* fns.c (mapcar1): Declare byte as byte, for clarity.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 #ifndef NULL
46 #define NULL ((POINTER_TYPE *)0)
47 #endif
48
49 Lisp_Object Qstring_lessp;
50 static Lisp_Object Qprovide, Qrequire;
51 static Lisp_Object Qyes_or_no_p_history;
52 Lisp_Object Qcursor_in_echo_area;
53 static Lisp_Object Qwidget_type;
54 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
55
56 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
57
58 #ifndef HAVE_UNISTD_H
59 extern long time ();
60 #endif
61 \f
62 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
63 doc: /* Return the argument unchanged. */)
64 (Lisp_Object arg)
65 {
66 return arg;
67 }
68
69 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
70 doc: /* Return a pseudo-random number.
71 All integers representable in Lisp are equally likely.
72 On most systems, this is 29 bits' worth.
73 With positive integer LIMIT, return random number in interval [0,LIMIT).
74 With argument t, set the random number seed from the current time and pid.
75 Other values of LIMIT are ignored. */)
76 (Lisp_Object limit)
77 {
78 EMACS_INT val;
79 Lisp_Object lispy_val;
80 EMACS_UINT denominator;
81
82 if (EQ (limit, Qt))
83 seed_random (getpid () + time (NULL));
84 if (NATNUMP (limit) && XFASTINT (limit) != 0)
85 {
86 /* Try to take our random number from the higher bits of VAL,
87 not the lower, since (says Gentzel) the low bits of `random'
88 are less random than the higher ones. We do this by using the
89 quotient rather than the remainder. At the high end of the RNG
90 it's possible to get a quotient larger than n; discarding
91 these values eliminates the bias that would otherwise appear
92 when using a large n. */
93 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
94 do
95 val = get_random () / denominator;
96 while (val >= XFASTINT (limit));
97 }
98 else
99 val = get_random ();
100 XSETINT (lispy_val, val);
101 return lispy_val;
102 }
103 \f
104 /* Heuristic on how many iterations of a tight loop can be safely done
105 before it's time to do a QUIT. This must be a power of 2. */
106 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
107
108 /* Random data-structure functions */
109
110 DEFUN ("length", Flength, Slength, 1, 1, 0,
111 doc: /* Return the length of vector, list or string SEQUENCE.
112 A byte-code function object is also allowed.
113 If the string contains multibyte characters, this is not necessarily
114 the number of bytes in the string; it is the number of characters.
115 To get the number of bytes, use `string-bytes'. */)
116 (register Lisp_Object sequence)
117 {
118 register Lisp_Object val;
119
120 if (STRINGP (sequence))
121 XSETFASTINT (val, SCHARS (sequence));
122 else if (VECTORP (sequence))
123 XSETFASTINT (val, ASIZE (sequence));
124 else if (CHAR_TABLE_P (sequence))
125 XSETFASTINT (val, MAX_CHAR);
126 else if (BOOL_VECTOR_P (sequence))
127 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
128 else if (COMPILEDP (sequence))
129 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
130 else if (CONSP (sequence))
131 {
132 EMACS_INT i = 0;
133
134 do
135 {
136 ++i;
137 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
138 {
139 if (MOST_POSITIVE_FIXNUM < i)
140 error ("List too long");
141 QUIT;
142 }
143 sequence = XCDR (sequence);
144 }
145 while (CONSP (sequence));
146
147 CHECK_LIST_END (sequence, sequence);
148
149 val = make_number (i);
150 }
151 else if (NILP (sequence))
152 XSETFASTINT (val, 0);
153 else
154 wrong_type_argument (Qsequencep, sequence);
155
156 return val;
157 }
158
159 /* This does not check for quits. That is safe since it must terminate. */
160
161 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
162 doc: /* Return the length of a list, but avoid error or infinite loop.
163 This function never gets an error. If LIST is not really a list,
164 it returns 0. If LIST is circular, it returns a finite value
165 which is at least the number of distinct elements. */)
166 (Lisp_Object list)
167 {
168 Lisp_Object tail, halftail;
169 double hilen = 0;
170 uintmax_t lolen = 1;
171
172 if (! CONSP (list))
173 return 0;
174
175 /* halftail is used to detect circular lists. */
176 for (tail = halftail = list; ; )
177 {
178 tail = XCDR (tail);
179 if (! CONSP (tail))
180 break;
181 if (EQ (tail, halftail))
182 break;
183 lolen++;
184 if ((lolen & 1) == 0)
185 {
186 halftail = XCDR (halftail);
187 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
188 {
189 QUIT;
190 if (lolen == 0)
191 hilen += UINTMAX_MAX + 1.0;
192 }
193 }
194 }
195
196 /* If the length does not fit into a fixnum, return a float.
197 On all known practical machines this returns an upper bound on
198 the true length. */
199 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
200 }
201
202 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
203 doc: /* Return the number of bytes in STRING.
204 If STRING is multibyte, this may be greater than the length of STRING. */)
205 (Lisp_Object string)
206 {
207 CHECK_STRING (string);
208 return make_number (SBYTES (string));
209 }
210
211 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
212 doc: /* Return t if two strings have identical contents.
213 Case is significant, but text properties are ignored.
214 Symbols are also allowed; their print names are used instead. */)
215 (register Lisp_Object s1, Lisp_Object s2)
216 {
217 if (SYMBOLP (s1))
218 s1 = SYMBOL_NAME (s1);
219 if (SYMBOLP (s2))
220 s2 = SYMBOL_NAME (s2);
221 CHECK_STRING (s1);
222 CHECK_STRING (s2);
223
224 if (SCHARS (s1) != SCHARS (s2)
225 || SBYTES (s1) != SBYTES (s2)
226 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
227 return Qnil;
228 return Qt;
229 }
230
231 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
232 doc: /* Compare the contents of two strings, converting to multibyte if needed.
233 In string STR1, skip the first START1 characters and stop at END1.
234 In string STR2, skip the first START2 characters and stop at END2.
235 END1 and END2 default to the full lengths of the respective strings.
236
237 Case is significant in this comparison if IGNORE-CASE is nil.
238 Unibyte strings are converted to multibyte for comparison.
239
240 The value is t if the strings (or specified portions) match.
241 If string STR1 is less, the value is a negative number N;
242 - 1 - N is the number of characters that match at the beginning.
243 If string STR1 is greater, the value is a positive number N;
244 N - 1 is the number of characters that match at the beginning. */)
245 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
246 {
247 register EMACS_INT end1_char, end2_char;
248 register EMACS_INT i1, i1_byte, i2, i2_byte;
249
250 CHECK_STRING (str1);
251 CHECK_STRING (str2);
252 if (NILP (start1))
253 start1 = make_number (0);
254 if (NILP (start2))
255 start2 = make_number (0);
256 CHECK_NATNUM (start1);
257 CHECK_NATNUM (start2);
258 if (! NILP (end1))
259 CHECK_NATNUM (end1);
260 if (! NILP (end2))
261 CHECK_NATNUM (end2);
262
263 i1 = XINT (start1);
264 i2 = XINT (start2);
265
266 i1_byte = string_char_to_byte (str1, i1);
267 i2_byte = string_char_to_byte (str2, i2);
268
269 end1_char = SCHARS (str1);
270 if (! NILP (end1) && end1_char > XINT (end1))
271 end1_char = XINT (end1);
272
273 end2_char = SCHARS (str2);
274 if (! NILP (end2) && end2_char > XINT (end2))
275 end2_char = XINT (end2);
276
277 while (i1 < end1_char && i2 < end2_char)
278 {
279 /* When we find a mismatch, we must compare the
280 characters, not just the bytes. */
281 int c1, c2;
282
283 if (STRING_MULTIBYTE (str1))
284 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
285 else
286 {
287 c1 = SREF (str1, i1++);
288 MAKE_CHAR_MULTIBYTE (c1);
289 }
290
291 if (STRING_MULTIBYTE (str2))
292 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
293 else
294 {
295 c2 = SREF (str2, i2++);
296 MAKE_CHAR_MULTIBYTE (c2);
297 }
298
299 if (c1 == c2)
300 continue;
301
302 if (! NILP (ignore_case))
303 {
304 Lisp_Object tem;
305
306 tem = Fupcase (make_number (c1));
307 c1 = XINT (tem);
308 tem = Fupcase (make_number (c2));
309 c2 = XINT (tem);
310 }
311
312 if (c1 == c2)
313 continue;
314
315 /* Note that I1 has already been incremented
316 past the character that we are comparing;
317 hence we don't add or subtract 1 here. */
318 if (c1 < c2)
319 return make_number (- i1 + XINT (start1));
320 else
321 return make_number (i1 - XINT (start1));
322 }
323
324 if (i1 < end1_char)
325 return make_number (i1 - XINT (start1) + 1);
326 if (i2 < end2_char)
327 return make_number (- i1 + XINT (start1) - 1);
328
329 return Qt;
330 }
331
332 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
333 doc: /* Return t if first arg string is less than second in lexicographic order.
334 Case is significant.
335 Symbols are also allowed; their print names are used instead. */)
336 (register Lisp_Object s1, Lisp_Object s2)
337 {
338 register EMACS_INT end;
339 register EMACS_INT i1, i1_byte, i2, i2_byte;
340
341 if (SYMBOLP (s1))
342 s1 = SYMBOL_NAME (s1);
343 if (SYMBOLP (s2))
344 s2 = SYMBOL_NAME (s2);
345 CHECK_STRING (s1);
346 CHECK_STRING (s2);
347
348 i1 = i1_byte = i2 = i2_byte = 0;
349
350 end = SCHARS (s1);
351 if (end > SCHARS (s2))
352 end = SCHARS (s2);
353
354 while (i1 < end)
355 {
356 /* When we find a mismatch, we must compare the
357 characters, not just the bytes. */
358 int c1, c2;
359
360 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
361 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
362
363 if (c1 != c2)
364 return c1 < c2 ? Qt : Qnil;
365 }
366 return i1 < SCHARS (s2) ? Qt : Qnil;
367 }
368 \f
369 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
370 enum Lisp_Type target_type, int last_special);
371
372 /* ARGSUSED */
373 Lisp_Object
374 concat2 (Lisp_Object s1, Lisp_Object s2)
375 {
376 Lisp_Object args[2];
377 args[0] = s1;
378 args[1] = s2;
379 return concat (2, args, Lisp_String, 0);
380 }
381
382 /* ARGSUSED */
383 Lisp_Object
384 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
385 {
386 Lisp_Object args[3];
387 args[0] = s1;
388 args[1] = s2;
389 args[2] = s3;
390 return concat (3, args, Lisp_String, 0);
391 }
392
393 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
394 doc: /* Concatenate all the arguments and make the result a list.
395 The result is a list whose elements are the elements of all the arguments.
396 Each argument may be a list, vector or string.
397 The last argument is not copied, just used as the tail of the new list.
398 usage: (append &rest SEQUENCES) */)
399 (ptrdiff_t nargs, Lisp_Object *args)
400 {
401 return concat (nargs, args, Lisp_Cons, 1);
402 }
403
404 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
405 doc: /* Concatenate all the arguments and make the result a string.
406 The result is a string whose elements are the elements of all the arguments.
407 Each argument may be a string or a list or vector of characters (integers).
408 usage: (concat &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
410 {
411 return concat (nargs, args, Lisp_String, 0);
412 }
413
414 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a vector.
416 The result is a vector whose elements are the elements of all the arguments.
417 Each argument may be a list, vector or string.
418 usage: (vconcat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
420 {
421 return concat (nargs, args, Lisp_Vectorlike, 0);
422 }
423
424
425 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
426 doc: /* Return a copy of a list, vector, string or char-table.
427 The elements of a list or vector are not copied; they are shared
428 with the original. */)
429 (Lisp_Object arg)
430 {
431 if (NILP (arg)) return arg;
432
433 if (CHAR_TABLE_P (arg))
434 {
435 return copy_char_table (arg);
436 }
437
438 if (BOOL_VECTOR_P (arg))
439 {
440 Lisp_Object val;
441 ptrdiff_t size_in_chars
442 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
443 / BOOL_VECTOR_BITS_PER_CHAR);
444
445 val = Fmake_bool_vector (Flength (arg), Qnil);
446 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
447 size_in_chars);
448 return val;
449 }
450
451 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
452 wrong_type_argument (Qsequencep, arg);
453
454 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
455 }
456
457 /* This structure holds information of an argument of `concat' that is
458 a string and has text properties to be copied. */
459 struct textprop_rec
460 {
461 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
462 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
463 EMACS_INT to; /* refer to VAL (the target string) */
464 };
465
466 static Lisp_Object
467 concat (ptrdiff_t nargs, Lisp_Object *args,
468 enum Lisp_Type target_type, int last_special)
469 {
470 Lisp_Object val;
471 register Lisp_Object tail;
472 register Lisp_Object this;
473 EMACS_INT toindex;
474 EMACS_INT toindex_byte = 0;
475 register EMACS_INT result_len;
476 register EMACS_INT result_len_byte;
477 ptrdiff_t argnum;
478 Lisp_Object last_tail;
479 Lisp_Object prev;
480 int some_multibyte;
481 /* When we make a multibyte string, we can't copy text properties
482 while concatenating each string because the length of resulting
483 string can't be decided until we finish the whole concatenation.
484 So, we record strings that have text properties to be copied
485 here, and copy the text properties after the concatenation. */
486 struct textprop_rec *textprops = NULL;
487 /* Number of elements in textprops. */
488 ptrdiff_t num_textprops = 0;
489 USE_SAFE_ALLOCA;
490
491 tail = Qnil;
492
493 /* In append, the last arg isn't treated like the others */
494 if (last_special && nargs > 0)
495 {
496 nargs--;
497 last_tail = args[nargs];
498 }
499 else
500 last_tail = Qnil;
501
502 /* Check each argument. */
503 for (argnum = 0; argnum < nargs; argnum++)
504 {
505 this = args[argnum];
506 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
507 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
508 wrong_type_argument (Qsequencep, this);
509 }
510
511 /* Compute total length in chars of arguments in RESULT_LEN.
