*** empty log message ***
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #ifdef STDC_HEADERS
25 #include <stdlib.h>
26 #endif
27 #undef NULL
28 #include "lisp.h"
29 #include "commands.h"
30 #include "buffer.h"
31 #include "charset.h"
32 #include "keyboard.h"
33 #include "termhooks.h"
34 #include "blockinput.h"
35 #include "puresize.h"
36
37 #define min(a, b) ((a) < (b) ? (a) : (b))
38
39 /* The number of elements in keymap vectors. */
40 #define DENSE_TABLE_SIZE (0200)
41
42 /* Actually allocate storage for these variables */
43
44 Lisp_Object current_global_map; /* Current global keymap */
45
46 Lisp_Object global_map; /* default global key bindings */
47
48 Lisp_Object meta_map; /* The keymap used for globally bound
49 ESC-prefixed default commands */
50
51 Lisp_Object control_x_map; /* The keymap used for globally bound
52 C-x-prefixed default commands */
53
54 /* was MinibufLocalMap */
55 Lisp_Object Vminibuffer_local_map;
56 /* The keymap used by the minibuf for local
57 bindings when spaces are allowed in the
58 minibuf */
59
60 /* was MinibufLocalNSMap */
61 Lisp_Object Vminibuffer_local_ns_map;
62 /* The keymap used by the minibuf for local
63 bindings when spaces are not encouraged
64 in the minibuf */
65
66 /* keymap used for minibuffers when doing completion */
67 /* was MinibufLocalCompletionMap */
68 Lisp_Object Vminibuffer_local_completion_map;
69
70 /* keymap used for minibuffers when doing completion and require a match */
71 /* was MinibufLocalMustMatchMap */
72 Lisp_Object Vminibuffer_local_must_match_map;
73
74 /* Alist of minor mode variables and keymaps. */
75 Lisp_Object Vminor_mode_map_alist;
76
77 /* Alist of major-mode-specific overrides for
78 minor mode variables and keymaps. */
79 Lisp_Object Vminor_mode_overriding_map_alist;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
96
97 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
98 in a string key sequence is equivalent to prefixing with this
99 character. */
100 extern Lisp_Object meta_prefix_char;
101
102 extern Lisp_Object Voverriding_local_map;
103
104 static Lisp_Object define_as_prefix ();
105 static Lisp_Object describe_buffer_bindings ();
106 static void describe_command (), describe_translation ();
107 static void describe_map ();
108 \f
109 /* Keymap object support - constructors and predicates. */
110
111 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
112 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
113 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
114 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
115 mouse events, and any other things that appear in the input stream.\n\
116 All entries in it are initially nil, meaning \"command undefined\".\n\n\
117 The optional arg STRING supplies a menu name for the keymap\n\
118 in case you use it as a menu with `x-popup-menu'.")
119 (string)
120 Lisp_Object string;
121 {
122 Lisp_Object tail;
123 if (!NILP (string))
124 tail = Fcons (string, Qnil);
125 else
126 tail = Qnil;
127 return Fcons (Qkeymap,
128 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
129 }
130
131 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
132 "Construct and return a new sparse-keymap list.\n\
133 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
134 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
135 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
136 Initially the alist is nil.\n\n\
137 The optional arg STRING supplies a menu name for the keymap\n\
138 in case you use it as a menu with `x-popup-menu'.")
139 (string)
140 Lisp_Object string;
141 {
142 if (!NILP (string))
143 return Fcons (Qkeymap, Fcons (string, Qnil));
144 return Fcons (Qkeymap, Qnil);
145 }
146
147 /* This function is used for installing the standard key bindings
148 at initialization time.
149
150 For example:
151
152 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
153
154 void
155 initial_define_key (keymap, key, defname)
156 Lisp_Object keymap;
157 int key;
158 char *defname;
159 {
160 store_in_keymap (keymap, make_number (key), intern (defname));
161 }
162
163 void
164 initial_define_lispy_key (keymap, keyname, defname)
165 Lisp_Object keymap;
166 char *keyname;
167 char *defname;
168 {
169 store_in_keymap (keymap, intern (keyname), intern (defname));
170 }
171
172 /* Define character fromchar in map frommap as an alias for character
173 tochar in map tomap. Subsequent redefinitions of the latter WILL
174 affect the former. */
175
176 #if 0
177 void
178 synkey (frommap, fromchar, tomap, tochar)
179 struct Lisp_Vector *frommap, *tomap;
180 int fromchar, tochar;
181 {
182 Lisp_Object v, c;
183 XSETVECTOR (v, tomap);
184 XSETFASTINT (c, tochar);
185 frommap->contents[fromchar] = Fcons (v, c);
186 }
187 #endif /* 0 */
188
189 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
190 "Return t if OBJECT is a keymap.\n\
191 \n\
192 A keymap is a list (keymap . ALIST),\n\
193 or a symbol whose function definition is itself a keymap.\n\
194 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
195 a vector of densely packed bindings for small character codes\n\
196 is also allowed as an element.")
197 (object)
198 Lisp_Object object;
199 {
200 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
201 }
202
203 /* Check that OBJECT is a keymap (after dereferencing through any
204 symbols). If it is, return it.
205
206 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
207 is an autoload form, do the autoload and try again.
208 If AUTOLOAD is nonzero, callers must assume GC is possible.
209
210 ERROR controls how we respond if OBJECT isn't a keymap.
211 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
212
213 Note that most of the time, we don't want to pursue autoloads.
214 Functions like Faccessible_keymaps which scan entire keymap trees
215 shouldn't load every autoloaded keymap. I'm not sure about this,
216 but it seems to me that only read_key_sequence, Flookup_key, and
217 Fdefine_key should cause keymaps to be autoloaded. */
218
219 Lisp_Object
220 get_keymap_1 (object, error, autoload)
221 Lisp_Object object;
222 int error, autoload;
223 {
224 Lisp_Object tem;
225
226 autoload_retry:
227 tem = indirect_function (object);
228 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
229 return tem;
230
231 /* Should we do an autoload? Autoload forms for keymaps have
232 Qkeymap as their fifth element. */
233 if (autoload
234 && SYMBOLP (object)
235 && CONSP (tem)
236 && EQ (XCONS (tem)->car, Qautoload))
237 {
238 Lisp_Object tail;
239
240 tail = Fnth (make_number (4), tem);
241 if (EQ (tail, Qkeymap))
242 {
243 struct gcpro gcpro1, gcpro2;
244
245 GCPRO2 (tem, object);
246 do_autoload (tem, object);
247 UNGCPRO;
248
249 goto autoload_retry;
250 }
251 }
252
253 if (error)
254 wrong_type_argument (Qkeymapp, object);
255 else
256 return Qnil;
257 }
258
259
260 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
261 If OBJECT doesn't denote a keymap at all, signal an error. */
262 Lisp_Object
263 get_keymap (object)
264 Lisp_Object object;
265 {
266 return get_keymap_1 (object, 1, 0);
267 }
268 \f
269 /* Return the parent map of the keymap MAP, or nil if it has none.
270 We assume that MAP is a valid keymap. */
271
272 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
273 "Return the parent keymap of KEYMAP.")
274 (keymap)
275 Lisp_Object keymap;
276 {
277 Lisp_Object list;
278
279 keymap = get_keymap_1 (keymap, 1, 1);
280
281 /* Skip past the initial element `keymap'. */
282 list = XCONS (keymap)->cdr;
283 for (; CONSP (list); list = XCONS (list)->cdr)
284 {
285 /* See if there is another `keymap'. */
286 if (EQ (Qkeymap, XCONS (list)->car))
287 return list;
288 }
289
290 return Qnil;
291 }
292
293 /* Set the parent keymap of MAP to PARENT. */
294
295 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
296 "Modify KEYMAP to set its parent map to PARENT.\n\
297 PARENT should be nil or another keymap.")
298 (keymap, parent)
299 Lisp_Object keymap, parent;
300 {
301 Lisp_Object list, prev;
302 int i;
303
304 keymap = get_keymap_1 (keymap, 1, 1);
305 if (!NILP (parent))
306 parent = get_keymap_1 (parent, 1, 1);
307
308 /* Skip past the initial element `keymap'. */
309 prev = keymap;
310 while (1)
311 {
312 list = XCONS (prev)->cdr;
313 /* If there is a parent keymap here, replace it.
314 If we came to the end, add the parent in PREV. */
315 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
316 {
317 /* If we already have the right parent, return now
318 so that we avoid the loops below. */
319 if (EQ (XCONS (prev)->cdr, parent))
320 return parent;
321
322 XCONS (prev)->cdr = parent;
323 break;
324 }
325 prev = list;
326 }
327
328 /* Scan through for submaps, and set their parents too. */
329
330 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
331 {
332 /* Stop the scan when we come to the parent. */
333 if (EQ (XCONS (list)->car, Qkeymap))
334 break;
335
336 /* If this element holds a prefix map, deal with it. */
337 if (CONSP (XCONS (list)->car)
338 && CONSP (XCONS (XCONS (list)->car)->cdr))
339 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
340 XCONS (XCONS (list)->car)->cdr);
341
342 if (VECTORP (XCONS (list)->car))
343 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
344 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
345 fix_submap_inheritance (keymap, make_number (i),
346 XVECTOR (XCONS (list)->car)->contents[i]);
347
348 if (CHAR_TABLE_P (XCONS (list)->car))
349 {
350 Lisp_Object indices[3];
351
352 map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
353 keymap, 0, indices);
354 }
355 }
356
357 return parent;
358 }
359
360 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
361 if EVENT is also a prefix in MAP's parent,
362 make sure that SUBMAP inherits that definition as its own parent. */
363
364 void
365 fix_submap_inheritance (map, event, submap)
366 Lisp_Object map, event, submap;
367 {
368 Lisp_Object map_parent, parent_entry;
369
370 /* SUBMAP is a cons that we found as a key binding.
371 Discard the other things found in a menu key binding. */
372
373 if (CONSP (submap))
374 {
375 /* May be an old format menu item */
376 if (STRINGP (XCONS (submap)->car))
377 {
378 submap = XCONS (submap)->cdr;
379 /* Also remove a menu help string, if any,
380 following the menu item name. */
381 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
382 submap = XCONS (submap)->cdr;
383 /* Also remove the sublist that caches key equivalences, if any. */
384 if (CONSP (submap)
385 && CONSP (XCONS (submap)->car))
386 {
387 Lisp_Object carcar;
388 carcar = XCONS (XCONS (submap)->car)->car;
389 if (NILP (carcar) || VECTORP (carcar))
390 submap = XCONS (submap)->cdr;
391 }
392 }
393
394 /* Or a new format menu item */
395 else if (EQ (XCONS (submap)->car, Qmenu_item)
396 && CONSP (XCONS (submap)->cdr))
397 {
398 submap = XCONS (XCONS (submap)->cdr)->cdr;
399 if (CONSP (submap))
400 submap = XCONS (submap)->car;
401 }
402 }
403
404 /* If it isn't a keymap now, there's no work to do. */
405 if (! CONSP (submap)
406 || ! EQ (XCONS (submap)->car, Qkeymap))
407 return;
408
409 map_parent = Fkeymap_parent (map);
410 if (! NILP (map_parent))
411 parent_entry = access_keymap (map_parent, event, 0, 0);
412 else
413 parent_entry = Qnil;
414
415 /* If MAP's parent has something other than a keymap,
416 our own submap shadows it completely, so use nil as SUBMAP's parent. */
417 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
418 parent_entry = Qnil;
419
420 if (! EQ (parent_entry, submap))
421 Fset_keymap_parent (submap, parent_entry);
422 }
423 \f
424 /* Look up IDX in MAP. IDX may be any sort of event.
425 Note that this does only one level of lookup; IDX must be a single
426 event, not a sequence.
427
428 If T_OK is non-zero, bindings for Qt are treated as default
429 bindings; any key left unmentioned by other tables and bindings is
430 given the binding of Qt.
