Convert some more functions to standard C.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 #include <signal.h>
31
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
54
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
57
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
61
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
67
68 #ifdef HAVE_FCNTL_H
69 #include <fcntl.h>
70 #endif
71 #ifndef O_WRONLY
72 #define O_WRONLY 1
73 #endif
74
75 #ifdef WINDOWSNT
76 #include <fcntl.h>
77 #include "w32.h"
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83 /* malloc.h #defines this as size_t, at least in glibc2. */
84 #ifndef __malloc_size_t
85 #define __malloc_size_t int
86 #endif
87
88 /* Specify maximum number of areas to mmap. It would be nice to use a
89 value that explicitly means "no limit". */
90
91 #define MMAP_MAX_AREAS 100000000
92
93 #else /* not DOUG_LEA_MALLOC */
94
95 /* The following come from gmalloc.c. */
96
97 #define __malloc_size_t size_t
98 extern __malloc_size_t _bytes_used;
99 extern __malloc_size_t __malloc_extra_blocks;
100
101 #endif /* not DOUG_LEA_MALLOC */
102
103 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
104
105 /* When GTK uses the file chooser dialog, different backends can be loaded
106 dynamically. One such a backend is the Gnome VFS backend that gets loaded
107 if you run Gnome. That backend creates several threads and also allocates
108 memory with malloc.
109
110 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
111 functions below are called from malloc, there is a chance that one
112 of these threads preempts the Emacs main thread and the hook variables
113 end up in an inconsistent state. So we have a mutex to prevent that (note
114 that the backend handles concurrent access to malloc within its own threads
115 but Emacs code running in the main thread is not included in that control).
116
117 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
118 happens in one of the backend threads we will have two threads that tries
119 to run Emacs code at once, and the code is not prepared for that.
120 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
121
122 static pthread_mutex_t alloc_mutex;
123
124 #define BLOCK_INPUT_ALLOC \
125 do \
126 { \
127 if (pthread_equal (pthread_self (), main_thread)) \
128 BLOCK_INPUT; \
129 pthread_mutex_lock (&alloc_mutex); \
130 } \
131 while (0)
132 #define UNBLOCK_INPUT_ALLOC \
133 do \
134 { \
135 pthread_mutex_unlock (&alloc_mutex); \
136 if (pthread_equal (pthread_self (), main_thread)) \
137 UNBLOCK_INPUT; \
138 } \
139 while (0)
140
141 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
142
143 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
144 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
145
146 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
147
148 /* Value of _bytes_used, when spare_memory was freed. */
149
150 static __malloc_size_t bytes_used_when_full;
151
152 static __malloc_size_t bytes_used_when_reconsidered;
153
154 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
155 to a struct Lisp_String. */
156
157 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
158 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
159 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
160
161 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
162 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
163 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
164
165 /* Value is the number of bytes/chars of S, a pointer to a struct
166 Lisp_String. This must be used instead of STRING_BYTES (S) or
167 S->size during GC, because S->size contains the mark bit for
168 strings. */
169
170 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
171 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
172
173 /* Number of bytes of consing done since the last gc. */
174
175 int consing_since_gc;
176
177 /* Count the amount of consing of various sorts of space. */
178
179 EMACS_INT cons_cells_consed;
180 EMACS_INT floats_consed;
181 EMACS_INT vector_cells_consed;
182 EMACS_INT symbols_consed;
183 EMACS_INT string_chars_consed;
184 EMACS_INT misc_objects_consed;
185 EMACS_INT intervals_consed;
186 EMACS_INT strings_consed;
187
188 /* Minimum number of bytes of consing since GC before next GC. */
189
190 EMACS_INT gc_cons_threshold;
191
192 /* Similar minimum, computed from Vgc_cons_percentage. */
193
194 EMACS_INT gc_relative_threshold;
195
196 static Lisp_Object Vgc_cons_percentage;
197
198 /* Minimum number of bytes of consing since GC before next GC,
199 when memory is full. */
200
201 EMACS_INT memory_full_cons_threshold;
202
203 /* Nonzero during GC. */
204
205 int gc_in_progress;
206
207 /* Nonzero means abort if try to GC.
208 This is for code which is written on the assumption that
209 no GC will happen, so as to verify that assumption. */
210
211 int abort_on_gc;
212
213 /* Nonzero means display messages at beginning and end of GC. */
214
215 int garbage_collection_messages;
216
217 #ifndef VIRT_ADDR_VARIES
218 extern
219 #endif /* VIRT_ADDR_VARIES */
220 int malloc_sbrk_used;
221
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_unused;
226
227 /* Number of live and free conses etc. */
228
229 static int total_conses, total_markers, total_symbols, total_vector_size;
230 static int total_free_conses, total_free_markers, total_free_symbols;
231 static int total_free_floats, total_floats;
232
233 /* Points to memory space allocated as "spare", to be freed if we run
234 out of memory. We keep one large block, four cons-blocks, and
235 two string blocks. */
236
237 static char *spare_memory[7];
238
239 /* Amount of spare memory to keep in large reserve block. */
240
241 #define SPARE_MEMORY (1 << 14)
242
243 /* Number of extra blocks malloc should get when it needs more core. */
244
245 static int malloc_hysteresis;
246
247 /* Non-nil means defun should do purecopy on the function definition. */
248
249 Lisp_Object Vpurify_flag;
250
251 /* Non-nil means we are handling a memory-full error. */
252
253 Lisp_Object Vmemory_full;
254
255 /* Initialize it to a nonzero value to force it into data space
256 (rather than bss space). That way unexec will remap it into text
257 space (pure), on some systems. We have not implemented the
258 remapping on more recent systems because this is less important
259 nowadays than in the days of small memories and timesharing. */
260
261 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
262 #define PUREBEG (char *) pure
263
264 /* Pointer to the pure area, and its size. */
265
266 static char *purebeg;
267 static size_t pure_size;
268
269 /* Number of bytes of pure storage used before pure storage overflowed.