512 If desired output is a string, also compute length in bytes
513 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
514 whether the result should be a multibyte string. */
515 result_len_byte = 0;
516 result_len = 0;
517 some_multibyte = 0;
518 for (argnum = 0; argnum < nargs; argnum++)
519 {
520 EMACS_INT len;
521 this = args[argnum];
522 len = XFASTINT (Flength (this));
523 if (target_type == Lisp_String)
524 {
525 /* We must count the number of bytes needed in the string
526 as well as the number of characters. */
527 EMACS_INT i;
528 Lisp_Object ch;
529 int c;
530 EMACS_INT this_len_byte;
531
532 if (VECTORP (this) || COMPILEDP (this))
533 for (i = 0; i < len; i++)
534 {
535 ch = AREF (this, i);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
542 }
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
547 {
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 result_len_byte += this_len_byte;
553 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
554 some_multibyte = 1;
555 }
556 else if (STRINGP (this))
557 {
558 if (STRING_MULTIBYTE (this))
559 {
560 some_multibyte = 1;
561 result_len_byte += SBYTES (this);
562 }
563 else
564 result_len_byte += count_size_as_multibyte (SDATA (this),
565 SCHARS (this));
566 }
567 }
568
569 result_len += len;
570 if (STRING_BYTES_BOUND < result_len)
571 string_overflow ();
572 }
573
574 if (! some_multibyte)
575 result_len_byte = result_len;
576
577 /* Create the output object. */
578 if (target_type == Lisp_Cons)
579 val = Fmake_list (make_number (result_len), Qnil);
580 else if (target_type == Lisp_Vectorlike)
581 val = Fmake_vector (make_number (result_len), Qnil);
582 else if (some_multibyte)
583 val = make_uninit_multibyte_string (result_len, result_len_byte);
584 else
585 val = make_uninit_string (result_len);
586
587 /* In `append', if all but last arg are nil, return last arg. */
588 if (target_type == Lisp_Cons && EQ (val, Qnil))
589 return last_tail;
590
591 /* Copy the contents of the args into the result. */
592 if (CONSP (val))
593 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
594 else
595 toindex = 0, toindex_byte = 0;
596
597 prev = Qnil;
598 if (STRINGP (val))
599 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
600
601 for (argnum = 0; argnum < nargs; argnum++)
602 {
603 Lisp_Object thislen;
604 EMACS_INT thisleni = 0;
605 register EMACS_INT thisindex = 0;
606 register EMACS_INT thisindex_byte = 0;
607
608 this = args[argnum];
609 if (!CONSP (this))
610 thislen = Flength (this), thisleni = XINT (thislen);
611
612 /* Between strings of the same kind, copy fast. */
613 if (STRINGP (this) && STRINGP (val)
614 && STRING_MULTIBYTE (this) == some_multibyte)
615 {
616 EMACS_INT thislen_byte = SBYTES (this);
617
618 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
619 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
620 {
621 textprops[num_textprops].argnum = argnum;
622 textprops[num_textprops].from = 0;
623 textprops[num_textprops++].to = toindex;
624 }
625 toindex_byte += thislen_byte;
626 toindex += thisleni;
627 }
628 /* Copy a single-byte string to a multibyte string. */
629 else if (STRINGP (this) && STRINGP (val))
630 {
631 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += copy_text (SDATA (this),
638 SDATA (val) + toindex_byte,
639 SCHARS (this), 0, 1);
640 toindex += thisleni;
641 }
642 else
643 /* Copy element by element. */
644 while (1)
645 {
646 register Lisp_Object elt;
647
648 /* Fetch next element of `this' arg into `elt', or break if
649 `this' is exhausted. */
650 if (NILP (this)) break;
651 if (CONSP (this))
652 elt = XCAR (this), this = XCDR (this);
653 else if (thisindex >= thisleni)
654 break;
655 else if (STRINGP (this))
656 {
657 int c;
658 if (STRING_MULTIBYTE (this))
659 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
660 thisindex,
661 thisindex_byte);
662 else
663 {
664 c = SREF (this, thisindex); thisindex++;
665 if (some_multibyte && !ASCII_CHAR_P (c))
666 c = BYTE8_TO_CHAR (c);
667 }
668 XSETFASTINT (elt, c);
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 int byte;
673 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
674 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
675 elt = Qt;
676 else
677 elt = Qnil;
678 thisindex++;
679 }
680 else
681 {
682 elt = AREF (this, thisindex);
683 thisindex++;
684 }
685
686 /* Store this element into the result. */
687 if (toindex < 0)
688 {
689 XSETCAR (tail, elt);
690 prev = tail;
691 tail = XCDR (tail);
692 }
693 else if (VECTORP (val))
694 {
695 ASET (val, toindex, elt);
696 toindex++;
697 }
698 else
699 {
700 int c;
701 CHECK_CHARACTER (elt);
702 c = XFASTINT (elt);
703 if (some_multibyte)
704 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
705 else
706 SSET (val, toindex_byte++, c);
707 toindex++;
708 }
709 }
710 }
711 if (!NILP (prev))
712 XSETCDR (prev, last_tail);
713
714 if (num_textprops > 0)
715 {
716 Lisp_Object props;
717 EMACS_INT last_to_end = -1;
718
719 for (argnum = 0; argnum < num_textprops; argnum++)
720 {
721 this = args[textprops[argnum].argnum];
722 props = text_property_list (this,
723 make_number (0),
724 make_number (SCHARS (this)),
725 Qnil);
726 /* If successive arguments have properties, be sure that the
727 value of `composition' property be the copy. */
728 if (last_to_end == textprops[argnum].to)
729 make_composition_value_copy (props);
730 add_text_properties_from_list (val, props,
731 make_number (textprops[argnum].to));
732 last_to_end = textprops[argnum].to + SCHARS (this);
733 }
734 }
735
736 SAFE_FREE ();
737 return val;
738 }
739 \f
740 static Lisp_Object string_char_byte_cache_string;
741 static EMACS_INT string_char_byte_cache_charpos;
742 static EMACS_INT string_char_byte_cache_bytepos;
743
744 void
745 clear_string_char_byte_cache (void)
746 {
747 string_char_byte_cache_string = Qnil;
748 }
749
750 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
751
752 EMACS_INT
753 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
754 {
755 EMACS_INT i_byte;
756 EMACS_INT best_below, best_below_byte;
757 EMACS_INT best_above, best_above_byte;
758
759 best_below = best_below_byte = 0;
760 best_above = SCHARS (string);
761 best_above_byte = SBYTES (string);
762 if (best_above == best_above_byte)
763 return char_index;
764
765 if (EQ (string, string_char_byte_cache_string))
766 {
767 if (string_char_byte_cache_charpos < char_index)
768 {
769 best_below = string_char_byte_cache_charpos;
770 best_below_byte = string_char_byte_cache_bytepos;
771 }
772 else
773 {
774 best_above = string_char_byte_cache_charpos;
775 best_above_byte = string_char_byte_cache_bytepos;
776 }
777 }
778
779 if (char_index - best_below < best_above - char_index)
780 {
781 unsigned char *p = SDATA (string) + best_below_byte;
782
783 while (best_below < char_index)
784 {
785 p += BYTES_BY_CHAR_HEAD (*p);
786 best_below++;
787 }
788 i_byte = p - SDATA (string);
789 }
790 else
791 {
792 unsigned char *p = SDATA (string) + best_above_byte;
793
794 while (best_above > char_index)
795 {
796 p--;
797 while (!CHAR_HEAD_P (*p)) p--;
798 best_above--;
799 }
800 i_byte = p - SDATA (string);
801 }
802
803 string_char_byte_cache_bytepos = i_byte;
804 string_char_byte_cache_charpos = char_index;
805 string_char_byte_cache_string = string;
806
807 return i_byte;
808 }
809 \f
810 /* Return the character index corresponding to BYTE_INDEX in STRING. */
811
812 EMACS_INT
813 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
814 {
815 EMACS_INT i, i_byte;
816 EMACS_INT best_below, best_below_byte;
817 EMACS_INT best_above, best_above_byte;
818
819 best_below = best_below_byte = 0;
820 best_above = SCHARS (string);
821 best_above_byte = SBYTES (string);
822 if (best_above == best_above_byte)
823 return byte_index;
824
825 if (EQ (string, string_char_byte_cache_string))
826 {
827 if (string_char_byte_cache_bytepos < byte_index)
828 {
829 best_below = string_char_byte_cache_charpos;
830 best_below_byte = string_char_byte_cache_bytepos;
831 }
832 else
833 {
834 best_above = string_char_byte_cache_charpos;
835 best_above_byte = string_char_byte_cache_bytepos;
836 }
837 }
838
839 if (byte_index - best_below_byte < best_above_byte - byte_index)
840 {
841 unsigned char *p = SDATA (string) + best_below_byte;
842 unsigned char *pend = SDATA (string) + byte_index;
843
844 while (p < pend)
845 {
846 p += BYTES_BY_CHAR_HEAD (*p);
847 best_below++;
848 }
849 i = best_below;
850 i_byte = p - SDATA (string);
851 }
852 else
853 {
854 unsigned char *p = SDATA (string) + best_above_byte;
855 unsigned char *pbeg = SDATA (string) + byte_index;
856
857 while (p > pbeg)
858 {
859 p--;
860 while (!CHAR_HEAD_P (*p)) p--;
861 best_above--;
862 }
863 i = best_above;
864 i_byte = p - SDATA (string);
865 }
866
867 string_char_byte_cache_bytepos = i_byte;
868 string_char_byte_cache_charpos = i;
869 string_char_byte_cache_string = string;
870
871 return i;
872 }
873 \f
874 /* Convert STRING to a multibyte string. */
875
876 static Lisp_Object
877 string_make_multibyte (Lisp_Object string)
878 {
879 unsigned char *buf;
880 EMACS_INT nbytes;
881 Lisp_Object ret;
882 USE_SAFE_ALLOCA;
883
884 if (STRING_MULTIBYTE (string))
885 return string;
886
887 nbytes = count_size_as_multibyte (SDATA (string),
888 SCHARS (string));
889 /* If all the chars are ASCII, they won't need any more bytes
890 once converted. In that case, we can return STRING itself. */
891 if (nbytes == SBYTES (string))
892 return string;
893
894 SAFE_ALLOCA (buf, unsigned char *, nbytes);
895 copy_text (SDATA (string), buf, SBYTES (string),
896 0, 1);
897
898 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
899 SAFE_FREE ();
900
901 return ret;
902 }
903
904
905 /* Convert STRING (if unibyte) to a multibyte string without changing
906 the number of characters. Characters 0200 trough 0237 are
907 converted to eight-bit characters. */
908
909 Lisp_Object
910 string_to_multibyte (Lisp_Object string)
911 {
912 unsigned char *buf;
913 EMACS_INT nbytes;
914 Lisp_Object ret;
915 USE_SAFE_ALLOCA;
916
917 if (STRING_MULTIBYTE (string))
918 return string;
919
920 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
921 /* If all the chars are ASCII, they won't need any more bytes once
922 converted. */
923 if (nbytes == SBYTES (string))
924 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
925
926 SAFE_ALLOCA (buf, unsigned char *, nbytes);
927 memcpy (buf, SDATA (string), SBYTES (string));
928 str_to_multibyte (buf, nbytes, SBYTES (string));
929
930 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
931 SAFE_FREE ();
932
933 return ret;
934 }
935
936
937 /* Convert STRING to a single-byte string. */
938
939 Lisp_Object
940 string_make_unibyte (Lisp_Object string)
941 {
942 EMACS_INT nchars;
943 unsigned char *buf;
944 Lisp_Object ret;
945 USE_SAFE_ALLOCA;
946
947 if (! STRING_MULTIBYTE (string))
948 return string;
949
950 nchars = SCHARS (string);
951
952 SAFE_ALLOCA (buf, unsigned char *, nchars);
953 copy_text (SDATA (string), buf, SBYTES (string),
954 1, 0);
955
956 ret = make_unibyte_string ((char *) buf, nchars);
957 SAFE_FREE ();
958
959 return ret;
960 }
961
962 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
963 1, 1, 0,
964 doc: /* Return the multibyte equivalent of STRING.
965 If STRING is unibyte and contains non-ASCII characters, the function
966 `unibyte-char-to-multibyte' is used to convert each unibyte character
967 to a multibyte character. In this case, the returned string is a
968 newly created string with no text properties. If STRING is multibyte
969 or entirely ASCII, it is returned unchanged. In particular, when
970 STRING is unibyte and entirely ASCII, the returned string is unibyte.
971 \(When the characters are all ASCII, Emacs primitives will treat the
972 string the same way whether it is unibyte or multibyte.) */)
973 (Lisp_Object string)
974 {
975 CHECK_STRING (string);
976
977 return string_make_multibyte (string);
978 }
979
980 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
981 1, 1, 0,
982 doc: /* Return the unibyte equivalent of STRING.
983 Multibyte character codes are converted to unibyte according to
984 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
985 If the lookup in the translation table fails, this function takes just
986 the low 8 bits of each character. */)
987 (Lisp_Object string)
988 {
989 CHECK_STRING (string);
990
991 return string_make_unibyte (string);
992 }
993
994 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
995 1, 1, 0,
996 doc: /* Return a unibyte string with the same individual bytes as STRING.
997 If STRING is unibyte, the result is STRING itself.
998 Otherwise it is a newly created string, with no text properties.
999 If STRING is multibyte and contains a character of charset
1000 `eight-bit', it is converted to the corresponding single byte. */)
1001 (Lisp_Object string)
1002 {
1003 CHECK_STRING (string);
1004
1005 if (STRING_MULTIBYTE (string))
1006 {
1007 EMACS_INT bytes = SBYTES (string);
1008 unsigned char *str = (unsigned char *) xmalloc (bytes);
1009
1010 memcpy (str, SDATA (string), bytes);
1011 bytes = str_as_unibyte (str, bytes);
1012 string = make_unibyte_string ((char *) str, bytes);
1013 xfree (str);
1014 }
1015 return string;
1016 }
1017
1018 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1019 1, 1, 0,
1020 doc: /* Return a multibyte string with the same individual bytes as STRING.
1021 If STRING is multibyte, the result is STRING itself.
1022 Otherwise it is a newly created string, with no text properties.
1023
1024 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1025 part of a correct utf-8 sequence), it is converted to the corresponding
1026 multibyte character of charset `eight-bit'.
1027 See also `string-to-multibyte'.
1028
1029 Beware, this often doesn't really do what you think it does.
1030 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1031 If you're not sure, whether to use `string-as-multibyte' or
1032 `string-to-multibyte', use `string-to-multibyte'. */)
1033 (Lisp_Object string)
1034 {
1035 CHECK_STRING (string);
1036
1037 if (! STRING_MULTIBYTE (string))
1038 {
1039 Lisp_Object new_string;
1040 EMACS_INT nchars, nbytes;
1041
1042 parse_str_as_multibyte (SDATA (string),
1043 SBYTES (string),
1044 &nchars, &nbytes);
1045 new_string = make_uninit_multibyte_string (nchars, nbytes);
1046 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1047 if (nbytes != SBYTES (string))
1048 str_as_multibyte (SDATA (new_string), nbytes,
1049 SBYTES (string), NULL);
1050 string = new_string;
1051 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1052 }
1053 return string;
1054 }
1055
1056 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1057 1, 1, 0,
1058 doc: /* Return a multibyte string with the same individual chars as STRING.
1059 If STRING is multibyte, the result is STRING itself.
1060 Otherwise it is a newly created string, with no text properties.
1061
1062 If STRING is unibyte and contains an 8-bit byte, it is converted to
1063 the corresponding multibyte character of charset `eight-bit'.
1064
1065 This differs from `string-as-multibyte' by converting each byte of a correct
1066 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1067 correct sequence. */)
1068 (Lisp_Object string)
1069 {
1070 CHECK_STRING (string);
1071
1072 return string_to_multibyte (string);
1073 }
1074
1075 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1076 1, 1, 0,
1077 doc: /* Return a unibyte string with the same individual chars as STRING.
1078 If STRING is unibyte, the result is STRING itself.
1079 Otherwise it is a newly created string, with no text properties,
1080 where each `eight-bit' character is converted to the corresponding byte.
1081 If STRING contains a non-ASCII, non-`eight-bit' character,
1082 an error is signaled. */)
1083 (Lisp_Object string)
1084 {
1085 CHECK_STRING (string);
1086
1087 if (STRING_MULTIBYTE (string))
1088 {
1089 EMACS_INT chars = SCHARS (string);
1090 unsigned char *str = (unsigned char *) xmalloc (chars);
1091 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1092
1093 if (converted < chars)
1094 error ("Can't convert the %"pI"dth character to unibyte", converted);
1095 string = make_unibyte_string ((char *) str, chars);
1096 xfree (str);
1097 }
1098 return string;
1099 }
1100
1101 \f
1102 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1103 doc: /* Return a copy of ALIST.
1104 This is an alist which represents the same mapping from objects to objects,
1105 but does not share the alist structure with ALIST.
1106 The objects mapped (cars and cdrs of elements of the alist)
1107 are shared, however.
1108 Elements of ALIST that are not conses are also shared. */)
1109 (Lisp_Object alist)
1110 {
1111 register Lisp_Object tem;
1112
1113 CHECK_LIST (alist);
1114 if (NILP (alist))
1115 return alist;
1116 alist = concat (1, &alist, Lisp_Cons, 0);
1117 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1118 {
1119 register Lisp_Object car;
1120 car = XCAR (tem);
1121
1122 if (CONSP (car))
1123 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1124 }
1125 return alist;
1126 }
1127
1128 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1129 doc: /* Return a new string whose contents are a substring of STRING.
1130 The returned string consists of the characters between index FROM
1131 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1132 zero-indexed: 0 means the first character of STRING. Negative values
1133 are counted from the end of STRING. If TO is nil, the substring runs
1134 to the end of STRING.
1135
1136 The STRING argument may also be a vector. In that case, the return
1137 value is a new vector that contains the elements between index FROM
1138 \(inclusive) and index TO (exclusive) of that vector argument. */)
1139 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1140 {
1141 Lisp_Object res;
1142 EMACS_INT size;
1143 EMACS_INT size_byte = 0;
1144 EMACS_INT from_char, to_char;
1145 EMACS_INT from_byte = 0, to_byte = 0;
1146
1147 CHECK_VECTOR_OR_STRING (string);
1148 CHECK_NUMBER (from);
1149
1150 if (STRINGP (string))
1151 {
1152 size = SCHARS (string);
1153 size_byte = SBYTES (string);
1154 }
1155 else
1156 size = ASIZE (string);
1157
1158 if (NILP (to))
1159 {
1160 to_char = size;
1161 to_byte = size_byte;
1162 }
1163 else
1164 {
1165 CHECK_NUMBER (to);
1166
1167 to_char = XINT (to);
1168 if (to_char < 0)
1169 to_char += size;
1170
1171 if (STRINGP (string))
1172 to_byte = string_char_to_byte (string, to_char);
1173 }
1174
1175 from_char = XINT (from);
1176 if (from_char < 0)
1177 from_char += size;
1178 if (STRINGP (string))
1179 from_byte = string_char_to_byte (string, from_char);
1180
1181 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1182 args_out_of_range_3 (string, make_number (from_char),
1183 make_number (to_char));
1184
1185 if (STRINGP (string))
1186 {
1187 res = make_specified_string (SSDATA (string) + from_byte,
1188 to_char - from_char, to_byte - from_byte,
1189 STRING_MULTIBYTE (string));
1190 copy_text_properties (make_number (from_char), make_number (to_char),
1191 string, make_number (0), res, Qnil);
1192 }
1193 else
1194 res = Fvector (to_char - from_char, &AREF (string, from_char));
1195
1196 return res;
1197 }
1198
1199
1200 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1201 doc: /* Return a substring of STRING, without text properties.
1202 It starts at index FROM and ends before TO.
1203 TO may be nil or omitted; then the substring runs to the end of STRING.
1204 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1205 If FROM or TO is negative, it counts from the end.
1206
1207 With one argument, just copy STRING without its properties. */)
1208 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1209 {
1210 EMACS_INT size, size_byte;
1211 EMACS_INT from_char, to_char;
1212 EMACS_INT from_byte, to_byte;
1213
1214 CHECK_STRING (string);
1215
1216 size = SCHARS (string);
1217 size_byte = SBYTES (string);
1218
1219 if (NILP (from))
1220 from_char = from_byte = 0;
1221 else
1222 {
1223 CHECK_NUMBER (from);
1224 from_char = XINT (from);
1225 if (from_char < 0)
1226 from_char += size;
1227
1228 from_byte = string_char_to_byte (string, from_char);
1229 }
1230
1231 if (NILP (to))
1232 {
1233 to_char = size;
1234 to_byte = size_byte;
1235 }
1236 else
1237 {
1238 CHECK_NUMBER (to);
1239
1240 to_char = XINT (to);
1241 if (to_char < 0)
1242 to_char += size;
1243
1244 to_byte = string_char_to_byte (string, to_char);
1245 }
1246
1247 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1248 args_out_of_range_3 (string, make_number (from_char),
1249 make_number (to_char));
1250
1251 return make_specified_string (SSDATA (string) + from_byte,
1252 to_char - from_char, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 }
1255
1256 /* Extract a substring of STRING, giving start and end positions
1257 both in characters and in bytes. */
1258
1259 Lisp_Object
1260 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1261 EMACS_INT to, EMACS_INT to_byte)
1262 {
1263 Lisp_Object res;
1264 EMACS_INT size;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1269
1270 if (!(0 <= from && from <= to && to <= size))
1271 args_out_of_range_3 (string, make_number (from), make_number (to));
1272
1273 if (STRINGP (string))
1274 {
1275 res = make_specified_string (SSDATA (string) + from_byte,
1276 to - from, to_byte - from_byte,
1277 STRING_MULTIBYTE (string));
1278 copy_text_properties (make_number (from), make_number (to),
1279 string, make_number (0), res, Qnil);
1280 }
1281 else
1282 res = Fvector (to - from, &AREF (string, from));
1283
1284 return res;
1285 }
1286 \f
1287 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1288 doc: /* Take cdr N times on LIST, return the result. */)
1289 (Lisp_Object n, Lisp_Object list)
1290 {
1291 EMACS_INT i, num;
1292 CHECK_NUMBER (n);
1293 num = XINT (n);
1294 for (i = 0; i < num && !NILP (list); i++)
1295 {
1296 QUIT;
1297 CHECK_LIST_CONS (list, list);
1298 list = XCDR (list);
1299 }
1300 return list;
1301 }
1302
1303 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1304 doc: /* Return the Nth element of LIST.
