* fns.c (next_almost_prime): Don't return a multiple of 3 or 5.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include "lisp.h"
27 #include "commands.h"
28 #include "character.h"
29 #include "coding.h"
30 #include "buffer.h"
31 #include "keyboard.h"
32 #include "keymap.h"
33 #include "intervals.h"
34 #include "frame.h"
35 #include "window.h"
36 #include "blockinput.h"
37 #ifdef HAVE_MENUS
38 #if defined (HAVE_X_WINDOWS)
39 #include "xterm.h"
40 #endif
41 #endif /* HAVE_MENUS */
42
43 #ifndef NULL
44 #define NULL ((POINTER_TYPE *)0)
45 #endif
46
47 Lisp_Object Qstring_lessp;
48 static Lisp_Object Qprovide, Qrequire;
49 static Lisp_Object Qyes_or_no_p_history;
50 Lisp_Object Qcursor_in_echo_area;
51 static Lisp_Object Qwidget_type;
52 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78 EMACS_UINT denominator;
79
80 if (EQ (limit, Qt))
81 seed_random (getpid () + time (NULL));
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 {
84 /* Try to take our random number from the higher bits of VAL,
85 not the lower, since (says Gentzel) the low bits of `random'
86 are less random than the higher ones. We do this by using the
87 quotient rather than the remainder. At the high end of the RNG
88 it's possible to get a quotient larger than n; discarding
89 these values eliminates the bias that would otherwise appear
90 when using a large n. */
91 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
92 do
93 val = get_random () / denominator;
94 while (val >= XFASTINT (limit));
95 }
96 else
97 val = get_random ();
98 XSETINT (lispy_val, val);
99 return lispy_val;
100 }
101 \f
102 /* Random data-structure functions */
103
104 DEFUN ("length", Flength, Slength, 1, 1, 0,
105 doc: /* Return the length of vector, list or string SEQUENCE.
106 A byte-code function object is also allowed.
107 If the string contains multibyte characters, this is not necessarily
108 the number of bytes in the string; it is the number of characters.
109 To get the number of bytes, use `string-bytes'. */)
110 (register Lisp_Object sequence)
111 {
112 register Lisp_Object val;
113 register int i;
114
115 if (STRINGP (sequence))
116 XSETFASTINT (val, SCHARS (sequence));
117 else if (VECTORP (sequence))
118 XSETFASTINT (val, ASIZE (sequence));
119 else if (CHAR_TABLE_P (sequence))
120 XSETFASTINT (val, MAX_CHAR);
121 else if (BOOL_VECTOR_P (sequence))
122 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
123 else if (COMPILEDP (sequence))
124 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
125 else if (CONSP (sequence))
126 {
127 i = 0;
128 while (CONSP (sequence))
129 {
130 sequence = XCDR (sequence);
131 ++i;
132
133 if (!CONSP (sequence))
134 break;
135
136 sequence = XCDR (sequence);
137 ++i;
138 QUIT;
139 }
140
141 CHECK_LIST_END (sequence, sequence);
142
143 val = make_number (i);
144 }
145 else if (NILP (sequence))
146 XSETFASTINT (val, 0);
147 else
148 wrong_type_argument (Qsequencep, sequence);
149
150 return val;
151 }
152
153 /* This does not check for quits. That is safe since it must terminate. */
154
155 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
156 doc: /* Return the length of a list, but avoid error or infinite loop.
157 This function never gets an error. If LIST is not really a list,
158 it returns 0. If LIST is circular, it returns a finite value
159 which is at least the number of distinct elements. */)
160 (Lisp_Object list)
161 {
162 Lisp_Object tail, halftail, length;
163 int len = 0;
164
165 /* halftail is used to detect circular lists. */
166 halftail = list;
167 for (tail = list; CONSP (tail); tail = XCDR (tail))
168 {
169 if (EQ (tail, halftail) && len != 0)
170 break;
171 len++;
172 if ((len & 1) == 0)
173 halftail = XCDR (halftail);
174 }
175
176 XSETINT (length, len);
177 return length;
178 }
179
180 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
181 doc: /* Return the number of bytes in STRING.
182 If STRING is multibyte, this may be greater than the length of STRING. */)
183 (Lisp_Object string)
184 {
185 CHECK_STRING (string);
186 return make_number (SBYTES (string));
187 }
188
189 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
190 doc: /* Return t if two strings have identical contents.
191 Case is significant, but text properties are ignored.
192 Symbols are also allowed; their print names are used instead. */)
193 (register Lisp_Object s1, Lisp_Object s2)
194 {
195 if (SYMBOLP (s1))
196 s1 = SYMBOL_NAME (s1);
197 if (SYMBOLP (s2))
198 s2 = SYMBOL_NAME (s2);
199 CHECK_STRING (s1);
200 CHECK_STRING (s2);
201
202 if (SCHARS (s1) != SCHARS (s2)
203 || SBYTES (s1) != SBYTES (s2)
204 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
205 return Qnil;
206 return Qt;
207 }
208
209 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
210 doc: /* Compare the contents of two strings, converting to multibyte if needed.
211 In string STR1, skip the first START1 characters and stop at END1.
212 In string STR2, skip the first START2 characters and stop at END2.
213 END1 and END2 default to the full lengths of the respective strings.
214
215 Case is significant in this comparison if IGNORE-CASE is nil.
216 Unibyte strings are converted to multibyte for comparison.
217
218 The value is t if the strings (or specified portions) match.
219 If string STR1 is less, the value is a negative number N;
220 - 1 - N is the number of characters that match at the beginning.
221 If string STR1 is greater, the value is a positive number N;
222 N - 1 is the number of characters that match at the beginning. */)
223 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
224 {
225 register EMACS_INT end1_char, end2_char;
226 register EMACS_INT i1, i1_byte, i2, i2_byte;
227
228 CHECK_STRING (str1);
229 CHECK_STRING (str2);
230 if (NILP (start1))
231 start1 = make_number (0);
232 if (NILP (start2))
233 start2 = make_number (0);
234 CHECK_NATNUM (start1);
235 CHECK_NATNUM (start2);
236 if (! NILP (end1))
237 CHECK_NATNUM (end1);
238 if (! NILP (end2))
239 CHECK_NATNUM (end2);
240
241 i1 = XINT (start1);
242 i2 = XINT (start2);
243
244 i1_byte = string_char_to_byte (str1, i1);
245 i2_byte = string_char_to_byte (str2, i2);
246
247 end1_char = SCHARS (str1);
248 if (! NILP (end1) && end1_char > XINT (end1))
249 end1_char = XINT (end1);
250
251 end2_char = SCHARS (str2);
252 if (! NILP (end2) && end2_char > XINT (end2))
253 end2_char = XINT (end2);
254
255 while (i1 < end1_char && i2 < end2_char)
256 {
257 /* When we find a mismatch, we must compare the
258 characters, not just the bytes. */
259 int c1, c2;
260
261 if (STRING_MULTIBYTE (str1))
262 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
263 else
264 {
265 c1 = SREF (str1, i1++);
266 MAKE_CHAR_MULTIBYTE (c1);
267 }
268
269 if (STRING_MULTIBYTE (str2))
270 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
271 else
272 {
273 c2 = SREF (str2, i2++);
274 MAKE_CHAR_MULTIBYTE (c2);
275 }
276
277 if (c1 == c2)
278 continue;
279
280 if (! NILP (ignore_case))
281 {
282 Lisp_Object tem;
283
284 tem = Fupcase (make_number (c1));
285 c1 = XINT (tem);
286 tem = Fupcase (make_number (c2));
287 c2 = XINT (tem);
288 }
289
290 if (c1 == c2)
291 continue;
292
293 /* Note that I1 has already been incremented
294 past the character that we are comparing;
295 hence we don't add or subtract 1 here. */
296 if (c1 < c2)
297 return make_number (- i1 + XINT (start1));
298 else
299 return make_number (i1 - XINT (start1));
300 }
301
302 if (i1 < end1_char)
303 return make_number (i1 - XINT (start1) + 1);
304 if (i2 < end2_char)
305 return make_number (- i1 + XINT (start1) - 1);
306
307 return Qt;
308 }
309
310 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
311 doc: /* Return t if first arg string is less than second in lexicographic order.
312 Case is significant.
313 Symbols are also allowed; their print names are used instead. */)
314 (register Lisp_Object s1, Lisp_Object s2)
315 {
316 register EMACS_INT end;
317 register EMACS_INT i1, i1_byte, i2, i2_byte;
318
319 if (SYMBOLP (s1))
320 s1 = SYMBOL_NAME (s1);
321 if (SYMBOLP (s2))
322 s2 = SYMBOL_NAME (s2);
323 CHECK_STRING (s1);
324 CHECK_STRING (s2);
325
326 i1 = i1_byte = i2 = i2_byte = 0;
327
328 end = SCHARS (s1);
329 if (end > SCHARS (s2))
330 end = SCHARS (s2);
331
332 while (i1 < end)
333 {
334 /* When we find a mismatch, we must compare the
335 characters, not just the bytes. */
336 int c1, c2;
337
338 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
339 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
340
341 if (c1 != c2)
342 return c1 < c2 ? Qt : Qnil;
343 }
344 return i1 < SCHARS (s2) ? Qt : Qnil;
345 }
346 \f
347 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
348 enum Lisp_Type target_type, int last_special);
349
350 /* ARGSUSED */
351 Lisp_Object
352 concat2 (Lisp_Object s1, Lisp_Object s2)
353 {
354 Lisp_Object args[2];
355 args[0] = s1;
356 args[1] = s2;
357 return concat (2, args, Lisp_String, 0);
358 }
359
360 /* ARGSUSED */
361 Lisp_Object
362 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
363 {
364 Lisp_Object args[3];
365 args[0] = s1;
366 args[1] = s2;
367 args[2] = s3;
368 return concat (3, args, Lisp_String, 0);
369 }
370
371 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
372 doc: /* Concatenate all the arguments and make the result a list.
373 The result is a list whose elements are the elements of all the arguments.
374 Each argument may be a list, vector or string.
375 The last argument is not copied, just used as the tail of the new list.
376 usage: (append &rest SEQUENCES) */)
377 (ptrdiff_t nargs, Lisp_Object *args)
378 {
379 return concat (nargs, args, Lisp_Cons, 1);
380 }
381
382 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
383 doc: /* Concatenate all the arguments and make the result a string.
384 The result is a string whose elements are the elements of all the arguments.
385 Each argument may be a string or a list or vector of characters (integers).
386 usage: (concat &rest SEQUENCES) */)
387 (ptrdiff_t nargs, Lisp_Object *args)
388 {
389 return concat (nargs, args, Lisp_String, 0);
390 }
391
392 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
393 doc: /* Concatenate all the arguments and make the result a vector.
394 The result is a vector whose elements are the elements of all the arguments.
395 Each argument may be a list, vector or string.
396 usage: (vconcat &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
398 {
399 return concat (nargs, args, Lisp_Vectorlike, 0);
400 }
401
402
403 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
404 doc: /* Return a copy of a list, vector, string or char-table.
405 The elements of a list or vector are not copied; they are shared
406 with the original. */)
407 (Lisp_Object arg)
408 {
409 if (NILP (arg)) return arg;
410
411 if (CHAR_TABLE_P (arg))
412 {
413 return copy_char_table (arg);
414 }
415
416 if (BOOL_VECTOR_P (arg))
417 {
418 Lisp_Object val;
419 int size_in_chars
420 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
421 / BOOL_VECTOR_BITS_PER_CHAR);
422
423 val = Fmake_bool_vector (Flength (arg), Qnil);
424 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
425 size_in_chars);
426 return val;
427 }
428
429 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
430 wrong_type_argument (Qsequencep, arg);
431
432 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
433 }
434
435 /* This structure holds information of an argument of `concat' that is
436 a string and has text properties to be copied. */
437 struct textprop_rec
438 {
439 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
440 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
441 EMACS_INT to; /* refer to VAL (the target string) */
442 };
443
444 static Lisp_Object
445 concat (ptrdiff_t nargs, Lisp_Object *args,
446 enum Lisp_Type target_type, int last_special)
447 {
448 Lisp_Object val;
449 register Lisp_Object tail;
450 register Lisp_Object this;
451 EMACS_INT toindex;
452 EMACS_INT toindex_byte = 0;
453 register EMACS_INT result_len;
454 register EMACS_INT result_len_byte;
455 ptrdiff_t argnum;
456 Lisp_Object last_tail;
457 Lisp_Object prev;
458 int some_multibyte;
459 /* When we make a multibyte string, we can't copy text properties
460 while concatenating each string because the length of resulting
461 string can't be decided until we finish the whole concatenation.
462 So, we record strings that have text properties to be copied
463 here, and copy the text properties after the concatenation. */
464 struct textprop_rec *textprops = NULL;
465 /* Number of elements in textprops. */
466 ptrdiff_t num_textprops = 0;
467 USE_SAFE_ALLOCA;
468
469 tail = Qnil;
470
471 /* In append, the last arg isn't treated like the others */
472 if (last_special && nargs > 0)
473 {
474 nargs--;
475 last_tail = args[nargs];
476 }
477 else
478 last_tail = Qnil;
479
480 /* Check each argument. */
481 for (argnum = 0; argnum < nargs; argnum++)
482 {
483 this = args[argnum];
484 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
485 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
486 wrong_type_argument (Qsequencep, this);
487 }
488
489 /* Compute total length in chars of arguments in RESULT_LEN.