270 If this is non-zero, this implies that an overflow occurred. */
271
272 static size_t pure_bytes_used_before_overflow;
273
274 /* Value is non-zero if P points into pure space. */
275
276 #define PURE_POINTER_P(P) \
277 (((PNTR_COMPARISON_TYPE) (P) \
278 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
279 && ((PNTR_COMPARISON_TYPE) (P) \
280 >= (PNTR_COMPARISON_TYPE) purebeg))
281
282 /* Total number of bytes allocated in pure storage. */
283
284 EMACS_INT pure_bytes_used;
285
286 /* Index in pure at which next pure Lisp object will be allocated.. */
287
288 static EMACS_INT pure_bytes_used_lisp;
289
290 /* Number of bytes allocated for non-Lisp objects in pure storage. */
291
292 static EMACS_INT pure_bytes_used_non_lisp;
293
294 /* If nonzero, this is a warning delivered by malloc and not yet
295 displayed. */
296
297 const char *pending_malloc_warning;
298
299 /* Pre-computed signal argument for use when memory is exhausted. */
300
301 Lisp_Object Vmemory_signal_data;
302
303 /* Maximum amount of C stack to save when a GC happens. */
304
305 #ifndef MAX_SAVE_STACK
306 #define MAX_SAVE_STACK 16000
307 #endif
308
309 /* Buffer in which we save a copy of the C stack at each GC. */
310
311 static char *stack_copy;
312 static int stack_copy_size;
313
314 /* Non-zero means ignore malloc warnings. Set during initialization.
315 Currently not used. */
316
317 static int ignore_warnings;
318
319 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
320
321 /* Hook run after GC has finished. */
322
323 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
324
325 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
326 EMACS_INT gcs_done; /* accumulated GCs */
327
328 static void mark_buffer (Lisp_Object);
329 static void mark_terminals (void);
330 extern void mark_kboards (void);
331 extern void mark_ttys (void);
332 extern void mark_backtrace (void);
333 static void gc_sweep (void);
334 static void mark_glyph_matrix (struct glyph_matrix *);
335 static void mark_face_cache (struct face_cache *);
336
337 #ifdef HAVE_WINDOW_SYSTEM
338 extern void mark_fringe_data (void);
339 #endif /* HAVE_WINDOW_SYSTEM */
340
341 static struct Lisp_String *allocate_string (void);
342 static void compact_small_strings (void);
343 static void free_large_strings (void);
344 static void sweep_strings (void);
345
346 extern int message_enable_multibyte;
347
348 /* When scanning the C stack for live Lisp objects, Emacs keeps track
349 of what memory allocated via lisp_malloc is intended for what
350 purpose. This enumeration specifies the type of memory. */
351
352 enum mem_type
353 {
354 MEM_TYPE_NON_LISP,
355 MEM_TYPE_BUFFER,
356 MEM_TYPE_CONS,
357 MEM_TYPE_STRING,
358 MEM_TYPE_MISC,
359 MEM_TYPE_SYMBOL,
360 MEM_TYPE_FLOAT,
361 /* We used to keep separate mem_types for subtypes of vectors such as
362 process, hash_table, frame, terminal, and window, but we never made
363 use of the distinction, so it only caused source-code complexity
364 and runtime slowdown. Minor but pointless. */
365 MEM_TYPE_VECTORLIKE
366 };
367
368 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
369 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
370 void refill_memory_reserve (void);
371
372
373 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
374
375 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
376 #include <stdio.h> /* For fprintf. */
377 #endif
378
379 /* A unique object in pure space used to make some Lisp objects
380 on free lists recognizable in O(1). */
381
382 static Lisp_Object Vdead;
383
384 #ifdef GC_MALLOC_CHECK
385
386 enum mem_type allocated_mem_type;
387 static int dont_register_blocks;
388
389 #endif /* GC_MALLOC_CHECK */
390
391 /* A node in the red-black tree describing allocated memory containing
392 Lisp data. Each such block is recorded with its start and end
393 address when it is allocated, and removed from the tree when it
394 is freed.
395
396 A red-black tree is a balanced binary tree with the following
397 properties:
398
399 1. Every node is either red or black.
400 2. Every leaf is black.
401 3. If a node is red, then both of its children are black.
402 4. Every simple path from a node to a descendant leaf contains
403 the same number of black nodes.
404 5. The root is always black.
405
406 When nodes are inserted into the tree, or deleted from the tree,
407 the tree is "fixed" so that these properties are always true.
408
409 A red-black tree with N internal nodes has height at most 2
410 log(N+1). Searches, insertions and deletions are done in O(log N).
