Change doc-string comments to `new style' [w/`doc:' keyword].
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24
25 /* Note that this declares bzero on OSF/1. How dumb. */
26
27 #include <signal.h>
28
29 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
30 memory. Can do this only if using gmalloc.c. */
31
32 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
33 #undef GC_MALLOC_CHECK
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "charset.h"
51 #include "syssignal.h"
52 #include <setjmp.h>
53
54 #ifdef HAVE_UNISTD_H
55 #include <unistd.h>
56 #else
57 extern POINTER_TYPE *sbrk ();
58 #endif
59
60 #ifdef DOUG_LEA_MALLOC
61
62 #include <malloc.h>
63 /* malloc.h #defines this as size_t, at least in glibc2. */
64 #ifndef __malloc_size_t
65 #define __malloc_size_t int
66 #endif
67
68 /* Specify maximum number of areas to mmap. It would be nice to use a
69 value that explicitly means "no limit". */
70
71 #define MMAP_MAX_AREAS 100000000
72
73 #else /* not DOUG_LEA_MALLOC */
74
75 /* The following come from gmalloc.c. */
76
77 #define __malloc_size_t size_t
78 extern __malloc_size_t _bytes_used;
79 extern __malloc_size_t __malloc_extra_blocks;
80
81 #endif /* not DOUG_LEA_MALLOC */
82
83 /* Macro to verify that storage intended for Lisp objects is not
84 out of range to fit in the space for a pointer.
85 ADDRESS is the start of the block, and SIZE
86 is the amount of space within which objects can start. */
87
88 #define VALIDATE_LISP_STORAGE(address, size) \
89 do \
90 { \
91 Lisp_Object val; \
92 XSETCONS (val, (char *) address + size); \
93 if ((char *) XCONS (val) != (char *) address + size) \
94 { \
95 xfree (address); \
96 memory_full (); \
97 } \
98 } while (0)
99
100 /* Value of _bytes_used, when spare_memory was freed. */
101
102 static __malloc_size_t bytes_used_when_full;
103
104 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
105 to a struct Lisp_String. */
106
107 #define MARK_STRING(S) ((S)->size |= MARKBIT)
108 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
109 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
110
111 /* Value is the number of bytes/chars of S, a pointer to a struct
112 Lisp_String. This must be used instead of STRING_BYTES (S) or
113 S->size during GC, because S->size contains the mark bit for
114 strings. */
115
116 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
117 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
118
119 /* Number of bytes of consing done since the last gc. */
120
121 int consing_since_gc;
122
123 /* Count the amount of consing of various sorts of space. */
124
125 int cons_cells_consed;
126 int floats_consed;
127 int vector_cells_consed;
128 int symbols_consed;
129 int string_chars_consed;
130 int misc_objects_consed;
131 int intervals_consed;
132 int strings_consed;
133
134 /* Number of bytes of consing since GC before another GC should be done. */
135
136 int gc_cons_threshold;
137
138 /* Nonzero during GC. */
139
140 int gc_in_progress;
141
142 /* Nonzero means display messages at beginning and end of GC. */
143
144 int garbage_collection_messages;
145
146 #ifndef VIRT_ADDR_VARIES
147 extern
148 #endif /* VIRT_ADDR_VARIES */
149 int malloc_sbrk_used;
150
151 #ifndef VIRT_ADDR_VARIES
152 extern
153 #endif /* VIRT_ADDR_VARIES */
154 int malloc_sbrk_unused;
155
156 /* Two limits controlling how much undo information to keep. */
157
158 int undo_limit;
159 int undo_strong_limit;
160
161 /* Number of live and free conses etc. */
162
163 static int total_conses, total_markers, total_symbols, total_vector_size;
164 static int total_free_conses, total_free_markers, total_free_symbols;
165 static int total_free_floats, total_floats;
166
167 /* Points to memory space allocated as "spare", to be freed if we run
168 out of memory. */
169
170 static char *spare_memory;
171
172 /* Amount of spare memory to keep in reserve. */
173
174 #define SPARE_MEMORY (1 << 14)
175
176 /* Number of extra blocks malloc should get when it needs more core. */
177
178 static int malloc_hysteresis;
179
180 /* Non-nil means defun should do purecopy on the function definition. */
181
182 Lisp_Object Vpurify_flag;
183
184 #ifndef HAVE_SHM
185
186 /* Force it into data space! */
187
188 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
189 #define PUREBEG (char *) pure
190
191 #else /* HAVE_SHM */
192
193 #define pure PURE_SEG_BITS /* Use shared memory segment */
194 #define PUREBEG (char *)PURE_SEG_BITS
195
196 #endif /* HAVE_SHM */
197
198 /* Pointer to the pure area, and its size. */
199
200 static char *purebeg;
201 static size_t pure_size;
202
203 /* Number of bytes of pure storage used before pure storage overflowed.
204 If this is non-zero, this implies that an overflow occurred. */
205
206 static size_t pure_bytes_used_before_overflow;
207
208 /* Value is non-zero if P points into pure space. */
209
210 #define PURE_POINTER_P(P) \
211 (((PNTR_COMPARISON_TYPE) (P) \
212 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
213 && ((PNTR_COMPARISON_TYPE) (P) \
214 >= (PNTR_COMPARISON_TYPE) purebeg))
215
216 /* Index in pure at which next pure object will be allocated.. */
217
218 int pure_bytes_used;
219
220 /* If nonzero, this is a warning delivered by malloc and not yet
221 displayed. */
222
223 char *pending_malloc_warning;
224
225 /* Pre-computed signal argument for use when memory is exhausted. */
226
227 Lisp_Object memory_signal_data;
228
229 /* Maximum amount of C stack to save when a GC happens. */
230
231 #ifndef MAX_SAVE_STACK
232 #define MAX_SAVE_STACK 16000
233 #endif
234
235 /* Buffer in which we save a copy of the C stack at each GC. */
236
237 char *stack_copy;
238 int stack_copy_size;
239
240 /* Non-zero means ignore malloc warnings. Set during initialization.
241 Currently not used. */
242
243 int ignore_warnings;
244
245 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
246
247 /* Hook run after GC has finished. */
248
249 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
250
251 static void mark_buffer P_ ((Lisp_Object));
252 static void mark_kboards P_ ((void));
253 static void gc_sweep P_ ((void));
254 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
255 static void mark_face_cache P_ ((struct face_cache *));
256
257 #ifdef HAVE_WINDOW_SYSTEM
258 static void mark_image P_ ((struct image *));
259 static void mark_image_cache P_ ((struct frame *));
260 #endif /* HAVE_WINDOW_SYSTEM */
261
262 static struct Lisp_String *allocate_string P_ ((void));
263 static void compact_small_strings P_ ((void));
264 static void free_large_strings P_ ((void));
265 static void sweep_strings P_ ((void));
266
267 extern int message_enable_multibyte;
268
269 /* When scanning the C stack for live Lisp objects, Emacs keeps track
270 of what memory allocated via lisp_malloc is intended for what
271 purpose. This enumeration specifies the type of memory. */
272
273 enum mem_type
274 {
275 MEM_TYPE_NON_LISP,
276 MEM_TYPE_BUFFER,
277 MEM_TYPE_CONS,
278 MEM_TYPE_STRING,
279 MEM_TYPE_MISC,
280 MEM_TYPE_SYMBOL,
281 MEM_TYPE_FLOAT,
282 /* Keep the following vector-like types together, with
283 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
284 first. Or change the code of live_vector_p, for instance. */
285 MEM_TYPE_VECTOR,
286 MEM_TYPE_PROCESS,
287 MEM_TYPE_HASH_TABLE,
288 MEM_TYPE_FRAME,
289 MEM_TYPE_WINDOW
290 };
291
292 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
293
294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
295 #include <stdio.h> /* For fprintf. */
296 #endif
297
298 /* A unique object in pure space used to make some Lisp objects
299 on free lists recognizable in O(1). */
300
301 Lisp_Object Vdead;
302
303 #ifdef GC_MALLOC_CHECK
304
305 enum mem_type allocated_mem_type;
306 int dont_register_blocks;
307
308 #endif /* GC_MALLOC_CHECK */
309
310 /* A node in the red-black tree describing allocated memory containing
311 Lisp data. Each such block is recorded with its start and end
312 address when it is allocated, and removed from the tree when it
313 is freed.
314
315 A red-black tree is a balanced binary tree with the following
316 properties:
317
318 1. Every node is either red or black.
319 2. Every leaf is black.
320 3. If a node is red, then both of its children are black.
321 4. Every simple path from a node to a descendant leaf contains
322 the same number of black nodes.
323 5. The root is always black.
324
325 When nodes are inserted into the tree, or deleted from the tree,
326 the tree is "fixed" so that these properties are always true.
327
328 A red-black tree with N internal nodes has height at most 2
329 log(N+1). Searches, insertions and deletions are done in O(log N).
330 Please see a text book about data structures for a detailed
331 description of red-black trees. Any book worth its salt should
332 describe them. */
333
334 struct mem_node
335 {
336 struct mem_node *left, *right, *parent;
337
338 /* Start and end of allocated region. */
339 void *start, *end;
340
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
343
344 /* Memory type. */
345 enum mem_type type;
346 };
347
348 /* Base address of stack. Set in main. */
349
350 Lisp_Object *stack_base;
351
352 /* Root of the tree describing allocated Lisp memory. */
353
354 static struct mem_node *mem_root;
355
356 /* Lowest and highest known address in the heap. */
357
358 static void *min_heap_address, *max_heap_address;
359
360 /* Sentinel node of the tree. */
361
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
364
365 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
366 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
367 static void lisp_free P_ ((POINTER_TYPE *));
368 static void mark_stack P_ ((void));
369 static int live_vector_p P_ ((struct mem_node *, void *));
370 static int live_buffer_p P_ ((struct mem_node *, void *));
371 static int live_string_p P_ ((struct mem_node *, void *));
372 static int live_cons_p P_ ((struct mem_node *, void *));
373 static int live_symbol_p P_ ((struct mem_node *, void *));
374 static int live_float_p P_ ((struct mem_node *, void *));
375 static int live_misc_p P_ ((struct mem_node *, void *));
376 static void mark_maybe_object P_ ((Lisp_Object));
377 static void mark_memory P_ ((void *, void *));
378 static void mem_init P_ ((void));
379 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
380 static void mem_insert_fixup P_ ((struct mem_node *));
381 static void mem_rotate_left P_ ((struct mem_node *));
382 static void mem_rotate_right P_ ((struct mem_node *));
383 static void mem_delete P_ ((struct mem_node *));
384 static void mem_delete_fixup P_ ((struct mem_node *));
385 static INLINE struct mem_node *mem_find P_ ((void *));
386
387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
388 static void check_gcpros P_ ((void));
389 #endif
390
391 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
392
393 /* Recording what needs to be marked for gc. */
394
395 struct gcpro *gcprolist;
396
397 /* Addresses of staticpro'd variables. */
398
399 #define NSTATICS 1024
400 Lisp_Object *staticvec[NSTATICS] = {0};
401
402 /* Index of next unused slot in staticvec. */
403
404 int staticidx = 0;
405
406 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
407
408
409 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
410 ALIGNMENT must be a power of 2. */
411
412 #define ALIGN(SZ, ALIGNMENT) \
413 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
414
415
416 \f
417 /************************************************************************
418 Malloc
419 ************************************************************************/
420
421 /* Write STR to Vstandard_output plus some advice on how to free some
422 memory. Called when memory gets low. */
423
424 Lisp_Object
425 malloc_warning_1 (str)
426 Lisp_Object str;
427 {
428 Fprinc (str, Vstandard_output);
429 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
430 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
431 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
432 return Qnil;
433 }
434
435
436 /* Function malloc calls this if it finds we are near exhausting
437 storage. */
438
439 void
440 malloc_warning (str)
441 char *str;
442 {
443 pending_malloc_warning = str;
444 }
445
446
447 /* Display a malloc warning in buffer *Danger*. */
448
449 void
450 display_malloc_warning ()
451 {
452 register Lisp_Object val;
453
454 val = build_string (pending_malloc_warning);
455 pending_malloc_warning = 0;
456 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
457 }
458
459
460 #ifdef DOUG_LEA_MALLOC
461 # define BYTES_USED (mallinfo ().arena)
462 #else
463 # define BYTES_USED _bytes_used
464 #endif
465
466
467 /* Called if malloc returns zero. */
468
469 void
470 memory_full ()
471 {
472 #ifndef SYSTEM_MALLOC
473 bytes_used_when_full = BYTES_USED;
474 #endif
475
476 /* The first time we get here, free the spare memory. */
477 if (spare_memory)
478 {
479 free (spare_memory);
480 spare_memory = 0;
481 }
482
483 /* This used to call error, but if we've run out of memory, we could
484 get infinite recursion trying to build the string. */
485 while (1)
486 Fsignal (Qnil, memory_signal_data);
487 }
488
489
490 /* Called if we can't allocate relocatable space for a buffer. */
491
492 void
493 buffer_memory_full ()
494 {
495 /* If buffers use the relocating allocator, no need to free
496 spare_memory, because we may have plenty of malloc space left
497 that we could get, and if we don't, the malloc that fails will
498 itself cause spare_memory to be freed. If buffers don't use the
499 relocating allocator, treat this like any other failing
500 malloc. */
501
502 #ifndef REL_ALLOC
503 memory_full ();
504 #endif
505
506 /* This used to call error, but if we've run out of memory, we could
507 get infinite recursion trying to build the string. */
508 while (1)
509 Fsignal (Qerror, memory_signal_data);
510 }
511
512
513 /* Like malloc but check for no memory and block interrupt input.. */
514
515 POINTER_TYPE *
516 xmalloc (size)
517 size_t size;
518 {
519 register POINTER_TYPE *val;
520
521 BLOCK_INPUT;
522 val = (POINTER_TYPE *) malloc (size);
523 UNBLOCK_INPUT;
524
525 if (!val && size)
526 memory_full ();
527 return val;
528 }
529
530
531 /* Like realloc but check for no memory and block interrupt input.. */
532
533 POINTER_TYPE *
534 xrealloc (block, size)
535 POINTER_TYPE *block;
536 size_t size;
537 {
538 register POINTER_TYPE *val;
539
540 BLOCK_INPUT;
541 /* We must call malloc explicitly when BLOCK is 0, since some
542 reallocs don't do this. */
543 if (! block)
544 val = (POINTER_TYPE *) malloc (size);
545 else
546 val = (POINTER_TYPE *) realloc (block, size);
547 UNBLOCK_INPUT;
548
549 if (!val && size) memory_full ();
550 return val;
551 }
552
553
554 /* Like free but block interrupt input.. */
555
556 void
557 xfree (block)
558 POINTER_TYPE *block;
559 {
560 BLOCK_INPUT;
561 free (block);
562 UNBLOCK_INPUT;
563 }
564
565
566 /* Like strdup, but uses xmalloc. */
567
568 char *
569 xstrdup (s)
570 char *s;
571 {
572 size_t len = strlen (s) + 1;
573 char *p = (char *) xmalloc (len);
574 bcopy (s, p, len);
575 return p;
576 }
577
578
579 /* Like malloc but used for allocating Lisp data. NBYTES is the
580 number of bytes to allocate, TYPE describes the intended use of the
581 allcated memory block (for strings, for conses, ...). */
582
583 static POINTER_TYPE *
584 lisp_malloc (nbytes, type)
585 size_t nbytes;
586 enum mem_type type;
587 {
588 register void *val;
589
590 BLOCK_INPUT;
591
592 #ifdef GC_MALLOC_CHECK
593 allocated_mem_type = type;
594 #endif
595
596 val = (void *) malloc (nbytes);
597
598 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
599 if (val && type != MEM_TYPE_NON_LISP)
600 mem_insert (val, (char *) val + nbytes, type);
601 #endif
602
603 UNBLOCK_INPUT;
604 if (!val && nbytes)
605 memory_full ();
606 return val;
607 }
608
609
610 /* Return a new buffer structure allocated from the heap with
611 a call to lisp_malloc. */
612
613 struct buffer *
614 allocate_buffer ()
615 {
616 struct buffer *b
617 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
618 MEM_TYPE_BUFFER);
619 VALIDATE_LISP_STORAGE (b, sizeof *b);
620 return b;
621 }
622
623
624 /* Free BLOCK. This must be called to free memory allocated with a
625 call to lisp_malloc. */
626
627 static void
628 lisp_free (block)
629 POINTER_TYPE *block;
630 {
631 BLOCK_INPUT;
632 free (block);
633 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
634 mem_delete (mem_find (block));
635 #endif
636 UNBLOCK_INPUT;
637 }
638
639 \f
640 /* Arranging to disable input signals while we're in malloc.
641
642 This only works with GNU malloc. To help out systems which can't
643 use GNU malloc, all the calls to malloc, realloc, and free
644 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
645 pairs; unfortunately, we have no idea what C library functions
646 might call malloc, so we can't really protect them unless you're
647 using GNU malloc. Fortunately, most of the major operating can use
648 GNU malloc. */
649
650 #ifndef SYSTEM_MALLOC
651 #ifndef DOUG_LEA_MALLOC
652 extern void * (*__malloc_hook) P_ ((size_t));
653 extern void * (*__realloc_hook) P_ ((void *, size_t));
654 extern void (*__free_hook) P_ ((void *));
655 /* Else declared in malloc.h, perhaps with an extra arg. */
656 #endif /* DOUG_LEA_MALLOC */
657 static void * (*old_malloc_hook) ();
658 static void * (*old_realloc_hook) ();
659 static void (*old_free_hook) ();
660
661 /* This function is used as the hook for free to call. */
662
663 static void
664 emacs_blocked_free (ptr)
665 void *ptr;
666 {
667 BLOCK_INPUT;
668
669 #ifdef GC_MALLOC_CHECK
670 if (ptr)
671 {
672 struct mem_node *m;
673
674 m = mem_find (ptr);
675 if (m == MEM_NIL || m->start != ptr)
676 {
677 fprintf (stderr,
678 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
679 abort ();
680 }
681 else
682 {
683 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
684 mem_delete (m);
685 }
686 }
687 #endif /* GC_MALLOC_CHECK */
688
689 __free_hook = old_free_hook;
690 free (ptr);
691
692 /* If we released our reserve (due to running out of memory),
693 and we have a fair amount free once again,
694 try to set aside another reserve in case we run out once more. */
695 if (spare_memory == 0
696 /* Verify there is enough space that even with the malloc
697 hysteresis this call won't run out again.
698 The code here is correct as long as SPARE_MEMORY
699 is substantially larger than the block size malloc uses. */
700 && (bytes_used_when_full
701 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
702 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
703
704 __free_hook = emacs_blocked_free;
705 UNBLOCK_INPUT;
706 }
707
708
709 /* If we released our reserve (due to running out of memory),
710 and we have a fair amount free once again,
711 try to set aside another reserve in case we run out once more.