1305 N counts from zero. If LIST is not that long, nil is returned. */)
1306 (Lisp_Object n, Lisp_Object list)
1307 {
1308 return Fcar (Fnthcdr (n, list));
1309 }
1310
1311 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1312 doc: /* Return element of SEQUENCE at index N. */)
1313 (register Lisp_Object sequence, Lisp_Object n)
1314 {
1315 CHECK_NUMBER (n);
1316 if (CONSP (sequence) || NILP (sequence))
1317 return Fcar (Fnthcdr (n, sequence));
1318
1319 /* Faref signals a "not array" error, so check here. */
1320 CHECK_ARRAY (sequence, Qsequencep);
1321 return Faref (sequence, n);
1322 }
1323
1324 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1325 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt, Lisp_Object list)
1328 {
1329 register Lisp_Object tail;
1330 for (tail = list; CONSP (tail); tail = XCDR (tail))
1331 {
1332 register Lisp_Object tem;
1333 CHECK_LIST_CONS (tail, list);
1334 tem = XCAR (tail);
1335 if (! NILP (Fequal (elt, tem)))
1336 return tail;
1337 QUIT;
1338 }
1339 return Qnil;
1340 }
1341
1342 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1343 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1344 The value is actually the tail of LIST whose car is ELT. */)
1345 (register Lisp_Object elt, Lisp_Object list)
1346 {
1347 while (1)
1348 {
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 if (!CONSP (list) || EQ (XCAR (list), elt))
1358 break;
1359
1360 list = XCDR (list);
1361 QUIT;
1362 }
1363
1364 CHECK_LIST (list);
1365 return list;
1366 }
1367
1368 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1369 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1370 The value is actually the tail of LIST whose car is ELT. */)
1371 (register Lisp_Object elt, Lisp_Object list)
1372 {
1373 register Lisp_Object tail;
1374
1375 if (!FLOATP (elt))
1376 return Fmemq (elt, list);
1377
1378 for (tail = list; CONSP (tail); tail = XCDR (tail))
1379 {
1380 register Lisp_Object tem;
1381 CHECK_LIST_CONS (tail, list);
1382 tem = XCAR (tail);
1383 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1384 return tail;
1385 QUIT;
1386 }
1387 return Qnil;
1388 }
1389
1390 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1391 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1392 The value is actually the first element of LIST whose car is KEY.
1393 Elements of LIST that are not conses are ignored. */)
1394 (Lisp_Object key, Lisp_Object list)
1395 {
1396 while (1)
1397 {
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1402
1403 list = XCDR (list);
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 QUIT;
1417 }
1418
1419 return CAR (list);
1420 }
1421
1422 /* Like Fassq but never report an error and do not allow quits.
1423 Use only on lists known never to be circular. */
1424
1425 Lisp_Object
1426 assq_no_quit (Lisp_Object key, Lisp_Object list)
1427 {
1428 while (CONSP (list)
1429 && (!CONSP (XCAR (list))
1430 || !EQ (XCAR (XCAR (list)), key)))
1431 list = XCDR (list);
1432
1433 return CAR_SAFE (list);
1434 }
1435
1436 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1437 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1438 The value is actually the first element of LIST whose car equals KEY. */)
1439 (Lisp_Object key, Lisp_Object list)
1440 {
1441 Lisp_Object car;
1442
1443 while (1)
1444 {
1445 if (!CONSP (list)
1446 || (CONSP (XCAR (list))
1447 && (car = XCAR (XCAR (list)),
1448 EQ (car, key) || !NILP (Fequal (car, key)))))
1449 break;
1450
1451 list = XCDR (list);
1452 if (!CONSP (list)
1453 || (CONSP (XCAR (list))
1454 && (car = XCAR (XCAR (list)),
1455 EQ (car, key) || !NILP (Fequal (car, key)))))
1456 break;
1457
1458 list = XCDR (list);
1459 if (!CONSP (list)
1460 || (CONSP (XCAR (list))
1461 && (car = XCAR (XCAR (list)),
1462 EQ (car, key) || !NILP (Fequal (car, key)))))
1463 break;
1464
1465 list = XCDR (list);
1466 QUIT;
1467 }
1468
1469 return CAR (list);
1470 }
1471
1472 /* Like Fassoc but never report an error and do not allow quits.
1473 Use only on lists known never to be circular. */
1474
1475 Lisp_Object
1476 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1477 {
1478 while (CONSP (list)
1479 && (!CONSP (XCAR (list))
1480 || (!EQ (XCAR (XCAR (list)), key)
1481 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1482 list = XCDR (list);
1483
1484 return CONSP (list) ? XCAR (list) : Qnil;
1485 }
1486
1487 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1489 The value is actually the first element of LIST whose cdr is KEY. */)
1490 (register Lisp_Object key, Lisp_Object list)
1491 {
1492 while (1)
1493 {
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1498
1499 list = XCDR (list);
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 QUIT;
1513 }
1514
1515 return CAR (list);
1516 }
1517
1518 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1520 The value is actually the first element of LIST whose cdr equals KEY. */)
1521 (Lisp_Object key, Lisp_Object list)
1522 {
1523 Lisp_Object cdr;
1524
1525 while (1)
1526 {
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (cdr = XCDR (XCAR (list)),
1530 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 if (!CONSP (list)
1535 || (CONSP (XCAR (list))
1536 && (cdr = XCDR (XCAR (list)),
1537 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1538 break;
1539
1540 list = XCDR (list);
1541 if (!CONSP (list)
1542 || (CONSP (XCAR (list))
1543 && (cdr = XCDR (XCAR (list)),
1544 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1545 break;
1546
1547 list = XCDR (list);
1548 QUIT;
1549 }
1550
1551 return CAR (list);
1552 }
1553 \f
1554 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1555 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1556 The modified LIST is returned. Comparison is done with `eq'.
1557 If the first member of LIST is ELT, there is no way to remove it by side effect;
1558 therefore, write `(setq foo (delq element foo))'
1559 to be sure of changing the value of `foo'. */)
1560 (register Lisp_Object elt, Lisp_Object list)
1561 {
1562 register Lisp_Object tail, prev;
1563 register Lisp_Object tem;
1564
1565 tail = list;
1566 prev = Qnil;
1567 while (!NILP (tail))
1568 {
1569 CHECK_LIST_CONS (tail, list);
1570 tem = XCAR (tail);
1571 if (EQ (elt, tem))
1572 {
1573 if (NILP (prev))
1574 list = XCDR (tail);
1575 else
1576 Fsetcdr (prev, XCDR (tail));
1577 }
1578 else
1579 prev = tail;
1580 tail = XCDR (tail);
1581 QUIT;
1582 }
1583 return list;
1584 }
1585
1586 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1587 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1588 SEQ must be a list, a vector, or a string.
1589 The modified SEQ is returned. Comparison is done with `equal'.
1590 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1591 is not a side effect; it is simply using a different sequence.
1592 Therefore, write `(setq foo (delete element foo))'
1593 to be sure of changing the value of `foo'. */)
1594 (Lisp_Object elt, Lisp_Object seq)
1595 {
1596 if (VECTORP (seq))
1597 {
1598 EMACS_INT i, n;
1599
1600 for (i = n = 0; i < ASIZE (seq); ++i)
1601 if (NILP (Fequal (AREF (seq, i), elt)))
1602 ++n;
1603
1604 if (n != ASIZE (seq))
1605 {
1606 struct Lisp_Vector *p = allocate_vector (n);
1607
1608 for (i = n = 0; i < ASIZE (seq); ++i)
1609 if (NILP (Fequal (AREF (seq, i), elt)))
1610 p->contents[n++] = AREF (seq, i);
1611
1612 XSETVECTOR (seq, p);
1613 }
1614 }
1615 else if (STRINGP (seq))
1616 {
1617 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1618 int c;
1619
1620 for (i = nchars = nbytes = ibyte = 0;
1621 i < SCHARS (seq);
1622 ++i, ibyte += cbytes)
1623 {
1624 if (STRING_MULTIBYTE (seq))
1625 {
1626 c = STRING_CHAR (SDATA (seq) + ibyte);
1627 cbytes = CHAR_BYTES (c);
1628 }
1629 else
1630 {
1631 c = SREF (seq, i);
1632 cbytes = 1;
1633 }
1634
1635 if (!INTEGERP (elt) || c != XINT (elt))
1636 {
1637 ++nchars;
1638 nbytes += cbytes;
1639 }
1640 }
1641
1642 if (nchars != SCHARS (seq))
1643 {
1644 Lisp_Object tem;
1645
1646 tem = make_uninit_multibyte_string (nchars, nbytes);
1647 if (!STRING_MULTIBYTE (seq))
1648 STRING_SET_UNIBYTE (tem);
1649
1650 for (i = nchars = nbytes = ibyte = 0;
1651 i < SCHARS (seq);
1652 ++i, ibyte += cbytes)
1653 {
1654 if (STRING_MULTIBYTE (seq))
1655 {
1656 c = STRING_CHAR (SDATA (seq) + ibyte);
1657 cbytes = CHAR_BYTES (c);
1658 }
1659 else
1660 {
1661 c = SREF (seq, i);
1662 cbytes = 1;
1663 }
1664
1665 if (!INTEGERP (elt) || c != XINT (elt))
1666 {
1667 unsigned char *from = SDATA (seq) + ibyte;
1668 unsigned char *to = SDATA (tem) + nbytes;
1669 EMACS_INT n;
1670
1671 ++nchars;
1672 nbytes += cbytes;
1673
1674 for (n = cbytes; n--; )
1675 *to++ = *from++;
1676 }
1677 }
1678
1679 seq = tem;
1680 }
1681 }
1682 else
1683 {
1684 Lisp_Object tail, prev;
1685
1686 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1687 {
1688 CHECK_LIST_CONS (tail, seq);
1689
1690 if (!NILP (Fequal (elt, XCAR (tail))))
1691 {
1692 if (NILP (prev))
1693 seq = XCDR (tail);
1694 else
1695 Fsetcdr (prev, XCDR (tail));
1696 }
1697 else
1698 prev = tail;
1699 QUIT;
1700 }
1701 }
1702
1703 return seq;
1704 }
1705
1706 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1707 doc: /* Reverse LIST by modifying cdr pointers.
1708 Return the reversed list. */)
1709 (Lisp_Object list)
1710 {
1711 register Lisp_Object prev, tail, next;
1712
1713 if (NILP (list)) return list;
1714 prev = Qnil;
1715 tail = list;
1716 while (!NILP (tail))
1717 {
1718 QUIT;
1719 CHECK_LIST_CONS (tail, list);
1720 next = XCDR (tail);
1721 Fsetcdr (tail, prev);
1722 prev = tail;
1723 tail = next;
1724 }
1725 return prev;
1726 }
1727
1728 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1729 doc: /* Reverse LIST, copying. Return the reversed list.
1730 See also the function `nreverse', which is used more often. */)
1731 (Lisp_Object list)
1732 {
1733 Lisp_Object new;
1734
1735 for (new = Qnil; CONSP (list); list = XCDR (list))
1736 {
1737 QUIT;
1738 new = Fcons (XCAR (list), new);
1739 }
1740 CHECK_LIST_END (list, list);
1741 return new;
1742 }
1743 \f
1744 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1745
1746 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1747 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1748 Returns the sorted list. LIST is modified by side effects.
1749 PREDICATE is called with two elements of LIST, and should return non-nil
1750 if the first element should sort before the second. */)
1751 (Lisp_Object list, Lisp_Object predicate)
1752 {
1753 Lisp_Object front, back;
1754 register Lisp_Object len, tem;
1755 struct gcpro gcpro1, gcpro2;
1756 EMACS_INT length;
1757
1758 front = list;
1759 len = Flength (list);
1760 length = XINT (len);
1761 if (length < 2)
1762 return list;
1763
1764 XSETINT (len, (length / 2) - 1);
1765 tem = Fnthcdr (len, list);
1766 back = Fcdr (tem);
1767 Fsetcdr (tem, Qnil);
1768
1769 GCPRO2 (front, back);
1770 front = Fsort (front, predicate);
1771 back = Fsort (back, predicate);
1772 UNGCPRO;
1773 return merge (front, back, predicate);
1774 }
1775
1776 Lisp_Object
1777 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1778 {
1779 Lisp_Object value;
1780 register Lisp_Object tail;
1781 Lisp_Object tem;
1782 register Lisp_Object l1, l2;
1783 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1784
1785 l1 = org_l1;
1786 l2 = org_l2;
1787 tail = Qnil;
1788 value = Qnil;
1789
1790 /* It is sufficient to protect org_l1 and org_l2.
1791 When l1 and l2 are updated, we copy the new values
1792 back into the org_ vars. */
1793 GCPRO4 (org_l1, org_l2, pred, value);
1794
1795 while (1)
1796 {
1797 if (NILP (l1))
1798 {
1799 UNGCPRO;
1800 if (NILP (tail))
1801 return l2;
1802 Fsetcdr (tail, l2);
1803 return value;
1804 }
1805 if (NILP (l2))
1806 {
1807 UNGCPRO;
1808 if (NILP (tail))
1809 return l1;
1810 Fsetcdr (tail, l1);
1811 return value;
1812 }
1813 tem = call2 (pred, Fcar (l2), Fcar (l1));
1814 if (NILP (tem))
1815 {
1816 tem = l1;
1817 l1 = Fcdr (l1);
1818 org_l1 = l1;
1819 }
1820 else
1821 {
1822 tem = l2;
1823 l2 = Fcdr (l2);
1824 org_l2 = l2;
1825 }
1826 if (NILP (tail))
1827 value = tem;
1828 else
1829 Fsetcdr (tail, tem);
1830 tail = tem;
1831 }
1832 }
1833
1834 \f
1835 /* This does not check for quits. That is safe since it must terminate. */
1836
1837 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1838 doc: /* Extract a value from a property list.
1839 PLIST is a property list, which is a list of the form
1840 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1841 corresponding to the given PROP, or nil if PROP is not one of the
1842 properties on the list. This function never signals an error. */)
1843 (Lisp_Object plist, Lisp_Object prop)
1844 {
1845 Lisp_Object tail, halftail;
1846
1847 /* halftail is used to detect circular lists. */
1848 tail = halftail = plist;
1849 while (CONSP (tail) && CONSP (XCDR (tail)))
1850 {
1851 if (EQ (prop, XCAR (tail)))
1852 return XCAR (XCDR (tail));
1853
1854 tail = XCDR (XCDR (tail));
1855 halftail = XCDR (halftail);
1856 if (EQ (tail, halftail))
1857 break;
1858
1859 #if 0 /* Unsafe version. */
1860 /* This function can be called asynchronously
1861 (setup_coding_system). Don't QUIT in that case. */
1862 if (!interrupt_input_blocked)
1863 QUIT;
1864 #endif
1865 }
1866
1867 return Qnil;
1868 }
1869
1870 DEFUN ("get", Fget, Sget, 2, 2, 0,
1871 doc: /* Return the value of SYMBOL's PROPNAME property.
1872 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1873 (Lisp_Object symbol, Lisp_Object propname)
1874 {
1875 CHECK_SYMBOL (symbol);
1876 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1877 }
1878
1879 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1880 doc: /* Change value in PLIST of PROP to VAL.
1881 PLIST is a property list, which is a list of the form
1882 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1883 If PROP is already a property on the list, its value is set to VAL,
1884 otherwise the new PROP VAL pair is added. The new plist is returned;
1885 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1886 The PLIST is modified by side effects. */)
1887 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1888 {
1889 register Lisp_Object tail, prev;
1890 Lisp_Object newcell;
1891 prev = Qnil;
1892 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1893 tail = XCDR (XCDR (tail)))
1894 {
1895 if (EQ (prop, XCAR (tail)))
1896 {
1897 Fsetcar (XCDR (tail), val);
1898 return plist;
1899 }
1900
1901 prev = tail;
1902 QUIT;
1903 }
1904 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1905 if (NILP (prev))
1906 return newcell;
1907 else
1908 Fsetcdr (XCDR (prev), newcell);
1909 return plist;
1910 }
1911
1912 DEFUN ("put", Fput, Sput, 3, 3, 0,
1913 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1914 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1915 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1916 {
1917 CHECK_SYMBOL (symbol);
1918 XSYMBOL (symbol)->plist
1919 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1920 return value;
1921 }
1922 \f
1923 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1924 doc: /* Extract a value from a property list, comparing with `equal'.
1925 PLIST is a property list, which is a list of the form
1926 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1927 corresponding to the given PROP, or nil if PROP is not
1928 one of the properties on the list. */)
1929 (Lisp_Object plist, Lisp_Object prop)
1930 {
1931 Lisp_Object tail;
1932
1933 for (tail = plist;
1934 CONSP (tail) && CONSP (XCDR (tail));
1935 tail = XCDR (XCDR (tail)))
1936 {
1937 if (! NILP (Fequal (prop, XCAR (tail))))
1938 return XCAR (XCDR (tail));
1939
1940 QUIT;
1941 }
1942
1943 CHECK_LIST_END (tail, prop);
1944
1945 return Qnil;
1946 }
1947
1948 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1949 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1950 PLIST is a property list, which is a list of the form
1951 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1952 If PROP is already a property on the list, its value is set to VAL,
1953 otherwise the new PROP VAL pair is added. The new plist is returned;
1954 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1955 The PLIST is modified by side effects. */)
1956 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1957 {
1958 register Lisp_Object tail, prev;
1959 Lisp_Object newcell;
1960 prev = Qnil;
1961 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1962 tail = XCDR (XCDR (tail)))
1963 {
1964 if (! NILP (Fequal (prop, XCAR (tail))))
1965 {
1966 Fsetcar (XCDR (tail), val);
1967 return plist;
1968 }
1969
1970 prev = tail;
1971 QUIT;
1972 }
1973 newcell = Fcons (prop, Fcons (val, Qnil));
1974 if (NILP (prev))
1975 return newcell;
1976 else
1977 Fsetcdr (XCDR (prev), newcell);
1978 return plist;
1979 }
1980 \f
1981 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1982 doc: /* Return t if the two args are the same Lisp object.
