lap " %s %s\t-->\t%s"
1706 lap0 lap1
1707 (cons 'byte-goto (cdr lap1)))
1708 (when (memq (car lap1) byte-goto-always-pop-ops)
1709 (setq lap (delq lap0 lap)))
1710 (setcar lap1 'byte-goto)))
1711 (setq keep-going t))
1712 ;;
1713 ;; varref-X varref-X --> varref-X dup
1714 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1715 ;; stackref-X [dup ...] stackref-X+N --> stackref-X [dup ...] dup
1716 ;; We don't optimize the const-X variations on this here,
1717 ;; because that would inhibit some goto optimizations; we
1718 ;; optimize the const-X case after all other optimizations.
1719 ;;
1720 ((and (memq (car lap0) '(byte-varref byte-stack-ref))
1721 (progn
1722 (setq tmp (cdr rest))
1723 (setq tmp2 0)
1724 (while (eq (car (car tmp)) 'byte-dup)
1725 (setq tmp2 (1+ tmp2))
1726 (setq tmp (cdr tmp)))
1727 t)
1728 (eq (if (eq 'byte-stack-ref (car lap0))
1729 (+ tmp2 1 (cdr lap0))
1730 (cdr lap0))
1731 (cdr (car tmp)))
1732 (eq (car lap0) (car (car tmp))))
1733 (if (memq byte-optimize-log '(t byte))
1734 (let ((str ""))
1735 (setq tmp2 (cdr rest))
1736 (while (not (eq tmp tmp2))
1737 (setq tmp2 (cdr tmp2)
1738 str (concat str " dup")))
1739 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1740 lap0 str lap0 lap0 str)))
1741 (setq keep-going t)
1742 (setcar (car tmp) 'byte-dup)
1743 (setcdr (car tmp) 0)
1744 (setq rest tmp))
1745 ;;
1746 ;; TAG1: TAG2: --> TAG1: <deleted>
1747 ;; (and other references to TAG2 are replaced with TAG1)
1748 ;;
1749 ((and (eq (car lap0) 'TAG)
1750 (eq (car lap1) 'TAG))
1751 (and (memq byte-optimize-log '(t byte))
1752 (byte-compile-log " adjacent tags %d and %d merged"
1753 (nth 1 lap1) (nth 1 lap0)))
1754 (setq tmp3 lap)
1755 (while (setq tmp2 (rassq lap0 tmp3))
1756 (setcdr tmp2 lap1)
1757 (setq tmp3 (cdr (memq tmp2 tmp3))))
1758 (setq lap (delq lap0 lap)
1759 keep-going t))
1760 ;;
1761 ;; unused-TAG: --> <deleted>
1762 ;;
1763 ((and (eq 'TAG (car lap0))
1764 (not (rassq lap0 lap)))
1765 (and (memq byte-optimize-log '(t byte))
1766 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1767 (setq lap (delq lap0 lap)
1768 keep-going t))
1769 ;;
1770 ;; goto ... --> goto <delete until TAG or end>
1771 ;; return ... --> return <delete until TAG or end>
1772 ;;
1773 ((and (memq (car lap0) '(byte-goto byte-return))
1774 (not (memq (car lap1) '(TAG nil))))
1775 (setq tmp rest)
1776 (let ((i 0)
1777 (opt-p (memq byte-optimize-log '(t lap)))
1778 str deleted)
1779 (while (and (setq tmp (cdr tmp))
1780 (not (eq 'TAG (car (car tmp)))))
1781 (if opt-p (setq deleted (cons (car tmp) deleted)
1782 str (concat str " %s")
1783 i (1+ i))))
1784 (if opt-p
1785 (let ((tagstr
1786 (if (eq 'TAG (car (car tmp)))
1787 (format "%d:" (car (cdr (car tmp))))
1788 (or (car tmp) ""))))
1789 (if (< i 6)
1790 (apply 'byte-compile-log-lap-1
1791 (concat " %s" str
1792 " %s\t-->\t%s <deleted> %s")
1793 lap0
1794 (nconc (nreverse deleted)
1795 (list tagstr lap0 tagstr)))
1796 (byte-compile-log-lap
1797 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1798 lap0 i (if (= i 1) "" "s")
1799 tagstr lap0 tagstr))))
1800 (rplacd rest tmp))
1801 (setq keep-going t))
1802 ;;
1803 ;; <safe-op> unbind --> unbind <safe-op>
1804 ;; (this may enable other optimizations.)