411 Please see a text book about data structures for a detailed
412 description of red-black trees. Any book worth its salt should
413 describe them. */
414
415 struct mem_node
416 {
417 /* Children of this node. These pointers are never NULL. When there
418 is no child, the value is MEM_NIL, which points to a dummy node. */
419 struct mem_node *left, *right;
420
421 /* The parent of this node. In the root node, this is NULL. */
422 struct mem_node *parent;
423
424 /* Start and end of allocated region. */
425 void *start, *end;
426
427 /* Node color. */
428 enum {MEM_BLACK, MEM_RED} color;
429
430 /* Memory type. */
431 enum mem_type type;
432 };
433
434 /* Base address of stack. Set in main. */
435
436 Lisp_Object *stack_base;
437
438 /* Root of the tree describing allocated Lisp memory. */
439
440 static struct mem_node *mem_root;
441
442 /* Lowest and highest known address in the heap. */
443
444 static void *min_heap_address, *max_heap_address;
445
446 /* Sentinel node of the tree. */
447
448 static struct mem_node mem_z;
449 #define MEM_NIL &mem_z
450
451 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
452 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
453 static void lisp_free (POINTER_TYPE *);
454 static void mark_stack (void);
455 static int live_vector_p (struct mem_node *, void *);
456 static int live_buffer_p (struct mem_node *, void *);
457 static int live_string_p (struct mem_node *, void *);
458 static int live_cons_p (struct mem_node *, void *);
459 static int live_symbol_p (struct mem_node *, void *);
460 static int live_float_p (struct mem_node *, void *);
461 static int live_misc_p (struct mem_node *, void *);
462 static void mark_maybe_object (Lisp_Object);
463 static void mark_memory (void *, void *, int);
464 static void mem_init (void);
465 static struct mem_node *mem_insert (void *, void *, enum mem_type);
466 static void mem_insert_fixup (struct mem_node *);
467 static void mem_rotate_left (struct mem_node *);
468 static void mem_rotate_right (struct mem_node *);
469 static void mem_delete (struct mem_node *);
470 static void mem_delete_fixup (struct mem_node *);
471 static INLINE struct mem_node *mem_find (void *);
472
473
474 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
475 static void check_gcpros (void);
476 #endif
477
478 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
479
480 /* Recording what needs to be marked for gc. */
481
482 struct gcpro *gcprolist;
483
484 /* Addresses of staticpro'd variables. Initialize it to a nonzero
485 value; otherwise some compilers put it into BSS. */
486
487 #define NSTATICS 0x640
488 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
489
490 /* Index of next unused slot in staticvec. */
491
492 static int staticidx = 0;
493
494 static POINTER_TYPE *pure_alloc (size_t, int);
495
496
497 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
498 ALIGNMENT must be a power of 2. */
499
500 #define ALIGN(ptr, ALIGNMENT) \
501 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
502 & ~((ALIGNMENT) - 1)))
503
504
505 \f
506 /************************************************************************
507 Malloc
508 ************************************************************************/
509
510 /* Function malloc calls this if it finds we are near exhausting storage. */
511
512 void
513 malloc_warning (const char *str)
514 {
515 pending_malloc_warning = str;
516 }
517
518
519 /* Display an already-pending malloc warning. */
520
521 void
522 display_malloc_warning (void)
523 {
524 call3 (intern ("display-warning"),
525 intern ("alloc"),
526 build_string (pending_malloc_warning),
527 intern ("emergency"));
528 pending_malloc_warning = 0;
529 }
530
531
532 #ifdef DOUG_LEA_MALLOC
533 # define BYTES_USED (mallinfo ().uordblks)
534 #else
535 # define BYTES_USED _bytes_used
536 #endif
537 \f
538 /* Called if we can't allocate relocatable space for a buffer. */
539
540 void
541 buffer_memory_full (void)
542 {
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
549
550 #ifndef REL_ALLOC
551 memory_full ();
552 #endif
553
554 /* This used to call error, but if we've run out of memory, we could
555 get infinite recursion trying to build the string. */
556 xsignal (Qnil, Vmemory_signal_data);
557 }
558
559
560 #ifdef XMALLOC_OVERRUN_CHECK
561
562 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
563 and a 16 byte trailer around each block.
564
565 The header consists of 12 fixed bytes + a 4 byte integer contaning the
566 original block size, while the trailer consists of 16 fixed bytes.
567
568 The header is used to detect whether this block has been allocated
569 through these functions -- as it seems that some low-level libc
570 functions may bypass the malloc hooks.
571 */
572
573
574 #define XMALLOC_OVERRUN_CHECK_SIZE 16
575
576 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
577 { 0x9a, 0x9b, 0xae, 0xaf,
578 0xbf, 0xbe, 0xce, 0xcf,
579 0xea, 0xeb, 0xec, 0xed };
580
581 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
582 { 0xaa, 0xab, 0xac, 0xad,
583 0xba, 0xbb, 0xbc, 0xbd,
584 0xca, 0xcb, 0xcc, 0xcd,
585 0xda, 0xdb, 0xdc, 0xdd };
586
587 /* Macros to insert and extract the block size in the header. */
588
589 #define XMALLOC_PUT_SIZE(ptr, size) \
590 (ptr[-1] = (size & 0xff), \
591 ptr[-2] = ((size >> 8) & 0xff), \
592 ptr[-3] = ((size >> 16) & 0xff), \
593 ptr[-4] = ((size >> 24) & 0xff))
594
595 #define XMALLOC_GET_SIZE(ptr) \
596 (size_t)((unsigned)(ptr[-1]) | \
597 ((unsigned)(ptr[-2]) << 8) | \
598 ((unsigned)(ptr[-3]) << 16) | \
599 ((unsigned)(ptr[-4]) << 24))
600
601
602 /* The call depth in overrun_check functions. For example, this might happen:
603 xmalloc()
604 overrun_check_malloc()
605 -> malloc -> (via hook)_-> emacs_blocked_malloc
606 -> overrun_check_malloc
607 call malloc (hooks are NULL, so real malloc is called).