490 If desired output is a string, also compute length in bytes
491 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
492 whether the result should be a multibyte string. */
493 result_len_byte = 0;
494 result_len = 0;
495 some_multibyte = 0;
496 for (argnum = 0; argnum < nargs; argnum++)
497 {
498 EMACS_INT len;
499 this = args[argnum];
500 len = XFASTINT (Flength (this));
501 if (target_type == Lisp_String)
502 {
503 /* We must count the number of bytes needed in the string
504 as well as the number of characters. */
505 EMACS_INT i;
506 Lisp_Object ch;
507 int c;
508 EMACS_INT this_len_byte;
509
510 if (VECTORP (this) || COMPILEDP (this))
511 for (i = 0; i < len; i++)
512 {
513 ch = AREF (this, i);
514 CHECK_CHARACTER (ch);
515 c = XFASTINT (ch);
516 this_len_byte = CHAR_BYTES (c);
517 result_len_byte += this_len_byte;
518 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
519 some_multibyte = 1;
520 }
521 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
522 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
523 else if (CONSP (this))
524 for (; CONSP (this); this = XCDR (this))
525 {
526 ch = XCAR (this);
527 CHECK_CHARACTER (ch);
528 c = XFASTINT (ch);
529 this_len_byte = CHAR_BYTES (c);
530 result_len_byte += this_len_byte;
531 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
532 some_multibyte = 1;
533 }
534 else if (STRINGP (this))
535 {
536 if (STRING_MULTIBYTE (this))
537 {
538 some_multibyte = 1;
539 result_len_byte += SBYTES (this);
540 }
541 else
542 result_len_byte += count_size_as_multibyte (SDATA (this),
543 SCHARS (this));
544 }
545 }
546
547 result_len += len;
548 if (result_len < 0)
549 error ("String overflow");
550 }
551
552 if (! some_multibyte)
553 result_len_byte = result_len;
554
555 /* Create the output object. */
556 if (target_type == Lisp_Cons)
557 val = Fmake_list (make_number (result_len), Qnil);
558 else if (target_type == Lisp_Vectorlike)
559 val = Fmake_vector (make_number (result_len), Qnil);
560 else if (some_multibyte)
561 val = make_uninit_multibyte_string (result_len, result_len_byte);
562 else
563 val = make_uninit_string (result_len);
564
565 /* In `append', if all but last arg are nil, return last arg. */
566 if (target_type == Lisp_Cons && EQ (val, Qnil))
567 return last_tail;
568
569 /* Copy the contents of the args into the result. */
570 if (CONSP (val))
571 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
572 else
573 toindex = 0, toindex_byte = 0;
574
575 prev = Qnil;
576 if (STRINGP (val))
577 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
578
579 for (argnum = 0; argnum < nargs; argnum++)
580 {
581 Lisp_Object thislen;
582 EMACS_INT thisleni = 0;
583 register EMACS_INT thisindex = 0;
584 register EMACS_INT thisindex_byte = 0;
585
586 this = args[argnum];
587 if (!CONSP (this))
588 thislen = Flength (this), thisleni = XINT (thislen);
589
590 /* Between strings of the same kind, copy fast. */
591 if (STRINGP (this) && STRINGP (val)
592 && STRING_MULTIBYTE (this) == some_multibyte)
593 {
594 EMACS_INT thislen_byte = SBYTES (this);
595
596 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
597 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
598 {
599 textprops[num_textprops].argnum = argnum;
600 textprops[num_textprops].from = 0;
601 textprops[num_textprops++].to = toindex;
602 }
603 toindex_byte += thislen_byte;
604 toindex += thisleni;
605 }
606 /* Copy a single-byte string to a multibyte string. */
607 else if (STRINGP (this) && STRINGP (val))
608 {
609 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
610 {
611 textprops[num_textprops].argnum = argnum;
612 textprops[num_textprops].from = 0;
613 textprops[num_textprops++].to = toindex;
614 }
615 toindex_byte += copy_text (SDATA (this),
616 SDATA (val) + toindex_byte,
617 SCHARS (this), 0, 1);
618 toindex += thisleni;
619 }
620 else
621 /* Copy element by element. */
622 while (1)
623 {
624 register Lisp_Object elt;
625
626 /* Fetch next element of `this' arg into `elt', or break if
627 `this' is exhausted. */
628 if (NILP (this)) break;
629 if (CONSP (this))
630 elt = XCAR (this), this = XCDR (this);
631 else if (thisindex >= thisleni)
632 break;
633 else if (STRINGP (this))
634 {
635 int c;
636 if (STRING_MULTIBYTE (this))
637 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
638 thisindex,
639 thisindex_byte);
640 else
641 {
642 c = SREF (this, thisindex); thisindex++;
643 if (some_multibyte && !ASCII_CHAR_P (c))
644 c = BYTE8_TO_CHAR (c);
645 }
646 XSETFASTINT (elt, c);
647 }
648 else if (BOOL_VECTOR_P (this))
649 {
650 int byte;
651 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
652 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
653 elt = Qt;
654 else
655 elt = Qnil;
656 thisindex++;
657 }
658 else
659 {
660 elt = AREF (this, thisindex);
661 thisindex++;
662 }
663
664 /* Store this element into the result. */
665 if (toindex < 0)
666 {
667 XSETCAR (tail, elt);
668 prev = tail;
669 tail = XCDR (tail);
670 }
671 else if (VECTORP (val))
672 {
673 ASET (val, toindex, elt);
674 toindex++;
675 }
676 else
677 {
678 int c;
679 CHECK_CHARACTER (elt);
680 c = XFASTINT (elt);
681 if (some_multibyte)
682 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
683 else
684 SSET (val, toindex_byte++, c);
685 toindex++;
686 }
687 }
688 }
689 if (!NILP (prev))
690 XSETCDR (prev, last_tail);
691
692 if (num_textprops > 0)
693 {
694 Lisp_Object props;
695 EMACS_INT last_to_end = -1;
696
697 for (argnum = 0; argnum < num_textprops; argnum++)
698 {
699 this = args[textprops[argnum].argnum];
700 props = text_property_list (this,
701 make_number (0),
702 make_number (SCHARS (this)),
703 Qnil);
704 /* If successive arguments have properties, be sure that the
705 value of `composition' property be the copy. */
706 if (last_to_end == textprops[argnum].to)
707 make_composition_value_copy (props);
708 add_text_properties_from_list (val, props,
709 make_number (textprops[argnum].to));
710 last_to_end = textprops[argnum].to + SCHARS (this);
711 }
712 }
713
714 SAFE_FREE ();
715 return val;
716 }
717 \f
718 static Lisp_Object string_char_byte_cache_string;
719 static EMACS_INT string_char_byte_cache_charpos;
720 static EMACS_INT string_char_byte_cache_bytepos;
721
722 void
723 clear_string_char_byte_cache (void)
724 {
725 string_char_byte_cache_string = Qnil;
726 }
727
728 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
729
730 EMACS_INT
731 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
732 {
733 EMACS_INT i_byte;
734 EMACS_INT best_below, best_below_byte;
735 EMACS_INT best_above, best_above_byte;
736
737 best_below = best_below_byte = 0;
738 best_above = SCHARS (string);
739 best_above_byte = SBYTES (string);
740 if (best_above == best_above_byte)
741 return char_index;
742
743 if (EQ (string, string_char_byte_cache_string))
744 {
745 if (string_char_byte_cache_charpos < char_index)
746 {
747 best_below = string_char_byte_cache_charpos;
748 best_below_byte = string_char_byte_cache_bytepos;
749 }
750 else
751 {
752 best_above = string_char_byte_cache_charpos;
753 best_above_byte = string_char_byte_cache_bytepos;
754 }
755 }
756
757 if (char_index - best_below < best_above - char_index)
758 {
759 unsigned char *p = SDATA (string) + best_below_byte;
760
761 while (best_below < char_index)
762 {
763 p += BYTES_BY_CHAR_HEAD (*p);
764 best_below++;
765 }
766 i_byte = p - SDATA (string);
767 }
768 else
769 {
770 unsigned char *p = SDATA (string) + best_above_byte;
771
772 while (best_above > char_index)
773 {
774 p--;
775 while (!CHAR_HEAD_P (*p)) p--;
776 best_above--;
777 }
778 i_byte = p - SDATA (string);
779 }
780
781 string_char_byte_cache_bytepos = i_byte;
782 string_char_byte_cache_charpos = char_index;
783 string_char_byte_cache_string = string;
784
785 return i_byte;
786 }
787 \f
788 /* Return the character index corresponding to BYTE_INDEX in STRING. */
789
790 EMACS_INT
791 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
792 {
793 EMACS_INT i, i_byte;
794 EMACS_INT best_below, best_below_byte;
795 EMACS_INT best_above, best_above_byte;
796
797 best_below = best_below_byte = 0;
798 best_above = SCHARS (string);
799 best_above_byte = SBYTES (string);
800 if (best_above == best_above_byte)
801 return byte_index;
802
803 if (EQ (string, string_char_byte_cache_string))
804 {
805 if (string_char_byte_cache_bytepos < byte_index)
806 {
807 best_below = string_char_byte_cache_charpos;
808 best_below_byte = string_char_byte_cache_bytepos;
809 }
810 else
811 {
812 best_above = string_char_byte_cache_charpos;
813 best_above_byte = string_char_byte_cache_bytepos;
814 }
815 }
816
817 if (byte_index - best_below_byte < best_above_byte - byte_index)
818 {
819 unsigned char *p = SDATA (string) + best_below_byte;
820 unsigned char *pend = SDATA (string) + byte_index;
821
822 while (p < pend)
823 {
824 p += BYTES_BY_CHAR_HEAD (*p);
825 best_below++;
826 }
827 i = best_below;
828 i_byte = p - SDATA (string);
829 }
830 else
831 {
832 unsigned char *p = SDATA (string) + best_above_byte;
833 unsigned char *pbeg = SDATA (string) + byte_index;
834
835 while (p > pbeg)
836 {
837 p--;
838 while (!CHAR_HEAD_P (*p)) p--;
839 best_above--;
840 }
841 i = best_above;
842 i_byte = p - SDATA (string);
843 }
844
845 string_char_byte_cache_bytepos = i_byte;
846 string_char_byte_cache_charpos = i;
847 string_char_byte_cache_string = string;
848
849 return i;
850 }
851 \f
852 /* Convert STRING to a multibyte string. */
853
854 static Lisp_Object
855 string_make_multibyte (Lisp_Object string)
856 {
857 unsigned char *buf;
858 EMACS_INT nbytes;
859 Lisp_Object ret;
860 USE_SAFE_ALLOCA;
861
862 if (STRING_MULTIBYTE (string))
863 return string;
864
865 nbytes = count_size_as_multibyte (SDATA (string),
866 SCHARS (string));
867 /* If all the chars are ASCII, they won't need any more bytes
868 once converted. In that case, we can return STRING itself. */
869 if (nbytes == SBYTES (string))
870 return string;
871
872 SAFE_ALLOCA (buf, unsigned char *, nbytes);
873 copy_text (SDATA (string), buf, SBYTES (string),
874 0, 1);
875
876 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
877 SAFE_FREE ();
878
879 return ret;
880 }
881
882
883 /* Convert STRING (if unibyte) to a multibyte string without changing
884 the number of characters. Characters 0200 trough 0237 are
885 converted to eight-bit characters. */
886
887 Lisp_Object
888 string_to_multibyte (Lisp_Object string)
889 {
890 unsigned char *buf;
891 EMACS_INT nbytes;
892 Lisp_Object ret;
893 USE_SAFE_ALLOCA;
894
895 if (STRING_MULTIBYTE (string))
896 return string;
897
898 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
899 /* If all the chars are ASCII, they won't need any more bytes once
900 converted. */
901 if (nbytes == SBYTES (string))
902 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
903
904 SAFE_ALLOCA (buf, unsigned char *, nbytes);
905 memcpy (buf, SDATA (string), SBYTES (string));
906 str_to_multibyte (buf, nbytes, SBYTES (string));
907
908 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
909 SAFE_FREE ();
910
911 return ret;
912 }
913
914
915 /* Convert STRING to a single-byte string. */
916
917 Lisp_Object
918 string_make_unibyte (Lisp_Object string)
919 {
920 EMACS_INT nchars;
921 unsigned char *buf;
922 Lisp_Object ret;
923 USE_SAFE_ALLOCA;
924
925 if (! STRING_MULTIBYTE (string))
926 return string;
927
928 nchars = SCHARS (string);
929
930 SAFE_ALLOCA (buf, unsigned char *, nchars);
931 copy_text (SDATA (string), buf, SBYTES (string),
932 1, 0);
933
934 ret = make_unibyte_string ((char *) buf, nchars);
935 SAFE_FREE ();
936
937 return ret;
938 }
939
940 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
941 1, 1, 0,
942 doc: /* Return the multibyte equivalent of STRING.
943 If STRING is unibyte and contains non-ASCII characters, the function
944 `unibyte-char-to-multibyte' is used to convert each unibyte character
945 to a multibyte character. In this case, the returned string is a
946 newly created string with no text properties. If STRING is multibyte
947 or entirely ASCII, it is returned unchanged. In particular, when
948 STRING is unibyte and entirely ASCII, the returned string is unibyte.
949 \(When the characters are all ASCII, Emacs primitives will treat the
950 string the same way whether it is unibyte or multibyte.) */)
951 (Lisp_Object string)
952 {
953 CHECK_STRING (string);
954
955 return string_make_multibyte (string);
956 }
957
958 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
959 1, 1, 0,
960 doc: /* Return the unibyte equivalent of STRING.
961 Multibyte character codes are converted to unibyte according to
962 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
963 If the lookup in the translation table fails, this function takes just
964 the low 8 bits of each character. */)
965 (Lisp_Object string)
966 {
967 CHECK_STRING (string);
968
969 return string_make_unibyte (string);
970 }
971
972 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
973 1, 1, 0,
974 doc: /* Return a unibyte string with the same individual bytes as STRING.
975 If STRING is unibyte, the result is STRING itself.
976 Otherwise it is a newly created string, with no text properties.
977 If STRING is multibyte and contains a character of charset
978 `eight-bit', it is converted to the corresponding single byte. */)
979 (Lisp_Object string)
980 {
981 CHECK_STRING (string);
982
983 if (STRING_MULTIBYTE (string))
984 {
985 EMACS_INT bytes = SBYTES (string);
986 unsigned char *str = (unsigned char *) xmalloc (bytes);
987
988 memcpy (str, SDATA (string), bytes);
989 bytes = str_as_unibyte (str, bytes);
990 string = make_unibyte_string ((char *) str, bytes);
991 xfree (str);
992 }
993 return string;
994 }
995
996 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
997 1, 1, 0,
998 doc: /* Return a multibyte string with the same individual bytes as STRING.
999 If STRING is multibyte, the result is STRING itself.
1000 Otherwise it is a newly created string, with no text properties.
1001
1002 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1003 part of a correct utf-8 sequence), it is converted to the corresponding
1004 multibyte character of charset `eight-bit'.
1005 See also `string-to-multibyte'.
1006
1007 Beware, this often doesn't really do what you think it does.
1008 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1009 If you're not sure, whether to use `string-as-multibyte' or
1010 `string-to-multibyte', use `string-to-multibyte'. */)
1011 (Lisp_Object string)
1012 {
1013 CHECK_STRING (string);
1014
1015 if (! STRING_MULTIBYTE (string))
1016 {
1017 Lisp_Object new_string;
1018 EMACS_INT nchars, nbytes;
1019
1020 parse_str_as_multibyte (SDATA (string),
1021 SBYTES (string),
1022 &nchars, &nbytes);
1023 new_string = make_uninit_multibyte_string (nchars, nbytes);
1024 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1025 if (nbytes != SBYTES (string))
1026 str_as_multibyte (SDATA (new_string), nbytes,
1027 SBYTES (string), NULL);
1028 string = new_string;
1029 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1030 }
1031 return string;
1032 }
1033
1034 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1035 1, 1, 0,
1036 doc: /* Return a multibyte string with the same individual chars as STRING.
1037 If STRING is multibyte, the result is STRING itself.
1038 Otherwise it is a newly created string, with no text properties.
1039
1040 If STRING is unibyte and contains an 8-bit byte, it is converted to
1041 the corresponding multibyte character of charset `eight-bit'.
1042
1043 This differs from `string-as-multibyte' by converting each byte of a correct
1044 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1045 correct sequence. */)
1046 (Lisp_Object string)
1047 {
1048 CHECK_STRING (string);
1049
1050 return string_to_multibyte (string);
1051 }
1052
1053 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1054 1, 1, 0,
1055 doc: /* Return a unibyte string with the same individual chars as STRING.
1056 If STRING is unibyte, the result is STRING itself.
1057 Otherwise it is a newly created string, with no text properties,
1058 where each `eight-bit' character is converted to the corresponding byte.
1059 If STRING contains a non-ASCII, non-`eight-bit' character,
1060 an error is signaled. */)
1061 (Lisp_Object string)
1062 {
1063 CHECK_STRING (string);
1064
1065 if (STRING_MULTIBYTE (string))
1066 {
1067 EMACS_INT chars = SCHARS (string);
1068 unsigned char *str = (unsigned char *) xmalloc (chars);
1069 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1070
1071 if (converted < chars)
1072 error ("Can't convert the %"pI"dth character to unibyte", converted);
1073 string = make_unibyte_string ((char *) str, chars);
1074 xfree (str);
1075 }
1076 return string;
1077 }
1078
1079 \f
1080 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1081 doc: /* Return a copy of ALIST.
1082 This is an alist which represents the same mapping from objects to objects,
1083 but does not share the alist structure with ALIST.
1084 The objects mapped (cars and cdrs of elements of the alist)
1085 are shared, however.
1086 Elements of ALIST that are not conses are also shared. */)
1087 (Lisp_Object alist)
1088 {
1089 register Lisp_Object tem;
1090
1091 CHECK_LIST (alist);
1092 if (NILP (alist))
1093 return alist;
1094 alist = concat (1, &alist, Lisp_Cons, 0);
1095 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1096 {
1097 register Lisp_Object car;
1098 car = XCAR (tem);
1099
1100 if (CONSP (car))
1101 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1102 }
1103 return alist;
1104 }
1105
1106 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1107 doc: /* Return a new string whose contents are a substring of STRING.
1108 The returned string consists of the characters between index FROM
1109 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1110 zero-indexed: 0 means the first character of STRING. Negative values
1111 are counted from the end of STRING. If TO is nil, the substring runs
1112 to the end of STRING.
1113
1114 The STRING argument may also be a vector. In that case, the return
1115 value is a new vector that contains the elements between index FROM
1116 \(inclusive) and index TO (exclusive) of that vector argument. */)
1117 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1118 {
1119 Lisp_Object res;
1120 EMACS_INT size;
1121 EMACS_INT size_byte = 0;
1122 EMACS_INT from_char, to_char;
1123 EMACS_INT from_byte = 0, to_byte = 0;
1124
1125 CHECK_VECTOR_OR_STRING (string);
1126 CHECK_NUMBER (from);
1127
1128 if (STRINGP (string))
1129 {
1130 size = SCHARS (string);
1131 size_byte = SBYTES (string);
1132 }
1133 else
1134 size = ASIZE (string);
1135
1136 if (NILP (to))
1137 {
1138 to_char = size;
1139 to_byte = size_byte;
1140 }
1141 else
1142 {
1143 CHECK_NUMBER (to);
1144
1145 to_char = XINT (to);
1146 if (to_char < 0)
1147 to_char += size;
1148
1149 if (STRINGP (string))
1150 to_byte = string_char_to_byte (string, to_char);
1151 }
1152
1153 from_char = XINT (from);
1154 if (from_char < 0)
1155 from_char += size;
1156 if (STRINGP (string))
1157 from_byte = string_char_to_byte (string, from_char);
1158
1159 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1160 args_out_of_range_3 (string, make_number (from_char),
1161 make_number (to_char));
1162
1163 if (STRINGP (string))
1164 {
1165 res = make_specified_string (SSDATA (string) + from_byte,
1166 to_char - from_char, to_byte - from_byte,
1167 STRING_MULTIBYTE (string));
1168 copy_text_properties (make_number (from_char), make_number (to_char),
1169 string, make_number (0), res, Qnil);
1170 }
1171 else
1172 res = Fvector (to_char - from_char, &AREF (string, from_char));
1173
1174 return res;
1175 }
1176
1177
1178 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1179 doc: /* Return a substring of STRING, without text properties.
1180 It starts at index FROM and ends before TO.
1181 TO may be nil or omitted; then the substring runs to the end of STRING.
1182 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1183 If FROM or TO is negative, it counts from the end.
1184
1185 With one argument, just copy STRING without its properties. */)
1186 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1187 {
1188 EMACS_INT size, size_byte;
1189 EMACS_INT from_char, to_char;
1190 EMACS_INT from_byte, to_byte;
1191
1192 CHECK_STRING (string);
1193
1194 size = SCHARS (string);
1195 size_byte = SBYTES (string);
1196
1197 if (NILP (from))
1198 from_char = from_byte = 0;
1199 else
1200 {
1201 CHECK_NUMBER (from);
1202 from_char = XINT (from);
1203 if (from_char < 0)
1204 from_char += size;
1205
1206 from_byte = string_char_to_byte (string, from_char);
1207 }
1208
1209 if (NILP (to))
1210 {
1211 to_char = size;
1212 to_byte = size_byte;
1213 }
1214 else
1215 {
1216 CHECK_NUMBER (to);
1217
1218 to_char = XINT (to);
1219 if (to_char < 0)
1220 to_char += size;
1221
1222 to_byte = string_char_to_byte (string, to_char);
1223 }
1224
1225 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1226 args_out_of_range_3 (string, make_number (from_char),
1227 make_number (to_char));
1228
1229 return make_specified_string (SSDATA (string) + from_byte,
1230 to_char - from_char, to_byte - from_byte,
1231 STRING_MULTIBYTE (string));
1232 }
1233
1234 /* Extract a substring of STRING, giving start and end positions
1235 both in characters and in bytes. */
1236
1237 Lisp_Object
1238 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1239 EMACS_INT to, EMACS_INT to_byte)
1240 {
1241 Lisp_Object res;
1242 EMACS_INT size;
1243
1244 CHECK_VECTOR_OR_STRING (string);
1245
1246 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1247
1248 if (!(0 <= from && from <= to && to <= size))
1249 args_out_of_range_3 (string, make_number (from), make_number (to));
1250
1251 if (STRINGP (string))
1252 {
1253 res = make_specified_string (SSDATA (string) + from_byte,
1254 to - from, to_byte - from_byte,
1255 STRING_MULTIBYTE (string));
1256 copy_text_properties (make_number (from), make_number (to),
1257 string, make_number (0), res, Qnil);
1258 }
1259 else
1260 res = Fvector (to - from, &AREF (string, from));
1261
1262 return res;
1263 }
1264 \f
1265 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1266 doc: /* Take cdr N times on LIST, return the result. */)
1267 (Lisp_Object n, Lisp_Object list)
1268 {
1269 register int i, num;
1270 CHECK_NUMBER (n);
1271 num = XINT (n);
1272 for (i = 0; i < num && !NILP (list); i++)
1273 {
1274 QUIT;
1275 CHECK_LIST_CONS (list, list);
1276 list = XCDR (list);
1277 }
1278 return list;
1279 }
1280
1281 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1282 doc: /* Return the Nth element of LIST.