1805 ;;
1806 ((and (eq 'byte-unbind (car lap1))
1807 (memq (car lap0) byte-after-unbind-ops))
1808 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1809 (setcar rest lap1)
1810 (setcar (cdr rest) lap0)
1811 (setq keep-going t))
1812 ;;
1813 ;; varbind-X unbind-N --> discard unbind-(N-1)
1814 ;; save-excursion unbind-N --> unbind-(N-1)
1815 ;; save-restriction unbind-N --> unbind-(N-1)
1816 ;;
1817 ((and (eq 'byte-unbind (car lap1))
1818 (memq (car lap0) '(byte-varbind byte-save-excursion
1819 byte-save-restriction))
1820 (< 0 (cdr lap1)))
1821 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1822 (delq lap1 rest))
1823 (if (eq (car lap0) 'byte-varbind)
1824 (setcar rest (cons 'byte-discard 0))
1825 (setq lap (delq lap0 lap)))
1826 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1827 lap0 (cons (car lap1) (1+ (cdr lap1)))
1828 (if (eq (car lap0) 'byte-varbind)
1829 (car rest)
1830 (car (cdr rest)))
1831 (if (and (/= 0 (cdr lap1))
1832 (eq (car lap0) 'byte-varbind))
1833 (car (cdr rest))
1834 ""))
1835 (setq keep-going t))
1836 ;;
1837 ;; goto*-X ... X: goto-Y --> goto*-Y
1838 ;; goto-X ... X: return --> return
1839 ;;
1840 ((and (memq (car lap0) byte-goto-ops)
1841 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1842 '(byte-goto byte-return)))
1843 (cond ((and (not (eq tmp lap0))
1844 (or (eq (car lap0) 'byte-goto)
1845 (eq (car tmp) 'byte-goto)))
1846 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1847 (car lap0) tmp tmp)
1848 (if (eq (car tmp) 'byte-return)
1849 (setcar lap0 'byte-return))
1850 (setcdr lap0 (cdr tmp))
1851 (setq keep-going t))))
1852 ;;
1853 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1854 ;; goto-*-else-pop X ... X: discard --> whatever
1855 ;;
1856 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1857 byte-goto-if-not-nil-else-pop))
1858 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1859 (eval-when-compile
1860 (cons 'byte-discard byte-conditional-ops)))
1861 (not (eq lap0 (car tmp))))
1862 (setq tmp2 (car tmp))
1863 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1864 byte-goto-if-nil)
1865 (byte-goto-if-not-nil-else-pop
1866 byte-goto-if-not-nil))))
1867 (if (memq (car tmp2) tmp3)
1868 (progn (setcar lap0 (car tmp2))
1869 (setcdr lap0 (cdr tmp2))
1870 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1871 (car lap0) tmp2 lap0))
1872 ;; Get rid of the -else-pop's and jump one step further.
1873 (or (eq 'TAG (car (nth 1 tmp)))
1874 (setcdr tmp (cons (byte-compile-make-tag)
1875 (cdr tmp))))
1876 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1877 (car lap0) tmp2 (nth 1 tmp3))
1878 (setcar lap0 (nth 1 tmp3))
1879 (setcdr lap0 (nth 1 tmp)))
1880 (setq keep-going t))
1881 ;;
1882 ;; const goto-X ... X: goto-if-* --> whatever
1883 ;; const goto-X ... X: discard --> whatever
1884 ;;
1885 ((and (eq (car lap0) 'byte-constant)
1886 (eq (car lap1) 'byte-goto)
1887 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1888 (eval-when-compile
1889 (cons 'byte-discard byte-conditional-ops)))
1890 (not (eq lap1 (car tmp))))
1891 (setq tmp2 (car tmp))
1892 (cond ((when (consp (cdr lap0))
1893 (memq (car tmp2)
1894 (if (null (car (cdr lap0)))
1895 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1896 '(byte-goto-if-not-nil
1897 byte-goto-if-not-nil-else-pop))))
1898 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1899 lap0 tmp2 lap0 tmp2)
1900 (setcar lap1 (car tmp2))
1901 (setcdr lap1 (cdr tmp2))
1902 ;; Let next step fix the (const,goto-if*) sequence.
1903 (setq rest (cons nil rest))
1904 (setq keep-going t))
1905 ((or (consp (cdr lap0))
1906 (eq (car tmp2) 'byte-discard))
1907 ;; Jump one step further
1908 (byte-compile-log-lap
1909 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1910 lap0 tmp2)
1911 (or (eq 'TAG (car (nth 1 tmp)))
1912 (setcdr tmp (cons (byte-compile-make-tag)
1913 (cdr tmp))))
1914 (setcdr lap1 (car (cdr tmp)))
1915 (setq lap (delq lap0 lap))
1916 (setq keep-going t))))
1917 ;;
1918 ;; X: varref-Y ... varset-Y goto-X -->
1919 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1920 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1921 ;; (This is so usual for while loops that it is worth handling).
