Inline functions to examine and change buffer intervals.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <ctype.h>
48 #include <float.h>
49 #include <limits.h>
50 #include <intprops.h>
51 #include <strftime.h>
52 #include <verify.h>
53
54 #include "intervals.h"
55 #include "character.h"
56 #include "buffer.h"
57 #include "coding.h"
58 #include "frame.h"
59 #include "window.h"
60 #include "blockinput.h"
61
62 #ifndef USE_CRT_DLL
63 extern char **environ;
64 #endif
65
66 #define TM_YEAR_BASE 1900
67
68 #ifdef WINDOWSNT
69 extern Lisp_Object w32_get_internal_run_time (void);
70 #endif
71
72 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
73 int, struct tm *);
74 static int tm_diff (struct tm *, struct tm *);
75 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
76
77 static Lisp_Object Qbuffer_access_fontify_functions;
78
79 /* Symbol for the text property used to mark fields. */
80
81 Lisp_Object Qfield;
82
83 /* A special value for Qfield properties. */
84
85 static Lisp_Object Qboundary;
86
87
88 void
89 init_editfns (void)
90 {
91 const char *user_name;
92 register char *p;
93 struct passwd *pw; /* password entry for the current user */
94 Lisp_Object tem;
95
96 /* Set up system_name even when dumping. */
97 init_system_name ();
98
99 #ifndef CANNOT_DUMP
100 /* Don't bother with this on initial start when just dumping out */
101 if (!initialized)
102 return;
103 #endif /* not CANNOT_DUMP */
104
105 pw = getpwuid (getuid ());
106 #ifdef MSDOS
107 /* We let the real user name default to "root" because that's quite
108 accurate on MSDOG and because it lets Emacs find the init file.
109 (The DVX libraries override the Djgpp libraries here.) */
110 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
111 #else
112 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
113 #endif
114
115 /* Get the effective user name, by consulting environment variables,
116 or the effective uid if those are unset. */
117 user_name = getenv ("LOGNAME");
118 if (!user_name)
119 #ifdef WINDOWSNT
120 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
121 #else /* WINDOWSNT */
122 user_name = getenv ("USER");
123 #endif /* WINDOWSNT */
124 if (!user_name)
125 {
126 pw = getpwuid (geteuid ());
127 user_name = pw ? pw->pw_name : "unknown";
128 }
129 Vuser_login_name = build_string (user_name);
130
131 /* If the user name claimed in the environment vars differs from
132 the real uid, use the claimed name to find the full name. */
133 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
134 if (! NILP (tem))
135 tem = Vuser_login_name;
136 else
137 {
138 uid_t euid = geteuid ();
139 tem = make_fixnum_or_float (euid);
140 }
141 Vuser_full_name = Fuser_full_name (tem);
142
143 p = getenv ("NAME");
144 if (p)
145 Vuser_full_name = build_string (p);
146 else if (NILP (Vuser_full_name))
147 Vuser_full_name = build_string ("unknown");
148
149 #ifdef HAVE_SYS_UTSNAME_H
150 {
151 struct utsname uts;
152 uname (&uts);
153 Voperating_system_release = build_string (uts.release);
154 }
155 #else
156 Voperating_system_release = Qnil;
157 #endif
158 }
159 \f
160 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
161 doc: /* Convert arg CHAR to a string containing that character.
162 usage: (char-to-string CHAR) */)
163 (Lisp_Object character)
164 {
165 int c, len;
166 unsigned char str[MAX_MULTIBYTE_LENGTH];
167
168 CHECK_CHARACTER (character);
169 c = XFASTINT (character);
170
171 len = CHAR_STRING (c, str);
172 return make_string_from_bytes ((char *) str, 1, len);
173 }
174
175 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
176 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
177 (Lisp_Object byte)
178 {
179 unsigned char b;
180 CHECK_NUMBER (byte);
181 if (XINT (byte) < 0 || XINT (byte) > 255)
182 error ("Invalid byte");
183 b = XINT (byte);
184 return make_string_from_bytes ((char *) &b, 1, 1);
185 }
186
187 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
188 doc: /* Return the first character in STRING. */)
189 (register Lisp_Object string)
190 {
191 register Lisp_Object val;
192 CHECK_STRING (string);
193 if (SCHARS (string))
194 {
195 if (STRING_MULTIBYTE (string))
196 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
197 else
198 XSETFASTINT (val, SREF (string, 0));
199 }
200 else
201 XSETFASTINT (val, 0);
202 return val;
203 }
204
205 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
206 doc: /* Return value of point, as an integer.
207 Beginning of buffer is position (point-min). */)
208 (void)
209 {
210 Lisp_Object temp;
211 XSETFASTINT (temp, PT);
212 return temp;
213 }
214
215 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
216 doc: /* Return value of point, as a marker object. */)
217 (void)
218 {
219 return build_marker (current_buffer, PT, PT_BYTE);
220 }
221
222 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
223 doc: /* Set point to POSITION, a number or marker.
224 Beginning of buffer is position (point-min), end is (point-max).
225
226 The return value is POSITION. */)
227 (register Lisp_Object position)
228 {
229 ptrdiff_t pos;
230
231 if (MARKERP (position)
232 && current_buffer == XMARKER (position)->buffer)
233 {
234 pos = marker_position (position);
235 if (pos < BEGV)
236 SET_PT_BOTH (BEGV, BEGV_BYTE);
237 else if (pos > ZV)
238 SET_PT_BOTH (ZV, ZV_BYTE);
239 else
240 SET_PT_BOTH (pos, marker_byte_position (position));
241
242 return position;
243 }
244
245 CHECK_NUMBER_COERCE_MARKER (position);
246
247 pos = clip_to_bounds (BEGV, XINT (position), ZV);
248 SET_PT (pos);
249 return position;
250 }
251
252
253 /* Return the start or end position of the region.
254 BEGINNINGP non-zero means return the start.
255 If there is no region active, signal an error. */
256
257 static Lisp_Object
258 region_limit (int beginningp)
259 {
260 Lisp_Object m;
261
262 if (!NILP (Vtransient_mark_mode)
263 && NILP (Vmark_even_if_inactive)
264 && NILP (BVAR (current_buffer, mark_active)))
265 xsignal0 (Qmark_inactive);
266
267 m = Fmarker_position (BVAR (current_buffer, mark));
268 if (NILP (m))
269 error ("The mark is not set now, so there is no region");
270
271 /* Clip to the current narrowing (bug#11770). */
272 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
273 ? PT
274 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
275 }
276
277 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is smaller. */)
279 (void)
280 {
281 return region_limit (1);
282 }
283
284 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
285 doc: /* Return the integer value of point or mark, whichever is larger. */)
286 (void)
287 {
288 return region_limit (0);
289 }
290
291 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
292 doc: /* Return this buffer's mark, as a marker object.
293 Watch out! Moving this marker changes the mark position.
294 If you set the marker not to point anywhere, the buffer will have no mark. */)
295 (void)
296 {
297 return BVAR (current_buffer, mark);
298 }
299
300 \f
301 /* Find all the overlays in the current buffer that touch position POS.
302 Return the number found, and store them in a vector in VEC
303 of length LEN. */
304
305 static ptrdiff_t
306 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
307 {
308 Lisp_Object overlay, start, end;
309 struct Lisp_Overlay *tail;
310 ptrdiff_t startpos, endpos;
311 ptrdiff_t idx = 0;
312
313 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
314 {
315 XSETMISC (overlay, tail);
316
317 end = OVERLAY_END (overlay);
318 endpos = OVERLAY_POSITION (end);
319 if (endpos < pos)
320 break;
321 start = OVERLAY_START (overlay);
322 startpos = OVERLAY_POSITION (start);
323 if (startpos <= pos)
324 {
325 if (idx < len)
326 vec[idx] = overlay;
327 /* Keep counting overlays even if we can't return them all. */
328 idx++;
329 }
330 }
331
332 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
333 {
334 XSETMISC (overlay, tail);
335
336 start = OVERLAY_START (overlay);
337 startpos = OVERLAY_POSITION (start);
338 if (pos < startpos)
339 break;
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (pos <= endpos)
343 {
344 if (idx < len)
345 vec[idx] = overlay;
346 idx++;
347 }
348 }
349
350 return idx;
351 }
352
353 /* Return the value of property PROP, in OBJECT at POSITION.
354 It's the value of PROP that a char inserted at POSITION would get.
355 OBJECT is optional and defaults to the current buffer.
356 If OBJECT is a buffer, then overlay properties are considered as well as
357 text properties.
358 If OBJECT is a window, then that window's buffer is used, but
359 window-specific overlays are considered only if they are associated
360 with OBJECT. */
361 Lisp_Object
362 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
363 {
364 CHECK_NUMBER_COERCE_MARKER (position);
365
366 if (NILP (object))
367 XSETBUFFER (object, current_buffer);
368 else if (WINDOWP (object))
369 object = XWINDOW (object)->buffer;
370
371 if (!BUFFERP (object))
372 /* pos-property only makes sense in buffers right now, since strings
373 have no overlays and no notion of insertion for which stickiness
374 could be obeyed. */
375 return Fget_text_property (position, prop, object);
376 else
377 {
378 EMACS_INT posn = XINT (position);
379 ptrdiff_t noverlays;
380 Lisp_Object *overlay_vec, tem;
381 struct buffer *obuf = current_buffer;
382
383 set_buffer_temp (XBUFFER (object));
384
385 /* First try with room for 40 overlays. */
386 noverlays = 40;
387 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
388 noverlays = overlays_around (posn, overlay_vec, noverlays);
389
390 /* If there are more than 40,
391 make enough space for all, and try again. */
392 if (noverlays > 40)
393 {
394 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
395 noverlays = overlays_around (posn, overlay_vec, noverlays);
396 }
397 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
398
399 set_buffer_temp (obuf);
400
401 /* Now check the overlays in order of decreasing priority. */
402 while (--noverlays >= 0)
403 {
404 Lisp_Object ol = overlay_vec[noverlays];
405 tem = Foverlay_get (ol, prop);
406 if (!NILP (tem))
407 {
408 /* Check the overlay is indeed active at point. */
409 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
410 if ((OVERLAY_POSITION (start) == posn
411 && XMARKER (start)->insertion_type == 1)
412 || (OVERLAY_POSITION (finish) == posn
413 && XMARKER (finish)->insertion_type == 0))
414 ; /* The overlay will not cover a char inserted at point. */
415 else
416 {
417 return tem;
418 }
419 }
420 }
421
422 { /* Now check the text properties. */
423 int stickiness = text_property_stickiness (prop, position, object);
424 if (stickiness > 0)
425 return Fget_text_property (position, prop, object);
426 else if (stickiness < 0
427 && XINT (position) > BUF_BEGV (XBUFFER (object)))
428 return Fget_text_property (make_number (XINT (position) - 1),
429 prop, object);
430 else
431 return Qnil;
432 }
433 }
434 }
435
436 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
437 the value of point is used instead. If BEG or END is null,
438 means don't store the beginning or end of the field.
439
440 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
441 results; they do not effect boundary behavior.
442
443 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
444 position of a field, then the beginning of the previous field is
445 returned instead of the beginning of POS's field (since the end of a
446 field is actually also the beginning of the next input field, this
447 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
448 true case, if two fields are separated by a field with the special
449 value `boundary', and POS lies within it, then the two separated
450 fields are considered to be adjacent, and POS between them, when
451 finding the beginning and ending of the "merged" field.
452
453 Either BEG or END may be 0, in which case the corresponding value
454 is not stored. */
455
456 static void
457 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
458 Lisp_Object beg_limit,
459 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
460 {
461 /* Fields right before and after the point. */
462 Lisp_Object before_field, after_field;
463 /* 1 if POS counts as the start of a field. */
464 int at_field_start = 0;
465 /* 1 if POS counts as the end of a field. */
466 int at_field_end = 0;
467
468 if (NILP (pos))
469 XSETFASTINT (pos, PT);
470 else
471 CHECK_NUMBER_COERCE_MARKER (pos);
472
473 after_field
474 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
475 before_field
476 = (XFASTINT (pos) > BEGV
477 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
478 Qfield, Qnil, NULL)
479 /* Using nil here would be a more obvious choice, but it would
480 fail when the buffer starts with a non-sticky field. */
481 : after_field);
482
483 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
484 and POS is at beginning of a field, which can also be interpreted
485 as the end of the previous field. Note that the case where if
486 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
487 more natural one; then we avoid treating the beginning of a field
488 specially. */
489 if (NILP (merge_at_boundary))
490 {
491 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
492 if (!EQ (field, after_field))
493 at_field_end = 1;
494 if (!EQ (field, before_field))
495 at_field_start = 1;
496 if (NILP (field) && at_field_start && at_field_end)
497 /* If an inserted char would have a nil field while the surrounding
498 text is non-nil, we're probably not looking at a
499 zero-length field, but instead at a non-nil field that's
500 not intended for editing (such as comint's prompts). */
501 at_field_end = at_field_start = 0;
502 }
503
504 /* Note about special `boundary' fields:
505
506 Consider the case where the point (`.') is between the fields `x' and `y':
507
508 xxxx.yyyy
509
510 In this situation, if merge_at_boundary is true, we consider the
511 `x' and `y' fields as forming one big merged field, and so the end
512 of the field is the end of `y'.
513
514 However, if `x' and `y' are separated by a special `boundary' field
515 (a field with a `field' char-property of 'boundary), then we ignore
516 this special field when merging adjacent fields. Here's the same
517 situation, but with a `boundary' field between the `x' and `y' fields:
518
519 xxx.BBBByyyy
520
521 Here, if point is at the end of `x', the beginning of `y', or
522 anywhere in-between (within the `boundary' field), we merge all
523 three fields and consider the beginning as being the beginning of
524 the `x' field, and the end as being the end of the `y' field. */
525
526 if (beg)
527 {
528 if (at_field_start)
529 /* POS is at the edge of a field, and we should consider it as
530 the beginning of the following field. */
531 *beg = XFASTINT (pos);
532 else
533 /* Find the previous field boundary. */
534 {
535 Lisp_Object p = pos;
536 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
537 /* Skip a `boundary' field. */
538 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
539 beg_limit);
540
541 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
542 beg_limit);
543 *beg = NILP (p) ? BEGV : XFASTINT (p);
544 }
545 }
546
547 if (end)
548 {
549 if (at_field_end)
550 /* POS is at the edge of a field, and we should consider it as
551 the end of the previous field. */
552 *end = XFASTINT (pos);
553 else
554 /* Find the next field boundary. */
555 {
556 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
557 /* Skip a `boundary' field. */
558 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
559 end_limit);
560
561 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
562 end_limit);
563 *end = NILP (pos) ? ZV : XFASTINT (pos);
564 }
565 }
566 }
567
568 \f
569 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
570 doc: /* Delete the field surrounding POS.
571 A field is a region of text with the same `field' property.
572 If POS is nil, the value of point is used for POS. */)
573 (Lisp_Object pos)
574 {
575 ptrdiff_t beg, end;
576 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
577 if (beg != end)
578 del_range (beg, end);
579 return Qnil;
580 }
581
582 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
583 doc: /* Return the contents of the field surrounding POS as a string.
584 A field is a region of text with the same `field' property.
585 If POS is nil, the value of point is used for POS. */)
586 (Lisp_Object pos)
587 {
588 ptrdiff_t beg, end;
589 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
590 return make_buffer_string (beg, end, 1);
591 }
592
593 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
594 doc: /* Return the contents of the field around POS, without text properties.
595 A field is a region of text with the same `field' property.
596 If POS is nil, the value of point is used for POS. */)
597 (Lisp_Object pos)
598 {
599 ptrdiff_t beg, end;
600 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
601 return make_buffer_string (beg, end, 0);
602 }
603
604 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
605 doc: /* Return the beginning of the field surrounding POS.
606 A field is a region of text with the same `field' property.
607 If POS is nil, the value of point is used for POS.
608 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
609 field, then the beginning of the *previous* field is returned.
610 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
611 is before LIMIT, then LIMIT will be returned instead. */)
612 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
613 {
614 ptrdiff_t beg;
615 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
616 return make_number (beg);
617 }
618
619 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
620 doc: /* Return the end of the field surrounding POS.
621 A field is a region of text with the same `field' property.
622 If POS is nil, the value of point is used for POS.
623 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
624 then the end of the *following* field is returned.
625 If LIMIT is non-nil, it is a buffer position; if the end of the field
626 is after LIMIT, then LIMIT will be returned instead. */)
627 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
628 {
629 ptrdiff_t end;
630 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
631 return make_number (end);
632 }
633
634 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
635 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
636 A field is a region of text with the same `field' property.
637
638 If NEW-POS is nil, then use the current point instead, and move point
639 to the resulting constrained position, in addition to returning that
640 position.
641
642 If OLD-POS is at the boundary of two fields, then the allowable
643 positions for NEW-POS depends on the value of the optional argument
644 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
645 constrained to the field that has the same `field' char-property
646 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
647 is non-nil, NEW-POS is constrained to the union of the two adjacent
648 fields. Additionally, if two fields are separated by another field with
649 the special value `boundary', then any point within this special field is
650 also considered to be `on the boundary'.
651
652 If the optional argument ONLY-IN-LINE is non-nil and constraining
653 NEW-POS would move it to a different line, NEW-POS is returned
654 unconstrained. This useful for commands that move by line, like
655 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
656 only in the case where they can still move to the right line.
657
658 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
659 a non-nil property of that name, then any field boundaries are ignored.
660
661 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
662 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
663 {
664 /* If non-zero, then the original point, before re-positioning. */
665 ptrdiff_t orig_point = 0;
666 int fwd;
667 Lisp_Object prev_old, prev_new;
668
669 if (NILP (new_pos))
670 /* Use the current point, and afterwards, set it. */
671 {
672 orig_point = PT;
673 XSETFASTINT (new_pos, PT);
674 }
675
676 CHECK_NUMBER_COERCE_MARKER (new_pos);
677 CHECK_NUMBER_COERCE_MARKER (old_pos);
678
679 fwd = (XINT (new_pos) > XINT (old_pos));
680
681 prev_old = make_number (XINT (old_pos) - 1);
682 prev_new = make_number (XINT (new_pos) - 1);
683
684 if (NILP (Vinhibit_field_text_motion)
685 && !EQ (new_pos, old_pos)
686 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
687 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
688 /* To recognize field boundaries, we must also look at the
689 previous positions; we could use `get_pos_property'
690 instead, but in itself that would fail inside non-sticky
691 fields (like comint prompts). */
692 || (XFASTINT (new_pos) > BEGV
693 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
694 || (XFASTINT (old_pos) > BEGV
695 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
696 && (NILP (inhibit_capture_property)
697 /* Field boundaries are again a problem; but now we must
698 decide the case exactly, so we need to call
699 `get_pos_property' as well. */
700 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
701 && (XFASTINT (old_pos) <= BEGV
702 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
703 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
704 /* It is possible that NEW_POS is not within the same field as
705 OLD_POS; try to move NEW_POS so that it is. */
706 {
707 ptrdiff_t shortage;
708 Lisp_Object field_bound;
709
710 if (fwd)
711 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
712 else
713 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
714
715 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
716 other side of NEW_POS, which would mean that NEW_POS is
717 already acceptable, and it's not necessary to constrain it
718 to FIELD_BOUND. */
719 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
720 /* NEW_POS should be constrained, but only if either
721 ONLY_IN_LINE is nil (in which case any constraint is OK),
722 or NEW_POS and FIELD_BOUND are on the same line (in which
723 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
724 && (NILP (only_in_line)
725 /* This is the ONLY_IN_LINE case, check that NEW_POS and
726 FIELD_BOUND are on the same line by seeing whether
727 there's an intervening newline or not. */
728 || (scan_buffer ('\n',
729 XFASTINT (new_pos), XFASTINT (field_bound),
730 fwd ? -1 : 1, &shortage, 1),
731 shortage != 0)))
732 /* Constrain NEW_POS to FIELD_BOUND. */
733 new_pos = field_bound;
734
735 if (orig_point && XFASTINT (new_pos) != orig_point)
736 /* The NEW_POS argument was originally nil, so automatically set PT. */
737 SET_PT (XFASTINT (new_pos));
738 }
739
740 return new_pos;
741 }
742
743 \f
744 DEFUN ("line-beginning-position",
745 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
746 doc: /* Return the character position of the first character on the current line.