431
432 If T_OK is zero, bindings for Qt are not treated specially.
433
434 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
435
436 Lisp_Object
437 access_keymap (map, idx, t_ok, noinherit)
438 Lisp_Object map;
439 Lisp_Object idx;
440 int t_ok;
441 int noinherit;
442 {
443 int noprefix = 0;
444 Lisp_Object val;
445
446 /* If idx is a list (some sort of mouse click, perhaps?),
447 the index we want to use is the car of the list, which
448 ought to be a symbol. */
449 idx = EVENT_HEAD (idx);
450
451 /* If idx is a symbol, it might have modifiers, which need to
452 be put in the canonical order. */
453 if (SYMBOLP (idx))
454 idx = reorder_modifiers (idx);
455 else if (INTEGERP (idx))
456 /* Clobber the high bits that can be present on a machine
457 with more than 24 bits of integer. */
458 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
459
460 {
461 Lisp_Object tail;
462 Lisp_Object t_binding;
463
464 t_binding = Qnil;
465 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
466 {
467 Lisp_Object binding;
468
469 binding = XCONS (tail)->car;
470 if (SYMBOLP (binding))
471 {
472 /* If NOINHERIT, stop finding prefix definitions
473 after we pass a second occurrence of the `keymap' symbol. */
474 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
475 noprefix = 1;
476 }
477 else if (CONSP (binding))
478 {
479 if (EQ (XCONS (binding)->car, idx))
480 {
481 val = XCONS (binding)->cdr;
482 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
483 return Qnil;
484 if (CONSP (val))
485 fix_submap_inheritance (map, idx, val);
486 return val;
487 }
488 if (t_ok && EQ (XCONS (binding)->car, Qt))
489 t_binding = XCONS (binding)->cdr;
490 }
491 else if (VECTORP (binding))
492 {
493 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
494 {
495 val = XVECTOR (binding)->contents[XFASTINT (idx)];
496 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
497 return Qnil;
498 if (CONSP (val))
499 fix_submap_inheritance (map, idx, val);
500 return val;
501 }
502 }
503 else if (CHAR_TABLE_P (binding))
504 {
505 /* Character codes with modifiers
506 are not included in a char-table.
507 All character codes without modifiers are included. */
508 if (NATNUMP (idx)
509 && ! (XFASTINT (idx)
510 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
511 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
512 {
513 val = Faref (binding, idx);
514 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
515 return Qnil;
516 if (CONSP (val))
517 fix_submap_inheritance (map, idx, val);
518 return val;
519 }
520 }
521
522 QUIT;
523 }
524
525 return t_binding;
526 }
527 }
528
529 /* Given OBJECT which was found in a slot in a keymap,
530 trace indirect definitions to get the actual definition of that slot.
531 An indirect definition is a list of the form
532 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
533 and INDEX is the object to look up in KEYMAP to yield the definition.
534
535 Also if OBJECT has a menu string as the first element,
536 remove that. Also remove a menu help string as second element.
537
538 If AUTOLOAD is nonzero, load autoloadable keymaps
539 that are referred to with indirection. */
540
541 Lisp_Object
542 get_keyelt (object, autoload)
543 register Lisp_Object object;
544 int autoload;
545 {
546 while (1)
547 {
548 register Lisp_Object map, tem;
549
550 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
551 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
552 tem = Fkeymapp (map);
553 if (!NILP (tem))
554 {
555 Lisp_Object key;
556 key = Fcdr (object);
557 if (INTEGERP (key) && (XINT (key) & meta_modifier))
558 {
559 object = access_keymap (map, meta_prefix_char, 0, 0);
560 map = get_keymap_1 (object, 0, autoload);
561 object = access_keymap (map,
562 make_number (XINT (key) & ~meta_modifier),
563 0, 0);
564 }
565 else
566 object = access_keymap (map, key, 0, 0);
567 }
568
569 else if (!(CONSP (object)))
570 /* This is really the value. */
571 return object;
572
573 /* If the keymap contents looks like (STRING . DEFN),
574 use DEFN.
575 Keymap alist elements like (CHAR MENUSTRING . DEFN)
576 will be used by HierarKey menus. */
577 else if (STRINGP (XCONS (object)->car))
578 {
579 object = XCONS (object)->cdr;
580 /* Also remove a menu help string, if any,
581 following the menu item name. */
582 if (CONSP (object) && STRINGP (XCONS (object)->car))
583 object = XCONS (object)->cdr;
584 /* Also remove the sublist that caches key equivalences, if any. */
585 if (CONSP (object)
586 && CONSP (XCONS (object)->car))
587 {
588 Lisp_Object carcar;
589 carcar = XCONS (XCONS (object)->car)->car;
590 if (NILP (carcar) || VECTORP (carcar))
591 object = XCONS (object)->cdr;
592 }
593 }
594
595 /* If the keymap contents looks like (menu-item name . DEFN)
596 or (menu-item name DEFN ...) then use DEFN.
597 This is a new format menu item.
598 */
599 else if (EQ (XCONS (object)->car, Qmenu_item)
600 && CONSP (XCONS (object)->cdr))
601 {
602 object = XCONS (XCONS (object)->cdr)->cdr;
603 if (CONSP (object))
604 object = XCONS (object)->car;
605 }
606
607 else
608 /* Anything else is really the value. */
609 return object;
610 }
611 }
612
613 Lisp_Object
614 store_in_keymap (keymap, idx, def)
615 Lisp_Object keymap;
616 register Lisp_Object idx;
617 register Lisp_Object def;
618 {
619 /* If we are preparing to dump, and DEF is a menu element
620 with a menu item indicator, copy it to ensure it is not pure. */
621 if (CONSP (def) && PURE_P (def)
622 && (EQ (XCONS (def)->car, Qmenu_item) || STRINGP (XCONS (def)->car)))
623 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
624
625 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
626 error ("attempt to define a key in a non-keymap");
627
628 /* If idx is a list (some sort of mouse click, perhaps?),
629 the index we want to use is the car of the list, which
630 ought to be a symbol. */
631 idx = EVENT_HEAD (idx);
632
633 /* If idx is a symbol, it might have modifiers, which need to
634 be put in the canonical order. */
635 if (SYMBOLP (idx))
636 idx = reorder_modifiers (idx);
637 else if (INTEGERP (idx))
638 /* Clobber the high bits that can be present on a machine
639 with more than 24 bits of integer. */
640 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
641
642 /* Scan the keymap for a binding of idx. */
643 {
644 Lisp_Object tail;
645
646 /* The cons after which we should insert new bindings. If the
647 keymap has a table element, we record its position here, so new
648 bindings will go after it; this way, the table will stay
649 towards the front of the alist and character lookups in dense
650 keymaps will remain fast. Otherwise, this just points at the
651 front of the keymap. */
652 Lisp_Object insertion_point;
653
654 insertion_point = keymap;
655 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
656 {
657 Lisp_Object elt;
658
659 elt = XCONS (tail)->car;
660 if (VECTORP (elt))
661 {
662 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
663 {
664 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
665 return def;
666 }
667 insertion_point = tail;
668 }
669 else if (CHAR_TABLE_P (elt))
670 {
671 /* Character codes with modifiers
672 are not included in a char-table.
673 All character codes without modifiers are included. */
674 if (NATNUMP (idx)
675 && ! (XFASTINT (idx)
676 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
677 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
678 {
679 Faset (elt, idx, def);
680 return def;
681 }
682 insertion_point = tail;
683 }
684 else if (CONSP (elt))
685 {
686 if (EQ (idx, XCONS (elt)->car))
687 {
688 XCONS (elt)->cdr = def;
689 return def;
690 }
691 }
692 else if (SYMBOLP (elt))
693 {
694 /* If we find a 'keymap' symbol in the spine of KEYMAP,
695 then we must have found the start of a second keymap
696 being used as the tail of KEYMAP, and a binding for IDX
697 should be inserted before it. */
698 if (EQ (elt, Qkeymap))
699 goto keymap_end;
700 }
701
702 QUIT;
703 }
704
705 keymap_end:
706 /* We have scanned the entire keymap, and not found a binding for
707 IDX. Let's add one. */
708 XCONS (insertion_point)->cdr
709 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
710 }
711
712 return def;
713 }
714
715 void
716 copy_keymap_1 (chartable, idx, elt)
717 Lisp_Object chartable, idx, elt;
718 {
719 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
720 Faset (chartable, idx, Fcopy_keymap (elt));
721 }
722
723 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
724 "Return a copy of the keymap KEYMAP.\n\
725 The copy starts out with the same definitions of KEYMAP,\n\
726 but changing either the copy or KEYMAP does not affect the other.\n\
727 Any key definitions that are subkeymaps are recursively copied.\n\
728 However, a key definition which is a symbol whose definition is a keymap\n\
729 is not copied.")
730 (keymap)
731 Lisp_Object keymap;
732 {
733 register Lisp_Object copy, tail;
734
735 copy = Fcopy_alist (get_keymap (keymap));
736
737 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
738 {
739 Lisp_Object elt;
740
741 elt = XCONS (tail)->car;
742 if (CHAR_TABLE_P (elt))
743 {
744 Lisp_Object indices[3];
745
746 elt = Fcopy_sequence (elt);
747 XCONS (tail)->car = elt;
748
749 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
750 }
751 else if (VECTORP (elt))
752 {
753 int i;
754
755 elt = Fcopy_sequence (elt);
756 XCONS (tail)->car = elt;
757
758 for (i = 0; i < XVECTOR (elt)->size; i++)
759 if (!SYMBOLP (XVECTOR (elt)->contents[i])
760 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
761 XVECTOR (elt)->contents[i]
762 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
763 }
764 else if (CONSP (elt) && CONSP (XCONS (elt)->cdr))
765 {
766 Lisp_Object tem;
767 tem = XCONS (elt)->cdr;
768
769 /* Is this a new format menu item. */
770 if (EQ (XCONS (tem)->car,Qmenu_item))
771 {
772 /* Copy cell with menu-item marker. */
773 XCONS (elt)->cdr
774 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
775 elt = XCONS (elt)->cdr;
776 tem = XCONS (elt)->cdr;
777 if (CONSP (tem))
778 {
779 /* Copy cell with menu-item name. */
780 XCONS (elt)->cdr
781 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
782 elt = XCONS (elt)->cdr;
783 tem = XCONS (elt)->cdr;
784 };
785 if (CONSP (tem))
786 {
787 /* Copy cell with binding and if the binding is a keymap,
788 copy that. */
789 XCONS (elt)->cdr
790 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
791 elt = XCONS (elt)->cdr;
792 tem = XCONS (elt)->car;
793 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
794 XCONS (elt)->car = Fcopy_keymap (tem);
795 tem = XCONS (elt)->cdr;
796 if (CONSP (tem) && CONSP (XCONS (tem)->car))
797 /* Delete cache for key equivalences. */
798 XCONS (elt)->cdr = XCONS (tem)->cdr;
799 }
800 }
801 else
802 {
803 /* It may be an old fomat menu item.
804 Skip the optional menu string.
805 */
806 if (STRINGP (XCONS (tem)->car))
807 {
808 /* Copy the cell, since copy-alist didn't go this deep. */
809 XCONS (elt)->cdr
810 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
811 elt = XCONS (elt)->cdr;
812 tem = XCONS (elt)->cdr;
813 /* Also skip the optional menu help string. */
814 if (CONSP (tem) && STRINGP (XCONS (tem)->car))
815 {
816 XCONS (elt)->cdr
817 = Fcons (XCONS (tem)->car, XCONS (tem)->cdr);
818 elt = XCONS (elt)->cdr;
819 tem = XCONS (elt)->cdr;
820 }
821 /* There may also be a list that caches key equivalences.
822 Just delete it for the new keymap. */
823 if (CONSP (tem)
824 && CONSP (XCONS (tem)->car)
825 && (NILP (XCONS (XCONS (tem)->car)->car)
826 || VECTORP (XCONS (XCONS (tem)->car)->car)))
827 XCONS (elt)->cdr = XCONS (tem)->cdr;
828 }
829 if (CONSP (elt)
830 && ! SYMBOLP (XCONS (elt)->cdr)
831 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
832 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
833 }
834
835 }
836 }
837
838 return copy;
839 }
840 \f
841 /* Simple Keymap mutators and accessors. */
842
843 /* GC is possible in this function if it autoloads a keymap. */
844
845 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
846 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
847 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
848 meaning a sequence of keystrokes and events.\n\
849 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
850 can be included if you use a vector.\n\
851 DEF is anything that can be a key's definition:\n\
852 nil (means key is undefined in this keymap),\n\
853 a command (a Lisp function suitable for interactive calling)\n\
854 a string (treated as a keyboard macro),\n\
855 a keymap (to define a prefix key),\n\
856 a symbol. When the key is looked up, the symbol will stand for its\n\
857 function definition, which should at that time be one of the above,\n\
858 or another symbol whose function definition is used, etc.\n\
859 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
860 (DEFN should be a valid definition in its own right),\n\
861 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
862 \n\
863 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
864 the front of KEYMAP.")