1983 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1984 (Lisp_Object obj1, Lisp_Object obj2)
1985 {
1986 if (FLOATP (obj1))
1987 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1988 else
1989 return EQ (obj1, obj2) ? Qt : Qnil;
1990 }
1991
1992 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1993 doc: /* Return t if two Lisp objects have similar structure and contents.
1994 They must have the same data type.
1995 Conses are compared by comparing the cars and the cdrs.
1996 Vectors and strings are compared element by element.
1997 Numbers are compared by value, but integers cannot equal floats.
1998 (Use `=' if you want integers and floats to be able to be equal.)
1999 Symbols must match exactly. */)
2000 (register Lisp_Object o1, Lisp_Object o2)
2001 {
2002 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2003 }
2004
2005 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2006 doc: /* Return t if two Lisp objects have similar structure and contents.
2007 This is like `equal' except that it compares the text properties
2008 of strings. (`equal' ignores text properties.) */)
2009 (register Lisp_Object o1, Lisp_Object o2)
2010 {
2011 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2012 }
2013
2014 /* DEPTH is current depth of recursion. Signal an error if it
2015 gets too deep.
2016 PROPS, if non-nil, means compare string text properties too. */
2017
2018 static int
2019 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2020 {
2021 if (depth > 200)
2022 error ("Stack overflow in equal");
2023
2024 tail_recurse:
2025 QUIT;
2026 if (EQ (o1, o2))
2027 return 1;
2028 if (XTYPE (o1) != XTYPE (o2))
2029 return 0;
2030
2031 switch (XTYPE (o1))
2032 {
2033 case Lisp_Float:
2034 {
2035 double d1, d2;
2036
2037 d1 = extract_float (o1);
2038 d2 = extract_float (o2);
2039 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2040 though they are not =. */
2041 return d1 == d2 || (d1 != d1 && d2 != d2);
2042 }
2043
2044 case Lisp_Cons:
2045 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2046 return 0;
2047 o1 = XCDR (o1);
2048 o2 = XCDR (o2);
2049 goto tail_recurse;
2050
2051 case Lisp_Misc:
2052 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2053 return 0;
2054 if (OVERLAYP (o1))
2055 {
2056 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2057 depth + 1, props)
2058 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2059 depth + 1, props))
2060 return 0;
2061 o1 = XOVERLAY (o1)->plist;
2062 o2 = XOVERLAY (o2)->plist;
2063 goto tail_recurse;
2064 }
2065 if (MARKERP (o1))
2066 {
2067 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2068 && (XMARKER (o1)->buffer == 0
2069 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2070 }
2071 break;
2072
2073 case Lisp_Vectorlike:
2074 {
2075 register int i;
2076 EMACS_INT size = ASIZE (o1);
2077 /* Pseudovectors have the type encoded in the size field, so this test
2078 actually checks that the objects have the same type as well as the
2079 same size. */
2080 if (ASIZE (o2) != size)
2081 return 0;
2082 /* Boolvectors are compared much like strings. */
2083 if (BOOL_VECTOR_P (o1))
2084 {
2085 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2086 return 0;
2087 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2088 ((XBOOL_VECTOR (o1)->size
2089 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2090 / BOOL_VECTOR_BITS_PER_CHAR)))
2091 return 0;
2092 return 1;
2093 }
2094 if (WINDOW_CONFIGURATIONP (o1))
2095 return compare_window_configurations (o1, o2, 0);
2096
2097 /* Aside from them, only true vectors, char-tables, compiled
2098 functions, and fonts (font-spec, font-entity, font-object)
2099 are sensible to compare, so eliminate the others now. */
2100 if (size & PSEUDOVECTOR_FLAG)
2101 {
2102 if (!(size & (PVEC_COMPILED
2103 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2104 return 0;
2105 size &= PSEUDOVECTOR_SIZE_MASK;
2106 }
2107 for (i = 0; i < size; i++)
2108 {
2109 Lisp_Object v1, v2;
2110 v1 = AREF (o1, i);
2111 v2 = AREF (o2, i);
2112 if (!internal_equal (v1, v2, depth + 1, props))
2113 return 0;
2114 }
2115 return 1;
2116 }
2117 break;
2118
2119 case Lisp_String:
2120 if (SCHARS (o1) != SCHARS (o2))
2121 return 0;
2122 if (SBYTES (o1) != SBYTES (o2))
2123 return 0;
2124 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2125 return 0;
2126 if (props && !compare_string_intervals (o1, o2))
2127 return 0;
2128 return 1;
2129
2130 default:
2131 break;
2132 }
2133
2134 return 0;
2135 }
2136 \f
2137
2138 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2139 doc: /* Store each element of ARRAY with ITEM.
2140 ARRAY is a vector, string, char-table, or bool-vector. */)
2141 (Lisp_Object array, Lisp_Object item)
2142 {
2143 register EMACS_INT size, idx;
2144
2145 if (VECTORP (array))
2146 {
2147 register Lisp_Object *p = XVECTOR (array)->contents;
2148 size = ASIZE (array);
2149 for (idx = 0; idx < size; idx++)
2150 p[idx] = item;
2151 }
2152 else if (CHAR_TABLE_P (array))
2153 {
2154 int i;
2155
2156 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2157 XCHAR_TABLE (array)->contents[i] = item;
2158 XCHAR_TABLE (array)->defalt = item;
2159 }
2160 else if (STRINGP (array))
2161 {
2162 register unsigned char *p = SDATA (array);
2163 int charval;
2164 CHECK_CHARACTER (item);
2165 charval = XFASTINT (item);
2166 size = SCHARS (array);
2167 if (STRING_MULTIBYTE (array))
2168 {
2169 unsigned char str[MAX_MULTIBYTE_LENGTH];
2170 int len = CHAR_STRING (charval, str);
2171 EMACS_INT size_byte = SBYTES (array);
2172
2173 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2174 || SCHARS (array) * len != size_byte)
2175 error ("Attempt to change byte length of a string");
2176 for (idx = 0; idx < size_byte; idx++)
2177 *p++ = str[idx % len];
2178 }
2179 else
2180 for (idx = 0; idx < size; idx++)
2181 p[idx] = charval;
2182 }
2183 else if (BOOL_VECTOR_P (array))
2184 {
2185 register unsigned char *p = XBOOL_VECTOR (array)->data;
2186 EMACS_INT size = XBOOL_VECTOR (array)->size;
2187 EMACS_INT size_in_chars
2188 = ((size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2189 / BOOL_VECTOR_BITS_PER_CHAR);
2190
2191 if (size_in_chars)
2192 {
2193 memset (p, ! NILP (item) ? -1 : 0, size_in_chars);
2194
2195 /* Clear any extraneous bits in the last byte. */
2196 p[size_in_chars - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2197 }
2198 }
2199 else
2200 wrong_type_argument (Qarrayp, array);
2201 return array;
2202 }
2203
2204 DEFUN ("clear-string", Fclear_string, Sclear_string,
2205 1, 1, 0,
2206 doc: /* Clear the contents of STRING.
2207 This makes STRING unibyte and may change its length. */)
2208 (Lisp_Object string)
2209 {
2210 EMACS_INT len;
2211 CHECK_STRING (string);
2212 len = SBYTES (string);
2213 memset (SDATA (string), 0, len);
2214 STRING_SET_CHARS (string, len);
2215 STRING_SET_UNIBYTE (string);
2216 return Qnil;
2217 }
2218 \f
2219 /* ARGSUSED */
2220 Lisp_Object
2221 nconc2 (Lisp_Object s1, Lisp_Object s2)
2222 {
2223 Lisp_Object args[2];
2224 args[0] = s1;
2225 args[1] = s2;
2226 return Fnconc (2, args);
2227 }
2228
2229 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2230 doc: /* Concatenate any number of lists by altering them.
2231 Only the last argument is not altered, and need not be a list.
2232 usage: (nconc &rest LISTS) */)
2233 (ptrdiff_t nargs, Lisp_Object *args)
2234 {
2235 ptrdiff_t argnum;
2236 register Lisp_Object tail, tem, val;
2237
2238 val = tail = Qnil;
2239
2240 for (argnum = 0; argnum < nargs; argnum++)
2241 {
2242 tem = args[argnum];
2243 if (NILP (tem)) continue;
2244
2245 if (NILP (val))
2246 val = tem;
2247
2248 if (argnum + 1 == nargs) break;
2249
2250 CHECK_LIST_CONS (tem, tem);
2251
2252 while (CONSP (tem))
2253 {
2254 tail = tem;
2255 tem = XCDR (tail);
2256 QUIT;
2257 }
2258
2259 tem = args[argnum + 1];
2260 Fsetcdr (tail, tem);
2261 if (NILP (tem))
2262 args[argnum + 1] = tail;
2263 }
2264
2265 return val;
2266 }
2267 \f
2268 /* This is the guts of all mapping functions.
2269 Apply FN to each element of SEQ, one by one,
2270 storing the results into elements of VALS, a C vector of Lisp_Objects.
2271 LENI is the length of VALS, which should also be the length of SEQ. */
2272
2273 static void
2274 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2275 {
2276 register Lisp_Object tail;
2277 Lisp_Object dummy;
2278 register EMACS_INT i;
2279 struct gcpro gcpro1, gcpro2, gcpro3;
2280
2281 if (vals)
2282 {
2283 /* Don't let vals contain any garbage when GC happens. */
2284 for (i = 0; i < leni; i++)
2285 vals[i] = Qnil;
2286
2287 GCPRO3 (dummy, fn, seq);
2288 gcpro1.var = vals;
2289 gcpro1.nvars = leni;
2290 }
2291 else
2292 GCPRO2 (fn, seq);
2293 /* We need not explicitly protect `tail' because it is used only on lists, and
2294 1) lists are not relocated and 2) the list is marked via `seq' so will not
2295 be freed */
2296
2297 if (VECTORP (seq) || COMPILEDP (seq))
2298 {
2299 for (i = 0; i < leni; i++)
2300 {
2301 dummy = call1 (fn, AREF (seq, i));
2302 if (vals)
2303 vals[i] = dummy;
2304 }
2305 }
2306 else if (BOOL_VECTOR_P (seq))
2307 {
2308 for (i = 0; i < leni; i++)
2309 {
2310 unsigned char byte;
2311 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2312 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2313 dummy = call1 (fn, dummy);
2314 if (vals)
2315 vals[i] = dummy;
2316 }
2317 }
2318 else if (STRINGP (seq))
2319 {
2320 EMACS_INT i_byte;
2321
2322 for (i = 0, i_byte = 0; i < leni;)
2323 {
2324 int c;
2325 EMACS_INT i_before = i;
2326
2327 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2328 XSETFASTINT (dummy, c);
2329 dummy = call1 (fn, dummy);
2330 if (vals)
2331 vals[i_before] = dummy;
2332 }
2333 }
2334 else /* Must be a list, since Flength did not get an error */
2335 {
2336 tail = seq;
2337 for (i = 0; i < leni && CONSP (tail); i++)
2338 {
2339 dummy = call1 (fn, XCAR (tail));
2340 if (vals)
2341 vals[i] = dummy;
2342 tail = XCDR (tail);
2343 }
2344 }
2345
2346 UNGCPRO;
2347 }
2348
2349 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2350 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2351 In between each pair of results, stick in SEPARATOR. Thus, " " as
2352 SEPARATOR results in spaces between the values returned by FUNCTION.
2353 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2354 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2355 {
2356 Lisp_Object len;
2357 register EMACS_INT leni;
2358 ptrdiff_t i, nargs;
2359 register Lisp_Object *args;
2360 struct gcpro gcpro1;
2361 Lisp_Object ret;
2362 USE_SAFE_ALLOCA;
2363
2364 len = Flength (sequence);
2365 if (CHAR_TABLE_P (sequence))
2366 wrong_type_argument (Qlistp, sequence);
2367 leni = XINT (len);
2368 nargs = leni + leni - 1;
2369 if (nargs < 0) return empty_unibyte_string;
2370
2371 SAFE_ALLOCA_LISP (args, nargs);
2372
2373 GCPRO1 (separator);
2374 mapcar1 (leni, args, function, sequence);
2375 UNGCPRO;
2376
2377 for (i = leni - 1; i > 0; i--)
2378 args[i + i] = args[i];
2379
2380 for (i = 1; i < nargs; i += 2)
2381 args[i] = separator;
2382
2383 ret = Fconcat (nargs, args);
2384 SAFE_FREE ();
2385
2386 return ret;
2387 }
2388
2389 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2390 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2391 The result is a list just as long as SEQUENCE.
2392 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2393 (Lisp_Object function, Lisp_Object sequence)
2394 {
2395 register Lisp_Object len;
2396 register EMACS_INT leni;
2397 register Lisp_Object *args;
2398 Lisp_Object ret;
2399 USE_SAFE_ALLOCA;
2400
2401 len = Flength (sequence);
2402 if (CHAR_TABLE_P (sequence))
2403 wrong_type_argument (Qlistp, sequence);
2404 leni = XFASTINT (len);
2405
2406 SAFE_ALLOCA_LISP (args, leni);
2407
2408 mapcar1 (leni, args, function, sequence);
2409
2410 ret = Flist (leni, args);
2411 SAFE_FREE ();
2412
2413 return ret;
2414 }
2415
2416 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2417 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2418 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2419 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2420 (Lisp_Object function, Lisp_Object sequence)
2421 {
2422 register EMACS_INT leni;
2423
2424 leni = XFASTINT (Flength (sequence));
2425 if (CHAR_TABLE_P (sequence))
2426 wrong_type_argument (Qlistp, sequence);
2427 mapcar1 (leni, 0, function, sequence);
2428
2429 return sequence;
2430 }
2431 \f
2432 /* This is how C code calls `yes-or-no-p' and allows the user
2433 to redefined it.
2434
2435 Anything that calls this function must protect from GC! */
2436
2437 Lisp_Object
2438 do_yes_or_no_p (Lisp_Object prompt)
2439 {
2440 return call1 (intern ("yes-or-no-p"), prompt);
2441 }
2442
2443 /* Anything that calls this function must protect from GC! */
2444
2445 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2446 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2447 PROMPT is the string to display to ask the question. It should end in
2448 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2449
2450 The user must confirm the answer with RET, and can edit it until it
2451 has been confirmed.
2452
2453 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2454 is nil, and `use-dialog-box' is non-nil. */)
2455 (Lisp_Object prompt)
2456 {
2457 register Lisp_Object ans;
2458 Lisp_Object args[2];
2459 struct gcpro gcpro1;
2460
2461 CHECK_STRING (prompt);
2462
2463 #ifdef HAVE_MENUS
2464 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2465 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2466 && use_dialog_box
2467 && have_menus_p ())
2468 {
2469 Lisp_Object pane, menu, obj;
2470 redisplay_preserve_echo_area (4);
2471 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2472 Fcons (Fcons (build_string ("No"), Qnil),
2473 Qnil));
2474 GCPRO1 (pane);
2475 menu = Fcons (prompt, pane);
2476 obj = Fx_popup_dialog (Qt, menu, Qnil);
2477 UNGCPRO;
2478 return obj;
2479 }
2480 #endif /* HAVE_MENUS */
2481
2482 args[0] = prompt;
2483 args[1] = build_string ("(yes or no) ");
2484 prompt = Fconcat (2, args);
2485
2486 GCPRO1 (prompt);
2487
2488 while (1)
2489 {
2490 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2491 Qyes_or_no_p_history, Qnil,
2492 Qnil));
2493 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2494 {
2495 UNGCPRO;
2496 return Qt;
2497 }
2498 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2499 {
2500 UNGCPRO;
2501 return Qnil;
2502 }
2503
2504 Fding (Qnil);
2505 Fdiscard_input ();
2506 message ("Please answer yes or no.");
2507 Fsleep_for (make_number (2), Qnil);
2508 }
2509 }
2510 \f
2511 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2512 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2513
2514 Each of the three load averages is multiplied by 100, then converted
2515 to integer.
2516
2517 When USE-FLOATS is non-nil, floats will be used instead of integers.
2518 These floats are not multiplied by 100.
2519
2520 If the 5-minute or 15-minute load averages are not available, return a
2521 shortened list, containing only those averages which are available.
2522
2523 An error is thrown if the load average can't be obtained. In some
2524 cases making it work would require Emacs being installed setuid or
2525 setgid so that it can read kernel information, and that usually isn't
2526 advisable. */)
2527 (Lisp_Object use_floats)
2528 {
2529 double load_ave[3];
2530 int loads = getloadavg (load_ave, 3);
2531 Lisp_Object ret = Qnil;
2532
2533 if (loads < 0)
2534 error ("load-average not implemented for this operating system");
2535
2536 while (loads-- > 0)
2537 {
2538 Lisp_Object load = (NILP (use_floats)
2539 ? make_number (100.0 * load_ave[loads])
2540 : make_float (load_ave[loads]));
2541 ret = Fcons (load, ret);
2542 }
2543
2544 return ret;
2545 }
2546 \f
2547 static Lisp_Object Qsubfeatures;
2548
2549 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2550 doc: /* Return t if FEATURE is present in this Emacs.
2551
2552 Use this to conditionalize execution of lisp code based on the
2553 presence or absence of Emacs or environment extensions.
2554 Use `provide' to declare that a feature is available. This function
2555 looks at the value of the variable `features'. The optional argument
2556 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2557 (Lisp_Object feature, Lisp_Object subfeature)
2558 {
2559 register Lisp_Object tem;
2560 CHECK_SYMBOL (feature);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (!NILP (tem) && !NILP (subfeature))
2563 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2564 return (NILP (tem)) ? Qnil : Qt;
2565 }
2566
2567 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2568 doc: /* Announce that FEATURE is a feature of the current Emacs.