747 With argument N not nil or 1, move forward N - 1 lines first.
748 If scan reaches end of buffer, return that position.
749
750 The returned position is of the first character in the logical order,
751 i.e. the one that has the smallest character position.
752
753 This function constrains the returned position to the current field
754 unless that would be on a different line than the original,
755 unconstrained result. If N is nil or 1, and a front-sticky field
756 starts at point, the scan stops as soon as it starts. To ignore field
757 boundaries bind `inhibit-field-text-motion' to t.
758
759 This function does not move point. */)
760 (Lisp_Object n)
761 {
762 ptrdiff_t orig, orig_byte, end;
763 ptrdiff_t count = SPECPDL_INDEX ();
764 specbind (Qinhibit_point_motion_hooks, Qt);
765
766 if (NILP (n))
767 XSETFASTINT (n, 1);
768 else
769 CHECK_NUMBER (n);
770
771 orig = PT;
772 orig_byte = PT_BYTE;
773 Fforward_line (make_number (XINT (n) - 1));
774 end = PT;
775
776 SET_PT_BOTH (orig, orig_byte);
777
778 unbind_to (count, Qnil);
779
780 /* Return END constrained to the current input field. */
781 return Fconstrain_to_field (make_number (end), make_number (orig),
782 XINT (n) != 1 ? Qt : Qnil,
783 Qt, Qnil);
784 }
785
786 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
787 doc: /* Return the character position of the last character on the current line.
788 With argument N not nil or 1, move forward N - 1 lines first.
789 If scan reaches end of buffer, return that position.
790
791 The returned position is of the last character in the logical order,
792 i.e. the character whose buffer position is the largest one.
793
794 This function constrains the returned position to the current field
795 unless that would be on a different line than the original,
796 unconstrained result. If N is nil or 1, and a rear-sticky field ends
797 at point, the scan stops as soon as it starts. To ignore field
798 boundaries bind `inhibit-field-text-motion' to t.
799
800 This function does not move point. */)
801 (Lisp_Object n)
802 {
803 ptrdiff_t clipped_n;
804 ptrdiff_t end_pos;
805 ptrdiff_t orig = PT;
806
807 if (NILP (n))
808 XSETFASTINT (n, 1);
809 else
810 CHECK_NUMBER (n);
811
812 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
813 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
814
815 /* Return END_POS constrained to the current input field. */
816 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
817 Qnil, Qt, Qnil);
818 }
819
820 \f
821 Lisp_Object
822 save_excursion_save (void)
823 {
824 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
825 == current_buffer);
826
827 return Fcons (Fpoint_marker (),
828 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
829 Fcons (visible ? Qt : Qnil,
830 Fcons (BVAR (current_buffer, mark_active),
831 selected_window))));
832 }
833
834 Lisp_Object
835 save_excursion_restore (Lisp_Object info)
836 {
837 Lisp_Object tem, tem1, omark, nmark;
838 struct gcpro gcpro1, gcpro2, gcpro3;
839 int visible_p;
840
841 tem = Fmarker_buffer (XCAR (info));
842 /* If buffer being returned to is now deleted, avoid error */
843 /* Otherwise could get error here while unwinding to top level
844 and crash */
845 /* In that case, Fmarker_buffer returns nil now. */
846 if (NILP (tem))
847 return Qnil;
848
849 omark = nmark = Qnil;
850 GCPRO3 (info, omark, nmark);
851
852 Fset_buffer (tem);
853
854 /* Point marker. */
855 tem = XCAR (info);
856 Fgoto_char (tem);
857 unchain_marker (XMARKER (tem));
858
859 /* Mark marker. */
860 info = XCDR (info);
861 tem = XCAR (info);
862 omark = Fmarker_position (BVAR (current_buffer, mark));
863 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
864 nmark = Fmarker_position (tem);
865 unchain_marker (XMARKER (tem));
866
867 /* visible */
868 info = XCDR (info);
869 visible_p = !NILP (XCAR (info));
870
871 #if 0 /* We used to make the current buffer visible in the selected window
872 if that was true previously. That avoids some anomalies.
873 But it creates others, and it wasn't documented, and it is simpler
874 and cleaner never to alter the window/buffer connections. */
875 tem1 = Fcar (tem);
876 if (!NILP (tem1)
877 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
878 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
879 #endif /* 0 */
880
881 /* Mark active */
882 info = XCDR (info);
883 tem = XCAR (info);
884 tem1 = BVAR (current_buffer, mark_active);
885 BVAR (current_buffer, mark_active) = tem;
886
887 /* If mark is active now, and either was not active
888 or was at a different place, run the activate hook. */
889 if (! NILP (tem))
890 {
891 if (! EQ (omark, nmark))
892 {
893 tem = intern ("activate-mark-hook");
894 Frun_hooks (1, &tem);
895 }
896 }
897 /* If mark has ceased to be active, run deactivate hook. */
898 else if (! NILP (tem1))
899 {
900 tem = intern ("deactivate-mark-hook");
901 Frun_hooks (1, &tem);
902 }
903
904 /* If buffer was visible in a window, and a different window was
905 selected, and the old selected window is still showing this
906 buffer, restore point in that window. */
907 tem = XCDR (info);
908 if (visible_p
909 && !EQ (tem, selected_window)
910 && (tem1 = XWINDOW (tem)->buffer,
911 (/* Window is live... */
912 BUFFERP (tem1)
913 /* ...and it shows the current buffer. */
914 && XBUFFER (tem1) == current_buffer)))
915 Fset_window_point (tem, make_number (PT));
916
917 UNGCPRO;
918 return Qnil;
919 }
920
921 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
922 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
923 Executes BODY just like `progn'.
924 The values of point, mark and the current buffer are restored
925 even in case of abnormal exit (throw or error).
926 The state of activation of the mark is also restored.
927
928 This construct does not save `deactivate-mark', and therefore
929 functions that change the buffer will still cause deactivation
930 of the mark at the end of the command. To prevent that, bind
931 `deactivate-mark' with `let'.
932
933 If you only want to save the current buffer but not point nor mark,
934 then just use `save-current-buffer', or even `with-current-buffer'.
935
936 usage: (save-excursion &rest BODY) */)
937 (Lisp_Object args)
938 {
939 register Lisp_Object val;
940 ptrdiff_t count = SPECPDL_INDEX ();
941
942 record_unwind_protect (save_excursion_restore, save_excursion_save ());
943
944 val = Fprogn (args);
945 return unbind_to (count, val);
946 }
947
948 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
949 doc: /* Save the current buffer; execute BODY; restore the current buffer.
950 Executes BODY just like `progn'.
951 usage: (save-current-buffer &rest BODY) */)
952 (Lisp_Object args)
953 {
954 Lisp_Object val;
955 ptrdiff_t count = SPECPDL_INDEX ();
956
957 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
958
959 val = Fprogn (args);
960 return unbind_to (count, val);
961 }
962 \f
963 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
964 doc: /* Return the number of characters in the current buffer.
965 If BUFFER, return the number of characters in that buffer instead. */)
966 (Lisp_Object buffer)
967 {
968 if (NILP (buffer))
969 return make_number (Z - BEG);
970 else
971 {
972 CHECK_BUFFER (buffer);
973 return make_number (BUF_Z (XBUFFER (buffer))
974 - BUF_BEG (XBUFFER (buffer)));
975 }
976 }
977
978 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
979 doc: /* Return the minimum permissible value of point in the current buffer.
980 This is 1, unless narrowing (a buffer restriction) is in effect. */)
981 (void)
982 {
983 Lisp_Object temp;
984 XSETFASTINT (temp, BEGV);
985 return temp;
986 }
987
988 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
989 doc: /* Return a marker to the minimum permissible value of point in this buffer.
990 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
991 (void)
992 {
993 return build_marker (current_buffer, BEGV, BEGV_BYTE);
994 }
995
996 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
997 doc: /* Return the maximum permissible value of point in the current buffer.
998 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
999 is in effect, in which case it is less. */)
1000 (void)
1001 {
1002 Lisp_Object temp;
1003 XSETFASTINT (temp, ZV);
1004 return temp;
1005 }
1006
1007 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1008 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1009 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1010 is in effect, in which case it is less. */)
1011 (void)
1012 {
1013 return build_marker (current_buffer, ZV, ZV_BYTE);
1014 }
1015
1016 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1017 doc: /* Return the position of the gap, in the current buffer.
1018 See also `gap-size'. */)
1019 (void)
1020 {
1021 Lisp_Object temp;
1022 XSETFASTINT (temp, GPT);
1023 return temp;
1024 }
1025
1026 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1027 doc: /* Return the size of the current buffer's gap.
1028 See also `gap-position'. */)
1029 (void)
1030 {
1031 Lisp_Object temp;
1032 XSETFASTINT (temp, GAP_SIZE);
1033 return temp;
1034 }
1035
1036 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1037 doc: /* Return the byte position for character position POSITION.
1038 If POSITION is out of range, the value is nil. */)
1039 (Lisp_Object position)
1040 {
1041 CHECK_NUMBER_COERCE_MARKER (position);
1042 if (XINT (position) < BEG || XINT (position) > Z)
1043 return Qnil;
1044 return make_number (CHAR_TO_BYTE (XINT (position)));
1045 }
1046
1047 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1048 doc: /* Return the character position for byte position BYTEPOS.
1049 If BYTEPOS is out of range, the value is nil. */)
1050 (Lisp_Object bytepos)
1051 {
1052 CHECK_NUMBER (bytepos);
1053 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1054 return Qnil;
1055 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1056 }
1057 \f
1058 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1059 doc: /* Return the character following point, as a number.
1060 At the end of the buffer or accessible region, return 0. */)
1061 (void)
1062 {
1063 Lisp_Object temp;
1064 if (PT >= ZV)
1065 XSETFASTINT (temp, 0);
1066 else
1067 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1068 return temp;
1069 }
1070
1071 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1072 doc: /* Return the character preceding point, as a number.
1073 At the beginning of the buffer or accessible region, return 0. */)
1074 (void)
1075 {
1076 Lisp_Object temp;
1077 if (PT <= BEGV)
1078 XSETFASTINT (temp, 0);
1079 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1080 {
1081 ptrdiff_t pos = PT_BYTE;
1082 DEC_POS (pos);
1083 XSETFASTINT (temp, FETCH_CHAR (pos));
1084 }
1085 else
1086 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1087 return temp;
1088 }
1089
1090 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1091 doc: /* Return t if point is at the beginning of the buffer.
1092 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1093 (void)
1094 {
1095 if (PT == BEGV)
1096 return Qt;
1097 return Qnil;
1098 }
1099
1100 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1101 doc: /* Return t if point is at the end of the buffer.
1102 If the buffer is narrowed, this means the end of the narrowed part. */)
1103 (void)
1104 {
1105 if (PT == ZV)
1106 return Qt;
1107 return Qnil;
1108 }
1109
1110 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1111 doc: /* Return t if point is at the beginning of a line. */)
1112 (void)
1113 {
1114 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1115 return Qt;
1116 return Qnil;
1117 }
1118
1119 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1120 doc: /* Return t if point is at the end of a line.
1121 `End of a line' includes point being at the end of the buffer. */)
1122 (void)
1123 {
1124 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1125 return Qt;
1126 return Qnil;
1127 }
1128
1129 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1130 doc: /* Return character in current buffer at position POS.
1131 POS is an integer or a marker and defaults to point.
1132 If POS is out of range, the value is nil. */)
1133 (Lisp_Object pos)
1134 {
1135 register ptrdiff_t pos_byte;
1136
1137 if (NILP (pos))
1138 {
1139 pos_byte = PT_BYTE;
1140 XSETFASTINT (pos, PT);
1141 }
1142
1143 if (MARKERP (pos))
1144 {
1145 pos_byte = marker_byte_position (pos);
1146 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1147 return Qnil;
1148 }
1149 else
1150 {
1151 CHECK_NUMBER_COERCE_MARKER (pos);
1152 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1153 return Qnil;
1154
1155 pos_byte = CHAR_TO_BYTE (XINT (pos));
1156 }
1157
1158 return make_number (FETCH_CHAR (pos_byte));
1159 }
1160
1161 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1162 doc: /* Return character in current buffer preceding position POS.
1163 POS is an integer or a marker and defaults to point.
1164 If POS is out of range, the value is nil. */)
1165 (Lisp_Object pos)
1166 {
1167 register Lisp_Object val;
1168 register ptrdiff_t pos_byte;
1169
1170 if (NILP (pos))
1171 {
1172 pos_byte = PT_BYTE;
1173 XSETFASTINT (pos, PT);
1174 }
1175
1176 if (MARKERP (pos))
1177 {
1178 pos_byte = marker_byte_position (pos);
1179
1180 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1181 return Qnil;
1182 }
1183 else
1184 {
1185 CHECK_NUMBER_COERCE_MARKER (pos);
1186
1187 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1188 return Qnil;
1189
1190 pos_byte = CHAR_TO_BYTE (XINT (pos));
1191 }
1192
1193 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1194 {
1195 DEC_POS (pos_byte);
1196 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1197 }
1198 else
1199 {
1200 pos_byte--;
1201 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1202 }
1203 return val;
1204 }
1205 \f
1206 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1207 doc: /* Return the name under which the user logged in, as a string.
1208 This is based on the effective uid, not the real uid.
1209 Also, if the environment variables LOGNAME or USER are set,
1210 that determines the value of this function.
1211
1212 If optional argument UID is an integer or a float, return the login name
1213 of the user with that uid, or nil if there is no such user. */)
1214 (Lisp_Object uid)
1215 {
1216 struct passwd *pw;
1217 uid_t id;
1218
1219 /* Set up the user name info if we didn't do it before.
1220 (That can happen if Emacs is dumpable
1221 but you decide to run `temacs -l loadup' and not dump. */
1222 if (INTEGERP (Vuser_login_name))
1223 init_editfns ();
1224
1225 if (NILP (uid))
1226 return Vuser_login_name;
1227
1228 CONS_TO_INTEGER (uid, uid_t, id);
1229 BLOCK_INPUT;
1230 pw = getpwuid (id);
1231 UNBLOCK_INPUT;
1232 return (pw ? build_string (pw->pw_name) : Qnil);
1233 }
1234
1235 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1236 0, 0, 0,
1237 doc: /* Return the name of the user's real uid, as a string.
1238 This ignores the environment variables LOGNAME and USER, so it differs from
1239 `user-login-name' when running under `su'. */)
1240 (void)
1241 {
1242 /* Set up the user name info if we didn't do it before.
1243 (That can happen if Emacs is dumpable
1244 but you decide to run `temacs -l loadup' and not dump. */
1245 if (INTEGERP (Vuser_login_name))
1246 init_editfns ();
1247 return Vuser_real_login_name;
1248 }
1249
1250 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1251 doc: /* Return the effective uid of Emacs.
1252 Value is an integer or a float, depending on the value. */)
1253 (void)
1254 {
1255 uid_t euid = geteuid ();
1256 return make_fixnum_or_float (euid);
1257 }
1258
1259 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1260 doc: /* Return the real uid of Emacs.
1261 Value is an integer or a float, depending on the value. */)
1262 (void)
1263 {
1264 uid_t uid = getuid ();
1265 return make_fixnum_or_float (uid);
1266 }
1267
1268 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1269 doc: /* Return the full name of the user logged in, as a string.
1270 If the full name corresponding to Emacs's userid is not known,
1271 return "unknown".
1272
1273 If optional argument UID is an integer or float, return the full name
1274 of the user with that uid, or nil if there is no such user.
1275 If UID is a string, return the full name of the user with that login
1276 name, or nil if there is no such user. */)
1277 (Lisp_Object uid)
1278 {
1279 struct passwd *pw;
1280 register char *p, *q;
1281 Lisp_Object full;
1282
1283 if (NILP (uid))
1284 return Vuser_full_name;
1285 else if (NUMBERP (uid))
1286 {
1287 uid_t u;
1288 CONS_TO_INTEGER (uid, uid_t, u);
1289 BLOCK_INPUT;
1290 pw = getpwuid (u);
1291 UNBLOCK_INPUT;
1292 }
1293 else if (STRINGP (uid))
1294 {
1295 BLOCK_INPUT;
1296 pw = getpwnam (SSDATA (uid));
1297 UNBLOCK_INPUT;
1298 }
1299 else
1300 error ("Invalid UID specification");
1301
1302 if (!pw)
1303 return Qnil;
1304
1305 p = USER_FULL_NAME;
1306 /* Chop off everything after the first comma. */
1307 q = strchr (p, ',');
1308 full = make_string (p, q ? q - p : strlen (p));
1309
1310 #ifdef AMPERSAND_FULL_NAME
1311 p = SSDATA (full);
1312 q = strchr (p, '&');
1313 /* Substitute the login name for the &, upcasing the first character. */
1314 if (q)
1315 {
1316 register char *r;
1317 Lisp_Object login;
1318
1319 login = Fuser_login_name (make_number (pw->pw_uid));
1320 r = alloca (strlen (p) + SCHARS (login) + 1);
1321 memcpy (r, p, q - p);
1322 r[q - p] = 0;
1323 strcat (r, SSDATA (login));
1324 r[q - p] = upcase ((unsigned char) r[q - p]);
1325 strcat (r, q + 1);
1326 full = build_string (r);
1327 }
1328 #endif /* AMPERSAND_FULL_NAME */
1329
1330 return full;
1331 }
1332
1333 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1334 doc: /* Return the host name of the machine you are running on, as a string. */)
1335 (void)
1336 {
1337 return Vsystem_name;
1338 }
1339
1340 const char *
1341 get_system_name (void)
1342 {
1343 if (STRINGP (Vsystem_name))
1344 return SSDATA (Vsystem_name);
1345 else
1346 return "";
1347 }
1348
1349 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1350 doc: /* Return the process ID of Emacs, as a number. */)
1351 (void)
1352 {
1353 pid_t pid = getpid ();
1354 return make_fixnum_or_float (pid);
1355 }
1356
1357 \f
1358
1359 #ifndef TIME_T_MIN
1360 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1361 #endif
1362 #ifndef TIME_T_MAX
1363 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1364 #endif
1365
1366 /* Report that a time value is out of range for Emacs. */
1367 void
1368 time_overflow (void)
1369 {
1370 error ("Specified time is not representable");
1371 }
1372
1373 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1374 static EMACS_INT
1375 hi_time (time_t t)
1376 {
1377 time_t hi = t >> 16;
1378
1379 /* Check for overflow, helping the compiler for common cases where
1380 no runtime check is needed, and taking care not to convert
1381 negative numbers to unsigned before comparing them. */
1382 if (! ((! TYPE_SIGNED (time_t)
1383 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1384 || MOST_NEGATIVE_FIXNUM <= hi)
1385 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1386 || hi <= MOST_POSITIVE_FIXNUM)))
1387 time_overflow ();
1388
1389 return hi;
1390 }
1391
1392 /* Return the bottom 16 bits of the time T. */
1393 static int
1394 lo_time (time_t t)
1395 {
1396 return t & ((1 << 16) - 1);
1397 }
1398
1399 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1400 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1401 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1402 HIGH has the most significant bits of the seconds, while LOW has the
1403 least significant 16 bits. USEC and PSEC are the microsecond and
1404 picosecond counts. */)
1405 (void)
1406 {
1407 return make_lisp_time (current_emacs_time ());
1408 }
1409
1410 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1411 0, 0, 0,
1412 doc: /* Return the current run time used by Emacs.