1922 ;;
1923 ;; Here again, we could do it for stack-ref/stack-set, but
1924 ;; that's replacing a stack-ref-Y with a stack-ref-0, which
1925 ;; is a very minor improvement (if any), at the cost of
1926 ;; more stack use and more byte-code. Let's not do it.
1927 ;;
1928 ((and (eq (car lap1) 'byte-varset)
1929 (eq (car lap2) 'byte-goto)
1930 (not (memq (cdr lap2) rest)) ;Backwards jump
1931 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1932 'byte-varref)
1933 (eq (cdr (car tmp)) (cdr lap1))
1934 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1935 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1936 (let ((newtag (byte-compile-make-tag)))
1937 (byte-compile-log-lap
1938 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1939 (nth 1 (cdr lap2)) (car tmp)
1940 lap1 lap2
1941 (nth 1 (cdr lap2)) (car tmp)
1942 (nth 1 newtag) 'byte-dup lap1
1943 (cons 'byte-goto newtag)
1944 )
1945 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1946 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1947 (setq add-depth 1)
1948 (setq keep-going t))
1949 ;;
1950 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1951 ;; (This can pull the loop test to the end of the loop)
1952 ;;
1953 ((and (eq (car lap0) 'byte-goto)
1954 (eq (car lap1) 'TAG)
1955 (eq lap1
1956 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1957 (memq (car (car tmp))
1958 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1959 byte-goto-if-nil-else-pop)))
1960 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1961 ;; lap0 lap1 (cdr lap0) (car tmp))
1962 (let ((newtag (byte-compile-make-tag)))
1963 (byte-compile-log-lap
1964 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1965 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1966 (cons (cdr (assq (car (car tmp))
1967 '((byte-goto-if-nil . byte-goto-if-not-nil)
1968 (byte-goto-if-not-nil . byte-goto-if-nil)
1969 (byte-goto-if-nil-else-pop .
1970 byte-goto-if-not-nil-else-pop)
1971 (byte-goto-if-not-nil-else-pop .
1972 byte-goto-if-nil-else-pop))))
1973 newtag)
1974
1975 (nth 1 newtag)
1976 )
1977 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1978 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1979 ;; We can handle this case but not the -if-not-nil case,
1980 ;; because we won't know which non-nil constant to push.
1981 (setcdr rest (cons (cons 'byte-constant
1982 (byte-compile-get-constant nil))
1983 (cdr rest))))
1984 (setcar lap0 (nth 1 (memq (car (car tmp))
1985 '(byte-goto-if-nil-else-pop
1986 byte-goto-if-not-nil
1987 byte-goto-if-nil
1988 byte-goto-if-not-nil
1989 byte-goto byte-goto))))
1990 )
1991 (setq keep-going t))
1992 )
1993 (setq rest (cdr rest)))
1994 )
1995 ;; Cleanup stage:
1996 ;; Rebuild byte-compile-constants / byte-compile-variables.
1997 ;; Simple optimizations that would inhibit other optimizations if they
1998 ;; were done in the optimizing loop, and optimizations which there is no
1999 ;; need to do more than once.
2000 (setq byte-compile-constants nil
2001 byte-compile-variables nil)
2002 (setq rest lap)
2003 (byte-compile-log-lap " ---- final pass")
2004 (while rest
2005 (setq lap0 (car rest)
2006 lap1 (nth 1 rest))
2007 (if (memq (car lap0) byte-constref-ops)
2008 (if (or (eq (car lap0) 'byte-constant)
2009 (eq (car lap0) 'byte-constant2))
2010 (unless (memq (cdr lap0) byte-compile-constants)
2011 (setq byte-compile-constants (cons (cdr lap0)
2012 byte-compile-constants)))
2013 (unless (memq (cdr lap0) byte-compile-variables)
2014 (setq byte-compile-variables (cons (cdr lap0)
2015 byte-compile-variables)))))
2016 (cond (;;
2017 ;; const-C varset-X const-C --> const-C dup varset-X
2018 ;; const-C varbind-X const-C --> const-C dup varbind-X
2019 ;;
2020 (and (eq (car lap0) 'byte-constant)
2021 (eq (car (nth 2 rest)) 'byte-constant)
2022 (eq (cdr lap0) (cdr (nth 2 rest)))
2023 (memq (car lap1) '(byte-varbind byte-varset)))
2024 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
2025 lap0 lap1 lap0 lap0 lap1)
2026 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
2027 (setcar (cdr rest) (cons 'byte-dup 0))
2028 (setq add-depth 1))
2029 ;;
2030 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
2031 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
2032 ;;
2033 ((memq (car lap0) '(byte-constant byte-varref))
2034 (setq tmp rest
2035 tmp2 nil)
2036 (while (progn
2037 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
2038 (and (eq (cdr lap0) (cdr (car tmp)))
2039 (eq (car lap0) (car (car tmp)))))
2040 (setcar tmp (cons 'byte-dup 0))
2041 (setq tmp2 t))
2042 (if tmp2
2043 (byte-compile-log-lap
2044 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
2045 ;;
2046 ;; unbind-N unbind-M --> unbind-(N+M)
2047 ;;
2048 ((and (eq 'byte-unbind (car lap0))
2049 (eq 'byte-unbind (car lap1)))
2050 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2051 (cons 'byte-unbind
2052 (+ (cdr lap0) (cdr lap1))))
2053 (setq lap (delq lap0 lap))
2054 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2055
2056 ;;
2057 ;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
2058 ;; stack-set-M [discard/discardN ...] --> discardN
2059 ;;
2060 ((and (eq (car lap0) 'byte-stack-set)
2061 (memq (car lap1) '(byte-discard byte-discardN))
2062 (progn
2063 ;; See if enough discard operations follow to expose or
2064 ;; destroy the value stored by the stack-set.