712
713 This is called when a relocatable block is freed in ralloc.c. */
714
715 void
716 refill_memory_reserve ()
717 {
718 if (spare_memory == 0)
719 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
720 }
721
722
723 /* This function is the malloc hook that Emacs uses. */
724
725 static void *
726 emacs_blocked_malloc (size)
727 size_t size;
728 {
729 void *value;
730
731 BLOCK_INPUT;
732 __malloc_hook = old_malloc_hook;
733 #ifdef DOUG_LEA_MALLOC
734 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
735 #else
736 __malloc_extra_blocks = malloc_hysteresis;
737 #endif
738
739 value = (void *) malloc (size);
740
741 #ifdef GC_MALLOC_CHECK
742 {
743 struct mem_node *m = mem_find (value);
744 if (m != MEM_NIL)
745 {
746 fprintf (stderr, "Malloc returned %p which is already in use\n",
747 value);
748 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
749 m->start, m->end, (char *) m->end - (char *) m->start,
750 m->type);
751 abort ();
752 }
753
754 if (!dont_register_blocks)
755 {
756 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
757 allocated_mem_type = MEM_TYPE_NON_LISP;
758 }
759 }
760 #endif /* GC_MALLOC_CHECK */
761
762 __malloc_hook = emacs_blocked_malloc;
763 UNBLOCK_INPUT;
764
765 /* fprintf (stderr, "%p malloc\n", value); */
766 return value;
767 }
768
769
770 /* This function is the realloc hook that Emacs uses. */
771
772 static void *
773 emacs_blocked_realloc (ptr, size)
774 void *ptr;
775 size_t size;
776 {
777 void *value;
778
779 BLOCK_INPUT;
780 __realloc_hook = old_realloc_hook;
781
782 #ifdef GC_MALLOC_CHECK
783 if (ptr)
784 {
785 struct mem_node *m = mem_find (ptr);
786 if (m == MEM_NIL || m->start != ptr)
787 {
788 fprintf (stderr,
789 "Realloc of %p which wasn't allocated with malloc\n",
790 ptr);
791 abort ();
792 }
793
794 mem_delete (m);
795 }
796
797 /* fprintf (stderr, "%p -> realloc\n", ptr); */
798
799 /* Prevent malloc from registering blocks. */
800 dont_register_blocks = 1;
801 #endif /* GC_MALLOC_CHECK */
802
803 value = (void *) realloc (ptr, size);
804
805 #ifdef GC_MALLOC_CHECK
806 dont_register_blocks = 0;
807
808 {
809 struct mem_node *m = mem_find (value);
810 if (m != MEM_NIL)
811 {
812 fprintf (stderr, "Realloc returns memory that is already in use\n");
813 abort ();
814 }
815
816 /* Can't handle zero size regions in the red-black tree. */
817 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
818 }
819
820 /* fprintf (stderr, "%p <- realloc\n", value); */
821 #endif /* GC_MALLOC_CHECK */
822
823 __realloc_hook = emacs_blocked_realloc;
824 UNBLOCK_INPUT;
825
826 return value;
827 }
828
829
830 /* Called from main to set up malloc to use our hooks. */
831
832 void
833 uninterrupt_malloc ()
834 {
835 if (__free_hook != emacs_blocked_free)
836 old_free_hook = __free_hook;
837 __free_hook = emacs_blocked_free;
838
839 if (__malloc_hook != emacs_blocked_malloc)
840 old_malloc_hook = __malloc_hook;
841 __malloc_hook = emacs_blocked_malloc;
842
843 if (__realloc_hook != emacs_blocked_realloc)
844 old_realloc_hook = __realloc_hook;
845 __realloc_hook = emacs_blocked_realloc;
846 }
847
848 #endif /* not SYSTEM_MALLOC */
849
850
851 \f
852 /***********************************************************************
853 Interval Allocation
854 ***********************************************************************/
855
856 /* Number of intervals allocated in an interval_block structure.
857 The 1020 is 1024 minus malloc overhead. */
858
859 #define INTERVAL_BLOCK_SIZE \
860 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
861
862 /* Intervals are allocated in chunks in form of an interval_block
863 structure. */
864
865 struct interval_block
866 {
867 struct interval_block *next;
868 struct interval intervals[INTERVAL_BLOCK_SIZE];
869 };
870
871 /* Current interval block. Its `next' pointer points to older
872 blocks. */
873
874 struct interval_block *interval_block;
875
876 /* Index in interval_block above of the next unused interval
877 structure. */
878
879 static int interval_block_index;
880
881 /* Number of free and live intervals. */
882
883 static int total_free_intervals, total_intervals;
884
885 /* List of free intervals. */
886
887 INTERVAL interval_free_list;
888
889 /* Total number of interval blocks now in use. */
890
891 int n_interval_blocks;
892
893
894 /* Initialize interval allocation. */
895
896 static void
897 init_intervals ()
898 {
899 interval_block
900 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
901 MEM_TYPE_NON_LISP);
902 interval_block->next = 0;
903 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
904 interval_block_index = 0;
905 interval_free_list = 0;
906 n_interval_blocks = 1;
907 }
908
909
910 /* Return a new interval. */
911
912 INTERVAL
913 make_interval ()
914 {
915 INTERVAL val;
916
917 if (interval_free_list)
918 {
919 val = interval_free_list;
920 interval_free_list = INTERVAL_PARENT (interval_free_list);
921 }
922 else
923 {
924 if (interval_block_index == INTERVAL_BLOCK_SIZE)
925 {
926 register struct interval_block *newi;
927
928 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
929 MEM_TYPE_NON_LISP);
930
931 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
932 newi->next = interval_block;
933 interval_block = newi;
934 interval_block_index = 0;
935 n_interval_blocks++;
936 }
937 val = &interval_block->intervals[interval_block_index++];
938 }
939 consing_since_gc += sizeof (struct interval);
940 intervals_consed++;
941 RESET_INTERVAL (val);
942 return val;
943 }
944
945
946 /* Mark Lisp objects in interval I. */
947
948 static void
949 mark_interval (i, dummy)
950 register INTERVAL i;
951 Lisp_Object dummy;
952 {
953 if (XMARKBIT (i->plist))
954 abort ();
955 mark_object (&i->plist);
956 XMARK (i->plist);
957 }
958
959
960 /* Mark the interval tree rooted in TREE. Don't call this directly;
961 use the macro MARK_INTERVAL_TREE instead. */
962
963 static void
964 mark_interval_tree (tree)
965 register INTERVAL tree;
966 {
967 /* No need to test if this tree has been marked already; this
968 function is always called through the MARK_INTERVAL_TREE macro,
969 which takes care of that. */
970
971 /* XMARK expands to an assignment; the LHS of an assignment can't be
972 a cast. */
973 XMARK (tree->up.obj);
974
975 traverse_intervals_noorder (tree, mark_interval, Qnil);
976 }
977
978
979 /* Mark the interval tree rooted in I. */
980
981 #define MARK_INTERVAL_TREE(i) \
982 do { \
983 if (!NULL_INTERVAL_P (i) \
984 && ! XMARKBIT (i->up.obj)) \
985 mark_interval_tree (i); \
986 } while (0)
987
988
989 /* The oddity in the call to XUNMARK is necessary because XUNMARK
990 expands to an assignment to its argument, and most C compilers
991 don't support casts on the left operand of `='. */
992
993 #define UNMARK_BALANCE_INTERVALS(i) \
994 do { \
995 if (! NULL_INTERVAL_P (i)) \
996 { \
997 XUNMARK ((i)->up.obj); \
998 (i) = balance_intervals (i); \
999 } \
1000 } while (0)
1001
1002 \f
1003 /* Number support. If NO_UNION_TYPE isn't in effect, we
1004 can't create number objects in macros. */
1005 #ifndef make_number
1006 Lisp_Object
1007 make_number (n)
1008 int n;
1009 {
1010 Lisp_Object obj;
1011 obj.s.val = n;
1012 obj.s.type = Lisp_Int;
1013 return obj;
1014 }
1015 #endif
1016 \f
1017 /***********************************************************************
1018 String Allocation
1019 ***********************************************************************/
1020
1021 /* Lisp_Strings are allocated in string_block structures. When a new
1022 string_block is allocated, all the Lisp_Strings it contains are
1023 added to a free-list stiing_free_list. When a new Lisp_String is
1024 needed, it is taken from that list. During the sweep phase of GC,
1025 string_blocks that are entirely free are freed, except two which
1026 we keep.
1027
1028 String data is allocated from sblock structures. Strings larger
1029 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1030 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1031
1032 Sblocks consist internally of sdata structures, one for each
1033 Lisp_String. The sdata structure points to the Lisp_String it
1034 belongs to. The Lisp_String points back to the `u.data' member of
1035 its sdata structure.
1036
1037 When a Lisp_String is freed during GC, it is put back on
1038 string_free_list, and its `data' member and its sdata's `string'
1039 pointer is set to null. The size of the string is recorded in the
1040 `u.nbytes' member of the sdata. So, sdata structures that are no
1041 longer used, can be easily recognized, and it's easy to compact the
1042 sblocks of small strings which we do in compact_small_strings. */
1043
1044 /* Size in bytes of an sblock structure used for small strings. This
1045 is 8192 minus malloc overhead. */
1046
1047 #define SBLOCK_SIZE 8188
1048
1049 /* Strings larger than this are considered large strings. String data
1050 for large strings is allocated from individual sblocks. */
1051
1052 #define LARGE_STRING_BYTES 1024
1053
1054 /* Structure describing string memory sub-allocated from an sblock.
1055 This is where the contents of Lisp strings are stored. */
1056
1057 struct sdata
1058 {
1059 /* Back-pointer to the string this sdata belongs to. If null, this
1060 structure is free, and the NBYTES member of the union below
1061 contains the string's byte size (the same value that STRING_BYTES
1062 would return if STRING were non-null). If non-null, STRING_BYTES
1063 (STRING) is the size of the data, and DATA contains the string's
1064 contents. */
1065 struct Lisp_String *string;
1066
1067 #ifdef GC_CHECK_STRING_BYTES
1068
1069 EMACS_INT nbytes;
1070 unsigned char data[1];
1071
1072 #define SDATA_NBYTES(S) (S)->nbytes
1073 #define SDATA_DATA(S) (S)->data
1074
1075 #else /* not GC_CHECK_STRING_BYTES */
1076
1077 union
1078 {
1079 /* When STRING in non-null. */
1080 unsigned char data[1];
1081
1082 /* When STRING is null. */
1083 EMACS_INT nbytes;
1084 } u;
1085
1086
1087 #define SDATA_NBYTES(S) (S)->u.nbytes
1088 #define SDATA_DATA(S) (S)->u.data
1089
1090 #endif /* not GC_CHECK_STRING_BYTES */
1091 };
1092
1093
1094 /* Structure describing a block of memory which is sub-allocated to
1095 obtain string data memory for strings. Blocks for small strings
1096 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1097 as large as needed. */
1098
1099 struct sblock
1100 {
1101 /* Next in list. */
1102 struct sblock *next;
1103
1104 /* Pointer to the next free sdata block. This points past the end
1105 of the sblock if there isn't any space left in this block. */
1106 struct sdata *next_free;
1107
1108 /* Start of data. */
1109 struct sdata first_data;
1110 };
1111
1112 /* Number of Lisp strings in a string_block structure. The 1020 is
1113 1024 minus malloc overhead. */
1114
1115 #define STRINGS_IN_STRING_BLOCK \
1116 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1117
1118 /* Structure describing a block from which Lisp_String structures
1119 are allocated. */
1120
1121 struct string_block
1122 {
1123 struct string_block *next;
1124 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1125 };
1126
1127 /* Head and tail of the list of sblock structures holding Lisp string
1128 data. We always allocate from current_sblock. The NEXT pointers
1129 in the sblock structures go from oldest_sblock to current_sblock. */
1130
1131 static struct sblock *oldest_sblock, *current_sblock;
1132
1133 /* List of sblocks for large strings. */
1134
1135 static struct sblock *large_sblocks;
1136
1137 /* List of string_block structures, and how many there are. */
1138
1139 static struct string_block *string_blocks;
1140 static int n_string_blocks;
1141
1142 /* Free-list of Lisp_Strings. */
1143
1144 static struct Lisp_String *string_free_list;
1145
1146 /* Number of live and free Lisp_Strings. */
1147
1148 static int total_strings, total_free_strings;
1149
1150 /* Number of bytes used by live strings. */
1151
1152 static int total_string_size;
1153
1154 /* Given a pointer to a Lisp_String S which is on the free-list
1155 string_free_list, return a pointer to its successor in the
1156 free-list. */
1157
1158 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1159
1160 /* Return a pointer to the sdata structure belonging to Lisp string S.
1161 S must be live, i.e. S->data must not be null. S->data is actually
1162 a pointer to the `u.data' member of its sdata structure; the
1163 structure starts at a constant offset in front of that. */
1164
1165 #ifdef GC_CHECK_STRING_BYTES
1166
1167 #define SDATA_OF_STRING(S) \
1168 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1169 - sizeof (EMACS_INT)))
1170
1171 #else /* not GC_CHECK_STRING_BYTES */
1172
1173 #define SDATA_OF_STRING(S) \
1174 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1175
1176 #endif /* not GC_CHECK_STRING_BYTES */
1177
1178 /* Value is the size of an sdata structure large enough to hold NBYTES
1179 bytes of string data. The value returned includes a terminating
1180 NUL byte, the size of the sdata structure, and padding. */
1181
1182 #ifdef GC_CHECK_STRING_BYTES
1183
1184 #define SDATA_SIZE(NBYTES) \
1185 ((sizeof (struct Lisp_String *) \
1186 + (NBYTES) + 1 \
1187 + sizeof (EMACS_INT) \
1188 + sizeof (EMACS_INT) - 1) \
1189 & ~(sizeof (EMACS_INT) - 1))
1190
1191 #else /* not GC_CHECK_STRING_BYTES */
1192
1193 #define SDATA_SIZE(NBYTES) \
1194 ((sizeof (struct Lisp_String *) \
1195 + (NBYTES) + 1 \
1196 + sizeof (EMACS_INT) - 1) \
1197 & ~(sizeof (EMACS_INT) - 1))
1198
1199 #endif /* not GC_CHECK_STRING_BYTES */
1200
1201 /* Initialize string allocation. Called from init_alloc_once. */
1202
1203 void
1204 init_strings ()
1205 {
1206 total_strings = total_free_strings = total_string_size = 0;
1207 oldest_sblock = current_sblock = large_sblocks = NULL;
1208 string_blocks = NULL;
1209 n_string_blocks = 0;
1210 string_free_list = NULL;
1211 }
1212
1213
1214 #ifdef GC_CHECK_STRING_BYTES
1215
1216 static int check_string_bytes_count;
1217
1218 void check_string_bytes P_ ((int));
1219 void check_sblock P_ ((struct sblock *));
1220
1221 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1222
1223
1224 /* Like GC_STRING_BYTES, but with debugging check. */
1225
1226 int
1227 string_bytes (s)
1228 struct Lisp_String *s;
1229 {
1230 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1231 if (!PURE_POINTER_P (s)
1232 && s->data
1233 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1234 abort ();
1235 return nbytes;
1236 }
1237
1238 /* Check validity Lisp strings' string_bytes member in B. */
1239
1240 void
1241 check_sblock (b)
1242 struct sblock *b;
1243 {
1244 struct sdata *from, *end, *from_end;
1245
1246 end = b->next_free;
1247
1248 for (from = &b->first_data; from < end; from = from_end)
1249 {
1250 /* Compute the next FROM here because copying below may
1251 overwrite data we need to compute it. */
1252 int nbytes;
1253
1254 /* Check that the string size recorded in the string is the
1255 same as the one recorded in the sdata structure. */
1256 if (from->string)
1257 CHECK_STRING_BYTES (from->string);
1258
1259 if (from->string)
1260 nbytes = GC_STRING_BYTES (from->string);
1261 else
1262 nbytes = SDATA_NBYTES (from);
1263
1264 nbytes = SDATA_SIZE (nbytes);
1265 from_end = (struct sdata *) ((char *) from + nbytes);
1266 }
1267 }
1268
1269
1270 /* Check validity of Lisp strings' string_bytes member. ALL_P
1271 non-zero means check all strings, otherwise check only most
1272 recently allocated strings. Used for hunting a bug. */
1273
1274 void
1275 check_string_bytes (all_p)
1276 int all_p;
1277 {
1278 if (all_p)
1279 {
1280 struct sblock *b;
1281
1282 for (b = large_sblocks; b; b = b->next)
1283 {
1284 struct Lisp_String *s = b->first_data.string;
1285 if (s)
1286 CHECK_STRING_BYTES (s);
1287 }
1288
1289 for (b = oldest_sblock; b; b = b->next)
1290 check_sblock (b);
1291 }
1292 else
1293 check_sblock (current_sblock);
1294 }
1295
1296 #endif /* GC_CHECK_STRING_BYTES */
1297
1298
1299 /* Return a new Lisp_String. */
1300
1301 static struct Lisp_String *
1302 allocate_string ()
1303 {
1304 struct Lisp_String *s;
1305
1306 /* If the free-list is empty, allocate a new string_block, and
1307 add all the Lisp_Strings in it to the free-list. */
1308 if (string_free_list == NULL)
1309 {
1310 struct string_block *b;
1311 int i;
1312
1313 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1314 VALIDATE_LISP_STORAGE (b, sizeof *b);
1315 bzero (b, sizeof *b);
1316 b->next = string_blocks;
1317 string_blocks = b;
1318 ++n_string_blocks;
1319
1320 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1321 {
1322 s = b->strings + i;
1323 NEXT_FREE_LISP_STRING (s) = string_free_list;
1324 string_free_list = s;
1325 }
1326
1327 total_free_strings += STRINGS_IN_STRING_BLOCK;
1328 }
1329
1330 /* Pop a Lisp_String off the free-list. */
1331 s = string_free_list;
1332 string_free_list = NEXT_FREE_LISP_STRING (s);
1333
1334 /* Probably not strictly necessary, but play it safe. */
1335 bzero (s, sizeof *s);
1336
1337 --total_free_strings;
1338 ++total_strings;
1339 ++strings_consed;
1340 consing_since_gc += sizeof *s;
1341
1342 #ifdef GC_CHECK_STRING_BYTES
1343 if (!noninteractive
1344 #ifdef macintosh
1345 && current_sblock
1346 #endif
1347 )
1348 {
1349 if (++check_string_bytes_count == 200)
1350 {
1351 check_string_bytes_count = 0;
1352 check_string_bytes (1);
1353 }
1354 else
1355 check_string_bytes (0);
1356 }
1357 #endif /* GC_CHECK_STRING_BYTES */
1358
1359 return s;
1360 }
1361
1362
1363 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1364 plus a NUL byte at the end. Allocate an sdata structure for S, and
1365 set S->data to its `u.data' member. Store a NUL byte at the end of
1366 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1367 S->data if it was initially non-null. */
1368
1369 void
1370 allocate_string_data (s, nchars, nbytes)
1371 struct Lisp_String *s;
1372 int nchars, nbytes;
1373 {
1374 struct sdata *data, *old_data;
1375 struct sblock *b;
1376 int needed, old_nbytes;
1377
1378 /* Determine the number of bytes needed to store NBYTES bytes
1379 of string data. */
1380 needed = SDATA_SIZE (nbytes);
1381
1382 if (nbytes > LARGE_STRING_BYTES)
1383 {
1384 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1385
1386 #ifdef DOUG_LEA_MALLOC
1387 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1388 because mapped region contents are not preserved in
1389 a dumped Emacs. */
1390 mallopt (M_MMAP_MAX, 0);
1391 #endif
1392
1393 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1394
1395 #ifdef DOUG_LEA_MALLOC
1396 /* Back to a reasonable maximum of mmap'ed areas. */
1397 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1398 #endif
1399
1400 b->next_free = &b->first_data;
1401 b->first_data.string = NULL;
1402 b->next = large_sblocks;
1403 large_sblocks = b;
1404 }
1405 else if (current_sblock == NULL
1406 || (((char *) current_sblock + SBLOCK_SIZE
1407 - (char *) current_sblock->next_free)
1408 < needed))
1409 {
1410 /* Not enough room in the current sblock. */
1411 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1412 b->next_free = &b->first_data;
1413 b->first_data.string = NULL;
1414 b->next = NULL;
1415