608 malloc returns 10000.
609 add overhead, return 10016.
610 <- (back in overrun_check_malloc)
611 add overhead again, return 10032
612 xmalloc returns 10032.
613
614 (time passes).
615
616 xfree(10032)
617 overrun_check_free(10032)
618 decrease overhed
619 free(10016) <- crash, because 10000 is the original pointer. */
620
621 static int check_depth;
622
623 /* Like malloc, but wraps allocated block with header and trailer. */
624
625 POINTER_TYPE *
626 overrun_check_malloc (size)
627 size_t size;
628 {
629 register unsigned char *val;
630 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
631
632 val = (unsigned char *) malloc (size + overhead);
633 if (val && check_depth == 1)
634 {
635 memcpy (val, xmalloc_overrun_check_header,
636 XMALLOC_OVERRUN_CHECK_SIZE - 4);
637 val += XMALLOC_OVERRUN_CHECK_SIZE;
638 XMALLOC_PUT_SIZE(val, size);
639 memcpy (val + size, xmalloc_overrun_check_trailer,
640 XMALLOC_OVERRUN_CHECK_SIZE);
641 }
642 --check_depth;
643 return (POINTER_TYPE *)val;
644 }
645
646
647 /* Like realloc, but checks old block for overrun, and wraps new block
648 with header and trailer. */
649
650 POINTER_TYPE *
651 overrun_check_realloc (block, size)
652 POINTER_TYPE *block;
653 size_t size;
654 {
655 register unsigned char *val = (unsigned char *)block;
656 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
657
658 if (val
659 && check_depth == 1
660 && memcmp (xmalloc_overrun_check_header,
661 val - XMALLOC_OVERRUN_CHECK_SIZE,
662 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
663 {
664 size_t osize = XMALLOC_GET_SIZE (val);
665 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
666 XMALLOC_OVERRUN_CHECK_SIZE))
667 abort ();
668 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
669 val -= XMALLOC_OVERRUN_CHECK_SIZE;
670 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
671 }
672
673 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
674
675 if (val && check_depth == 1)
676 {
677 memcpy (val, xmalloc_overrun_check_header,
678 XMALLOC_OVERRUN_CHECK_SIZE - 4);
679 val += XMALLOC_OVERRUN_CHECK_SIZE;
680 XMALLOC_PUT_SIZE(val, size);
681 memcpy (val + size, xmalloc_overrun_check_trailer,
682 XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && memcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
705 XMALLOC_OVERRUN_CHECK_SIZE))
706 abort ();
707 #ifdef XMALLOC_CLEAR_FREE_MEMORY
708 val -= XMALLOC_OVERRUN_CHECK_SIZE;
709 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
710 #else
711 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
712 val -= XMALLOC_OVERRUN_CHECK_SIZE;
713 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
714 #endif
715 }
716
717 free (val);
718 --check_depth;
719 }
720
721 #undef malloc
722 #undef realloc
723 #undef free
724 #define malloc overrun_check_malloc
725 #define realloc overrun_check_realloc
726 #define free overrun_check_free
727 #endif
728
729 #ifdef SYNC_INPUT
730 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
731 there's no need to block input around malloc. */
732 #define MALLOC_BLOCK_INPUT ((void)0)
733 #define MALLOC_UNBLOCK_INPUT ((void)0)
734 #else
735 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
736 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
737 #endif
738
739 /* Like malloc but check for no memory and block interrupt input.. */
740
741 POINTER_TYPE *
742 xmalloc (size_t size)
743 {
744 register POINTER_TYPE *val;
745
746 MALLOC_BLOCK_INPUT;
747 val = (POINTER_TYPE *) malloc (size);
748 MALLOC_UNBLOCK_INPUT;
749
750 if (!val && size)
751 memory_full ();
752 return val;
753 }
754
755
756 /* Like realloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xrealloc (POINTER_TYPE *block, size_t size)
760 {
761 register POINTER_TYPE *val;
762
763 MALLOC_BLOCK_INPUT;
764 /* We must call malloc explicitly when BLOCK is 0, since some
765 reallocs don't do this. */
766 if (! block)
767 val = (POINTER_TYPE *) malloc (size);
768 else
769 val = (POINTER_TYPE *) realloc (block, size);
770 MALLOC_UNBLOCK_INPUT;
771
772 if (!val && size) memory_full ();
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (POINTER_TYPE *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
790 }
791
792
793 /* Like strdup, but uses xmalloc. */
794
795 char *
796 xstrdup (const char *s)
797 {
798 size_t len = strlen (s) + 1;
799 char *p = (char *) xmalloc (len);
800 memcpy (p, s, len);
801 return p;
802 }
803
804
805 /* Unwind for SAFE_ALLOCA */
806
807 Lisp_Object
808 safe_alloca_unwind (Lisp_Object arg)
809 {
810 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
811
812 p->dogc = 0;
813 xfree (p->pointer);
814 p->pointer = 0;
815 free_misc (arg);
816 return Qnil;
817 }
818
819
820 /* Like malloc but used for allocating Lisp data. NBYTES is the