1283 N counts from zero. If LIST is not that long, nil is returned. */)
1284 (Lisp_Object n, Lisp_Object list)
1285 {
1286 return Fcar (Fnthcdr (n, list));
1287 }
1288
1289 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1290 doc: /* Return element of SEQUENCE at index N. */)
1291 (register Lisp_Object sequence, Lisp_Object n)
1292 {
1293 CHECK_NUMBER (n);
1294 if (CONSP (sequence) || NILP (sequence))
1295 return Fcar (Fnthcdr (n, sequence));
1296
1297 /* Faref signals a "not array" error, so check here. */
1298 CHECK_ARRAY (sequence, Qsequencep);
1299 return Faref (sequence, n);
1300 }
1301
1302 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1303 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1304 The value is actually the tail of LIST whose car is ELT. */)
1305 (register Lisp_Object elt, Lisp_Object list)
1306 {
1307 register Lisp_Object tail;
1308 for (tail = list; CONSP (tail); tail = XCDR (tail))
1309 {
1310 register Lisp_Object tem;
1311 CHECK_LIST_CONS (tail, list);
1312 tem = XCAR (tail);
1313 if (! NILP (Fequal (elt, tem)))
1314 return tail;
1315 QUIT;
1316 }
1317 return Qnil;
1318 }
1319
1320 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1321 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1322 The value is actually the tail of LIST whose car is ELT. */)
1323 (register Lisp_Object elt, Lisp_Object list)
1324 {
1325 while (1)
1326 {
1327 if (!CONSP (list) || EQ (XCAR (list), elt))
1328 break;
1329
1330 list = XCDR (list);
1331 if (!CONSP (list) || EQ (XCAR (list), elt))
1332 break;
1333
1334 list = XCDR (list);
1335 if (!CONSP (list) || EQ (XCAR (list), elt))
1336 break;
1337
1338 list = XCDR (list);
1339 QUIT;
1340 }
1341
1342 CHECK_LIST (list);
1343 return list;
1344 }
1345
1346 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1347 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1348 The value is actually the tail of LIST whose car is ELT. */)
1349 (register Lisp_Object elt, Lisp_Object list)
1350 {
1351 register Lisp_Object tail;
1352
1353 if (!FLOATP (elt))
1354 return Fmemq (elt, list);
1355
1356 for (tail = list; CONSP (tail); tail = XCDR (tail))
1357 {
1358 register Lisp_Object tem;
1359 CHECK_LIST_CONS (tail, list);
1360 tem = XCAR (tail);
1361 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1362 return tail;
1363 QUIT;
1364 }
1365 return Qnil;
1366 }
1367
1368 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1369 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1370 The value is actually the first element of LIST whose car is KEY.
1371 Elements of LIST that are not conses are ignored. */)
1372 (Lisp_Object key, Lisp_Object list)
1373 {
1374 while (1)
1375 {
1376 if (!CONSP (list)
1377 || (CONSP (XCAR (list))
1378 && EQ (XCAR (XCAR (list)), key)))
1379 break;
1380
1381 list = XCDR (list);
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 QUIT;
1395 }
1396
1397 return CAR (list);
1398 }
1399
1400 /* Like Fassq but never report an error and do not allow quits.
1401 Use only on lists known never to be circular. */
1402
1403 Lisp_Object
1404 assq_no_quit (Lisp_Object key, Lisp_Object list)
1405 {
1406 while (CONSP (list)
1407 && (!CONSP (XCAR (list))
1408 || !EQ (XCAR (XCAR (list)), key)))
1409 list = XCDR (list);
1410
1411 return CAR_SAFE (list);
1412 }
1413
1414 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1415 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1416 The value is actually the first element of LIST whose car equals KEY. */)
1417 (Lisp_Object key, Lisp_Object list)
1418 {
1419 Lisp_Object car;
1420
1421 while (1)
1422 {
1423 if (!CONSP (list)
1424 || (CONSP (XCAR (list))
1425 && (car = XCAR (XCAR (list)),
1426 EQ (car, key) || !NILP (Fequal (car, key)))))
1427 break;
1428
1429 list = XCDR (list);
1430 if (!CONSP (list)
1431 || (CONSP (XCAR (list))
1432 && (car = XCAR (XCAR (list)),
1433 EQ (car, key) || !NILP (Fequal (car, key)))))
1434 break;
1435
1436 list = XCDR (list);
1437 if (!CONSP (list)
1438 || (CONSP (XCAR (list))
1439 && (car = XCAR (XCAR (list)),
1440 EQ (car, key) || !NILP (Fequal (car, key)))))
1441 break;
1442
1443 list = XCDR (list);
1444 QUIT;
1445 }
1446
1447 return CAR (list);
1448 }
1449
1450 /* Like Fassoc but never report an error and do not allow quits.
1451 Use only on lists known never to be circular. */
1452
1453 Lisp_Object
1454 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1455 {
1456 while (CONSP (list)
1457 && (!CONSP (XCAR (list))
1458 || (!EQ (XCAR (XCAR (list)), key)
1459 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1460 list = XCDR (list);
1461
1462 return CONSP (list) ? XCAR (list) : Qnil;
1463 }
1464
1465 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1466 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1467 The value is actually the first element of LIST whose cdr is KEY. */)
1468 (register Lisp_Object key, Lisp_Object list)
1469 {
1470 while (1)
1471 {
1472 if (!CONSP (list)
1473 || (CONSP (XCAR (list))
1474 && EQ (XCDR (XCAR (list)), key)))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 QUIT;
1491 }
1492
1493 return CAR (list);
1494 }
1495
1496 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1497 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1498 The value is actually the first element of LIST whose cdr equals KEY. */)
1499 (Lisp_Object key, Lisp_Object list)
1500 {
1501 Lisp_Object cdr;
1502
1503 while (1)
1504 {
1505 if (!CONSP (list)
1506 || (CONSP (XCAR (list))
1507 && (cdr = XCDR (XCAR (list)),
1508 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && (cdr = XCDR (XCAR (list)),
1515 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1516 break;
1517
1518 list = XCDR (list);
1519 if (!CONSP (list)
1520 || (CONSP (XCAR (list))
1521 && (cdr = XCDR (XCAR (list)),
1522 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1523 break;
1524
1525 list = XCDR (list);
1526 QUIT;
1527 }
1528
1529 return CAR (list);
1530 }
1531 \f
1532 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1533 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1534 The modified LIST is returned. Comparison is done with `eq'.
1535 If the first member of LIST is ELT, there is no way to remove it by side effect;
1536 therefore, write `(setq foo (delq element foo))'
1537 to be sure of changing the value of `foo'. */)
1538 (register Lisp_Object elt, Lisp_Object list)
1539 {
1540 register Lisp_Object tail, prev;
1541 register Lisp_Object tem;
1542
1543 tail = list;
1544 prev = Qnil;
1545 while (!NILP (tail))
1546 {
1547 CHECK_LIST_CONS (tail, list);
1548 tem = XCAR (tail);
1549 if (EQ (elt, tem))
1550 {
1551 if (NILP (prev))
1552 list = XCDR (tail);
1553 else
1554 Fsetcdr (prev, XCDR (tail));
1555 }
1556 else
1557 prev = tail;
1558 tail = XCDR (tail);
1559 QUIT;
1560 }
1561 return list;
1562 }
1563
1564 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1565 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1566 SEQ must be a list, a vector, or a string.
1567 The modified SEQ is returned. Comparison is done with `equal'.
1568 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1569 is not a side effect; it is simply using a different sequence.
1570 Therefore, write `(setq foo (delete element foo))'
1571 to be sure of changing the value of `foo'. */)
1572 (Lisp_Object elt, Lisp_Object seq)
1573 {
1574 if (VECTORP (seq))
1575 {
1576 EMACS_INT i, n;
1577
1578 for (i = n = 0; i < ASIZE (seq); ++i)
1579 if (NILP (Fequal (AREF (seq, i), elt)))
1580 ++n;
1581
1582 if (n != ASIZE (seq))
1583 {
1584 struct Lisp_Vector *p = allocate_vector (n);
1585
1586 for (i = n = 0; i < ASIZE (seq); ++i)
1587 if (NILP (Fequal (AREF (seq, i), elt)))
1588 p->contents[n++] = AREF (seq, i);
1589
1590 XSETVECTOR (seq, p);
1591 }
1592 }
1593 else if (STRINGP (seq))
1594 {
1595 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1596 int c;
1597
1598 for (i = nchars = nbytes = ibyte = 0;
1599 i < SCHARS (seq);
1600 ++i, ibyte += cbytes)
1601 {
1602 if (STRING_MULTIBYTE (seq))
1603 {
1604 c = STRING_CHAR (SDATA (seq) + ibyte);
1605 cbytes = CHAR_BYTES (c);
1606 }
1607 else
1608 {
1609 c = SREF (seq, i);
1610 cbytes = 1;
1611 }
1612
1613 if (!INTEGERP (elt) || c != XINT (elt))
1614 {
1615 ++nchars;
1616 nbytes += cbytes;
1617 }
1618 }
1619
1620 if (nchars != SCHARS (seq))
1621 {
1622 Lisp_Object tem;
1623
1624 tem = make_uninit_multibyte_string (nchars, nbytes);
1625 if (!STRING_MULTIBYTE (seq))
1626 STRING_SET_UNIBYTE (tem);
1627
1628 for (i = nchars = nbytes = ibyte = 0;
1629 i < SCHARS (seq);
1630 ++i, ibyte += cbytes)
1631 {
1632 if (STRING_MULTIBYTE (seq))
1633 {
1634 c = STRING_CHAR (SDATA (seq) + ibyte);
1635 cbytes = CHAR_BYTES (c);
1636 }
1637 else
1638 {
1639 c = SREF (seq, i);
1640 cbytes = 1;
1641 }
1642
1643 if (!INTEGERP (elt) || c != XINT (elt))
1644 {
1645 unsigned char *from = SDATA (seq) + ibyte;
1646 unsigned char *to = SDATA (tem) + nbytes;
1647 EMACS_INT n;
1648
1649 ++nchars;
1650 nbytes += cbytes;
1651
1652 for (n = cbytes; n--; )
1653 *to++ = *from++;
1654 }
1655 }
1656
1657 seq = tem;
1658 }
1659 }
1660 else
1661 {
1662 Lisp_Object tail, prev;
1663
1664 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1665 {
1666 CHECK_LIST_CONS (tail, seq);
1667
1668 if (!NILP (Fequal (elt, XCAR (tail))))
1669 {
1670 if (NILP (prev))
1671 seq = XCDR (tail);
1672 else
1673 Fsetcdr (prev, XCDR (tail));
1674 }
1675 else
1676 prev = tail;
1677 QUIT;
1678 }
1679 }
1680
1681 return seq;
1682 }
1683
1684 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1685 doc: /* Reverse LIST by modifying cdr pointers.
1686 Return the reversed list. */)
1687 (Lisp_Object list)
1688 {
1689 register Lisp_Object prev, tail, next;
1690
1691 if (NILP (list)) return list;
1692 prev = Qnil;
1693 tail = list;
1694 while (!NILP (tail))
1695 {
1696 QUIT;
1697 CHECK_LIST_CONS (tail, list);
1698 next = XCDR (tail);
1699 Fsetcdr (tail, prev);
1700 prev = tail;
1701 tail = next;
1702 }
1703 return prev;
1704 }
1705
1706 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1707 doc: /* Reverse LIST, copying. Return the reversed list.
1708 See also the function `nreverse', which is used more often. */)
1709 (Lisp_Object list)
1710 {
1711 Lisp_Object new;
1712
1713 for (new = Qnil; CONSP (list); list = XCDR (list))
1714 {
1715 QUIT;
1716 new = Fcons (XCAR (list), new);
1717 }
1718 CHECK_LIST_END (list, list);
1719 return new;
1720 }
1721 \f
1722 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1723
1724 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1725 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1726 Returns the sorted list. LIST is modified by side effects.
1727 PREDICATE is called with two elements of LIST, and should return non-nil
1728 if the first element should sort before the second. */)
1729 (Lisp_Object list, Lisp_Object predicate)
1730 {
1731 Lisp_Object front, back;
1732 register Lisp_Object len, tem;
1733 struct gcpro gcpro1, gcpro2;
1734 register int length;
1735
1736 front = list;
1737 len = Flength (list);
1738 length = XINT (len);
1739 if (length < 2)
1740 return list;
1741
1742 XSETINT (len, (length / 2) - 1);
1743 tem = Fnthcdr (len, list);
1744 back = Fcdr (tem);
1745 Fsetcdr (tem, Qnil);
1746
1747 GCPRO2 (front, back);
1748 front = Fsort (front, predicate);
1749 back = Fsort (back, predicate);
1750 UNGCPRO;
1751 return merge (front, back, predicate);
1752 }
1753
1754 Lisp_Object
1755 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1756 {
1757 Lisp_Object value;
1758 register Lisp_Object tail;
1759 Lisp_Object tem;
1760 register Lisp_Object l1, l2;
1761 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1762
1763 l1 = org_l1;
1764 l2 = org_l2;
1765 tail = Qnil;
1766 value = Qnil;
1767
1768 /* It is sufficient to protect org_l1 and org_l2.
1769 When l1 and l2 are updated, we copy the new values
1770 back into the org_ vars. */
1771 GCPRO4 (org_l1, org_l2, pred, value);
1772
1773 while (1)
1774 {
1775 if (NILP (l1))
1776 {
1777 UNGCPRO;
1778 if (NILP (tail))
1779 return l2;
1780 Fsetcdr (tail, l2);
1781 return value;
1782 }
1783 if (NILP (l2))
1784 {
1785 UNGCPRO;
1786 if (NILP (tail))
1787 return l1;
1788 Fsetcdr (tail, l1);
1789 return value;
1790 }
1791 tem = call2 (pred, Fcar (l2), Fcar (l1));
1792 if (NILP (tem))
1793 {
1794 tem = l1;
1795 l1 = Fcdr (l1);
1796 org_l1 = l1;
1797 }
1798 else
1799 {
1800 tem = l2;
1801 l2 = Fcdr (l2);
1802 org_l2 = l2;
1803 }
1804 if (NILP (tail))
1805 value = tem;
1806 else
1807 Fsetcdr (tail, tem);
1808 tail = tem;
1809 }
1810 }
1811
1812 \f
1813 /* This does not check for quits. That is safe since it must terminate. */
1814
1815 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1816 doc: /* Extract a value from a property list.
1817 PLIST is a property list, which is a list of the form
1818 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1819 corresponding to the given PROP, or nil if PROP is not one of the
1820 properties on the list. This function never signals an error. */)
1821 (Lisp_Object plist, Lisp_Object prop)
1822 {
1823 Lisp_Object tail, halftail;
1824
1825 /* halftail is used to detect circular lists. */
1826 tail = halftail = plist;
1827 while (CONSP (tail) && CONSP (XCDR (tail)))
1828 {
1829 if (EQ (prop, XCAR (tail)))
1830 return XCAR (XCDR (tail));
1831
1832 tail = XCDR (XCDR (tail));
1833 halftail = XCDR (halftail);
1834 if (EQ (tail, halftail))
1835 break;
1836
1837 #if 0 /* Unsafe version. */
1838 /* This function can be called asynchronously
1839 (setup_coding_system). Don't QUIT in that case. */
1840 if (!interrupt_input_blocked)
1841 QUIT;
1842 #endif
1843 }
1844
1845 return Qnil;
1846 }
1847
1848 DEFUN ("get", Fget, Sget, 2, 2, 0,
1849 doc: /* Return the value of SYMBOL's PROPNAME property.
1850 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1851 (Lisp_Object symbol, Lisp_Object propname)
1852 {
1853 CHECK_SYMBOL (symbol);
1854 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1855 }
1856
1857 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1858 doc: /* Change value in PLIST of PROP to VAL.
1859 PLIST is a property list, which is a list of the form
1860 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1861 If PROP is already a property on the list, its value is set to VAL,
1862 otherwise the new PROP VAL pair is added. The new plist is returned;
1863 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1864 The PLIST is modified by side effects. */)
1865 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1866 {
1867 register Lisp_Object tail, prev;
1868 Lisp_Object newcell;
1869 prev = Qnil;
1870 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1871 tail = XCDR (XCDR (tail)))
1872 {
1873 if (EQ (prop, XCAR (tail)))
1874 {
1875 Fsetcar (XCDR (tail), val);
1876 return plist;
1877 }
1878
1879 prev = tail;
1880 QUIT;
1881 }
1882 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1883 if (NILP (prev))
1884 return newcell;
1885 else
1886 Fsetcdr (XCDR (prev), newcell);
1887 return plist;
1888 }
1889
1890 DEFUN ("put", Fput, Sput, 3, 3, 0,
1891 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1892 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1893 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1894 {
1895 CHECK_SYMBOL (symbol);
1896 XSYMBOL (symbol)->plist
1897 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1898 return value;
1899 }
1900 \f
1901 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1902 doc: /* Extract a value from a property list, comparing with `equal'.
1903 PLIST is a property list, which is a list of the form
1904 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1905 corresponding to the given PROP, or nil if PROP is not
1906 one of the properties on the list. */)
1907 (Lisp_Object plist, Lisp_Object prop)
1908 {
1909 Lisp_Object tail;
1910
1911 for (tail = plist;
1912 CONSP (tail) && CONSP (XCDR (tail));
1913 tail = XCDR (XCDR (tail)))
1914 {
1915 if (! NILP (Fequal (prop, XCAR (tail))))
1916 return XCAR (XCDR (tail));
1917
1918 QUIT;
1919 }
1920
1921 CHECK_LIST_END (tail, prop);
1922
1923 return Qnil;
1924 }
1925
1926 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1927 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1928 PLIST is a property list, which is a list of the form
1929 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1930 If PROP is already a property on the list, its value is set to VAL,
1931 otherwise the new PROP VAL pair is added. The new plist is returned;
1932 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1933 The PLIST is modified by side effects. */)
1934 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1935 {
1936 register Lisp_Object tail, prev;
1937 Lisp_Object newcell;
1938 prev = Qnil;
1939 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1940 tail = XCDR (XCDR (tail)))
1941 {
1942 if (! NILP (Fequal (prop, XCAR (tail))))
1943 {
1944 Fsetcar (XCDR (tail), val);
1945 return plist;
1946 }
1947
1948 prev = tail;
1949 QUIT;
1950 }
1951 newcell = Fcons (prop, Fcons (val, Qnil));
1952 if (NILP (prev))
1953 return newcell;
1954 else
1955 Fsetcdr (XCDR (prev), newcell);
1956 return plist;
1957 }
1958 \f
1959 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1960 doc: /* Return t if the two args are the same Lisp object.