865 (keymap, key, def)
866 Lisp_Object keymap;
867 Lisp_Object key;
868 Lisp_Object def;
869 {
870 register int idx;
871 register Lisp_Object c;
872 register Lisp_Object tem;
873 register Lisp_Object cmd;
874 int metized = 0;
875 int meta_bit;
876 int length;
877 struct gcpro gcpro1, gcpro2, gcpro3;
878
879 keymap = get_keymap_1 (keymap, 1, 1);
880
881 if (!VECTORP (key) && !STRINGP (key))
882 key = wrong_type_argument (Qarrayp, key);
883
884 length = XFASTINT (Flength (key));
885 if (length == 0)
886 return Qnil;
887
888 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
889 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
890
891 GCPRO3 (keymap, key, def);
892
893 if (VECTORP (key))
894 meta_bit = meta_modifier;
895 else
896 meta_bit = 0x80;
897
898 idx = 0;
899 while (1)
900 {
901 c = Faref (key, make_number (idx));
902
903 if (CONSP (c) && lucid_event_type_list_p (c))
904 c = Fevent_convert_list (c);
905
906 if (INTEGERP (c)
907 && (XINT (c) & meta_bit)
908 && !metized)
909 {
910 c = meta_prefix_char;
911 metized = 1;
912 }
913 else
914 {
915 if (INTEGERP (c))
916 XSETINT (c, XINT (c) & ~meta_bit);
917
918 metized = 0;
919 idx++;
920 }
921
922 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
923 error ("Key sequence contains invalid events");
924
925 if (idx == length)
926 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
927
928 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
929
930 /* If this key is undefined, make it a prefix. */
931 if (NILP (cmd))
932 cmd = define_as_prefix (keymap, c);
933
934 keymap = get_keymap_1 (cmd, 0, 1);
935 if (NILP (keymap))
936 /* We must use Fkey_description rather than just passing key to
937 error; key might be a vector, not a string. */
938 error ("Key sequence %s uses invalid prefix characters",
939 XSTRING (Fkey_description (key))->data);
940 }
941 }
942
943 /* Value is number if KEY is too long; NIL if valid but has no definition. */
944 /* GC is possible in this function if it autoloads a keymap. */
945
946 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
947 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
948 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
949 \n\
950 A number as value means KEY is \"too long\";\n\
951 that is, characters or symbols in it except for the last one\n\
952 fail to be a valid sequence of prefix characters in KEYMAP.\n\
953 The number is how many characters at the front of KEY\n\
954 it takes to reach a non-prefix command.\n\
955 \n\
956 Normally, `lookup-key' ignores bindings for t, which act as default\n\
957 bindings, used when nothing else in the keymap applies; this makes it\n\
958 usable as a general function for probing keymaps. However, if the\n\
959 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
960 recognize the default bindings, just as `read-key-sequence' does.")
961 (keymap, key, accept_default)
962 register Lisp_Object keymap;
963 Lisp_Object key;
964 Lisp_Object accept_default;
965 {
966 register int idx;
967 register Lisp_Object tem;
968 register Lisp_Object cmd;
969 register Lisp_Object c;
970 int metized = 0;
971 int length;
972 int t_ok = ! NILP (accept_default);
973 int meta_bit;
974 struct gcpro gcpro1;
975
976 keymap = get_keymap_1 (keymap, 1, 1);
977
978 if (!VECTORP (key) && !STRINGP (key))
979 key = wrong_type_argument (Qarrayp, key);
980
981 length = XFASTINT (Flength (key));
982 if (length == 0)
983 return keymap;
984
985 if (VECTORP (key))
986 meta_bit = meta_modifier;
987 else
988 meta_bit = 0x80;
989
990 GCPRO1 (key);
991
992 idx = 0;
993 while (1)
994 {
995 c = Faref (key, make_number (idx));
996
997 if (CONSP (c) && lucid_event_type_list_p (c))
998 c = Fevent_convert_list (c);
999
1000 if (INTEGERP (c)
1001 && (XINT (c) & meta_bit)
1002 && !metized)
1003 {
1004 c = meta_prefix_char;
1005 metized = 1;
1006 }
1007 else
1008 {
1009 if (INTEGERP (c))
1010 XSETINT (c, XINT (c) & ~meta_bit);
1011
1012 metized = 0;
1013 idx++;
1014 }
1015
1016 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1017 if (idx == length)
1018 RETURN_UNGCPRO (cmd);
1019
1020 keymap = get_keymap_1 (cmd, 0, 1);
1021 if (NILP (keymap))
1022 RETURN_UNGCPRO (make_number (idx));
1023
1024 QUIT;
1025 }
1026 }
1027
1028 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1029 Assume that currently it does not define C at all.
1030 Return the keymap. */
1031
1032 static Lisp_Object
1033 define_as_prefix (keymap, c)
1034 Lisp_Object keymap, c;
1035 {
1036 Lisp_Object inherit, cmd;
1037
1038 cmd = Fmake_sparse_keymap (Qnil);
1039 /* If this key is defined as a prefix in an inherited keymap,
1040 make it a prefix in this map, and make its definition
1041 inherit the other prefix definition. */
1042 inherit = access_keymap (keymap, c, 0, 0);
1043 #if 0
1044 /* This code is needed to do the right thing in the following case:
1045 keymap A inherits from B,
1046 you define KEY as a prefix in A,
1047 then later you define KEY as a prefix in B.
1048 We want the old prefix definition in A to inherit from that in B.
1049 It is hard to do that retroactively, so this code
1050 creates the prefix in B right away.
1051
1052 But it turns out that this code causes problems immediately
1053 when the prefix in A is defined: it causes B to define KEY
1054 as a prefix with no subcommands.
1055
1056 So I took out this code. */
1057 if (NILP (inherit))
1058 {
1059 /* If there's an inherited keymap
1060 and it doesn't define this key,
1061 make it define this key. */
1062 Lisp_Object tail;
1063
1064 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
1065 if (EQ (XCONS (tail)->car, Qkeymap))
1066 break;
1067
1068 if (!NILP (tail))
1069 inherit = define_as_prefix (tail, c);
1070 }
1071 #endif
1072
1073 cmd = nconc2 (cmd, inherit);
1074 store_in_keymap (keymap, c, cmd);
1075
1076 return cmd;
1077 }
1078
1079 /* Append a key to the end of a key sequence. We always make a vector. */
1080
1081 Lisp_Object
1082 append_key (key_sequence, key)
1083 Lisp_Object key_sequence, key;
1084 {
1085 Lisp_Object args[2];
1086
1087 args[0] = key_sequence;
1088
1089 args[1] = Fcons (key, Qnil);
1090 return Fvconcat (2, args);
1091 }
1092
1093 \f
1094 /* Global, local, and minor mode keymap stuff. */
1095
1096 /* We can't put these variables inside current_minor_maps, since under
1097 some systems, static gets macro-defined to be the empty string.
1098 Ickypoo. */
1099 static Lisp_Object *cmm_modes, *cmm_maps;
1100 static int cmm_size;
1101
1102 /* Error handler used in current_minor_maps. */
1103 static Lisp_Object
1104 current_minor_maps_error ()
1105 {
1106 return Qnil;
1107 }
1108
1109 /* Store a pointer to an array of the keymaps of the currently active
1110 minor modes in *buf, and return the number of maps it contains.
1111
1112 This function always returns a pointer to the same buffer, and may
1113 free or reallocate it, so if you want to keep it for a long time or
1114 hand it out to lisp code, copy it. This procedure will be called
1115 for every key sequence read, so the nice lispy approach (return a
1116 new assoclist, list, what have you) for each invocation would
1117 result in a lot of consing over time.
1118
1119 If we used xrealloc/xmalloc and ran out of memory, they would throw
1120 back to the command loop, which would try to read a key sequence,
1121 which would call this function again, resulting in an infinite
1122 loop. Instead, we'll use realloc/malloc and silently truncate the
1123 list, let the key sequence be read, and hope some other piece of
1124 code signals the error. */
1125 int
1126 current_minor_maps (modeptr, mapptr)
1127 Lisp_Object **modeptr, **mapptr;
1128 {
1129 int i = 0;
1130 int list_number = 0;
1131 Lisp_Object alist, assoc, var, val;
1132 Lisp_Object lists[2];
1133
1134 lists[0] = Vminor_mode_overriding_map_alist;
1135 lists[1] = Vminor_mode_map_alist;
1136
1137 for (list_number = 0; list_number < 2; list_number++)
1138 for (alist = lists[list_number];
1139 CONSP (alist);
1140 alist = XCONS (alist)->cdr)
1141 if ((assoc = XCONS (alist)->car, CONSP (assoc))
1142 && (var = XCONS (assoc)->car, SYMBOLP (var))
1143 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1144 && ! NILP (val))
1145 {
1146 Lisp_Object temp;
1147
1148 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1149 and also an entry in Vminor_mode_map_alist,
1150 ignore the latter. */
1151 if (list_number == 1)
1152 {
1153 val = assq_no_quit (var, lists[0]);
1154 if (!NILP (val))
1155 break;
1156 }
1157
1158 if (i >= cmm_size)
1159 {
1160 Lisp_Object *newmodes, *newmaps;
1161
1162 if (cmm_maps)
1163 {
1164 BLOCK_INPUT;
1165 cmm_size *= 2;
1166 newmodes
1167 = (Lisp_Object *) realloc (cmm_modes,
1168 cmm_size * sizeof (Lisp_Object));
1169 newmaps
1170 = (Lisp_Object *) realloc (cmm_maps,
1171 cmm_size * sizeof (Lisp_Object));
1172 UNBLOCK_INPUT;
1173 }
1174 else
1175 {
1176 BLOCK_INPUT;
1177 cmm_size = 30;
1178 newmodes
1179 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1180 newmaps
1181 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1182 UNBLOCK_INPUT;
1183 }
1184
1185 if (newmaps && newmodes)
1186 {
1187 cmm_modes = newmodes;
1188 cmm_maps = newmaps;
1189 }
1190 else
1191 break;
1192 }
1193
1194 /* Get the keymap definition--or nil if it is not defined. */
1195 temp = internal_condition_case_1 (Findirect_function,
1196 XCONS (assoc)->cdr,
1197 Qerror, current_minor_maps_error);
1198 if (!NILP (temp))
1199 {
1200 cmm_modes[i] = var;
1201 cmm_maps [i] = temp;
1202 i++;
1203 }
1204 }
1205
1206 if (modeptr) *modeptr = cmm_modes;
1207 if (mapptr) *mapptr = cmm_maps;
1208 return i;
1209 }
1210
1211 /* GC is possible in this function if it autoloads a keymap. */
1212
1213 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1214 "Return the binding for command KEY in current keymaps.\n\
1215 KEY is a string or vector, a sequence of keystrokes.\n\
1216 The binding is probably a symbol with a function definition.\n\
1217 \n\
1218 Normally, `key-binding' ignores bindings for t, which act as default\n\
1219 bindings, used when nothing else in the keymap applies; this makes it\n\
1220 usable as a general function for probing keymaps. However, if the\n\
1221 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1222 recognize the default bindings, just as `read-key-sequence' does.")
1223 (key, accept_default)
1224 Lisp_Object key, accept_default;
1225 {
1226 Lisp_Object *maps, value;
1227 int nmaps, i;
1228 struct gcpro gcpro1;
1229
1230 GCPRO1 (key);
1231
1232 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1233 {
1234 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1235 key, accept_default);
1236 if (! NILP (value) && !INTEGERP (value))
1237 RETURN_UNGCPRO (value);
1238 }
1239 else if (!NILP (Voverriding_local_map))
1240 {
1241 value = Flookup_key (Voverriding_local_map, key, accept_default);
1242 if (! NILP (value) && !INTEGERP (value))
1243 RETURN_UNGCPRO (value);
1244 }
1245 else
1246 {
1247 Lisp_Object local;
1248
1249 nmaps = current_minor_maps (0, &maps);
1250 /* Note that all these maps are GCPRO'd
1251 in the places where we found them. */
1252
1253 for (i = 0; i < nmaps; i++)
1254 if (! NILP (maps[i]))
1255 {
1256 value = Flookup_key (maps[i], key, accept_default);
1257 if (! NILP (value) && !INTEGERP (value))
1258 RETURN_UNGCPRO (value);
1259 }
1260
1261 local = get_local_map (PT, current_buffer);
1262
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269 }
1270
1271 value = Flookup_key (current_global_map, key, accept_default);
1272 UNGCPRO;
1273 if (! NILP (value) && !INTEGERP (value))
1274 return value;
1275
1276 return Qnil;
1277 }
1278
1279 /* GC is possible in this function if it autoloads a keymap. */
1280
1281 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1282 "Return the binding for command KEYS in current local keymap only.\n\
1283 KEYS is a string, a sequence of keystrokes.\n\
1284 The binding is probably a symbol with a function definition.\n\
1285 \n\
1286 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1287 bindings; see the description of `lookup-key' for more details about this.")