1416 if (current_sblock)
1417 current_sblock->next = b;
1418 else
1419 oldest_sblock = b;
1420 current_sblock = b;
1421 }
1422 else
1423 b = current_sblock;
1424
1425 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1426 old_nbytes = GC_STRING_BYTES (s);
1427
1428 data = b->next_free;
1429 data->string = s;
1430 s->data = SDATA_DATA (data);
1431 #ifdef GC_CHECK_STRING_BYTES
1432 SDATA_NBYTES (data) = nbytes;
1433 #endif
1434 s->size = nchars;
1435 s->size_byte = nbytes;
1436 s->data[nbytes] = '\0';
1437 b->next_free = (struct sdata *) ((char *) data + needed);
1438
1439 /* If S had already data assigned, mark that as free by setting its
1440 string back-pointer to null, and recording the size of the data
1441 in it. */
1442 if (old_data)
1443 {
1444 SDATA_NBYTES (old_data) = old_nbytes;
1445 old_data->string = NULL;
1446 }
1447
1448 consing_since_gc += needed;
1449 }
1450
1451
1452 /* Sweep and compact strings. */
1453
1454 static void
1455 sweep_strings ()
1456 {
1457 struct string_block *b, *next;
1458 struct string_block *live_blocks = NULL;
1459
1460 string_free_list = NULL;
1461 total_strings = total_free_strings = 0;
1462 total_string_size = 0;
1463
1464 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1465 for (b = string_blocks; b; b = next)
1466 {
1467 int i, nfree = 0;
1468 struct Lisp_String *free_list_before = string_free_list;
1469
1470 next = b->next;
1471
1472 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1473 {
1474 struct Lisp_String *s = b->strings + i;
1475
1476 if (s->data)
1477 {
1478 /* String was not on free-list before. */
1479 if (STRING_MARKED_P (s))
1480 {
1481 /* String is live; unmark it and its intervals. */
1482 UNMARK_STRING (s);
1483
1484 if (!NULL_INTERVAL_P (s->intervals))
1485 UNMARK_BALANCE_INTERVALS (s->intervals);
1486
1487 ++total_strings;
1488 total_string_size += STRING_BYTES (s);
1489 }
1490 else
1491 {
1492 /* String is dead. Put it on the free-list. */
1493 struct sdata *data = SDATA_OF_STRING (s);
1494
1495 /* Save the size of S in its sdata so that we know
1496 how large that is. Reset the sdata's string
1497 back-pointer so that we know it's free. */
1498 #ifdef GC_CHECK_STRING_BYTES
1499 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1500 abort ();
1501 #else
1502 data->u.nbytes = GC_STRING_BYTES (s);
1503 #endif
1504 data->string = NULL;
1505
1506 /* Reset the strings's `data' member so that we
1507 know it's free. */
1508 s->data = NULL;
1509
1510 /* Put the string on the free-list. */
1511 NEXT_FREE_LISP_STRING (s) = string_free_list;
1512 string_free_list = s;
1513 ++nfree;
1514 }
1515 }
1516 else
1517 {
1518 /* S was on the free-list before. Put it there again. */
1519 NEXT_FREE_LISP_STRING (s) = string_free_list;
1520 string_free_list = s;
1521 ++nfree;
1522 }
1523 }
1524
1525 /* Free blocks that contain free Lisp_Strings only, except
1526 the first two of them. */
1527 if (nfree == STRINGS_IN_STRING_BLOCK
1528 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1529 {
1530 lisp_free (b);
1531 --n_string_blocks;
1532 string_free_list = free_list_before;
1533 }
1534 else
1535 {
1536 total_free_strings += nfree;
1537 b->next = live_blocks;
1538 live_blocks = b;
1539 }
1540 }
1541
1542 string_blocks = live_blocks;
1543 free_large_strings ();
1544 compact_small_strings ();
1545 }
1546
1547
1548 /* Free dead large strings. */
1549
1550 static void
1551 free_large_strings ()
1552 {
1553 struct sblock *b, *next;
1554 struct sblock *live_blocks = NULL;
1555
1556 for (b = large_sblocks; b; b = next)
1557 {
1558 next = b->next;
1559
1560 if (b->first_data.string == NULL)
1561 lisp_free (b);
1562 else
1563 {
1564 b->next = live_blocks;
1565 live_blocks = b;
1566 }
1567 }
1568
1569 large_sblocks = live_blocks;
1570 }
1571
1572
1573 /* Compact data of small strings. Free sblocks that don't contain
1574 data of live strings after compaction. */
1575
1576 static void
1577 compact_small_strings ()
1578 {
1579 struct sblock *b, *tb, *next;
1580 struct sdata *from, *to, *end, *tb_end;
1581 struct sdata *to_end, *from_end;
1582
1583 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1584 to, and TB_END is the end of TB. */
1585 tb = oldest_sblock;
1586 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1587 to = &tb->first_data;
1588
1589 /* Step through the blocks from the oldest to the youngest. We
1590 expect that old blocks will stabilize over time, so that less
1591 copying will happen this way. */
1592 for (b = oldest_sblock; b; b = b->next)
1593 {
1594 end = b->next_free;
1595 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1596
1597 for (from = &b->first_data; from < end; from = from_end)
1598 {
1599 /* Compute the next FROM here because copying below may
1600 overwrite data we need to compute it. */
1601 int nbytes;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604 /* Check that the string size recorded in the string is the
1605 same as the one recorded in the sdata structure. */
1606 if (from->string
1607 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1608 abort ();
1609 #endif /* GC_CHECK_STRING_BYTES */
1610
1611 if (from->string)
1612 nbytes = GC_STRING_BYTES (from->string);
1613 else
1614 nbytes = SDATA_NBYTES (from);
1615
1616 nbytes = SDATA_SIZE (nbytes);
1617 from_end = (struct sdata *) ((char *) from + nbytes);
1618
1619 /* FROM->string non-null means it's alive. Copy its data. */
1620 if (from->string)
1621 {
1622 /* If TB is full, proceed with the next sblock. */
1623 to_end = (struct sdata *) ((char *) to + nbytes);
1624 if (to_end > tb_end)
1625 {
1626 tb->next_free = to;
1627 tb = tb->next;
1628 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1629 to = &tb->first_data;
1630 to_end = (struct sdata *) ((char *) to + nbytes);
1631 }
1632
1633 /* Copy, and update the string's `data' pointer. */
1634 if (from != to)
1635 {
1636 xassert (tb != b || to <= from);
1637 safe_bcopy ((char *) from, (char *) to, nbytes);
1638 to->string->data = SDATA_DATA (to);
1639 }
1640
1641 /* Advance past the sdata we copied to. */
1642 to = to_end;
1643 }
1644 }
1645 }
1646
1647 /* The rest of the sblocks following TB don't contain live data, so
1648 we can free them. */
1649 for (b = tb->next; b; b = next)
1650 {
1651 next = b->next;
1652 lisp_free (b);
1653 }
1654
1655 tb->next_free = to;
1656 tb->next = NULL;
1657 current_sblock = tb;
1658 }
1659
1660
1661 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1662 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1663 Both LENGTH and INIT must be numbers. */)
1664 (length, init)
1665 Lisp_Object length, init;
1666 {
1667 register Lisp_Object val;
1668 register unsigned char *p, *end;
1669 int c, nbytes;
1670
1671 CHECK_NATNUM (length, 0);
1672 CHECK_NUMBER (init, 1);
1673
1674 c = XINT (init);
1675 if (SINGLE_BYTE_CHAR_P (c))
1676 {
1677 nbytes = XINT (length);
1678 val = make_uninit_string (nbytes);
1679 p = XSTRING (val)->data;
1680 end = p + XSTRING (val)->size;
1681 while (p != end)
1682 *p++ = c;
1683 }
1684 else
1685 {
1686 unsigned char str[MAX_MULTIBYTE_LENGTH];
1687 int len = CHAR_STRING (c, str);
1688
1689 nbytes = len * XINT (length);
1690 val = make_uninit_multibyte_string (XINT (length), nbytes);
1691 p = XSTRING (val)->data;
1692 end = p + nbytes;
1693 while (p != end)
1694 {
1695 bcopy (str, p, len);
1696 p += len;
1697 }
1698 }
1699
1700 *p = 0;
1701 return val;
1702 }
1703
1704
1705 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1706 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1707 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1708 (length, init)
1709 Lisp_Object length, init;
1710 {
1711 register Lisp_Object val;
1712 struct Lisp_Bool_Vector *p;
1713 int real_init, i;
1714 int length_in_chars, length_in_elts, bits_per_value;
1715
1716 CHECK_NATNUM (length, 0);
1717
1718 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1719
1720 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1721 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1722
1723 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1724 slot `size' of the struct Lisp_Bool_Vector. */
1725 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1726 p = XBOOL_VECTOR (val);
1727
1728 /* Get rid of any bits that would cause confusion. */
1729 p->vector_size = 0;
1730 XSETBOOL_VECTOR (val, p);
1731 p->size = XFASTINT (length);
1732
1733 real_init = (NILP (init) ? 0 : -1);
1734 for (i = 0; i < length_in_chars ; i++)
1735 p->data[i] = real_init;
1736
1737 /* Clear the extraneous bits in the last byte. */
1738 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1739 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1740 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1741
1742 return val;
1743 }
1744
1745
1746 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1747 of characters from the contents. This string may be unibyte or
1748 multibyte, depending on the contents. */
1749
1750 Lisp_Object
1751 make_string (contents, nbytes)
1752 char *contents;
1753 int nbytes;
1754 {
1755 register Lisp_Object val;
1756 int nchars, multibyte_nbytes;
1757
1758 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1759 if (nbytes == nchars || nbytes != multibyte_nbytes)
1760 /* CONTENTS contains no multibyte sequences or contains an invalid
1761 multibyte sequence. We must make unibyte string. */
1762 val = make_unibyte_string (contents, nbytes);
1763 else
1764 val = make_multibyte_string (contents, nchars, nbytes);
1765 return val;
1766 }
1767
1768
1769 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1770
1771 Lisp_Object
1772 make_unibyte_string (contents, length)
1773 char *contents;
1774 int length;
1775 {
1776 register Lisp_Object val;
1777 val = make_uninit_string (length);
1778 bcopy (contents, XSTRING (val)->data, length);
1779 SET_STRING_BYTES (XSTRING (val), -1);
1780 return val;
1781 }
1782
1783
1784 /* Make a multibyte string from NCHARS characters occupying NBYTES
1785 bytes at CONTENTS. */
1786
1787 Lisp_Object
1788 make_multibyte_string (contents, nchars, nbytes)
1789 char *contents;
1790 int nchars, nbytes;
1791 {
1792 register Lisp_Object val;
1793 val = make_uninit_multibyte_string (nchars, nbytes);
1794 bcopy (contents, XSTRING (val)->data, nbytes);
1795 return val;
1796 }
1797
1798
1799 /* Make a string from NCHARS characters occupying NBYTES bytes at
1800 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1801
1802 Lisp_Object
1803 make_string_from_bytes (contents, nchars, nbytes)
1804 char *contents;
1805 int nchars, nbytes;
1806 {
1807 register Lisp_Object val;
1808 val = make_uninit_multibyte_string (nchars, nbytes);
1809 bcopy (contents, XSTRING (val)->data, nbytes);
1810 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1811 SET_STRING_BYTES (XSTRING (val), -1);
1812 return val;
1813 }
1814
1815
1816 /* Make a string from NCHARS characters occupying NBYTES bytes at
1817 CONTENTS. The argument MULTIBYTE controls whether to label the
1818 string as multibyte. */
1819
1820 Lisp_Object
1821 make_specified_string (contents, nchars, nbytes, multibyte)
1822 char *contents;
1823 int nchars, nbytes;
1824 int multibyte;
1825 {
1826 register Lisp_Object val;
1827 val = make_uninit_multibyte_string (nchars, nbytes);
1828 bcopy (contents, XSTRING (val)->data, nbytes);
1829 if (!multibyte)
1830 SET_STRING_BYTES (XSTRING (val), -1);
1831 return val;
1832 }
1833
1834
1835 /* Make a string from the data at STR, treating it as multibyte if the
1836 data warrants. */
1837
1838 Lisp_Object
1839 build_string (str)
1840 char *str;
1841 {
1842 return make_string (str, strlen (str));
1843 }
1844
1845
1846 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1847 occupying LENGTH bytes. */
1848
1849 Lisp_Object
1850 make_uninit_string (length)
1851 int length;
1852 {
1853 Lisp_Object val;
1854 val = make_uninit_multibyte_string (length, length);
1855 SET_STRING_BYTES (XSTRING (val), -1);
1856 return val;
1857 }
1858
1859
1860 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1861 which occupy NBYTES bytes. */
1862
1863 Lisp_Object
1864 make_uninit_multibyte_string (nchars, nbytes)
1865 int nchars, nbytes;
1866 {
1867 Lisp_Object string;
1868 struct Lisp_String *s;
1869
1870 if (nchars < 0)
1871 abort ();
1872
1873 s = allocate_string ();
1874 allocate_string_data (s, nchars, nbytes);
1875 XSETSTRING (string, s);
1876 string_chars_consed += nbytes;
1877 return string;
1878 }
1879
1880
1881 \f
1882 /***********************************************************************
1883 Float Allocation
1884 ***********************************************************************/
1885
1886 /* We store float cells inside of float_blocks, allocating a new
1887 float_block with malloc whenever necessary. Float cells reclaimed
1888 by GC are put on a free list to be reallocated before allocating
1889 any new float cells from the latest float_block.
1890
1891 Each float_block is just under 1020 bytes long, since malloc really
1892 allocates in units of powers of two and uses 4 bytes for its own
1893 overhead. */
1894
1895 #define FLOAT_BLOCK_SIZE \
1896 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1897
1898 struct float_block
1899 {
1900 struct float_block *next;
1901 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1902 };
1903
1904 /* Current float_block. */
1905
1906 struct float_block *float_block;
1907
1908 /* Index of first unused Lisp_Float in the current float_block. */
1909
1910 int float_block_index;
1911
1912 /* Total number of float blocks now in use. */
1913
1914 int n_float_blocks;
1915
1916 /* Free-list of Lisp_Floats. */
1917
1918 struct Lisp_Float *float_free_list;
1919
1920
1921 /* Initialize float allocation. */
1922
1923 void
1924 init_float ()
1925 {
1926 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1927 MEM_TYPE_FLOAT);
1928 float_block->next = 0;
1929 bzero ((char *) float_block->floats, sizeof float_block->floats);
1930 float_block_index = 0;
1931 float_free_list = 0;
1932 n_float_blocks = 1;
1933 }
1934
1935
1936 /* Explicitly free a float cell by putting it on the free-list. */
1937
1938 void
1939 free_float (ptr)
1940 struct Lisp_Float *ptr;
1941 {
1942 *(struct Lisp_Float **)&ptr->data = float_free_list;
1943 #if GC_MARK_STACK
1944 ptr->type = Vdead;
1945 #endif
1946 float_free_list = ptr;
1947 }
1948
1949
1950 /* Return a new float object with value FLOAT_VALUE. */
1951
1952 Lisp_Object
1953 make_float (float_value)
1954 double float_value;
1955 {
1956 register Lisp_Object val;
1957
1958 if (float_free_list)
1959 {
1960 /* We use the data field for chaining the free list
1961 so that we won't use the same field that has the mark bit. */
1962 XSETFLOAT (val, float_free_list);
1963 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1964 }
1965 else
1966 {
1967 if (float_block_index == FLOAT_BLOCK_SIZE)
1968 {
1969 register struct float_block *new;
1970
1971 new = (struct float_block *) lisp_malloc (sizeof *new,
1972 MEM_TYPE_FLOAT);
1973 VALIDATE_LISP_STORAGE (new, sizeof *new);
1974 new->next = float_block;
1975 float_block = new;
1976 float_block_index = 0;
1977 n_float_blocks++;
1978 }
1979 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1980 }
1981
1982 XFLOAT_DATA (val) = float_value;
1983 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1984 consing_since_gc += sizeof (struct Lisp_Float);
1985 floats_consed++;
1986 return val;
1987 }
1988
1989
1990 \f
1991 /***********************************************************************
1992 Cons Allocation
1993 ***********************************************************************/
1994
1995 /* We store cons cells inside of cons_blocks, allocating a new
1996 cons_block with malloc whenever necessary. Cons cells reclaimed by
1997 GC are put on a free list to be reallocated before allocating
1998 any new cons cells from the latest cons_block.
1999
2000 Each cons_block is just under 1020 bytes long,
2001 since malloc really allocates in units of powers of two
2002 and uses 4 bytes for its own overhead. */
2003
2004 #define CONS_BLOCK_SIZE \
2005 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2006
2007 struct cons_block
2008 {
2009 struct cons_block *next;
2010 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2011 };
2012
2013 /* Current cons_block. */
2014
2015 struct cons_block *cons_block;
2016
2017 /* Index of first unused Lisp_Cons in the current block. */
2018
2019 int cons_block_index;
2020
2021 /* Free-list of Lisp_Cons structures. */
2022
2023 struct Lisp_Cons *cons_free_list;
2024
2025 /* Total number of cons blocks now in use. */
2026
2027 int n_cons_blocks;
2028
2029
2030 /* Initialize cons allocation. */
2031
2032 void
2033 init_cons ()
2034 {
2035 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2036 MEM_TYPE_CONS);
2037 cons_block->next = 0;
2038 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2039 cons_block_index = 0;
2040 cons_free_list = 0;
2041 n_cons_blocks = 1;
2042 }
2043
2044
2045 /* Explicitly free a cons cell by putting it on the free-list. */
2046
2047 void
2048 free_cons (ptr)
2049 struct Lisp_Cons *ptr;
2050 {
2051 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2052 #if GC_MARK_STACK
2053 ptr->car = Vdead;
2054 #endif
2055 cons_free_list = ptr;
2056 }
2057
2058
2059 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2060 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2061 (car, cdr)
2062 Lisp_Object car, cdr;
2063 {
2064 register Lisp_Object val;
2065
2066 if (cons_free_list)
2067 {
2068 /* We use the cdr for chaining the free list
2069 so that we won't use the same field that has the mark bit. */
2070 XSETCONS (val, cons_free_list);
2071 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2072 }
2073 else
2074 {
2075 if (cons_block_index == CONS_BLOCK_SIZE)
2076 {
2077 register struct cons_block *new;
2078 new = (struct cons_block *) lisp_malloc (sizeof *new,
2079 MEM_TYPE_CONS);
2080 VALIDATE_LISP_STORAGE (new, sizeof *new);
2081 new->next = cons_block;
2082 cons_block = new;
2083 cons_block_index = 0;
2084 n_cons_blocks++;
2085 }
2086 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2087 }
2088
2089 XSETCAR (val, car);
2090 XSETCDR (val, cdr);
2091 consing_since_gc += sizeof (struct Lisp_Cons);
2092 cons_cells_consed++;
2093 return val;
2094 }
2095
2096
2097 /* Make a list of 2, 3, 4 or 5 specified objects. */
2098
2099 Lisp_Object
2100 list2 (arg1, arg2)
2101 Lisp_Object arg1, arg2;
2102 {
2103 return Fcons (arg1, Fcons (arg2, Qnil));
2104 }
2105
2106
2107 Lisp_Object
2108 list3 (arg1, arg2, arg3)
2109 Lisp_Object arg1, arg2, arg3;
2110 {
2111 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2112 }
2113
2114
2115 Lisp_Object
2116 list4 (arg1, arg2, arg3, arg4)
2117 Lisp_Object arg1, arg2, arg3, arg4;
2118 {
2119 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2120 }
2121
2122
2123 Lisp_Object
2124 list5 (arg1, arg2, arg3, arg4, arg5)
2125 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2126 {
2127 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2128 Fcons (arg5, Qnil)))));
2129 }
2130
2131
2132 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2133 doc: /* Return a newly created list with specified arguments as elements.