1961 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1962 (Lisp_Object obj1, Lisp_Object obj2)
1963 {
1964 if (FLOATP (obj1))
1965 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1966 else
1967 return EQ (obj1, obj2) ? Qt : Qnil;
1968 }
1969
1970 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1971 doc: /* Return t if two Lisp objects have similar structure and contents.
1972 They must have the same data type.
1973 Conses are compared by comparing the cars and the cdrs.
1974 Vectors and strings are compared element by element.
1975 Numbers are compared by value, but integers cannot equal floats.
1976 (Use `=' if you want integers and floats to be able to be equal.)
1977 Symbols must match exactly. */)
1978 (register Lisp_Object o1, Lisp_Object o2)
1979 {
1980 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1981 }
1982
1983 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1984 doc: /* Return t if two Lisp objects have similar structure and contents.
1985 This is like `equal' except that it compares the text properties
1986 of strings. (`equal' ignores text properties.) */)
1987 (register Lisp_Object o1, Lisp_Object o2)
1988 {
1989 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1990 }
1991
1992 /* DEPTH is current depth of recursion. Signal an error if it
1993 gets too deep.
1994 PROPS, if non-nil, means compare string text properties too. */
1995
1996 static int
1997 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
1998 {
1999 if (depth > 200)
2000 error ("Stack overflow in equal");
2001
2002 tail_recurse:
2003 QUIT;
2004 if (EQ (o1, o2))
2005 return 1;
2006 if (XTYPE (o1) != XTYPE (o2))
2007 return 0;
2008
2009 switch (XTYPE (o1))
2010 {
2011 case Lisp_Float:
2012 {
2013 double d1, d2;
2014
2015 d1 = extract_float (o1);
2016 d2 = extract_float (o2);
2017 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2018 though they are not =. */
2019 return d1 == d2 || (d1 != d1 && d2 != d2);
2020 }
2021
2022 case Lisp_Cons:
2023 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2024 return 0;
2025 o1 = XCDR (o1);
2026 o2 = XCDR (o2);
2027 goto tail_recurse;
2028
2029 case Lisp_Misc:
2030 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2031 return 0;
2032 if (OVERLAYP (o1))
2033 {
2034 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2035 depth + 1, props)
2036 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2037 depth + 1, props))
2038 return 0;
2039 o1 = XOVERLAY (o1)->plist;
2040 o2 = XOVERLAY (o2)->plist;
2041 goto tail_recurse;
2042 }
2043 if (MARKERP (o1))
2044 {
2045 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2046 && (XMARKER (o1)->buffer == 0
2047 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2048 }
2049 break;
2050
2051 case Lisp_Vectorlike:
2052 {
2053 register int i;
2054 EMACS_INT size = ASIZE (o1);
2055 /* Pseudovectors have the type encoded in the size field, so this test
2056 actually checks that the objects have the same type as well as the
2057 same size. */
2058 if (ASIZE (o2) != size)
2059 return 0;
2060 /* Boolvectors are compared much like strings. */
2061 if (BOOL_VECTOR_P (o1))
2062 {
2063 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2064 return 0;
2065 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2066 ((XBOOL_VECTOR (o1)->size
2067 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2068 / BOOL_VECTOR_BITS_PER_CHAR)))
2069 return 0;
2070 return 1;
2071 }
2072 if (WINDOW_CONFIGURATIONP (o1))
2073 return compare_window_configurations (o1, o2, 0);
2074
2075 /* Aside from them, only true vectors, char-tables, compiled
2076 functions, and fonts (font-spec, font-entity, font-object)
2077 are sensible to compare, so eliminate the others now. */
2078 if (size & PSEUDOVECTOR_FLAG)
2079 {
2080 if (!(size & (PVEC_COMPILED
2081 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2082 return 0;
2083 size &= PSEUDOVECTOR_SIZE_MASK;
2084 }
2085 for (i = 0; i < size; i++)
2086 {
2087 Lisp_Object v1, v2;
2088 v1 = AREF (o1, i);
2089 v2 = AREF (o2, i);
2090 if (!internal_equal (v1, v2, depth + 1, props))
2091 return 0;
2092 }
2093 return 1;
2094 }
2095 break;
2096
2097 case Lisp_String:
2098 if (SCHARS (o1) != SCHARS (o2))
2099 return 0;
2100 if (SBYTES (o1) != SBYTES (o2))
2101 return 0;
2102 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2103 return 0;
2104 if (props && !compare_string_intervals (o1, o2))
2105 return 0;
2106 return 1;
2107
2108 default:
2109 break;
2110 }
2111
2112 return 0;
2113 }
2114 \f
2115
2116 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2117 doc: /* Store each element of ARRAY with ITEM.
2118 ARRAY is a vector, string, char-table, or bool-vector. */)
2119 (Lisp_Object array, Lisp_Object item)
2120 {
2121 register EMACS_INT size, idx;
2122 int charval;
2123
2124 if (VECTORP (array))
2125 {
2126 register Lisp_Object *p = XVECTOR (array)->contents;
2127 size = ASIZE (array);
2128 for (idx = 0; idx < size; idx++)
2129 p[idx] = item;
2130 }
2131 else if (CHAR_TABLE_P (array))
2132 {
2133 int i;
2134
2135 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2136 XCHAR_TABLE (array)->contents[i] = item;
2137 XCHAR_TABLE (array)->defalt = item;
2138 }
2139 else if (STRINGP (array))
2140 {
2141 register unsigned char *p = SDATA (array);
2142 CHECK_NUMBER (item);
2143 charval = XINT (item);
2144 size = SCHARS (array);
2145 if (STRING_MULTIBYTE (array))
2146 {
2147 unsigned char str[MAX_MULTIBYTE_LENGTH];
2148 int len = CHAR_STRING (charval, str);
2149 EMACS_INT size_byte = SBYTES (array);
2150 unsigned char *p1 = p, *endp = p + size_byte;
2151 int i;
2152
2153 if (size != size_byte)
2154 while (p1 < endp)
2155 {
2156 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2157 if (len != this_len)
2158 error ("Attempt to change byte length of a string");
2159 p1 += this_len;
2160 }
2161 for (i = 0; i < size_byte; i++)
2162 *p++ = str[i % len];
2163 }
2164 else
2165 for (idx = 0; idx < size; idx++)
2166 p[idx] = charval;
2167 }
2168 else if (BOOL_VECTOR_P (array))
2169 {
2170 register unsigned char *p = XBOOL_VECTOR (array)->data;
2171 int size_in_chars
2172 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2173 / BOOL_VECTOR_BITS_PER_CHAR);
2174
2175 charval = (! NILP (item) ? -1 : 0);
2176 for (idx = 0; idx < size_in_chars - 1; idx++)
2177 p[idx] = charval;
2178 if (idx < size_in_chars)
2179 {
2180 /* Mask out bits beyond the vector size. */
2181 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2182 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2183 p[idx] = charval;
2184 }
2185 }
2186 else
2187 wrong_type_argument (Qarrayp, array);
2188 return array;
2189 }
2190
2191 DEFUN ("clear-string", Fclear_string, Sclear_string,
2192 1, 1, 0,
2193 doc: /* Clear the contents of STRING.
2194 This makes STRING unibyte and may change its length. */)
2195 (Lisp_Object string)
2196 {
2197 EMACS_INT len;
2198 CHECK_STRING (string);
2199 len = SBYTES (string);
2200 memset (SDATA (string), 0, len);
2201 STRING_SET_CHARS (string, len);
2202 STRING_SET_UNIBYTE (string);
2203 return Qnil;
2204 }
2205 \f
2206 /* ARGSUSED */
2207 Lisp_Object
2208 nconc2 (Lisp_Object s1, Lisp_Object s2)
2209 {
2210 Lisp_Object args[2];
2211 args[0] = s1;
2212 args[1] = s2;
2213 return Fnconc (2, args);
2214 }
2215
2216 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2217 doc: /* Concatenate any number of lists by altering them.
2218 Only the last argument is not altered, and need not be a list.
2219 usage: (nconc &rest LISTS) */)
2220 (ptrdiff_t nargs, Lisp_Object *args)
2221 {
2222 ptrdiff_t argnum;
2223 register Lisp_Object tail, tem, val;
2224
2225 val = tail = Qnil;
2226
2227 for (argnum = 0; argnum < nargs; argnum++)
2228 {
2229 tem = args[argnum];
2230 if (NILP (tem)) continue;
2231
2232 if (NILP (val))
2233 val = tem;
2234
2235 if (argnum + 1 == nargs) break;
2236
2237 CHECK_LIST_CONS (tem, tem);
2238
2239 while (CONSP (tem))
2240 {
2241 tail = tem;
2242 tem = XCDR (tail);
2243 QUIT;
2244 }
2245
2246 tem = args[argnum + 1];
2247 Fsetcdr (tail, tem);
2248 if (NILP (tem))
2249 args[argnum + 1] = tail;
2250 }
2251
2252 return val;
2253 }
2254 \f
2255 /* This is the guts of all mapping functions.
2256 Apply FN to each element of SEQ, one by one,
2257 storing the results into elements of VALS, a C vector of Lisp_Objects.
2258 LENI is the length of VALS, which should also be the length of SEQ. */
2259
2260 static void
2261 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2262 {
2263 register Lisp_Object tail;
2264 Lisp_Object dummy;
2265 register EMACS_INT i;
2266 struct gcpro gcpro1, gcpro2, gcpro3;
2267
2268 if (vals)
2269 {
2270 /* Don't let vals contain any garbage when GC happens. */
2271 for (i = 0; i < leni; i++)
2272 vals[i] = Qnil;
2273
2274 GCPRO3 (dummy, fn, seq);
2275 gcpro1.var = vals;
2276 gcpro1.nvars = leni;
2277 }
2278 else
2279 GCPRO2 (fn, seq);
2280 /* We need not explicitly protect `tail' because it is used only on lists, and
2281 1) lists are not relocated and 2) the list is marked via `seq' so will not
2282 be freed */
2283
2284 if (VECTORP (seq) || COMPILEDP (seq))
2285 {
2286 for (i = 0; i < leni; i++)
2287 {
2288 dummy = call1 (fn, AREF (seq, i));
2289 if (vals)
2290 vals[i] = dummy;
2291 }
2292 }
2293 else if (BOOL_VECTOR_P (seq))
2294 {
2295 for (i = 0; i < leni; i++)
2296 {
2297 int byte;
2298 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2299 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2300 dummy = call1 (fn, dummy);
2301 if (vals)
2302 vals[i] = dummy;
2303 }
2304 }
2305 else if (STRINGP (seq))
2306 {
2307 EMACS_INT i_byte;
2308
2309 for (i = 0, i_byte = 0; i < leni;)
2310 {
2311 int c;
2312 EMACS_INT i_before = i;
2313
2314 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2315 XSETFASTINT (dummy, c);
2316 dummy = call1 (fn, dummy);
2317 if (vals)
2318 vals[i_before] = dummy;
2319 }
2320 }
2321 else /* Must be a list, since Flength did not get an error */
2322 {
2323 tail = seq;
2324 for (i = 0; i < leni && CONSP (tail); i++)
2325 {
2326 dummy = call1 (fn, XCAR (tail));
2327 if (vals)
2328 vals[i] = dummy;
2329 tail = XCDR (tail);
2330 }
2331 }
2332
2333 UNGCPRO;
2334 }
2335
2336 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2337 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2338 In between each pair of results, stick in SEPARATOR. Thus, " " as
2339 SEPARATOR results in spaces between the values returned by FUNCTION.
2340 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2341 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2342 {
2343 Lisp_Object len;
2344 register EMACS_INT leni;
2345 ptrdiff_t i, nargs;
2346 register Lisp_Object *args;
2347 struct gcpro gcpro1;
2348 Lisp_Object ret;
2349 USE_SAFE_ALLOCA;
2350
2351 len = Flength (sequence);
2352 if (CHAR_TABLE_P (sequence))
2353 wrong_type_argument (Qlistp, sequence);
2354 leni = XINT (len);
2355 nargs = leni + leni - 1;
2356 if (nargs < 0) return empty_unibyte_string;
2357
2358 SAFE_ALLOCA_LISP (args, nargs);
2359
2360 GCPRO1 (separator);
2361 mapcar1 (leni, args, function, sequence);
2362 UNGCPRO;
2363
2364 for (i = leni - 1; i > 0; i--)
2365 args[i + i] = args[i];
2366
2367 for (i = 1; i < nargs; i += 2)
2368 args[i] = separator;
2369
2370 ret = Fconcat (nargs, args);
2371 SAFE_FREE ();
2372
2373 return ret;
2374 }
2375
2376 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2377 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2378 The result is a list just as long as SEQUENCE.
2379 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2380 (Lisp_Object function, Lisp_Object sequence)
2381 {
2382 register Lisp_Object len;
2383 register EMACS_INT leni;
2384 register Lisp_Object *args;
2385 Lisp_Object ret;
2386 USE_SAFE_ALLOCA;
2387
2388 len = Flength (sequence);
2389 if (CHAR_TABLE_P (sequence))
2390 wrong_type_argument (Qlistp, sequence);
2391 leni = XFASTINT (len);
2392
2393 SAFE_ALLOCA_LISP (args, leni);
2394
2395 mapcar1 (leni, args, function, sequence);
2396
2397 ret = Flist (leni, args);
2398 SAFE_FREE ();
2399
2400 return ret;
2401 }
2402
2403 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2404 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2405 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2406 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2407 (Lisp_Object function, Lisp_Object sequence)
2408 {
2409 register EMACS_INT leni;
2410
2411 leni = XFASTINT (Flength (sequence));
2412 if (CHAR_TABLE_P (sequence))
2413 wrong_type_argument (Qlistp, sequence);
2414 mapcar1 (leni, 0, function, sequence);
2415
2416 return sequence;
2417 }
2418 \f
2419 /* This is how C code calls `yes-or-no-p' and allows the user
2420 to redefined it.
2421
2422 Anything that calls this function must protect from GC! */
2423
2424 Lisp_Object
2425 do_yes_or_no_p (Lisp_Object prompt)
2426 {
2427 return call1 (intern ("yes-or-no-p"), prompt);
2428 }
2429
2430 /* Anything that calls this function must protect from GC! */
2431
2432 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2433 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2434 PROMPT is the string to display to ask the question. It should end in
2435 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2436
2437 The user must confirm the answer with RET, and can edit it until it
2438 has been confirmed.
2439
2440 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2441 is nil, and `use-dialog-box' is non-nil. */)
2442 (Lisp_Object prompt)
2443 {
2444 register Lisp_Object ans;
2445 Lisp_Object args[2];
2446 struct gcpro gcpro1;
2447
2448 CHECK_STRING (prompt);
2449
2450 #ifdef HAVE_MENUS
2451 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2452 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2453 && use_dialog_box
2454 && have_menus_p ())
2455 {
2456 Lisp_Object pane, menu, obj;
2457 redisplay_preserve_echo_area (4);
2458 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2459 Fcons (Fcons (build_string ("No"), Qnil),
2460 Qnil));
2461 GCPRO1 (pane);
2462 menu = Fcons (prompt, pane);
2463 obj = Fx_popup_dialog (Qt, menu, Qnil);
2464 UNGCPRO;
2465 return obj;
2466 }
2467 #endif /* HAVE_MENUS */
2468
2469 args[0] = prompt;
2470 args[1] = build_string ("(yes or no) ");
2471 prompt = Fconcat (2, args);
2472
2473 GCPRO1 (prompt);
2474
2475 while (1)
2476 {
2477 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2478 Qyes_or_no_p_history, Qnil,
2479 Qnil));
2480 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2481 {
2482 UNGCPRO;
2483 return Qt;
2484 }
2485 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2486 {
2487 UNGCPRO;
2488 return Qnil;
2489 }
2490
2491 Fding (Qnil);
2492 Fdiscard_input ();
2493 message ("Please answer yes or no.");
2494 Fsleep_for (make_number (2), Qnil);
2495 }
2496 }
2497 \f
2498 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2499 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2500
2501 Each of the three load averages is multiplied by 100, then converted
2502 to integer.
2503
2504 When USE-FLOATS is non-nil, floats will be used instead of integers.
2505 These floats are not multiplied by 100.
2506
2507 If the 5-minute or 15-minute load averages are not available, return a
2508 shortened list, containing only those averages which are available.
2509
2510 An error is thrown if the load average can't be obtained. In some
2511 cases making it work would require Emacs being installed setuid or
2512 setgid so that it can read kernel information, and that usually isn't
2513 advisable. */)
2514 (Lisp_Object use_floats)
2515 {
2516 double load_ave[3];
2517 int loads = getloadavg (load_ave, 3);
2518 Lisp_Object ret = Qnil;
2519
2520 if (loads < 0)
2521 error ("load-average not implemented for this operating system");
2522
2523 while (loads-- > 0)
2524 {
2525 Lisp_Object load = (NILP (use_floats) ?
2526 make_number ((int) (100.0 * load_ave[loads]))
2527 : make_float (load_ave[loads]));
2528 ret = Fcons (load, ret);
2529 }
2530
2531 return ret;
2532 }
2533 \f
2534 static Lisp_Object Qsubfeatures;
2535
2536 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2537 doc: /* Return t if FEATURE is present in this Emacs.
2538
2539 Use this to conditionalize execution of lisp code based on the
2540 presence or absence of Emacs or environment extensions.
2541 Use `provide' to declare that a feature is available. This function
2542 looks at the value of the variable `features'. The optional argument
2543 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2544 (Lisp_Object feature, Lisp_Object subfeature)
2545 {
2546 register Lisp_Object tem;
2547 CHECK_SYMBOL (feature);
2548 tem = Fmemq (feature, Vfeatures);
2549 if (!NILP (tem) && !NILP (subfeature))
2550 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2551 return (NILP (tem)) ? Qnil : Qt;
2552 }
2553
2554 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2555 doc: /* Announce that FEATURE is a feature of the current Emacs.