1288 (keys, accept_default)
1289 Lisp_Object keys, accept_default;
1290 {
1291 register Lisp_Object map;
1292 map = current_buffer->keymap;
1293 if (NILP (map))
1294 return Qnil;
1295 return Flookup_key (map, keys, accept_default);
1296 }
1297
1298 /* GC is possible in this function if it autoloads a keymap. */
1299
1300 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1301 "Return the binding for command KEYS in current global keymap only.\n\
1302 KEYS is a string, a sequence of keystrokes.\n\
1303 The binding is probably a symbol with a function definition.\n\
1304 This function's return values are the same as those of lookup-key\n\
1305 \(which see).\n\
1306 \n\
1307 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1308 bindings; see the description of `lookup-key' for more details about this.")
1309 (keys, accept_default)
1310 Lisp_Object keys, accept_default;
1311 {
1312 return Flookup_key (current_global_map, keys, accept_default);
1313 }
1314
1315 /* GC is possible in this function if it autoloads a keymap. */
1316
1317 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1318 "Find the visible minor mode bindings of KEY.\n\
1319 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1320 the symbol which names the minor mode binding KEY, and BINDING is\n\
1321 KEY's definition in that mode. In particular, if KEY has no\n\
1322 minor-mode bindings, return nil. If the first binding is a\n\
1323 non-prefix, all subsequent bindings will be omitted, since they would\n\
1324 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1325 that come after prefix bindings.\n\
1326 \n\
1327 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1328 bindings; see the description of `lookup-key' for more details about this.")
1329 (key, accept_default)
1330 Lisp_Object key, accept_default;
1331 {
1332 Lisp_Object *modes, *maps;
1333 int nmaps;
1334 Lisp_Object binding;
1335 int i, j;
1336 struct gcpro gcpro1, gcpro2;
1337
1338 nmaps = current_minor_maps (&modes, &maps);
1339 /* Note that all these maps are GCPRO'd
1340 in the places where we found them. */
1341
1342 binding = Qnil;
1343 GCPRO2 (key, binding);
1344
1345 for (i = j = 0; i < nmaps; i++)
1346 if (! NILP (maps[i])
1347 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1348 && !INTEGERP (binding))
1349 {
1350 if (! NILP (get_keymap (binding)))
1351 maps[j++] = Fcons (modes[i], binding);
1352 else if (j == 0)
1353 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1354 }
1355
1356 UNGCPRO;
1357 return Flist (j, maps);
1358 }
1359
1360 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1361 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1362 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1363 If a second optional argument MAPVAR is given, the map is stored as\n\
1364 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1365 as a function.\n\
1366 The third optional argument NAME, if given, supplies a menu name\n\
1367 string for the map. This is required to use the keymap as a menu.")
1368 (command, mapvar, name)
1369 Lisp_Object command, mapvar, name;
1370 {
1371 Lisp_Object map;
1372 map = Fmake_sparse_keymap (name);
1373 Ffset (command, map);
1374 if (!NILP (mapvar))
1375 Fset (mapvar, map);
1376 else
1377 Fset (command, map);
1378 return command;
1379 }
1380
1381 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1382 "Select KEYMAP as the global keymap.")
1383 (keymap)
1384 Lisp_Object keymap;
1385 {
1386 keymap = get_keymap (keymap);
1387 current_global_map = keymap;
1388
1389 return Qnil;
1390 }
1391
1392 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1393 "Select KEYMAP as the local keymap.\n\
1394 If KEYMAP is nil, that means no local keymap.")
1395 (keymap)
1396 Lisp_Object keymap;
1397 {
1398 if (!NILP (keymap))
1399 keymap = get_keymap (keymap);
1400
1401 current_buffer->keymap = keymap;
1402
1403 return Qnil;
1404 }
1405
1406 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1407 "Return current buffer's local keymap, or nil if it has none.")
1408 ()
1409 {
1410 return current_buffer->keymap;
1411 }
1412
1413 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1414 "Return the current global keymap.")
1415 ()
1416 {
1417 return current_global_map;
1418 }
1419
1420 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1421 "Return a list of keymaps for the minor modes of the current buffer.")
1422 ()
1423 {
1424 Lisp_Object *maps;
1425 int nmaps = current_minor_maps (0, &maps);
1426
1427 return Flist (nmaps, maps);
1428 }
1429 \f
1430 /* Help functions for describing and documenting keymaps. */
1431
1432 static void accessible_keymaps_char_table ();
1433
1434 /* This function cannot GC. */
1435
1436 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1437 1, 2, 0,
1438 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1439 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1440 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1441 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1442 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1443 then the value includes only maps for prefixes that start with PREFIX.")
1444 (keymap, prefix)
1445 Lisp_Object keymap, prefix;
1446 {
1447 Lisp_Object maps, good_maps, tail;
1448 int prefixlen = 0;
1449
1450 /* no need for gcpro because we don't autoload any keymaps. */
1451
1452 if (!NILP (prefix))
1453 prefixlen = XINT (Flength (prefix));
1454
1455 if (!NILP (prefix))
1456 {
1457 /* If a prefix was specified, start with the keymap (if any) for
1458 that prefix, so we don't waste time considering other prefixes. */
1459 Lisp_Object tem;
1460 tem = Flookup_key (keymap, prefix, Qt);
1461 /* Flookup_key may give us nil, or a number,
1462 if the prefix is not defined in this particular map.
1463 It might even give us a list that isn't a keymap. */
1464 tem = get_keymap_1 (tem, 0, 0);
1465 if (!NILP (tem))
1466 {
1467 /* Convert PREFIX to a vector now, so that later on
1468 we don't have to deal with the possibility of a string. */
1469 if (STRINGP (prefix))
1470 {
1471 int i, i_byte, c;
1472 Lisp_Object copy;
1473
1474 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1475 for (i = 0, i_byte; i < XSTRING (prefix)->size;)
1476 {
1477 int i_before = i;
1478 if (STRING_MULTIBYTE (prefix))
1479 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1480 else
1481 c = XSTRING (prefix)->data[i++];
1482 if (c & 0200)
1483 c ^= 0200 | meta_modifier;
1484 XVECTOR (copy)->contents[i_before] = make_number (c);
1485 }
1486 prefix = copy;
1487 }
1488 maps = Fcons (Fcons (prefix, tem), Qnil);
1489 }
1490 else
1491 return Qnil;
1492 }
1493 else
1494 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1495 get_keymap (keymap)),
1496 Qnil);
1497
1498 /* For each map in the list maps,
1499 look at any other maps it points to,
1500 and stick them at the end if they are not already in the list.
1501
1502 This is a breadth-first traversal, where tail is the queue of
1503 nodes, and maps accumulates a list of all nodes visited. */
1504
1505 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1506 {
1507 register Lisp_Object thisseq, thismap;
1508 Lisp_Object last;
1509 /* Does the current sequence end in the meta-prefix-char? */
1510 int is_metized;
1511
1512 thisseq = Fcar (Fcar (tail));
1513 thismap = Fcdr (Fcar (tail));
1514 last = make_number (XINT (Flength (thisseq)) - 1);
1515 is_metized = (XINT (last) >= 0
1516 /* Don't metize the last char of PREFIX. */
1517 && XINT (last) >= prefixlen
1518 && EQ (Faref (thisseq, last), meta_prefix_char));
1519
1520 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1521 {
1522 Lisp_Object elt;
1523
1524 elt = XCONS (thismap)->car;
1525
1526 QUIT;
1527
1528 if (CHAR_TABLE_P (elt))
1529 {
1530 Lisp_Object indices[3];
1531
1532 map_char_table (accessible_keymaps_char_table, Qnil,
1533 elt, Fcons (maps, Fcons (tail, thisseq)),
1534 0, indices);
1535 }
1536 else if (VECTORP (elt))
1537 {
1538 register int i;
1539
1540 /* Vector keymap. Scan all the elements. */
1541 for (i = 0; i < XVECTOR (elt)->size; i++)
1542 {
1543 register Lisp_Object tem;
1544 register Lisp_Object cmd;
1545
1546 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1547 if (NILP (cmd)) continue;
1548 tem = Fkeymapp (cmd);
1549 if (!NILP (tem))
1550 {
1551 cmd = get_keymap (cmd);
1552 /* Ignore keymaps that are already added to maps. */
1553 tem = Frassq (cmd, maps);
1554 if (NILP (tem))
1555 {
1556 /* If the last key in thisseq is meta-prefix-char,
1557 turn it into a meta-ized keystroke. We know
1558 that the event we're about to append is an
1559 ascii keystroke since we're processing a
1560 keymap table. */
1561 if (is_metized)
1562 {
1563 int meta_bit = meta_modifier;
1564 tem = Fcopy_sequence (thisseq);
1565
1566 Faset (tem, last, make_number (i | meta_bit));
1567
1568 /* This new sequence is the same length as
1569 thisseq, so stick it in the list right
1570 after this one. */
1571 XCONS (tail)->cdr
1572 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1573 }
1574 else
1575 {
1576 tem = append_key (thisseq, make_number (i));
1577 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1578 }
1579 }
1580 }
1581 }
1582 }
1583 else if (CONSP (elt))
1584 {
1585 register Lisp_Object cmd, tem, filter;
1586
1587 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1588 /* Ignore definitions that aren't keymaps themselves. */
1589 tem = Fkeymapp (cmd);
1590 if (!NILP (tem))
1591 {
1592 /* Ignore keymaps that have been seen already. */
1593 cmd = get_keymap (cmd);
1594 tem = Frassq (cmd, maps);
1595 if (NILP (tem))
1596 {
1597 /* Let elt be the event defined by this map entry. */
1598 elt = XCONS (elt)->car;
1599
1600 /* If the last key in thisseq is meta-prefix-char, and
1601 this entry is a binding for an ascii keystroke,
1602 turn it into a meta-ized keystroke. */
1603 if (is_metized && INTEGERP (elt))
1604 {
1605 Lisp_Object element;
1606
1607 element = thisseq;
1608 tem = Fvconcat (1, &element);
1609 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1610 XINT (elt) | meta_modifier);
1611
1612 /* This new sequence is the same length as
1613 thisseq, so stick it in the list right
1614 after this one. */
1615 XCONS (tail)->cdr
1616 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1617 }
1618 else
1619 nconc2 (tail,
1620 Fcons (Fcons (append_key (thisseq, elt), cmd),
1621 Qnil));
1622 }
1623 }
1624 }
1625 }
1626 }
1627
1628 if (NILP (prefix))
1629 return maps;
1630
1631 /* Now find just the maps whose access prefixes start with PREFIX. */
1632
1633 good_maps = Qnil;
1634 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1635 {
1636 Lisp_Object elt, thisseq;
1637 elt = XCONS (maps)->car;
1638 thisseq = XCONS (elt)->car;
1639 /* The access prefix must be at least as long as PREFIX,
1640 and the first elements must match those of PREFIX. */
1641 if (XINT (Flength (thisseq)) >= prefixlen)
1642 {
1643 int i;
1644 for (i = 0; i < prefixlen; i++)
1645 {
1646 Lisp_Object i1;
1647 XSETFASTINT (i1, i);
1648 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1649 break;
1650 }
1651 if (i == prefixlen)
1652 good_maps = Fcons (elt, good_maps);
1653 }
1654 }
1655
1656 return Fnreverse (good_maps);
1657 }
1658
1659 static void
1660 accessible_keymaps_char_table (args, index, cmd)
1661 Lisp_Object args, index, cmd;
1662 {
1663 Lisp_Object tem;
1664 Lisp_Object maps, tail, thisseq;
1665
1666 if (NILP (cmd))
1667 return;
1668
1669 maps = XCONS (args)->car;
1670 tail = XCONS (XCONS (args)->cdr)->car;
1671 thisseq = XCONS (XCONS (args)->cdr)->cdr;
1672
1673 tem = Fkeymapp (cmd);
1674 if (!NILP (tem))
1675 {
1676 cmd = get_keymap (cmd);
1677 /* Ignore keymaps that are already added to maps. */
1678 tem = Frassq (cmd, maps);
1679 if (NILP (tem))
1680 {
1681 tem = append_key (thisseq, index);
1682 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1683 }
1684 }
1685 }
1686 \f
1687 Lisp_Object Qsingle_key_description, Qkey_description;
1688
1689 /* This function cannot GC. */
1690
1691 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1692 "Return a pretty description of key-sequence KEYS.\n\
1693 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1694 spaces are put between sequence elements, etc.")