1413 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1414 style as (current-time).
1415
1416 On systems that can't determine the run time, `get-internal-run-time'
1417 does the same thing as `current-time'. */)
1418 (void)
1419 {
1420 #ifdef HAVE_GETRUSAGE
1421 struct rusage usage;
1422 time_t secs;
1423 int usecs;
1424
1425 if (getrusage (RUSAGE_SELF, &usage) < 0)
1426 /* This shouldn't happen. What action is appropriate? */
1427 xsignal0 (Qerror);
1428
1429 /* Sum up user time and system time. */
1430 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1431 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1432 if (usecs >= 1000000)
1433 {
1434 usecs -= 1000000;
1435 secs++;
1436 }
1437 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1438 #else /* ! HAVE_GETRUSAGE */
1439 #ifdef WINDOWSNT
1440 return w32_get_internal_run_time ();
1441 #else /* ! WINDOWSNT */
1442 return Fcurrent_time ();
1443 #endif /* WINDOWSNT */
1444 #endif /* HAVE_GETRUSAGE */
1445 }
1446 \f
1447
1448 /* Make a Lisp list that represents the time T with fraction TAIL. */
1449 static Lisp_Object
1450 make_time_tail (time_t t, Lisp_Object tail)
1451 {
1452 return Fcons (make_number (hi_time (t)),
1453 Fcons (make_number (lo_time (t)), tail));
1454 }
1455
1456 /* Make a Lisp list that represents the system time T. */
1457 static Lisp_Object
1458 make_time (time_t t)
1459 {
1460 return make_time_tail (t, Qnil);
1461 }
1462
1463 /* Make a Lisp list that represents the Emacs time T. T may be an
1464 invalid time, with a slightly negative tv_nsec value such as
1465 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1466 correspondingly negative picosecond count. */
1467 Lisp_Object
1468 make_lisp_time (EMACS_TIME t)
1469 {
1470 int ns = EMACS_NSECS (t);
1471 return make_time_tail (EMACS_SECS (t),
1472 list2 (make_number (ns / 1000),
1473 make_number (ns % 1000 * 1000)));
1474 }
1475
1476 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1477 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1478 Return nonzero if successful. */
1479 static int
1480 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1481 Lisp_Object *plow, Lisp_Object *pusec,
1482 Lisp_Object *ppsec)
1483 {
1484 if (CONSP (specified_time))
1485 {
1486 Lisp_Object low = XCDR (specified_time);
1487 Lisp_Object usec = make_number (0);
1488 Lisp_Object psec = make_number (0);
1489 if (CONSP (low))
1490 {
1491 Lisp_Object low_tail = XCDR (low);
1492 low = XCAR (low);
1493 if (CONSP (low_tail))
1494 {
1495 usec = XCAR (low_tail);
1496 low_tail = XCDR (low_tail);
1497 if (CONSP (low_tail))
1498 psec = XCAR (low_tail);
1499 }
1500 else if (!NILP (low_tail))
1501 usec = low_tail;
1502 }
1503
1504 *phigh = XCAR (specified_time);
1505 *plow = low;
1506 *pusec = usec;
1507 *ppsec = psec;
1508 return 1;
1509 }
1510
1511 return 0;
1512 }
1513
1514 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1515 list, generate the corresponding time value.
1516
1517 If RESULT is not null, store into *RESULT the converted time;
1518 this can fail if the converted time does not fit into EMACS_TIME.
1519 If *DRESULT is not null, store into *DRESULT the number of
1520 seconds since the start of the POSIX Epoch.
1521
1522 Return nonzero if successful. */
1523 int
1524 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1525 Lisp_Object psec,
1526 EMACS_TIME *result, double *dresult)
1527 {
1528 EMACS_INT hi, lo, us, ps;
1529 if (! (INTEGERP (high) && INTEGERP (low)
1530 && INTEGERP (usec) && INTEGERP (psec)))
1531 return 0;
1532 hi = XINT (high);
1533 lo = XINT (low);
1534 us = XINT (usec);
1535 ps = XINT (psec);
1536
1537 /* Normalize out-of-range lower-order components by carrying
1538 each overflow into the next higher-order component. */
1539 us += ps / 1000000 - (ps % 1000000 < 0);
1540 lo += us / 1000000 - (us % 1000000 < 0);
1541 hi += lo >> 16;
1542 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1543 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1544 lo &= (1 << 16) - 1;
1545
1546 if (result)
1547 {
1548 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1549 && hi <= TIME_T_MAX >> 16)
1550 {
1551 /* Return the greatest representable time that is not greater
1552 than the requested time. */
1553 time_t sec = hi;
1554 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1555 }
1556 else
1557 {
1558 /* Overflow in the highest-order component. */
1559 return 0;
1560 }
1561 }
1562
1563 if (dresult)
1564 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1565
1566 return 1;
1567 }
1568
1569 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1570 If SPECIFIED_TIME is nil, use the current time.
1571
1572 Round the time down to the nearest EMACS_TIME value.
1573 Return seconds since the Epoch.
1574 Signal an error if unsuccessful. */
1575 EMACS_TIME
1576 lisp_time_argument (Lisp_Object specified_time)
1577 {
1578 EMACS_TIME t;
1579 if (NILP (specified_time))
1580 t = current_emacs_time ();
1581 else
1582 {
1583 Lisp_Object high, low, usec, psec;
1584 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1585 && decode_time_components (high, low, usec, psec, &t, 0)))
1586 error ("Invalid time specification");
1587 }
1588 return t;
1589 }
1590
1591 /* Like lisp_time_argument, except decode only the seconds part,
1592 do not allow out-of-range time stamps, do not check the subseconds part,
1593 and always round down. */
1594 static time_t
1595 lisp_seconds_argument (Lisp_Object specified_time)
1596 {
1597 if (NILP (specified_time))
1598 return time (NULL);
1599 else
1600 {
1601 Lisp_Object high, low, usec, psec;
1602 EMACS_TIME t;
1603 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1604 && decode_time_components (high, low, make_number (0),
1605 make_number (0), &t, 0)))
1606 error ("Invalid time specification");
1607 return EMACS_SECS (t);
1608 }
1609 }
1610
1611 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1612 doc: /* Return the current time, as a float number of seconds since the epoch.
1613 If SPECIFIED-TIME is given, it is the time to convert to float
1614 instead of the current time. The argument should have the form
1615 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1616 you can use times from `current-time' and from `file-attributes'.
1617 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1618 considered obsolete.
1619
1620 WARNING: Since the result is floating point, it may not be exact.
1621 If precise time stamps are required, use either `current-time',
1622 or (if you need time as a string) `format-time-string'. */)
1623 (Lisp_Object specified_time)
1624 {
1625 double t;
1626 if (NILP (specified_time))
1627 {
1628 EMACS_TIME now = current_emacs_time ();
1629 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1630 }
1631 else
1632 {
1633 Lisp_Object high, low, usec, psec;
1634 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1635 && decode_time_components (high, low, usec, psec, 0, &t)))
1636 error ("Invalid time specification");
1637 }
1638 return make_float (t);
1639 }
1640
1641 /* Write information into buffer S of size MAXSIZE, according to the
1642 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1643 Default to Universal Time if UT is nonzero, local time otherwise.
1644 Use NS as the number of nanoseconds in the %N directive.
1645 Return the number of bytes written, not including the terminating
1646 '\0'. If S is NULL, nothing will be written anywhere; so to
1647 determine how many bytes would be written, use NULL for S and
1648 ((size_t) -1) for MAXSIZE.
1649
1650 This function behaves like nstrftime, except it allows null
1651 bytes in FORMAT and it does not support nanoseconds. */
1652 static size_t
1653 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1654 size_t format_len, const struct tm *tp, int ut, int ns)
1655 {
1656 size_t total = 0;
1657
1658 /* Loop through all the null-terminated strings in the format
1659 argument. Normally there's just one null-terminated string, but
1660 there can be arbitrarily many, concatenated together, if the
1661 format contains '\0' bytes. nstrftime stops at the first
1662 '\0' byte so we must invoke it separately for each such string. */
1663 for (;;)
1664 {
1665 size_t len;
1666 size_t result;
1667
1668 if (s)
1669 s[0] = '\1';
1670
1671 result = nstrftime (s, maxsize, format, tp, ut, ns);
1672
1673 if (s)
1674 {
1675 if (result == 0 && s[0] != '\0')
1676 return 0;
1677 s += result + 1;
1678 }
1679
1680 maxsize -= result + 1;
1681 total += result;
1682 len = strlen (format);
1683 if (len == format_len)
1684 return total;
1685 total++;
1686 format += len + 1;
1687 format_len -= len + 1;
1688 }
1689 }
1690
1691 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1692 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1693 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1694 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1695 is also still accepted.
1696 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1697 as Universal Time; nil means describe TIME in the local time zone.
1698 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1699 by text that describes the specified date and time in TIME:
1700
1701 %Y is the year, %y within the century, %C the century.
1702 %G is the year corresponding to the ISO week, %g within the century.
1703 %m is the numeric month.
1704 %b and %h are the locale's abbreviated month name, %B the full name.
1705 %d is the day of the month, zero-padded, %e is blank-padded.
1706 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1707 %a is the locale's abbreviated name of the day of week, %A the full name.
1708 %U is the week number starting on Sunday, %W starting on Monday,
1709 %V according to ISO 8601.
1710 %j is the day of the year.
1711
1712 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1713 only blank-padded, %l is like %I blank-padded.
1714 %p is the locale's equivalent of either AM or PM.
1715 %M is the minute.
1716 %S is the second.
1717 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1718 %Z is the time zone name, %z is the numeric form.
1719 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1720
1721 %c is the locale's date and time format.
1722 %x is the locale's "preferred" date format.
1723 %D is like "%m/%d/%y".
1724
1725 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1726 %X is the locale's "preferred" time format.
1727
1728 Finally, %n is a newline, %t is a tab, %% is a literal %.
1729
1730 Certain flags and modifiers are available with some format controls.
1731 The flags are `_', `-', `^' and `#'. For certain characters X,
1732 %_X is like %X, but padded with blanks; %-X is like %X,
1733 but without padding. %^X is like %X, but with all textual
1734 characters up-cased; %#X is like %X, but with letter-case of
1735 all textual characters reversed.
1736 %NX (where N stands for an integer) is like %X,
1737 but takes up at least N (a number) positions.
1738 The modifiers are `E' and `O'. For certain characters X,
1739 %EX is a locale's alternative version of %X;
1740 %OX is like %X, but uses the locale's number symbols.
1741
1742 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1743
1744 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1745 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1746 {
1747 EMACS_TIME t = lisp_time_argument (timeval);
1748 struct tm tm;
1749
1750 CHECK_STRING (format_string);
1751 format_string = code_convert_string_norecord (format_string,
1752 Vlocale_coding_system, 1);
1753 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1754 t, ! NILP (universal), &tm);
1755 }
1756
1757 static Lisp_Object
1758 format_time_string (char const *format, ptrdiff_t formatlen,
1759 EMACS_TIME t, int ut, struct tm *tmp)
1760 {
1761 char buffer[4000];
1762 char *buf = buffer;
1763 ptrdiff_t size = sizeof buffer;
1764 size_t len;
1765 Lisp_Object bufstring;
1766 int ns = EMACS_NSECS (t);
1767 struct tm *tm;
1768 USE_SAFE_ALLOCA;
1769
1770 while (1)
1771 {
1772 time_t *taddr = emacs_secs_addr (&t);
1773 BLOCK_INPUT;
1774
1775 synchronize_system_time_locale ();
1776
1777 tm = ut ? gmtime (taddr) : localtime (taddr);
1778 if (! tm)
1779 {
1780 UNBLOCK_INPUT;
1781 time_overflow ();
1782 }
1783 *tmp = *tm;
1784
1785 buf[0] = '\1';
1786 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1787 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1788 break;
1789
1790 /* Buffer was too small, so make it bigger and try again. */
1791 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1792 UNBLOCK_INPUT;
1793 if (STRING_BYTES_BOUND <= len)
1794 string_overflow ();
1795 size = len + 1;
1796 buf = SAFE_ALLOCA (size);
1797 }
1798
1799 UNBLOCK_INPUT;
1800 bufstring = make_unibyte_string (buf, len);
1801 SAFE_FREE ();
1802 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1803 }
1804
1805 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1806 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1807 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1808 as from `current-time' and `file-attributes', or nil to use the
1809 current time. The obsolete form (HIGH . LOW) is also still accepted.
1810 The list has the following nine members: SEC is an integer between 0
1811 and 60; SEC is 60 for a leap second, which only some operating systems
1812 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1813 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1814 integer between 1 and 12. YEAR is an integer indicating the
1815 four-digit year. DOW is the day of week, an integer between 0 and 6,
1816 where 0 is Sunday. DST is t if daylight saving time is in effect,
1817 otherwise nil. ZONE is an integer indicating the number of seconds
1818 east of Greenwich. (Note that Common Lisp has different meanings for
1819 DOW and ZONE.) */)
1820 (Lisp_Object specified_time)
1821 {
1822 time_t time_spec = lisp_seconds_argument (specified_time);
1823 struct tm save_tm;
1824 struct tm *decoded_time;
1825 Lisp_Object list_args[9];
1826
1827 BLOCK_INPUT;
1828 decoded_time = localtime (&time_spec);
1829 if (decoded_time)
1830 save_tm = *decoded_time;
1831 UNBLOCK_INPUT;
1832 if (! (decoded_time
1833 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1834 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1835 time_overflow ();
1836 XSETFASTINT (list_args[0], save_tm.tm_sec);
1837 XSETFASTINT (list_args[1], save_tm.tm_min);
1838 XSETFASTINT (list_args[2], save_tm.tm_hour);
1839 XSETFASTINT (list_args[3], save_tm.tm_mday);
1840 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1841 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1842 cast below avoids overflow in int arithmetics. */
1843 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1844 XSETFASTINT (list_args[6], save_tm.tm_wday);
1845 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1846
1847 BLOCK_INPUT;
1848 decoded_time = gmtime (&time_spec);
1849 if (decoded_time == 0)
1850 list_args[8] = Qnil;
1851 else
1852 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1853 UNBLOCK_INPUT;
1854 return Flist (9, list_args);
1855 }
1856
1857 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1858 the result is representable as an int. Assume OFFSET is small and
1859 nonnegative. */
1860 static int
1861 check_tm_member (Lisp_Object obj, int offset)
1862 {
1863 EMACS_INT n;
1864 CHECK_NUMBER (obj);
1865 n = XINT (obj);
1866 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1867 time_overflow ();
1868 return n - offset;
1869 }
1870
1871 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1872 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1873 This is the reverse operation of `decode-time', which see.
1874 ZONE defaults to the current time zone rule. This can
1875 be a string or t (as from `set-time-zone-rule'), or it can be a list
1876 \(as from `current-time-zone') or an integer (as from `decode-time')
1877 applied without consideration for daylight saving time.
1878
1879 You can pass more than 7 arguments; then the first six arguments
1880 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1881 The intervening arguments are ignored.
1882 This feature lets (apply 'encode-time (decode-time ...)) work.
1883
1884 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1885 for example, a DAY of 0 means the day preceding the given month.
1886 Year numbers less than 100 are treated just like other year numbers.
1887 If you want them to stand for years in this century, you must do that yourself.
1888
1889 Years before 1970 are not guaranteed to work. On some systems,
1890 year values as low as 1901 do work.
1891
1892 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1893 (ptrdiff_t nargs, Lisp_Object *args)
1894 {
1895 time_t value;
1896 struct tm tm;
1897 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1898
1899 tm.tm_sec = check_tm_member (args[0], 0);
1900 tm.tm_min = check_tm_member (args[1], 0);
1901 tm.tm_hour = check_tm_member (args[2], 0);
1902 tm.tm_mday = check_tm_member (args[3], 0);
1903 tm.tm_mon = check_tm_member (args[4], 1);
1904 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1905 tm.tm_isdst = -1;
1906
1907 if (CONSP (zone))
1908 zone = XCAR (zone);
1909 if (NILP (zone))
1910 {
1911 BLOCK_INPUT;
1912 value = mktime (&tm);
1913 UNBLOCK_INPUT;
1914 }
1915 else
1916 {
1917 char tzbuf[100];
1918 const char *tzstring;
1919 char **oldenv = environ, **newenv;
1920
1921 if (EQ (zone, Qt))
1922 tzstring = "UTC0";
1923 else if (STRINGP (zone))
1924 tzstring = SSDATA (zone);
1925 else if (INTEGERP (zone))
1926 {
1927 EMACS_INT abszone = eabs (XINT (zone));
1928 EMACS_INT zone_hr = abszone / (60*60);
1929 int zone_min = (abszone/60) % 60;
1930 int zone_sec = abszone % 60;
1931 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1932 zone_hr, zone_min, zone_sec);
1933 tzstring = tzbuf;
1934 }
1935 else
1936 error ("Invalid time zone specification");
1937
1938 BLOCK_INPUT;
1939
1940 /* Set TZ before calling mktime; merely adjusting mktime's returned
1941 value doesn't suffice, since that would mishandle leap seconds. */
1942 set_time_zone_rule (tzstring);
1943
1944 value = mktime (&tm);
1945
1946 /* Restore TZ to previous value. */
1947 newenv = environ;
1948 environ = oldenv;
1949 #ifdef LOCALTIME_CACHE
1950 tzset ();
1951 #endif
1952 UNBLOCK_INPUT;
1953
1954 xfree (newenv);
1955 }
1956
1957 if (value == (time_t) -1)
1958 time_overflow ();
1959
1960 return make_time (value);
1961 }
1962
1963 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1964 doc: /* Return the current local time, as a human-readable string.