821 number of bytes to allocate, TYPE describes the intended use of the
822 allcated memory block (for strings, for conses, ...). */
823
824 #ifndef USE_LSB_TAG
825 static void *lisp_malloc_loser;
826 #endif
827
828 static POINTER_TYPE *
829 lisp_malloc (size_t nbytes, enum mem_type type)
830 {
831 register void *val;
832
833 MALLOC_BLOCK_INPUT;
834
835 #ifdef GC_MALLOC_CHECK
836 allocated_mem_type = type;
837 #endif
838
839 val = (void *) malloc (nbytes);
840
841 #ifndef USE_LSB_TAG
842 /* If the memory just allocated cannot be addressed thru a Lisp
843 object's pointer, and it needs to be,
844 that's equivalent to running out of memory. */
845 if (val && type != MEM_TYPE_NON_LISP)
846 {
847 Lisp_Object tem;
848 XSETCONS (tem, (char *) val + nbytes - 1);
849 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
850 {
851 lisp_malloc_loser = val;
852 free (val);
853 val = 0;
854 }
855 }
856 #endif
857
858 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
859 if (val && type != MEM_TYPE_NON_LISP)
860 mem_insert (val, (char *) val + nbytes, type);
861 #endif
862
863 MALLOC_UNBLOCK_INPUT;
864 if (!val && nbytes)
865 memory_full ();
866 return val;
867 }
868
869 /* Free BLOCK. This must be called to free memory allocated with a
870 call to lisp_malloc. */
871
872 static void
873 lisp_free (POINTER_TYPE *block)
874 {
875 MALLOC_BLOCK_INPUT;
876 free (block);
877 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
878 mem_delete (mem_find (block));
879 #endif
880 MALLOC_UNBLOCK_INPUT;
881 }
882
883 /* Allocation of aligned blocks of memory to store Lisp data. */
884 /* The entry point is lisp_align_malloc which returns blocks of at most */
885 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
886
887 /* Use posix_memalloc if the system has it and we're using the system's
888 malloc (because our gmalloc.c routines don't have posix_memalign although
889 its memalloc could be used). */
890 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
891 #define USE_POSIX_MEMALIGN 1
892 #endif
893
894 /* BLOCK_ALIGN has to be a power of 2. */
895 #define BLOCK_ALIGN (1 << 10)
896
897 /* Padding to leave at the end of a malloc'd block. This is to give
898 malloc a chance to minimize the amount of memory wasted to alignment.
899 It should be tuned to the particular malloc library used.
900 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
901 posix_memalign on the other hand would ideally prefer a value of 4
902 because otherwise, there's 1020 bytes wasted between each ablocks.
903 In Emacs, testing shows that those 1020 can most of the time be
904 efficiently used by malloc to place other objects, so a value of 0 can
905 still preferable unless you have a lot of aligned blocks and virtually
906 nothing else. */
907 #define BLOCK_PADDING 0
908 #define BLOCK_BYTES \
909 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
910
911 /* Internal data structures and constants. */
912
913 #define ABLOCKS_SIZE 16
914
915 /* An aligned block of memory. */
916 struct ablock
917 {
918 union
919 {
920 char payload[BLOCK_BYTES];
921 struct ablock *next_free;
922 } x;
923 /* `abase' is the aligned base of the ablocks. */
924 /* It is overloaded to hold the virtual `busy' field that counts
925 the number of used ablock in the parent ablocks.
926 The first ablock has the `busy' field, the others have the `abase'
927 field. To tell the difference, we assume that pointers will have
928 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
929 is used to tell whether the real base of the parent ablocks is `abase'
930 (if not, the word before the first ablock holds a pointer to the
931 real base). */
932 struct ablocks *abase;
933 /* The padding of all but the last ablock is unused. The padding of
934 the last ablock in an ablocks is not allocated. */
935 #if BLOCK_PADDING
936 char padding[BLOCK_PADDING];
937 #endif
938 };
939
940 /* A bunch of consecutive aligned blocks. */
941 struct ablocks
942 {
943 struct ablock blocks[ABLOCKS_SIZE];
944 };
945
946 /* Size of the block requested from malloc or memalign. */
947 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
948
949 #define ABLOCK_ABASE(block) \
950 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
951 ? (struct ablocks *)(block) \
952 : (block)->abase)
953
954 /* Virtual `busy' field. */
955 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
956
957 /* Pointer to the (not necessarily aligned) malloc block. */
958 #ifdef USE_POSIX_MEMALIGN
959 #define ABLOCKS_BASE(abase) (abase)
960 #else
961 #define ABLOCKS_BASE(abase) \
962 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
963 #endif
964
965 /* The list of free ablock. */
966 static struct ablock *free_ablock;
967
968 /* Allocate an aligned block of nbytes.