2569 The optional argument SUBFEATURES should be a list of symbols listing
2570 particular subfeatures supported in this version of FEATURE. */)
2571 (Lisp_Object feature, Lisp_Object subfeatures)
2572 {
2573 register Lisp_Object tem;
2574 CHECK_SYMBOL (feature);
2575 CHECK_LIST (subfeatures);
2576 if (!NILP (Vautoload_queue))
2577 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2578 Vautoload_queue);
2579 tem = Fmemq (feature, Vfeatures);
2580 if (NILP (tem))
2581 Vfeatures = Fcons (feature, Vfeatures);
2582 if (!NILP (subfeatures))
2583 Fput (feature, Qsubfeatures, subfeatures);
2584 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2585
2586 /* Run any load-hooks for this file. */
2587 tem = Fassq (feature, Vafter_load_alist);
2588 if (CONSP (tem))
2589 Fprogn (XCDR (tem));
2590
2591 return feature;
2592 }
2593 \f
2594 /* `require' and its subroutines. */
2595
2596 /* List of features currently being require'd, innermost first. */
2597
2598 static Lisp_Object require_nesting_list;
2599
2600 static Lisp_Object
2601 require_unwind (Lisp_Object old_value)
2602 {
2603 return require_nesting_list = old_value;
2604 }
2605
2606 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2607 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2608 If FEATURE is not a member of the list `features', then the feature
2609 is not loaded; so load the file FILENAME.
2610 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2611 and `load' will try to load this name appended with the suffix `.elc' or
2612 `.el', in that order. The name without appended suffix will not be used.
2613 If the optional third argument NOERROR is non-nil,
2614 then return nil if the file is not found instead of signaling an error.
2615 Normally the return value is FEATURE.
2616 The normal messages at start and end of loading FILENAME are suppressed. */)
2617 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2618 {
2619 register Lisp_Object tem;
2620 struct gcpro gcpro1, gcpro2;
2621 int from_file = load_in_progress;
2622
2623 CHECK_SYMBOL (feature);
2624
2625 /* Record the presence of `require' in this file
2626 even if the feature specified is already loaded.
2627 But not more than once in any file,
2628 and not when we aren't loading or reading from a file. */
2629 if (!from_file)
2630 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2631 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2632 from_file = 1;
2633
2634 if (from_file)
2635 {
2636 tem = Fcons (Qrequire, feature);
2637 if (NILP (Fmember (tem, Vcurrent_load_list)))
2638 LOADHIST_ATTACH (tem);
2639 }
2640 tem = Fmemq (feature, Vfeatures);
2641
2642 if (NILP (tem))
2643 {
2644 int count = SPECPDL_INDEX ();
2645 int nesting = 0;
2646
2647 /* This is to make sure that loadup.el gives a clear picture
2648 of what files are preloaded and when. */
2649 if (! NILP (Vpurify_flag))
2650 error ("(require %s) while preparing to dump",
2651 SDATA (SYMBOL_NAME (feature)));
2652
2653 /* A certain amount of recursive `require' is legitimate,
2654 but if we require the same feature recursively 3 times,
2655 signal an error. */
2656 tem = require_nesting_list;
2657 while (! NILP (tem))
2658 {
2659 if (! NILP (Fequal (feature, XCAR (tem))))
2660 nesting++;
2661 tem = XCDR (tem);
2662 }
2663 if (nesting > 3)
2664 error ("Recursive `require' for feature `%s'",
2665 SDATA (SYMBOL_NAME (feature)));
2666
2667 /* Update the list for any nested `require's that occur. */
2668 record_unwind_protect (require_unwind, require_nesting_list);
2669 require_nesting_list = Fcons (feature, require_nesting_list);
2670
2671 /* Value saved here is to be restored into Vautoload_queue */
2672 record_unwind_protect (un_autoload, Vautoload_queue);
2673 Vautoload_queue = Qt;
2674
2675 /* Load the file. */
2676 GCPRO2 (feature, filename);
2677 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2678 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2679 UNGCPRO;
2680
2681 /* If load failed entirely, return nil. */
2682 if (NILP (tem))
2683 return unbind_to (count, Qnil);
2684
2685 tem = Fmemq (feature, Vfeatures);
2686 if (NILP (tem))
2687 error ("Required feature `%s' was not provided",
2688 SDATA (SYMBOL_NAME (feature)));
2689
2690 /* Once loading finishes, don't undo it. */
2691 Vautoload_queue = Qt;
2692 feature = unbind_to (count, feature);
2693 }
2694
2695 return feature;
2696 }
2697 \f
2698 /* Primitives for work of the "widget" library.
2699 In an ideal world, this section would not have been necessary.
2700 However, lisp function calls being as slow as they are, it turns
2701 out that some functions in the widget library (wid-edit.el) are the
2702 bottleneck of Widget operation. Here is their translation to C,
2703 for the sole reason of efficiency. */
2704
2705 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2706 doc: /* Return non-nil if PLIST has the property PROP.
2707 PLIST is a property list, which is a list of the form
2708 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2709 Unlike `plist-get', this allows you to distinguish between a missing
2710 property and a property with the value nil.
2711 The value is actually the tail of PLIST whose car is PROP. */)
2712 (Lisp_Object plist, Lisp_Object prop)
2713 {
2714 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2715 {
2716 QUIT;
2717 plist = XCDR (plist);
2718 plist = CDR (plist);
2719 }
2720 return plist;
2721 }
2722
2723 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2724 doc: /* In WIDGET, set PROPERTY to VALUE.
2725 The value can later be retrieved with `widget-get'. */)
2726 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2727 {
2728 CHECK_CONS (widget);
2729 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2730 return value;
2731 }
2732
2733 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2734 doc: /* In WIDGET, get the value of PROPERTY.
2735 The value could either be specified when the widget was created, or
2736 later with `widget-put'. */)
2737 (Lisp_Object widget, Lisp_Object property)
2738 {
2739 Lisp_Object tmp;
2740
2741 while (1)
2742 {
2743 if (NILP (widget))
2744 return Qnil;
2745 CHECK_CONS (widget);
2746 tmp = Fplist_member (XCDR (widget), property);
2747 if (CONSP (tmp))
2748 {
2749 tmp = XCDR (tmp);
2750 return CAR (tmp);
2751 }
2752 tmp = XCAR (widget);
2753 if (NILP (tmp))
2754 return Qnil;
2755 widget = Fget (tmp, Qwidget_type);
2756 }
2757 }
2758
2759 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2760 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2761 ARGS are passed as extra arguments to the function.
2762 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2763 (ptrdiff_t nargs, Lisp_Object *args)
2764 {
2765 /* This function can GC. */
2766 Lisp_Object newargs[3];
2767 struct gcpro gcpro1, gcpro2;
2768 Lisp_Object result;
2769
2770 newargs[0] = Fwidget_get (args[0], args[1]);
2771 newargs[1] = args[0];
2772 newargs[2] = Flist (nargs - 2, args + 2);
2773 GCPRO2 (newargs[0], newargs[2]);
2774 result = Fapply (3, newargs);
2775 UNGCPRO;
2776 return result;
2777 }
2778
2779 #ifdef HAVE_LANGINFO_CODESET
2780 #include <langinfo.h>
2781 #endif
2782
2783 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2784 doc: /* Access locale data ITEM for the current C locale, if available.
2785 ITEM should be one of the following:
2786
2787 `codeset', returning the character set as a string (locale item CODESET);
2788
2789 `days', returning a 7-element vector of day names (locale items DAY_n);
2790
2791 `months', returning a 12-element vector of month names (locale items MON_n);
2792
2793 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2794 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2795
2796 If the system can't provide such information through a call to
2797 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2798
2799 See also Info node `(libc)Locales'.
2800
2801 The data read from the system are decoded using `locale-coding-system'. */)
2802 (Lisp_Object item)
2803 {
2804 char *str = NULL;
2805 #ifdef HAVE_LANGINFO_CODESET
2806 Lisp_Object val;
2807 if (EQ (item, Qcodeset))
2808 {
2809 str = nl_langinfo (CODESET);
2810 return build_string (str);
2811 }
2812 #ifdef DAY_1
2813 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2814 {
2815 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2816 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2817 int i;
2818 struct gcpro gcpro1;
2819 GCPRO1 (v);
2820 synchronize_system_time_locale ();
2821 for (i = 0; i < 7; i++)
2822 {
2823 str = nl_langinfo (days[i]);
2824 val = make_unibyte_string (str, strlen (str));
2825 /* Fixme: Is this coding system necessarily right, even if
2826 it is consistent with CODESET? If not, what to do? */
2827 Faset (v, make_number (i),
2828 code_convert_string_norecord (val, Vlocale_coding_system,
2829 0));
2830 }
2831 UNGCPRO;
2832 return v;
2833 }
2834 #endif /* DAY_1 */
2835 #ifdef MON_1
2836 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2837 {
2838 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2839 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2840 MON_8, MON_9, MON_10, MON_11, MON_12};
2841 int i;
2842 struct gcpro gcpro1;
2843 GCPRO1 (v);
2844 synchronize_system_time_locale ();
2845 for (i = 0; i < 12; i++)
2846 {
2847 str = nl_langinfo (months[i]);
2848 val = make_unibyte_string (str, strlen (str));
2849 Faset (v, make_number (i),
2850 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2851 }
2852 UNGCPRO;
2853 return v;
2854 }
2855 #endif /* MON_1 */
2856 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2857 but is in the locale files. This could be used by ps-print. */
2858 #ifdef PAPER_WIDTH
2859 else if (EQ (item, Qpaper))
2860 {
2861 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2862 make_number (nl_langinfo (PAPER_HEIGHT)));
2863 }
2864 #endif /* PAPER_WIDTH */
2865 #endif /* HAVE_LANGINFO_CODESET*/
2866 return Qnil;
2867 }
2868 \f
2869 /* base64 encode/decode functions (RFC 2045).
2870 Based on code from GNU recode. */
2871
2872 #define MIME_LINE_LENGTH 76
2873
2874 #define IS_ASCII(Character) \
2875 ((Character) < 128)
2876 #define IS_BASE64(Character) \
2877 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2878 #define IS_BASE64_IGNORABLE(Character) \
2879 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2880 || (Character) == '\f' || (Character) == '\r')
2881
2882 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2883 character or return retval if there are no characters left to
2884 process. */
2885 #define READ_QUADRUPLET_BYTE(retval) \
2886 do \
2887 { \
2888 if (i == length) \
2889 { \
2890 if (nchars_return) \
2891 *nchars_return = nchars; \
2892 return (retval); \
2893 } \
2894 c = from[i++]; \
2895 } \
2896 while (IS_BASE64_IGNORABLE (c))
2897
2898 /* Table of characters coding the 64 values. */
2899 static const char base64_value_to_char[64] =
2900 {
2901 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2902 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2903 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2904 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2905 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2906 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2907 '8', '9', '+', '/' /* 60-63 */
2908 };
2909
2910 /* Table of base64 values for first 128 characters. */
2911 static const short base64_char_to_value[128] =
2912 {
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2914 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2915 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2916 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2917 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2918 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2919 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2920 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2921 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2922 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2923 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2924 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2925 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2926 };
2927
2928 /* The following diagram shows the logical steps by which three octets
2929 get transformed into four base64 characters.
2930
2931 .--------. .--------. .--------.
2932 |aaaaaabb| |bbbbcccc| |ccdddddd|
2933 `--------' `--------' `--------'
2934 6 2 4 4 2 6
2935 .--------+--------+--------+--------.
2936 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2937 `--------+--------+--------+--------'
2938
2939 .--------+--------+--------+--------.
2940 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2941 `--------+--------+--------+--------'
2942
2943 The octets are divided into 6 bit chunks, which are then encoded into
2944 base64 characters. */
2945
2946
2947 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2948 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2949 EMACS_INT *);
2950
2951 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2952 2, 3, "r",
2953 doc: /* Base64-encode the region between BEG and END.
2954 Return the length of the encoded text.
2955 Optional third argument NO-LINE-BREAK means do not break long lines
2956 into shorter lines. */)
2957 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2958 {
2959 char *encoded;
2960 EMACS_INT allength, length;
2961 EMACS_INT ibeg, iend, encoded_length;
2962 EMACS_INT old_pos = PT;
2963 USE_SAFE_ALLOCA;
2964
2965 validate_region (&beg, &end);
2966
2967 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2968 iend = CHAR_TO_BYTE (XFASTINT (end));
2969 move_gap_both (XFASTINT (beg), ibeg);
2970
2971 /* We need to allocate enough room for encoding the text.
2972 We need 33 1/3% more space, plus a newline every 76
2973 characters, and then we round up. */
2974 length = iend - ibeg;
2975 allength = length + length/3 + 1;
2976 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2977
2978 SAFE_ALLOCA (encoded, char *, allength);
2979 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2980 encoded, length, NILP (no_line_break),
2981 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2982 if (encoded_length > allength)
2983 abort ();
2984
2985 if (encoded_length < 0)
2986 {
2987 /* The encoding wasn't possible. */
2988 SAFE_FREE ();
2989 error ("Multibyte character in data for base64 encoding");
2990 }
2991
2992 /* Now we have encoded the region, so we insert the new contents
2993 and delete the old. (Insert first in order to preserve markers.) */
2994 SET_PT_BOTH (XFASTINT (beg), ibeg);
2995 insert (encoded, encoded_length);
2996 SAFE_FREE ();
2997 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2998
2999 /* If point was outside of the region, restore it exactly; else just
3000 move to the beginning of the region. */
3001 if (old_pos >= XFASTINT (end))
3002 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3003 else if (old_pos > XFASTINT (beg))
3004 old_pos = XFASTINT (beg);
3005 SET_PT (old_pos);
3006
3007 /* We return the length of the encoded text. */
3008 return make_number (encoded_length);
3009 }
3010
3011 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3012 1, 2, 0,
3013 doc: /* Base64-encode STRING and return the result.
3014 Optional second argument NO-LINE-BREAK means do not break long lines
3015 into shorter lines. */)
3016 (Lisp_Object string, Lisp_Object no_line_break)
3017 {
3018 EMACS_INT allength, length, encoded_length;
3019 char *encoded;
3020 Lisp_Object encoded_string;
3021 USE_SAFE_ALLOCA;
3022
3023 CHECK_STRING (string);
3024
3025 /* We need to allocate enough room for encoding the text.
3026 We need 33 1/3% more space, plus a newline every 76
3027 characters, and then we round up. */
3028 length = SBYTES (string);
3029 allength = length + length/3 + 1;
3030 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3031
3032 /* We need to allocate enough room for decoding the text. */
3033 SAFE_ALLOCA (encoded, char *, allength);
3034
3035 encoded_length = base64_encode_1 (SSDATA (string),
3036 encoded, length, NILP (no_line_break),
3037 STRING_MULTIBYTE (string));
3038 if (encoded_length > allength)
3039 abort ();
3040
3041 if (encoded_length < 0)
3042 {
3043 /* The encoding wasn't possible. */
3044 SAFE_FREE ();
3045 error ("Multibyte character in data for base64 encoding");
3046 }
3047
3048 encoded_string = make_unibyte_string (encoded, encoded_length);
3049 SAFE_FREE ();
3050
3051 return encoded_string;
3052 }
3053
3054 static EMACS_INT
3055 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3056 int line_break, int multibyte)
3057 {
3058 int counter = 0;
3059 EMACS_INT i = 0;
3060 char *e = to;
3061 int c;
3062 unsigned int value;
3063 int bytes;
3064
3065 while (i < length)
3066 {
3067 if (multibyte)
3068 {
3069 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3070 if (CHAR_BYTE8_P (c))
3071 c = CHAR_TO_BYTE8 (c);
3072 else if (c >= 256)
3073 return -1;
3074 i += bytes;
3075 }
3076 else
3077 c = from[i++];
3078
3079 /* Wrap line every 76 characters. */
3080
3081 if (line_break)
3082 {
3083 if (counter < MIME_LINE_LENGTH / 4)
3084 counter++;
3085 else
3086 {
3087 *e++ = '\n';
3088 counter = 1;
3089 }
3090 }
3091
3092 /* Process first byte of a triplet. */
3093
3094 *e++ = base64_value_to_char[0x3f & c >> 2];
3095 value = (0x03 & c) << 4;
3096
3097 /* Process second byte of a triplet. */
3098
3099 if (i == length)
3100 {
3101 *e++ = base64_value_to_char[value];
3102 *e++ = '=';
3103 *e++ = '=';
3104 break;
3105 }
3106
3107 if (multibyte)
3108 {
3109 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3110 if (CHAR_BYTE8_P (c))
3111 c = CHAR_TO_BYTE8 (c);
3112 else if (c >= 256)
3113 return -1;
3114 i += bytes;
3115 }
3116 else
3117 c = from[i++];
3118
3119 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3120 value = (0x0f & c) << 2;
3121
3122 /* Process third byte of a triplet. */
3123
3124 if (i == length)
3125 {
3126 *e++ = base64_value_to_char[value];
3127 *e++ = '=';
3128 break;
3129 }
3130
3131 if (multibyte)
3132 {
3133 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3134 if (CHAR_BYTE8_P (c))
3135 c = CHAR_TO_BYTE8 (c);
3136 else if (c >= 256)
3137 return -1;
3138 i += bytes;
3139 }
3140 else
3141 c = from[i++];
3142
3143 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3144 *e++ = base64_value_to_char[0x3f & c];
3145 }
3146
3147 return e - to;
3148 }
3149
3150
3151 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3152 2, 2, "r",
3153 doc: /* Base64-decode the region between BEG and END.