1965 Programs can use this function to decode a time,
1966 since the number of columns in each field is fixed
1967 if the year is in the range 1000-9999.
1968 The format is `Sun Sep 16 01:03:52 1973'.
1969 However, see also the functions `decode-time' and `format-time-string'
1970 which provide a much more powerful and general facility.
1971
1972 If SPECIFIED-TIME is given, it is a time to format instead of the
1973 current time. The argument should have the form (HIGH LOW . IGNORED).
1974 Thus, you can use times obtained from `current-time' and from
1975 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1976 but this is considered obsolete. */)
1977 (Lisp_Object specified_time)
1978 {
1979 time_t value = lisp_seconds_argument (specified_time);
1980 struct tm *tm;
1981 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1982 int len IF_LINT (= 0);
1983
1984 /* Convert to a string in ctime format, except without the trailing
1985 newline, and without the 4-digit year limit. Don't use asctime
1986 or ctime, as they might dump core if the year is outside the
1987 range -999 .. 9999. */
1988 BLOCK_INPUT;
1989 tm = localtime (&value);
1990 if (tm)
1991 {
1992 static char const wday_name[][4] =
1993 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1994 static char const mon_name[][4] =
1995 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1996 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1997 printmax_t year_base = TM_YEAR_BASE;
1998
1999 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2000 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2001 tm->tm_hour, tm->tm_min, tm->tm_sec,
2002 tm->tm_year + year_base);
2003 }
2004 UNBLOCK_INPUT;
2005 if (! tm)
2006 time_overflow ();
2007
2008 return make_unibyte_string (buf, len);
2009 }
2010
2011 /* Yield A - B, measured in seconds.
2012 This function is copied from the GNU C Library. */
2013 static int
2014 tm_diff (struct tm *a, struct tm *b)
2015 {
2016 /* Compute intervening leap days correctly even if year is negative.
2017 Take care to avoid int overflow in leap day calculations,
2018 but it's OK to assume that A and B are close to each other. */
2019 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2020 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2021 int a100 = a4 / 25 - (a4 % 25 < 0);
2022 int b100 = b4 / 25 - (b4 % 25 < 0);
2023 int a400 = a100 >> 2;
2024 int b400 = b100 >> 2;
2025 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2026 int years = a->tm_year - b->tm_year;
2027 int days = (365 * years + intervening_leap_days
2028 + (a->tm_yday - b->tm_yday));
2029 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2030 + (a->tm_min - b->tm_min))
2031 + (a->tm_sec - b->tm_sec));
2032 }
2033
2034 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2035 doc: /* Return the offset and name for the local time zone.
2036 This returns a list of the form (OFFSET NAME).
2037 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2038 A negative value means west of Greenwich.
2039 NAME is a string giving the name of the time zone.
2040 If SPECIFIED-TIME is given, the time zone offset is determined from it
2041 instead of using the current time. The argument should have the form
2042 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2043 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2044 have the form (HIGH . LOW), but this is considered obsolete.
2045
2046 Some operating systems cannot provide all this information to Emacs;
2047 in this case, `current-time-zone' returns a list containing nil for
2048 the data it can't find. */)
2049 (Lisp_Object specified_time)
2050 {
2051 EMACS_TIME value;
2052 int offset;
2053 struct tm *t;
2054 struct tm localtm;
2055 Lisp_Object zone_offset, zone_name;
2056
2057 zone_offset = Qnil;
2058 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2059 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2060 BLOCK_INPUT;
2061 t = gmtime (emacs_secs_addr (&value));
2062 if (t)
2063 offset = tm_diff (&localtm, t);
2064 UNBLOCK_INPUT;
2065
2066 if (t)
2067 {
2068 zone_offset = make_number (offset);
2069 if (SCHARS (zone_name) == 0)
2070 {
2071 /* No local time zone name is available; use "+-NNNN" instead. */
2072 int m = offset / 60;
2073 int am = offset < 0 ? - m : m;
2074 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2075 zone_name = make_formatted_string (buf, "%c%02d%02d",
2076 (offset < 0 ? '-' : '+'),
2077 am / 60, am % 60);
2078 }
2079 }
2080
2081 return list2 (zone_offset, zone_name);
2082 }
2083
2084 /* This holds the value of `environ' produced by the previous
2085 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2086 has never been called. */
2087 static char **environbuf;
2088
2089 /* This holds the startup value of the TZ environment variable so it
2090 can be restored if the user calls set-time-zone-rule with a nil
2091 argument. */
2092 static char *initial_tz;
2093
2094 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2095 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2096 If TZ is nil, use implementation-defined default time zone information.
2097 If TZ is t, use Universal Time.
2098
2099 Instead of calling this function, you typically want (setenv "TZ" TZ).
2100 That changes both the environment of the Emacs process and the
2101 variable `process-environment', whereas `set-time-zone-rule' affects
2102 only the former. */)
2103 (Lisp_Object tz)
2104 {
2105 const char *tzstring;
2106 char **old_environbuf;
2107
2108 if (! (NILP (tz) || EQ (tz, Qt)))
2109 CHECK_STRING (tz);
2110
2111 BLOCK_INPUT;
2112
2113 /* When called for the first time, save the original TZ. */
2114 old_environbuf = environbuf;
2115 if (!old_environbuf)
2116 initial_tz = (char *) getenv ("TZ");
2117
2118 if (NILP (tz))
2119 tzstring = initial_tz;
2120 else if (EQ (tz, Qt))
2121 tzstring = "UTC0";
2122 else
2123 tzstring = SSDATA (tz);
2124
2125 set_time_zone_rule (tzstring);
2126 environbuf = environ;
2127
2128 UNBLOCK_INPUT;
2129
2130 xfree (old_environbuf);
2131 return Qnil;
2132 }
2133
2134 #ifdef LOCALTIME_CACHE
2135
2136 /* These two values are known to load tz files in buggy implementations,
2137 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2138 Their values shouldn't matter in non-buggy implementations.
2139 We don't use string literals for these strings,
2140 since if a string in the environment is in readonly
2141 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2142 See Sun bugs 1113095 and 1114114, ``Timezone routines
2143 improperly modify environment''. */
2144
2145 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2146 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2147
2148 #endif
2149
2150 /* Set the local time zone rule to TZSTRING.
2151 This allocates memory into `environ', which it is the caller's
2152 responsibility to free. */
2153
2154 void
2155 set_time_zone_rule (const char *tzstring)
2156 {
2157 ptrdiff_t envptrs;
2158 char **from, **to, **newenv;
2159
2160 /* Make the ENVIRON vector longer with room for TZSTRING. */
2161 for (from = environ; *from; from++)
2162 continue;
2163 envptrs = from - environ + 2;
2164 newenv = to = xmalloc (envptrs * sizeof *newenv
2165 + (tzstring ? strlen (tzstring) + 4 : 0));
2166
2167 /* Add TZSTRING to the end of environ, as a value for TZ. */
2168 if (tzstring)
2169 {
2170 char *t = (char *) (to + envptrs);
2171 strcpy (t, "TZ=");
2172 strcat (t, tzstring);
2173 *to++ = t;
2174 }
2175
2176 /* Copy the old environ vector elements into NEWENV,
2177 but don't copy the TZ variable.
2178 So we have only one definition of TZ, which came from TZSTRING. */
2179 for (from = environ; *from; from++)
2180 if (strncmp (*from, "TZ=", 3) != 0)
2181 *to++ = *from;
2182 *to = 0;
2183
2184 environ = newenv;
2185
2186 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2187 the TZ variable is stored. If we do not have a TZSTRING,
2188 TO points to the vector slot which has the terminating null. */
2189
2190 #ifdef LOCALTIME_CACHE
2191 {
2192 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2193 "US/Pacific" that loads a tz file, then changes to a value like
2194 "XXX0" that does not load a tz file, and then changes back to
2195 its original value, the last change is (incorrectly) ignored.
2196 Also, if TZ changes twice in succession to values that do
2197 not load a tz file, tzset can dump core (see Sun bug#1225179).
2198 The following code works around these bugs. */
2199
2200 if (tzstring)
2201 {
2202 /* Temporarily set TZ to a value that loads a tz file
2203 and that differs from tzstring. */
2204 char *tz = *newenv;
2205 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2206 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2207 tzset ();
2208 *newenv = tz;
2209 }
2210 else
2211 {
2212 /* The implied tzstring is unknown, so temporarily set TZ to
2213 two different values that each load a tz file. */
2214 *to = set_time_zone_rule_tz1;
2215 to[1] = 0;
2216 tzset ();
2217 *to = set_time_zone_rule_tz2;
2218 tzset ();
2219 *to = 0;
2220 }
2221
2222 /* Now TZ has the desired value, and tzset can be invoked safely. */
2223 }
2224
2225 tzset ();
2226 #endif
2227 }
2228 \f
2229 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2230 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2231 type of object is Lisp_String). INHERIT is passed to
2232 INSERT_FROM_STRING_FUNC as the last argument. */
2233
2234 static void
2235 general_insert_function (void (*insert_func)
2236 (const char *, ptrdiff_t),
2237 void (*insert_from_string_func)
2238 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2239 ptrdiff_t, ptrdiff_t, int),
2240 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2241 {
2242 ptrdiff_t argnum;
2243 register Lisp_Object val;
2244
2245 for (argnum = 0; argnum < nargs; argnum++)
2246 {
2247 val = args[argnum];
2248 if (CHARACTERP (val))
2249 {
2250 int c = XFASTINT (val);
2251 unsigned char str[MAX_MULTIBYTE_LENGTH];
2252 int len;
2253
2254 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2255 len = CHAR_STRING (c, str);
2256 else
2257 {
2258 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2259 len = 1;
2260 }
2261 (*insert_func) ((char *) str, len);
2262 }
2263 else if (STRINGP (val))
2264 {
2265 (*insert_from_string_func) (val, 0, 0,
2266 SCHARS (val),
2267 SBYTES (val),
2268 inherit);
2269 }
2270 else
2271 wrong_type_argument (Qchar_or_string_p, val);
2272 }
2273 }
2274
2275 void
2276 insert1 (Lisp_Object arg)
2277 {
2278 Finsert (1, &arg);
2279 }
2280
2281
2282 /* Callers passing one argument to Finsert need not gcpro the
2283 argument "array", since the only element of the array will
2284 not be used after calling insert or insert_from_string, so
2285 we don't care if it gets trashed. */
2286
2287 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2288 doc: /* Insert the arguments, either strings or characters, at point.
2289 Point and before-insertion markers move forward to end up
2290 after the inserted text.
2291 Any other markers at the point of insertion remain before the text.
2292
2293 If the current buffer is multibyte, unibyte strings are converted
2294 to multibyte for insertion (see `string-make-multibyte').
2295 If the current buffer is unibyte, multibyte strings are converted
2296 to unibyte for insertion (see `string-make-unibyte').
2297
2298 When operating on binary data, it may be necessary to preserve the
2299 original bytes of a unibyte string when inserting it into a multibyte
2300 buffer; to accomplish this, apply `string-as-multibyte' to the string
2301 and insert the result.
2302
2303 usage: (insert &rest ARGS) */)
2304 (ptrdiff_t nargs, Lisp_Object *args)
2305 {
2306 general_insert_function (insert, insert_from_string, 0, nargs, args);
2307 return Qnil;
2308 }
2309
2310 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2311 0, MANY, 0,
2312 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2313 Point and before-insertion markers move forward to end up
2314 after the inserted text.
2315 Any other markers at the point of insertion remain before the text.
2316
2317 If the current buffer is multibyte, unibyte strings are converted
2318 to multibyte for insertion (see `unibyte-char-to-multibyte').
2319 If the current buffer is unibyte, multibyte strings are converted
2320 to unibyte for insertion.
2321
2322 usage: (insert-and-inherit &rest ARGS) */)
2323 (ptrdiff_t nargs, Lisp_Object *args)
2324 {
2325 general_insert_function (insert_and_inherit, insert_from_string, 1,
2326 nargs, args);
2327 return Qnil;
2328 }
2329
2330 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2331 doc: /* Insert strings or characters at point, relocating markers after the text.
2332 Point and markers move forward to end up after the inserted text.
2333
2334 If the current buffer is multibyte, unibyte strings are converted
2335 to multibyte for insertion (see `unibyte-char-to-multibyte').
2336 If the current buffer is unibyte, multibyte strings are converted
2337 to unibyte for insertion.
2338
2339 usage: (insert-before-markers &rest ARGS) */)
2340 (ptrdiff_t nargs, Lisp_Object *args)
2341 {
2342 general_insert_function (insert_before_markers,
2343 insert_from_string_before_markers, 0,
2344 nargs, args);
2345 return Qnil;
2346 }
2347
2348 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2349 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2350 doc: /* Insert text at point, relocating markers and inheriting properties.
2351 Point and markers move forward to end up after the inserted text.
2352
2353 If the current buffer is multibyte, unibyte strings are converted
2354 to multibyte for insertion (see `unibyte-char-to-multibyte').
2355 If the current buffer is unibyte, multibyte strings are converted
2356 to unibyte for insertion.
2357
2358 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2359 (ptrdiff_t nargs, Lisp_Object *args)
2360 {
2361 general_insert_function (insert_before_markers_and_inherit,
2362 insert_from_string_before_markers, 1,
2363 nargs, args);
2364 return Qnil;
2365 }
2366 \f
2367 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2368 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2369 (prefix-numeric-value current-prefix-arg)\
2370 t))",
2371 doc: /* Insert COUNT copies of CHARACTER.
2372 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2373 of these ways:
2374
2375 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2376 Completion is available; if you type a substring of the name
2377 preceded by an asterisk `*', Emacs shows all names which include
2378 that substring, not necessarily at the beginning of the name.
2379
2380 - As a hexadecimal code point, e.g. 263A. Note that code points in
2381 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2382 the Unicode code space).
2383
2384 - As a code point with a radix specified with #, e.g. #o21430
2385 (octal), #x2318 (hex), or #10r8984 (decimal).
2386
2387 If called interactively, COUNT is given by the prefix argument. If
2388 omitted or nil, it defaults to 1.
2389
2390 Inserting the character(s) relocates point and before-insertion
2391 markers in the same ways as the function `insert'.
2392
2393 The optional third argument INHERIT, if non-nil, says to inherit text
2394 properties from adjoining text, if those properties are sticky. If
2395 called interactively, INHERIT is t. */)
2396 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2397 {
2398 int i, stringlen;
2399 register ptrdiff_t n;
2400 int c, len;
2401 unsigned char str[MAX_MULTIBYTE_LENGTH];
2402 char string[4000];
2403
2404 CHECK_CHARACTER (character);
2405 if (NILP (count))
2406 XSETFASTINT (count, 1);
2407 CHECK_NUMBER (count);
2408 c = XFASTINT (character);
2409
2410 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2411 len = CHAR_STRING (c, str);
2412 else
2413 str[0] = c, len = 1;
2414 if (XINT (count) <= 0)
2415 return Qnil;
2416 if (BUF_BYTES_MAX / len < XINT (count))
2417 buffer_overflow ();
2418 n = XINT (count) * len;
2419 stringlen = min (n, sizeof string - sizeof string % len);
2420 for (i = 0; i < stringlen; i++)
2421 string[i] = str[i % len];
2422 while (n > stringlen)
2423 {
2424 QUIT;
2425 if (!NILP (inherit))
2426 insert_and_inherit (string, stringlen);
2427 else
2428 insert (string, stringlen);
2429 n -= stringlen;
2430 }
2431 if (!NILP (inherit))
2432 insert_and_inherit (string, n);
2433 else
2434 insert (string, n);
2435 return Qnil;
2436 }
2437
2438 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2439 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2440 Both arguments are required.
2441 BYTE is a number of the range 0..255.
2442
2443 If BYTE is 128..255 and the current buffer is multibyte, the
2444 corresponding eight-bit character is inserted.
2445
2446 Point, and before-insertion markers, are relocated as in the function `insert'.
2447 The optional third arg INHERIT, if non-nil, says to inherit text properties
2448 from adjoining text, if those properties are sticky. */)
2449 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2450 {
2451 CHECK_NUMBER (byte);
2452 if (XINT (byte) < 0 || XINT (byte) > 255)
2453 args_out_of_range_3 (byte, make_number (0), make_number (255));
2454 if (XINT (byte) >= 128
2455 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2456 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2457 return Finsert_char (byte, count, inherit);
2458 }
2459
2460 \f
2461 /* Making strings from buffer contents. */
2462
2463 /* Return a Lisp_String containing the text of the current buffer from
2464 START to END. If text properties are in use and the current buffer
2465 has properties in the range specified, the resulting string will also
2466 have them, if PROPS is nonzero.
2467
2468 We don't want to use plain old make_string here, because it calls
2469 make_uninit_string, which can cause the buffer arena to be
2470 compacted. make_string has no way of knowing that the data has
2471 been moved, and thus copies the wrong data into the string. This
2472 doesn't effect most of the other users of make_string, so it should
2473 be left as is. But we should use this function when conjuring
2474 buffer substrings. */
2475
2476 Lisp_Object
2477 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2478 {
2479 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2480 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2481
2482 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2483 }
2484
2485 /* Return a Lisp_String containing the text of the current buffer from
2486 START / START_BYTE to END / END_BYTE.
2487
2488 If text properties are in use and the current buffer
2489 has properties in the range specified, the resulting string will also
2490 have them, if PROPS is nonzero.
2491
2492 We don't want to use plain old make_string here, because it calls
2493 make_uninit_string, which can cause the buffer arena to be
2494 compacted. make_string has no way of knowing that the data has
2495 been moved, and thus copies the wrong data into the string. This
2496 doesn't effect most of the other users of make_string, so it should
2497 be left as is. But we should use this function when conjuring
2498 buffer substrings. */
2499
2500 Lisp_Object
2501 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2502 ptrdiff_t end, ptrdiff_t end_byte, int props)
2503 {
2504 Lisp_Object result, tem, tem1;
2505
2506 if (start < GPT && GPT < end)
2507 move_gap (start);
2508
2509 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2510 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2511 else
2512 result = make_uninit_string (end - start);
2513 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2514
2515 /* If desired, update and copy the text properties. */
2516 if (props)
2517 {
2518 update_buffer_properties (start, end);
2519
2520 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2521 tem1 = Ftext_properties_at (make_number (start), Qnil);
2522
2523 if (XINT (tem) != end || !NILP (tem1))
2524 copy_intervals_to_string (result, current_buffer, start,
2525 end - start);
2526 }
2527
2528 return result;
2529 }
2530
2531 /* Call Vbuffer_access_fontify_functions for the range START ... END
2532 in the current buffer, if necessary. */
2533
2534 static void
2535 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2536 {
2537 /* If this buffer has some access functions,
2538 call them, specifying the range of the buffer being accessed. */
2539 if (!NILP (Vbuffer_access_fontify_functions))
2540 {
2541 Lisp_Object args[3];
2542 Lisp_Object tem;
2543
2544 args[0] = Qbuffer_access_fontify_functions;
2545 XSETINT (args[1], start);
2546 XSETINT (args[2], end);
2547
2548 /* But don't call them if we can tell that the work
2549 has already been done. */
2550 if (!NILP (Vbuffer_access_fontified_property))
2551 {
2552 tem = Ftext_property_any (args[1], args[2],
2553 Vbuffer_access_fontified_property,
2554 Qnil, Qnil);
2555 if (! NILP (tem))
2556 Frun_hook_with_args (3, args);
2557 }
2558 else
2559 Frun_hook_with_args (3, args);
2560 }
2561 }
2562
2563 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2564 doc: /* Return the contents of part of the current buffer as a string.