2134 Any number of arguments, even zero arguments, are allowed. */)
2135 (nargs, args)
2136 int nargs;
2137 register Lisp_Object *args;
2138 {
2139 register Lisp_Object val;
2140 val = Qnil;
2141
2142 while (nargs > 0)
2143 {
2144 nargs--;
2145 val = Fcons (args[nargs], val);
2146 }
2147 return val;
2148 }
2149
2150
2151 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2152 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2153 (length, init)
2154 register Lisp_Object length, init;
2155 {
2156 register Lisp_Object val;
2157 register int size;
2158
2159 CHECK_NATNUM (length, 0);
2160 size = XFASTINT (length);
2161
2162 val = Qnil;
2163 while (size > 0)
2164 {
2165 val = Fcons (init, val);
2166 --size;
2167
2168 if (size > 0)
2169 {
2170 val = Fcons (init, val);
2171 --size;
2172
2173 if (size > 0)
2174 {
2175 val = Fcons (init, val);
2176 --size;
2177
2178 if (size > 0)
2179 {
2180 val = Fcons (init, val);
2181 --size;
2182
2183 if (size > 0)
2184 {
2185 val = Fcons (init, val);
2186 --size;
2187 }
2188 }
2189 }
2190 }
2191
2192 QUIT;
2193 }
2194
2195 return val;
2196 }
2197
2198
2199 \f
2200 /***********************************************************************
2201 Vector Allocation
2202 ***********************************************************************/
2203
2204 /* Singly-linked list of all vectors. */
2205
2206 struct Lisp_Vector *all_vectors;
2207
2208 /* Total number of vector-like objects now in use. */
2209
2210 int n_vectors;
2211
2212
2213 /* Value is a pointer to a newly allocated Lisp_Vector structure
2214 with room for LEN Lisp_Objects. */
2215
2216 static struct Lisp_Vector *
2217 allocate_vectorlike (len, type)
2218 EMACS_INT len;
2219 enum mem_type type;
2220 {
2221 struct Lisp_Vector *p;
2222 size_t nbytes;
2223
2224 #ifdef DOUG_LEA_MALLOC
2225 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2226 because mapped region contents are not preserved in
2227 a dumped Emacs. */
2228 mallopt (M_MMAP_MAX, 0);
2229 #endif
2230
2231 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2232 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2233
2234 #ifdef DOUG_LEA_MALLOC
2235 /* Back to a reasonable maximum of mmap'ed areas. */
2236 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2237 #endif
2238
2239 VALIDATE_LISP_STORAGE (p, 0);
2240 consing_since_gc += nbytes;
2241 vector_cells_consed += len;
2242
2243 p->next = all_vectors;
2244 all_vectors = p;
2245 ++n_vectors;
2246 return p;
2247 }
2248
2249
2250 /* Allocate a vector with NSLOTS slots. */
2251
2252 struct Lisp_Vector *
2253 allocate_vector (nslots)
2254 EMACS_INT nslots;
2255 {
2256 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2257 v->size = nslots;
2258 return v;
2259 }
2260
2261
2262 /* Allocate other vector-like structures. */
2263
2264 struct Lisp_Hash_Table *
2265 allocate_hash_table ()
2266 {
2267 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2268 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2269 EMACS_INT i;
2270
2271 v->size = len;
2272 for (i = 0; i < len; ++i)
2273 v->contents[i] = Qnil;
2274
2275 return (struct Lisp_Hash_Table *) v;
2276 }
2277
2278
2279 struct window *
2280 allocate_window ()
2281 {
2282 EMACS_INT len = VECSIZE (struct window);
2283 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2284 EMACS_INT i;
2285
2286 for (i = 0; i < len; ++i)
2287 v->contents[i] = Qnil;
2288 v->size = len;
2289
2290 return (struct window *) v;
2291 }
2292
2293
2294 struct frame *
2295 allocate_frame ()
2296 {
2297 EMACS_INT len = VECSIZE (struct frame);
2298 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2299 EMACS_INT i;
2300
2301 for (i = 0; i < len; ++i)
2302 v->contents[i] = make_number (0);
2303 v->size = len;
2304 return (struct frame *) v;
2305 }
2306
2307
2308 struct Lisp_Process *
2309 allocate_process ()
2310 {
2311 EMACS_INT len = VECSIZE (struct Lisp_Process);
2312 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2313 EMACS_INT i;
2314
2315 for (i = 0; i < len; ++i)
2316 v->contents[i] = Qnil;
2317 v->size = len;
2318
2319 return (struct Lisp_Process *) v;
2320 }
2321
2322
2323 struct Lisp_Vector *
2324 allocate_other_vector (len)
2325 EMACS_INT len;
2326 {
2327 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2328 EMACS_INT i;
2329
2330 for (i = 0; i < len; ++i)
2331 v->contents[i] = Qnil;
2332 v->size = len;
2333
2334 return v;
2335 }
2336
2337
2338 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2339 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2340 See also the function `vector'. */)
2341 (length, init)
2342 register Lisp_Object length, init;
2343 {
2344 Lisp_Object vector;
2345 register EMACS_INT sizei;
2346 register int index;
2347 register struct Lisp_Vector *p;
2348
2349 CHECK_NATNUM (length, 0);
2350 sizei = XFASTINT (length);
2351
2352 p = allocate_vector (sizei);
2353 for (index = 0; index < sizei; index++)
2354 p->contents[index] = init;
2355
2356 XSETVECTOR (vector, p);
2357 return vector;
2358 }
2359
2360
2361 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2362 doc: /* Return a newly created char-table, with purpose PURPOSE.
2363 Each element is initialized to INIT, which defaults to nil.
2364 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2365 The property's value should be an integer between 0 and 10. */)
2366 (purpose, init)
2367 register Lisp_Object purpose, init;
2368 {
2369 Lisp_Object vector;
2370 Lisp_Object n;
2371 CHECK_SYMBOL (purpose, 1);
2372 n = Fget (purpose, Qchar_table_extra_slots);
2373 CHECK_NUMBER (n, 0);
2374 if (XINT (n) < 0 || XINT (n) > 10)
2375 args_out_of_range (n, Qnil);
2376 /* Add 2 to the size for the defalt and parent slots. */
2377 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2378 init);
2379 XCHAR_TABLE (vector)->top = Qt;
2380 XCHAR_TABLE (vector)->parent = Qnil;
2381 XCHAR_TABLE (vector)->purpose = purpose;
2382 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2383 return vector;
2384 }
2385
2386
2387 /* Return a newly created sub char table with default value DEFALT.
2388 Since a sub char table does not appear as a top level Emacs Lisp
2389 object, we don't need a Lisp interface to make it. */
2390
2391 Lisp_Object
2392 make_sub_char_table (defalt)
2393 Lisp_Object defalt;
2394 {
2395 Lisp_Object vector
2396 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2397 XCHAR_TABLE (vector)->top = Qnil;
2398 XCHAR_TABLE (vector)->defalt = defalt;
2399 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2400 return vector;
2401 }
2402
2403
2404 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2405 doc: /* Return a newly created vector with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed. */)
2407 (nargs, args)
2408 register int nargs;
2409 Lisp_Object *args;
2410 {
2411 register Lisp_Object len, val;
2412 register int index;
2413 register struct Lisp_Vector *p;
2414
2415 XSETFASTINT (len, nargs);
2416 val = Fmake_vector (len, Qnil);
2417 p = XVECTOR (val);
2418 for (index = 0; index < nargs; index++)
2419 p->contents[index] = args[index];
2420 return val;
2421 }
2422
2423
2424 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2425 doc: /* Create a byte-code object with specified arguments as elements.
2426 The arguments should be the arglist, bytecode-string, constant vector,
2427 stack size, (optional) doc string, and (optional) interactive spec.
2428 The first four arguments are required; at most six have any
2429 significance. */)
2430 (nargs, args)
2431 register int nargs;
2432 Lisp_Object *args;
2433 {
2434 register Lisp_Object len, val;
2435 register int index;
2436 register struct Lisp_Vector *p;
2437
2438 XSETFASTINT (len, nargs);
2439 if (!NILP (Vpurify_flag))
2440 val = make_pure_vector ((EMACS_INT) nargs);
2441 else
2442 val = Fmake_vector (len, Qnil);
2443
2444 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2445 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2446 earlier because they produced a raw 8-bit string for byte-code
2447 and now such a byte-code string is loaded as multibyte while
2448 raw 8-bit characters converted to multibyte form. Thus, now we
2449 must convert them back to the original unibyte form. */
2450 args[1] = Fstring_as_unibyte (args[1]);
2451
2452 p = XVECTOR (val);
2453 for (index = 0; index < nargs; index++)
2454 {
2455 if (!NILP (Vpurify_flag))
2456 args[index] = Fpurecopy (args[index]);
2457 p->contents[index] = args[index];
2458 }
2459 XSETCOMPILED (val, p);
2460 return val;
2461 }
2462
2463
2464 \f
2465 /***********************************************************************
2466 Symbol Allocation
2467 ***********************************************************************/
2468
2469 /* Each symbol_block is just under 1020 bytes long, since malloc
2470 really allocates in units of powers of two and uses 4 bytes for its
2471 own overhead. */
2472
2473 #define SYMBOL_BLOCK_SIZE \
2474 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2475
2476 struct symbol_block
2477 {
2478 struct symbol_block *next;
2479 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2480 };
2481
2482 /* Current symbol block and index of first unused Lisp_Symbol
2483 structure in it. */
2484
2485 struct symbol_block *symbol_block;
2486 int symbol_block_index;
2487
2488 /* List of free symbols. */
2489
2490 struct Lisp_Symbol *symbol_free_list;
2491
2492 /* Total number of symbol blocks now in use. */
2493
2494 int n_symbol_blocks;
2495
2496
2497 /* Initialize symbol allocation. */
2498
2499 void
2500 init_symbol ()
2501 {
2502 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2503 MEM_TYPE_SYMBOL);
2504 symbol_block->next = 0;
2505 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2506 symbol_block_index = 0;
2507 symbol_free_list = 0;
2508 n_symbol_blocks = 1;
2509 }
2510
2511
2512 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2513 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2514 Its value and function definition are void, and its property list is nil. */)
2515 (name)
2516 Lisp_Object name;
2517 {
2518 register Lisp_Object val;
2519 register struct Lisp_Symbol *p;
2520
2521 CHECK_STRING (name, 0);
2522
2523 if (symbol_free_list)
2524 {
2525 XSETSYMBOL (val, symbol_free_list);
2526 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2527 }
2528 else
2529 {
2530 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2531 {
2532 struct symbol_block *new;
2533 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2534 MEM_TYPE_SYMBOL);
2535 VALIDATE_LISP_STORAGE (new, sizeof *new);
2536 new->next = symbol_block;
2537 symbol_block = new;
2538 symbol_block_index = 0;
2539 n_symbol_blocks++;
2540 }
2541 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2542 }
2543
2544 p = XSYMBOL (val);
2545 p->name = XSTRING (name);
2546 p->plist = Qnil;
2547 p->value = Qunbound;
2548 p->function = Qunbound;
2549 p->next = NULL;
2550 p->interned = SYMBOL_UNINTERNED;
2551 p->constant = 0;
2552 p->indirect_variable = 0;
2553 consing_since_gc += sizeof (struct Lisp_Symbol);
2554 symbols_consed++;
2555 return val;
2556 }
2557
2558
2559 \f
2560 /***********************************************************************
2561 Marker (Misc) Allocation
2562 ***********************************************************************/
2563
2564 /* Allocation of markers and other objects that share that structure.
2565 Works like allocation of conses. */
2566
2567 #define MARKER_BLOCK_SIZE \
2568 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2569
2570 struct marker_block
2571 {
2572 struct marker_block *next;
2573 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2574 };
2575
2576 struct marker_block *marker_block;
2577 int marker_block_index;
2578
2579 union Lisp_Misc *marker_free_list;
2580
2581 /* Total number of marker blocks now in use. */
2582
2583 int n_marker_blocks;
2584
2585 void
2586 init_marker ()
2587 {
2588 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2589 MEM_TYPE_MISC);
2590 marker_block->next = 0;
2591 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2592 marker_block_index = 0;
2593 marker_free_list = 0;
2594 n_marker_blocks = 1;
2595 }
2596
2597 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2598
2599 Lisp_Object
2600 allocate_misc ()
2601 {
2602 Lisp_Object val;
2603
2604 if (marker_free_list)
2605 {
2606 XSETMISC (val, marker_free_list);
2607 marker_free_list = marker_free_list->u_free.chain;
2608 }
2609 else
2610 {
2611 if (marker_block_index == MARKER_BLOCK_SIZE)
2612 {
2613 struct marker_block *new;
2614 new = (struct marker_block *) lisp_malloc (sizeof *new,
2615 MEM_TYPE_MISC);
2616 VALIDATE_LISP_STORAGE (new, sizeof *new);
2617 new->next = marker_block;
2618 marker_block = new;
2619 marker_block_index = 0;
2620 n_marker_blocks++;
2621 }
2622 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2623 }
2624
2625 consing_since_gc += sizeof (union Lisp_Misc);
2626 misc_objects_consed++;
2627 return val;
2628 }
2629
2630 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2631 doc: /* Return a newly allocated marker which does not point at any place. */)
2632 ()
2633 {
2634 register Lisp_Object val;
2635 register struct Lisp_Marker *p;
2636
2637 val = allocate_misc ();
2638 XMISCTYPE (val) = Lisp_Misc_Marker;
2639 p = XMARKER (val);
2640 p->buffer = 0;
2641 p->bytepos = 0;
2642 p->charpos = 0;
2643 p->chain = Qnil;
2644 p->insertion_type = 0;
2645 return val;
2646 }
2647
2648 /* Put MARKER back on the free list after using it temporarily. */
2649
2650 void
2651 free_marker (marker)
2652 Lisp_Object marker;
2653 {
2654 unchain_marker (marker);
2655
2656 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2657 XMISC (marker)->u_free.chain = marker_free_list;
2658 marker_free_list = XMISC (marker);
2659
2660 total_free_markers++;
2661 }
2662
2663 \f
2664 /* Return a newly created vector or string with specified arguments as
2665 elements. If all the arguments are characters that can fit
2666 in a string of events, make a string; otherwise, make a vector.