3154 Return the length of the decoded text.
3155 If the region can't be decoded, signal an error and don't modify the buffer. */)
3156 (Lisp_Object beg, Lisp_Object end)
3157 {
3158 EMACS_INT ibeg, iend, length, allength;
3159 char *decoded;
3160 EMACS_INT old_pos = PT;
3161 EMACS_INT decoded_length;
3162 EMACS_INT inserted_chars;
3163 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3164 USE_SAFE_ALLOCA;
3165
3166 validate_region (&beg, &end);
3167
3168 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3169 iend = CHAR_TO_BYTE (XFASTINT (end));
3170
3171 length = iend - ibeg;
3172
3173 /* We need to allocate enough room for decoding the text. If we are
3174 working on a multibyte buffer, each decoded code may occupy at
3175 most two bytes. */
3176 allength = multibyte ? length * 2 : length;
3177 SAFE_ALLOCA (decoded, char *, allength);
3178
3179 move_gap_both (XFASTINT (beg), ibeg);
3180 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3181 decoded, length,
3182 multibyte, &inserted_chars);
3183 if (decoded_length > allength)
3184 abort ();
3185
3186 if (decoded_length < 0)
3187 {
3188 /* The decoding wasn't possible. */
3189 SAFE_FREE ();
3190 error ("Invalid base64 data");
3191 }
3192
3193 /* Now we have decoded the region, so we insert the new contents
3194 and delete the old. (Insert first in order to preserve markers.) */
3195 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3196 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3197 SAFE_FREE ();
3198
3199 /* Delete the original text. */
3200 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3201 iend + decoded_length, 1);
3202
3203 /* If point was outside of the region, restore it exactly; else just
3204 move to the beginning of the region. */
3205 if (old_pos >= XFASTINT (end))
3206 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3207 else if (old_pos > XFASTINT (beg))
3208 old_pos = XFASTINT (beg);
3209 SET_PT (old_pos > ZV ? ZV : old_pos);
3210
3211 return make_number (inserted_chars);
3212 }
3213
3214 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3215 1, 1, 0,
3216 doc: /* Base64-decode STRING and return the result. */)
3217 (Lisp_Object string)
3218 {
3219 char *decoded;
3220 EMACS_INT length, decoded_length;
3221 Lisp_Object decoded_string;
3222 USE_SAFE_ALLOCA;
3223
3224 CHECK_STRING (string);
3225
3226 length = SBYTES (string);
3227 /* We need to allocate enough room for decoding the text. */
3228 SAFE_ALLOCA (decoded, char *, length);
3229
3230 /* The decoded result should be unibyte. */
3231 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3232 0, NULL);
3233 if (decoded_length > length)
3234 abort ();
3235 else if (decoded_length >= 0)
3236 decoded_string = make_unibyte_string (decoded, decoded_length);
3237 else
3238 decoded_string = Qnil;
3239
3240 SAFE_FREE ();
3241 if (!STRINGP (decoded_string))
3242 error ("Invalid base64 data");
3243
3244 return decoded_string;
3245 }
3246
3247 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3248 MULTIBYTE is nonzero, the decoded result should be in multibyte
3249 form. If NCHARS_RETRUN is not NULL, store the number of produced
3250 characters in *NCHARS_RETURN. */
3251
3252 static EMACS_INT
3253 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3254 int multibyte, EMACS_INT *nchars_return)
3255 {
3256 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3257 char *e = to;
3258 unsigned char c;
3259 unsigned long value;
3260 EMACS_INT nchars = 0;
3261
3262 while (1)
3263 {
3264 /* Process first byte of a quadruplet. */
3265
3266 READ_QUADRUPLET_BYTE (e-to);
3267
3268 if (!IS_BASE64 (c))
3269 return -1;
3270 value = base64_char_to_value[c] << 18;
3271
3272 /* Process second byte of a quadruplet. */
3273
3274 READ_QUADRUPLET_BYTE (-1);
3275
3276 if (!IS_BASE64 (c))
3277 return -1;
3278 value |= base64_char_to_value[c] << 12;
3279
3280 c = (unsigned char) (value >> 16);
3281 if (multibyte && c >= 128)
3282 e += BYTE8_STRING (c, e);
3283 else
3284 *e++ = c;
3285 nchars++;
3286
3287 /* Process third byte of a quadruplet. */
3288
3289 READ_QUADRUPLET_BYTE (-1);
3290
3291 if (c == '=')
3292 {
3293 READ_QUADRUPLET_BYTE (-1);
3294
3295 if (c != '=')
3296 return -1;
3297 continue;
3298 }
3299
3300 if (!IS_BASE64 (c))
3301 return -1;
3302 value |= base64_char_to_value[c] << 6;
3303
3304 c = (unsigned char) (0xff & value >> 8);
3305 if (multibyte && c >= 128)
3306 e += BYTE8_STRING (c, e);
3307 else
3308 *e++ = c;
3309 nchars++;
3310
3311 /* Process fourth byte of a quadruplet. */
3312
3313 READ_QUADRUPLET_BYTE (-1);
3314
3315 if (c == '=')
3316 continue;
3317
3318 if (!IS_BASE64 (c))
3319 return -1;
3320 value |= base64_char_to_value[c];
3321
3322 c = (unsigned char) (0xff & value);
3323 if (multibyte && c >= 128)
3324 e += BYTE8_STRING (c, e);
3325 else
3326 *e++ = c;
3327 nchars++;
3328 }
3329 }
3330
3331
3332 \f
3333 /***********************************************************************
3334 ***** *****
3335 ***** Hash Tables *****
3336 ***** *****
3337 ***********************************************************************/
3338
3339 /* Implemented by gerd@gnu.org. This hash table implementation was
3340 inspired by CMUCL hash tables. */
3341
3342 /* Ideas:
3343
3344 1. For small tables, association lists are probably faster than
3345 hash tables because they have lower overhead.
3346
3347 For uses of hash tables where the O(1) behavior of table
3348 operations is not a requirement, it might therefore be a good idea
3349 not to hash. Instead, we could just do a linear search in the
3350 key_and_value vector of the hash table. This could be done
3351 if a `:linear-search t' argument is given to make-hash-table. */
3352
3353
3354 /* The list of all weak hash tables. Don't staticpro this one. */
3355
3356 static struct Lisp_Hash_Table *weak_hash_tables;
3357
3358 /* Various symbols. */
3359
3360 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3361 Lisp_Object Qeq, Qeql, Qequal;
3362 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3363 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3364
3365 /* Function prototypes. */
3366
3367 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3368 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3369 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3370 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3371
3372
3373 \f
3374 /***********************************************************************
3375 Utilities
3376 ***********************************************************************/
3377
3378 /* If OBJ is a Lisp hash table, return a pointer to its struct
3379 Lisp_Hash_Table. Otherwise, signal an error. */
3380
3381 static struct Lisp_Hash_Table *
3382 check_hash_table (Lisp_Object obj)
3383 {
3384 CHECK_HASH_TABLE (obj);
3385 return XHASH_TABLE (obj);
3386 }
3387
3388
3389 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3390 number. */
3391
3392 EMACS_INT
3393 next_almost_prime (EMACS_INT n)
3394 {
3395 for (n |= 1; ; n += 2)
3396 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3397 return n;
3398 }
3399
3400
3401 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3402 which USED[I] is non-zero. If found at index I in ARGS, set
3403 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3404 0. This function is used to extract a keyword/argument pair from
3405 a DEFUN parameter list. */
3406
3407 static ptrdiff_t
3408 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3409 {
3410 ptrdiff_t i;
3411
3412 for (i = 1; i < nargs; i++)
3413 if (!used[i - 1] && EQ (args[i - 1], key))
3414 {
3415 used[i - 1] = 1;
3416 used[i] = 1;
3417 return i;
3418 }
3419
3420 return 0;
3421 }
3422
3423
3424 /* Return a Lisp vector which has the same contents as VEC but has
3425 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3426 vector that are not copied from VEC are set to INIT. */
3427
3428 Lisp_Object
3429 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3430 {
3431 struct Lisp_Vector *v;
3432 EMACS_INT i, old_size;
3433
3434 xassert (VECTORP (vec));
3435 old_size = ASIZE (vec);
3436 xassert (new_size >= old_size);
3437
3438 v = allocate_vector (new_size);
3439 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3440 for (i = old_size; i < new_size; ++i)
3441 v->contents[i] = init;
3442 XSETVECTOR (vec, v);
3443 return vec;
3444 }
3445
3446
3447 /***********************************************************************
3448 Low-level Functions
3449 ***********************************************************************/
3450
3451 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3452 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3453 KEY2 are the same. */
3454
3455 static int
3456 cmpfn_eql (struct Lisp_Hash_Table *h,
3457 Lisp_Object key1, EMACS_UINT hash1,
3458 Lisp_Object key2, EMACS_UINT hash2)
3459 {
3460 return (FLOATP (key1)
3461 && FLOATP (key2)
3462 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3463 }
3464
3465
3466 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3467 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3468 KEY2 are the same. */
3469
3470 static int
3471 cmpfn_equal (struct Lisp_Hash_Table *h,
3472 Lisp_Object key1, EMACS_UINT hash1,
3473 Lisp_Object key2, EMACS_UINT hash2)
3474 {
3475 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3476 }
3477
3478
3479 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3480 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3481 if KEY1 and KEY2 are the same. */
3482
3483 static int
3484 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3485 Lisp_Object key1, EMACS_UINT hash1,
3486 Lisp_Object key2, EMACS_UINT hash2)
3487 {
3488 if (hash1 == hash2)
3489 {
3490 Lisp_Object args[3];
3491
3492 args[0] = h->user_cmp_function;
3493 args[1] = key1;
3494 args[2] = key2;
3495 return !NILP (Ffuncall (3, args));
3496 }
3497 else
3498 return 0;
3499 }
3500
3501
3502 /* Value is a hash code for KEY for use in hash table H which uses
3503 `eq' to compare keys. The hash code returned is guaranteed to fit
3504 in a Lisp integer. */
3505
3506 static EMACS_UINT
3507 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3508 {
3509 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3510 xassert ((hash & ~INTMASK) == 0);
3511 return hash;
3512 }
3513
3514
3515 /* Value is a hash code for KEY for use in hash table H which uses
3516 `eql' to compare keys. The hash code returned is guaranteed to fit
3517 in a Lisp integer. */
3518
3519 static EMACS_UINT
3520 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3521 {
3522 EMACS_UINT hash;
3523 if (FLOATP (key))
3524 hash = sxhash (key, 0);
3525 else
3526 hash = XUINT (key) ^ XTYPE (key);
3527 xassert ((hash & ~INTMASK) == 0);
3528 return hash;
3529 }
3530
3531
3532 /* Value is a hash code for KEY for use in hash table H which uses
3533 `equal' to compare keys. The hash code returned is guaranteed to fit
3534 in a Lisp integer. */
3535
3536 static EMACS_UINT
3537 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3538 {
3539 EMACS_UINT hash = sxhash (key, 0);
3540 xassert ((hash & ~INTMASK) == 0);
3541 return hash;
3542 }
3543
3544
3545 /* Value is a hash code for KEY for use in hash table H which uses as
3546 user-defined function to compare keys. The hash code returned is
3547 guaranteed to fit in a Lisp integer. */
3548
3549 static EMACS_UINT
3550 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3551 {
3552 Lisp_Object args[2], hash;
3553
3554 args[0] = h->user_hash_function;
3555 args[1] = key;
3556 hash = Ffuncall (2, args);
3557 if (!INTEGERP (hash))
3558 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3559 return XUINT (hash);
3560 }
3561
3562
3563 /* Create and initialize a new hash table.
3564
3565 TEST specifies the test the hash table will use to compare keys.
3566 It must be either one of the predefined tests `eq', `eql' or
3567 `equal' or a symbol denoting a user-defined test named TEST with
3568 test and hash functions USER_TEST and USER_HASH.
3569
3570 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3571
3572 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3573 new size when it becomes full is computed by adding REHASH_SIZE to
3574 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3575 table's new size is computed by multiplying its old size with
3576 REHASH_SIZE.
3577
3578 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3579 be resized when the ratio of (number of entries in the table) /
3580 (table size) is >= REHASH_THRESHOLD.
3581
3582 WEAK specifies the weakness of the table. If non-nil, it must be
3583 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3584
3585 Lisp_Object
3586 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3587 Lisp_Object rehash_threshold, Lisp_Object weak,
3588 Lisp_Object user_test, Lisp_Object user_hash)
3589 {
3590 struct Lisp_Hash_Table *h;
3591 Lisp_Object table;
3592 EMACS_INT index_size, i, sz;
3593 double index_float;
3594
3595 /* Preconditions. */
3596 xassert (SYMBOLP (test));
3597 xassert (INTEGERP (size) && XINT (size) >= 0);
3598 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3599 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3600 xassert (FLOATP (rehash_threshold)
3601 && 0 < XFLOAT_DATA (rehash_threshold)
3602 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3603
3604 if (XFASTINT (size) == 0)
3605 size = make_number (1);
3606
3607 sz = XFASTINT (size);
3608 index_float = sz / XFLOAT_DATA (rehash_threshold);
3609 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3610 ? next_almost_prime (index_float)
3611 : MOST_POSITIVE_FIXNUM + 1);
3612 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3613 error ("Hash table too large");
3614
3615 /* Allocate a table and initialize it. */
3616 h = allocate_hash_table ();
3617
3618 /* Initialize hash table slots. */
3619 h->test = test;
3620 if (EQ (test, Qeql))
3621 {
3622 h->cmpfn = cmpfn_eql;
3623 h->hashfn = hashfn_eql;
3624 }
3625 else if (EQ (test, Qeq))
3626 {
3627 h->cmpfn = NULL;
3628 h->hashfn = hashfn_eq;
3629 }
3630 else if (EQ (test, Qequal))
3631 {
3632 h->cmpfn = cmpfn_equal;
3633 h->hashfn = hashfn_equal;
3634 }
3635 else
3636 {
3637 h->user_cmp_function = user_test;
3638 h->user_hash_function = user_hash;
3639 h->cmpfn = cmpfn_user_defined;
3640 h->hashfn = hashfn_user_defined;
3641 }
3642
3643 h->weak = weak;
3644 h->rehash_threshold = rehash_threshold;
3645 h->rehash_size = rehash_size;
3646 h->count = 0;
3647 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3648 h->hash = Fmake_vector (size, Qnil);
3649 h->next = Fmake_vector (size, Qnil);
3650 h->index = Fmake_vector (make_number (index_size), Qnil);
3651
3652 /* Set up the free list. */
3653 for (i = 0; i < sz - 1; ++i)
3654 HASH_NEXT (h, i) = make_number (i + 1);
3655 h->next_free = make_number (0);
3656
3657 XSET_HASH_TABLE (table, h);
3658 xassert (HASH_TABLE_P (table));
3659 xassert (XHASH_TABLE (table) == h);
3660
3661 /* Maybe add this hash table to the list of all weak hash tables. */
3662 if (NILP (h->weak))
3663 h->next_weak = NULL;
3664 else
3665 {
3666 h->next_weak = weak_hash_tables;
3667 weak_hash_tables = h;
3668 }
3669
3670 return table;
3671 }
3672
3673
3674 /* Return a copy of hash table H1. Keys and values are not copied,
3675 only the table itself is. */
3676
3677 static Lisp_Object
3678 copy_hash_table (struct Lisp_Hash_Table *h1)
3679 {
3680 Lisp_Object table;
3681 struct Lisp_Hash_Table *h2;
3682 struct Lisp_Vector *next;
3683
3684 h2 = allocate_hash_table ();
3685 next = h2->header.next.vector;
3686 memcpy (h2, h1, sizeof *h2);
3687 h2->header.next.vector = next;
3688 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3689 h2->hash = Fcopy_sequence (h1->hash);
3690 h2->next = Fcopy_sequence (h1->next);
3691 h2->index = Fcopy_sequence (h1->index);
3692 XSET_HASH_TABLE (table, h2);
3693
3694 /* Maybe add this hash table to the list of all weak hash tables. */
3695 if (!NILP (h2->weak))
3696 {
3697 h2->next_weak = weak_hash_tables;
3698 weak_hash_tables = h2;
3699 }
3700
3701 return table;
3702 }
3703
3704
3705 /* Resize hash table H if it's too full. If H cannot be resized
3706 because it's already too large, throw an error. */
3707
3708 static inline void
3709 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3710 {
3711 if (NILP (h->next_free))
3712 {
3713 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3714 EMACS_INT i, new_size, index_size;
3715 EMACS_INT nsize;
3716 double index_float;
3717
3718 if (INTEGERP (h->rehash_size))
3719 new_size = old_size + XFASTINT (h->rehash_size);
3720 else
3721 {
3722 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3723 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3724 {
3725 new_size = float_new_size;
3726 if (new_size <= old_size)
3727 new_size = old_size + 1;
3728 }
3729 else
3730 new_size = MOST_POSITIVE_FIXNUM + 1;
3731 }
3732 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3733 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3734 ? next_almost_prime (index_float)
3735 : MOST_POSITIVE_FIXNUM + 1);
3736 nsize = max (index_size, 2 * new_size);
3737 if (nsize > MOST_POSITIVE_FIXNUM)
3738 error ("Hash table too large to resize");
3739
3740 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3741 h->next = larger_vector (h->next, new_size, Qnil);
3742 h->hash = larger_vector (h->hash, new_size, Qnil);
3743 h->index = Fmake_vector (make_number (index_size), Qnil);
3744
3745 /* Update the free list. Do it so that new entries are added at
3746 the end of the free list. This makes some operations like
3747 maphash faster. */
3748 for (i = old_size; i < new_size - 1; ++i)
3749 HASH_NEXT (h, i) = make_number (i + 1);
3750
3751 if (!NILP (h->next_free))
3752 {
3753 Lisp_Object last, next;
3754
3755 last = h->next_free;
3756 while (next = HASH_NEXT (h, XFASTINT (last)),
3757 !NILP (next))
3758 last = next;
3759
3760 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3761 }
3762 else
3763 XSETFASTINT (h->next_free, old_size);
3764
3765 /* Rehash. */
3766 for (i = 0; i < old_size; ++i)
3767 if (!NILP (HASH_HASH (h, i)))
3768 {
3769 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3770 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3771 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3772 HASH_INDEX (h, start_of_bucket) = make_number (i);
3773 }
3774 }
3775 }
3776
3777
3778 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3779 the hash code of KEY. Value is the index of the entry in H
3780 matching KEY, or -1 if not found. */
3781
3782 EMACS_INT
3783 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3784 {
3785 EMACS_UINT hash_code;
3786 EMACS_INT start_of_bucket;
3787 Lisp_Object idx;
3788
3789 hash_code = h->hashfn (h, key);
3790 if (hash)
3791 *hash = hash_code;
3792
3793 start_of_bucket = hash_code % ASIZE (h->index);
3794 idx = HASH_INDEX (h, start_of_bucket);
3795
3796 /* We need not gcpro idx since it's either an integer or nil. */
3797 while (!NILP (idx))
3798 {
3799 EMACS_INT i = XFASTINT (idx);
3800 if (EQ (key, HASH_KEY (h, i))
3801 || (h->cmpfn
3802 && h->cmpfn (h, key, hash_code,
3803 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3804 break;
3805 idx = HASH_NEXT (h, i);
3806 }
3807
3808 return NILP (idx) ? -1 : XFASTINT (idx);
3809 }
3810
3811
3812 /* Put an entry into hash table H that associates KEY with VALUE.