2565 The two arguments START and END are character positions;
2566 they can be in either order.
2567 The string returned is multibyte if the buffer is multibyte.
2568
2569 This function copies the text properties of that part of the buffer
2570 into the result string; if you don't want the text properties,
2571 use `buffer-substring-no-properties' instead. */)
2572 (Lisp_Object start, Lisp_Object end)
2573 {
2574 register ptrdiff_t b, e;
2575
2576 validate_region (&start, &end);
2577 b = XINT (start);
2578 e = XINT (end);
2579
2580 return make_buffer_string (b, e, 1);
2581 }
2582
2583 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2584 Sbuffer_substring_no_properties, 2, 2, 0,
2585 doc: /* Return the characters of part of the buffer, without the text properties.
2586 The two arguments START and END are character positions;
2587 they can be in either order. */)
2588 (Lisp_Object start, Lisp_Object end)
2589 {
2590 register ptrdiff_t b, e;
2591
2592 validate_region (&start, &end);
2593 b = XINT (start);
2594 e = XINT (end);
2595
2596 return make_buffer_string (b, e, 0);
2597 }
2598
2599 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2600 doc: /* Return the contents of the current buffer as a string.
2601 If narrowing is in effect, this function returns only the visible part
2602 of the buffer. */)
2603 (void)
2604 {
2605 return make_buffer_string (BEGV, ZV, 1);
2606 }
2607
2608 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2609 1, 3, 0,
2610 doc: /* Insert before point a substring of the contents of BUFFER.
2611 BUFFER may be a buffer or a buffer name.
2612 Arguments START and END are character positions specifying the substring.
2613 They default to the values of (point-min) and (point-max) in BUFFER. */)
2614 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2615 {
2616 register EMACS_INT b, e, temp;
2617 register struct buffer *bp, *obuf;
2618 Lisp_Object buf;
2619
2620 buf = Fget_buffer (buffer);
2621 if (NILP (buf))
2622 nsberror (buffer);
2623 bp = XBUFFER (buf);
2624 if (NILP (BVAR (bp, name)))
2625 error ("Selecting deleted buffer");
2626
2627 if (NILP (start))
2628 b = BUF_BEGV (bp);
2629 else
2630 {
2631 CHECK_NUMBER_COERCE_MARKER (start);
2632 b = XINT (start);
2633 }
2634 if (NILP (end))
2635 e = BUF_ZV (bp);
2636 else
2637 {
2638 CHECK_NUMBER_COERCE_MARKER (end);
2639 e = XINT (end);
2640 }
2641
2642 if (b > e)
2643 temp = b, b = e, e = temp;
2644
2645 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2646 args_out_of_range (start, end);
2647
2648 obuf = current_buffer;
2649 set_buffer_internal_1 (bp);
2650 update_buffer_properties (b, e);
2651 set_buffer_internal_1 (obuf);
2652
2653 insert_from_buffer (bp, b, e - b, 0);
2654 return Qnil;
2655 }
2656
2657 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2658 6, 6, 0,
2659 doc: /* Compare two substrings of two buffers; return result as number.
2660 the value is -N if first string is less after N-1 chars,
2661 +N if first string is greater after N-1 chars, or 0 if strings match.
2662 Each substring is represented as three arguments: BUFFER, START and END.
2663 That makes six args in all, three for each substring.
2664
2665 The value of `case-fold-search' in the current buffer
2666 determines whether case is significant or ignored. */)
2667 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2668 {
2669 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2670 register struct buffer *bp1, *bp2;
2671 register Lisp_Object trt
2672 = (!NILP (BVAR (current_buffer, case_fold_search))
2673 ? BVAR (current_buffer, case_canon_table) : Qnil);
2674 ptrdiff_t chars = 0;
2675 ptrdiff_t i1, i2, i1_byte, i2_byte;
2676
2677 /* Find the first buffer and its substring. */
2678
2679 if (NILP (buffer1))
2680 bp1 = current_buffer;
2681 else
2682 {
2683 Lisp_Object buf1;
2684 buf1 = Fget_buffer (buffer1);
2685 if (NILP (buf1))
2686 nsberror (buffer1);
2687 bp1 = XBUFFER (buf1);
2688 if (NILP (BVAR (bp1, name)))
2689 error ("Selecting deleted buffer");
2690 }
2691
2692 if (NILP (start1))
2693 begp1 = BUF_BEGV (bp1);
2694 else
2695 {
2696 CHECK_NUMBER_COERCE_MARKER (start1);
2697 begp1 = XINT (start1);
2698 }
2699 if (NILP (end1))
2700 endp1 = BUF_ZV (bp1);
2701 else
2702 {
2703 CHECK_NUMBER_COERCE_MARKER (end1);
2704 endp1 = XINT (end1);
2705 }
2706
2707 if (begp1 > endp1)
2708 temp = begp1, begp1 = endp1, endp1 = temp;
2709
2710 if (!(BUF_BEGV (bp1) <= begp1
2711 && begp1 <= endp1
2712 && endp1 <= BUF_ZV (bp1)))
2713 args_out_of_range (start1, end1);
2714
2715 /* Likewise for second substring. */
2716
2717 if (NILP (buffer2))
2718 bp2 = current_buffer;
2719 else
2720 {
2721 Lisp_Object buf2;
2722 buf2 = Fget_buffer (buffer2);
2723 if (NILP (buf2))
2724 nsberror (buffer2);
2725 bp2 = XBUFFER (buf2);
2726 if (NILP (BVAR (bp2, name)))
2727 error ("Selecting deleted buffer");
2728 }
2729
2730 if (NILP (start2))
2731 begp2 = BUF_BEGV (bp2);
2732 else
2733 {
2734 CHECK_NUMBER_COERCE_MARKER (start2);
2735 begp2 = XINT (start2);
2736 }
2737 if (NILP (end2))
2738 endp2 = BUF_ZV (bp2);
2739 else
2740 {
2741 CHECK_NUMBER_COERCE_MARKER (end2);
2742 endp2 = XINT (end2);
2743 }
2744
2745 if (begp2 > endp2)
2746 temp = begp2, begp2 = endp2, endp2 = temp;
2747
2748 if (!(BUF_BEGV (bp2) <= begp2
2749 && begp2 <= endp2
2750 && endp2 <= BUF_ZV (bp2)))
2751 args_out_of_range (start2, end2);
2752
2753 i1 = begp1;
2754 i2 = begp2;
2755 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2756 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2757
2758 while (i1 < endp1 && i2 < endp2)
2759 {
2760 /* When we find a mismatch, we must compare the
2761 characters, not just the bytes. */
2762 int c1, c2;
2763
2764 QUIT;
2765
2766 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2767 {
2768 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2769 BUF_INC_POS (bp1, i1_byte);
2770 i1++;
2771 }
2772 else
2773 {
2774 c1 = BUF_FETCH_BYTE (bp1, i1);
2775 MAKE_CHAR_MULTIBYTE (c1);
2776 i1++;
2777 }
2778
2779 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2780 {
2781 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2782 BUF_INC_POS (bp2, i2_byte);
2783 i2++;
2784 }
2785 else
2786 {
2787 c2 = BUF_FETCH_BYTE (bp2, i2);
2788 MAKE_CHAR_MULTIBYTE (c2);
2789 i2++;
2790 }
2791
2792 if (!NILP (trt))
2793 {
2794 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2795 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2796 }
2797 if (c1 < c2)
2798 return make_number (- 1 - chars);
2799 if (c1 > c2)
2800 return make_number (chars + 1);
2801
2802 chars++;
2803 }
2804
2805 /* The strings match as far as they go.
2806 If one is shorter, that one is less. */
2807 if (chars < endp1 - begp1)
2808 return make_number (chars + 1);
2809 else if (chars < endp2 - begp2)
2810 return make_number (- chars - 1);
2811
2812 /* Same length too => they are equal. */
2813 return make_number (0);
2814 }
2815 \f
2816 static Lisp_Object
2817 subst_char_in_region_unwind (Lisp_Object arg)
2818 {
2819 return BVAR (current_buffer, undo_list) = arg;
2820 }
2821
2822 static Lisp_Object
2823 subst_char_in_region_unwind_1 (Lisp_Object arg)
2824 {
2825 return BVAR (current_buffer, filename) = arg;
2826 }
2827
2828 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2829 Ssubst_char_in_region, 4, 5, 0,
2830 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2831 If optional arg NOUNDO is non-nil, don't record this change for undo
2832 and don't mark the buffer as really changed.
2833 Both characters must have the same length of multi-byte form. */)
2834 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2835 {
2836 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2837 /* Keep track of the first change in the buffer:
2838 if 0 we haven't found it yet.
2839 if < 0 we've found it and we've run the before-change-function.
2840 if > 0 we've actually performed it and the value is its position. */
2841 ptrdiff_t changed = 0;
2842 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2843 unsigned char *p;
2844 ptrdiff_t count = SPECPDL_INDEX ();
2845 #define COMBINING_NO 0
2846 #define COMBINING_BEFORE 1
2847 #define COMBINING_AFTER 2
2848 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2849 int maybe_byte_combining = COMBINING_NO;
2850 ptrdiff_t last_changed = 0;
2851 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2852 int fromc, toc;
2853
2854 restart:
2855
2856 validate_region (&start, &end);
2857 CHECK_CHARACTER (fromchar);
2858 CHECK_CHARACTER (tochar);
2859 fromc = XFASTINT (fromchar);
2860 toc = XFASTINT (tochar);
2861
2862 if (multibyte_p)
2863 {
2864 len = CHAR_STRING (fromc, fromstr);
2865 if (CHAR_STRING (toc, tostr) != len)
2866 error ("Characters in `subst-char-in-region' have different byte-lengths");
2867 if (!ASCII_BYTE_P (*tostr))
2868 {
2869 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2870 complete multibyte character, it may be combined with the
2871 after bytes. If it is in the range 0xA0..0xFF, it may be
2872 combined with the before and after bytes. */
2873 if (!CHAR_HEAD_P (*tostr))
2874 maybe_byte_combining = COMBINING_BOTH;
2875 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2876 maybe_byte_combining = COMBINING_AFTER;
2877 }
2878 }
2879 else
2880 {
2881 len = 1;
2882 fromstr[0] = fromc;
2883 tostr[0] = toc;
2884 }
2885
2886 pos = XINT (start);
2887 pos_byte = CHAR_TO_BYTE (pos);
2888 stop = CHAR_TO_BYTE (XINT (end));
2889 end_byte = stop;
2890
2891 /* If we don't want undo, turn off putting stuff on the list.
2892 That's faster than getting rid of things,
2893 and it prevents even the entry for a first change.
2894 Also inhibit locking the file. */
2895 if (!changed && !NILP (noundo))
2896 {
2897 record_unwind_protect (subst_char_in_region_unwind,
2898 BVAR (current_buffer, undo_list));
2899 BVAR (current_buffer, undo_list) = Qt;
2900 /* Don't do file-locking. */
2901 record_unwind_protect (subst_char_in_region_unwind_1,
2902 BVAR (current_buffer, filename));
2903 BVAR (current_buffer, filename) = Qnil;
2904 }
2905
2906 if (pos_byte < GPT_BYTE)
2907 stop = min (stop, GPT_BYTE);
2908 while (1)
2909 {
2910 ptrdiff_t pos_byte_next = pos_byte;
2911
2912 if (pos_byte >= stop)
2913 {
2914 if (pos_byte >= end_byte) break;
2915 stop = end_byte;
2916 }
2917 p = BYTE_POS_ADDR (pos_byte);
2918 if (multibyte_p)
2919 INC_POS (pos_byte_next);
2920 else
2921 ++pos_byte_next;
2922 if (pos_byte_next - pos_byte == len
2923 && p[0] == fromstr[0]
2924 && (len == 1
2925 || (p[1] == fromstr[1]
2926 && (len == 2 || (p[2] == fromstr[2]
2927 && (len == 3 || p[3] == fromstr[3]))))))
2928 {
2929 if (changed < 0)
2930 /* We've already seen this and run the before-change-function;
2931 this time we only need to record the actual position. */
2932 changed = pos;
2933 else if (!changed)
2934 {
2935 changed = -1;
2936 modify_region (current_buffer, pos, XINT (end), 0);
2937
2938 if (! NILP (noundo))
2939 {
2940 if (MODIFF - 1 == SAVE_MODIFF)
2941 SAVE_MODIFF++;
2942 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2943 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2944 }
2945
2946 /* The before-change-function may have moved the gap
2947 or even modified the buffer so we should start over. */
2948 goto restart;
2949 }
2950
2951 /* Take care of the case where the new character
2952 combines with neighboring bytes. */
2953 if (maybe_byte_combining
2954 && (maybe_byte_combining == COMBINING_AFTER
2955 ? (pos_byte_next < Z_BYTE
2956 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2957 : ((pos_byte_next < Z_BYTE
2958 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2959 || (pos_byte > BEG_BYTE
2960 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2961 {
2962 Lisp_Object tem, string;
2963
2964 struct gcpro gcpro1;
2965
2966 tem = BVAR (current_buffer, undo_list);
2967 GCPRO1 (tem);
2968
2969 /* Make a multibyte string containing this single character. */
2970 string = make_multibyte_string ((char *) tostr, 1, len);
2971 /* replace_range is less efficient, because it moves the gap,
2972 but it handles combining correctly. */
2973 replace_range (pos, pos + 1, string,
2974 0, 0, 1);
2975 pos_byte_next = CHAR_TO_BYTE (pos);
2976 if (pos_byte_next > pos_byte)
2977 /* Before combining happened. We should not increment
2978 POS. So, to cancel the later increment of POS,
2979 decrease it now. */
2980 pos--;
2981 else
2982 INC_POS (pos_byte_next);
2983
2984 if (! NILP (noundo))
2985 BVAR (current_buffer, undo_list) = tem;
2986
2987 UNGCPRO;
2988 }
2989 else
2990 {
2991 if (NILP (noundo))
2992 record_change (pos, 1);
2993 for (i = 0; i < len; i++) *p++ = tostr[i];
2994 }
2995 last_changed = pos + 1;
2996 }
2997 pos_byte = pos_byte_next;
2998 pos++;
2999 }
3000
3001 if (changed > 0)
3002 {
3003 signal_after_change (changed,
3004 last_changed - changed, last_changed - changed);
3005 update_compositions (changed, last_changed, CHECK_ALL);
3006 }
3007
3008 unbind_to (count, Qnil);
3009 return Qnil;
3010 }
3011
3012
3013 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3014 Lisp_Object);
3015
3016 /* Helper function for Ftranslate_region_internal.
3017
3018 Check if a character sequence at POS (POS_BYTE) matches an element
3019 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3020 element is found, return it. Otherwise return Qnil. */
3021
3022 static Lisp_Object
3023 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3024 Lisp_Object val)
3025 {
3026 int buf_size = 16, buf_used = 0;
3027 int *buf = alloca (sizeof (int) * buf_size);
3028
3029 for (; CONSP (val); val = XCDR (val))
3030 {
3031 Lisp_Object elt;
3032 ptrdiff_t len, i;
3033
3034 elt = XCAR (val);
3035 if (! CONSP (elt))
3036 continue;
3037 elt = XCAR (elt);
3038 if (! VECTORP (elt))
3039 continue;
3040 len = ASIZE (elt);
3041 if (len <= end - pos)
3042 {
3043 for (i = 0; i < len; i++)
3044 {
3045 if (buf_used <= i)
3046 {
3047 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3048 int len1;
3049
3050 if (buf_used == buf_size)
3051 {
3052 int *newbuf;
3053
3054 buf_size += 16;
3055 newbuf = alloca (sizeof (int) * buf_size);
3056 memcpy (newbuf, buf, sizeof (int) * buf_used);
3057 buf = newbuf;
3058 }
3059 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3060 pos_byte += len1;
3061 }
3062 if (XINT (AREF (elt, i)) != buf[i])
3063 break;
3064 }
3065 if (i == len)
3066 return XCAR (val);
3067 }
3068 }
3069 return Qnil;
3070 }
3071
3072
3073 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3074 Stranslate_region_internal, 3, 3, 0,
3075 doc: /* Internal use only.
3076 From START to END, translate characters according to TABLE.
3077 TABLE is a string or a char-table; the Nth character in it is the
3078 mapping for the character with code N.
3079 It returns the number of characters changed. */)
3080 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3081 {
3082 register unsigned char *tt; /* Trans table. */
3083 register int nc; /* New character. */
3084 int cnt; /* Number of changes made. */
3085 ptrdiff_t size; /* Size of translate table. */
3086 ptrdiff_t pos, pos_byte, end_pos;
3087 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3088 int string_multibyte IF_LINT (= 0);
3089
3090 validate_region (&start, &end);
3091 if (CHAR_TABLE_P (table))
3092 {
3093 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3094 error ("Not a translation table");
3095 size = MAX_CHAR;
3096 tt = NULL;
3097 }
3098 else
3099 {
3100 CHECK_STRING (table);
3101
3102 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3103 table = string_make_unibyte (table);
3104 string_multibyte = SCHARS (table) < SBYTES (table);
3105 size = SBYTES (table);
3106 tt = SDATA (table);
3107 }
3108
3109 pos = XINT (start);
3110 pos_byte = CHAR_TO_BYTE (pos);
3111 end_pos = XINT (end);
3112 modify_region (current_buffer, pos, end_pos, 0);
3113
3114 cnt = 0;
3115 for (; pos < end_pos; )
3116 {
3117 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3118 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3119 int len, str_len;
3120 int oc;
3121 Lisp_Object val;
3122
3123 if (multibyte)
3124 oc = STRING_CHAR_AND_LENGTH (p, len);
3125 else
3126 oc = *p, len = 1;
3127 if (oc < size)
3128 {
3129 if (tt)
3130 {
3131 /* Reload as signal_after_change in last iteration may GC. */
3132 tt = SDATA (table);
3133 if (string_multibyte)
3134 {
3135 str = tt + string_char_to_byte (table, oc);
3136 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3137 }
3138 else
3139 {
3140 nc = tt[oc];
3141 if (! ASCII_BYTE_P (nc) && multibyte)
3142 {
3143 str_len = BYTE8_STRING (nc, buf);
3144 str = buf;
3145 }
3146 else
3147 {
3148 str_len = 1;
3149 str = tt + oc;
3150 }
3151 }
3152 }
3153 else
3154 {
3155 nc = oc;
3156 val = CHAR_TABLE_REF (table, oc);
3157 if (CHARACTERP (val))
3158 {
3159 nc = XFASTINT (val);
3160 str_len = CHAR_STRING (nc, buf);
3161 str = buf;
3162 }
3163 else if (VECTORP (val) || (CONSP (val)))
3164 {
3165 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3166 where TO is TO-CHAR or [TO-CHAR ...]. */
3167 nc = -1;
3168 }
3169 }
3170
3171 if (nc != oc && nc >= 0)
3172 {
3173 /* Simple one char to one char translation. */
3174 if (len != str_len)
3175 {
3176 Lisp_Object string;
3177
3178 /* This is less efficient, because it moves the gap,
3179 but it should handle multibyte characters correctly. */
3180 string = make_multibyte_string ((char *) str, 1, str_len);
3181 replace_range (pos, pos + 1, string, 1, 0, 1);
3182 len = str_len;
3183 }
3184 else
3185 {
3186 record_change (pos, 1);
3187 while (str_len-- > 0)
3188 *p++ = *str++;
3189 signal_after_change (pos, 1, 1);
3190 update_compositions (pos, pos + 1, CHECK_BORDER);
3191 }
3192 ++cnt;
3193 }
3194 else if (nc < 0)
3195 {
3196 Lisp_Object string;
3197
3198 if (CONSP (val))
3199 {
3200 val = check_translation (pos, pos_byte, end_pos, val);
3201 if (NILP (val))
3202 {
3203 pos_byte += len;
3204 pos++;
3205 continue;
3206 }
3207 /* VAL is ([FROM-CHAR ...] . TO). */
3208 len = ASIZE (XCAR (val));
3209 val = XCDR (val);
3210 }
3211 else
3212 len = 1;
3213
3214 if (VECTORP (val))
3215 {
3216 string = Fconcat (1, &val);
3217 }
3218 else
3219 {
3220 string = Fmake_string (make_number (1), val);
3221 }
3222 replace_range (pos, pos + len, string, 1, 0, 1);
3223 pos_byte += SBYTES (string);
3224 pos += SCHARS (string);
3225 cnt += SCHARS (string);
3226 end_pos += SCHARS (string) - len;
3227 continue;
3228 }
3229 }
3230 pos_byte += len;
3231 pos++;
3232 }
3233
3234 return make_number (cnt);
3235 }
3236
3237 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3238 doc: /* Delete the text between START and END.