2667
2668 Any number of arguments, even zero arguments, are allowed. */
2669
2670 Lisp_Object
2671 make_event_array (nargs, args)
2672 register int nargs;
2673 Lisp_Object *args;
2674 {
2675 int i;
2676
2677 for (i = 0; i < nargs; i++)
2678 /* The things that fit in a string
2679 are characters that are in 0...127,
2680 after discarding the meta bit and all the bits above it. */
2681 if (!INTEGERP (args[i])
2682 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2683 return Fvector (nargs, args);
2684
2685 /* Since the loop exited, we know that all the things in it are
2686 characters, so we can make a string. */
2687 {
2688 Lisp_Object result;
2689
2690 result = Fmake_string (make_number (nargs), make_number (0));
2691 for (i = 0; i < nargs; i++)
2692 {
2693 XSTRING (result)->data[i] = XINT (args[i]);
2694 /* Move the meta bit to the right place for a string char. */
2695 if (XINT (args[i]) & CHAR_META)
2696 XSTRING (result)->data[i] |= 0x80;
2697 }
2698
2699 return result;
2700 }
2701 }
2702
2703
2704 \f
2705 /************************************************************************
2706 C Stack Marking
2707 ************************************************************************/
2708
2709 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2710
2711 /* Initialize this part of alloc.c. */
2712
2713 static void
2714 mem_init ()
2715 {
2716 mem_z.left = mem_z.right = MEM_NIL;
2717 mem_z.parent = NULL;
2718 mem_z.color = MEM_BLACK;
2719 mem_z.start = mem_z.end = NULL;
2720 mem_root = MEM_NIL;
2721 }
2722
2723
2724 /* Value is a pointer to the mem_node containing START. Value is
2725 MEM_NIL if there is no node in the tree containing START. */
2726
2727 static INLINE struct mem_node *
2728 mem_find (start)
2729 void *start;
2730 {
2731 struct mem_node *p;
2732
2733 if (start < min_heap_address || start > max_heap_address)
2734 return MEM_NIL;
2735
2736 /* Make the search always successful to speed up the loop below. */
2737 mem_z.start = start;
2738 mem_z.end = (char *) start + 1;
2739
2740 p = mem_root;
2741 while (start < p->start || start >= p->end)
2742 p = start < p->start ? p->left : p->right;
2743 return p;
2744 }
2745
2746
2747 /* Insert a new node into the tree for a block of memory with start
2748 address START, end address END, and type TYPE. Value is a
2749 pointer to the node that was inserted. */
2750
2751 static struct mem_node *
2752 mem_insert (start, end, type)
2753 void *start, *end;
2754 enum mem_type type;
2755 {
2756 struct mem_node *c, *parent, *x;
2757
2758 if (start < min_heap_address)
2759 min_heap_address = start;
2760 if (end > max_heap_address)
2761 max_heap_address = end;
2762
2763 /* See where in the tree a node for START belongs. In this
2764 particular application, it shouldn't happen that a node is already
2765 present. For debugging purposes, let's check that. */
2766 c = mem_root;
2767 parent = NULL;
2768
2769 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2770
2771 while (c != MEM_NIL)
2772 {
2773 if (start >= c->start && start < c->end)
2774 abort ();
2775 parent = c;
2776 c = start < c->start ? c->left : c->right;
2777 }
2778
2779 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2780
2781 while (c != MEM_NIL)
2782 {
2783 parent = c;
2784 c = start < c->start ? c->left : c->right;
2785 }
2786
2787 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2788
2789 /* Create a new node. */
2790 #ifdef GC_MALLOC_CHECK
2791 x = (struct mem_node *) _malloc_internal (sizeof *x);
2792 if (x == NULL)
2793 abort ();
2794 #else
2795 x = (struct mem_node *) xmalloc (sizeof *x);
2796 #endif
2797 x->start = start;
2798 x->end = end;
2799 x->type = type;
2800 x->parent = parent;
2801 x->left = x->right = MEM_NIL;
2802 x->color = MEM_RED;
2803
2804 /* Insert it as child of PARENT or install it as root. */
2805 if (parent)
2806 {
2807 if (start < parent->start)
2808 parent->left = x;
2809 else
2810 parent->right = x;
2811 }
2812 else
2813 mem_root = x;
2814
2815 /* Re-establish red-black tree properties. */
2816 mem_insert_fixup (x);
2817
2818 return x;
2819 }
2820
2821
2822 /* Re-establish the red-black properties of the tree, and thereby
2823 balance the tree, after node X has been inserted; X is always red. */
2824
2825 static void
2826 mem_insert_fixup (x)
2827 struct mem_node *x;
2828 {
2829 while (x != mem_root && x->parent->color == MEM_RED)
2830 {
2831 /* X is red and its parent is red. This is a violation of
2832 red-black tree property #3. */
2833
2834 if (x->parent == x->parent->parent->left)
2835 {
2836 /* We're on the left side of our grandparent, and Y is our
2837 "uncle". */
2838 struct mem_node *y = x->parent->parent->right;
2839
2840 if (y->color == MEM_RED)
2841 {
2842 /* Uncle and parent are red but should be black because
2843 X is red. Change the colors accordingly and proceed
2844 with the grandparent. */
2845 x->parent->color = MEM_BLACK;
2846 y->color = MEM_BLACK;
2847 x->parent->parent->color = MEM_RED;
2848 x = x->parent->parent;
2849 }
2850 else
2851 {
2852 /* Parent and uncle have different colors; parent is
2853 red, uncle is black. */
2854 if (x == x->parent->right)
2855 {
2856 x = x->parent;
2857 mem_rotate_left (x);
2858 }
2859
2860 x->parent->color = MEM_BLACK;
2861 x->parent->parent->color = MEM_RED;
2862 mem_rotate_right (x->parent->parent);
2863 }
2864 }
2865 else
2866 {
2867 /* This is the symmetrical case of above. */
2868 struct mem_node *y = x->parent->parent->left;
2869
2870 if (y->color == MEM_RED)
2871 {
2872 x->parent->color = MEM_BLACK;
2873 y->color = MEM_BLACK;
2874 x->parent->parent->color = MEM_RED;
2875 x = x->parent->parent;
2876 }
2877 else
2878 {
2879 if (x == x->parent->left)
2880 {
2881 x = x->parent;
2882 mem_rotate_right (x);
2883 }
2884
2885 x->parent->color = MEM_BLACK;
2886 x->parent->parent->color = MEM_RED;
2887 mem_rotate_left (x->parent->parent);
2888 }
2889 }
2890 }
2891
2892 /* The root may have been changed to red due to the algorithm. Set
2893 it to black so that property #5 is satisfied. */
2894 mem_root->color = MEM_BLACK;
2895 }
2896
2897
2898 /* (x) (y)
2899 / \ / \
2900 a (y) ===> (x) c
2901 / \ / \
2902 b c a b */
2903
2904 static void
2905 mem_rotate_left (x)
2906 struct mem_node *x;
2907 {
2908 struct mem_node *y;
2909
2910 /* Turn y's left sub-tree into x's right sub-tree. */
2911 y = x->right;
2912 x->right = y->left;
2913 if (y->left != MEM_NIL)
2914 y->left->parent = x;
2915
2916 /* Y's parent was x's parent. */
2917 if (y != MEM_NIL)
2918 y->parent = x->parent;
2919
2920 /* Get the parent to point to y instead of x. */
2921 if (x->parent)
2922 {
2923 if (x == x->parent->left)
2924 x->parent->left = y;
2925 else
2926 x->parent->right = y;
2927 }
2928 else
2929 mem_root = y;
2930
2931 /* Put x on y's left. */
2932 y->left = x;
2933 if (x != MEM_NIL)
2934 x->parent = y;
2935 }
2936
2937
2938 /* (x) (Y)
2939 / \ / \
2940 (y) c ===> a (x)
2941 / \ / \
2942 a b b c */
2943
2944 static void
2945 mem_rotate_right (x)
2946 struct mem_node *x;
2947 {
2948 struct mem_node *y = x->left;
2949
2950 x->left = y->right;
2951 if (y->right != MEM_NIL)
2952 y->right->parent = x;
2953
2954 if (y != MEM_NIL)
2955 y->parent = x->parent;
2956 if (x->parent)
2957 {
2958 if (x == x->parent->right)
2959 x->parent->right = y;
2960 else
2961 x->parent->left = y;
2962 }
2963 else
2964 mem_root = y;
2965
2966 y->right = x;
2967 if (x != MEM_NIL)
2968 x->parent = y;
2969 }
2970
2971
2972 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2973
2974 static void
2975 mem_delete (z)
2976 struct mem_node *z;
2977 {
2978 struct mem_node *x, *y;
2979
2980 if (!z || z == MEM_NIL)
2981 return;
2982
2983 if (z->left == MEM_NIL || z->right == MEM_NIL)
2984 y = z;
2985 else
2986 {
2987 y = z->right;
2988 while (y->left != MEM_NIL)
2989 y = y->left;
2990 }
2991
2992 if (y->left != MEM_NIL)
2993 x = y->left;
2994 else
2995 x = y->right;
2996
2997 x->parent = y->parent;
2998 if (y->parent)
2999 {
3000 if (y == y->parent->left)
3001 y->parent->left = x;
3002 else
3003 y->parent->right = x;
3004 }
3005 else
3006 mem_root = x;
3007
3008 if (y != z)
3009 {
3010 z->start = y->start;
3011 z->end = y->end;
3012 z->type = y->type;
3013 }
3014
3015 if (y->color == MEM_BLACK)
3016 mem_delete_fixup (x);
3017
3018 #ifdef GC_MALLOC_CHECK
3019 _free_internal (y);
3020 #else
3021 xfree (y);
3022 #endif
3023 }
3024
3025
3026 /* Re-establish the red-black properties of the tree, after a
3027 deletion. */
3028
3029 static void
3030 mem_delete_fixup (x)
3031 struct mem_node *x;
3032 {
3033 while (x != mem_root && x->color == MEM_BLACK)
3034 {
3035 if (x == x->parent->left)
3036 {
3037 struct mem_node *w = x->parent->right;
3038
3039 if (w->color == MEM_RED)
3040 {
3041 w->color = MEM_BLACK;
3042 x->parent->color = MEM_RED;
3043 mem_rotate_left (x->parent);
3044 w = x->parent->right;
3045 }
3046
3047 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3048 {
3049 w->color = MEM_RED;
3050 x = x->parent;
3051 }
3052 else
3053 {
3054 if (w->right->color == MEM_BLACK)
3055 {
3056 w->left->color = MEM_BLACK;
3057 w->color = MEM_RED;
3058 mem_rotate_right (w);
3059 w = x->parent->right;
3060 }
3061 w->color = x->parent->color;
3062 x->parent->color = MEM_BLACK;
3063 w->right->color = MEM_BLACK;
3064 mem_rotate_left (x->parent);
3065 x = mem_root;
3066 }
3067 }
3068 else
3069 {
3070 struct mem_node *w = x->parent->left;
3071
3072 if (w->color == MEM_RED)
3073 {
3074 w->color = MEM_BLACK;
3075 x->parent->color = MEM_RED;
3076 mem_rotate_right (x->parent);
3077 w = x->parent->left;
3078 }
3079
3080 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3081 {
3082 w->color = MEM_RED;
3083 x = x->parent;
3084 }
3085 else
3086 {
3087 if (w->left->color == MEM_BLACK)
3088 {
3089 w->right->color = MEM_BLACK;
3090 w->color = MEM_RED;
3091 mem_rotate_left (w);
3092 w = x->parent->left;
3093 }
3094
3095 w->color = x->parent->color;
3096 x->parent->color = MEM_BLACK;
3097 w->left->color = MEM_BLACK;
3098 mem_rotate_right (x->parent);
3099 x = mem_root;
3100 }
3101 }
3102 }
3103
3104 x->color = MEM_BLACK;
3105 }
3106
3107
3108 /* Value is non-zero if P is a pointer to a live Lisp string on
3109 the heap. M is a pointer to the mem_block for P. */
3110
3111 static INLINE int
3112 live_string_p (m, p)
3113 struct mem_node *m;
3114 void *p;
3115 {
3116 if (m->type == MEM_TYPE_STRING)
3117 {
3118 struct string_block *b = (struct string_block *) m->start;
3119 int offset = (char *) p - (char *) &b->strings[0];
3120
3121 /* P must point to the start of a Lisp_String structure, and it
3122 must not be on the free-list. */
3123 return (offset >= 0
3124 && offset % sizeof b->strings[0] == 0
3125 && ((struct Lisp_String *) p)->data != NULL);
3126 }
3127 else
3128 return 0;
3129 }
3130
3131
3132 /* Value is non-zero if P is a pointer to a live Lisp cons on
3133 the heap. M is a pointer to the mem_block for P. */
3134
3135 static INLINE int
3136 live_cons_p (m, p)
3137 struct mem_node *m;
3138 void *p;
3139 {
3140 if (m->type == MEM_TYPE_CONS)
3141 {
3142 struct cons_block *b = (struct cons_block *) m->start;
3143 int offset = (char *) p - (char *) &b->conses[0];
3144
3145 /* P must point to the start of a Lisp_Cons, not be
3146 one of the unused cells in the current cons block,
3147 and not be on the free-list. */
3148 return (offset >= 0
3149 && offset % sizeof b->conses[0] == 0
3150 && (b != cons_block
3151 || offset / sizeof b->conses[0] < cons_block_index)
3152 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3153 }
3154 else
3155 return 0;
3156 }
3157
3158
3159 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3160 the heap. M is a pointer to the mem_block for P. */
3161
3162 static INLINE int
3163 live_symbol_p (m, p)
3164 struct mem_node *m;
3165 void *p;
3166 {
3167 if (m->type == MEM_TYPE_SYMBOL)
3168 {
3169 struct symbol_block *b = (struct symbol_block *) m->start;
3170 int offset = (char *) p - (char *) &b->symbols[0];
3171
3172 /* P must point to the start of a Lisp_Symbol, not be
3173 one of the unused cells in the current symbol block,
3174 and not be on the free-list. */
3175 return (offset >= 0
3176 && offset % sizeof b->symbols[0] == 0
3177 && (b != symbol_block
3178 || offset / sizeof b->symbols[0] < symbol_block_index)
3179 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3180 }
3181 else
3182 return 0;
3183 }
3184
3185
3186 /* Value is non-zero if P is a pointer to a live Lisp float on
3187 the heap. M is a pointer to the mem_block for P. */
3188
3189 static INLINE int
3190 live_float_p (m, p)
3191 struct mem_node *m;
3192 void *p;
3193 {
3194 if (m->type == MEM_TYPE_FLOAT)
3195 {
3196 struct float_block *b = (struct float_block *) m->start;
3197 int offset = (char *) p - (char *) &b->floats[0];
3198
3199 /* P must point to the start of a Lisp_Float, not be
3200 one of the unused cells in the current float block,
3201 and not be on the free-list. */
3202 return (offset >= 0
3203 && offset % sizeof b->floats[0] == 0
3204 && (b != float_block
3205 || offset / sizeof b->floats[0] < float_block_index)
3206 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3207 }
3208 else
3209 return 0;
3210 }
3211
3212
3213 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3214 the heap. M is a pointer to the mem_block for P. */
3215
3216 static INLINE int
3217 live_misc_p (m, p)
3218 struct mem_node *m;
3219 void *p;
3220 {
3221 if (m->type == MEM_TYPE_MISC)
3222 {
3223 struct marker_block *b = (struct marker_block *) m->start;
3224 int offset = (char *) p - (char *) &b->markers[0];
3225
3226 /* P must point to the start of a Lisp_Misc, not be
3227 one of the unused cells in the current misc block,
3228 and not be on the free-list. */
3229 return (offset >= 0
3230 && offset % sizeof b->markers[0] == 0
3231 && (b != marker_block
3232 || offset / sizeof b->markers[0] < marker_block_index)
3233 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3234 }
3235 else
3236 return 0;
3237 }
3238
3239
3240 /* Value is non-zero if P is a pointer to a live vector-like object.
3241 M is a pointer to the mem_block for P. */
3242
3243 static INLINE int
3244 live_vector_p (m, p)
3245 struct mem_node *m;
3246 void *p;
3247 {
3248 return (p == m->start
3249 && m->type >= MEM_TYPE_VECTOR
3250 && m->type <= MEM_TYPE_WINDOW);
3251 }
3252
3253
3254 /* Value is non-zero of P is a pointer to a live buffer. M is a
3255 pointer to the mem_block for P. */
3256
3257 static INLINE int
3258 live_buffer_p (m, p)
3259 struct mem_node *m;
3260 void *p;
3261 {
3262 /* P must point to the start of the block, and the buffer
3263 must not have been killed. */
3264 return (m->type == MEM_TYPE_BUFFER
3265 && p == m->start
3266 && !NILP (((struct buffer *) p)->name));
3267 }
3268
3269 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3270
3271 #if GC_MARK_STACK
3272
3273 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3274
3275 /* Array of objects that are kept alive because the C stack contains
3276 a pattern that looks like a reference to them . */
3277
3278 #define MAX_ZOMBIES 10
3279 static Lisp_Object zombies[MAX_ZOMBIES];
3280
3281 /* Number of zombie objects. */
3282
3283 static int nzombies;
3284
3285 /* Number of garbage collections. */
3286
3287 static int ngcs;
3288
3289 /* Average percentage of zombies per collection. */
3290
3291 static double avg_zombies;
3292
3293 /* Max. number of live and zombie objects. */
3294
3295 static int max_live, max_zombies;
3296
3297 /* Average number of live objects per GC. */
3298
3299 static double avg_live;
3300
3301 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3302 doc: /* Show information about live and zombie objects. */)
3303 ()
3304 {
3305 Lisp_Object args[7];
3306 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3307 args[1] = make_number (ngcs);
3308 args[2] = make_float (avg_live);
3309 args[3] = make_float (avg_zombies);
3310 args[4] = make_float (avg_zombies / avg_live / 100);
3311 args[5] = make_number (max_live);
3312 args[6] = make_number (max_zombies);
3313 return Fmessage (7, args);
3314 }
3315
3316 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3317
3318
3319 /* Mark OBJ if we can prove it's a Lisp_Object. */
3320
3321 static INLINE void
3322 mark_maybe_object (obj)
3323 Lisp_Object obj;
3324 {
3325 void *po = (void *) XPNTR (obj);
3326 struct mem_node *m = mem_find (po);
3327
3328 if (m != MEM_NIL)
3329 {
3330 int mark_p = 0;
3331
3332 switch (XGCTYPE (obj))
3333 {
3334 case Lisp_String:
3335 mark_p = (live_string_p (m, po)
3336 && !STRING_MARKED_P ((struct Lisp_String *) po));
3337 break;
3338
3339 case Lisp_Cons:
3340 mark_p = (live_cons_p (m, po)
3341 && !XMARKBIT (XCONS (obj)->car));
3342 break;
3343
3344 case Lisp_Symbol:
3345 mark_p = (live_symbol_p (m, po)
3346 && !XMARKBIT (XSYMBOL (obj)->plist));
3347 break;
3348
3349 case Lisp_Float:
3350 mark_p = (live_float_p (m, po)
3351 && !XMARKBIT (XFLOAT (obj)->type));
3352 break;
3353
3354 case Lisp_Vectorlike:
3355 /* Note: can't check GC_BUFFERP before we know it's a
3356 buffer because checking that dereferences the pointer
3357 PO which might point anywhere. */
3358 if (live_vector_p (m, po))
3359 mark_p = (!GC_SUBRP (obj)
3360 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3361 else if (live_buffer_p (m, po))
3362 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3363 break;
3364
3365 case Lisp_Misc:
3366 if (live_misc_p (m, po))
3367 {
3368 switch (XMISCTYPE (obj))
3369 {
3370 case Lisp_Misc_Marker:
3371 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3372 break;
3373
3374 case Lisp_Misc_Buffer_Local_Value:
3375 case Lisp_Misc_Some_Buffer_Local_Value:
3376 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3377 break;
3378
3379 case Lisp_Misc_Overlay:
3380 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3381 break;
3382 }
3383 }
3384 break;
3385
3386 case Lisp_Int:
3387 case Lisp_Type_Limit:
3388 break;
3389 }
3390
3391 if (mark_p)
3392 {
3393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3394 if (nzombies < MAX_ZOMBIES)
3395 zombies[nzombies] = *p;
3396 ++nzombies;
3397 #endif
3398 mark_object (&obj);
3399 }
3400 }
3401 }
3402
3403
3404 /* If P points to Lisp data, mark that as live if it isn't already
3405 marked. */
3406
3407 static INLINE void
3408 mark_maybe_pointer (p)
3409 void *p;
3410 {
3411 struct mem_node *m;
3412
3413 /* Quickly rule out some values which can't point to Lisp data. We
3414 assume that Lisp data is aligned on even addresses. */
3415 if ((EMACS_INT) p & 1)
3416 return;
3417
3418 m = mem_find (p);
3419 if (m != MEM_NIL)
3420 {
3421 Lisp_Object obj = Qnil;
3422
3423 switch (m->type)
3424 {
3425 case MEM_TYPE_NON_LISP:
3426 /* Nothing to do; not a pointer to Lisp memory. */
3427 break;
3428
3429 case MEM_TYPE_BUFFER:
3430 if (live_buffer_p (m, p)
3431 && !XMARKBIT (((struct buffer *) p)->name))
3432 XSETVECTOR (obj, p);
3433 break;
3434
3435 case MEM_TYPE_CONS:
3436 if (live_cons_p (m, p)
3437 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3438 XSETCONS (obj, p);
3439 break;
3440
3441 case MEM_TYPE_STRING:
3442 if (live_string_p (m, p)
3443 && !STRING_MARKED_P ((struct Lisp_String *) p))
3444 XSETSTRING (obj, p);
3445 break;
3446
3447 case MEM_TYPE_MISC:
3448 if (live_misc_p (m, p))
3449 {
3450 Lisp_Object tem;
3451 XSETMISC (tem, p);
3452
3453 switch (XMISCTYPE (tem))
3454 {
3455 case Lisp_Misc_Marker:
3456 if (!XMARKBIT (XMARKER (tem)->chain))
3457 obj = tem;
3458 break;
3459
3460 case Lisp_Misc_Buffer_Local_Value:
3461 case Lisp_Misc_Some_Buffer_Local_Value:
3462 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3463 obj = tem;
3464 break;
3465
3466 case Lisp_Misc_Overlay:
3467 if (!XMARKBIT (XOVERLAY (tem)->plist))
3468 obj = tem;
3469 break;
3470 }
3471 }
3472 break;
3473
3474 case MEM_TYPE_SYMBOL:
3475 if (live_symbol_p (m, p)
3476 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3477 XSETSYMBOL (obj, p);
3478 break;
3479
3480 case MEM_TYPE_FLOAT:
3481 if (live_float_p (m, p)
3482 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3483 XSETFLOAT (obj, p);
3484 break;
3485
3486 case MEM_TYPE_VECTOR:
3487 case MEM_TYPE_PROCESS:
3488 case MEM_TYPE_HASH_TABLE:
3489 case MEM_TYPE_FRAME:
3490 case MEM_TYPE_WINDOW:
3491 if (live_vector_p (m, p))
3492 {
3493 Lisp_Object tem;
3494 XSETVECTOR (tem, p);
3495 if (!GC_SUBRP (tem)
3496 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3497 obj = tem;
3498 }
3499 break;
3500
3501 default:
3502 abort ();
3503 }
3504
3505 if (!GC_NILP (obj))
3506 mark_object (&obj);
3507 }
3508 }
3509
3510
3511 /* Mark Lisp objects referenced from the address range START..END. */
3512
3513 static void
3514 mark_memory (start, end)
3515 void *start, *end;
3516 {
3517 Lisp_Object *p;
3518 void **pp;
3519
3520 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3521 nzombies = 0;
3522 #endif
3523
3524 /* Make START the pointer to the start of the memory region,
3525 if it isn't already. */
3526 if (end < start)
3527 {
3528 void *tem = start;
3529 start = end;
3530 end = tem;
3531 }
3532
3533 /* Mark Lisp_Objects. */
3534 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3535 mark_maybe_object (*p);
3536
3537 /* Mark Lisp data pointed to. This is necessary because, in some
3538 situations, the C compiler optimizes Lisp objects away, so that
3539 only a pointer to them remains. Example:
3540
3541 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3542 ()
3543 {
3544 Lisp_Object obj = build_string ("test");
3545 struct Lisp_String *s = XSTRING (obj);
3546 Fgarbage_collect ();
3547 fprintf (stderr, "test `%s'\n", s->data);
3548 return Qnil;
3549 }
3550
3551 Here, `obj' isn't really used, and the compiler optimizes it
3552 away. The only reference to the life string is through the
3553 pointer `s'. */
3554
3555 for (pp = (void **) start; (void *) pp < end; ++pp)
3556 mark_maybe_pointer (*pp);
3557 }
3558
3559
3560 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3561
3562 static int setjmp_tested_p, longjmps_done;
3563
3564 #define SETJMP_WILL_LIKELY_WORK "\
3565 \n\
3566 Emacs garbage collector has been changed to use conservative stack\n\
3567 marking. Emacs has determined that the method it uses to do the\n\
3568 marking will likely work on your system, but this isn't sure.\n\
3569 \n\
3570 If you are a system-programmer, or can get the help of a local wizard\n\
3571 who is, please take a look at the function mark_stack in alloc.c, and\n\
3572 verify that the methods used are appropriate for your system.\n\
3573 \n\
3574 Please mail the result to <gerd@gnu.org>.\n\
3575 "
3576
3577 #define SETJMP_WILL_NOT_WORK "\
3578 \n\
3579 Emacs garbage collector has been changed to use conservative stack\n\
3580 marking. Emacs has determined that the default method it uses to do the\n\
3581 marking will not work on your system. We will need a system-dependent\n\
3582 solution for your system.\n\
3583 \n\
3584 Please take a look at the function mark_stack in alloc.c, and\n\
3585 try to find a way to make it work on your system.\n\
3586 Please mail the result to <gerd@gnu.org>.\n\
3587 "
3588
3589
3590 /* Perform a quick check if it looks like setjmp saves registers in a
3591 jmp_buf. Print a message to stderr saying so. When this test
3592 succeeds, this is _not_ a proof that setjmp is sufficient for
3593 conservative stack marking. Only the sources or a disassembly
3594 can prove that. */
3595
3596 static void
3597 test_setjmp ()
3598 {
3599 char buf[10];
3600 register int x;
3601 jmp_buf jbuf;
3602 int result = 0;
3603
3604 /* Arrange for X to be put in a register. */
3605 sprintf (buf, "1");
3606 x = strlen (buf);
3607 x = 2 * x - 1;
3608
3609 setjmp (jbuf);
3610 if (longjmps_done == 1)
3611 {
3612 /* Came here after the longjmp at the end of the function.