2556 The optional argument SUBFEATURES should be a list of symbols listing
2557 particular subfeatures supported in this version of FEATURE. */)
2558 (Lisp_Object feature, Lisp_Object subfeatures)
2559 {
2560 register Lisp_Object tem;
2561 CHECK_SYMBOL (feature);
2562 CHECK_LIST (subfeatures);
2563 if (!NILP (Vautoload_queue))
2564 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2565 Vautoload_queue);
2566 tem = Fmemq (feature, Vfeatures);
2567 if (NILP (tem))
2568 Vfeatures = Fcons (feature, Vfeatures);
2569 if (!NILP (subfeatures))
2570 Fput (feature, Qsubfeatures, subfeatures);
2571 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2572
2573 /* Run any load-hooks for this file. */
2574 tem = Fassq (feature, Vafter_load_alist);
2575 if (CONSP (tem))
2576 Fprogn (XCDR (tem));
2577
2578 return feature;
2579 }
2580 \f
2581 /* `require' and its subroutines. */
2582
2583 /* List of features currently being require'd, innermost first. */
2584
2585 static Lisp_Object require_nesting_list;
2586
2587 static Lisp_Object
2588 require_unwind (Lisp_Object old_value)
2589 {
2590 return require_nesting_list = old_value;
2591 }
2592
2593 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2594 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2595 If FEATURE is not a member of the list `features', then the feature
2596 is not loaded; so load the file FILENAME.
2597 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2598 and `load' will try to load this name appended with the suffix `.elc' or
2599 `.el', in that order. The name without appended suffix will not be used.
2600 If the optional third argument NOERROR is non-nil,
2601 then return nil if the file is not found instead of signaling an error.
2602 Normally the return value is FEATURE.
2603 The normal messages at start and end of loading FILENAME are suppressed. */)
2604 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2605 {
2606 register Lisp_Object tem;
2607 struct gcpro gcpro1, gcpro2;
2608 int from_file = load_in_progress;
2609
2610 CHECK_SYMBOL (feature);
2611
2612 /* Record the presence of `require' in this file
2613 even if the feature specified is already loaded.
2614 But not more than once in any file,
2615 and not when we aren't loading or reading from a file. */
2616 if (!from_file)
2617 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2618 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2619 from_file = 1;
2620
2621 if (from_file)
2622 {
2623 tem = Fcons (Qrequire, feature);
2624 if (NILP (Fmember (tem, Vcurrent_load_list)))
2625 LOADHIST_ATTACH (tem);
2626 }
2627 tem = Fmemq (feature, Vfeatures);
2628
2629 if (NILP (tem))
2630 {
2631 int count = SPECPDL_INDEX ();
2632 int nesting = 0;
2633
2634 /* This is to make sure that loadup.el gives a clear picture
2635 of what files are preloaded and when. */
2636 if (! NILP (Vpurify_flag))
2637 error ("(require %s) while preparing to dump",
2638 SDATA (SYMBOL_NAME (feature)));
2639
2640 /* A certain amount of recursive `require' is legitimate,
2641 but if we require the same feature recursively 3 times,
2642 signal an error. */
2643 tem = require_nesting_list;
2644 while (! NILP (tem))
2645 {
2646 if (! NILP (Fequal (feature, XCAR (tem))))
2647 nesting++;
2648 tem = XCDR (tem);
2649 }
2650 if (nesting > 3)
2651 error ("Recursive `require' for feature `%s'",
2652 SDATA (SYMBOL_NAME (feature)));
2653
2654 /* Update the list for any nested `require's that occur. */
2655 record_unwind_protect (require_unwind, require_nesting_list);
2656 require_nesting_list = Fcons (feature, require_nesting_list);
2657
2658 /* Value saved here is to be restored into Vautoload_queue */
2659 record_unwind_protect (un_autoload, Vautoload_queue);
2660 Vautoload_queue = Qt;
2661
2662 /* Load the file. */
2663 GCPRO2 (feature, filename);
2664 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2665 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2666 UNGCPRO;
2667
2668 /* If load failed entirely, return nil. */
2669 if (NILP (tem))
2670 return unbind_to (count, Qnil);
2671
2672 tem = Fmemq (feature, Vfeatures);
2673 if (NILP (tem))
2674 error ("Required feature `%s' was not provided",
2675 SDATA (SYMBOL_NAME (feature)));
2676
2677 /* Once loading finishes, don't undo it. */
2678 Vautoload_queue = Qt;
2679 feature = unbind_to (count, feature);
2680 }
2681
2682 return feature;
2683 }
2684 \f
2685 /* Primitives for work of the "widget" library.
2686 In an ideal world, this section would not have been necessary.
2687 However, lisp function calls being as slow as they are, it turns
2688 out that some functions in the widget library (wid-edit.el) are the
2689 bottleneck of Widget operation. Here is their translation to C,
2690 for the sole reason of efficiency. */
2691
2692 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2693 doc: /* Return non-nil if PLIST has the property PROP.
2694 PLIST is a property list, which is a list of the form
2695 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2696 Unlike `plist-get', this allows you to distinguish between a missing
2697 property and a property with the value nil.
2698 The value is actually the tail of PLIST whose car is PROP. */)
2699 (Lisp_Object plist, Lisp_Object prop)
2700 {
2701 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2702 {
2703 QUIT;
2704 plist = XCDR (plist);
2705 plist = CDR (plist);
2706 }
2707 return plist;
2708 }
2709
2710 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2711 doc: /* In WIDGET, set PROPERTY to VALUE.
2712 The value can later be retrieved with `widget-get'. */)
2713 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2714 {
2715 CHECK_CONS (widget);
2716 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2717 return value;
2718 }
2719
2720 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2721 doc: /* In WIDGET, get the value of PROPERTY.
2722 The value could either be specified when the widget was created, or
2723 later with `widget-put'. */)
2724 (Lisp_Object widget, Lisp_Object property)
2725 {
2726 Lisp_Object tmp;
2727
2728 while (1)
2729 {
2730 if (NILP (widget))
2731 return Qnil;
2732 CHECK_CONS (widget);
2733 tmp = Fplist_member (XCDR (widget), property);
2734 if (CONSP (tmp))
2735 {
2736 tmp = XCDR (tmp);
2737 return CAR (tmp);
2738 }
2739 tmp = XCAR (widget);
2740 if (NILP (tmp))
2741 return Qnil;
2742 widget = Fget (tmp, Qwidget_type);
2743 }
2744 }
2745
2746 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2747 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2748 ARGS are passed as extra arguments to the function.
2749 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2750 (ptrdiff_t nargs, Lisp_Object *args)
2751 {
2752 /* This function can GC. */
2753 Lisp_Object newargs[3];
2754 struct gcpro gcpro1, gcpro2;
2755 Lisp_Object result;
2756
2757 newargs[0] = Fwidget_get (args[0], args[1]);
2758 newargs[1] = args[0];
2759 newargs[2] = Flist (nargs - 2, args + 2);
2760 GCPRO2 (newargs[0], newargs[2]);
2761 result = Fapply (3, newargs);
2762 UNGCPRO;
2763 return result;
2764 }
2765
2766 #ifdef HAVE_LANGINFO_CODESET
2767 #include <langinfo.h>
2768 #endif
2769
2770 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2771 doc: /* Access locale data ITEM for the current C locale, if available.
2772 ITEM should be one of the following:
2773
2774 `codeset', returning the character set as a string (locale item CODESET);
2775
2776 `days', returning a 7-element vector of day names (locale items DAY_n);
2777
2778 `months', returning a 12-element vector of month names (locale items MON_n);
2779
2780 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2781 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2782
2783 If the system can't provide such information through a call to
2784 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2785
2786 See also Info node `(libc)Locales'.
2787
2788 The data read from the system are decoded using `locale-coding-system'. */)
2789 (Lisp_Object item)
2790 {
2791 char *str = NULL;
2792 #ifdef HAVE_LANGINFO_CODESET
2793 Lisp_Object val;
2794 if (EQ (item, Qcodeset))
2795 {
2796 str = nl_langinfo (CODESET);
2797 return build_string (str);
2798 }
2799 #ifdef DAY_1
2800 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2801 {
2802 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2803 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2804 int i;
2805 struct gcpro gcpro1;
2806 GCPRO1 (v);
2807 synchronize_system_time_locale ();
2808 for (i = 0; i < 7; i++)
2809 {
2810 str = nl_langinfo (days[i]);
2811 val = make_unibyte_string (str, strlen (str));
2812 /* Fixme: Is this coding system necessarily right, even if
2813 it is consistent with CODESET? If not, what to do? */
2814 Faset (v, make_number (i),
2815 code_convert_string_norecord (val, Vlocale_coding_system,
2816 0));
2817 }
2818 UNGCPRO;
2819 return v;
2820 }
2821 #endif /* DAY_1 */
2822 #ifdef MON_1
2823 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2824 {
2825 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2826 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2827 MON_8, MON_9, MON_10, MON_11, MON_12};
2828 int i;
2829 struct gcpro gcpro1;
2830 GCPRO1 (v);
2831 synchronize_system_time_locale ();
2832 for (i = 0; i < 12; i++)
2833 {
2834 str = nl_langinfo (months[i]);
2835 val = make_unibyte_string (str, strlen (str));
2836 Faset (v, make_number (i),
2837 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2838 }
2839 UNGCPRO;
2840 return v;
2841 }
2842 #endif /* MON_1 */
2843 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2844 but is in the locale files. This could be used by ps-print. */
2845 #ifdef PAPER_WIDTH
2846 else if (EQ (item, Qpaper))
2847 {
2848 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2849 make_number (nl_langinfo (PAPER_HEIGHT)));
2850 }
2851 #endif /* PAPER_WIDTH */
2852 #endif /* HAVE_LANGINFO_CODESET*/
2853 return Qnil;
2854 }
2855 \f
2856 /* base64 encode/decode functions (RFC 2045).
2857 Based on code from GNU recode. */
2858
2859 #define MIME_LINE_LENGTH 76
2860
2861 #define IS_ASCII(Character) \
2862 ((Character) < 128)
2863 #define IS_BASE64(Character) \
2864 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2865 #define IS_BASE64_IGNORABLE(Character) \
2866 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2867 || (Character) == '\f' || (Character) == '\r')
2868
2869 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2870 character or return retval if there are no characters left to
2871 process. */
2872 #define READ_QUADRUPLET_BYTE(retval) \
2873 do \
2874 { \
2875 if (i == length) \
2876 { \
2877 if (nchars_return) \
2878 *nchars_return = nchars; \
2879 return (retval); \
2880 } \
2881 c = from[i++]; \
2882 } \
2883 while (IS_BASE64_IGNORABLE (c))
2884
2885 /* Table of characters coding the 64 values. */
2886 static const char base64_value_to_char[64] =
2887 {
2888 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2889 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2890 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2891 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2892 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2893 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2894 '8', '9', '+', '/' /* 60-63 */
2895 };
2896
2897 /* Table of base64 values for first 128 characters. */
2898 static const short base64_char_to_value[128] =
2899 {
2900 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2901 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2902 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2903 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2904 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2905 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2906 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2907 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2908 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2909 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2910 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2911 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2912 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2913 };
2914
2915 /* The following diagram shows the logical steps by which three octets
2916 get transformed into four base64 characters.
2917
2918 .--------. .--------. .--------.
2919 |aaaaaabb| |bbbbcccc| |ccdddddd|
2920 `--------' `--------' `--------'
2921 6 2 4 4 2 6
2922 .--------+--------+--------+--------.
2923 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2924 `--------+--------+--------+--------'
2925
2926 .--------+--------+--------+--------.
2927 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2928 `--------+--------+--------+--------'
2929
2930 The octets are divided into 6 bit chunks, which are then encoded into
2931 base64 characters. */
2932
2933
2934 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2935 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2936 EMACS_INT *);
2937
2938 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2939 2, 3, "r",
2940 doc: /* Base64-encode the region between BEG and END.
2941 Return the length of the encoded text.
2942 Optional third argument NO-LINE-BREAK means do not break long lines
2943 into shorter lines. */)
2944 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2945 {
2946 char *encoded;
2947 EMACS_INT allength, length;
2948 EMACS_INT ibeg, iend, encoded_length;
2949 EMACS_INT old_pos = PT;
2950 USE_SAFE_ALLOCA;
2951
2952 validate_region (&beg, &end);
2953
2954 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2955 iend = CHAR_TO_BYTE (XFASTINT (end));
2956 move_gap_both (XFASTINT (beg), ibeg);
2957
2958 /* We need to allocate enough room for encoding the text.
2959 We need 33 1/3% more space, plus a newline every 76
2960 characters, and then we round up. */
2961 length = iend - ibeg;
2962 allength = length + length/3 + 1;
2963 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2964
2965 SAFE_ALLOCA (encoded, char *, allength);
2966 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2967 encoded, length, NILP (no_line_break),
2968 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2969 if (encoded_length > allength)
2970 abort ();
2971
2972 if (encoded_length < 0)
2973 {
2974 /* The encoding wasn't possible. */
2975 SAFE_FREE ();
2976 error ("Multibyte character in data for base64 encoding");
2977 }
2978
2979 /* Now we have encoded the region, so we insert the new contents
2980 and delete the old. (Insert first in order to preserve markers.) */
2981 SET_PT_BOTH (XFASTINT (beg), ibeg);
2982 insert (encoded, encoded_length);
2983 SAFE_FREE ();
2984 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2985
2986 /* If point was outside of the region, restore it exactly; else just
2987 move to the beginning of the region. */
2988 if (old_pos >= XFASTINT (end))
2989 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2990 else if (old_pos > XFASTINT (beg))
2991 old_pos = XFASTINT (beg);
2992 SET_PT (old_pos);
2993
2994 /* We return the length of the encoded text. */
2995 return make_number (encoded_length);
2996 }
2997
2998 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2999 1, 2, 0,
3000 doc: /* Base64-encode STRING and return the result.
3001 Optional second argument NO-LINE-BREAK means do not break long lines
3002 into shorter lines. */)
3003 (Lisp_Object string, Lisp_Object no_line_break)
3004 {
3005 EMACS_INT allength, length, encoded_length;
3006 char *encoded;
3007 Lisp_Object encoded_string;
3008 USE_SAFE_ALLOCA;
3009
3010 CHECK_STRING (string);
3011
3012 /* We need to allocate enough room for encoding the text.
3013 We need 33 1/3% more space, plus a newline every 76
3014 characters, and then we round up. */
3015 length = SBYTES (string);
3016 allength = length + length/3 + 1;
3017 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3018
3019 /* We need to allocate enough room for decoding the text. */
3020 SAFE_ALLOCA (encoded, char *, allength);
3021
3022 encoded_length = base64_encode_1 (SSDATA (string),
3023 encoded, length, NILP (no_line_break),
3024 STRING_MULTIBYTE (string));
3025 if (encoded_length > allength)
3026 abort ();
3027
3028 if (encoded_length < 0)
3029 {
3030 /* The encoding wasn't possible. */
3031 SAFE_FREE ();
3032 error ("Multibyte character in data for base64 encoding");
3033 }
3034
3035 encoded_string = make_unibyte_string (encoded, encoded_length);
3036 SAFE_FREE ();
3037
3038 return encoded_string;
3039 }
3040
3041 static EMACS_INT
3042 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3043 int line_break, int multibyte)
3044 {
3045 int counter = 0;
3046 EMACS_INT i = 0;
3047 char *e = to;
3048 int c;
3049 unsigned int value;
3050 int bytes;
3051
3052 while (i < length)
3053 {
3054 if (multibyte)
3055 {
3056 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3057 if (CHAR_BYTE8_P (c))
3058 c = CHAR_TO_BYTE8 (c);
3059 else if (c >= 256)
3060 return -1;
3061 i += bytes;
3062 }
3063 else
3064 c = from[i++];
3065
3066 /* Wrap line every 76 characters. */
3067
3068 if (line_break)
3069 {
3070 if (counter < MIME_LINE_LENGTH / 4)
3071 counter++;
3072 else
3073 {
3074 *e++ = '\n';
3075 counter = 1;
3076 }
3077 }
3078
3079 /* Process first byte of a triplet. */
3080
3081 *e++ = base64_value_to_char[0x3f & c >> 2];
3082 value = (0x03 & c) << 4;
3083
3084 /* Process second byte of a triplet. */
3085
3086 if (i == length)
3087 {
3088 *e++ = base64_value_to_char[value];
3089 *e++ = '=';
3090 *e++ = '=';
3091 break;
3092 }
3093
3094 if (multibyte)
3095 {
3096 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3097 if (CHAR_BYTE8_P (c))
3098 c = CHAR_TO_BYTE8 (c);
3099 else if (c >= 256)
3100 return -1;
3101 i += bytes;
3102 }
3103 else
3104 c = from[i++];
3105
3106 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3107 value = (0x0f & c) << 2;
3108
3109 /* Process third byte of a triplet. */
3110
3111 if (i == length)
3112 {
3113 *e++ = base64_value_to_char[value];
3114 *e++ = '=';
3115 break;
3116 }
3117
3118 if (multibyte)
3119 {
3120 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3121 if (CHAR_BYTE8_P (c))
3122 c = CHAR_TO_BYTE8 (c);
3123 else if (c >= 256)
3124 return -1;
3125 i += bytes;
3126 }
3127 else
3128 c = from[i++];
3129
3130 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3131 *e++ = base64_value_to_char[0x3f & c];
3132 }
3133
3134 return e - to;
3135 }
3136
3137
3138 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3139 2, 2, "r",
3140 doc: /* Base64-decode the region between BEG and END.