3239 If called interactively, delete the region between point and mark.
3240 This command deletes buffer text without modifying the kill ring. */)
3241 (Lisp_Object start, Lisp_Object end)
3242 {
3243 validate_region (&start, &end);
3244 del_range (XINT (start), XINT (end));
3245 return Qnil;
3246 }
3247
3248 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3249 Sdelete_and_extract_region, 2, 2, 0,
3250 doc: /* Delete the text between START and END and return it. */)
3251 (Lisp_Object start, Lisp_Object end)
3252 {
3253 validate_region (&start, &end);
3254 if (XINT (start) == XINT (end))
3255 return empty_unibyte_string;
3256 return del_range_1 (XINT (start), XINT (end), 1, 1);
3257 }
3258 \f
3259 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3260 doc: /* Remove restrictions (narrowing) from current buffer.
3261 This allows the buffer's full text to be seen and edited. */)
3262 (void)
3263 {
3264 if (BEG != BEGV || Z != ZV)
3265 current_buffer->clip_changed = 1;
3266 BEGV = BEG;
3267 BEGV_BYTE = BEG_BYTE;
3268 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3269 /* Changing the buffer bounds invalidates any recorded current column. */
3270 invalidate_current_column ();
3271 return Qnil;
3272 }
3273
3274 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3275 doc: /* Restrict editing in this buffer to the current region.
3276 The rest of the text becomes temporarily invisible and untouchable
3277 but is not deleted; if you save the buffer in a file, the invisible
3278 text is included in the file. \\[widen] makes all visible again.
3279 See also `save-restriction'.
3280
3281 When calling from a program, pass two arguments; positions (integers
3282 or markers) bounding the text that should remain visible. */)
3283 (register Lisp_Object start, Lisp_Object end)
3284 {
3285 CHECK_NUMBER_COERCE_MARKER (start);
3286 CHECK_NUMBER_COERCE_MARKER (end);
3287
3288 if (XINT (start) > XINT (end))
3289 {
3290 Lisp_Object tem;
3291 tem = start; start = end; end = tem;
3292 }
3293
3294 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3295 args_out_of_range (start, end);
3296
3297 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3298 current_buffer->clip_changed = 1;
3299
3300 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3301 SET_BUF_ZV (current_buffer, XFASTINT (end));
3302 if (PT < XFASTINT (start))
3303 SET_PT (XFASTINT (start));
3304 if (PT > XFASTINT (end))
3305 SET_PT (XFASTINT (end));
3306 /* Changing the buffer bounds invalidates any recorded current column. */
3307 invalidate_current_column ();
3308 return Qnil;
3309 }
3310
3311 Lisp_Object
3312 save_restriction_save (void)
3313 {
3314 if (BEGV == BEG && ZV == Z)
3315 /* The common case that the buffer isn't narrowed.
3316 We return just the buffer object, which save_restriction_restore
3317 recognizes as meaning `no restriction'. */
3318 return Fcurrent_buffer ();
3319 else
3320 /* We have to save a restriction, so return a pair of markers, one
3321 for the beginning and one for the end. */
3322 {
3323 Lisp_Object beg, end;
3324
3325 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3326 end = build_marker (current_buffer, ZV, ZV_BYTE);
3327
3328 /* END must move forward if text is inserted at its exact location. */
3329 XMARKER (end)->insertion_type = 1;
3330
3331 return Fcons (beg, end);
3332 }
3333 }
3334
3335 Lisp_Object
3336 save_restriction_restore (Lisp_Object data)
3337 {
3338 struct buffer *cur = NULL;
3339 struct buffer *buf = (CONSP (data)
3340 ? XMARKER (XCAR (data))->buffer
3341 : XBUFFER (data));
3342
3343 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3344 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3345 is the case if it is or has an indirect buffer), then make
3346 sure it is current before we update BEGV, so
3347 set_buffer_internal takes care of managing those markers. */
3348 cur = current_buffer;
3349 set_buffer_internal (buf);
3350 }
3351
3352 if (CONSP (data))
3353 /* A pair of marks bounding a saved restriction. */
3354 {
3355 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3356 struct Lisp_Marker *end = XMARKER (XCDR (data));
3357 eassert (buf == end->buffer);
3358
3359 if (buf /* Verify marker still points to a buffer. */
3360 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3361 /* The restriction has changed from the saved one, so restore
3362 the saved restriction. */
3363 {
3364 ptrdiff_t pt = BUF_PT (buf);
3365
3366 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3367 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3368
3369 if (pt < beg->charpos || pt > end->charpos)
3370 /* The point is outside the new visible range, move it inside. */
3371 SET_BUF_PT_BOTH (buf,
3372 clip_to_bounds (beg->charpos, pt, end->charpos),
3373 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3374 end->bytepos));
3375
3376 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3377 }
3378 /* These aren't needed anymore, so don't wait for GC. */
3379 free_marker (XCAR (data));
3380 free_marker (XCDR (data));
3381 free_cons (XCONS (data));
3382 }
3383 else
3384 /* A buffer, which means that there was no old restriction. */
3385 {
3386 if (buf /* Verify marker still points to a buffer. */
3387 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3388 /* The buffer has been narrowed, get rid of the narrowing. */
3389 {
3390 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3391 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3392
3393 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3394 }
3395 }
3396
3397 /* Changing the buffer bounds invalidates any recorded current column. */
3398 invalidate_current_column ();
3399
3400 if (cur)
3401 set_buffer_internal (cur);
3402
3403 return Qnil;
3404 }
3405
3406 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3407 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3408 The buffer's restrictions make parts of the beginning and end invisible.
3409 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3410 This special form, `save-restriction', saves the current buffer's restrictions
3411 when it is entered, and restores them when it is exited.
3412 So any `narrow-to-region' within BODY lasts only until the end of the form.
3413 The old restrictions settings are restored
3414 even in case of abnormal exit (throw or error).
3415
3416 The value returned is the value of the last form in BODY.
3417
3418 Note: if you are using both `save-excursion' and `save-restriction',
3419 use `save-excursion' outermost:
3420 (save-excursion (save-restriction ...))
3421
3422 usage: (save-restriction &rest BODY) */)
3423 (Lisp_Object body)
3424 {
3425 register Lisp_Object val;
3426 ptrdiff_t count = SPECPDL_INDEX ();
3427
3428 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3429 val = Fprogn (body);
3430 return unbind_to (count, val);
3431 }
3432 \f
3433 /* Buffer for the most recent text displayed by Fmessage_box. */
3434 static char *message_text;
3435
3436 /* Allocated length of that buffer. */
3437 static ptrdiff_t message_length;
3438
3439 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3440 doc: /* Display a message at the bottom of the screen.
3441 The message also goes into the `*Messages*' buffer.
3442 \(In keyboard macros, that's all it does.)
3443 Return the message.
3444
3445 The first argument is a format control string, and the rest are data
3446 to be formatted under control of the string. See `format' for details.
3447
3448 Note: Use (message "%s" VALUE) to print the value of expressions and
3449 variables to avoid accidentally interpreting `%' as format specifiers.
3450
3451 If the first argument is nil or the empty string, the function clears
3452 any existing message; this lets the minibuffer contents show. See
3453 also `current-message'.
3454
3455 usage: (message FORMAT-STRING &rest ARGS) */)
3456 (ptrdiff_t nargs, Lisp_Object *args)
3457 {
3458 if (NILP (args[0])
3459 || (STRINGP (args[0])
3460 && SBYTES (args[0]) == 0))
3461 {
3462 message (0);
3463 return args[0];
3464 }
3465 else
3466 {
3467 register Lisp_Object val;
3468 val = Fformat (nargs, args);
3469 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3470 return val;
3471 }
3472 }
3473
3474 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3475 doc: /* Display a message, in a dialog box if possible.
3476 If a dialog box is not available, use the echo area.
3477 The first argument is a format control string, and the rest are data
3478 to be formatted under control of the string. See `format' for details.
3479
3480 If the first argument is nil or the empty string, clear any existing
3481 message; let the minibuffer contents show.
3482
3483 usage: (message-box FORMAT-STRING &rest ARGS) */)
3484 (ptrdiff_t nargs, Lisp_Object *args)
3485 {
3486 if (NILP (args[0]))
3487 {
3488 message (0);
3489 return Qnil;
3490 }
3491 else
3492 {
3493 register Lisp_Object val;
3494 val = Fformat (nargs, args);
3495 #ifdef HAVE_MENUS
3496 /* The MS-DOS frames support popup menus even though they are
3497 not FRAME_WINDOW_P. */
3498 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3499 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3500 {
3501 Lisp_Object pane, menu;
3502 struct gcpro gcpro1;
3503 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3504 GCPRO1 (pane);
3505 menu = Fcons (val, pane);
3506 Fx_popup_dialog (Qt, menu, Qt);
3507 UNGCPRO;
3508 return val;
3509 }
3510 #endif /* HAVE_MENUS */
3511 /* Copy the data so that it won't move when we GC. */
3512 if (SBYTES (val) > message_length)
3513 {
3514 ptrdiff_t new_length = SBYTES (val) + 80;
3515 message_text = xrealloc (message_text, new_length);
3516 message_length = new_length;
3517 }
3518 memcpy (message_text, SDATA (val), SBYTES (val));
3519 message2 (message_text, SBYTES (val),
3520 STRING_MULTIBYTE (val));
3521 return val;
3522 }
3523 }
3524
3525 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3526 doc: /* Display a message in a dialog box or in the echo area.
3527 If this command was invoked with the mouse, use a dialog box if
3528 `use-dialog-box' is non-nil.
3529 Otherwise, use the echo area.
3530 The first argument is a format control string, and the rest are data
3531 to be formatted under control of the string. See `format' for details.
3532
3533 If the first argument is nil or the empty string, clear any existing
3534 message; let the minibuffer contents show.
3535
3536 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3537 (ptrdiff_t nargs, Lisp_Object *args)
3538 {
3539 #ifdef HAVE_MENUS
3540 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3541 && use_dialog_box)
3542 return Fmessage_box (nargs, args);
3543 #endif
3544 return Fmessage (nargs, args);
3545 }
3546
3547 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3548 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3549 (void)
3550 {
3551 return current_message ();
3552 }
3553
3554
3555 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3556 doc: /* Return a copy of STRING with text properties added.
3557 First argument is the string to copy.
3558 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3559 properties to add to the result.
3560 usage: (propertize STRING &rest PROPERTIES) */)
3561 (ptrdiff_t nargs, Lisp_Object *args)
3562 {
3563 Lisp_Object properties, string;
3564 struct gcpro gcpro1, gcpro2;
3565 ptrdiff_t i;
3566
3567 /* Number of args must be odd. */
3568 if ((nargs & 1) == 0)
3569 error ("Wrong number of arguments");
3570
3571 properties = string = Qnil;
3572 GCPRO2 (properties, string);
3573
3574 /* First argument must be a string. */
3575 CHECK_STRING (args[0]);
3576 string = Fcopy_sequence (args[0]);
3577
3578 for (i = 1; i < nargs; i += 2)
3579 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3580
3581 Fadd_text_properties (make_number (0),
3582 make_number (SCHARS (string)),
3583 properties, string);
3584 RETURN_UNGCPRO (string);
3585 }
3586
3587 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3588 doc: /* Format a string out of a format-string and arguments.
3589 The first argument is a format control string.
3590 The other arguments are substituted into it to make the result, a string.
3591
3592 The format control string may contain %-sequences meaning to substitute
3593 the next available argument:
3594
3595 %s means print a string argument. Actually, prints any object, with `princ'.
3596 %d means print as number in decimal (%o octal, %x hex).
3597 %X is like %x, but uses upper case.
3598 %e means print a number in exponential notation.
3599 %f means print a number in decimal-point notation.
3600 %g means print a number in exponential notation
3601 or decimal-point notation, whichever uses fewer characters.
3602 %c means print a number as a single character.
3603 %S means print any object as an s-expression (using `prin1').
3604
3605 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3606 Use %% to put a single % into the output.
3607
3608 A %-sequence may contain optional flag, width, and precision
3609 specifiers, as follows:
3610
3611 %<flags><width><precision>character
3612
3613 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3614
3615 The + flag character inserts a + before any positive number, while a
3616 space inserts a space before any positive number; these flags only
3617 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3618 The # flag means to use an alternate display form for %o, %x, %X, %e,
3619 %f, and %g sequences. The - and 0 flags affect the width specifier,
3620 as described below.
3621
3622 The width specifier supplies a lower limit for the length of the
3623 printed representation. The padding, if any, normally goes on the
3624 left, but it goes on the right if the - flag is present. The padding
3625 character is normally a space, but it is 0 if the 0 flag is present.
3626 The 0 flag is ignored if the - flag is present, or the format sequence
3627 is something other than %d, %e, %f, and %g.
3628
3629 For %e, %f, and %g sequences, the number after the "." in the
3630 precision specifier says how many decimal places to show; if zero, the
3631 decimal point itself is omitted. For %s and %S, the precision
3632 specifier truncates the string to the given width.
3633
3634 usage: (format STRING &rest OBJECTS) */)
3635 (ptrdiff_t nargs, Lisp_Object *args)
3636 {
3637 ptrdiff_t n; /* The number of the next arg to substitute */
3638 char initial_buffer[4000];
3639 char *buf = initial_buffer;
3640 ptrdiff_t bufsize = sizeof initial_buffer;
3641 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3642 char *p;
3643 Lisp_Object buf_save_value IF_LINT (= {0});
3644 register char *format, *end, *format_start;
3645 ptrdiff_t formatlen, nchars;
3646 /* Nonzero if the format is multibyte. */
3647 int multibyte_format = 0;
3648 /* Nonzero if the output should be a multibyte string,
3649 which is true if any of the inputs is one. */
3650 int multibyte = 0;
3651 /* When we make a multibyte string, we must pay attention to the
3652 byte combining problem, i.e., a byte may be combined with a
3653 multibyte character of the previous string. This flag tells if we
3654 must consider such a situation or not. */
3655 int maybe_combine_byte;
3656 Lisp_Object val;
3657 int arg_intervals = 0;
3658 USE_SAFE_ALLOCA;
3659
3660 /* discarded[I] is 1 if byte I of the format
3661 string was not copied into the output.
3662 It is 2 if byte I was not the first byte of its character. */
3663 char *discarded;
3664
3665 /* Each element records, for one argument,
3666 the start and end bytepos in the output string,
3667 whether the argument has been converted to string (e.g., due to "%S"),
3668 and whether the argument is a string with intervals.
3669 info[0] is unused. Unused elements have -1 for start. */
3670 struct info
3671 {
3672 ptrdiff_t start, end;
3673 int converted_to_string;
3674 int intervals;
3675 } *info = 0;
3676
3677 /* It should not be necessary to GCPRO ARGS, because
3678 the caller in the interpreter should take care of that. */
3679
3680 CHECK_STRING (args[0]);
3681 format_start = SSDATA (args[0]);
3682 formatlen = SBYTES (args[0]);
3683
3684 /* Allocate the info and discarded tables. */
3685 {
3686 ptrdiff_t i;
3687 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3688 memory_full (SIZE_MAX);
3689 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3690 discarded = (char *) &info[nargs + 1];
3691 for (i = 0; i < nargs + 1; i++)
3692 {
3693 info[i].start = -1;
3694 info[i].intervals = info[i].converted_to_string = 0;
3695 }
3696 memset (discarded, 0, formatlen);
3697 }
3698
3699 /* Try to determine whether the result should be multibyte.
3700 This is not always right; sometimes the result needs to be multibyte
3701 because of an object that we will pass through prin1,
3702 and in that case, we won't know it here. */
3703 multibyte_format = STRING_MULTIBYTE (args[0]);
3704 multibyte = multibyte_format;
3705 for (n = 1; !multibyte && n < nargs; n++)
3706 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3707 multibyte = 1;
3708
3709 /* If we start out planning a unibyte result,
3710 then discover it has to be multibyte, we jump back to retry. */
3711 retry:
3712
3713 p = buf;
3714 nchars = 0;
3715 n = 0;
3716
3717 /* Scan the format and store result in BUF. */
3718 format = format_start;
3719 end = format + formatlen;
3720 maybe_combine_byte = 0;
3721
3722 while (format != end)
3723 {
3724 /* The values of N and FORMAT when the loop body is entered. */
3725 ptrdiff_t n0 = n;
3726 char *format0 = format;
3727
3728 /* Bytes needed to represent the output of this conversion. */
3729 ptrdiff_t convbytes;
3730
3731 if (*format == '%')
3732 {
3733 /* General format specifications look like
3734
3735 '%' [flags] [field-width] [precision] format
3736
3737 where
3738
3739 flags ::= [-+0# ]+
3740 field-width ::= [0-9]+
3741 precision ::= '.' [0-9]*
3742
3743 If a field-width is specified, it specifies to which width
3744 the output should be padded with blanks, if the output
3745 string is shorter than field-width.