3613
3614 If x == 1, the longjmp has restored the register to its
3615 value before the setjmp, and we can hope that setjmp
3616 saves all such registers in the jmp_buf, although that
3617 isn't sure.
3618
3619 For other values of X, either something really strange is
3620 taking place, or the setjmp just didn't save the register. */
3621
3622 if (x == 1)
3623 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3624 else
3625 {
3626 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3627 exit (1);
3628 }
3629 }
3630
3631 ++longjmps_done;
3632 x = 2;
3633 if (longjmps_done == 1)
3634 longjmp (jbuf, 1);
3635 }
3636
3637 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3638
3639
3640 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3641
3642 /* Abort if anything GCPRO'd doesn't survive the GC. */
3643
3644 static void
3645 check_gcpros ()
3646 {
3647 struct gcpro *p;
3648 int i;
3649
3650 for (p = gcprolist; p; p = p->next)
3651 for (i = 0; i < p->nvars; ++i)
3652 if (!survives_gc_p (p->var[i]))
3653 abort ();
3654 }
3655
3656 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3657
3658 static void
3659 dump_zombies ()
3660 {
3661 int i;
3662
3663 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3664 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3665 {
3666 fprintf (stderr, " %d = ", i);
3667 debug_print (zombies[i]);
3668 }
3669 }
3670
3671 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3672
3673
3674 /* Mark live Lisp objects on the C stack.
3675
3676 There are several system-dependent problems to consider when
3677 porting this to new architectures:
3678
3679 Processor Registers
3680
3681 We have to mark Lisp objects in CPU registers that can hold local
3682 variables or are used to pass parameters.
3683
3684 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3685 something that either saves relevant registers on the stack, or
3686 calls mark_maybe_object passing it each register's contents.
3687
3688 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3689 implementation assumes that calling setjmp saves registers we need
3690 to see in a jmp_buf which itself lies on the stack. This doesn't
3691 have to be true! It must be verified for each system, possibly
3692 by taking a look at the source code of setjmp.
3693
3694 Stack Layout
3695
3696 Architectures differ in the way their processor stack is organized.
3697 For example, the stack might look like this
3698
3699 +----------------+
3700 | Lisp_Object | size = 4
3701 +----------------+
3702 | something else | size = 2
3703 +----------------+
3704 | Lisp_Object | size = 4
3705 +----------------+
3706 | ... |
3707
3708 In such a case, not every Lisp_Object will be aligned equally. To
3709 find all Lisp_Object on the stack it won't be sufficient to walk
3710 the stack in steps of 4 bytes. Instead, two passes will be
3711 necessary, one starting at the start of the stack, and a second
3712 pass starting at the start of the stack + 2. Likewise, if the
3713 minimal alignment of Lisp_Objects on the stack is 1, four passes
3714 would be necessary, each one starting with one byte more offset
3715 from the stack start.
3716
3717 The current code assumes by default that Lisp_Objects are aligned
3718 equally on the stack. */
3719
3720 static void
3721 mark_stack ()
3722 {
3723 jmp_buf j;
3724 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3725 void *end;
3726
3727 /* This trick flushes the register windows so that all the state of
3728 the process is contained in the stack. */
3729 #ifdef sparc
3730 asm ("ta 3");
3731 #endif
3732
3733 /* Save registers that we need to see on the stack. We need to see
3734 registers used to hold register variables and registers used to
3735 pass parameters. */
3736 #ifdef GC_SAVE_REGISTERS_ON_STACK
3737 GC_SAVE_REGISTERS_ON_STACK (end);
3738 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3739
3740 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3741 setjmp will definitely work, test it
3742 and print a message with the result
3743 of the test. */
3744 if (!setjmp_tested_p)
3745 {
3746 setjmp_tested_p = 1;
3747 test_setjmp ();
3748 }
3749 #endif /* GC_SETJMP_WORKS */
3750
3751 setjmp (j);
3752 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3753 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3754
3755 /* This assumes that the stack is a contiguous region in memory. If
3756 that's not the case, something has to be done here to iterate
3757 over the stack segments. */
3758 #if GC_LISP_OBJECT_ALIGNMENT == 1
3759 mark_memory (stack_base, end);
3760 mark_memory ((char *) stack_base + 1, end);
3761 mark_memory ((char *) stack_base + 2, end);
3762 mark_memory ((char *) stack_base + 3, end);
3763 #elif GC_LISP_OBJECT_ALIGNMENT == 2
3764 mark_memory (stack_base, end);
3765 mark_memory ((char *) stack_base + 2, end);
3766 #else
3767 mark_memory (stack_base, end);
3768 #endif
3769
3770 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3771 check_gcpros ();
3772 #endif
3773 }
3774
3775
3776 #endif /* GC_MARK_STACK != 0 */
3777
3778
3779 \f
3780 /***********************************************************************
3781 Pure Storage Management
3782 ***********************************************************************/
3783
3784 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3785 pointer to it. TYPE is the Lisp type for which the memory is
3786 allocated. TYPE < 0 means it's not used for a Lisp object.
3787
3788 If store_pure_type_info is set and TYPE is >= 0, the type of
3789 the allocated object is recorded in pure_types. */
3790
3791 static POINTER_TYPE *
3792 pure_alloc (size, type)
3793 size_t size;
3794 int type;
3795 {
3796 size_t nbytes;
3797 POINTER_TYPE *result;
3798 char *beg = purebeg;
3799
3800 /* Give Lisp_Floats an extra alignment. */
3801 if (type == Lisp_Float)
3802 {
3803 size_t alignment;
3804 #if defined __GNUC__ && __GNUC__ >= 2
3805 alignment = __alignof (struct Lisp_Float);
3806 #else
3807 alignment = sizeof (struct Lisp_Float);
3808 #endif
3809 pure_bytes_used = ALIGN (pure_bytes_used, alignment);
3810 }
3811
3812 nbytes = ALIGN (size, sizeof (EMACS_INT));
3813
3814 if (pure_bytes_used + nbytes > pure_size)
3815 {
3816 beg = purebeg = (char *) xmalloc (PURESIZE);
3817 pure_size = PURESIZE;
3818 pure_bytes_used_before_overflow += pure_bytes_used;
3819 pure_bytes_used = 0;
3820 }
3821
3822 result = (POINTER_TYPE *) (beg + pure_bytes_used);
3823 pure_bytes_used += nbytes;
3824 return result;
3825 }
3826
3827
3828 /* Signal an error if PURESIZE is too small. */
3829
3830 void
3831 check_pure_size ()
3832 {
3833 if (pure_bytes_used_before_overflow)
3834 error ("Pure Lisp storage overflow (approx. %d bytes needed)",
3835 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3836 }
3837
3838
3839 /* Return a string allocated in pure space. DATA is a buffer holding
3840 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3841 non-zero means make the result string multibyte.
3842
3843 Must get an error if pure storage is full, since if it cannot hold
3844 a large string it may be able to hold conses that point to that
3845 string; then the string is not protected from gc. */
3846
3847 Lisp_Object
3848 make_pure_string (data, nchars, nbytes, multibyte)
3849 char *data;
3850 int nchars, nbytes;
3851 int multibyte;
3852 {
3853 Lisp_Object string;
3854 struct Lisp_String *s;
3855
3856 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3857 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3858 s->size = nchars;
3859 s->size_byte = multibyte ? nbytes : -1;
3860 bcopy (data, s->data, nbytes);
3861 s->data[nbytes] = '\0';
3862 s->intervals = NULL_INTERVAL;
3863 XSETSTRING (string, s);
3864 return string;
3865 }
3866
3867
3868 /* Return a cons allocated from pure space. Give it pure copies
3869 of CAR as car and CDR as cdr. */
3870
3871 Lisp_Object
3872 pure_cons (car, cdr)
3873 Lisp_Object car, cdr;
3874 {
3875 register Lisp_Object new;
3876 struct Lisp_Cons *p;
3877
3878 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3879 XSETCONS (new, p);
3880 XSETCAR (new, Fpurecopy (car));
3881 XSETCDR (new, Fpurecopy (cdr));
3882 return new;
3883 }
3884
3885
3886 /* Value is a float object with value NUM allocated from pure space. */
3887
3888 Lisp_Object
3889 make_pure_float (num)
3890 double num;
3891 {
3892 register Lisp_Object new;
3893 struct Lisp_Float *p;
3894
3895 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3896 XSETFLOAT (new, p);
3897 XFLOAT_DATA (new) = num;
3898 return new;
3899 }
3900
3901
3902 /* Return a vector with room for LEN Lisp_Objects allocated from
3903 pure space. */
3904
3905 Lisp_Object
3906 make_pure_vector (len)
3907 EMACS_INT len;
3908 {
3909 Lisp_Object new;
3910 struct Lisp_Vector *p;
3911 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3912
3913 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3914 XSETVECTOR (new, p);
3915 XVECTOR (new)->size = len;
3916 return new;
3917 }
3918
3919
3920 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3921 doc: /* Make a copy of OBJECT in pure storage.
3922 Recursively copies contents of vectors and cons cells.
3923 Does not copy symbols. Copies strings without text properties. */)
3924 (obj)
3925 register Lisp_Object obj;
3926 {
3927 if (NILP (Vpurify_flag))
3928 return obj;
3929
3930 if (PURE_POINTER_P (XPNTR (obj)))
3931 return obj;
3932
3933 if (CONSP (obj))
3934 return pure_cons (XCAR (obj), XCDR (obj));
3935 else if (FLOATP (obj))
3936 return make_pure_float (XFLOAT_DATA (obj));
3937 else if (STRINGP (obj))
3938 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
3939 STRING_BYTES (XSTRING (obj)),
3940 STRING_MULTIBYTE (obj));
3941 else if (COMPILEDP (obj) || VECTORP (obj))
3942 {
3943 register struct Lisp_Vector *vec;
3944 register int i, size;
3945
3946 size = XVECTOR (obj)->size;
3947 if (size & PSEUDOVECTOR_FLAG)
3948 size &= PSEUDOVECTOR_SIZE_MASK;
3949 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3950 for (i = 0; i < size; i++)
3951 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3952 if (COMPILEDP (obj))
3953 XSETCOMPILED (obj, vec);
3954 else
3955 XSETVECTOR (obj, vec);
3956 return obj;
3957 }
3958 else if (MARKERP (obj))
3959 error ("Attempt to copy a marker to pure storage");
3960
3961 return obj;
3962 }
3963
3964
3965 \f
3966 /***********************************************************************
3967 Protection from GC
3968 ***********************************************************************/
3969
3970 /* Put an entry in staticvec, pointing at the variable with address
3971 VARADDRESS. */
3972
3973 void
3974 staticpro (varaddress)
3975 Lisp_Object *varaddress;
3976 {
3977 staticvec[staticidx++] = varaddress;
3978 if (staticidx >= NSTATICS)
3979 abort ();
3980 }
3981
3982 struct catchtag
3983 {
3984 Lisp_Object tag;
3985 Lisp_Object val;
3986 struct catchtag *next;
3987 };
3988
3989 struct backtrace
3990 {
3991 struct backtrace *next;
3992 Lisp_Object *function;
3993 Lisp_Object *args; /* Points to vector of args. */
3994 int nargs; /* Length of vector. */
3995 /* If nargs is UNEVALLED, args points to slot holding list of
3996 unevalled args. */
3997 char evalargs;
3998 };
3999
4000
4001 \f
4002 /***********************************************************************
4003 Protection from GC
4004 ***********************************************************************/
4005
4006 /* Temporarily prevent garbage collection. */
4007
4008 int
4009 inhibit_garbage_collection ()
4010 {
4011 int count = specpdl_ptr - specpdl;
4012 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4013 return count;
4014 }
4015
4016
4017 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4018 doc: /* Reclaim storage for Lisp objects no longer needed.
4019 Returns info on amount of space in use:
4020 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4021 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4022 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4023 (USED-STRINGS . FREE-STRINGS))
4024 Garbage collection happens automatically if you cons more than
4025 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4026 ()
4027 {
4028 register struct gcpro *tail;
4029 register struct specbinding *bind;
4030 struct catchtag *catch;
4031 struct handler *handler;
4032 register struct backtrace *backlist;
4033 char stack_top_variable;
4034 register int i;
4035 int message_p;
4036 Lisp_Object total[8];
4037 int count = BINDING_STACK_SIZE ();
4038
4039 /* Can't GC if pure storage overflowed because we can't determine
4040 if something is a pure object or not. */
4041 if (pure_bytes_used_before_overflow)
4042 return Qnil;
4043
4044 /* In case user calls debug_print during GC,
4045 don't let that cause a recursive GC. */
4046 consing_since_gc = 0;
4047
4048 /* Save what's currently displayed in the echo area. */
4049 message_p = push_message ();
4050 record_unwind_protect (push_message_unwind, Qnil);
4051
4052 /* Save a copy of the contents of the stack, for debugging. */
4053 #if MAX_SAVE_STACK > 0
4054 if (NILP (Vpurify_flag))
4055 {
4056 i = &stack_top_variable - stack_bottom;
4057 if (i < 0) i = -i;
4058 if (i < MAX_SAVE_STACK)
4059 {
4060 if (stack_copy == 0)
4061 stack_copy = (char *) xmalloc (stack_copy_size = i);
4062 else if (stack_copy_size < i)
4063 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4064 if (stack_copy)
4065 {
4066 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4067 bcopy (stack_bottom, stack_copy, i);
4068 else
4069 bcopy (&stack_top_variable, stack_copy, i);
4070 }
4071 }
4072 }
4073 #endif /* MAX_SAVE_STACK > 0 */
4074
4075 if (garbage_collection_messages)
4076 message1_nolog ("Garbage collecting...");
4077
4078 BLOCK_INPUT;
4079
4080 shrink_regexp_cache ();
4081
4082 /* Don't keep undo information around forever. */
4083 {
4084 register struct buffer *nextb = all_buffers;
4085
4086 while (nextb)
4087 {
4088 /* If a buffer's undo list is Qt, that means that undo is
4089 turned off in that buffer. Calling truncate_undo_list on
4090 Qt tends to return NULL, which effectively turns undo back on.
4091 So don't call truncate_undo_list if undo_list is Qt. */
4092 if (! EQ (nextb->undo_list, Qt))
4093 nextb->undo_list
4094 = truncate_undo_list (nextb->undo_list, undo_limit,
4095 undo_strong_limit);
4096 nextb = nextb->next;
4097 }
4098 }
4099
4100 gc_in_progress = 1;
4101
4102 /* clear_marks (); */
4103
4104 /* Mark all the special slots that serve as the roots of accessibility.
4105
4106 Usually the special slots to mark are contained in particular structures.
4107 Then we know no slot is marked twice because the structures don't overlap.
4108 In some cases, the structures point to the slots to be marked.
4109 For these, we use MARKBIT to avoid double marking of the slot. */
4110
4111 for (i = 0; i < staticidx; i++)
4112 mark_object (staticvec[i]);
4113
4114 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4115 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4116 mark_stack ();
4117 #else
4118 for (tail = gcprolist; tail; tail = tail->next)
4119 for (i = 0; i < tail->nvars; i++)
4120 if (!XMARKBIT (tail->var[i]))
4121 {
4122 /* Explicit casting prevents compiler warning about
4123 discarding the `volatile' qualifier. */
4124 mark_object ((Lisp_Object *)&tail->var[i]);
4125 XMARK (tail->var[i]);
4126 }
4127 #endif
4128
4129 mark_byte_stack ();
4130 for (bind = specpdl; bind != specpdl_ptr; bind++)
4131 {
4132 mark_object (&bind->symbol);
4133 mark_object (&bind->old_value);
4134 }
4135 for (catch = catchlist; catch; catch = catch->next)
4136 {
4137 mark_object (&catch->tag);
4138 mark_object (&catch->val);
4139 }
4140 for (handler = handlerlist; handler; handler = handler->next)
4141 {
4142 mark_object (&handler->handler);
4143 mark_object (&handler->var);
4144 }
4145 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4146 {
4147 if (!XMARKBIT (*backlist->function))
4148 {
4149 mark_object (backlist->function);
4150 XMARK (*backlist->function);
4151 }
4152 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4153 i = 0;
4154 else
4155 i = backlist->nargs - 1;
4156 for (; i >= 0; i--)
4157 if (!XMARKBIT (backlist->args[i]))
4158 {
4159 mark_object (&backlist->args[i]);
4160 XMARK (backlist->args[i]);
4161 }
4162 }
4163 mark_kboards ();
4164
4165 /* Look thru every buffer's undo list
4166 for elements that update markers that were not marked,
4167 and delete them. */
4168 {
4169 register struct buffer *nextb = all_buffers;
4170
4171 while (nextb)