1695 (keys)
1696 Lisp_Object keys;
1697 {
1698 int len;
1699 int i, i_byte;
1700 Lisp_Object sep;
1701 Lisp_Object *args;
1702
1703 if (STRINGP (keys))
1704 {
1705 Lisp_Object vector;
1706 vector = Fmake_vector (Flength (keys), Qnil);
1707 for (i = 0; i < XSTRING (keys)->size; )
1708 {
1709 int c;
1710 int i_before = i;
1711
1712 if (STRING_MULTIBYTE (keys))
1713 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1714 else
1715 c = XSTRING (keys)->data[i++];
1716
1717 if (c & 0x80)
1718 XSETFASTINT (XVECTOR (vector)->contents[i_before],
1719 meta_modifier | (c & ~0x80));
1720 else
1721 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1722 }
1723 keys = vector;
1724 }
1725
1726 if (VECTORP (keys))
1727 {
1728 /* In effect, this computes
1729 (mapconcat 'single-key-description keys " ")
1730 but we shouldn't use mapconcat because it can do GC. */
1731
1732 len = XVECTOR (keys)->size;
1733 sep = build_string (" ");
1734 /* This has one extra element at the end that we don't pass to Fconcat. */
1735 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1736
1737 for (i = 0; i < len; i++)
1738 {
1739 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1740 args[i * 2 + 1] = sep;
1741 }
1742 }
1743 else if (CONSP (keys))
1744 {
1745 /* In effect, this computes
1746 (mapconcat 'single-key-description keys " ")
1747 but we shouldn't use mapconcat because it can do GC. */
1748
1749 len = XFASTINT (Flength (keys));
1750 sep = build_string (" ");
1751 /* This has one extra element at the end that we don't pass to Fconcat. */
1752 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1753
1754 for (i = 0; i < len; i++)
1755 {
1756 args[i * 2] = Fsingle_key_description (XCONS (keys)->car);
1757 args[i * 2 + 1] = sep;
1758 keys = XCONS (keys)->cdr;
1759 }
1760 }
1761 else
1762 keys = wrong_type_argument (Qarrayp, keys);
1763
1764 return Fconcat (len * 2 - 1, args);
1765 }
1766
1767 char *
1768 push_key_description (c, p)
1769 register unsigned int c;
1770 register char *p;
1771 {
1772 /* Clear all the meaningless bits above the meta bit. */
1773 c &= meta_modifier | ~ - meta_modifier;
1774
1775 if (c & alt_modifier)
1776 {
1777 *p++ = 'A';
1778 *p++ = '-';
1779 c -= alt_modifier;
1780 }
1781 if (c & ctrl_modifier)
1782 {
1783 *p++ = 'C';
1784 *p++ = '-';
1785 c -= ctrl_modifier;
1786 }
1787 if (c & hyper_modifier)
1788 {
1789 *p++ = 'H';
1790 *p++ = '-';
1791 c -= hyper_modifier;
1792 }
1793 if (c & meta_modifier)
1794 {
1795 *p++ = 'M';
1796 *p++ = '-';
1797 c -= meta_modifier;
1798 }
1799 if (c & shift_modifier)
1800 {
1801 *p++ = 'S';
1802 *p++ = '-';
1803 c -= shift_modifier;
1804 }
1805 if (c & super_modifier)
1806 {
1807 *p++ = 's';
1808 *p++ = '-';
1809 c -= super_modifier;
1810 }
1811 if (c < 040)
1812 {
1813 if (c == 033)
1814 {
1815 *p++ = 'E';
1816 *p++ = 'S';
1817 *p++ = 'C';
1818 }
1819 else if (c == '\t')
1820 {
1821 *p++ = 'T';
1822 *p++ = 'A';
1823 *p++ = 'B';
1824 }
1825 else if (c == Ctl ('M'))
1826 {
1827 *p++ = 'R';
1828 *p++ = 'E';
1829 *p++ = 'T';
1830 }
1831 else
1832 {
1833 *p++ = 'C';
1834 *p++ = '-';
1835 if (c > 0 && c <= Ctl ('Z'))
1836 *p++ = c + 0140;
1837 else
1838 *p++ = c + 0100;
1839 }
1840 }
1841 else if (c == 0177)
1842 {
1843 *p++ = 'D';
1844 *p++ = 'E';
1845 *p++ = 'L';
1846 }
1847 else if (c == ' ')
1848 {
1849 *p++ = 'S';
1850 *p++ = 'P';
1851 *p++ = 'C';
1852 }
1853 else if (c < 128
1854 || (NILP (current_buffer->enable_multibyte_characters)
1855 && SINGLE_BYTE_CHAR_P (c)))
1856 *p++ = c;
1857 else
1858 {
1859 if (! NILP (current_buffer->enable_multibyte_characters))
1860 c = unibyte_char_to_multibyte (c);
1861
1862 if (NILP (current_buffer->enable_multibyte_characters)
1863 || SINGLE_BYTE_CHAR_P (c)
1864 || ! char_valid_p (c, 0))
1865 {
1866 int bit_offset;
1867 *p++ = '\\';
1868 /* The biggest character code uses 19 bits. */
1869 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1870 {
1871 if (c >= (1 << bit_offset))
1872 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1873 }
1874 }
1875 else
1876 {
1877 unsigned char work[4], *str;
1878 int i = CHAR_STRING (c, work, str);
1879 bcopy (str, p, i);
1880 p += i;
1881 }
1882 }
1883
1884 return p;
1885 }
1886
1887 /* This function cannot GC. */
1888
1889 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1890 "Return a pretty description of command character KEY.\n\
1891 Control characters turn into C-whatever, etc.")
1892 (key)
1893 Lisp_Object key;
1894 {
1895 if (CONSP (key) && lucid_event_type_list_p (key))
1896 key = Fevent_convert_list (key);
1897
1898 key = EVENT_HEAD (key);
1899
1900 if (INTEGERP (key)) /* Normal character */
1901 {
1902 unsigned int charset, c1, c2;
1903 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1904
1905 if (SINGLE_BYTE_CHAR_P (without_bits))
1906 charset = 0;
1907 else
1908 SPLIT_NON_ASCII_CHAR (without_bits, charset, c1, c2);
1909
1910 if (charset
1911 && CHARSET_DEFINED_P (charset)
1912 && ((c1 >= 0 && c1 < 32)
1913 || (c2 >= 0 && c2 < 32)))
1914 {
1915 /* Handle a generic character. */
1916 Lisp_Object name;
1917 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1918 CHECK_STRING (name, 0);
1919 return concat2 (build_string ("Character set "), name);
1920 }
1921 else
1922 {
1923 char tem[20];
1924
1925 *push_key_description (XUINT (key), tem) = 0;
1926 return build_string (tem);
1927 }
1928 }
1929 else if (SYMBOLP (key)) /* Function key or event-symbol */
1930 return Fsymbol_name (key);
1931 else if (STRINGP (key)) /* Buffer names in the menubar. */
1932 return Fcopy_sequence (key);
1933 else
1934 error ("KEY must be an integer, cons, symbol, or string");
1935 }
1936
1937 char *
1938 push_text_char_description (c, p)
1939 register unsigned int c;
1940 register char *p;
1941 {
1942 if (c >= 0200)
1943 {
1944 *p++ = 'M';
1945 *p++ = '-';
1946 c -= 0200;
1947 }
1948 if (c < 040)
1949 {
1950 *p++ = '^';
1951 *p++ = c + 64; /* 'A' - 1 */
1952 }
1953 else if (c == 0177)
1954 {
1955 *p++ = '^';
1956 *p++ = '?';
1957 }
1958 else
1959 *p++ = c;
1960 return p;
1961 }
1962
1963 /* This function cannot GC. */
1964
1965 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1966 "Return a pretty description of file-character CHARACTER.\n\
1967 Control characters turn into \"^char\", etc.")
1968 (character)
1969 Lisp_Object character;
1970 {
1971 char tem[6];
1972
1973 CHECK_NUMBER (character, 0);
1974
1975 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1976 {
1977 unsigned char *str;
1978 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1979
1980 return make_multibyte_string (str, 1, len);
1981 }
1982
1983 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1984
1985 return build_string (tem);
1986 }
1987
1988 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1989 a meta bit. */
1990 static int
1991 ascii_sequence_p (seq)
1992 Lisp_Object seq;
1993 {
1994 int i;
1995 int len = XINT (Flength (seq));
1996
1997 for (i = 0; i < len; i++)
1998 {
1999 Lisp_Object ii, elt;
2000
2001 XSETFASTINT (ii, i);
2002 elt = Faref (seq, ii);
2003
2004 if (!INTEGERP (elt)
2005 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2006 return 0;
2007 }
2008
2009 return 1;
2010 }
2011
2012 \f
2013 /* where-is - finding a command in a set of keymaps. */
2014
2015 static Lisp_Object where_is_internal_1 ();
2016 static void where_is_internal_2 ();
2017
2018 /* This function can GC if Flookup_key autoloads any keymaps. */
2019
2020 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2021 "Return list of keys that invoke DEFINITION.\n\
2022 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2023 If KEYMAP is nil, search all the currently active keymaps.\n\
2024 \n\
2025 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2026 rather than a list of all possible key sequences.\n\
2027 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2028 no matter what it is.\n\
2029 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2030 and entirely reject menu bindings.\n\
2031 \n\
2032 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2033 to other keymaps or slots. This makes it possible to search for an\n\
2034 indirect definition itself.")
2035 (definition, keymap, firstonly, noindirect)
2036 Lisp_Object definition, keymap;
2037 Lisp_Object firstonly, noindirect;
2038 {
2039 Lisp_Object maps;
2040 Lisp_Object found, sequences;
2041 Lisp_Object keymap1;
2042 int keymap_specified = !NILP (keymap);
2043 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2044 /* 1 means ignore all menu bindings entirely. */
2045 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2046
2047 /* Find keymaps accessible from `keymap' or the current
2048 context. But don't muck with the value of `keymap',
2049 because `where_is_internal_1' uses it to check for
2050 shadowed bindings. */
2051 keymap1 = keymap;
2052 if (! keymap_specified)
2053 {
2054 #ifdef USE_TEXT_PROPERTIES
2055 keymap1 = get_local_map (PT, current_buffer);
2056 #else
2057 keymap1 = current_buffer->keymap;
2058 #endif
2059 }
2060
2061 if (!NILP (keymap1))
2062 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2063 Faccessible_keymaps (get_keymap (current_global_map),
2064 Qnil));
2065 else
2066 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2067
2068 /* Put the minor mode keymaps on the front. */
2069 if (! keymap_specified)
2070 {
2071 Lisp_Object minors;
2072 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2073 while (!NILP (minors))
2074 {
2075 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
2076 Qnil),
2077 maps);
2078 minors = XCONS (minors)->cdr;
2079 }
2080 }
2081
2082 GCPRO5 (definition, keymap, maps, found, sequences);
2083 found = Qnil;
2084 sequences = Qnil;
2085
2086 for (; !NILP (maps); maps = Fcdr (maps))
2087 {
2088 /* Key sequence to reach map, and the map that it reaches */
2089 register Lisp_Object this, map;
2090
2091 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2092 [M-CHAR] sequences, check if last character of the sequence
2093 is the meta-prefix char. */
2094 Lisp_Object last;
2095 int last_is_meta;
2096
2097 this = Fcar (Fcar (maps));
2098 map = Fcdr (Fcar (maps));
2099 last = make_number (XINT (Flength (this)) - 1);
2100 last_is_meta = (XINT (last) >= 0
2101 && EQ (Faref (this, last), meta_prefix_char));
2102
2103 QUIT;
2104
2105 while (CONSP (map))
2106 {
2107 /* Because the code we want to run on each binding is rather
2108 large, we don't want to have two separate loop bodies for
2109 sparse keymap bindings and tables; we want to iterate one
2110 loop body over both keymap and vector bindings.