3746
3747 If precision is specified, it specifies the number of
3748 digits to print after the '.' for floats, or the max.
3749 number of chars to print from a string. */
3750
3751 int minus_flag = 0;
3752 int plus_flag = 0;
3753 int space_flag = 0;
3754 int sharp_flag = 0;
3755 int zero_flag = 0;
3756 ptrdiff_t field_width;
3757 int precision_given;
3758 uintmax_t precision = UINTMAX_MAX;
3759 char *num_end;
3760 char conversion;
3761
3762 while (1)
3763 {
3764 switch (*++format)
3765 {
3766 case '-': minus_flag = 1; continue;
3767 case '+': plus_flag = 1; continue;
3768 case ' ': space_flag = 1; continue;
3769 case '#': sharp_flag = 1; continue;
3770 case '0': zero_flag = 1; continue;
3771 }
3772 break;
3773 }
3774
3775 /* Ignore flags when sprintf ignores them. */
3776 space_flag &= ~ plus_flag;
3777 zero_flag &= ~ minus_flag;
3778
3779 {
3780 uintmax_t w = strtoumax (format, &num_end, 10);
3781 if (max_bufsize <= w)
3782 string_overflow ();
3783 field_width = w;
3784 }
3785 precision_given = *num_end == '.';
3786 if (precision_given)
3787 precision = strtoumax (num_end + 1, &num_end, 10);
3788 format = num_end;
3789
3790 if (format == end)
3791 error ("Format string ends in middle of format specifier");
3792
3793 memset (&discarded[format0 - format_start], 1, format - format0);
3794 conversion = *format;
3795 if (conversion == '%')
3796 goto copy_char;
3797 discarded[format - format_start] = 1;
3798 format++;
3799
3800 ++n;
3801 if (! (n < nargs))
3802 error ("Not enough arguments for format string");
3803
3804 /* For 'S', prin1 the argument, and then treat like 's'.
3805 For 's', princ any argument that is not a string or
3806 symbol. But don't do this conversion twice, which might
3807 happen after retrying. */
3808 if ((conversion == 'S'
3809 || (conversion == 's'
3810 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3811 {
3812 if (! info[n].converted_to_string)
3813 {
3814 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3815 args[n] = Fprin1_to_string (args[n], noescape);
3816 info[n].converted_to_string = 1;
3817 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3818 {
3819 multibyte = 1;
3820 goto retry;
3821 }
3822 }
3823 conversion = 's';
3824 }
3825 else if (conversion == 'c')
3826 {
3827 if (FLOATP (args[n]))
3828 {
3829 double d = XFLOAT_DATA (args[n]);
3830 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3831 }
3832
3833 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3834 {
3835 if (!multibyte)
3836 {
3837 multibyte = 1;
3838 goto retry;
3839 }
3840 args[n] = Fchar_to_string (args[n]);
3841 info[n].converted_to_string = 1;
3842 }
3843
3844 if (info[n].converted_to_string)
3845 conversion = 's';
3846 zero_flag = 0;
3847 }
3848
3849 if (SYMBOLP (args[n]))
3850 {
3851 args[n] = SYMBOL_NAME (args[n]);
3852 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3853 {
3854 multibyte = 1;
3855 goto retry;
3856 }
3857 }
3858
3859 if (conversion == 's')
3860 {
3861 /* handle case (precision[n] >= 0) */
3862
3863 ptrdiff_t width, padding, nbytes;
3864 ptrdiff_t nchars_string;
3865
3866 ptrdiff_t prec = -1;
3867 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3868 prec = precision;
3869
3870 /* lisp_string_width ignores a precision of 0, but GNU
3871 libc functions print 0 characters when the precision
3872 is 0. Imitate libc behavior here. Changing
3873 lisp_string_width is the right thing, and will be
3874 done, but meanwhile we work with it. */
3875
3876 if (prec == 0)
3877 width = nchars_string = nbytes = 0;
3878 else
3879 {
3880 ptrdiff_t nch, nby;
3881 width = lisp_string_width (args[n], prec, &nch, &nby);
3882 if (prec < 0)
3883 {
3884 nchars_string = SCHARS (args[n]);
3885 nbytes = SBYTES (args[n]);
3886 }
3887 else
3888 {
3889 nchars_string = nch;
3890 nbytes = nby;
3891 }
3892 }
3893
3894 convbytes = nbytes;
3895 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3896 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3897
3898 padding = width < field_width ? field_width - width : 0;
3899
3900 if (max_bufsize - padding <= convbytes)
3901 string_overflow ();
3902 convbytes += padding;
3903 if (convbytes <= buf + bufsize - p)
3904 {
3905 if (! minus_flag)
3906 {
3907 memset (p, ' ', padding);
3908 p += padding;
3909 nchars += padding;
3910 }
3911
3912 if (p > buf
3913 && multibyte
3914 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3915 && STRING_MULTIBYTE (args[n])
3916 && !CHAR_HEAD_P (SREF (args[n], 0)))
3917 maybe_combine_byte = 1;
3918
3919 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3920 nbytes,
3921 STRING_MULTIBYTE (args[n]), multibyte);
3922
3923 info[n].start = nchars;
3924 nchars += nchars_string;
3925 info[n].end = nchars;
3926
3927 if (minus_flag)
3928 {
3929 memset (p, ' ', padding);
3930 p += padding;
3931 nchars += padding;
3932 }
3933
3934 /* If this argument has text properties, record where
3935 in the result string it appears. */
3936 if (string_get_intervals (args[n]))
3937 info[n].intervals = arg_intervals = 1;
3938
3939 continue;
3940 }
3941 }
3942 else if (! (conversion == 'c' || conversion == 'd'
3943 || conversion == 'e' || conversion == 'f'
3944 || conversion == 'g' || conversion == 'i'
3945 || conversion == 'o' || conversion == 'x'
3946 || conversion == 'X'))
3947 error ("Invalid format operation %%%c",
3948 STRING_CHAR ((unsigned char *) format - 1));
3949 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3950 error ("Format specifier doesn't match argument type");
3951 else
3952 {
3953 enum
3954 {
3955 /* Maximum precision for a %f conversion such that the
3956 trailing output digit might be nonzero. Any precision
3957 larger than this will not yield useful information. */
3958 USEFUL_PRECISION_MAX =
3959 ((1 - DBL_MIN_EXP)
3960 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3961 : FLT_RADIX == 16 ? 4
3962 : -1)),
3963
3964 /* Maximum number of bytes generated by any format, if
3965 precision is no more than USEFUL_PRECISION_MAX.
3966 On all practical hosts, %f is the worst case. */
3967 SPRINTF_BUFSIZE =
3968 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3969
3970 /* Length of pM (that is, of pMd without the
3971 trailing "d"). */
3972 pMlen = sizeof pMd - 2
3973 };
3974 verify (0 < USEFUL_PRECISION_MAX);
3975
3976 int prec;
3977 ptrdiff_t padding, sprintf_bytes;
3978 uintmax_t excess_precision, numwidth;
3979 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3980
3981 char sprintf_buf[SPRINTF_BUFSIZE];
3982
3983 /* Copy of conversion specification, modified somewhat.
3984 At most three flags F can be specified at once. */
3985 char convspec[sizeof "%FFF.*d" + pMlen];
3986
3987 /* Avoid undefined behavior in underlying sprintf. */
3988 if (conversion == 'd' || conversion == 'i')
3989 sharp_flag = 0;
3990
3991 /* Create the copy of the conversion specification, with
3992 any width and precision removed, with ".*" inserted,
3993 and with pM inserted for integer formats. */
3994 {
3995 char *f = convspec;
3996 *f++ = '%';
3997 *f = '-'; f += minus_flag;
3998 *f = '+'; f += plus_flag;
3999 *f = ' '; f += space_flag;
4000 *f = '#'; f += sharp_flag;
4001 *f = '0'; f += zero_flag;
4002 *f++ = '.';
4003 *f++ = '*';
4004 if (conversion == 'd' || conversion == 'i'
4005 || conversion == 'o' || conversion == 'x'
4006 || conversion == 'X')
4007 {
4008 memcpy (f, pMd, pMlen);
4009 f += pMlen;
4010 zero_flag &= ~ precision_given;
4011 }
4012 *f++ = conversion;
4013 *f = '\0';
4014 }
4015
4016 prec = -1;
4017 if (precision_given)
4018 prec = min (precision, USEFUL_PRECISION_MAX);
4019
4020 /* Use sprintf to format this number into sprintf_buf. Omit
4021 padding and excess precision, though, because sprintf limits
4022 output length to INT_MAX.
4023
4024 There are four types of conversion: double, unsigned
4025 char (passed as int), wide signed int, and wide
4026 unsigned int. Treat them separately because the
4027 sprintf ABI is sensitive to which type is passed. Be
4028 careful about integer overflow, NaNs, infinities, and
4029 conversions; for example, the min and max macros are
4030 not suitable here. */
4031 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4032 {
4033 double x = (INTEGERP (args[n])
4034 ? XINT (args[n])
4035 : XFLOAT_DATA (args[n]));
4036 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4037 }
4038 else if (conversion == 'c')
4039 {
4040 /* Don't use sprintf here, as it might mishandle prec. */
4041 sprintf_buf[0] = XINT (args[n]);
4042 sprintf_bytes = prec != 0;
4043 }
4044 else if (conversion == 'd')
4045 {
4046 /* For float, maybe we should use "%1.0f"
4047 instead so it also works for values outside
4048 the integer range. */
4049 printmax_t x;
4050 if (INTEGERP (args[n]))
4051 x = XINT (args[n]);
4052 else
4053 {
4054 double d = XFLOAT_DATA (args[n]);
4055 if (d < 0)
4056 {
4057 x = TYPE_MINIMUM (printmax_t);
4058 if (x < d)
4059 x = d;
4060 }
4061 else
4062 {
4063 x = TYPE_MAXIMUM (printmax_t);
4064 if (d < x)
4065 x = d;
4066 }
4067 }
4068 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4069 }
4070 else
4071 {
4072 /* Don't sign-extend for octal or hex printing. */
4073 uprintmax_t x;
4074 if (INTEGERP (args[n]))
4075 x = XUINT (args[n]);
4076 else
4077 {
4078 double d = XFLOAT_DATA (args[n]);
4079 if (d < 0)
4080 x = 0;
4081 else
4082 {
4083 x = TYPE_MAXIMUM (uprintmax_t);
4084 if (d < x)
4085 x = d;
4086 }
4087 }
4088 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4089 }
4090
4091 /* Now the length of the formatted item is known, except it omits
4092 padding and excess precision. Deal with excess precision
4093 first. This happens only when the format specifies
4094 ridiculously large precision. */
4095 excess_precision = precision - prec;
4096 if (excess_precision)
4097 {
4098 if (conversion == 'e' || conversion == 'f'
4099 || conversion == 'g')
4100 {
4101 if ((conversion == 'g' && ! sharp_flag)
4102 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4103 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4104 excess_precision = 0;
4105 else
4106 {
4107 if (conversion == 'g')
4108 {
4109 char *dot = strchr (sprintf_buf, '.');
4110 if (!dot)
4111 excess_precision = 0;
4112 }
4113 }
4114 trailing_zeros = excess_precision;
4115 }
4116 else
4117 leading_zeros = excess_precision;
4118 }
4119
4120 /* Compute the total bytes needed for this item, including
4121 excess precision and padding. */
4122 numwidth = sprintf_bytes + excess_precision;
4123 padding = numwidth < field_width ? field_width - numwidth : 0;
4124 if (max_bufsize - sprintf_bytes <= excess_precision
4125 || max_bufsize - padding <= numwidth)
4126 string_overflow ();
4127 convbytes = numwidth + padding;
4128
4129 if (convbytes <= buf + bufsize - p)
4130 {
4131 /* Copy the formatted item from sprintf_buf into buf,
4132 inserting padding and excess-precision zeros. */
4133
4134 char *src = sprintf_buf;
4135 char src0 = src[0];
4136 int exponent_bytes = 0;
4137 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4138 int significand_bytes;
4139 if (zero_flag
4140 && ((src[signedp] >= '0' && src[signedp] <= '9')
4141 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4142 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4143 {
4144 leading_zeros += padding;
4145 padding = 0;
4146 }
4147
4148 if (excess_precision
4149 && (conversion == 'e' || conversion == 'g'))
4150 {
4151 char *e = strchr (src, 'e');
4152 if (e)
4153 exponent_bytes = src + sprintf_bytes - e;
4154 }
4155
4156 if (! minus_flag)
4157 {
4158 memset (p, ' ', padding);
4159 p += padding;
4160 nchars += padding;
4161 }
4162
4163 *p = src0;
4164 src += signedp;
4165 p += signedp;
4166 memset (p, '0', leading_zeros);
4167 p += leading_zeros;
4168 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4169 memcpy (p, src, significand_bytes);
4170 p += significand_bytes;
4171 src += significand_bytes;
4172 memset (p, '0', trailing_zeros);
4173 p += trailing_zeros;
4174 memcpy (p, src, exponent_bytes);
4175 p += exponent_bytes;
4176
4177 info[n].start = nchars;
4178 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4179 info[n].end = nchars;
4180
4181 if (minus_flag)
4182 {
4183 memset (p, ' ', padding);
4184 p += padding;
4185 nchars += padding;
4186 }
4187
4188 continue;
4189 }
4190 }
4191 }
4192 else
4193 copy_char:
4194 {
4195 /* Copy a single character from format to buf. */
4196
4197 char *src = format;
4198 unsigned char str[MAX_MULTIBYTE_LENGTH];
4199
4200 if (multibyte_format)
4201 {
4202 /* Copy a whole multibyte character. */
4203 if (p > buf
4204 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4205 && !CHAR_HEAD_P (*format))
4206 maybe_combine_byte = 1;
4207
4208 do
4209 format++;
4210 while (! CHAR_HEAD_P (*format));
4211
4212 convbytes = format - src;
4213 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4214 }
4215 else
4216 {
4217 unsigned char uc = *format++;
4218 if (! multibyte || ASCII_BYTE_P (uc))
4219 convbytes = 1;
4220 else
4221 {
4222 int c = BYTE8_TO_CHAR (uc);
4223 convbytes = CHAR_STRING (c, str);
4224 src = (char *) str;
4225 }
4226 }
4227
4228 if (convbytes <= buf + bufsize - p)
4229 {
4230 memcpy (p, src, convbytes);
4231 p += convbytes;
4232 nchars++;
4233 continue;
4234 }
4235 }
4236
4237 /* There wasn't enough room to store this conversion or single
4238 character. CONVBYTES says how much room is needed. Allocate
4239 enough room (and then some) and do it again. */
4240 {
4241 ptrdiff_t used = p - buf;
4242
4243 if (max_bufsize - used < convbytes)
4244 string_overflow ();
4245 bufsize = used + convbytes;
4246 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4247
4248 if (buf == initial_buffer)
4249 {
4250 buf = xmalloc (bufsize);
4251 sa_must_free = 1;
4252 buf_save_value = make_save_value (buf, 0);
4253 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4254 memcpy (buf, initial_buffer, used);
4255 }
4256 else
4257 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4258
4259 p = buf + used;
4260 }
4261
4262 format = format0;
4263 n = n0;
4264 }
4265
4266 if (bufsize < p - buf)
4267 abort ();
4268
4269 if (maybe_combine_byte)
4270 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4271 val = make_specified_string (buf, nchars, p - buf, multibyte);
4272
4273 /* If we allocated BUF with malloc, free it too. */
4274 SAFE_FREE ();
4275
4276 /* If the format string has text properties, or any of the string
4277 arguments has text properties, set up text properties of the
4278 result string. */
4279
4280 if (string_get_intervals (args[0]) || arg_intervals)
4281 {
4282 Lisp_Object len, new_len, props;
4283 struct gcpro gcpro1;
4284
4285 /* Add text properties from the format string. */
4286 len = make_number (SCHARS (args[0]));
4287 props = text_property_list (args[0], make_number (0), len, Qnil);
4288 GCPRO1 (props);
4289
4290 if (CONSP (props))
4291 {
4292 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4293 ptrdiff_t argn = 1;
4294 Lisp_Object list;
4295
4296 /* Adjust the bounds of each text property
4297 to the proper start and end in the output string. */
4298
4299 /* Put the positions in PROPS in increasing order, so that
4300 we can do (effectively) one scan through the position
4301 space of the format string. */
4302 props = Fnreverse (props);
4303
4304 /* BYTEPOS is the byte position in the format string,
4305 POSITION is the untranslated char position in it,
4306 TRANSLATED is the translated char position in BUF,
4307 and ARGN is the number of the next arg we will come to. */
4308 for (list = props; CONSP (list); list = XCDR (list))
4309 {
4310 Lisp_Object item;
4311 ptrdiff_t pos;
4312
4313 item = XCAR (list);
4314
4315 /* First adjust the property start position. */
4316 pos = XINT (XCAR (item));
4317
4318 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4319 up to this position. */
4320 for (; position < pos; bytepos++)
4321 {
4322 if (! discarded[bytepos])
4323 position++, translated++;
4324 else if (discarded[bytepos] == 1)
4325 {
4326 position++;
4327 if (translated == info[argn].start)
4328 {
4329 translated += info[argn].end - info[argn].start;
4330 argn++;
4331 }
4332 }
4333 }
4334
4335 XSETCAR (item, make_number (translated));
4336
4337 /* Likewise adjust the property end position. */
4338 pos = XINT (XCAR (XCDR (item)));
4339
4340 for (; position < pos; bytepos++)
4341 {
4342 if (! discarded[bytepos])
4343 position++, translated++;
4344 else if (discarded[bytepos] == 1)
4345 {
4346 position++;
4347 if (translated == info[argn].start)
4348 {
4349 translated += info[argn].end - info[argn].start;
4350 argn++;
4351 }
4352 }
4353 }
4354
4355 XSETCAR (XCDR (item), make_number (translated));
4356 }
4357
4358 add_text_properties_from_list (val, props, make_number (0));
4359 }
4360
4361 /* Add text properties from arguments. */
4362 if (arg_intervals)
4363 for (n = 1; n < nargs; ++n)
4364 if (info[n].intervals)
4365 {
4366 len = make_number (SCHARS (args[n]));
4367 new_len = make_number (info[n].end - info[n].start);
4368 props = text_property_list (args[n], make_number (0), len, Qnil);
4369 props = extend_property_ranges (props, new_len);
4370 /* If successive arguments have properties, be sure that
4371 the value of `composition' property be the copy. */
4372 if (n > 1 && info[n - 1].end)
4373 make_composition_value_copy (props);
4374 add_text_properties_from_list (val, props,
4375 make_number (info[n].start));
4376 }
4377
4378 UNGCPRO;
4379 }
4380
4381 return val;
4382 }
4383
4384 Lisp_Object
4385 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4386 {
4387 Lisp_Object args[3];
4388 args[0] = build_string (string1);
4389 args[1] = arg0;
4390 args[2] = arg1;
4391 return Fformat (3, args);
4392 }
4393 \f
4394 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4395 doc: /* Return t if two characters match, optionally ignoring case.