4172 {
4173 /* If a buffer's undo list is Qt, that means that undo is
4174 turned off in that buffer. Calling truncate_undo_list on
4175 Qt tends to return NULL, which effectively turns undo back on.
4176 So don't call truncate_undo_list if undo_list is Qt. */
4177 if (! EQ (nextb->undo_list, Qt))
4178 {
4179 Lisp_Object tail, prev;
4180 tail = nextb->undo_list;
4181 prev = Qnil;
4182 while (CONSP (tail))
4183 {
4184 if (GC_CONSP (XCAR (tail))
4185 && GC_MARKERP (XCAR (XCAR (tail)))
4186 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4187 {
4188 if (NILP (prev))
4189 nextb->undo_list = tail = XCDR (tail);
4190 else
4191 {
4192 tail = XCDR (tail);
4193 XSETCDR (prev, tail);
4194 }
4195 }
4196 else
4197 {
4198 prev = tail;
4199 tail = XCDR (tail);
4200 }
4201 }
4202 }
4203
4204 nextb = nextb->next;
4205 }
4206 }
4207
4208 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4209 mark_stack ();
4210 #endif
4211
4212 gc_sweep ();
4213
4214 /* Clear the mark bits that we set in certain root slots. */
4215
4216 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4217 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4218 for (tail = gcprolist; tail; tail = tail->next)
4219 for (i = 0; i < tail->nvars; i++)
4220 XUNMARK (tail->var[i]);
4221 #endif
4222
4223 unmark_byte_stack ();
4224 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4225 {
4226 XUNMARK (*backlist->function);
4227 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4228 i = 0;
4229 else
4230 i = backlist->nargs - 1;
4231 for (; i >= 0; i--)
4232 XUNMARK (backlist->args[i]);
4233 }
4234 XUNMARK (buffer_defaults.name);
4235 XUNMARK (buffer_local_symbols.name);
4236
4237 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4238 dump_zombies ();
4239 #endif
4240
4241 UNBLOCK_INPUT;
4242
4243 /* clear_marks (); */
4244 gc_in_progress = 0;
4245
4246 consing_since_gc = 0;
4247 if (gc_cons_threshold < 10000)
4248 gc_cons_threshold = 10000;
4249
4250 if (garbage_collection_messages)
4251 {
4252 if (message_p || minibuf_level > 0)
4253 restore_message ();
4254 else
4255 message1_nolog ("Garbage collecting...done");
4256 }
4257
4258 unbind_to (count, Qnil);
4259
4260 total[0] = Fcons (make_number (total_conses),
4261 make_number (total_free_conses));
4262 total[1] = Fcons (make_number (total_symbols),
4263 make_number (total_free_symbols));
4264 total[2] = Fcons (make_number (total_markers),
4265 make_number (total_free_markers));
4266 total[3] = make_number (total_string_size);
4267 total[4] = make_number (total_vector_size);
4268 total[5] = Fcons (make_number (total_floats),
4269 make_number (total_free_floats));
4270 total[6] = Fcons (make_number (total_intervals),
4271 make_number (total_free_intervals));
4272 total[7] = Fcons (make_number (total_strings),
4273 make_number (total_free_strings));
4274
4275 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4276 {
4277 /* Compute average percentage of zombies. */
4278 double nlive = 0;
4279
4280 for (i = 0; i < 7; ++i)
4281 nlive += XFASTINT (XCAR (total[i]));
4282
4283 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4284 max_live = max (nlive, max_live);
4285 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4286 max_zombies = max (nzombies, max_zombies);
4287 ++ngcs;
4288 }
4289 #endif
4290
4291 if (!NILP (Vpost_gc_hook))
4292 {
4293 int count = inhibit_garbage_collection ();
4294 safe_run_hooks (Qpost_gc_hook);
4295 unbind_to (count, Qnil);
4296 }
4297
4298 return Flist (sizeof total / sizeof *total, total);
4299 }
4300
4301
4302 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4303 only interesting objects referenced from glyphs are strings. */
4304
4305 static void
4306 mark_glyph_matrix (matrix)
4307 struct glyph_matrix *matrix;
4308 {
4309 struct glyph_row *row = matrix->rows;
4310 struct glyph_row *end = row + matrix->nrows;
4311
4312 for (; row < end; ++row)
4313 if (row->enabled_p)
4314 {
4315 int area;
4316 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4317 {
4318 struct glyph *glyph = row->glyphs[area];
4319 struct glyph *end_glyph = glyph + row->used[area];
4320
4321 for (; glyph < end_glyph; ++glyph)
4322 if (GC_STRINGP (glyph->object)
4323 && !STRING_MARKED_P (XSTRING (glyph->object)))
4324 mark_object (&glyph->object);
4325 }
4326 }
4327 }
4328
4329
4330 /* Mark Lisp faces in the face cache C. */
4331
4332 static void
4333 mark_face_cache (c)
4334 struct face_cache *c;
4335 {
4336 if (c)
4337 {
4338 int i, j;
4339 for (i = 0; i < c->used; ++i)
4340 {
4341 struct face *face = FACE_FROM_ID (c->f, i);
4342
4343 if (face)
4344 {
4345 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4346 mark_object (&face->lface[j]);
4347 }
4348 }
4349 }
4350 }
4351
4352
4353 #ifdef HAVE_WINDOW_SYSTEM
4354
4355 /* Mark Lisp objects in image IMG. */
4356
4357 static void
4358 mark_image (img)
4359 struct image *img;
4360 {
4361 mark_object (&img->spec);
4362
4363 if (!NILP (img->data.lisp_val))
4364 mark_object (&img->data.lisp_val);
4365 }
4366
4367
4368 /* Mark Lisp objects in image cache of frame F. It's done this way so
4369 that we don't have to include xterm.h here. */
4370
4371 static void
4372 mark_image_cache (f)
4373 struct frame *f;
4374 {
4375 forall_images_in_image_cache (f, mark_image);
4376 }
4377
4378 #endif /* HAVE_X_WINDOWS */
4379
4380
4381 \f
4382 /* Mark reference to a Lisp_Object.
4383 If the object referred to has not been seen yet, recursively mark
4384 all the references contained in it. */
4385
4386 #define LAST_MARKED_SIZE 500
4387 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4388 int last_marked_index;
4389
4390 void
4391 mark_object (argptr)
4392 Lisp_Object *argptr;
4393 {
4394 Lisp_Object *objptr = argptr;
4395 register Lisp_Object obj;
4396 #ifdef GC_CHECK_MARKED_OBJECTS
4397 void *po;
4398 struct mem_node *m;
4399 #endif
4400
4401 loop:
4402 obj = *objptr;
4403 loop2:
4404 XUNMARK (obj);
4405
4406 if (PURE_POINTER_P (XPNTR (obj)))
4407 return;
4408
4409 last_marked[last_marked_index++] = objptr;
4410 if (last_marked_index == LAST_MARKED_SIZE)
4411 last_marked_index = 0;
4412
4413 /* Perform some sanity checks on the objects marked here. Abort if
4414 we encounter an object we know is bogus. This increases GC time
4415 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4416 #ifdef GC_CHECK_MARKED_OBJECTS
4417
4418 po = (void *) XPNTR (obj);
4419
4420 /* Check that the object pointed to by PO is known to be a Lisp
4421 structure allocated from the heap. */
4422 #define CHECK_ALLOCATED() \
4423 do { \
4424 m = mem_find (po); \
4425 if (m == MEM_NIL) \
4426 abort (); \
4427 } while (0)
4428
4429 /* Check that the object pointed to by PO is live, using predicate
4430 function LIVEP. */
4431 #define CHECK_LIVE(LIVEP) \
4432 do { \
4433 if (!LIVEP (m, po)) \
4434 abort (); \
4435 } while (0)
4436
4437 /* Check both of the above conditions. */
4438 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4439 do { \
4440 CHECK_ALLOCATED (); \
4441 CHECK_LIVE (LIVEP); \
4442 } while (0) \
4443
4444 #else /* not GC_CHECK_MARKED_OBJECTS */
4445
4446 #define CHECK_ALLOCATED() (void) 0
4447 #define CHECK_LIVE(LIVEP) (void) 0
4448 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4449
4450 #endif /* not GC_CHECK_MARKED_OBJECTS */
4451
4452 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4453 {
4454 case Lisp_String:
4455 {
4456 register struct Lisp_String *ptr = XSTRING (obj);
4457 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4458 MARK_INTERVAL_TREE (ptr->intervals);
4459 MARK_STRING (ptr);
4460 #ifdef GC_CHECK_STRING_BYTES
4461 /* Check that the string size recorded in the string is the
4462 same as the one recorded in the sdata structure. */
4463 CHECK_STRING_BYTES (ptr);
4464 #endif /* GC_CHECK_STRING_BYTES */
4465 }
4466 break;
4467
4468 case Lisp_Vectorlike:
4469 #ifdef GC_CHECK_MARKED_OBJECTS
4470 m = mem_find (po);
4471 if (m == MEM_NIL && !GC_SUBRP (obj)
4472 && po != &buffer_defaults
4473 && po != &buffer_local_symbols)
4474 abort ();
4475 #endif /* GC_CHECK_MARKED_OBJECTS */
4476
4477 if (GC_BUFFERP (obj))
4478 {
4479 if (!XMARKBIT (XBUFFER (obj)->name))
4480 {
4481 #ifdef GC_CHECK_MARKED_OBJECTS
4482 if (po != &buffer_defaults && po != &buffer_local_symbols)
4483 {
4484 struct buffer *b;
4485 for (b = all_buffers; b && b != po; b = b->next)
4486 ;
4487 if (b == NULL)
4488 abort ();
4489 }
4490 #endif /* GC_CHECK_MARKED_OBJECTS */
4491 mark_buffer (obj);
4492 }
4493 }
4494 else if (GC_SUBRP (obj))
4495 break;
4496 else if (GC_COMPILEDP (obj))
4497 /* We could treat this just like a vector, but it is better to
4498 save the COMPILED_CONSTANTS element for last and avoid
4499 recursion there. */
4500 {
4501 register struct Lisp_Vector *ptr = XVECTOR (obj);
4502 register EMACS_INT size = ptr->size;
4503 register int i;
4504
4505 if (size & ARRAY_MARK_FLAG)
4506 break; /* Already marked */
4507
4508 CHECK_LIVE (live_vector_p);
4509 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4510 size &= PSEUDOVECTOR_SIZE_MASK;
4511 for (i = 0; i < size; i++) /* and then mark its elements */
4512 {
4513 if (i != COMPILED_CONSTANTS)
4514 mark_object (&ptr->contents[i]);
4515 }
4516 /* This cast should be unnecessary, but some Mips compiler complains
4517 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4518 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4519 goto loop;
4520 }
4521 else if (GC_FRAMEP (obj))
4522 {
4523 register struct frame *ptr = XFRAME (obj);
4524 register EMACS_INT size = ptr->size;
4525
4526 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4527 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4528
4529 CHECK_LIVE (live_vector_p);
4530 mark_object (&ptr->name);
4531 mark_object (&ptr->icon_name);
4532 mark_object (&ptr->title);
4533 mark_object (&ptr->focus_frame);
4534 mark_object (&ptr->selected_window);
4535 mark_object (&ptr->minibuffer_window);
4536 mark_object (&ptr->param_alist);
4537 mark_object (&ptr->scroll_bars);
4538 mark_object (&ptr->condemned_scroll_bars);
4539 mark_object (&ptr->menu_bar_items);
4540 mark_object (&ptr->face_alist);
4541 mark_object (&ptr->menu_bar_vector);
4542 mark_object (&ptr->buffer_predicate);
4543 mark_object (&ptr->buffer_list);
4544 mark_object (&ptr->menu_bar_window);
4545 mark_object (&ptr->tool_bar_window);
4546 mark_face_cache (ptr->face_cache);
4547 #ifdef HAVE_WINDOW_SYSTEM
4548 mark_image_cache (ptr);
4549 mark_object (&ptr->tool_bar_items);
4550 mark_object (&ptr->desired_tool_bar_string);
4551 mark_object (&ptr->current_tool_bar_string);
4552 #endif /* HAVE_WINDOW_SYSTEM */
4553 }
4554 else if (GC_BOOL_VECTOR_P (obj))
4555 {
4556 register struct Lisp_Vector *ptr = XVECTOR (obj);
4557
4558 if (ptr->size & ARRAY_MARK_FLAG)
4559 break; /* Already marked */
4560 CHECK_LIVE (live_vector_p);
4561 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4562 }
4563 else if (GC_WINDOWP (obj))
4564 {
4565 register struct Lisp_Vector *ptr = XVECTOR (obj);
4566 struct window *w = XWINDOW (obj);
4567 register EMACS_INT size = ptr->size;
4568 register int i;
4569
4570 /* Stop if already marked. */
4571 if (size & ARRAY_MARK_FLAG)
4572 break;
4573
4574 /* Mark it. */
4575 CHECK_LIVE (live_vector_p);
4576 ptr->size |= ARRAY_MARK_FLAG;
4577
4578 /* There is no Lisp data above The member CURRENT_MATRIX in
4579 struct WINDOW. Stop marking when that slot is reached. */
4580 for (i = 0;
4581 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4582 i++)
4583 mark_object (&ptr->contents[i]);
4584
4585 /* Mark glyphs for leaf windows. Marking window matrices is
4586 sufficient because frame matrices use the same glyph
4587 memory. */
4588 if (NILP (w->hchild)
4589 && NILP (w->vchild)
4590 && w->current_matrix)
4591 {
4592 mark_glyph_matrix (w->current_matrix);
4593 mark_glyph_matrix (w->desired_matrix);
4594 }
4595 }
4596 else if (GC_HASH_TABLE_P (obj))
4597 {
4598 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4599 EMACS_INT size = h->size;
4600
4601 /* Stop if already marked. */
4602 if (size & ARRAY_MARK_FLAG)
4603 break;
4604
4605 /* Mark it. */
4606 CHECK_LIVE (live_vector_p);
4607 h->size |= ARRAY_MARK_FLAG;
4608
4609 /* Mark contents. */
4610 mark_object (&h->test);
4611 mark_object (&h->weak);
4612 mark_object (&h->rehash_size);
4613 mark_object (&h->rehash_threshold);
4614 mark_object (&h->hash);
4615 mark_object (&h->next);
4616 mark_object (&h->index);
4617 mark_object (&h->user_hash_function);
4618 mark_object (&h->user_cmp_function);
4619
4620 /* If hash table is not weak, mark all keys and values.
4621 For weak tables, mark only the vector. */
4622 if (GC_NILP (h->weak))
4623 mark_object (&h->key_and_value);
4624 else
4625 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4626
4627 }
4628 else
4629 {
4630 register struct Lisp_Vector *ptr = XVECTOR (obj);
4631 register EMACS_INT size = ptr->size;
4632 register int i;
4633
4634 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4635 CHECK_LIVE (live_vector_p);
4636 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4637 if (size & PSEUDOVECTOR_FLAG)
4638 size &= PSEUDOVECTOR_SIZE_MASK;
4639
4640 for (i = 0; i < size; i++) /* and then mark its elements */
4641 mark_object (&ptr->contents[i]);
4642 }
4643 break;
4644
4645 case Lisp_Symbol:
4646 {
4647 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4648 struct Lisp_Symbol *ptrx;
4649
4650 if (XMARKBIT (ptr->plist)) break;
4651 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4652 XMARK (ptr->plist);
4653 mark_object ((Lisp_Object *) &ptr->value);
4654 mark_object (&ptr->function);
4655 mark_object (&ptr->plist);
4656
4657 if (!PURE_POINTER_P (ptr->name))
4658 MARK_STRING (ptr->name);
4659 MARK_INTERVAL_TREE (ptr->name->intervals);
4660
4661 /* Note that we do not mark the obarray of the symbol.
4662 It is safe not to do so because nothing accesses that
4663 slot except to check whether it is nil. */
4664 ptr = ptr->next;
4665 if (ptr)
4666 {
4667 /* For the benefit of the last_marked log. */
4668 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4669 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4670 XSETSYMBOL (obj, ptrx);
4671 /* We can't goto loop here because *objptr doesn't contain an
4672 actual Lisp_Object with valid datatype field. */
4673 goto loop2;
4674 }
4675 }
4676 break;
4677
4678 case Lisp_Misc:
4679 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4680 switch (XMISCTYPE (obj))
4681 {
4682 case Lisp_Misc_Marker:
4683 XMARK (XMARKER (obj)->chain);
4684 /* DO NOT mark thru the marker's chain.
4685 The buffer's markers chain does not preserve markers from gc;
4686 instead, markers are removed from the chain when freed by gc. */
4687 break;
4688
4689 case Lisp_Misc_Buffer_Local_Value:
4690 case Lisp_Misc_Some_Buffer_Local_Value:
4691 {
4692 register struct Lisp_Buffer_Local_Value *ptr
4693 = XBUFFER_LOCAL_VALUE (obj);
4694 if (XMARKBIT (ptr->realvalue)) break;
4695 XMARK (ptr->realvalue);
4696 /* If the cdr is nil, avoid recursion for the car. */
4697 if (EQ (ptr->cdr, Qnil))
4698 {
4699 objptr = &ptr->realvalue;
4700 goto loop;
4701 }
4702 mark_object (&ptr->realvalue);
4703 mark_object (&ptr->buffer);
4704 mark_object (&ptr->frame);
4705 objptr = &ptr->cdr;
4706 goto loop;
4707 }
4708
4709 case Lisp_Misc_Intfwd:
4710 case Lisp_Misc_Boolfwd:
4711 case Lisp_Misc_Objfwd:
4712 case Lisp_Misc_Buffer_Objfwd:
4713 case Lisp_Misc_Kboard_Objfwd:
4714 /* Don't bother with Lisp_Buffer_Objfwd,
4715 since all markable slots in current buffer marked anyway. */
4716 /* Don't need to do Lisp_Objfwd, since the places they point
4717 are protected with staticpro. */
4718 break;
4719
4720 case Lisp_Misc_Overlay:
4721 {
4722 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4723 if (!XMARKBIT (ptr->plist))
4724 {
4725 XMARK (ptr->plist);
4726 mark_object (&ptr->start);
4727 mark_object (&ptr->end);
4728 objptr = &ptr->plist;
4729 goto loop;
4730 }
4731 }
4732 break;
4733
4734 default:
4735 abort ();
4736 }
4737 break;
4738
4739 case Lisp_Cons:
4740 {
4741 register struct Lisp_Cons *ptr = XCONS (obj);
4742 if (XMARKBIT (ptr->car)) break;
4743 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4744 XMARK (ptr->car);
4745 /* If the cdr is nil, avoid recursion for the car. */
4746 if (EQ (ptr->cdr, Qnil))
4747 {
4748 objptr = &ptr->car;
4749 goto loop;
4750 }
4751 mark_object (&ptr->car);
4752 objptr = &ptr->cdr;
4753 goto loop;
4754 }
4755
4756 case Lisp_Float:
4757 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4758 XMARK (XFLOAT (obj)->type);
4759 break;
4760
4761 case Lisp_Int:
4762 break;
4763
4764 default:
4765 abort ();
4766 }
4767
4768 #undef CHECK_LIVE
4769 #undef CHECK_ALLOCATED
4770 #undef CHECK_ALLOCATED_AND_LIVE
4771 }
4772
4773 /* Mark the pointers in a buffer structure. */
4774
4775 static void
4776 mark_buffer (buf)
4777 Lisp_Object buf;
4778 {
4779 register struct buffer *buffer = XBUFFER (buf);
4780 register Lisp_Object *ptr;
4781 Lisp_Object base_buffer;
4782
4783 /* This is the buffer's markbit */
4784 mark_object (&buffer->name);
4785 XMARK (buffer->name);
4786
4787 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4788
4789 if (CONSP (buffer->undo_list))
4790 {
4791 Lisp_Object tail;
4792 tail = buffer->undo_list;
4793
4794 while (CONSP (tail))
4795 {
4796 register struct Lisp_Cons *ptr = XCONS (tail);
4797
4798 if (XMARKBIT (ptr->car))
4799 break;
4800 XMARK (ptr->car);
4801 if (GC_CONSP (ptr->car)
4802 && ! XMARKBIT (XCAR (ptr->car))
4803 && GC_MARKERP (XCAR (ptr->car)))
4804 {
4805 XMARK (XCAR_AS_LVALUE (ptr->car));
4806 mark_object (&XCDR_AS_LVALUE (ptr->car));
4807 }
4808 else
4809 mark_object (&ptr->car);
4810
4811 if (CONSP (ptr->cdr))
4812 tail = ptr->cdr;
4813 else
4814 break;
4815 }
4816
4817 mark_object (&XCDR_AS_LVALUE (tail));
4818 }
4819 else
4820 mark_object (&buffer->undo_list);
4821
4822 for (ptr = &buffer->name + 1;
4823 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4824 ptr++)
4825 mark_object (ptr);
4826
4827 /* If this is an indirect buffer, mark its base buffer. */
4828 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4829 {
4830 XSETBUFFER (base_buffer, buffer->base_buffer);
4831 mark_buffer (base_buffer);
4832 }
4833 }
4834
4835
4836 /* Mark the pointers in the kboard objects. */
4837
4838 static void
4839 mark_kboards ()
4840 {
4841 KBOARD *kb;
4842 Lisp_Object *p;
4843 for (kb = all_kboards; kb; kb = kb->next_kboard)
4844 {
4845 if (kb->kbd_macro_buffer)
4846 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4847 mark_object (p);
4848 mark_object (&kb->Voverriding_terminal_local_map);
4849 mark_object (&kb->Vlast_command);
4850 mark_object (&kb->Vreal_last_command);
4851 mark_object (&kb->Vprefix_arg);
4852 mark_object (&kb->Vlast_prefix_arg);
4853 mark_object (&kb->kbd_queue);
4854 mark_object (&kb->defining_kbd_macro);
4855 mark_object (&kb->Vlast_kbd_macro);
4856 mark_object (&kb->Vsystem_key_alist);
4857 mark_object (&kb->system_key_syms);
4858 mark_object (&kb->Vdefault_minibuffer_frame);
4859 }
4860 }
4861
4862
4863 /* Value is non-zero if OBJ will survive the current GC because it's
4864 either marked or does not need to be marked to survive. */
4865
4866 int
4867 survives_gc_p (obj)
4868 Lisp_Object obj;
4869 {
4870 int survives_p;
4871
4872 switch (XGCTYPE (obj))
4873 {
4874 case Lisp_Int:
4875 survives_p = 1;
4876 break;
4877
4878 case Lisp_Symbol:
4879 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4880 break;
4881
4882 case Lisp_Misc:
4883 switch (XMISCTYPE (obj))
4884 {
4885 case Lisp_Misc_Marker:
4886 survives_p = XMARKBIT (obj);
4887 break;
4888
4889 case Lisp_Misc_Buffer_Local_Value:
4890 case Lisp_Misc_Some_Buffer_Local_Value:
4891 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4892 break;
4893
4894 case Lisp_Misc_Intfwd:
4895 case Lisp_Misc_Boolfwd:
4896 case Lisp_Misc_Objfwd:
4897 case Lisp_Misc_Buffer_Objfwd:
4898 case Lisp_Misc_Kboard_Objfwd:
4899 survives_p = 1;
4900 break;
4901
4902 case Lisp_Misc_Overlay:
4903 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4904 break;
4905
4906 default:
4907 abort ();
4908 }
4909 break;
4910
4911 case Lisp_String:
4912 {
4913 struct Lisp_String *s = XSTRING (obj);
4914 survives_p = STRING_MARKED_P (s);
4915 }
4916 break;
4917
4918 case Lisp_Vectorlike:
4919 if (GC_BUFFERP (obj))
4920 survives_p = XMARKBIT (XBUFFER (obj)->name);
4921 else if (GC_SUBRP (obj))
4922 survives_p = 1;
4923 else
4924 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4925 break;
4926
4927 case Lisp_Cons:
4928 survives_p = XMARKBIT (XCAR (obj));
4929 break;
4930
4931 case Lisp_Float:
4932 survives_p = XMARKBIT (XFLOAT (obj)->type);
4933 break;
4934
4935 default:
4936 abort ();
4937 }
4938
4939 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
4940 }
4941
4942
4943 \f
4944 /* Sweep: find all structures not marked, and free them. */
4945
4946 static void
4947 gc_sweep ()
4948 {
4949 /* Remove or mark entries in weak hash tables.