3813 HASH is a previously computed hash code of KEY.
3814 Value is the index of the entry in H matching KEY. */
3815
3816 EMACS_INT
3817 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3818 EMACS_UINT hash)
3819 {
3820 EMACS_INT start_of_bucket, i;
3821
3822 xassert ((hash & ~INTMASK) == 0);
3823
3824 /* Increment count after resizing because resizing may fail. */
3825 maybe_resize_hash_table (h);
3826 h->count++;
3827
3828 /* Store key/value in the key_and_value vector. */
3829 i = XFASTINT (h->next_free);
3830 h->next_free = HASH_NEXT (h, i);
3831 HASH_KEY (h, i) = key;
3832 HASH_VALUE (h, i) = value;
3833
3834 /* Remember its hash code. */
3835 HASH_HASH (h, i) = make_number (hash);
3836
3837 /* Add new entry to its collision chain. */
3838 start_of_bucket = hash % ASIZE (h->index);
3839 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3840 HASH_INDEX (h, start_of_bucket) = make_number (i);
3841 return i;
3842 }
3843
3844
3845 /* Remove the entry matching KEY from hash table H, if there is one. */
3846
3847 static void
3848 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3849 {
3850 EMACS_UINT hash_code;
3851 EMACS_INT start_of_bucket;
3852 Lisp_Object idx, prev;
3853
3854 hash_code = h->hashfn (h, key);
3855 start_of_bucket = hash_code % ASIZE (h->index);
3856 idx = HASH_INDEX (h, start_of_bucket);
3857 prev = Qnil;
3858
3859 /* We need not gcpro idx, prev since they're either integers or nil. */
3860 while (!NILP (idx))
3861 {
3862 EMACS_INT i = XFASTINT (idx);
3863
3864 if (EQ (key, HASH_KEY (h, i))
3865 || (h->cmpfn
3866 && h->cmpfn (h, key, hash_code,
3867 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3868 {
3869 /* Take entry out of collision chain. */
3870 if (NILP (prev))
3871 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3872 else
3873 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3874
3875 /* Clear slots in key_and_value and add the slots to
3876 the free list. */
3877 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3878 HASH_NEXT (h, i) = h->next_free;
3879 h->next_free = make_number (i);
3880 h->count--;
3881 xassert (h->count >= 0);
3882 break;
3883 }
3884 else
3885 {
3886 prev = idx;
3887 idx = HASH_NEXT (h, i);
3888 }
3889 }
3890 }
3891
3892
3893 /* Clear hash table H. */
3894
3895 static void
3896 hash_clear (struct Lisp_Hash_Table *h)
3897 {
3898 if (h->count > 0)
3899 {
3900 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3901
3902 for (i = 0; i < size; ++i)
3903 {
3904 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3905 HASH_KEY (h, i) = Qnil;
3906 HASH_VALUE (h, i) = Qnil;
3907 HASH_HASH (h, i) = Qnil;
3908 }
3909
3910 for (i = 0; i < ASIZE (h->index); ++i)
3911 ASET (h->index, i, Qnil);
3912
3913 h->next_free = make_number (0);
3914 h->count = 0;
3915 }
3916 }
3917
3918
3919 \f
3920 /************************************************************************
3921 Weak Hash Tables
3922 ************************************************************************/
3923
3924 void
3925 init_weak_hash_tables (void)
3926 {
3927 weak_hash_tables = NULL;
3928 }
3929
3930 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3931 entries from the table that don't survive the current GC.
3932 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3933 non-zero if anything was marked. */
3934
3935 static int
3936 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3937 {
3938 EMACS_INT bucket, n;
3939 int marked;
3940
3941 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3942 marked = 0;
3943
3944 for (bucket = 0; bucket < n; ++bucket)
3945 {
3946 Lisp_Object idx, next, prev;
3947
3948 /* Follow collision chain, removing entries that
3949 don't survive this garbage collection. */
3950 prev = Qnil;
3951 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3952 {
3953 EMACS_INT i = XFASTINT (idx);
3954 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3955 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3956 int remove_p;
3957
3958 if (EQ (h->weak, Qkey))
3959 remove_p = !key_known_to_survive_p;
3960 else if (EQ (h->weak, Qvalue))
3961 remove_p = !value_known_to_survive_p;
3962 else if (EQ (h->weak, Qkey_or_value))
3963 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3964 else if (EQ (h->weak, Qkey_and_value))
3965 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3966 else
3967 abort ();
3968
3969 next = HASH_NEXT (h, i);
3970
3971 if (remove_entries_p)
3972 {
3973 if (remove_p)
3974 {
3975 /* Take out of collision chain. */
3976 if (NILP (prev))
3977 HASH_INDEX (h, bucket) = next;
3978 else
3979 HASH_NEXT (h, XFASTINT (prev)) = next;
3980
3981 /* Add to free list. */
3982 HASH_NEXT (h, i) = h->next_free;
3983 h->next_free = idx;
3984
3985 /* Clear key, value, and hash. */
3986 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3987 HASH_HASH (h, i) = Qnil;
3988
3989 h->count--;
3990 }
3991 else
3992 {
3993 prev = idx;
3994 }
3995 }
3996 else
3997 {
3998 if (!remove_p)
3999 {
4000 /* Make sure key and value survive. */
4001 if (!key_known_to_survive_p)
4002 {
4003 mark_object (HASH_KEY (h, i));
4004 marked = 1;
4005 }
4006
4007 if (!value_known_to_survive_p)
4008 {
4009 mark_object (HASH_VALUE (h, i));
4010 marked = 1;
4011 }
4012 }
4013 }
4014 }
4015 }
4016
4017 return marked;
4018 }
4019
4020 /* Remove elements from weak hash tables that don't survive the
4021 current garbage collection. Remove weak tables that don't survive
4022 from Vweak_hash_tables. Called from gc_sweep. */
4023
4024 void
4025 sweep_weak_hash_tables (void)
4026 {
4027 struct Lisp_Hash_Table *h, *used, *next;
4028 int marked;
4029
4030 /* Mark all keys and values that are in use. Keep on marking until
4031 there is no more change. This is necessary for cases like
4032 value-weak table A containing an entry X -> Y, where Y is used in a
4033 key-weak table B, Z -> Y. If B comes after A in the list of weak
4034 tables, X -> Y might be removed from A, although when looking at B
4035 one finds that it shouldn't. */
4036 do
4037 {
4038 marked = 0;
4039 for (h = weak_hash_tables; h; h = h->next_weak)
4040 {
4041 if (h->header.size & ARRAY_MARK_FLAG)
4042 marked |= sweep_weak_table (h, 0);
4043 }
4044 }
4045 while (marked);
4046
4047 /* Remove tables and entries that aren't used. */
4048 for (h = weak_hash_tables, used = NULL; h; h = next)
4049 {
4050 next = h->next_weak;
4051
4052 if (h->header.size & ARRAY_MARK_FLAG)
4053 {
4054 /* TABLE is marked as used. Sweep its contents. */
4055 if (h->count > 0)
4056 sweep_weak_table (h, 1);
4057
4058 /* Add table to the list of used weak hash tables. */
4059 h->next_weak = used;
4060 used = h;
4061 }
4062 }
4063
4064 weak_hash_tables = used;
4065 }
4066
4067
4068 \f
4069 /***********************************************************************
4070 Hash Code Computation
4071 ***********************************************************************/
4072
4073 /* Maximum depth up to which to dive into Lisp structures. */
4074
4075 #define SXHASH_MAX_DEPTH 3
4076
4077 /* Maximum length up to which to take list and vector elements into
4078 account. */
4079
4080 #define SXHASH_MAX_LEN 7
4081
4082 /* Combine two integers X and Y for hashing. The result might not fit
4083 into a Lisp integer. */
4084
4085 #define SXHASH_COMBINE(X, Y) \
4086 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4087 + (EMACS_UINT) (Y))
4088
4089 /* Hash X, returning a value that fits into a Lisp integer. */
4090 #define SXHASH_REDUCE(X) \
4091 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4092
4093 /* Return a hash for string PTR which has length LEN. The hash
4094 code returned is guaranteed to fit in a Lisp integer. */
4095
4096 static EMACS_UINT
4097 sxhash_string (unsigned char *ptr, EMACS_INT len)
4098 {
4099 unsigned char *p = ptr;
4100 unsigned char *end = p + len;
4101 unsigned char c;
4102 EMACS_UINT hash = 0;
4103
4104 while (p != end)
4105 {
4106 c = *p++;
4107 if (c >= 0140)
4108 c -= 40;
4109 hash = SXHASH_COMBINE (hash, c);
4110 }
4111
4112 return SXHASH_REDUCE (hash);
4113 }
4114
4115 /* Return a hash for the floating point value VAL. */
4116
4117 static EMACS_INT
4118 sxhash_float (double val)
4119 {
4120 EMACS_UINT hash = 0;
4121 enum {
4122 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4123 + (sizeof val % sizeof hash != 0))
4124 };
4125 union {
4126 double val;
4127 EMACS_UINT word[WORDS_PER_DOUBLE];
4128 } u;
4129 int i;
4130 u.val = val;
4131 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4132 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4133 hash = SXHASH_COMBINE (hash, u.word[i]);
4134 return SXHASH_REDUCE (hash);
4135 }
4136
4137 /* Return a hash for list LIST. DEPTH is the current depth in the
4138 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4139
4140 static EMACS_UINT
4141 sxhash_list (Lisp_Object list, int depth)
4142 {
4143 EMACS_UINT hash = 0;
4144 int i;
4145
4146 if (depth < SXHASH_MAX_DEPTH)
4147 for (i = 0;
4148 CONSP (list) && i < SXHASH_MAX_LEN;
4149 list = XCDR (list), ++i)
4150 {
4151 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4152 hash = SXHASH_COMBINE (hash, hash2);
4153 }
4154
4155 if (!NILP (list))
4156 {
4157 EMACS_UINT hash2 = sxhash (list, depth + 1);
4158 hash = SXHASH_COMBINE (hash, hash2);
4159 }
4160
4161 return SXHASH_REDUCE (hash);
4162 }
4163
4164
4165 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4166 the Lisp structure. */
4167
4168 static EMACS_UINT
4169 sxhash_vector (Lisp_Object vec, int depth)
4170 {
4171 EMACS_UINT hash = ASIZE (vec);
4172 int i, n;
4173
4174 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4175 for (i = 0; i < n; ++i)
4176 {
4177 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4178 hash = SXHASH_COMBINE (hash, hash2);
4179 }
4180
4181 return SXHASH_REDUCE (hash);
4182 }
4183
4184 /* Return a hash for bool-vector VECTOR. */
4185
4186 static EMACS_UINT
4187 sxhash_bool_vector (Lisp_Object vec)
4188 {
4189 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4190 int i, n;
4191
4192 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4193 for (i = 0; i < n; ++i)
4194 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4195
4196 return SXHASH_REDUCE (hash);
4197 }
4198
4199
4200 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4201 structure. Value is an unsigned integer clipped to INTMASK. */
4202
4203 EMACS_UINT
4204 sxhash (Lisp_Object obj, int depth)
4205 {
4206 EMACS_UINT hash;
4207
4208 if (depth > SXHASH_MAX_DEPTH)
4209 return 0;
4210
4211 switch (XTYPE (obj))
4212 {
4213 case_Lisp_Int:
4214 hash = XUINT (obj);
4215 break;
4216
4217 case Lisp_Misc:
4218 hash = XUINT (obj);
4219 break;
4220
4221 case Lisp_Symbol:
4222 obj = SYMBOL_NAME (obj);
4223 /* Fall through. */
4224
4225 case Lisp_String:
4226 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4227 break;
4228
4229 /* This can be everything from a vector to an overlay. */
4230 case Lisp_Vectorlike:
4231 if (VECTORP (obj))
4232 /* According to the CL HyperSpec, two arrays are equal only if
4233 they are `eq', except for strings and bit-vectors. In
4234 Emacs, this works differently. We have to compare element
4235 by element. */
4236 hash = sxhash_vector (obj, depth);
4237 else if (BOOL_VECTOR_P (obj))
4238 hash = sxhash_bool_vector (obj);
4239 else
4240 /* Others are `equal' if they are `eq', so let's take their
4241 address as hash. */
4242 hash = XUINT (obj);
4243 break;
4244
4245 case Lisp_Cons:
4246 hash = sxhash_list (obj, depth);
4247 break;
4248
4249 case Lisp_Float:
4250 hash = sxhash_float (XFLOAT_DATA (obj));
4251 break;
4252
4253 default:
4254 abort ();
4255 }
4256
4257 return hash;
4258 }
4259
4260
4261 \f
4262 /***********************************************************************
4263 Lisp Interface
4264 ***********************************************************************/
4265
4266
4267 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4268 doc: /* Compute a hash code for OBJ and return it as integer. */)
4269 (Lisp_Object obj)
4270 {
4271 EMACS_UINT hash = sxhash (obj, 0);
4272 return make_number (hash);
4273 }
4274
4275
4276 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4277 doc: /* Create and return a new hash table.
4278
4279 Arguments are specified as keyword/argument pairs. The following
4280 arguments are defined:
4281
4282 :test TEST -- TEST must be a symbol that specifies how to compare
4283 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4284 `equal'. User-supplied test and hash functions can be specified via
4285 `define-hash-table-test'.
4286
4287 :size SIZE -- A hint as to how many elements will be put in the table.
4288 Default is 65.
4289
4290 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4291 fills up. If REHASH-SIZE is an integer, increase the size by that
4292 amount. If it is a float, it must be > 1.0, and the new size is the
4293 old size multiplied by that factor. Default is 1.5.
4294
4295 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4296 Resize the hash table when the ratio (number of entries / table size)
4297 is greater than or equal to THRESHOLD. Default is 0.8.
4298
4299 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4300 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4301 returned is a weak table. Key/value pairs are removed from a weak
4302 hash table when there are no non-weak references pointing to their
4303 key, value, one of key or value, or both key and value, depending on
4304 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4305 is nil.
4306
4307 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4308 (ptrdiff_t nargs, Lisp_Object *args)
4309 {
4310 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4311 Lisp_Object user_test, user_hash;
4312 char *used;
4313 ptrdiff_t i;
4314
4315 /* The vector `used' is used to keep track of arguments that
4316 have been consumed. */
4317 used = (char *) alloca (nargs * sizeof *used);
4318 memset (used, 0, nargs * sizeof *used);
4319
4320 /* See if there's a `:test TEST' among the arguments. */
4321 i = get_key_arg (QCtest, nargs, args, used);
4322 test = i ? args[i] : Qeql;
4323 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4324 {
4325 /* See if it is a user-defined test. */
4326 Lisp_Object prop;
4327
4328 prop = Fget (test, Qhash_table_test);
4329 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4330 signal_error ("Invalid hash table test", test);
4331 user_test = XCAR (prop);
4332 user_hash = XCAR (XCDR (prop));
4333 }
4334 else
4335 user_test = user_hash = Qnil;
4336
4337 /* See if there's a `:size SIZE' argument. */
4338 i = get_key_arg (QCsize, nargs, args, used);
4339 size = i ? args[i] : Qnil;
4340 if (NILP (size))
4341 size = make_number (DEFAULT_HASH_SIZE);
4342 else if (!INTEGERP (size) || XINT (size) < 0)
4343 signal_error ("Invalid hash table size", size);
4344
4345 /* Look for `:rehash-size SIZE'. */
4346 i = get_key_arg (QCrehash_size, nargs, args, used);
4347 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4348 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4349 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4350 signal_error ("Invalid hash table rehash size", rehash_size);
4351
4352 /* Look for `:rehash-threshold THRESHOLD'. */
4353 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4354 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4355 if (! (FLOATP (rehash_threshold)
4356 && 0 < XFLOAT_DATA (rehash_threshold)
4357 && XFLOAT_DATA (rehash_threshold) <= 1))
4358 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4359
4360 /* Look for `:weakness WEAK'. */
4361 i = get_key_arg (QCweakness, nargs, args, used);
4362 weak = i ? args[i] : Qnil;
4363 if (EQ (weak, Qt))
4364 weak = Qkey_and_value;
4365 if (!NILP (weak)
4366 && !EQ (weak, Qkey)
4367 && !EQ (weak, Qvalue)
4368 && !EQ (weak, Qkey_or_value)
4369 && !EQ (weak, Qkey_and_value))
4370 signal_error ("Invalid hash table weakness", weak);
4371
4372 /* Now, all args should have been used up, or there's a problem. */
4373 for (i = 0; i < nargs; ++i)
4374 if (!used[i])
4375 signal_error ("Invalid argument list", args[i]);
4376
4377 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4378 user_test, user_hash);
4379 }
4380
4381
4382 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4383 doc: /* Return a copy of hash table TABLE. */)
4384 (Lisp_Object table)
4385 {
4386 return copy_hash_table (check_hash_table (table));
4387 }
4388
4389
4390 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4391 doc: /* Return the number of elements in TABLE. */)
4392 (Lisp_Object table)
4393 {
4394 return make_number (check_hash_table (table)->count);
4395 }
4396
4397
4398 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4399 Shash_table_rehash_size, 1, 1, 0,
4400 doc: /* Return the current rehash size of TABLE. */)
4401 (Lisp_Object table)
4402 {
4403 return check_hash_table (table)->rehash_size;
4404 }
4405
4406
4407 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4408 Shash_table_rehash_threshold, 1, 1, 0,
4409 doc: /* Return the current rehash threshold of TABLE. */)
4410 (Lisp_Object table)
4411 {
4412 return check_hash_table (table)->rehash_threshold;
4413 }
4414
4415
4416 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4417 doc: /* Return the size of TABLE.