4396 Both arguments must be characters (i.e. integers).
4397 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4398 (register Lisp_Object c1, Lisp_Object c2)
4399 {
4400 int i1, i2;
4401 /* Check they're chars, not just integers, otherwise we could get array
4402 bounds violations in downcase. */
4403 CHECK_CHARACTER (c1);
4404 CHECK_CHARACTER (c2);
4405
4406 if (XINT (c1) == XINT (c2))
4407 return Qt;
4408 if (NILP (BVAR (current_buffer, case_fold_search)))
4409 return Qnil;
4410
4411 i1 = XFASTINT (c1);
4412 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4413 && ! ASCII_CHAR_P (i1))
4414 {
4415 MAKE_CHAR_MULTIBYTE (i1);
4416 }
4417 i2 = XFASTINT (c2);
4418 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4419 && ! ASCII_CHAR_P (i2))
4420 {
4421 MAKE_CHAR_MULTIBYTE (i2);
4422 }
4423 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4424 }
4425 \f
4426 /* Transpose the markers in two regions of the current buffer, and
4427 adjust the ones between them if necessary (i.e.: if the regions
4428 differ in size).
4429
4430 START1, END1 are the character positions of the first region.
4431 START1_BYTE, END1_BYTE are the byte positions.
4432 START2, END2 are the character positions of the second region.
4433 START2_BYTE, END2_BYTE are the byte positions.
4434
4435 Traverses the entire marker list of the buffer to do so, adding an
4436 appropriate amount to some, subtracting from some, and leaving the
4437 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4438
4439 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4440
4441 static void
4442 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4443 ptrdiff_t start2, ptrdiff_t end2,
4444 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4445 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4446 {
4447 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4448 register struct Lisp_Marker *marker;
4449
4450 /* Update point as if it were a marker. */
4451 if (PT < start1)
4452 ;
4453 else if (PT < end1)
4454 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4455 PT_BYTE + (end2_byte - end1_byte));
4456 else if (PT < start2)
4457 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4458 (PT_BYTE + (end2_byte - start2_byte)
4459 - (end1_byte - start1_byte)));
4460 else if (PT < end2)
4461 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4462 PT_BYTE - (start2_byte - start1_byte));
4463
4464 /* We used to adjust the endpoints here to account for the gap, but that
4465 isn't good enough. Even if we assume the caller has tried to move the
4466 gap out of our way, it might still be at start1 exactly, for example;
4467 and that places it `inside' the interval, for our purposes. The amount
4468 of adjustment is nontrivial if there's a `denormalized' marker whose
4469 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4470 the dirty work to Fmarker_position, below. */
4471
4472 /* The difference between the region's lengths */
4473 diff = (end2 - start2) - (end1 - start1);
4474 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4475
4476 /* For shifting each marker in a region by the length of the other
4477 region plus the distance between the regions. */
4478 amt1 = (end2 - start2) + (start2 - end1);
4479 amt2 = (end1 - start1) + (start2 - end1);
4480 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4481 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4482
4483 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4484 {
4485 mpos = marker->bytepos;
4486 if (mpos >= start1_byte && mpos < end2_byte)
4487 {
4488 if (mpos < end1_byte)
4489 mpos += amt1_byte;
4490 else if (mpos < start2_byte)
4491 mpos += diff_byte;
4492 else
4493 mpos -= amt2_byte;
4494 marker->bytepos = mpos;
4495 }
4496 mpos = marker->charpos;
4497 if (mpos >= start1 && mpos < end2)
4498 {
4499 if (mpos < end1)
4500 mpos += amt1;
4501 else if (mpos < start2)
4502 mpos += diff;
4503 else
4504 mpos -= amt2;
4505 }
4506 marker->charpos = mpos;
4507 }
4508 }
4509
4510 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4511 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4512 The regions should not be overlapping, because the size of the buffer is
4513 never changed in a transposition.
4514
4515 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4516 any markers that happen to be located in the regions.
4517
4518 Transposing beyond buffer boundaries is an error. */)
4519 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4520 {
4521 register ptrdiff_t start1, end1, start2, end2;
4522 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4523 ptrdiff_t gap, len1, len_mid, len2;
4524 unsigned char *start1_addr, *start2_addr, *temp;
4525
4526 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4527 Lisp_Object buf;
4528
4529 XSETBUFFER (buf, current_buffer);
4530 cur_intv = buffer_get_intervals (current_buffer);
4531
4532 validate_region (&startr1, &endr1);
4533 validate_region (&startr2, &endr2);
4534
4535 start1 = XFASTINT (startr1);
4536 end1 = XFASTINT (endr1);
4537 start2 = XFASTINT (startr2);
4538 end2 = XFASTINT (endr2);
4539 gap = GPT;
4540
4541 /* Swap the regions if they're reversed. */
4542 if (start2 < end1)
4543 {
4544 register ptrdiff_t glumph = start1;
4545 start1 = start2;
4546 start2 = glumph;
4547 glumph = end1;
4548 end1 = end2;
4549 end2 = glumph;
4550 }
4551
4552 len1 = end1 - start1;
4553 len2 = end2 - start2;
4554
4555 if (start2 < end1)
4556 error ("Transposed regions overlap");
4557 /* Nothing to change for adjacent regions with one being empty */
4558 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4559 return Qnil;
4560
4561 /* The possibilities are:
4562 1. Adjacent (contiguous) regions, or separate but equal regions
4563 (no, really equal, in this case!), or
4564 2. Separate regions of unequal size.
4565
4566 The worst case is usually No. 2. It means that (aside from
4567 potential need for getting the gap out of the way), there also
4568 needs to be a shifting of the text between the two regions. So
4569 if they are spread far apart, we are that much slower... sigh. */
4570
4571 /* It must be pointed out that the really studly thing to do would
4572 be not to move the gap at all, but to leave it in place and work
4573 around it if necessary. This would be extremely efficient,
4574 especially considering that people are likely to do
4575 transpositions near where they are working interactively, which
4576 is exactly where the gap would be found. However, such code
4577 would be much harder to write and to read. So, if you are
4578 reading this comment and are feeling squirrely, by all means have
4579 a go! I just didn't feel like doing it, so I will simply move
4580 the gap the minimum distance to get it out of the way, and then
4581 deal with an unbroken array. */
4582
4583 /* Make sure the gap won't interfere, by moving it out of the text
4584 we will operate on. */
4585 if (start1 < gap && gap < end2)
4586 {
4587 if (gap - start1 < end2 - gap)
4588 move_gap (start1);
4589 else
4590 move_gap (end2);
4591 }
4592
4593 start1_byte = CHAR_TO_BYTE (start1);
4594 start2_byte = CHAR_TO_BYTE (start2);
4595 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4596 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4597
4598 #ifdef BYTE_COMBINING_DEBUG
4599 if (end1 == start2)
4600 {
4601 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4602 len2_byte, start1, start1_byte)
4603 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4604 len1_byte, end2, start2_byte + len2_byte)
4605 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4606 len1_byte, end2, start2_byte + len2_byte))
4607 abort ();
4608 }
4609 else
4610 {
4611 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4612 len2_byte, start1, start1_byte)
4613 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4614 len1_byte, start2, start2_byte)
4615 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4616 len2_byte, end1, start1_byte + len1_byte)
4617 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4618 len1_byte, end2, start2_byte + len2_byte))
4619 abort ();
4620 }
4621 #endif
4622
4623 /* Hmmm... how about checking to see if the gap is large
4624 enough to use as the temporary storage? That would avoid an
4625 allocation... interesting. Later, don't fool with it now. */
4626
4627 /* Working without memmove, for portability (sigh), so must be
4628 careful of overlapping subsections of the array... */
4629
4630 if (end1 == start2) /* adjacent regions */
4631 {
4632 modify_region (current_buffer, start1, end2, 0);
4633 record_change (start1, len1 + len2);
4634
4635 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4636 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4637 /* Don't use Fset_text_properties: that can cause GC, which can
4638 clobber objects stored in the tmp_intervals. */
4639 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4640 if (tmp_interval3)
4641 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4642
4643 /* First region smaller than second. */
4644 if (len1_byte < len2_byte)
4645 {
4646 USE_SAFE_ALLOCA;
4647
4648 temp = SAFE_ALLOCA (len2_byte);
4649
4650 /* Don't precompute these addresses. We have to compute them
4651 at the last minute, because the relocating allocator might
4652 have moved the buffer around during the xmalloc. */
4653 start1_addr = BYTE_POS_ADDR (start1_byte);
4654 start2_addr = BYTE_POS_ADDR (start2_byte);
4655
4656 memcpy (temp, start2_addr, len2_byte);
4657 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4658 memcpy (start1_addr, temp, len2_byte);
4659 SAFE_FREE ();
4660 }
4661 else
4662 /* First region not smaller than second. */
4663 {
4664 USE_SAFE_ALLOCA;
4665
4666 temp = SAFE_ALLOCA (len1_byte);
4667 start1_addr = BYTE_POS_ADDR (start1_byte);
4668 start2_addr = BYTE_POS_ADDR (start2_byte);
4669 memcpy (temp, start1_addr, len1_byte);
4670 memcpy (start1_addr, start2_addr, len2_byte);
4671 memcpy (start1_addr + len2_byte, temp, len1_byte);
4672 SAFE_FREE ();
4673 }
4674 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4675 len1, current_buffer, 0);
4676 graft_intervals_into_buffer (tmp_interval2, start1,
4677 len2, current_buffer, 0);
4678 update_compositions (start1, start1 + len2, CHECK_BORDER);
4679 update_compositions (start1 + len2, end2, CHECK_TAIL);
4680 }
4681 /* Non-adjacent regions, because end1 != start2, bleagh... */
4682 else
4683 {
4684 len_mid = start2_byte - (start1_byte + len1_byte);
4685
4686 if (len1_byte == len2_byte)
4687 /* Regions are same size, though, how nice. */
4688 {
4689 USE_SAFE_ALLOCA;
4690
4691 modify_region (current_buffer, start1, end1, 0);
4692 modify_region (current_buffer, start2, end2, 0);
4693 record_change (start1, len1);
4694 record_change (start2, len2);
4695 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4696 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4697
4698 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4699 if (tmp_interval3)
4700 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4701
4702 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4703 if (tmp_interval3)
4704 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4705
4706 temp = SAFE_ALLOCA (len1_byte);
4707 start1_addr = BYTE_POS_ADDR (start1_byte);
4708 start2_addr = BYTE_POS_ADDR (start2_byte);
4709 memcpy (temp, start1_addr, len1_byte);
4710 memcpy (start1_addr, start2_addr, len2_byte);
4711 memcpy (start2_addr, temp, len1_byte);
4712 SAFE_FREE ();
4713
4714 graft_intervals_into_buffer (tmp_interval1, start2,
4715 len1, current_buffer, 0);
4716 graft_intervals_into_buffer (tmp_interval2, start1,
4717 len2, current_buffer, 0);
4718 }
4719
4720 else if (len1_byte < len2_byte) /* Second region larger than first */
4721 /* Non-adjacent & unequal size, area between must also be shifted. */
4722 {
4723 USE_SAFE_ALLOCA;
4724
4725 modify_region (current_buffer, start1, end2, 0);
4726 record_change (start1, (end2 - start1));
4727 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4728 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4729 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4730
4731 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4732 if (tmp_interval3)
4733 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4734
4735 /* holds region 2 */
4736 temp = SAFE_ALLOCA (len2_byte);
4737 start1_addr = BYTE_POS_ADDR (start1_byte);
4738 start2_addr = BYTE_POS_ADDR (start2_byte);
4739 memcpy (temp, start2_addr, len2_byte);
4740 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4741 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4742 memcpy (start1_addr, temp, len2_byte);
4743 SAFE_FREE ();
4744
4745 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4746 len1, current_buffer, 0);
4747 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4748 len_mid, current_buffer, 0);
4749 graft_intervals_into_buffer (tmp_interval2, start1,
4750 len2, current_buffer, 0);
4751 }
4752 else
4753 /* Second region smaller than first. */
4754 {
4755 USE_SAFE_ALLOCA;
4756
4757 record_change (start1, (end2 - start1));
4758 modify_region (current_buffer, start1, end2, 0);
4759
4760 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4761 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4762 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4763
4764 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4765 if (tmp_interval3)
4766 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4767
4768 /* holds region 1 */
4769 temp = SAFE_ALLOCA (len1_byte);
4770 start1_addr = BYTE_POS_ADDR (start1_byte);
4771 start2_addr = BYTE_POS_ADDR (start2_byte);
4772 memcpy (temp, start1_addr, len1_byte);
4773 memcpy (start1_addr, start2_addr, len2_byte);
4774 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4775 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4776 SAFE_FREE ();
4777
4778 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4779 len1, current_buffer, 0);
4780 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4781 len_mid, current_buffer, 0);
4782 graft_intervals_into_buffer (tmp_interval2, start1,
4783 len2, current_buffer, 0);
4784 }
4785
4786 update_compositions (start1, start1 + len2, CHECK_BORDER);
4787 update_compositions (end2 - len1, end2, CHECK_BORDER);
4788 }
4789
4790 /* When doing multiple transpositions, it might be nice
4791 to optimize this. Perhaps the markers in any one buffer
4792 should be organized in some sorted data tree. */
4793 if (NILP (leave_markers))
4794 {
4795 transpose_markers (start1, end1, start2, end2,
4796 start1_byte, start1_byte + len1_byte,
4797 start2_byte, start2_byte + len2_byte);
4798 fix_start_end_in_overlays (start1, end2);
4799 }
4800
4801 signal_after_change (start1, end2 - start1, end2 - start1);
4802 return Qnil;
4803 }
4804
4805 \f
4806 void
4807 syms_of_editfns (void)
4808 {
4809 environbuf = 0;
4810 initial_tz = 0;
4811
4812 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4813
4814 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4815 doc: /* Non-nil means text motion commands don't notice fields. */);
4816 Vinhibit_field_text_motion = Qnil;
4817
4818 DEFVAR_LISP ("buffer-access-fontify-functions",
4819 Vbuffer_access_fontify_functions,
4820 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4821 Each function is called with two arguments which specify the range
4822 of the buffer being accessed. */);
4823 Vbuffer_access_fontify_functions = Qnil;
4824
4825 {
4826 Lisp_Object obuf;
4827 obuf = Fcurrent_buffer ();
4828 /* Do this here, because init_buffer_once is too early--it won't work. */
4829 Fset_buffer (Vprin1_to_string_buffer);
4830 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4831 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4832 Qnil);
4833 Fset_buffer (obuf);
4834 }
4835
4836 DEFVAR_LISP ("buffer-access-fontified-property",
4837 Vbuffer_access_fontified_property,
4838 doc: /* Property which (if non-nil) indicates text has been fontified.
4839 `buffer-substring' need not call the `buffer-access-fontify-functions'
4840 functions if all the text being accessed has this property. */);
4841 Vbuffer_access_fontified_property = Qnil;
4842
4843 DEFVAR_LISP ("system-name", Vsystem_name,
4844 doc: /* The host name of the machine Emacs is running on. */);
4845
4846 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4847 doc: /* The full name of the user logged in. */);
4848
4849 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4850 doc: /* The user's name, taken from environment variables if possible. */);
4851
4852 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4853 doc: /* The user's name, based upon the real uid only. */);
4854
4855 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4856 doc: /* The release of the operating system Emacs is running on. */);
4857
4858 defsubr (&Spropertize);
4859 defsubr (&Schar_equal);
4860 defsubr (&Sgoto_char);
4861 defsubr (&Sstring_to_char);
4862 defsubr (&Schar_to_string);
4863 defsubr (&Sbyte_to_string);
4864 defsubr (&Sbuffer_substring);
4865 defsubr (&Sbuffer_substring_no_properties);
4866 defsubr (&Sbuffer_string);
4867
4868 defsubr (&Spoint_marker);
4869 defsubr (&Smark_marker);
4870 defsubr (&Spoint);
4871 defsubr (&Sregion_beginning);
4872 defsubr (&Sregion_end);
4873
4874 DEFSYM (Qfield, "field");
4875 DEFSYM (Qboundary, "boundary");
4876 defsubr (&Sfield_beginning);
4877 defsubr (&Sfield_end);
4878 defsubr (&Sfield_string);
4879 defsubr (&Sfield_string_no_properties);
4880 defsubr (&Sdelete_field);
4881 defsubr (&Sconstrain_to_field);
4882
4883 defsubr (&Sline_beginning_position);
4884 defsubr (&Sline_end_position);
4885
4886 /* defsubr (&Smark); */
4887 /* defsubr (&Sset_mark); */
4888 defsubr (&Ssave_excursion);
4889 defsubr (&Ssave_current_buffer);
4890
4891 defsubr (&Sbufsize);
4892 defsubr (&Spoint_max);
4893 defsubr (&Spoint_min);
4894 defsubr (&Spoint_min_marker);
4895 defsubr (&Spoint_max_marker);
4896 defsubr (&Sgap_position);
4897 defsubr (&Sgap_size);
4898 defsubr (&Sposition_bytes);
4899 defsubr (&Sbyte_to_position);
4900
4901 defsubr (&Sbobp);
4902 defsubr (&Seobp);
4903 defsubr (&Sbolp);
4904 defsubr (&Seolp);
4905 defsubr (&Sfollowing_char);
4906 defsubr (&Sprevious_char);
4907 defsubr (&Schar_after);
4908 defsubr (&Schar_before);
4909 defsubr (&Sinsert);
4910 defsubr (&Sinsert_before_markers);
4911 defsubr (&Sinsert_and_inherit);
4912 defsubr (&Sinsert_and_inherit_before_markers);
4913 defsubr (&Sinsert_char);
4914 defsubr (&Sinsert_byte);
4915
4916 defsubr (&Suser_login_name);
4917 defsubr (&Suser_real_login_name);
4918 defsubr (&Suser_uid);
4919 defsubr (&Suser_real_uid);
4920 defsubr (&Suser_full_name);
4921 defsubr (&Semacs_pid);
4922 defsubr (&Scurrent_time);
4923 defsubr (&Sget_internal_run_time);
4924 defsubr (&Sformat_time_string);
4925 defsubr (&Sfloat_time);
4926 defsubr (&Sdecode_time);
4927 defsubr (&Sencode_time);
4928 defsubr (&Scurrent_time_string);
4929 defsubr (&Scurrent_time_zone);
4930 defsubr (&Sset_time_zone_rule);
4931 defsubr (&Ssystem_name);
4932 defsubr (&Smessage);
4933 defsubr (&Smessage_box);
4934 defsubr (&Smessage_or_box);
4935 defsubr (&Scurrent_message);
4936 defsubr (&Sformat);
4937
4938 defsubr (&Sinsert_buffer_substring);
4939 defsubr (&Scompare_buffer_substrings);
4940 defsubr (&Ssubst_char_in_region);
4941 defsubr (&Stranslate_region_internal);
4942 defsubr (&Sdelete_region);
4943 defsubr (&Sdelete_and_extract_region);
4944 defsubr (&Swiden);
4945 defsubr (&Snarrow_to_region);
4946 defsubr (&Ssave_restriction);
4947 defsubr (&Stranspose_regions);
4948 }