3141 Return the length of the decoded text.
3142 If the region can't be decoded, signal an error and don't modify the buffer. */)
3143 (Lisp_Object beg, Lisp_Object end)
3144 {
3145 EMACS_INT ibeg, iend, length, allength;
3146 char *decoded;
3147 EMACS_INT old_pos = PT;
3148 EMACS_INT decoded_length;
3149 EMACS_INT inserted_chars;
3150 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3151 USE_SAFE_ALLOCA;
3152
3153 validate_region (&beg, &end);
3154
3155 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3156 iend = CHAR_TO_BYTE (XFASTINT (end));
3157
3158 length = iend - ibeg;
3159
3160 /* We need to allocate enough room for decoding the text. If we are
3161 working on a multibyte buffer, each decoded code may occupy at
3162 most two bytes. */
3163 allength = multibyte ? length * 2 : length;
3164 SAFE_ALLOCA (decoded, char *, allength);
3165
3166 move_gap_both (XFASTINT (beg), ibeg);
3167 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3168 decoded, length,
3169 multibyte, &inserted_chars);
3170 if (decoded_length > allength)
3171 abort ();
3172
3173 if (decoded_length < 0)
3174 {
3175 /* The decoding wasn't possible. */
3176 SAFE_FREE ();
3177 error ("Invalid base64 data");
3178 }
3179
3180 /* Now we have decoded the region, so we insert the new contents
3181 and delete the old. (Insert first in order to preserve markers.) */
3182 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3183 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3184 SAFE_FREE ();
3185
3186 /* Delete the original text. */
3187 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3188 iend + decoded_length, 1);
3189
3190 /* If point was outside of the region, restore it exactly; else just
3191 move to the beginning of the region. */
3192 if (old_pos >= XFASTINT (end))
3193 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3194 else if (old_pos > XFASTINT (beg))
3195 old_pos = XFASTINT (beg);
3196 SET_PT (old_pos > ZV ? ZV : old_pos);
3197
3198 return make_number (inserted_chars);
3199 }
3200
3201 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3202 1, 1, 0,
3203 doc: /* Base64-decode STRING and return the result. */)
3204 (Lisp_Object string)
3205 {
3206 char *decoded;
3207 EMACS_INT length, decoded_length;
3208 Lisp_Object decoded_string;
3209 USE_SAFE_ALLOCA;
3210
3211 CHECK_STRING (string);
3212
3213 length = SBYTES (string);
3214 /* We need to allocate enough room for decoding the text. */
3215 SAFE_ALLOCA (decoded, char *, length);
3216
3217 /* The decoded result should be unibyte. */
3218 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3219 0, NULL);
3220 if (decoded_length > length)
3221 abort ();
3222 else if (decoded_length >= 0)
3223 decoded_string = make_unibyte_string (decoded, decoded_length);
3224 else
3225 decoded_string = Qnil;
3226
3227 SAFE_FREE ();
3228 if (!STRINGP (decoded_string))
3229 error ("Invalid base64 data");
3230
3231 return decoded_string;
3232 }
3233
3234 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3235 MULTIBYTE is nonzero, the decoded result should be in multibyte
3236 form. If NCHARS_RETRUN is not NULL, store the number of produced
3237 characters in *NCHARS_RETURN. */
3238
3239 static EMACS_INT
3240 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3241 int multibyte, EMACS_INT *nchars_return)
3242 {
3243 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3244 char *e = to;
3245 unsigned char c;
3246 unsigned long value;
3247 EMACS_INT nchars = 0;
3248
3249 while (1)
3250 {
3251 /* Process first byte of a quadruplet. */
3252
3253 READ_QUADRUPLET_BYTE (e-to);
3254
3255 if (!IS_BASE64 (c))
3256 return -1;
3257 value = base64_char_to_value[c] << 18;
3258
3259 /* Process second byte of a quadruplet. */
3260
3261 READ_QUADRUPLET_BYTE (-1);
3262
3263 if (!IS_BASE64 (c))
3264 return -1;
3265 value |= base64_char_to_value[c] << 12;
3266
3267 c = (unsigned char) (value >> 16);
3268 if (multibyte && c >= 128)
3269 e += BYTE8_STRING (c, e);
3270 else
3271 *e++ = c;
3272 nchars++;
3273
3274 /* Process third byte of a quadruplet. */
3275
3276 READ_QUADRUPLET_BYTE (-1);
3277
3278 if (c == '=')
3279 {
3280 READ_QUADRUPLET_BYTE (-1);
3281
3282 if (c != '=')
3283 return -1;
3284 continue;
3285 }
3286
3287 if (!IS_BASE64 (c))
3288 return -1;
3289 value |= base64_char_to_value[c] << 6;
3290
3291 c = (unsigned char) (0xff & value >> 8);
3292 if (multibyte && c >= 128)
3293 e += BYTE8_STRING (c, e);
3294 else
3295 *e++ = c;
3296 nchars++;
3297
3298 /* Process fourth byte of a quadruplet. */
3299
3300 READ_QUADRUPLET_BYTE (-1);
3301
3302 if (c == '=')
3303 continue;
3304
3305 if (!IS_BASE64 (c))
3306 return -1;
3307 value |= base64_char_to_value[c];
3308
3309 c = (unsigned char) (0xff & value);
3310 if (multibyte && c >= 128)
3311 e += BYTE8_STRING (c, e);
3312 else
3313 *e++ = c;
3314 nchars++;
3315 }
3316 }
3317
3318
3319 \f
3320 /***********************************************************************
3321 ***** *****
3322 ***** Hash Tables *****
3323 ***** *****
3324 ***********************************************************************/
3325
3326 /* Implemented by gerd@gnu.org. This hash table implementation was
3327 inspired by CMUCL hash tables. */
3328
3329 /* Ideas:
3330
3331 1. For small tables, association lists are probably faster than
3332 hash tables because they have lower overhead.
3333
3334 For uses of hash tables where the O(1) behavior of table
3335 operations is not a requirement, it might therefore be a good idea
3336 not to hash. Instead, we could just do a linear search in the
3337 key_and_value vector of the hash table. This could be done
3338 if a `:linear-search t' argument is given to make-hash-table. */
3339
3340
3341 /* The list of all weak hash tables. Don't staticpro this one. */
3342
3343 static struct Lisp_Hash_Table *weak_hash_tables;
3344
3345 /* Various symbols. */
3346
3347 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3348 Lisp_Object Qeq, Qeql, Qequal;
3349 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3350 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3351
3352 /* Function prototypes. */
3353
3354 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3355 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3356 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3357 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3358
3359
3360 \f
3361 /***********************************************************************
3362 Utilities
3363 ***********************************************************************/
3364
3365 /* If OBJ is a Lisp hash table, return a pointer to its struct
3366 Lisp_Hash_Table. Otherwise, signal an error. */
3367
3368 static struct Lisp_Hash_Table *
3369 check_hash_table (Lisp_Object obj)
3370 {
3371 CHECK_HASH_TABLE (obj);
3372 return XHASH_TABLE (obj);
3373 }
3374
3375
3376 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3377 number. */
3378
3379 EMACS_INT
3380 next_almost_prime (EMACS_INT n)
3381 {
3382 for (n |= 1; ; n += 2)
3383 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3384 return n;
3385 }
3386
3387
3388 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3389 which USED[I] is non-zero. If found at index I in ARGS, set
3390 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3391 0. This function is used to extract a keyword/argument pair from
3392 a DEFUN parameter list. */
3393
3394 static ptrdiff_t
3395 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3396 {
3397 ptrdiff_t i;
3398
3399 for (i = 1; i < nargs; i++)
3400 if (!used[i - 1] && EQ (args[i - 1], key))
3401 {
3402 used[i - 1] = 1;
3403 used[i] = 1;
3404 return i;
3405 }
3406
3407 return 0;
3408 }
3409
3410
3411 /* Return a Lisp vector which has the same contents as VEC but has
3412 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3413 vector that are not copied from VEC are set to INIT. */
3414
3415 Lisp_Object
3416 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3417 {
3418 struct Lisp_Vector *v;
3419 EMACS_INT i, old_size;
3420
3421 xassert (VECTORP (vec));
3422 old_size = ASIZE (vec);
3423 xassert (new_size >= old_size);
3424
3425 v = allocate_vector (new_size);
3426 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3427 for (i = old_size; i < new_size; ++i)
3428 v->contents[i] = init;
3429 XSETVECTOR (vec, v);
3430 return vec;
3431 }
3432
3433
3434 /***********************************************************************
3435 Low-level Functions
3436 ***********************************************************************/
3437
3438 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3439 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3440 KEY2 are the same. */
3441
3442 static int
3443 cmpfn_eql (struct Lisp_Hash_Table *h,
3444 Lisp_Object key1, EMACS_UINT hash1,
3445 Lisp_Object key2, EMACS_UINT hash2)
3446 {
3447 return (FLOATP (key1)
3448 && FLOATP (key2)
3449 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3450 }
3451
3452
3453 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3454 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3455 KEY2 are the same. */
3456
3457 static int
3458 cmpfn_equal (struct Lisp_Hash_Table *h,
3459 Lisp_Object key1, EMACS_UINT hash1,
3460 Lisp_Object key2, EMACS_UINT hash2)
3461 {
3462 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3463 }
3464
3465
3466 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3467 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3468 if KEY1 and KEY2 are the same. */
3469
3470 static int
3471 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3472 Lisp_Object key1, EMACS_UINT hash1,
3473 Lisp_Object key2, EMACS_UINT hash2)
3474 {
3475 if (hash1 == hash2)
3476 {
3477 Lisp_Object args[3];
3478
3479 args[0] = h->user_cmp_function;
3480 args[1] = key1;
3481 args[2] = key2;
3482 return !NILP (Ffuncall (3, args));
3483 }
3484 else
3485 return 0;
3486 }
3487
3488
3489 /* Value is a hash code for KEY for use in hash table H which uses
3490 `eq' to compare keys. The hash code returned is guaranteed to fit
3491 in a Lisp integer. */
3492
3493 static EMACS_UINT
3494 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3495 {
3496 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3497 xassert ((hash & ~INTMASK) == 0);
3498 return hash;
3499 }
3500
3501
3502 /* Value is a hash code for KEY for use in hash table H which uses
3503 `eql' to compare keys. The hash code returned is guaranteed to fit
3504 in a Lisp integer. */
3505
3506 static EMACS_UINT
3507 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3508 {
3509 EMACS_UINT hash;
3510 if (FLOATP (key))
3511 hash = sxhash (key, 0);
3512 else
3513 hash = XUINT (key) ^ XTYPE (key);
3514 xassert ((hash & ~INTMASK) == 0);
3515 return hash;
3516 }
3517
3518
3519 /* Value is a hash code for KEY for use in hash table H which uses
3520 `equal' to compare keys. The hash code returned is guaranteed to fit
3521 in a Lisp integer. */
3522
3523 static EMACS_UINT
3524 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3525 {
3526 EMACS_UINT hash = sxhash (key, 0);
3527 xassert ((hash & ~INTMASK) == 0);
3528 return hash;
3529 }
3530
3531
3532 /* Value is a hash code for KEY for use in hash table H which uses as
3533 user-defined function to compare keys. The hash code returned is
3534 guaranteed to fit in a Lisp integer. */
3535
3536 static EMACS_UINT
3537 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3538 {
3539 Lisp_Object args[2], hash;
3540
3541 args[0] = h->user_hash_function;
3542 args[1] = key;
3543 hash = Ffuncall (2, args);
3544 if (!INTEGERP (hash))
3545 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3546 return XUINT (hash);
3547 }
3548
3549
3550 /* Create and initialize a new hash table.
3551
3552 TEST specifies the test the hash table will use to compare keys.
3553 It must be either one of the predefined tests `eq', `eql' or
3554 `equal' or a symbol denoting a user-defined test named TEST with
3555 test and hash functions USER_TEST and USER_HASH.
3556
3557 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3558
3559 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3560 new size when it becomes full is computed by adding REHASH_SIZE to
3561 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3562 table's new size is computed by multiplying its old size with
3563 REHASH_SIZE.
3564
3565 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3566 be resized when the ratio of (number of entries in the table) /
3567 (table size) is >= REHASH_THRESHOLD.
3568
3569 WEAK specifies the weakness of the table. If non-nil, it must be
3570 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3571
3572 Lisp_Object
3573 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3574 Lisp_Object rehash_threshold, Lisp_Object weak,
3575 Lisp_Object user_test, Lisp_Object user_hash)
3576 {
3577 struct Lisp_Hash_Table *h;
3578 Lisp_Object table;
3579 EMACS_INT index_size, i, sz;
3580 double index_float;
3581
3582 /* Preconditions. */
3583 xassert (SYMBOLP (test));
3584 xassert (INTEGERP (size) && XINT (size) >= 0);
3585 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3586 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3587 xassert (FLOATP (rehash_threshold)
3588 && 0 < XFLOAT_DATA (rehash_threshold)
3589 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3590
3591 if (XFASTINT (size) == 0)
3592 size = make_number (1);
3593
3594 sz = XFASTINT (size);
3595 index_float = sz / XFLOAT_DATA (rehash_threshold);
3596 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3597 ? next_almost_prime (index_float)
3598 : MOST_POSITIVE_FIXNUM + 1);
3599 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3600 error ("Hash table too large");
3601
3602 /* Allocate a table and initialize it. */
3603 h = allocate_hash_table ();
3604
3605 /* Initialize hash table slots. */
3606 h->test = test;
3607 if (EQ (test, Qeql))
3608 {
3609 h->cmpfn = cmpfn_eql;
3610 h->hashfn = hashfn_eql;
3611 }
3612 else if (EQ (test, Qeq))
3613 {
3614 h->cmpfn = NULL;
3615 h->hashfn = hashfn_eq;
3616 }
3617 else if (EQ (test, Qequal))
3618 {
3619 h->cmpfn = cmpfn_equal;
3620 h->hashfn = hashfn_equal;
3621 }
3622 else
3623 {
3624 h->user_cmp_function = user_test;
3625 h->user_hash_function = user_hash;
3626 h->cmpfn = cmpfn_user_defined;
3627 h->hashfn = hashfn_user_defined;
3628 }
3629
3630 h->weak = weak;
3631 h->rehash_threshold = rehash_threshold;
3632 h->rehash_size = rehash_size;
3633 h->count = 0;
3634 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3635 h->hash = Fmake_vector (size, Qnil);
3636 h->next = Fmake_vector (size, Qnil);
3637 h->index = Fmake_vector (make_number (index_size), Qnil);
3638
3639 /* Set up the free list. */
3640 for (i = 0; i < sz - 1; ++i)
3641 HASH_NEXT (h, i) = make_number (i + 1);
3642 h->next_free = make_number (0);
3643
3644 XSET_HASH_TABLE (table, h);
3645 xassert (HASH_TABLE_P (table));
3646 xassert (XHASH_TABLE (table) == h);
3647
3648 /* Maybe add this hash table to the list of all weak hash tables. */
3649 if (NILP (h->weak))
3650 h->next_weak = NULL;
3651 else
3652 {
3653 h->next_weak = weak_hash_tables;
3654 weak_hash_tables = h;
3655 }
3656
3657 return table;
3658 }
3659
3660
3661 /* Return a copy of hash table H1. Keys and values are not copied,
3662 only the table itself is. */
3663
3664 static Lisp_Object
3665 copy_hash_table (struct Lisp_Hash_Table *h1)
3666 {
3667 Lisp_Object table;
3668 struct Lisp_Hash_Table *h2;
3669 struct Lisp_Vector *next;
3670
3671 h2 = allocate_hash_table ();
3672 next = h2->header.next.vector;
3673 memcpy (h2, h1, sizeof *h2);
3674 h2->header.next.vector = next;
3675 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3676 h2->hash = Fcopy_sequence (h1->hash);
3677 h2->next = Fcopy_sequence (h1->next);
3678 h2->index = Fcopy_sequence (h1->index);
3679 XSET_HASH_TABLE (table, h2);
3680
3681 /* Maybe add this hash table to the list of all weak hash tables. */
3682 if (!NILP (h2->weak))
3683 {
3684 h2->next_weak = weak_hash_tables;
3685 weak_hash_tables = h2;
3686 }
3687
3688 return table;
3689 }
3690
3691
3692 /* Resize hash table H if it's too full. If H cannot be resized
3693 because it's already too large, throw an error. */
3694
3695 static inline void
3696 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3697 {
3698 if (NILP (h->next_free))
3699 {
3700 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3701 EMACS_INT i, new_size, index_size;
3702 EMACS_INT nsize;
3703 double index_float;
3704
3705 if (INTEGERP (h->rehash_size))
3706 new_size = old_size + XFASTINT (h->rehash_size);
3707 else
3708 {
3709 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3710 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3711 {
3712 new_size = float_new_size;
3713 if (new_size <= old_size)
3714 new_size = old_size + 1;
3715 }
3716 else
3717 new_size = MOST_POSITIVE_FIXNUM + 1;
3718 }
3719 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3720 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3721 ? next_almost_prime (index_float)
3722 : MOST_POSITIVE_FIXNUM + 1);
3723 nsize = max (index_size, 2 * new_size);
3724 if (nsize > MOST_POSITIVE_FIXNUM)
3725 error ("Hash table too large to resize");
3726
3727 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3728 h->next = larger_vector (h->next, new_size, Qnil);
3729 h->hash = larger_vector (h->hash, new_size, Qnil);
3730 h->index = Fmake_vector (make_number (index_size), Qnil);
3731
3732 /* Update the free list. Do it so that new entries are added at
3733 the end of the free list. This makes some operations like
3734 maphash faster. */
3735 for (i = old_size; i < new_size - 1; ++i)
3736 HASH_NEXT (h, i) = make_number (i + 1);
3737
3738 if (!NILP (h->next_free))
3739 {
3740 Lisp_Object last, next;
3741
3742 last = h->next_free;
3743 while (next = HASH_NEXT (h, XFASTINT (last)),
3744 !NILP (next))
3745 last = next;
3746
3747 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3748 }
3749 else
3750 XSETFASTINT (h->next_free, old_size);
3751
3752 /* Rehash. */
3753 for (i = 0; i < old_size; ++i)
3754 if (!NILP (HASH_HASH (h, i)))
3755 {
3756 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3757 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3758 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3759 HASH_INDEX (h, start_of_bucket) = make_number (i);
3760 }
3761 }
3762 }
3763
3764
3765 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3766 the hash code of KEY. Value is the index of the entry in H
3767 matching KEY, or -1 if not found. */
3768
3769 EMACS_INT
3770 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3771 {
3772 EMACS_UINT hash_code;
3773 EMACS_INT start_of_bucket;
3774 Lisp_Object idx;
3775
3776 hash_code = h->hashfn (h, key);
3777 if (hash)
3778 *hash = hash_code;
3779
3780 start_of_bucket = hash_code % ASIZE (h->index);
3781 idx = HASH_INDEX (h, start_of_bucket);
3782
3783 /* We need not gcpro idx since it's either an integer or nil. */
3784 while (!NILP (idx))
3785 {
3786 EMACS_INT i = XFASTINT (idx);
3787 if (EQ (key, HASH_KEY (h, i))
3788 || (h->cmpfn
3789 && h->cmpfn (h, key, hash_code,
3790 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3791 break;
3792 idx = HASH_NEXT (h, i);
3793 }
3794
3795 return NILP (idx) ? -1 : XFASTINT (idx);
3796 }
3797
3798
3799 /* Put an entry into hash table H that associates KEY with VALUE.