969 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
970 smaller or equal to BLOCK_BYTES. */
971 static POINTER_TYPE *
972 lisp_align_malloc (size_t nbytes, enum mem_type type)
973 {
974 void *base, *val;
975 struct ablocks *abase;
976
977 eassert (nbytes <= BLOCK_BYTES);
978
979 MALLOC_BLOCK_INPUT;
980
981 #ifdef GC_MALLOC_CHECK
982 allocated_mem_type = type;
983 #endif
984
985 if (!free_ablock)
986 {
987 int i;
988 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
989
990 #ifdef DOUG_LEA_MALLOC
991 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
992 because mapped region contents are not preserved in
993 a dumped Emacs. */
994 mallopt (M_MMAP_MAX, 0);
995 #endif
996
997 #ifdef USE_POSIX_MEMALIGN
998 {
999 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1000 if (err)
1001 base = NULL;
1002 abase = base;
1003 }
1004 #else
1005 base = malloc (ABLOCKS_BYTES);
1006 abase = ALIGN (base, BLOCK_ALIGN);
1007 #endif
1008
1009 if (base == 0)
1010 {
1011 MALLOC_UNBLOCK_INPUT;
1012 memory_full ();
1013 }
1014
1015 aligned = (base == abase);
1016 if (!aligned)
1017 ((void**)abase)[-1] = base;
1018
1019 #ifdef DOUG_LEA_MALLOC
1020 /* Back to a reasonable maximum of mmap'ed areas. */
1021 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1022 #endif
1023
1024 #ifndef USE_LSB_TAG
1025 /* If the memory just allocated cannot be addressed thru a Lisp
1026 object's pointer, and it needs to be, that's equivalent to
1027 running out of memory. */
1028 if (type != MEM_TYPE_NON_LISP)
1029 {
1030 Lisp_Object tem;
1031 char *end = (char *) base + ABLOCKS_BYTES - 1;
1032 XSETCONS (tem, end);
1033 if ((char *) XCONS (tem) != end)
1034 {
1035 lisp_malloc_loser = base;
1036 free (base);
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1039 }
1040 }
1041 #endif
1042
1043 /* Initialize the blocks and put them on the free list.
1044 Is `base' was not properly aligned, we can't use the last block. */
1045 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1046 {
1047 abase->blocks[i].abase = abase;
1048 abase->blocks[i].x.next_free = free_ablock;
1049 free_ablock = &abase->blocks[i];
1050 }
1051 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1052
1053 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1054 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1055 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1056 eassert (ABLOCKS_BASE (abase) == base);
1057 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1058 }
1059
1060 abase = ABLOCK_ABASE (free_ablock);
1061 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1062 val = free_ablock;
1063 free_ablock = free_ablock->x.next_free;
1064
1065 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1066 if (val && type != MEM_TYPE_NON_LISP)
1067 mem_insert (val, (char *) val + nbytes, type);
1068 #endif
1069
1070 MALLOC_UNBLOCK_INPUT;
1071 if (!val && nbytes)
1072 memory_full ();
1073
1074 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1075 return val;
1076 }
1077
1078 static void
1079 lisp_align_free (POINTER_TYPE *block)
1080 {
1081 struct ablock *ablock = block;
1082 struct ablocks *abase = ABLOCK_ABASE (ablock);
1083
1084 MALLOC_BLOCK_INPUT;
1085 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1086 mem_delete (mem_find (block));
1087 #endif
1088 /* Put on free list. */
1089 ablock->x.next_free = free_ablock;
1090 free_ablock = ablock;
1091 /* Update busy count. */
1092 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1093
1094 if (2 > (long) ABLOCKS_BUSY (abase))
1095 { /* All the blocks are free. */
1096 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1097 struct ablock **tem = &free_ablock;
1098 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1099
1100 while (*tem)
1101 {
1102 if (*tem >= (struct ablock *) abase && *tem < atop)
1103 {
1104 i++;
1105 *tem = (*tem)->x.next_free;
1106 }
1107 else
1108 tem = &(*tem)->x.next_free;
1109 }
1110 eassert ((aligned & 1) == aligned);
1111 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1112 #ifdef USE_POSIX_MEMALIGN
1113 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1114 #endif
1115 free (ABLOCKS_BASE (abase));
1116 }
1117 MALLOC_UNBLOCK_INPUT;
1118 }
1119
1120 /* Return a new buffer structure allocated from the heap with
1121 a call to lisp_malloc. */
1122
1123 struct buffer *
1124 allocate_buffer (void)
1125 {
1126 struct buffer *b
1127 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1128 MEM_TYPE_BUFFER);
1129 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1130 XSETPVECTYPE (b, PVEC_BUFFER);
1131 return b;
1132 }
1133
1134 \f
1135 #ifndef SYSTEM_MALLOC
1136
1137 /* Arranging to disable input signals while we're in malloc.
1138
1139 This only works with GNU malloc. To help out systems which can't
1140 use GNU malloc, all the calls to malloc, realloc, and free
1141 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1142 pair; unfortunately, we have no idea what C library functions
1143 might call malloc, so we can't really protect them unless you're
1144 using GNU malloc. Fortunately, most of the major operating systems
1145 can use GNU malloc. */
1146
1147 #ifndef SYNC_INPUT
1148 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1149 there's no need to block input around malloc. */
1150
1151 #ifndef DOUG_LEA_MALLOC
1152 extern void * (*__malloc_hook) (size_t, const void *);
1153 extern void * (*__realloc_hook) (void *, size_t, const void *);
1154 extern void (*__free_hook) (void *, const void *);
1155 /* Else declared in malloc.h, perhaps with an extra arg. */
1156 #endif /* DOUG_LEA_MALLOC */
1157 static void * (*old_malloc_hook) (size_t, const void *);
1158 static void * (*old_realloc_hook) (void *, size_t, const void*);
1159 static void (*old_free_hook) (void*, const void*);
1160
1161 /* This function is used as the hook for free to call. */
1162
1163 static void
1164 emacs_blocked_free (void *ptr, const void *ptr2)
1165 {
1166 BLOCK_INPUT_ALLOC;
1167
1168 #ifdef GC_MALLOC_CHECK
1169 if (ptr)
1170 {
1171 struct mem_node *m;
1172
1173 m = mem_find (ptr);
1174 if (m == MEM_NIL || m->start != ptr)
1175 {
1176 fprintf (stderr,
1177 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1178 abort ();
1179 }
1180 else
1181 {
1182 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1183 mem_delete (m);
1184 }
1185 }
1186 #endif /* GC_MALLOC_CHECK */
1187
1188 __free_hook = old_free_hook;
1189 free (ptr);
1190
1191 /* If we released our reserve (due to running out of memory),
1192 and we have a fair amount free once again,
1193 try to set aside another reserve in case we run out once more. */
1194 if (! NILP (Vmemory_full)
1195 /* Verify there is enough space that even with the malloc
1196 hysteresis this call won't run out again.