2111
2112 For this reason, if Fcar (map) is a vector, we don't
2113 advance map to the next element until i indicates that we
2114 have finished off the vector. */
2115 Lisp_Object elt, key, binding;
2116 elt = XCONS (map)->car;
2117 map = XCONS (map)->cdr;
2118
2119 sequences = Qnil;
2120
2121 QUIT;
2122
2123 /* Set key and binding to the current key and binding, and
2124 advance map and i to the next binding. */
2125 if (VECTORP (elt))
2126 {
2127 Lisp_Object sequence;
2128 int i;
2129 /* In a vector, look at each element. */
2130 for (i = 0; i < XVECTOR (elt)->size; i++)
2131 {
2132 binding = XVECTOR (elt)->contents[i];
2133 XSETFASTINT (key, i);
2134 sequence = where_is_internal_1 (binding, key, definition,
2135 noindirect, keymap, this,
2136 last, nomenus, last_is_meta);
2137 if (!NILP (sequence))
2138 sequences = Fcons (sequence, sequences);
2139 }
2140 }
2141 else if (CHAR_TABLE_P (elt))
2142 {
2143 Lisp_Object indices[3];
2144 Lisp_Object args;
2145
2146 args = Fcons (Fcons (Fcons (definition, noindirect),
2147 Fcons (keymap, Qnil)),
2148 Fcons (Fcons (this, last),
2149 Fcons (make_number (nomenus),
2150 make_number (last_is_meta))));
2151
2152 map_char_table (where_is_internal_2, Qnil, elt, args,
2153 0, indices);
2154 sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2155 }
2156 else if (CONSP (elt))
2157 {
2158 Lisp_Object sequence;
2159
2160 key = XCONS (elt)->car;
2161 binding = XCONS (elt)->cdr;
2162
2163 sequence = where_is_internal_1 (binding, key, definition,
2164 noindirect, keymap, this,
2165 last, nomenus, last_is_meta);
2166 if (!NILP (sequence))
2167 sequences = Fcons (sequence, sequences);
2168 }
2169
2170
2171 for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
2172 {
2173 Lisp_Object sequence;
2174
2175 sequence = XCONS (sequences)->car;
2176
2177 /* It is a true unshadowed match. Record it, unless it's already
2178 been seen (as could happen when inheriting keymaps). */
2179 if (NILP (Fmember (sequence, found)))
2180 found = Fcons (sequence, found);
2181
2182 /* If firstonly is Qnon_ascii, then we can return the first
2183 binding we find. If firstonly is not Qnon_ascii but not
2184 nil, then we should return the first ascii-only binding
2185 we find. */
2186 if (EQ (firstonly, Qnon_ascii))
2187 RETURN_UNGCPRO (sequence);
2188 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2189 RETURN_UNGCPRO (sequence);
2190 }
2191 }
2192 }
2193
2194 UNGCPRO;
2195
2196 found = Fnreverse (found);
2197
2198 /* firstonly may have been t, but we may have gone all the way through
2199 the keymaps without finding an all-ASCII key sequence. So just
2200 return the best we could find. */
2201 if (! NILP (firstonly))
2202 return Fcar (found);
2203
2204 return found;
2205 }
2206
2207 /* This is the function that Fwhere_is_internal calls using map_char_table.
2208 ARGS has the form
2209 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2210 .
2211 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2212 Since map_char_table doesn't really use the return value from this function,
2213 we the result append to RESULT, the slot in ARGS. */
2214
2215 static void
2216 where_is_internal_2 (args, key, binding)
2217 Lisp_Object args, key, binding;
2218 {
2219 Lisp_Object definition, noindirect, keymap, this, last;
2220 Lisp_Object result, sequence;
2221 int nomenus, last_is_meta;
2222
2223 result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2224 definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
2225 noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
2226 keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
2227 this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
2228 last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
2229 nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
2230 last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
2231
2232 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2233 this, last, nomenus, last_is_meta);
2234
2235 if (!NILP (sequence))
2236 XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
2237 = Fcons (sequence, result);
2238 }
2239
2240 static Lisp_Object
2241 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2242 nomenus, last_is_meta)
2243 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2244 int nomenus, last_is_meta;
2245 {
2246 Lisp_Object sequence;
2247 int keymap_specified = !NILP (keymap);
2248
2249 /* Search through indirections unless that's not wanted. */
2250 if (NILP (noindirect))
2251 {
2252 if (nomenus)
2253 {
2254 while (1)
2255 {
2256 Lisp_Object map, tem;
2257 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2258 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2259 tem = Fkeymapp (map);
2260 if (!NILP (tem))
2261 definition = access_keymap (map, Fcdr (definition), 0, 0);
2262 else
2263 break;
2264 }
2265 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2266 if (CONSP (definition)
2267 && (EQ (XCONS (definition)->car,Qmenu_item)
2268 || STRINGP (XCONS (definition)->car)))
2269 return Qnil;
2270 }
2271 else
2272 binding = get_keyelt (binding, 0);
2273 }
2274
2275 /* End this iteration if this element does not match
2276 the target. */
2277
2278 if (CONSP (definition))
2279 {
2280 Lisp_Object tem;
2281 tem = Fequal (binding, definition);
2282 if (NILP (tem))
2283 return Qnil;
2284 }
2285 else
2286 if (!EQ (binding, definition))
2287 return Qnil;
2288
2289 /* We have found a match.
2290 Construct the key sequence where we found it. */
2291 if (INTEGERP (key) && last_is_meta)
2292 {
2293 sequence = Fcopy_sequence (this);
2294 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2295 }
2296 else
2297 sequence = append_key (this, key);
2298
2299 /* Verify that this key binding is not shadowed by another
2300 binding for the same key, before we say it exists.
2301
2302 Mechanism: look for local definition of this key and if
2303 it is defined and does not match what we found then
2304 ignore this key.
2305
2306 Either nil or number as value from Flookup_key
2307 means undefined. */
2308 if (keymap_specified)
2309 {
2310 binding = Flookup_key (keymap, sequence, Qnil);
2311 if (!NILP (binding) && !INTEGERP (binding))
2312 {
2313 if (CONSP (definition))
2314 {
2315 Lisp_Object tem;
2316 tem = Fequal (binding, definition);
2317 if (NILP (tem))
2318 return Qnil;
2319 }
2320 else
2321 if (!EQ (binding, definition))
2322 return Qnil;
2323 }
2324 }
2325 else
2326 {
2327 binding = Fkey_binding (sequence, Qnil);
2328 if (!EQ (binding, definition))
2329 return Qnil;
2330 }
2331
2332 return sequence;
2333 }
2334 \f
2335 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2336
2337 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2338 "Show a list of all defined keys, and their definitions.\n\
2339 We put that list in a buffer, and display the buffer.\n\
2340 \n\
2341 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2342 \(Ordinarily these are omitted from the output.)\n\
2343 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2344 then we display only bindings that start with that prefix.")
2345 (menus, prefix)
2346 Lisp_Object menus, prefix;
2347 {
2348 register Lisp_Object thisbuf;
2349 XSETBUFFER (thisbuf, current_buffer);
2350 internal_with_output_to_temp_buffer ("*Help*",
2351 describe_buffer_bindings,
2352 list3 (thisbuf, prefix, menus));
2353 return Qnil;
2354 }
2355
2356 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2357
2358 static Lisp_Object
2359 describe_buffer_bindings (arg)
2360 Lisp_Object arg;
2361 {
2362 Lisp_Object descbuf, prefix, shadow;
2363 int nomenu;
2364 register Lisp_Object start1;
2365 struct gcpro gcpro1;
2366
2367 char *alternate_heading
2368 = "\
2369 Keyboard translations:\n\n\
2370 You type Translation\n\
2371 -------- -----------\n";
2372
2373 descbuf = XCONS (arg)->car;
2374 arg = XCONS (arg)->cdr;
2375 prefix = XCONS (arg)->car;
2376 arg = XCONS (arg)->cdr;
2377 nomenu = NILP (XCONS (arg)->car);
2378
2379 shadow = Qnil;
2380 GCPRO1 (shadow);
2381
2382 Fset_buffer (Vstandard_output);
2383
2384 /* Report on alternates for keys. */
2385 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2386 {
2387 int c;
2388 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2389 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2390
2391 for (c = 0; c < translate_len; c++)
2392 if (translate[c] != c)
2393 {
2394 char buf[20];
2395 char *bufend;
2396
2397 if (alternate_heading)
2398 {
2399 insert_string (alternate_heading);
2400 alternate_heading = 0;
2401 }
2402
2403 bufend = push_key_description (translate[c], buf);
2404 insert (buf, bufend - buf);
2405 Findent_to (make_number (16), make_number (1));
2406 bufend = push_key_description (c, buf);
2407 insert (buf, bufend - buf);
2408
2409 insert ("\n", 1);
2410 }
2411
2412 insert ("\n", 1);
2413 }
2414
2415 if (!NILP (Vkey_translation_map))
2416 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2417 "Key translations", nomenu, 1, 0);
2418
2419 {
2420 int i, nmaps;
2421 Lisp_Object *modes, *maps;
2422
2423 /* Temporarily switch to descbuf, so that we can get that buffer's
2424 minor modes correctly. */
2425 Fset_buffer (descbuf);
2426
2427 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2428 || !NILP (Voverriding_local_map))
2429 nmaps = 0;
2430 else
2431 nmaps = current_minor_maps (&modes, &maps);
2432 Fset_buffer (Vstandard_output);
2433
2434 /* Print the minor mode maps. */
2435 for (i = 0; i < nmaps; i++)
2436 {
2437 /* The title for a minor mode keymap
2438 is constructed at run time.
2439 We let describe_map_tree do the actual insertion
2440 because it takes care of other features when doing so. */
2441 char *title, *p;
2442
2443 if (!SYMBOLP (modes[i]))
2444 abort();
2445
2446 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2447 *p++ = '`';
2448 bcopy (XSYMBOL (modes[i])->name->data, p,
2449 XSYMBOL (modes[i])->name->size);
2450 p += XSYMBOL (modes[i])->name->size;
2451 *p++ = '\'';
2452 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2453 p += sizeof (" Minor Mode Bindings") - 1;
2454 *p = 0;
2455
2456 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2457 shadow = Fcons (maps[i], shadow);
2458 }
2459 }
2460
2461 /* Print the (major mode) local map. */
2462 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2463 start1 = current_kboard->Voverriding_terminal_local_map;
2464 else if (!NILP (Voverriding_local_map))
2465 start1 = Voverriding_local_map;
2466 else
2467 start1 = XBUFFER (descbuf)->keymap;
2468
2469 if (!NILP (start1))
2470 {
2471 describe_map_tree (start1, 1, shadow, prefix,
2472 "Major Mode Bindings", nomenu, 0, 0);
2473 shadow = Fcons (start1, shadow);
2474 }
2475
2476 describe_map_tree (current_global_map, 1, shadow, prefix,
2477 "Global Bindings", nomenu, 0, 1);
2478
2479 /* Print the function-key-map translations under this prefix. */
2480 if (!NILP (Vfunction_key_map))
2481 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2482 "Function key map translations", nomenu, 1, 0);
2483
2484 call0 (intern ("help-mode"));
2485 Fset_buffer (descbuf);
2486 UNGCPRO;
2487 return Qnil;
2488 }
2489
2490 /* Insert a description of the key bindings in STARTMAP,
2491 followed by those of all maps reachable through STARTMAP.
2492 If PARTIAL is nonzero, omit certain "uninteresting" commands
2493 (such as `undefined').
2494 If SHADOW is non-nil, it is a list of maps;
2495 don't mention keys which would be shadowed by any of them.
2496 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2497 TITLE, if not 0, is a string to insert at the beginning.
2498 TITLE should not end with a colon or a newline; we supply that.
2499 If NOMENU is not 0, then omit menu-bar commands.
2500
2501 If TRANSL is nonzero, the definitions are actually key translations
2502 so print strings and vectors differently.