4418 The size can be used as an argument to `make-hash-table' to create
4419 a hash table than can hold as many elements as TABLE holds
4420 without need for resizing. */)
4421 (Lisp_Object table)
4422 {
4423 struct Lisp_Hash_Table *h = check_hash_table (table);
4424 return make_number (HASH_TABLE_SIZE (h));
4425 }
4426
4427
4428 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4429 doc: /* Return the test TABLE uses. */)
4430 (Lisp_Object table)
4431 {
4432 return check_hash_table (table)->test;
4433 }
4434
4435
4436 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4437 1, 1, 0,
4438 doc: /* Return the weakness of TABLE. */)
4439 (Lisp_Object table)
4440 {
4441 return check_hash_table (table)->weak;
4442 }
4443
4444
4445 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4446 doc: /* Return t if OBJ is a Lisp hash table object. */)
4447 (Lisp_Object obj)
4448 {
4449 return HASH_TABLE_P (obj) ? Qt : Qnil;
4450 }
4451
4452
4453 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4454 doc: /* Clear hash table TABLE and return it. */)
4455 (Lisp_Object table)
4456 {
4457 hash_clear (check_hash_table (table));
4458 /* Be compatible with XEmacs. */
4459 return table;
4460 }
4461
4462
4463 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4464 doc: /* Look up KEY in TABLE and return its associated value.
4465 If KEY is not found, return DFLT which defaults to nil. */)
4466 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4467 {
4468 struct Lisp_Hash_Table *h = check_hash_table (table);
4469 EMACS_INT i = hash_lookup (h, key, NULL);
4470 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4471 }
4472
4473
4474 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4475 doc: /* Associate KEY with VALUE in hash table TABLE.
4476 If KEY is already present in table, replace its current value with
4477 VALUE. In any case, return VALUE. */)
4478 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4479 {
4480 struct Lisp_Hash_Table *h = check_hash_table (table);
4481 EMACS_INT i;
4482 EMACS_UINT hash;
4483
4484 i = hash_lookup (h, key, &hash);
4485 if (i >= 0)
4486 HASH_VALUE (h, i) = value;
4487 else
4488 hash_put (h, key, value, hash);
4489
4490 return value;
4491 }
4492
4493
4494 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4495 doc: /* Remove KEY from TABLE. */)
4496 (Lisp_Object key, Lisp_Object table)
4497 {
4498 struct Lisp_Hash_Table *h = check_hash_table (table);
4499 hash_remove_from_table (h, key);
4500 return Qnil;
4501 }
4502
4503
4504 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4505 doc: /* Call FUNCTION for all entries in hash table TABLE.
4506 FUNCTION is called with two arguments, KEY and VALUE. */)
4507 (Lisp_Object function, Lisp_Object table)
4508 {
4509 struct Lisp_Hash_Table *h = check_hash_table (table);
4510 Lisp_Object args[3];
4511 EMACS_INT i;
4512
4513 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4514 if (!NILP (HASH_HASH (h, i)))
4515 {
4516 args[0] = function;
4517 args[1] = HASH_KEY (h, i);
4518 args[2] = HASH_VALUE (h, i);
4519 Ffuncall (3, args);
4520 }
4521
4522 return Qnil;
4523 }
4524
4525
4526 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4527 Sdefine_hash_table_test, 3, 3, 0,
4528 doc: /* Define a new hash table test with name NAME, a symbol.
4529
4530 In hash tables created with NAME specified as test, use TEST to
4531 compare keys, and HASH for computing hash codes of keys.
4532
4533 TEST must be a function taking two arguments and returning non-nil if
4534 both arguments are the same. HASH must be a function taking one
4535 argument and return an integer that is the hash code of the argument.
4536 Hash code computation should use the whole value range of integers,
4537 including negative integers. */)
4538 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4539 {
4540 return Fput (name, Qhash_table_test, list2 (test, hash));
4541 }
4542
4543
4544 \f
4545 /************************************************************************
4546 MD5 and SHA1
4547 ************************************************************************/
4548
4549 #include "md5.h"
4550 #include "sha1.h"
4551
4552 /* Convert a possibly-signed character to an unsigned character. This is
4553 a bit safer than casting to unsigned char, since it catches some type
4554 errors that the cast doesn't. */
4555 static inline unsigned char to_uchar (char ch) { return ch; }
4556
4557 /* TYPE: 0 for md5, 1 for sha1. */
4558
4559 static Lisp_Object
4560 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4561 {
4562 int i;
4563 EMACS_INT size;
4564 EMACS_INT size_byte = 0;
4565 EMACS_INT start_char = 0, end_char = 0;
4566 EMACS_INT start_byte = 0, end_byte = 0;
4567 register EMACS_INT b, e;
4568 register struct buffer *bp;
4569 EMACS_INT temp;
4570 Lisp_Object res=Qnil;
4571
4572 if (STRINGP (object))
4573 {
4574 if (NILP (coding_system))
4575 {
4576 /* Decide the coding-system to encode the data with. */
4577
4578 if (STRING_MULTIBYTE (object))
4579 /* use default, we can't guess correct value */
4580 coding_system = preferred_coding_system ();
4581 else
4582 coding_system = Qraw_text;
4583 }
4584
4585 if (NILP (Fcoding_system_p (coding_system)))
4586 {
4587 /* Invalid coding system. */
4588
4589 if (!NILP (noerror))
4590 coding_system = Qraw_text;
4591 else
4592 xsignal1 (Qcoding_system_error, coding_system);
4593 }
4594
4595 if (STRING_MULTIBYTE (object))
4596 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4597
4598 size = SCHARS (object);
4599 size_byte = SBYTES (object);
4600
4601 if (!NILP (start))
4602 {
4603 CHECK_NUMBER (start);
4604
4605 start_char = XINT (start);
4606
4607 if (start_char < 0)
4608 start_char += size;
4609
4610 start_byte = string_char_to_byte (object, start_char);
4611 }
4612
4613 if (NILP (end))
4614 {
4615 end_char = size;
4616 end_byte = size_byte;
4617 }
4618 else
4619 {
4620 CHECK_NUMBER (end);
4621
4622 end_char = XINT (end);
4623
4624 if (end_char < 0)
4625 end_char += size;
4626
4627 end_byte = string_char_to_byte (object, end_char);
4628 }
4629
4630 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4631 args_out_of_range_3 (object, make_number (start_char),
4632 make_number (end_char));
4633 }
4634 else
4635 {
4636 struct buffer *prev = current_buffer;
4637
4638 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4639
4640 CHECK_BUFFER (object);
4641
4642 bp = XBUFFER (object);
4643 if (bp != current_buffer)
4644 set_buffer_internal (bp);
4645
4646 if (NILP (start))
4647 b = BEGV;
4648 else
4649 {
4650 CHECK_NUMBER_COERCE_MARKER (start);
4651 b = XINT (start);
4652 }
4653
4654 if (NILP (end))
4655 e = ZV;
4656 else
4657 {
4658 CHECK_NUMBER_COERCE_MARKER (end);
4659 e = XINT (end);
4660 }
4661
4662 if (b > e)
4663 temp = b, b = e, e = temp;
4664
4665 if (!(BEGV <= b && e <= ZV))
4666 args_out_of_range (start, end);
4667
4668 if (NILP (coding_system))
4669 {
4670 /* Decide the coding-system to encode the data with.
4671 See fileio.c:Fwrite-region */
4672
4673 if (!NILP (Vcoding_system_for_write))
4674 coding_system = Vcoding_system_for_write;
4675 else
4676 {
4677 int force_raw_text = 0;
4678
4679 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4680 if (NILP (coding_system)
4681 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4682 {
4683 coding_system = Qnil;
4684 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4685 force_raw_text = 1;
4686 }
4687
4688 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4689 {
4690 /* Check file-coding-system-alist. */
4691 Lisp_Object args[4], val;
4692
4693 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4694 args[3] = Fbuffer_file_name(object);
4695 val = Ffind_operation_coding_system (4, args);
4696 if (CONSP (val) && !NILP (XCDR (val)))
4697 coding_system = XCDR (val);
4698 }
4699
4700 if (NILP (coding_system)
4701 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4702 {
4703 /* If we still have not decided a coding system, use the
4704 default value of buffer-file-coding-system. */
4705 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4706 }
4707
4708 if (!force_raw_text
4709 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4710 /* Confirm that VAL can surely encode the current region. */
4711 coding_system = call4 (Vselect_safe_coding_system_function,
4712 make_number (b), make_number (e),
4713 coding_system, Qnil);
4714
4715 if (force_raw_text)
4716 coding_system = Qraw_text;
4717 }
4718
4719 if (NILP (Fcoding_system_p (coding_system)))
4720 {
4721 /* Invalid coding system. */
4722
4723 if (!NILP (noerror))
4724 coding_system = Qraw_text;
4725 else
4726 xsignal1 (Qcoding_system_error, coding_system);
4727 }
4728 }
4729
4730 object = make_buffer_string (b, e, 0);
4731 if (prev != current_buffer)
4732 set_buffer_internal (prev);
4733 /* Discard the unwind protect for recovering the current
4734 buffer. */
4735 specpdl_ptr--;
4736
4737 if (STRING_MULTIBYTE (object))
4738 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4739 }
4740
4741 switch (type)
4742 {
4743 case 0: /* MD5 */
4744 {
4745 char digest[16];
4746 md5_buffer (SSDATA (object) + start_byte,
4747 SBYTES (object) - (size_byte - end_byte),
4748 digest);
4749
4750 if (NILP (binary))
4751 {
4752 char value[33];
4753 for (i = 0; i < 16; i++)
4754 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4755 res = make_string (value, 32);
4756 }
4757 else
4758 res = make_string (digest, 16);
4759 break;
4760 }
4761
4762 case 1: /* SHA1 */
4763 {
4764 char digest[20];
4765 sha1_buffer (SSDATA (object) + start_byte,
4766 SBYTES (object) - (size_byte - end_byte),
4767 digest);
4768 if (NILP (binary))
4769 {
4770 char value[41];
4771 for (i = 0; i < 20; i++)
4772 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4773 res = make_string (value, 40);
4774 }
4775 else
4776 res = make_string (digest, 20);
4777 break;
4778 }
4779 }
4780
4781 return res;
4782 }
4783
4784 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4785 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4786
4787 A message digest is a cryptographic checksum of a document, and the
4788 algorithm to calculate it is defined in RFC 1321.
4789
4790 The two optional arguments START and END are character positions
4791 specifying for which part of OBJECT the message digest should be
4792 computed. If nil or omitted, the digest is computed for the whole
4793 OBJECT.
4794
4795 The MD5 message digest is computed from the result of encoding the
4796 text in a coding system, not directly from the internal Emacs form of
4797 the text. The optional fourth argument CODING-SYSTEM specifies which
4798 coding system to encode the text with. It should be the same coding
4799 system that you used or will use when actually writing the text into a
4800 file.
4801
4802 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4803 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4804 system would be chosen by default for writing this text into a file.
4805
4806 If OBJECT is a string, the most preferred coding system (see the
4807 command `prefer-coding-system') is used.
4808
4809 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4810 guesswork fails. Normally, an error is signaled in such case. */)
4811 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4812 {
4813 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4814 }
4815
4816 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4817 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4818
4819 OBJECT is either a string or a buffer. Optional arguments START and
4820 END are character positions specifying which portion of OBJECT for
4821 computing the hash. If BINARY is non-nil, return a string in binary
4822 form. */)
4823 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4824 {
4825 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4826 }
4827
4828 \f
4829 void
4830 syms_of_fns (void)
4831 {
4832 /* Hash table stuff. */
4833 Qhash_table_p = intern_c_string ("hash-table-p");
4834 staticpro (&Qhash_table_p);
4835 Qeq = intern_c_string ("eq");
4836 staticpro (&Qeq);
4837 Qeql = intern_c_string ("eql");
4838 staticpro (&Qeql);
4839 Qequal = intern_c_string ("equal");
4840 staticpro (&Qequal);
4841 QCtest = intern_c_string (":test");
4842 staticpro (&QCtest);
4843 QCsize = intern_c_string (":size");
4844 staticpro (&QCsize);
4845 QCrehash_size = intern_c_string (":rehash-size");
4846 staticpro (&QCrehash_size);
4847 QCrehash_threshold = intern_c_string (":rehash-threshold");
4848 staticpro (&QCrehash_threshold);
4849 QCweakness = intern_c_string (":weakness");
4850 staticpro (&QCweakness);
4851 Qkey = intern_c_string ("key");
4852 staticpro (&Qkey);
4853 Qvalue = intern_c_string ("value");
4854 staticpro (&Qvalue);
4855 Qhash_table_test = intern_c_string ("hash-table-test");
4856 staticpro (&Qhash_table_test);
4857 Qkey_or_value = intern_c_string ("key-or-value");
4858 staticpro (&Qkey_or_value);
4859 Qkey_and_value = intern_c_string ("key-and-value");
4860 staticpro (&Qkey_and_value);
4861
4862 defsubr (&Ssxhash);
4863 defsubr (&Smake_hash_table);
4864 defsubr (&Scopy_hash_table);
4865 defsubr (&Shash_table_count);
4866 defsubr (&Shash_table_rehash_size);
4867 defsubr (&Shash_table_rehash_threshold);
4868 defsubr (&Shash_table_size);
4869 defsubr (&Shash_table_test);
4870 defsubr (&Shash_table_weakness);
4871 defsubr (&Shash_table_p);
4872 defsubr (&Sclrhash);
4873 defsubr (&Sgethash);
4874 defsubr (&Sputhash);
4875 defsubr (&Sremhash);
4876 defsubr (&Smaphash);
4877 defsubr (&Sdefine_hash_table_test);
4878
4879 Qstring_lessp = intern_c_string ("string-lessp");
4880 staticpro (&Qstring_lessp);
4881 Qprovide = intern_c_string ("provide");
4882 staticpro (&Qprovide);
4883 Qrequire = intern_c_string ("require");
4884 staticpro (&Qrequire);
4885 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4886 staticpro (&Qyes_or_no_p_history);
4887 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4888 staticpro (&Qcursor_in_echo_area);
4889 Qwidget_type = intern_c_string ("widget-type");
4890 staticpro (&Qwidget_type);
4891
4892 staticpro (&string_char_byte_cache_string);
4893 string_char_byte_cache_string = Qnil;
4894
4895 require_nesting_list = Qnil;
4896 staticpro (&require_nesting_list);
4897
4898 Fset (Qyes_or_no_p_history, Qnil);
4899
4900 DEFVAR_LISP ("features", Vfeatures,
4901 doc: /* A list of symbols which are the features of the executing Emacs.
4902 Used by `featurep' and `require', and altered by `provide'. */);
4903 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4904 Qsubfeatures = intern_c_string ("subfeatures");
4905 staticpro (&Qsubfeatures);
4906
4907 #ifdef HAVE_LANGINFO_CODESET
4908 Qcodeset = intern_c_string ("codeset");
4909 staticpro (&Qcodeset);
4910 Qdays = intern_c_string ("days");
4911 staticpro (&Qdays);
4912 Qmonths = intern_c_string ("months");
4913 staticpro (&Qmonths);
4914 Qpaper = intern_c_string ("paper");
4915 staticpro (&Qpaper);
4916 #endif /* HAVE_LANGINFO_CODESET */
4917
4918 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4919 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4920 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4921 invoked by mouse clicks and mouse menu items.
4922
4923 On some platforms, file selection dialogs are also enabled if this is
4924 non-nil. */);
4925 use_dialog_box = 1;
4926
4927 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4928 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4929 This applies to commands from menus and tool bar buttons even when
4930 they are initiated from the keyboard. If `use-dialog-box' is nil,
4931 that disables the use of a file dialog, regardless of the value of
4932 this variable. */);
4933 use_file_dialog = 1;
4934
4935 defsubr (&Sidentity);
4936 defsubr (&Srandom);
4937 defsubr (&Slength);
4938 defsubr (&Ssafe_length);
4939 defsubr (&Sstring_bytes);
4940 defsubr (&Sstring_equal);
4941 defsubr (&Scompare_strings);
4942 defsubr (&Sstring_lessp);
4943 defsubr (&Sappend);
4944 defsubr (&Sconcat);
4945 defsubr (&Svconcat);
4946 defsubr (&Scopy_sequence);
4947 defsubr (&Sstring_make_multibyte);
4948 defsubr (&Sstring_make_unibyte);
4949 defsubr (&Sstring_as_multibyte);
4950 defsubr (&Sstring_as_unibyte);
4951 defsubr (&Sstring_to_multibyte);
4952 defsubr (&Sstring_to_unibyte);
4953 defsubr (&Scopy_alist);
4954 defsubr (&Ssubstring);
4955 defsubr (&Ssubstring_no_properties);
4956 defsubr (&Snthcdr);
4957 defsubr (&Snth);
4958 defsubr (&Selt);
4959 defsubr (&Smember);
4960 defsubr (&Smemq);
4961 defsubr (&Smemql);
4962 defsubr (&Sassq);
4963 defsubr (&Sassoc);
4964 defsubr (&Srassq);
4965 defsubr (&Srassoc);
4966 defsubr (&Sdelq);
4967 defsubr (&Sdelete);
4968 defsubr (&Snreverse);
4969 defsubr (&Sreverse);
4970 defsubr (&Ssort);
4971 defsubr (&Splist_get);
4972 defsubr (&Sget);
4973 defsubr (&Splist_put);
4974 defsubr (&Sput);
4975 defsubr (&Slax_plist_get);
4976 defsubr (&Slax_plist_put);
4977 defsubr (&Seql);
4978 defsubr (&Sequal);
4979 defsubr (&Sequal_including_properties);
4980 defsubr (&Sfillarray);
4981 defsubr (&Sclear_string);
4982 defsubr (&Snconc);
4983 defsubr (&Smapcar);
4984 defsubr (&Smapc);
4985 defsubr (&Smapconcat);
4986 defsubr (&Syes_or_no_p);
4987 defsubr (&Sload_average);
4988 defsubr (&Sfeaturep);
4989 defsubr (&Srequire);
4990 defsubr (&Sprovide);
4991 defsubr (&Splist_member);
4992 defsubr (&Swidget_put);
4993 defsubr (&Swidget_get);
4994 defsubr (&Swidget_apply);
4995 defsubr (&Sbase64_encode_region);
4996 defsubr (&Sbase64_decode_region);
4997 defsubr (&Sbase64_encode_string);
4998 defsubr (&Sbase64_decode_string);
4999 defsubr (&Smd5);
5000 defsubr (&Ssha1);
5001 defsubr (&Slocale_info);
5002 }
5003
5004
5005 void
5006 init_fns (void)
5007 {
5008 }