1197 The code here is correct as long as SPARE_MEMORY
1198 is substantially larger than the block size malloc uses. */
1199 && (bytes_used_when_full
1200 > ((bytes_used_when_reconsidered = BYTES_USED)
1201 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1202 refill_memory_reserve ();
1203
1204 __free_hook = emacs_blocked_free;
1205 UNBLOCK_INPUT_ALLOC;
1206 }
1207
1208
1209 /* This function is the malloc hook that Emacs uses. */
1210
1211 static void *
1212 emacs_blocked_malloc (size_t size, const void *ptr)
1213 {
1214 void *value;
1215
1216 BLOCK_INPUT_ALLOC;
1217 __malloc_hook = old_malloc_hook;
1218 #ifdef DOUG_LEA_MALLOC
1219 /* Segfaults on my system. --lorentey */
1220 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1221 #else
1222 __malloc_extra_blocks = malloc_hysteresis;
1223 #endif
1224
1225 value = (void *) malloc (size);
1226
1227 #ifdef GC_MALLOC_CHECK
1228 {
1229 struct mem_node *m = mem_find (value);
1230 if (m != MEM_NIL)
1231 {
1232 fprintf (stderr, "Malloc returned %p which is already in use\n",
1233 value);
1234 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1235 m->start, m->end, (char *) m->end - (char *) m->start,
1236 m->type);
1237 abort ();
1238 }
1239
1240 if (!dont_register_blocks)
1241 {
1242 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1243 allocated_mem_type = MEM_TYPE_NON_LISP;
1244 }
1245 }
1246 #endif /* GC_MALLOC_CHECK */
1247
1248 __malloc_hook = emacs_blocked_malloc;
1249 UNBLOCK_INPUT_ALLOC;
1250
1251 /* fprintf (stderr, "%p malloc\n", value); */
1252 return value;
1253 }
1254
1255
1256 /* This function is the realloc hook that Emacs uses. */
1257
1258 static void *
1259 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1260 {
1261 void *value;
1262
1263 BLOCK_INPUT_ALLOC;
1264 __realloc_hook = old_realloc_hook;
1265
1266 #ifdef GC_MALLOC_CHECK
1267 if (ptr)
1268 {
1269 struct mem_node *m = mem_find (ptr);
1270 if (m == MEM_NIL || m->start != ptr)
1271 {
1272 fprintf (stderr,
1273 "Realloc of %p which wasn't allocated with malloc\n",
1274 ptr);
1275 abort ();
1276 }
1277
1278 mem_delete (m);
1279 }
1280
1281 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1282
1283 /* Prevent malloc from registering blocks. */
1284 dont_register_blocks = 1;
1285 #endif /* GC_MALLOC_CHECK */
1286
1287 value = (void *) realloc (ptr, size);
1288
1289 #ifdef GC_MALLOC_CHECK
1290 dont_register_blocks = 0;
1291
1292 {
1293 struct mem_node *m = mem_find (value);
1294 if (m != MEM_NIL)
1295 {
1296 fprintf (stderr, "Realloc returns memory that is already in use\n");
1297 abort ();
1298 }
1299
1300 /* Can't handle zero size regions in the red-black tree. */
1301 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1302 }
1303
1304 /* fprintf (stderr, "%p <- realloc\n", value); */
1305 #endif /* GC_MALLOC_CHECK */
1306
1307 __realloc_hook = emacs_blocked_realloc;
1308 UNBLOCK_INPUT_ALLOC;
1309
1310 return value;
1311 }
1312
1313
1314 #ifdef HAVE_GTK_AND_PTHREAD
1315 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1316 normal malloc. Some thread implementations need this as they call
1317 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1318 calls malloc because it is the first call, and we have an endless loop. */
1319
1320 void
1321 reset_malloc_hooks ()
1322 {
1323 __free_hook = old_free_hook;
1324 __malloc_hook = old_malloc_hook;
1325 __realloc_hook = old_realloc_hook;
1326 }
1327 #endif /* HAVE_GTK_AND_PTHREAD */
1328
1329
1330 /* Called from main to set up malloc to use our hooks. */
1331
1332 void
1333 uninterrupt_malloc (void)
1334 {
1335 #ifdef HAVE_GTK_AND_PTHREAD
1336 #ifdef DOUG_LEA_MALLOC
1337 pthread_mutexattr_t attr;
1338
1339 /* GLIBC has a faster way to do this, but lets keep it portable.