4950 This must be done before any object is unmarked. */
4951 sweep_weak_hash_tables ();
4952
4953 sweep_strings ();
4954 #ifdef GC_CHECK_STRING_BYTES
4955 if (!noninteractive)
4956 check_string_bytes (1);
4957 #endif
4958
4959 /* Put all unmarked conses on free list */
4960 {
4961 register struct cons_block *cblk;
4962 struct cons_block **cprev = &cons_block;
4963 register int lim = cons_block_index;
4964 register int num_free = 0, num_used = 0;
4965
4966 cons_free_list = 0;
4967
4968 for (cblk = cons_block; cblk; cblk = *cprev)
4969 {
4970 register int i;
4971 int this_free = 0;
4972 for (i = 0; i < lim; i++)
4973 if (!XMARKBIT (cblk->conses[i].car))
4974 {
4975 this_free++;
4976 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
4977 cons_free_list = &cblk->conses[i];
4978 #if GC_MARK_STACK
4979 cons_free_list->car = Vdead;
4980 #endif
4981 }
4982 else
4983 {
4984 num_used++;
4985 XUNMARK (cblk->conses[i].car);
4986 }
4987 lim = CONS_BLOCK_SIZE;
4988 /* If this block contains only free conses and we have already
4989 seen more than two blocks worth of free conses then deallocate
4990 this block. */
4991 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
4992 {
4993 *cprev = cblk->next;
4994 /* Unhook from the free list. */
4995 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
4996 lisp_free (cblk);
4997 n_cons_blocks--;
4998 }
4999 else
5000 {
5001 num_free += this_free;
5002 cprev = &cblk->next;
5003 }
5004 }
5005 total_conses = num_used;
5006 total_free_conses = num_free;
5007 }
5008
5009 /* Put all unmarked floats on free list */
5010 {
5011 register struct float_block *fblk;
5012 struct float_block **fprev = &float_block;
5013 register int lim = float_block_index;
5014 register int num_free = 0, num_used = 0;
5015
5016 float_free_list = 0;
5017
5018 for (fblk = float_block; fblk; fblk = *fprev)
5019 {
5020 register int i;
5021 int this_free = 0;
5022 for (i = 0; i < lim; i++)
5023 if (!XMARKBIT (fblk->floats[i].type))
5024 {
5025 this_free++;
5026 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5027 float_free_list = &fblk->floats[i];
5028 #if GC_MARK_STACK
5029 float_free_list->type = Vdead;
5030 #endif
5031 }
5032 else
5033 {
5034 num_used++;
5035 XUNMARK (fblk->floats[i].type);
5036 }
5037 lim = FLOAT_BLOCK_SIZE;
5038 /* If this block contains only free floats and we have already
5039 seen more than two blocks worth of free floats then deallocate
5040 this block. */
5041 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5042 {
5043 *fprev = fblk->next;
5044 /* Unhook from the free list. */
5045 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5046 lisp_free (fblk);
5047 n_float_blocks--;
5048 }
5049 else
5050 {
5051 num_free += this_free;
5052 fprev = &fblk->next;
5053 }
5054 }
5055 total_floats = num_used;
5056 total_free_floats = num_free;
5057 }
5058
5059 /* Put all unmarked intervals on free list */
5060 {
5061 register struct interval_block *iblk;
5062 struct interval_block **iprev = &interval_block;
5063 register int lim = interval_block_index;
5064 register int num_free = 0, num_used = 0;
5065
5066 interval_free_list = 0;
5067
5068 for (iblk = interval_block; iblk; iblk = *iprev)
5069 {
5070 register int i;
5071 int this_free = 0;
5072
5073 for (i = 0; i < lim; i++)
5074 {
5075 if (! XMARKBIT (iblk->intervals[i].plist))
5076 {
5077 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5078 interval_free_list = &iblk->intervals[i];
5079 this_free++;
5080 }
5081 else
5082 {
5083 num_used++;
5084 XUNMARK (iblk->intervals[i].plist);
5085 }
5086 }
5087 lim = INTERVAL_BLOCK_SIZE;
5088 /* If this block contains only free intervals and we have already
5089 seen more than two blocks worth of free intervals then
5090 deallocate this block. */
5091 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5092 {
5093 *iprev = iblk->next;
5094 /* Unhook from the free list. */
5095 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5096 lisp_free (iblk);
5097 n_interval_blocks--;
5098 }
5099 else
5100 {
5101 num_free += this_free;
5102 iprev = &iblk->next;
5103 }
5104 }
5105 total_intervals = num_used;
5106 total_free_intervals = num_free;
5107 }
5108
5109 /* Put all unmarked symbols on free list */
5110 {
5111 register struct symbol_block *sblk;
5112 struct symbol_block **sprev = &symbol_block;
5113 register int lim = symbol_block_index;
5114 register int num_free = 0, num_used = 0;
5115
5116 symbol_free_list = NULL;
5117
5118 for (sblk = symbol_block; sblk; sblk = *sprev)
5119 {
5120 int this_free = 0;
5121 struct Lisp_Symbol *sym = sblk->symbols;
5122 struct Lisp_Symbol *end = sym + lim;
5123
5124 for (; sym < end; ++sym)
5125 {
5126 /* Check if the symbol was created during loadup. In such a case
5127 it might be pointed to by pure bytecode which we don't trace,
5128 so we conservatively assume that it is live. */
5129 int pure_p = PURE_POINTER_P (sym->name);
5130
5131 if (!XMARKBIT (sym->plist) && !pure_p)
5132 {
5133 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5134 symbol_free_list = sym;
5135 #if GC_MARK_STACK
5136 symbol_free_list->function = Vdead;
5137 #endif
5138 ++this_free;
5139 }
5140 else
5141 {
5142 ++num_used;
5143 if (!pure_p)
5144 UNMARK_STRING (sym->name);
5145 XUNMARK (sym->plist);
5146 }
5147 }
5148
5149 lim = SYMBOL_BLOCK_SIZE;
5150 /* If this block contains only free symbols and we have already
5151 seen more than two blocks worth of free symbols then deallocate
5152 this block. */
5153 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5154 {
5155 *sprev = sblk->next;
5156 /* Unhook from the free list. */
5157 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5158 lisp_free (sblk);
5159 n_symbol_blocks--;
5160 }
5161 else
5162 {
5163 num_free += this_free;
5164 sprev = &sblk->next;
5165 }
5166 }
5167 total_symbols = num_used;
5168 total_free_symbols = num_free;
5169 }
5170
5171 /* Put all unmarked misc's on free list.
5172 For a marker, first unchain it from the buffer it points into. */
5173 {
5174 register struct marker_block *mblk;
5175 struct marker_block **mprev = &marker_block;
5176 register int lim = marker_block_index;
5177 register int num_free = 0, num_used = 0;
5178
5179 marker_free_list = 0;
5180
5181 for (mblk = marker_block; mblk; mblk = *mprev)
5182 {
5183 register int i;
5184 int this_free = 0;
5185 EMACS_INT already_free = -1;
5186
5187 for (i = 0; i < lim; i++)
5188 {
5189 Lisp_Object *markword;
5190 switch (mblk->markers[i].u_marker.type)
5191 {
5192 case Lisp_Misc_Marker:
5193 markword = &mblk->markers[i].u_marker.chain;
5194 break;
5195 case Lisp_Misc_Buffer_Local_Value:
5196 case Lisp_Misc_Some_Buffer_Local_Value:
5197 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5198 break;
5199 case Lisp_Misc_Overlay:
5200 markword = &mblk->markers[i].u_overlay.plist;
5201 break;
5202 case Lisp_Misc_Free:
5203 /* If the object was already free, keep it
5204 on the free list. */
5205 markword = (Lisp_Object *) &already_free;
5206 break;
5207 default:
5208 markword = 0;
5209 break;
5210 }
5211 if (markword && !XMARKBIT (*markword))
5212 {
5213 Lisp_Object tem;
5214 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5215 {
5216 /* tem1 avoids Sun compiler bug */
5217 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5218 XSETMARKER (tem, tem1);
5219 unchain_marker (tem);
5220 }
5221 /* Set the type of the freed object to Lisp_Misc_Free.
5222 We could leave the type alone, since nobody checks it,
5223 but this might catch bugs faster. */
5224 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5225 mblk->markers[i].u_free.chain = marker_free_list;
5226 marker_free_list = &mblk->markers[i];
5227 this_free++;
5228 }
5229 else
5230 {
5231 num_used++;
5232 if (markword)
5233 XUNMARK (*markword);
5234 }
5235 }
5236 lim = MARKER_BLOCK_SIZE;
5237 /* If this block contains only free markers and we have already
5238 seen more than two blocks worth of free markers then deallocate
5239 this block. */
5240 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5241 {
5242 *mprev = mblk->next;
5243 /* Unhook from the free list. */
5244 marker_free_list = mblk->markers[0].u_free.chain;
5245 lisp_free (mblk);
5246 n_marker_blocks--;
5247 }
5248 else
5249 {
5250 num_free += this_free;
5251 mprev = &mblk->next;
5252 }
5253 }
5254
5255 total_markers = num_used;
5256 total_free_markers = num_free;
5257 }
5258
5259 /* Free all unmarked buffers */
5260 {
5261 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5262
5263 while (buffer)
5264 if (!XMARKBIT (buffer->name))
5265 {
5266 if (prev)
5267 prev->next = buffer->next;
5268 else
5269 all_buffers = buffer->next;
5270 next = buffer->next;
5271 lisp_free (buffer);
5272 buffer = next;
5273 }
5274 else
5275 {
5276 XUNMARK (buffer->name);
5277 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5278 prev = buffer, buffer = buffer->next;
5279 }
5280 }
5281
5282 /* Free all unmarked vectors */
5283 {
5284 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5285 total_vector_size = 0;
5286
5287 while (vector)
5288 if (!(vector->size & ARRAY_MARK_FLAG))
5289 {
5290 if (prev)
5291 prev->next = vector->next;
5292 else
5293 all_vectors = vector->next;
5294 next = vector->next;
5295 lisp_free (vector);
5296 n_vectors--;
5297 vector = next;
5298
5299 }
5300 else
5301 {
5302 vector->size &= ~ARRAY_MARK_FLAG;
5303 if (vector->size & PSEUDOVECTOR_FLAG)
5304 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5305 else
5306 total_vector_size += vector->size;
5307 prev = vector, vector = vector->next;
5308 }
5309 }
5310
5311 #ifdef GC_CHECK_STRING_BYTES
5312 if (!noninteractive)
5313 check_string_bytes (1);
5314 #endif
5315 }
5316
5317
5318
5319 \f
5320 /* Debugging aids. */
5321
5322 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5323 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5324 This may be helpful in debugging Emacs's memory usage.
5325 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5326 ()
5327 {
5328 Lisp_Object end;
5329
5330 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5331
5332 return end;
5333 }
5334
5335 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5336 doc: /* Return a list of counters that measure how much consing there has been.
5337 Each of these counters increments for a certain kind of object.
5338 The counters wrap around from the largest positive integer to zero.
5339 Garbage collection does not decrease them.
5340 The elements of the value are as follows:
5341 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5342 All are in units of 1 = one object consed
5343 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5344 objects consed.
5345 MISCS include overlays, markers, and some internal types.
5346 Frames, windows, buffers, and subprocesses count as vectors
5347 (but the contents of a buffer's text do not count here). */)
5348 ()
5349 {
5350 Lisp_Object consed[8];
5351
5352 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5353 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5354 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5355 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5356 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5357 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5358 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5359 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5360
5361 return Flist (8, consed);
5362 }
5363
5364 int suppress_checking;
5365 void
5366 die (msg, file, line)
5367 const char *msg;
5368 const char *file;
5369 int line;
5370 {
5371 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5372 file, line, msg);
5373 abort ();
5374 }
5375 \f
5376 /* Initialization */
5377
5378 void
5379 init_alloc_once ()
5380 {
5381 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5382 purebeg = PUREBEG;
5383 pure_size = PURESIZE;
5384 pure_bytes_used = 0;
5385 pure_bytes_used_before_overflow = 0;
5386
5387 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5388 mem_init ();
5389 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5390 #endif
5391
5392 all_vectors = 0;
5393 ignore_warnings = 1;
5394 #ifdef DOUG_LEA_MALLOC
5395 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5396 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5397 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5398 #endif
5399 init_strings ();
5400 init_cons ();
5401 init_symbol ();
5402 init_marker ();
5403 init_float ();
5404 init_intervals ();
5405
5406 #ifdef REL_ALLOC
5407 malloc_hysteresis = 32;
5408 #else
5409 malloc_hysteresis = 0;
5410 #endif
5411
5412 spare_memory = (char *) malloc (SPARE_MEMORY);
5413
5414 ignore_warnings = 0;
5415 gcprolist = 0;
5416 byte_stack_list = 0;
5417 staticidx = 0;
5418 consing_since_gc = 0;
5419 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5420 #ifdef VIRT_ADDR_VARIES
5421 malloc_sbrk_unused = 1<<22; /* A large number */
5422 malloc_sbrk_used = 100000; /* as reasonable as any number */
5423 #endif /* VIRT_ADDR_VARIES */
5424 }
5425
5426 void
5427 init_alloc ()
5428 {
5429 gcprolist = 0;
5430 byte_stack_list = 0;
5431 #if GC_MARK_STACK
5432 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5433 setjmp_tested_p = longjmps_done = 0;
5434 #endif
5435 #endif
5436 }
5437
5438 void
5439 syms_of_alloc ()
5440 {
5441 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5442 doc: /* *Number of bytes of consing between garbage collections.
5443 Garbage collection can happen automatically once this many bytes have been
5444 allocated since the last garbage collection. All data types count.
5445
5446 Garbage collection happens automatically only when `eval' is called.
5447
5448 By binding this temporarily to a large number, you can effectively
5449 prevent garbage collection during a part of the program. */);
5450
5451 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5452 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5453
5454 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5455 doc: /* Number of cons cells that have been consed so far. */);
5456
5457 DEFVAR_INT ("floats-consed", &floats_consed,
5458 doc: /* Number of floats that have been consed so far. */);
5459
5460 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5461 doc: /* Number of vector cells that have been consed so far. */);
5462
5463 DEFVAR_INT ("symbols-consed", &symbols_consed,
5464 doc: /* Number of symbols that have been consed so far. */);
5465
5466 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5467 doc: /* Number of string characters that have been consed so far. */);
5468
5469 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5470 doc: /* Number of miscellaneous objects that have been consed so far. */);
5471
5472 DEFVAR_INT ("intervals-consed", &intervals_consed,
5473 doc: /* Number of intervals that have been consed so far. */);
5474
5475 DEFVAR_INT ("strings-consed", &strings_consed,
5476 doc: /* Number of strings that have been consed so far. */);
5477
5478 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5479 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5480 This means that certain objects should be allocated in shared (pure) space. */);
5481
5482 DEFVAR_INT ("undo-limit", &undo_limit,
5483 doc: /* Keep no more undo information once it exceeds this size.
5484 This limit is applied when garbage collection happens.
5485 The size is counted as the number of bytes occupied,
5486 which includes both saved text and other data. */);
5487 undo_limit = 20000;
5488
5489 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5490 doc: /* Don't keep more than this much size of undo information.
5491 A command which pushes past this size is itself forgotten.
5492 This limit is applied when garbage collection happens.
5493 The size is counted as the number of bytes occupied,
5494 which includes both saved text and other data. */);
5495 undo_strong_limit = 30000;
5496
5497 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5498 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5499 garbage_collection_messages = 0;
5500
5501 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5502 doc: /* Hook run after garbage collection has finished. */);
5503 Vpost_gc_hook = Qnil;
5504 Qpost_gc_hook = intern ("post-gc-hook");
5505 staticpro (&Qpost_gc_hook);
5506
5507 /* We build this in advance because if we wait until we need it, we might
5508 not be able to allocate the memory to hold it. */
5509 memory_signal_data
5510 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
5511 staticpro (&memory_signal_data);
5512
5513 staticpro (&Qgc_cons_threshold);
5514 Qgc_cons_threshold = intern ("gc-cons-threshold");
5515
5516 staticpro (&Qchar_table_extra_slots);
5517 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5518
5519 defsubr (&Scons);
5520 defsubr (&Slist);
5521 defsubr (&Svector);
5522 defsubr (&Smake_byte_code);
5523 defsubr (&Smake_list);
5524 defsubr (&Smake_vector);
5525 defsubr (&Smake_char_table);
5526 defsubr (&Smake_string);
5527 defsubr (&Smake_bool_vector);
5528 defsubr (&Smake_symbol);
5529 defsubr (&Smake_marker);
5530 defsubr (&Spurecopy);
5531 defsubr (&Sgarbage_collect);
5532 defsubr (&Smemory_limit);
5533 defsubr (&Smemory_use_counts);
5534
5535 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5536 defsubr (&Sgc_status);
5537 #endif
5538 }