2503
2504 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2505 to look through. */
2506
2507 void
2508 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2509 always_title)
2510 Lisp_Object startmap, shadow, prefix;
2511 int partial;
2512 char *title;
2513 int nomenu;
2514 int transl;
2515 int always_title;
2516 {
2517 Lisp_Object maps, orig_maps, seen, sub_shadows;
2518 struct gcpro gcpro1, gcpro2, gcpro3;
2519 int something = 0;
2520 char *key_heading
2521 = "\
2522 key binding\n\
2523 --- -------\n";
2524
2525 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2526 seen = Qnil;
2527 sub_shadows = Qnil;
2528 GCPRO3 (maps, seen, sub_shadows);
2529
2530 if (nomenu)
2531 {
2532 Lisp_Object list;
2533
2534 /* Delete from MAPS each element that is for the menu bar. */
2535 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2536 {
2537 Lisp_Object elt, prefix, tem;
2538
2539 elt = Fcar (list);
2540 prefix = Fcar (elt);
2541 if (XVECTOR (prefix)->size >= 1)
2542 {
2543 tem = Faref (prefix, make_number (0));
2544 if (EQ (tem, Qmenu_bar))
2545 maps = Fdelq (elt, maps);
2546 }
2547 }
2548 }
2549
2550 if (!NILP (maps) || always_title)
2551 {
2552 if (title)
2553 {
2554 insert_string (title);
2555 if (!NILP (prefix))
2556 {
2557 insert_string (" Starting With ");
2558 insert1 (Fkey_description (prefix));
2559 }
2560 insert_string (":\n");
2561 }
2562 insert_string (key_heading);
2563 something = 1;
2564 }
2565
2566 for (; !NILP (maps); maps = Fcdr (maps))
2567 {
2568 register Lisp_Object elt, prefix, tail;
2569
2570 elt = Fcar (maps);
2571 prefix = Fcar (elt);
2572
2573 sub_shadows = Qnil;
2574
2575 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2576 {
2577 Lisp_Object shmap;
2578
2579 shmap = XCONS (tail)->car;
2580
2581 /* If the sequence by which we reach this keymap is zero-length,
2582 then the shadow map for this keymap is just SHADOW. */
2583 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2584 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2585 ;
2586 /* If the sequence by which we reach this keymap actually has
2587 some elements, then the sequence's definition in SHADOW is
2588 what we should use. */
2589 else
2590 {
2591 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2592 if (INTEGERP (shmap))
2593 shmap = Qnil;
2594 }
2595
2596 /* If shmap is not nil and not a keymap,
2597 it completely shadows this map, so don't
2598 describe this map at all. */
2599 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2600 goto skip;
2601
2602 if (!NILP (shmap))
2603 sub_shadows = Fcons (shmap, sub_shadows);
2604 }
2605
2606 /* Maps we have already listed in this loop shadow this map. */
2607 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2608 {
2609 Lisp_Object tem;
2610 tem = Fequal (Fcar (XCAR (tail)), prefix);
2611 if (! NILP (tem))
2612 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2613 }
2614
2615 describe_map (Fcdr (elt), prefix,
2616 transl ? describe_translation : describe_command,
2617 partial, sub_shadows, &seen, nomenu);
2618
2619 skip: ;
2620 }
2621
2622 if (something)
2623 insert_string ("\n");
2624
2625 UNGCPRO;
2626 }
2627
2628 static int previous_description_column;
2629
2630 static void
2631 describe_command (definition)
2632 Lisp_Object definition;
2633 {
2634 register Lisp_Object tem1;
2635 int column = current_column ();
2636 int description_column;
2637
2638 /* If column 16 is no good, go to col 32;
2639 but don't push beyond that--go to next line instead. */
2640 if (column > 30)
2641 {
2642 insert_char ('\n');
2643 description_column = 32;
2644 }
2645 else if (column > 14 || (column > 10 && previous_description_column == 32))
2646 description_column = 32;
2647 else
2648 description_column = 16;
2649
2650 Findent_to (make_number (description_column), make_number (1));
2651 previous_description_column = description_column;
2652
2653 if (SYMBOLP (definition))
2654 {
2655 XSETSTRING (tem1, XSYMBOL (definition)->name);
2656 insert1 (tem1);
2657 insert_string ("\n");
2658 }
2659 else if (STRINGP (definition) || VECTORP (definition))
2660 insert_string ("Keyboard Macro\n");
2661 else
2662 {
2663 tem1 = Fkeymapp (definition);
2664 if (!NILP (tem1))
2665 insert_string ("Prefix Command\n");
2666 else
2667 insert_string ("??\n");
2668 }
2669 }
2670
2671 static void
2672 describe_translation (definition)
2673 Lisp_Object definition;
2674 {
2675 register Lisp_Object tem1;
2676
2677 Findent_to (make_number (16), make_number (1));
2678
2679 if (SYMBOLP (definition))
2680 {
2681 XSETSTRING (tem1, XSYMBOL (definition)->name);
2682 insert1 (tem1);
2683 insert_string ("\n");
2684 }
2685 else if (STRINGP (definition) || VECTORP (definition))
2686 {
2687 insert1 (Fkey_description (definition));
2688 insert_string ("\n");
2689 }
2690 else
2691 {
2692 tem1 = Fkeymapp (definition);
2693 if (!NILP (tem1))
2694 insert_string ("Prefix Command\n");
2695 else
2696 insert_string ("??\n");
2697 }
2698 }
2699
2700 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2701 Returns the first non-nil binding found in any of those maps. */
2702
2703 static Lisp_Object
2704 shadow_lookup (shadow, key, flag)
2705 Lisp_Object shadow, key, flag;
2706 {
2707 Lisp_Object tail, value;
2708
2709 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2710 {
2711 value = Flookup_key (XCONS (tail)->car, key, flag);
2712 if (!NILP (value))
2713 return value;
2714 }
2715 return Qnil;
2716 }
2717
2718 /* Describe the contents of map MAP, assuming that this map itself is
2719 reached by the sequence of prefix keys KEYS (a string or vector).
2720 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2721
2722 static void
2723 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2724 register Lisp_Object map;
2725 Lisp_Object keys;
2726 void (*elt_describer) P_ ((Lisp_Object));
2727 int partial;
2728 Lisp_Object shadow;
2729 Lisp_Object *seen;
2730 int nomenu;
2731 {
2732 Lisp_Object elt_prefix;
2733 Lisp_Object tail, definition, event;
2734 Lisp_Object tem;
2735 Lisp_Object suppress;
2736 Lisp_Object kludge;
2737 int first = 1;
2738 struct gcpro gcpro1, gcpro2, gcpro3;
2739
2740 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2741 {
2742 /* Call Fkey_description first, to avoid GC bug for the other string. */
2743 tem = Fkey_description (keys);
2744 elt_prefix = concat2 (tem, build_string (" "));
2745 }
2746 else
2747 elt_prefix = Qnil;
2748
2749 if (partial)
2750 suppress = intern ("suppress-keymap");
2751
2752 /* This vector gets used to present single keys to Flookup_key. Since
2753 that is done once per keymap element, we don't want to cons up a
2754 fresh vector every time. */
2755 kludge = Fmake_vector (make_number (1), Qnil);
2756 definition = Qnil;
2757
2758 GCPRO3 (elt_prefix, definition, kludge);
2759
2760 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2761 {
2762 QUIT;
2763
2764 if (VECTORP (XCONS (tail)->car)
2765 || CHAR_TABLE_P (XCONS (tail)->car))
2766 describe_vector (XCONS (tail)->car,
2767 elt_prefix, elt_describer, partial, shadow, map,
2768 (int *)0, 0);
2769 else if (CONSP (XCONS (tail)->car))
2770 {
2771 event = XCONS (XCONS (tail)->car)->car;
2772
2773 /* Ignore bindings whose "keys" are not really valid events.
2774 (We get these in the frames and buffers menu.) */
2775 if (! (SYMBOLP (event) || INTEGERP (event)))
2776 continue;
2777
2778 if (nomenu && EQ (event, Qmenu_bar))
2779 continue;
2780
2781 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2782
2783 /* Don't show undefined commands or suppressed commands. */
2784 if (NILP (definition)) continue;
2785 if (SYMBOLP (definition) && partial)
2786 {
2787 tem = Fget (definition, suppress);
2788 if (!NILP (tem))
2789 continue;
2790 }
2791
2792 /* Don't show a command that isn't really visible
2793 because a local definition of the same key shadows it. */
2794
2795 XVECTOR (kludge)->contents[0] = event;
2796 if (!NILP (shadow))
2797 {
2798 tem = shadow_lookup (shadow, kludge, Qt);
2799 if (!NILP (tem)) continue;
2800 }
2801
2802 tem = Flookup_key (map, kludge, Qt);
2803 if (! EQ (tem, definition)) continue;
2804
2805 if (first)
2806 {
2807 previous_description_column = 0;
2808 insert ("\n", 1);
2809 first = 0;
2810 }
2811
2812 if (!NILP (elt_prefix))
2813 insert1 (elt_prefix);
2814
2815 /* THIS gets the string to describe the character EVENT. */
2816 insert1 (Fsingle_key_description (event));
2817
2818 /* Print a description of the definition of this character.
2819 elt_describer will take care of spacing out far enough
2820 for alignment purposes. */
2821 (*elt_describer) (definition);
2822 }
2823 else if (EQ (XCONS (tail)->car, Qkeymap))
2824 {
2825 /* The same keymap might be in the structure twice, if we're
2826 using an inherited keymap. So skip anything we've already
2827 encountered. */
2828 tem = Fassq (tail, *seen);
2829 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2830 break;
2831 *seen = Fcons (Fcons (tail, keys), *seen);
2832 }
2833 }
2834
2835 UNGCPRO;
2836 }
2837
2838 static void
2839 describe_vector_princ (elt)
2840 Lisp_Object elt;
2841 {
2842 Findent_to (make_number (16), make_number (1));
2843 Fprinc (elt, Qnil);
2844 Fterpri (Qnil);
2845 }
2846
2847 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2848 "Insert a description of contents of VECTOR.\n\
2849 This is text showing the elements of vector matched against indices.")
2850 (vector)
2851 Lisp_Object vector;
2852 {
2853 int count = specpdl_ptr - specpdl;
2854
2855 specbind (Qstandard_output, Fcurrent_buffer ());
2856 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2857 describe_vector (vector, Qnil, describe_vector_princ, 0,
2858 Qnil, Qnil, (int *)0, 0);
2859
2860 return unbind_to (count, Qnil);
2861 }
2862
2863 /* Insert in the current buffer a description of the contents of VECTOR.
2864 We call ELT_DESCRIBER to insert the description of one value found
2865 in VECTOR.
2866
2867 ELT_PREFIX describes what "comes before" the keys or indices defined
2868 by this vector. This is a human-readable string whose size
2869 is not necessarily related to the situation.
2870
2871 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2872 leads to this keymap.
2873
2874 If the vector is a chartable, ELT_PREFIX is the vector
2875 of bytes that lead to the character set or portion of a character
2876 set described by this chartable.
2877
2878 If PARTIAL is nonzero, it means do not mention suppressed commands
2879 (that assumes the vector is in a keymap).
2880
2881 SHADOW is a list of keymaps that shadow this map.
2882 If it is non-nil, then we look up the key in those maps
2883 and we don't mention it now if it is defined by any of them.
2884
2885 ENTIRE_MAP is the keymap in which this vector appears.
2886 If the definition in effect in the whole map does not match
2887 the one in this vector, we ignore this one.
2888
2889 When describing a sub-char-table, INDICES is a list of
2890 indices at higher levels in this char-table,
2891 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2892
2893 void
2894 describe_vector (vector, elt_prefix, elt_describer,
2895 partial, shadow, entire_map,
2896 indices, char_table_depth)
2897 register Lisp_Object vector;
2898 Lisp_Object elt_prefix;
2899 void (*elt_describer) P_ ((Lisp_Object));
2900 int partial;
2901 Lisp_Object shadow;
2902 Lisp_Object entire_map;
2903 int *indices;
2904 int char_table_depth;
2905 {
2906 Lisp_Object definition;
2907 Lisp_Object tem2;
2908 register int i;
2909 Lisp_Object suppress;
2910 Lisp_Object kludge;
2911 int first = 1;
2912 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2913 /* Range of elements to be handled. */
2914 int from, to;
2915 /* A flag to tell if a leaf in this level of char-table is not a
2916 generic character (i.e. a complete multibyte character). */
2917 int complete_char;
2918 int character;
2919 int starting_i;
2920
2921 if (indices == 0)
2922 indices = (int *) alloca (3 * sizeof (int));
2923
2924 definition = Qnil;
2925
2926 /* This vector gets used to present single keys to Flookup_key. Since
2927 that is done once per vector element, we don't want to cons up a
2928 fresh vector every time. */
2929 kludge = Fmake_vector (make_number (1), Qnil);
2930 GCPRO3 (elt_prefix, definition, kludge);
2931
2932 if (partial)
2933 suppress = intern ("suppress-keymap");
2934
2935 if (CHAR_TABLE_P (vector))
2936 {
2937 if (char_table_depth == 0)
2938 {
2939 /* VECTOR is a top level char-table. */
2940 complete_char = 1;
2941 from = 0;
2942 to = CHAR_TABLE_ORDINARY_SLOTS;
2943 }
2944 else
2945 {
2946 /* VECTOR is a sub char-table. */
2947 if (char_table_depth >= 3)
2948 /* A char-table is never that deep. */
2949 error ("Too deep char table");
2950
2951 complete_char
2952 = (CHARSET_VALID_P (indices[0])
2953 && ((CHARSET_DIMENSION (indices[0]) == 1
2954 && char_table_depth == 1)
2955 || char_table_depth == 2));
2956
2957 /* Meaningful elements are from 32th to 127th. */
2958 from = 32;
2959 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2960 }
2961 }
2962 else
2963 {
2964 /* This does the right thing for ordinary vectors. */
2965
2966 complete_char = 1;
2967 from = 0;
2968 to = XVECTOR (vector)->size;
2969 }
2970
2971 for (i = from; i < to; i++)
2972 {
2973 QUIT;
2974
2975 if (CHAR_TABLE_P (vector))
2976 {
2977 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
2978 complete_char = 0;
2979
2980 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
2981 && !CHARSET_DEFINED_P (i - 128))
2982 continue;
2983
2984 definition
2985 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
2986 }
2987 else
2988 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2989
2990 if (NILP (definition)) continue;
2991
2992 /* Don't mention suppressed commands. */
2993 if (SYMBOLP (definition) && partial)
2994 {
2995 Lisp_Object tem;
2996
2997 tem = Fget (definition, suppress);
2998
2999 if (!NILP (tem)) continue;
3000 }
3001
3002 /* Set CHARACTER to the character this entry describes, if any.