3800 HASH is a previously computed hash code of KEY.
3801 Value is the index of the entry in H matching KEY. */
3802
3803 EMACS_INT
3804 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3805 EMACS_UINT hash)
3806 {
3807 EMACS_INT start_of_bucket, i;
3808
3809 xassert ((hash & ~INTMASK) == 0);
3810
3811 /* Increment count after resizing because resizing may fail. */
3812 maybe_resize_hash_table (h);
3813 h->count++;
3814
3815 /* Store key/value in the key_and_value vector. */
3816 i = XFASTINT (h->next_free);
3817 h->next_free = HASH_NEXT (h, i);
3818 HASH_KEY (h, i) = key;
3819 HASH_VALUE (h, i) = value;
3820
3821 /* Remember its hash code. */
3822 HASH_HASH (h, i) = make_number (hash);
3823
3824 /* Add new entry to its collision chain. */
3825 start_of_bucket = hash % ASIZE (h->index);
3826 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3827 HASH_INDEX (h, start_of_bucket) = make_number (i);
3828 return i;
3829 }
3830
3831
3832 /* Remove the entry matching KEY from hash table H, if there is one. */
3833
3834 static void
3835 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3836 {
3837 EMACS_UINT hash_code;
3838 EMACS_INT start_of_bucket;
3839 Lisp_Object idx, prev;
3840
3841 hash_code = h->hashfn (h, key);
3842 start_of_bucket = hash_code % ASIZE (h->index);
3843 idx = HASH_INDEX (h, start_of_bucket);
3844 prev = Qnil;
3845
3846 /* We need not gcpro idx, prev since they're either integers or nil. */
3847 while (!NILP (idx))
3848 {
3849 EMACS_INT i = XFASTINT (idx);
3850
3851 if (EQ (key, HASH_KEY (h, i))
3852 || (h->cmpfn
3853 && h->cmpfn (h, key, hash_code,
3854 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3855 {
3856 /* Take entry out of collision chain. */
3857 if (NILP (prev))
3858 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3859 else
3860 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3861
3862 /* Clear slots in key_and_value and add the slots to
3863 the free list. */
3864 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3865 HASH_NEXT (h, i) = h->next_free;
3866 h->next_free = make_number (i);
3867 h->count--;
3868 xassert (h->count >= 0);
3869 break;
3870 }
3871 else
3872 {
3873 prev = idx;
3874 idx = HASH_NEXT (h, i);
3875 }
3876 }
3877 }
3878
3879
3880 /* Clear hash table H. */
3881
3882 static void
3883 hash_clear (struct Lisp_Hash_Table *h)
3884 {
3885 if (h->count > 0)
3886 {
3887 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3888
3889 for (i = 0; i < size; ++i)
3890 {
3891 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3892 HASH_KEY (h, i) = Qnil;
3893 HASH_VALUE (h, i) = Qnil;
3894 HASH_HASH (h, i) = Qnil;
3895 }
3896
3897 for (i = 0; i < ASIZE (h->index); ++i)
3898 ASET (h->index, i, Qnil);
3899
3900 h->next_free = make_number (0);
3901 h->count = 0;
3902 }
3903 }
3904
3905
3906 \f
3907 /************************************************************************
3908 Weak Hash Tables
3909 ************************************************************************/
3910
3911 void
3912 init_weak_hash_tables (void)
3913 {
3914 weak_hash_tables = NULL;
3915 }
3916
3917 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3918 entries from the table that don't survive the current GC.
3919 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3920 non-zero if anything was marked. */
3921
3922 static int
3923 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3924 {
3925 EMACS_INT bucket, n;
3926 int marked;
3927
3928 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3929 marked = 0;
3930
3931 for (bucket = 0; bucket < n; ++bucket)
3932 {
3933 Lisp_Object idx, next, prev;
3934
3935 /* Follow collision chain, removing entries that
3936 don't survive this garbage collection. */
3937 prev = Qnil;
3938 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3939 {
3940 EMACS_INT i = XFASTINT (idx);
3941 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3942 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3943 int remove_p;
3944
3945 if (EQ (h->weak, Qkey))
3946 remove_p = !key_known_to_survive_p;
3947 else if (EQ (h->weak, Qvalue))
3948 remove_p = !value_known_to_survive_p;
3949 else if (EQ (h->weak, Qkey_or_value))
3950 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3951 else if (EQ (h->weak, Qkey_and_value))
3952 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3953 else
3954 abort ();
3955
3956 next = HASH_NEXT (h, i);
3957
3958 if (remove_entries_p)
3959 {
3960 if (remove_p)
3961 {
3962 /* Take out of collision chain. */
3963 if (NILP (prev))
3964 HASH_INDEX (h, bucket) = next;
3965 else
3966 HASH_NEXT (h, XFASTINT (prev)) = next;
3967
3968 /* Add to free list. */
3969 HASH_NEXT (h, i) = h->next_free;
3970 h->next_free = idx;
3971
3972 /* Clear key, value, and hash. */
3973 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3974 HASH_HASH (h, i) = Qnil;
3975
3976 h->count--;
3977 }
3978 else
3979 {
3980 prev = idx;
3981 }
3982 }
3983 else
3984 {
3985 if (!remove_p)
3986 {
3987 /* Make sure key and value survive. */
3988 if (!key_known_to_survive_p)
3989 {
3990 mark_object (HASH_KEY (h, i));
3991 marked = 1;
3992 }
3993
3994 if (!value_known_to_survive_p)
3995 {
3996 mark_object (HASH_VALUE (h, i));
3997 marked = 1;
3998 }
3999 }
4000 }
4001 }
4002 }
4003
4004 return marked;
4005 }
4006
4007 /* Remove elements from weak hash tables that don't survive the
4008 current garbage collection. Remove weak tables that don't survive
4009 from Vweak_hash_tables. Called from gc_sweep. */
4010
4011 void
4012 sweep_weak_hash_tables (void)
4013 {
4014 struct Lisp_Hash_Table *h, *used, *next;
4015 int marked;
4016
4017 /* Mark all keys and values that are in use. Keep on marking until
4018 there is no more change. This is necessary for cases like
4019 value-weak table A containing an entry X -> Y, where Y is used in a
4020 key-weak table B, Z -> Y. If B comes after A in the list of weak
4021 tables, X -> Y might be removed from A, although when looking at B
4022 one finds that it shouldn't. */
4023 do
4024 {
4025 marked = 0;
4026 for (h = weak_hash_tables; h; h = h->next_weak)
4027 {
4028 if (h->header.size & ARRAY_MARK_FLAG)
4029 marked |= sweep_weak_table (h, 0);
4030 }
4031 }
4032 while (marked);
4033
4034 /* Remove tables and entries that aren't used. */
4035 for (h = weak_hash_tables, used = NULL; h; h = next)
4036 {
4037 next = h->next_weak;
4038
4039 if (h->header.size & ARRAY_MARK_FLAG)
4040 {
4041 /* TABLE is marked as used. Sweep its contents. */
4042 if (h->count > 0)
4043 sweep_weak_table (h, 1);
4044
4045 /* Add table to the list of used weak hash tables. */
4046 h->next_weak = used;
4047 used = h;
4048 }
4049 }
4050
4051 weak_hash_tables = used;
4052 }
4053
4054
4055 \f
4056 /***********************************************************************
4057 Hash Code Computation
4058 ***********************************************************************/
4059
4060 /* Maximum depth up to which to dive into Lisp structures. */
4061
4062 #define SXHASH_MAX_DEPTH 3
4063
4064 /* Maximum length up to which to take list and vector elements into
4065 account. */
4066
4067 #define SXHASH_MAX_LEN 7
4068
4069 /* Combine two integers X and Y for hashing. The result might not fit
4070 into a Lisp integer. */
4071
4072 #define SXHASH_COMBINE(X, Y) \
4073 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4074 + (EMACS_UINT) (Y))
4075
4076 /* Hash X, returning a value that fits into a Lisp integer. */
4077 #define SXHASH_REDUCE(X) \
4078 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4079
4080 /* Return a hash for string PTR which has length LEN. The hash
4081 code returned is guaranteed to fit in a Lisp integer. */
4082
4083 static EMACS_UINT
4084 sxhash_string (unsigned char *ptr, EMACS_INT len)
4085 {
4086 unsigned char *p = ptr;
4087 unsigned char *end = p + len;
4088 unsigned char c;
4089 EMACS_UINT hash = 0;
4090
4091 while (p != end)
4092 {
4093 c = *p++;
4094 if (c >= 0140)
4095 c -= 40;
4096 hash = SXHASH_COMBINE (hash, c);
4097 }
4098
4099 return SXHASH_REDUCE (hash);
4100 }
4101
4102 /* Return a hash for the floating point value VAL. */
4103
4104 static EMACS_INT
4105 sxhash_float (double val)
4106 {
4107 EMACS_UINT hash = 0;
4108 enum {
4109 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4110 + (sizeof val % sizeof hash != 0))
4111 };
4112 union {
4113 double val;
4114 EMACS_UINT word[WORDS_PER_DOUBLE];
4115 } u;
4116 int i;
4117 u.val = val;
4118 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4119 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4120 hash = SXHASH_COMBINE (hash, u.word[i]);
4121 return SXHASH_REDUCE (hash);
4122 }
4123
4124 /* Return a hash for list LIST. DEPTH is the current depth in the
4125 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4126
4127 static EMACS_UINT
4128 sxhash_list (Lisp_Object list, int depth)
4129 {
4130 EMACS_UINT hash = 0;
4131 int i;
4132
4133 if (depth < SXHASH_MAX_DEPTH)
4134 for (i = 0;
4135 CONSP (list) && i < SXHASH_MAX_LEN;
4136 list = XCDR (list), ++i)
4137 {
4138 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4139 hash = SXHASH_COMBINE (hash, hash2);
4140 }
4141
4142 if (!NILP (list))
4143 {
4144 EMACS_UINT hash2 = sxhash (list, depth + 1);
4145 hash = SXHASH_COMBINE (hash, hash2);
4146 }
4147
4148 return SXHASH_REDUCE (hash);
4149 }
4150
4151
4152 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4153 the Lisp structure. */
4154
4155 static EMACS_UINT
4156 sxhash_vector (Lisp_Object vec, int depth)
4157 {
4158 EMACS_UINT hash = ASIZE (vec);
4159 int i, n;
4160
4161 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4162 for (i = 0; i < n; ++i)
4163 {
4164 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4165 hash = SXHASH_COMBINE (hash, hash2);
4166 }
4167
4168 return SXHASH_REDUCE (hash);
4169 }
4170
4171 /* Return a hash for bool-vector VECTOR. */
4172
4173 static EMACS_UINT
4174 sxhash_bool_vector (Lisp_Object vec)
4175 {
4176 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4177 int i, n;
4178
4179 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4180 for (i = 0; i < n; ++i)
4181 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4182
4183 return SXHASH_REDUCE (hash);
4184 }
4185
4186
4187 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4188 structure. Value is an unsigned integer clipped to INTMASK. */
4189
4190 EMACS_UINT
4191 sxhash (Lisp_Object obj, int depth)
4192 {
4193 EMACS_UINT hash;
4194
4195 if (depth > SXHASH_MAX_DEPTH)
4196 return 0;
4197
4198 switch (XTYPE (obj))
4199 {
4200 case_Lisp_Int:
4201 hash = XUINT (obj);
4202 break;
4203
4204 case Lisp_Misc:
4205 hash = XUINT (obj);
4206 break;
4207
4208 case Lisp_Symbol:
4209 obj = SYMBOL_NAME (obj);
4210 /* Fall through. */
4211
4212 case Lisp_String:
4213 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4214 break;
4215
4216 /* This can be everything from a vector to an overlay. */
4217 case Lisp_Vectorlike:
4218 if (VECTORP (obj))
4219 /* According to the CL HyperSpec, two arrays are equal only if
4220 they are `eq', except for strings and bit-vectors. In
4221 Emacs, this works differently. We have to compare element
4222 by element. */
4223 hash = sxhash_vector (obj, depth);
4224 else if (BOOL_VECTOR_P (obj))
4225 hash = sxhash_bool_vector (obj);
4226 else
4227 /* Others are `equal' if they are `eq', so let's take their
4228 address as hash. */
4229 hash = XUINT (obj);
4230 break;
4231
4232 case Lisp_Cons:
4233 hash = sxhash_list (obj, depth);
4234 break;
4235
4236 case Lisp_Float:
4237 hash = sxhash_float (XFLOAT_DATA (obj));
4238 break;
4239
4240 default:
4241 abort ();
4242 }
4243
4244 return hash;
4245 }
4246
4247
4248 \f
4249 /***********************************************************************
4250 Lisp Interface
4251 ***********************************************************************/
4252
4253
4254 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4255 doc: /* Compute a hash code for OBJ and return it as integer. */)
4256 (Lisp_Object obj)
4257 {
4258 EMACS_UINT hash = sxhash (obj, 0);
4259 return make_number (hash);
4260 }
4261
4262
4263 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4264 doc: /* Create and return a new hash table.
4265
4266 Arguments are specified as keyword/argument pairs. The following
4267 arguments are defined:
4268
4269 :test TEST -- TEST must be a symbol that specifies how to compare
4270 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4271 `equal'. User-supplied test and hash functions can be specified via
4272 `define-hash-table-test'.
4273
4274 :size SIZE -- A hint as to how many elements will be put in the table.
4275 Default is 65.
4276
4277 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4278 fills up. If REHASH-SIZE is an integer, increase the size by that
4279 amount. If it is a float, it must be > 1.0, and the new size is the
4280 old size multiplied by that factor. Default is 1.5.
4281
4282 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4283 Resize the hash table when the ratio (number of entries / table size)
4284 is greater than or equal to THRESHOLD. Default is 0.8.
4285
4286 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4287 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4288 returned is a weak table. Key/value pairs are removed from a weak
4289 hash table when there are no non-weak references pointing to their
4290 key, value, one of key or value, or both key and value, depending on
4291 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4292 is nil.
4293
4294 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4295 (ptrdiff_t nargs, Lisp_Object *args)
4296 {
4297 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4298 Lisp_Object user_test, user_hash;
4299 char *used;
4300 ptrdiff_t i;
4301
4302 /* The vector `used' is used to keep track of arguments that
4303 have been consumed. */
4304 used = (char *) alloca (nargs * sizeof *used);
4305 memset (used, 0, nargs * sizeof *used);
4306
4307 /* See if there's a `:test TEST' among the arguments. */
4308 i = get_key_arg (QCtest, nargs, args, used);
4309 test = i ? args[i] : Qeql;
4310 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4311 {
4312 /* See if it is a user-defined test. */
4313 Lisp_Object prop;
4314
4315 prop = Fget (test, Qhash_table_test);
4316 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4317 signal_error ("Invalid hash table test", test);
4318 user_test = XCAR (prop);
4319 user_hash = XCAR (XCDR (prop));
4320 }
4321 else
4322 user_test = user_hash = Qnil;
4323
4324 /* See if there's a `:size SIZE' argument. */
4325 i = get_key_arg (QCsize, nargs, args, used);
4326 size = i ? args[i] : Qnil;
4327 if (NILP (size))
4328 size = make_number (DEFAULT_HASH_SIZE);
4329 else if (!INTEGERP (size) || XINT (size) < 0)
4330 signal_error ("Invalid hash table size", size);
4331
4332 /* Look for `:rehash-size SIZE'. */
4333 i = get_key_arg (QCrehash_size, nargs, args, used);
4334 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4335 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4336 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4337 signal_error ("Invalid hash table rehash size", rehash_size);
4338
4339 /* Look for `:rehash-threshold THRESHOLD'. */
4340 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4341 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4342 if (! (FLOATP (rehash_threshold)
4343 && 0 < XFLOAT_DATA (rehash_threshold)
4344 && XFLOAT_DATA (rehash_threshold) <= 1))
4345 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4346
4347 /* Look for `:weakness WEAK'. */
4348 i = get_key_arg (QCweakness, nargs, args, used);
4349 weak = i ? args[i] : Qnil;
4350 if (EQ (weak, Qt))
4351 weak = Qkey_and_value;
4352 if (!NILP (weak)
4353 && !EQ (weak, Qkey)
4354 && !EQ (weak, Qvalue)
4355 && !EQ (weak, Qkey_or_value)
4356 && !EQ (weak, Qkey_and_value))
4357 signal_error ("Invalid hash table weakness", weak);
4358
4359 /* Now, all args should have been used up, or there's a problem. */
4360 for (i = 0; i < nargs; ++i)
4361 if (!used[i])
4362 signal_error ("Invalid argument list", args[i]);
4363
4364 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4365 user_test, user_hash);
4366 }
4367
4368
4369 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4370 doc: /* Return a copy of hash table TABLE. */)
4371 (Lisp_Object table)
4372 {
4373 return copy_hash_table (check_hash_table (table));
4374 }
4375
4376
4377 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4378 doc: /* Return the number of elements in TABLE. */)
4379 (Lisp_Object table)
4380 {
4381 return make_number (check_hash_table (table)->count);
4382 }
4383
4384
4385 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4386 Shash_table_rehash_size, 1, 1, 0,
4387 doc: /* Return the current rehash size of TABLE. */)
4388 (Lisp_Object table)
4389 {
4390 return check_hash_table (table)->rehash_size;
4391 }
4392
4393
4394 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4395 Shash_table_rehash_threshold, 1, 1, 0,
4396 doc: /* Return the current rehash threshold of TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return check_hash_table (table)->rehash_threshold;
4400 }
4401
4402
4403 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4404 doc: /* Return the size of TABLE.