2065 (setq tmp (cdr rest))
2066 (setq tmp2 (1- (cdr lap0)))
2067 (setq tmp3 0)
2068 (while (memq (car (car tmp)) '(byte-discard byte-discardN))
2069 (setq tmp3
2070 (+ tmp3 (if (eq (car (car tmp)) 'byte-discard)
2071 1
2072 (cdr (car tmp)))))
2073 (setq tmp (cdr tmp)))
2074 (>= tmp3 tmp2)))
2075 ;; Do the optimization.
2076 (setq lap (delq lap0 lap))
2077 (setcar lap1
2078 (if (= tmp2 tmp3)
2079 ;; The value stored is the new TOS, so pop
2080 ;; one more value (to get rid of the old
2081 ;; value) using the TOS-preserving
2082 ;; discard operator.
2083 'byte-discardN-preserve-tos
2084 ;; Otherwise, the value stored is lost, so just use a
2085 ;; normal discard.
2086 'byte-discardN))
2087 (setcdr lap1 (1+ tmp3))
2088 (setcdr (cdr rest) tmp)
2089 (byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
2090 lap0 lap1))
2091
2092 ;;
2093 ;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
2094 ;; discardN-(X+Y)
2095 ;;
2096 ((and (memq (car lap0)
2097 '(byte-discard
2098 byte-discardN
2099 byte-discardN-preserve-tos))
2100 (memq (car lap1) '(byte-discard byte-discardN)))
2101 (setq lap (delq lap0 lap))
2102 (byte-compile-log-lap
2103 " %s %s\t-->\t(discardN %s)"
2104 lap0 lap1
2105 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2106 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2107 (setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
2108 (if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
2109 (setcar lap1 'byte-discardN))
2110
2111 ;;
2112 ;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
2113 ;; discardN-preserve-tos-(X+Y)
2114 ;;
2115 ((and (eq (car lap0) 'byte-discardN-preserve-tos)
2116 (eq (car lap1) 'byte-discardN-preserve-tos))
2117 (setq lap (delq lap0 lap))
2118 (setcdr lap1 (+ (cdr lap0) (cdr lap1)))
2119 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
2120
2121 ;;
2122 ;; discardN-preserve-tos return --> return
2123 ;; dup return --> return
2124 ;; stack-set-N return --> return ; where N is TOS-1
2125 ;;
2126 ((and (eq (car lap1) 'byte-return)
2127 (or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
2128 (and (eq (car lap0) 'byte-stack-set)
2129 (= (cdr lap0) 1))))
2130 ;; The byte-code interpreter will pop the stack for us, so
2131 ;; we can just leave stuff on it.
2132 (setq lap (delq lap0 lap))
2133 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
2134 )
2135 (setq rest (cdr rest)))
2136 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2137 lap)
2138
2139 (provide 'byte-opt)
2140
2141 \f
2142 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2143 ;; itself, compile some of its most used recursive functions (at load time).
2144 ;;
2145 (eval-when-compile
2146 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2147 (assq 'byte-code (symbol-function 'byte-optimize-form))
2148 (let ((byte-optimize nil)
2149 (byte-compile-warnings nil))
2150 (mapc (lambda (x)
2151 (or noninteractive (message "compiling %s..." x))
2152 (byte-compile x)
2153 (or noninteractive (message "compiling %s...done" x)))
2154 '(byte-optimize-form
2155 byte-optimize-body
2156 byte-optimize-predicate
2157 byte-optimize-binary-predicate
2158 ;; Inserted some more than necessary, to speed it up.
2159 byte-optimize-form-code-walker
2160 byte-optimize-lapcode))))
2161 nil)
2162
2163 ;;; byte-opt.el ends here