3003 Also update *INDICES. */
3004 if (CHAR_TABLE_P (vector))
3005 {
3006 indices[char_table_depth] = i;
3007
3008 if (char_table_depth == 0)
3009 {
3010 character = i;
3011 indices[0] = i - 128;
3012 }
3013 else if (complete_char)
3014 {
3015 character
3016 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3017 }
3018 else
3019 character = 0;
3020 }
3021 else
3022 character = i;
3023
3024 /* If this binding is shadowed by some other map, ignore it. */
3025 if (!NILP (shadow) && complete_char)
3026 {
3027 Lisp_Object tem;
3028
3029 XVECTOR (kludge)->contents[0] = make_number (character);
3030 tem = shadow_lookup (shadow, kludge, Qt);
3031
3032 if (!NILP (tem)) continue;
3033 }
3034
3035 /* Ignore this definition if it is shadowed by an earlier
3036 one in the same keymap. */
3037 if (!NILP (entire_map) && complete_char)
3038 {
3039 Lisp_Object tem;
3040
3041 XVECTOR (kludge)->contents[0] = make_number (character);
3042 tem = Flookup_key (entire_map, kludge, Qt);
3043
3044 if (! EQ (tem, definition))
3045 continue;
3046 }
3047
3048 if (first)
3049 {
3050 if (char_table_depth == 0)
3051 insert ("\n", 1);
3052 first = 0;
3053 }
3054
3055 /* For a sub char-table, show the depth by indentation.
3056 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3057 if (char_table_depth > 0)
3058 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3059
3060 /* Output the prefix that applies to every entry in this map. */
3061 if (!NILP (elt_prefix))
3062 insert1 (elt_prefix);
3063
3064 /* Insert or describe the character this slot is for,
3065 or a description of what it is for. */
3066 if (SUB_CHAR_TABLE_P (vector))
3067 {
3068 if (complete_char)
3069 insert_char (character);
3070 else
3071 {
3072 /* We need an octal representation for this block of
3073 characters. */
3074 char work[16];
3075 sprintf (work, "(row %d)", i);
3076 insert (work, strlen (work));
3077 }
3078 }
3079 else if (CHAR_TABLE_P (vector))
3080 {
3081 if (complete_char)
3082 insert1 (Fsingle_key_description (make_number (character)));
3083 else
3084 {
3085 /* Print the information for this character set. */
3086 insert_string ("<");
3087 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3088 if (STRINGP (tem2))
3089 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3090 STRING_BYTES (XSTRING (tem2)), 0);
3091 else
3092 insert ("?", 1);
3093 insert (">", 1);
3094 }
3095 }
3096 else
3097 {
3098 insert1 (Fsingle_key_description (make_number (character)));
3099 }
3100
3101 /* If we find a sub char-table within a char-table,
3102 scan it recursively; it defines the details for
3103 a character set or a portion of a character set. */
3104 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3105 {
3106 insert ("\n", 1);
3107 describe_vector (definition, elt_prefix, elt_describer,
3108 partial, shadow, entire_map,
3109 indices, char_table_depth + 1);
3110 continue;
3111 }
3112
3113 starting_i = i;
3114
3115 /* Find all consecutive characters or rows that have the same
3116 definition. But, for elements of a top level char table, if
3117 they are for charsets, we had better describe one by one even
3118 if they have the same definition. */
3119 if (CHAR_TABLE_P (vector))
3120 {
3121 int limit = to;
3122
3123 if (char_table_depth == 0)
3124 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3125
3126 while (i + 1 < limit
3127 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3128 !NILP (tem2))
3129 && !NILP (Fequal (tem2, definition)))
3130 i++;
3131 }
3132 else
3133 while (i + 1 < to
3134 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3135 !NILP (tem2))
3136 && !NILP (Fequal (tem2, definition)))
3137 i++;
3138
3139
3140 /* If we have a range of more than one character,
3141 print where the range reaches to. */
3142
3143 if (i != starting_i)
3144 {
3145 insert (" .. ", 4);
3146
3147 if (!NILP (elt_prefix))
3148 insert1 (elt_prefix);
3149
3150 if (CHAR_TABLE_P (vector))
3151 {
3152 if (char_table_depth == 0)
3153 {
3154 insert1 (Fsingle_key_description (make_number (i)));
3155 }
3156 else if (complete_char)
3157 {
3158 indices[char_table_depth] = i;
3159 character
3160 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
3161 insert_char (character);
3162 }
3163 else
3164 {
3165 /* We need an octal representation for this block of
3166 characters. */
3167 char work[16];
3168 sprintf (work, "(row %d)", i);
3169 insert (work, strlen (work));
3170 }
3171 }
3172 else
3173 {
3174 insert1 (Fsingle_key_description (make_number (i)));
3175 }
3176 }
3177
3178 /* Print a description of the definition of this character.
3179 elt_describer will take care of spacing out far enough
3180 for alignment purposes. */
3181 (*elt_describer) (definition);
3182 }
3183
3184 /* For (sub) char-table, print `defalt' slot at last. */
3185 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3186 {
3187 insert (" ", char_table_depth * 2);
3188 insert_string ("<<default>>");
3189 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3190 }
3191
3192 UNGCPRO;
3193 }
3194 \f
3195 /* Apropos - finding all symbols whose names match a regexp. */
3196 Lisp_Object apropos_predicate;
3197 Lisp_Object apropos_accumulate;
3198
3199 static void
3200 apropos_accum (symbol, string)
3201 Lisp_Object symbol, string;
3202 {
3203 register Lisp_Object tem;
3204
3205 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3206 if (!NILP (tem) && !NILP (apropos_predicate))
3207 tem = call1 (apropos_predicate, symbol);
3208 if (!NILP (tem))
3209 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3210 }
3211
3212 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3213 "Show all symbols whose names contain match for REGEXP.\n\
3214 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3215 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3216 Return list of symbols found.")
3217 (regexp, predicate)
3218 Lisp_Object regexp, predicate;
3219 {
3220 struct gcpro gcpro1, gcpro2;
3221 CHECK_STRING (regexp, 0);
3222 apropos_predicate = predicate;
3223 GCPRO2 (apropos_predicate, apropos_accumulate);
3224 apropos_accumulate = Qnil;
3225 map_obarray (Vobarray, apropos_accum, regexp);
3226 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3227 UNGCPRO;
3228 return apropos_accumulate;
3229 }
3230 \f
3231 void
3232 syms_of_keymap ()
3233 {
3234 Lisp_Object tem;
3235
3236 Qkeymap = intern ("keymap");
3237 staticpro (&Qkeymap);
3238
3239 /* Now we are ready to set up this property, so we can
3240 create char tables. */
3241 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3242
3243 /* Initialize the keymaps standardly used.
3244 Each one is the value of a Lisp variable, and is also
3245 pointed to by a C variable */
3246
3247 global_map = Fmake_keymap (Qnil);
3248 Fset (intern ("global-map"), global_map);
3249
3250 current_global_map = global_map;
3251 staticpro (&global_map);
3252 staticpro (&current_global_map);
3253
3254 meta_map = Fmake_keymap (Qnil);
3255 Fset (intern ("esc-map"), meta_map);
3256 Ffset (intern ("ESC-prefix"), meta_map);
3257
3258 control_x_map = Fmake_keymap (Qnil);
3259 Fset (intern ("ctl-x-map"), control_x_map);
3260 Ffset (intern ("Control-X-prefix"), control_x_map);
3261
3262 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3263 "List of commands given new key bindings recently.\n\
3264 This is used for internal purposes during Emacs startup;\n\
3265 don't alter it yourself.");
3266 Vdefine_key_rebound_commands = Qt;
3267
3268 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3269 "Default keymap to use when reading from the minibuffer.");
3270 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3271
3272 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3273 "Local keymap for the minibuffer when spaces are not allowed.");
3274 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3275
3276 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3277 "Local keymap for minibuffer input with completion.");
3278 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3279
3280 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3281 "Local keymap for minibuffer input with completion, for exact match.");
3282 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3283
3284 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3285 "Alist of keymaps to use for minor modes.\n\
3286 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3287 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3288 If two active keymaps bind the same key, the keymap appearing earlier\n\
3289 in the list takes precedence.");
3290 Vminor_mode_map_alist = Qnil;
3291
3292 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3293 "Alist of keymaps to use for minor modes, in current major mode.\n\
3294 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3295 used the same way (and before `minor-mode-map-alist'); however,\n\
3296 it is provided for major modes to bind locally.");
3297 Vminor_mode_overriding_map_alist = Qnil;
3298
3299 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3300 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3301 This allows Emacs to recognize function keys sent from ASCII\n\
3302 terminals at any point in a key sequence.\n\
3303 \n\
3304 The `read-key-sequence' function replaces any subsequence bound by\n\
3305 `function-key-map' with its binding. More precisely, when the active\n\
3306 keymaps have no binding for the current key sequence but\n\
3307 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3308 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3309 continues with the new sequence.\n\
3310 \n\
3311 The events that come from bindings in `function-key-map' are not\n\
3312 themselves looked up in `function-key-map'.\n\
3313 \n\
3314 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3315 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3316 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3317 key, typing `ESC O P x' would return [f1 x].");
3318 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3319
3320 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3321 "Keymap of key translations that can override keymaps.\n\
3322 This keymap works like `function-key-map', but comes after that,\n\
3323 and applies even for keys that have ordinary bindings.");
3324 Vkey_translation_map = Qnil;
3325
3326 Qsingle_key_description = intern ("single-key-description");
3327 staticpro (&Qsingle_key_description);
3328
3329 Qkey_description = intern ("key-description");
3330 staticpro (&Qkey_description);
3331
3332 Qkeymapp = intern ("keymapp");
3333 staticpro (&Qkeymapp);
3334
3335 Qnon_ascii = intern ("non-ascii");
3336 staticpro (&Qnon_ascii);
3337
3338 Qmenu_item = intern ("menu-item");
3339 staticpro (&Qmenu_item);
3340
3341 defsubr (&Skeymapp);
3342 defsubr (&Skeymap_parent);
3343 defsubr (&Sset_keymap_parent);
3344 defsubr (&Smake_keymap);
3345 defsubr (&Smake_sparse_keymap);
3346 defsubr (&Scopy_keymap);
3347 defsubr (&Skey_binding);
3348 defsubr (&Slocal_key_binding);
3349 defsubr (&Sglobal_key_binding);
3350 defsubr (&Sminor_mode_key_binding);
3351 defsubr (&Sdefine_key);
3352 defsubr (&Slookup_key);
3353 defsubr (&Sdefine_prefix_command);
3354 defsubr (&Suse_global_map);
3355 defsubr (&Suse_local_map);
3356 defsubr (&Scurrent_local_map);
3357 defsubr (&Scurrent_global_map);
3358 defsubr (&Scurrent_minor_mode_maps);
3359 defsubr (&Saccessible_keymaps);
3360 defsubr (&Skey_description);
3361 defsubr (&Sdescribe_vector);
3362 defsubr (&Ssingle_key_description);
3363 defsubr (&Stext_char_description);
3364 defsubr (&Swhere_is_internal);
3365 defsubr (&Sdescribe_bindings_internal);
3366 defsubr (&Sapropos_internal);
3367 }
3368
3369 void
3370 keys_of_keymap ()
3371 {
3372 Lisp_Object tem;
3373
3374 initial_define_key (global_map, 033, "ESC-prefix");
3375 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3376 }