4405 The size can be used as an argument to `make-hash-table' to create
4406 a hash table than can hold as many elements as TABLE holds
4407 without need for resizing. */)
4408 (Lisp_Object table)
4409 {
4410 struct Lisp_Hash_Table *h = check_hash_table (table);
4411 return make_number (HASH_TABLE_SIZE (h));
4412 }
4413
4414
4415 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4416 doc: /* Return the test TABLE uses. */)
4417 (Lisp_Object table)
4418 {
4419 return check_hash_table (table)->test;
4420 }
4421
4422
4423 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4424 1, 1, 0,
4425 doc: /* Return the weakness of TABLE. */)
4426 (Lisp_Object table)
4427 {
4428 return check_hash_table (table)->weak;
4429 }
4430
4431
4432 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4433 doc: /* Return t if OBJ is a Lisp hash table object. */)
4434 (Lisp_Object obj)
4435 {
4436 return HASH_TABLE_P (obj) ? Qt : Qnil;
4437 }
4438
4439
4440 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4441 doc: /* Clear hash table TABLE and return it. */)
4442 (Lisp_Object table)
4443 {
4444 hash_clear (check_hash_table (table));
4445 /* Be compatible with XEmacs. */
4446 return table;
4447 }
4448
4449
4450 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4451 doc: /* Look up KEY in TABLE and return its associated value.
4452 If KEY is not found, return DFLT which defaults to nil. */)
4453 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4454 {
4455 struct Lisp_Hash_Table *h = check_hash_table (table);
4456 EMACS_INT i = hash_lookup (h, key, NULL);
4457 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4458 }
4459
4460
4461 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4462 doc: /* Associate KEY with VALUE in hash table TABLE.
4463 If KEY is already present in table, replace its current value with
4464 VALUE. In any case, return VALUE. */)
4465 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4466 {
4467 struct Lisp_Hash_Table *h = check_hash_table (table);
4468 EMACS_INT i;
4469 EMACS_UINT hash;
4470
4471 i = hash_lookup (h, key, &hash);
4472 if (i >= 0)
4473 HASH_VALUE (h, i) = value;
4474 else
4475 hash_put (h, key, value, hash);
4476
4477 return value;
4478 }
4479
4480
4481 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4482 doc: /* Remove KEY from TABLE. */)
4483 (Lisp_Object key, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 hash_remove_from_table (h, key);
4487 return Qnil;
4488 }
4489
4490
4491 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4492 doc: /* Call FUNCTION for all entries in hash table TABLE.
4493 FUNCTION is called with two arguments, KEY and VALUE. */)
4494 (Lisp_Object function, Lisp_Object table)
4495 {
4496 struct Lisp_Hash_Table *h = check_hash_table (table);
4497 Lisp_Object args[3];
4498 EMACS_INT i;
4499
4500 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4501 if (!NILP (HASH_HASH (h, i)))
4502 {
4503 args[0] = function;
4504 args[1] = HASH_KEY (h, i);
4505 args[2] = HASH_VALUE (h, i);
4506 Ffuncall (3, args);
4507 }
4508
4509 return Qnil;
4510 }
4511
4512
4513 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4514 Sdefine_hash_table_test, 3, 3, 0,
4515 doc: /* Define a new hash table test with name NAME, a symbol.
4516
4517 In hash tables created with NAME specified as test, use TEST to
4518 compare keys, and HASH for computing hash codes of keys.
4519
4520 TEST must be a function taking two arguments and returning non-nil if
4521 both arguments are the same. HASH must be a function taking one
4522 argument and return an integer that is the hash code of the argument.
4523 Hash code computation should use the whole value range of integers,
4524 including negative integers. */)
4525 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4526 {
4527 return Fput (name, Qhash_table_test, list2 (test, hash));
4528 }
4529
4530
4531 \f
4532 /************************************************************************
4533 MD5 and SHA1
4534 ************************************************************************/
4535
4536 #include "md5.h"
4537 #include "sha1.h"
4538
4539 /* Convert a possibly-signed character to an unsigned character. This is
4540 a bit safer than casting to unsigned char, since it catches some type
4541 errors that the cast doesn't. */
4542 static inline unsigned char to_uchar (char ch) { return ch; }
4543
4544 /* TYPE: 0 for md5, 1 for sha1. */
4545
4546 static Lisp_Object
4547 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4548 {
4549 int i;
4550 EMACS_INT size;
4551 EMACS_INT size_byte = 0;
4552 EMACS_INT start_char = 0, end_char = 0;
4553 EMACS_INT start_byte = 0, end_byte = 0;
4554 register EMACS_INT b, e;
4555 register struct buffer *bp;
4556 EMACS_INT temp;
4557 Lisp_Object res=Qnil;
4558
4559 if (STRINGP (object))
4560 {
4561 if (NILP (coding_system))
4562 {
4563 /* Decide the coding-system to encode the data with. */
4564
4565 if (STRING_MULTIBYTE (object))
4566 /* use default, we can't guess correct value */
4567 coding_system = preferred_coding_system ();
4568 else
4569 coding_system = Qraw_text;
4570 }
4571
4572 if (NILP (Fcoding_system_p (coding_system)))
4573 {
4574 /* Invalid coding system. */
4575
4576 if (!NILP (noerror))
4577 coding_system = Qraw_text;
4578 else
4579 xsignal1 (Qcoding_system_error, coding_system);
4580 }
4581
4582 if (STRING_MULTIBYTE (object))
4583 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4584
4585 size = SCHARS (object);
4586 size_byte = SBYTES (object);
4587
4588 if (!NILP (start))
4589 {
4590 CHECK_NUMBER (start);
4591
4592 start_char = XINT (start);
4593
4594 if (start_char < 0)
4595 start_char += size;
4596
4597 start_byte = string_char_to_byte (object, start_char);
4598 }
4599
4600 if (NILP (end))
4601 {
4602 end_char = size;
4603 end_byte = size_byte;
4604 }
4605 else
4606 {
4607 CHECK_NUMBER (end);
4608
4609 end_char = XINT (end);
4610
4611 if (end_char < 0)
4612 end_char += size;
4613
4614 end_byte = string_char_to_byte (object, end_char);
4615 }
4616
4617 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4618 args_out_of_range_3 (object, make_number (start_char),
4619 make_number (end_char));
4620 }
4621 else
4622 {
4623 struct buffer *prev = current_buffer;
4624
4625 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4626
4627 CHECK_BUFFER (object);
4628
4629 bp = XBUFFER (object);
4630 if (bp != current_buffer)
4631 set_buffer_internal (bp);
4632
4633 if (NILP (start))
4634 b = BEGV;
4635 else
4636 {
4637 CHECK_NUMBER_COERCE_MARKER (start);
4638 b = XINT (start);
4639 }
4640
4641 if (NILP (end))
4642 e = ZV;
4643 else
4644 {
4645 CHECK_NUMBER_COERCE_MARKER (end);
4646 e = XINT (end);
4647 }
4648
4649 if (b > e)
4650 temp = b, b = e, e = temp;
4651
4652 if (!(BEGV <= b && e <= ZV))
4653 args_out_of_range (start, end);
4654
4655 if (NILP (coding_system))
4656 {
4657 /* Decide the coding-system to encode the data with.
4658 See fileio.c:Fwrite-region */
4659
4660 if (!NILP (Vcoding_system_for_write))
4661 coding_system = Vcoding_system_for_write;
4662 else
4663 {
4664 int force_raw_text = 0;
4665
4666 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4667 if (NILP (coding_system)
4668 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4669 {
4670 coding_system = Qnil;
4671 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4672 force_raw_text = 1;
4673 }
4674
4675 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4676 {
4677 /* Check file-coding-system-alist. */
4678 Lisp_Object args[4], val;
4679
4680 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4681 args[3] = Fbuffer_file_name(object);
4682 val = Ffind_operation_coding_system (4, args);
4683 if (CONSP (val) && !NILP (XCDR (val)))
4684 coding_system = XCDR (val);
4685 }
4686
4687 if (NILP (coding_system)
4688 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4689 {
4690 /* If we still have not decided a coding system, use the
4691 default value of buffer-file-coding-system. */
4692 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4693 }
4694
4695 if (!force_raw_text
4696 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4697 /* Confirm that VAL can surely encode the current region. */
4698 coding_system = call4 (Vselect_safe_coding_system_function,
4699 make_number (b), make_number (e),
4700 coding_system, Qnil);
4701
4702 if (force_raw_text)
4703 coding_system = Qraw_text;
4704 }
4705
4706 if (NILP (Fcoding_system_p (coding_system)))
4707 {
4708 /* Invalid coding system. */
4709
4710 if (!NILP (noerror))
4711 coding_system = Qraw_text;
4712 else
4713 xsignal1 (Qcoding_system_error, coding_system);
4714 }
4715 }
4716
4717 object = make_buffer_string (b, e, 0);
4718 if (prev != current_buffer)
4719 set_buffer_internal (prev);
4720 /* Discard the unwind protect for recovering the current
4721 buffer. */
4722 specpdl_ptr--;
4723
4724 if (STRING_MULTIBYTE (object))
4725 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4726 }
4727
4728 switch (type)
4729 {
4730 case 0: /* MD5 */
4731 {
4732 char digest[16];
4733 md5_buffer (SSDATA (object) + start_byte,
4734 SBYTES (object) - (size_byte - end_byte),
4735 digest);
4736
4737 if (NILP (binary))
4738 {
4739 char value[33];
4740 for (i = 0; i < 16; i++)
4741 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4742 res = make_string (value, 32);
4743 }
4744 else
4745 res = make_string (digest, 16);
4746 break;
4747 }
4748
4749 case 1: /* SHA1 */
4750 {
4751 char digest[20];
4752 sha1_buffer (SSDATA (object) + start_byte,
4753 SBYTES (object) - (size_byte - end_byte),
4754 digest);
4755 if (NILP (binary))
4756 {
4757 char value[41];
4758 for (i = 0; i < 20; i++)
4759 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4760 res = make_string (value, 40);
4761 }
4762 else
4763 res = make_string (digest, 20);
4764 break;
4765 }
4766 }
4767
4768 return res;
4769 }
4770
4771 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4772 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4773
4774 A message digest is a cryptographic checksum of a document, and the
4775 algorithm to calculate it is defined in RFC 1321.
4776
4777 The two optional arguments START and END are character positions
4778 specifying for which part of OBJECT the message digest should be
4779 computed. If nil or omitted, the digest is computed for the whole
4780 OBJECT.
4781
4782 The MD5 message digest is computed from the result of encoding the
4783 text in a coding system, not directly from the internal Emacs form of
4784 the text. The optional fourth argument CODING-SYSTEM specifies which
4785 coding system to encode the text with. It should be the same coding
4786 system that you used or will use when actually writing the text into a
4787 file.
4788
4789 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4790 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4791 system would be chosen by default for writing this text into a file.
4792
4793 If OBJECT is a string, the most preferred coding system (see the
4794 command `prefer-coding-system') is used.
4795
4796 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4797 guesswork fails. Normally, an error is signaled in such case. */)
4798 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4799 {
4800 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4801 }
4802
4803 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4804 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4805
4806 OBJECT is either a string or a buffer. Optional arguments START and
4807 END are character positions specifying which portion of OBJECT for
4808 computing the hash. If BINARY is non-nil, return a string in binary
4809 form. */)
4810 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4811 {
4812 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4813 }
4814
4815 \f
4816 void
4817 syms_of_fns (void)
4818 {
4819 /* Hash table stuff. */
4820 Qhash_table_p = intern_c_string ("hash-table-p");
4821 staticpro (&Qhash_table_p);
4822 Qeq = intern_c_string ("eq");
4823 staticpro (&Qeq);
4824 Qeql = intern_c_string ("eql");
4825 staticpro (&Qeql);
4826 Qequal = intern_c_string ("equal");
4827 staticpro (&Qequal);
4828 QCtest = intern_c_string (":test");
4829 staticpro (&QCtest);
4830 QCsize = intern_c_string (":size");
4831 staticpro (&QCsize);
4832 QCrehash_size = intern_c_string (":rehash-size");
4833 staticpro (&QCrehash_size);
4834 QCrehash_threshold = intern_c_string (":rehash-threshold");
4835 staticpro (&QCrehash_threshold);
4836 QCweakness = intern_c_string (":weakness");
4837 staticpro (&QCweakness);
4838 Qkey = intern_c_string ("key");
4839 staticpro (&Qkey);
4840 Qvalue = intern_c_string ("value");
4841 staticpro (&Qvalue);
4842 Qhash_table_test = intern_c_string ("hash-table-test");
4843 staticpro (&Qhash_table_test);
4844 Qkey_or_value = intern_c_string ("key-or-value");
4845 staticpro (&Qkey_or_value);
4846 Qkey_and_value = intern_c_string ("key-and-value");
4847 staticpro (&Qkey_and_value);
4848
4849 defsubr (&Ssxhash);
4850 defsubr (&Smake_hash_table);
4851 defsubr (&Scopy_hash_table);
4852 defsubr (&Shash_table_count);
4853 defsubr (&Shash_table_rehash_size);
4854 defsubr (&Shash_table_rehash_threshold);
4855 defsubr (&Shash_table_size);
4856 defsubr (&Shash_table_test);
4857 defsubr (&Shash_table_weakness);
4858 defsubr (&Shash_table_p);
4859 defsubr (&Sclrhash);
4860 defsubr (&Sgethash);
4861 defsubr (&Sputhash);
4862 defsubr (&Sremhash);
4863 defsubr (&Smaphash);
4864 defsubr (&Sdefine_hash_table_test);
4865
4866 Qstring_lessp = intern_c_string ("string-lessp");
4867 staticpro (&Qstring_lessp);
4868 Qprovide = intern_c_string ("provide");
4869 staticpro (&Qprovide);
4870 Qrequire = intern_c_string ("require");
4871 staticpro (&Qrequire);
4872 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4873 staticpro (&Qyes_or_no_p_history);
4874 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4875 staticpro (&Qcursor_in_echo_area);
4876 Qwidget_type = intern_c_string ("widget-type");
4877 staticpro (&Qwidget_type);
4878
4879 staticpro (&string_char_byte_cache_string);
4880 string_char_byte_cache_string = Qnil;
4881
4882 require_nesting_list = Qnil;
4883 staticpro (&require_nesting_list);
4884
4885 Fset (Qyes_or_no_p_history, Qnil);
4886
4887 DEFVAR_LISP ("features", Vfeatures,
4888 doc: /* A list of symbols which are the features of the executing Emacs.
4889 Used by `featurep' and `require', and altered by `provide'. */);
4890 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4891 Qsubfeatures = intern_c_string ("subfeatures");
4892 staticpro (&Qsubfeatures);
4893
4894 #ifdef HAVE_LANGINFO_CODESET
4895 Qcodeset = intern_c_string ("codeset");
4896 staticpro (&Qcodeset);
4897 Qdays = intern_c_string ("days");
4898 staticpro (&Qdays);
4899 Qmonths = intern_c_string ("months");
4900 staticpro (&Qmonths);
4901 Qpaper = intern_c_string ("paper");
4902 staticpro (&Qpaper);
4903 #endif /* HAVE_LANGINFO_CODESET */
4904
4905 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4906 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4907 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4908 invoked by mouse clicks and mouse menu items.
4909
4910 On some platforms, file selection dialogs are also enabled if this is
4911 non-nil. */);
4912 use_dialog_box = 1;
4913
4914 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4915 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4916 This applies to commands from menus and tool bar buttons even when
4917 they are initiated from the keyboard. If `use-dialog-box' is nil,
4918 that disables the use of a file dialog, regardless of the value of
4919 this variable. */);
4920 use_file_dialog = 1;
4921
4922 defsubr (&Sidentity);
4923 defsubr (&Srandom);
4924 defsubr (&Slength);
4925 defsubr (&Ssafe_length);
4926 defsubr (&Sstring_bytes);
4927 defsubr (&Sstring_equal);
4928 defsubr (&Scompare_strings);
4929 defsubr (&Sstring_lessp);
4930 defsubr (&Sappend);
4931 defsubr (&Sconcat);
4932 defsubr (&Svconcat);
4933 defsubr (&Scopy_sequence);
4934 defsubr (&Sstring_make_multibyte);
4935 defsubr (&Sstring_make_unibyte);
4936 defsubr (&Sstring_as_multibyte);
4937 defsubr (&Sstring_as_unibyte);
4938 defsubr (&Sstring_to_multibyte);
4939 defsubr (&Sstring_to_unibyte);
4940 defsubr (&Scopy_alist);
4941 defsubr (&Ssubstring);
4942 defsubr (&Ssubstring_no_properties);
4943 defsubr (&Snthcdr);
4944 defsubr (&Snth);
4945 defsubr (&Selt);
4946 defsubr (&Smember);
4947 defsubr (&Smemq);
4948 defsubr (&Smemql);
4949 defsubr (&Sassq);
4950 defsubr (&Sassoc);
4951 defsubr (&Srassq);
4952 defsubr (&Srassoc);
4953 defsubr (&Sdelq);
4954 defsubr (&Sdelete);
4955 defsubr (&Snreverse);
4956 defsubr (&Sreverse);
4957 defsubr (&Ssort);
4958 defsubr (&Splist_get);
4959 defsubr (&Sget);
4960 defsubr (&Splist_put);
4961 defsubr (&Sput);
4962 defsubr (&Slax_plist_get);
4963 defsubr (&Slax_plist_put);
4964 defsubr (&Seql);
4965 defsubr (&Sequal);
4966 defsubr (&Sequal_including_properties);
4967 defsubr (&Sfillarray);
4968 defsubr (&Sclear_string);
4969 defsubr (&Snconc);
4970 defsubr (&Smapcar);
4971 defsubr (&Smapc);
4972 defsubr (&Smapconcat);
4973 defsubr (&Syes_or_no_p);
4974 defsubr (&Sload_average);
4975 defsubr (&Sfeaturep);
4976 defsubr (&Srequire);
4977 defsubr (&Sprovide);
4978 defsubr (&Splist_member);
4979 defsubr (&Swidget_put);
4980 defsubr (&Swidget_get);
4981 defsubr (&Swidget_apply);
4982 defsubr (&Sbase64_encode_region);
4983 defsubr (&Sbase64_decode_region);
4984 defsubr (&Sbase64_encode_string);
4985 defsubr (&Sbase64_decode_string);
4986 defsubr (&Smd5);
4987 defsubr (&Ssha1);
4988 defsubr (&Slocale_info);
4989 }
4990
4991
4992 void
4993 init_fns (void)
4994 {
4995 }