1340 This is according to the Single UNIX Specification. */
1341 pthread_mutexattr_init (&attr);
1342 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1343 pthread_mutex_init (&alloc_mutex, &attr);
1344 #else /* !DOUG_LEA_MALLOC */
1345 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1346 and the bundled gmalloc.c doesn't require it. */
1347 pthread_mutex_init (&alloc_mutex, NULL);
1348 #endif /* !DOUG_LEA_MALLOC */
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1350
1351 if (__free_hook != emacs_blocked_free)
1352 old_free_hook = __free_hook;
1353 __free_hook = emacs_blocked_free;
1354
1355 if (__malloc_hook != emacs_blocked_malloc)
1356 old_malloc_hook = __malloc_hook;
1357 __malloc_hook = emacs_blocked_malloc;
1358
1359 if (__realloc_hook != emacs_blocked_realloc)
1360 old_realloc_hook = __realloc_hook;
1361 __realloc_hook = emacs_blocked_realloc;
1362 }
1363
1364 #endif /* not SYNC_INPUT */
1365 #endif /* not SYSTEM_MALLOC */
1366
1367
1368 \f
1369 /***********************************************************************
1370 Interval Allocation
1371 ***********************************************************************/
1372
1373 /* Number of intervals allocated in an interval_block structure.
1374 The 1020 is 1024 minus malloc overhead. */
1375
1376 #define INTERVAL_BLOCK_SIZE \
1377 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1378
1379 /* Intervals are allocated in chunks in form of an interval_block
1380 structure. */
1381
1382 struct interval_block
1383 {
1384 /* Place `intervals' first, to preserve alignment. */
1385 struct interval intervals[INTERVAL_BLOCK_SIZE];
1386 struct interval_block *next;
1387 };
1388
1389 /* Current interval block. Its `next' pointer points to older
1390 blocks. */
1391
1392 static struct interval_block *interval_block;
1393
1394 /* Index in interval_block above of the next unused interval
1395 structure. */
1396
1397 static int interval_block_index;
1398
1399 /* Number of free and live intervals. */
1400
1401 static int total_free_intervals, total_intervals;
1402
1403 /* List of free intervals. */
1404
1405 INTERVAL interval_free_list;
1406
1407 /* Total number of interval blocks now in use. */
1408
1409 static int n_interval_blocks;
1410
1411
1412 /* Initialize interval allocation. */
1413
1414 static void
1415 init_intervals (void)
1416 {
1417 interval_block = NULL;
1418 interval_block_index = INTERVAL_BLOCK_SIZE;
1419 interval_free_list = 0;
1420 n_interval_blocks = 0;
1421 }
1422
1423
1424 /* Return a new interval. */
1425
1426 INTERVAL
1427 make_interval (void)
1428 {
1429 INTERVAL val;
1430
1431 /* eassert (!handling_signal); */
1432
1433 MALLOC_BLOCK_INPUT;
1434
1435 if (interval_free_list)
1436 {
1437 val = interval_free_list;
1438 interval_free_list = INTERVAL_PARENT (interval_free_list);
1439 }
1440 else
1441 {
1442 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1443 {
1444 register struct interval_block *newi;
1445
1446 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1447 MEM_TYPE_NON_LISP);
1448
1449 newi->next = interval_block;
1450 interval_block = newi;
1451 interval_block_index = 0;
1452 n_interval_blocks++;
1453 }
1454 val = &interval_block->intervals[interval_block_index++];
1455 }
1456
1457 MALLOC_UNBLOCK_INPUT;
1458
1459 consing_since_gc += sizeof (struct interval);
1460 intervals_consed++;
1461 RESET_INTERVAL (val);
1462 val->gcmarkbit = 0;
1463 return val;
1464 }
1465
1466
1467 /* Mark Lisp objects in interval I. */
1468
1469 static void
1470 mark_interval (register INTERVAL i, Lisp_Object dummy)
1471 {
1472 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1473 i->gcmarkbit = 1;
1474 mark_object (i->plist);
1475 }
1476
1477
1478 /* Mark the interval tree rooted in TREE. Don't call this directly;
1479 use the macro MARK_INTERVAL_TREE instead. */
1480
1481 static void
1482 mark_interval_tree (register INTERVAL tree)
1483 {
1484 /* No need to test if this tree has been marked already; this
1485 function is always called through the MARK_INTERVAL_TREE macro,
1486 which takes care of that. */
1487
1488 traverse_intervals_noorder (tree, mark_interval, Qnil);
1489 }
1490
1491
1492 /* Mark the interval tree rooted in I. */
1493
1494 #define MARK_INTERVAL_TREE(i) \
1495 do { \
1496 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1497 mark_interval_tree (i); \
1498 } while (0)
1499
1500
1501 #define UNMARK_BALANCE_INTERVALS(i) \
1502 do { \
1503 if (! NULL_INTERVAL_P (i)) \
1504 (i) = balance_intervals (i); \
1505 } while (0)
1506
1507 \f
1508 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1509 can't create number objects in macros. */
1510 #ifndef make_number
1511 Lisp_Object
1512 make_number (n)
1513 EMACS_INT n;
1514 {
1515 Lisp_Object obj;
1516 obj.s.val = n;
1517 obj.s.type = Lisp_Int;
1518 return obj;
1519 }
1520 #endif
1521 \f
1522 /***********************************************************************
1523 String Allocation
1524 ***********************************************************************/
1525
1526 /* Lisp_Strings are allocated in string_block structures. When a new
1527 string_block is allocated, all the Lisp_Strings it contains are
1528 added to a free-list string_free_list. When a new Lisp_String is
1529 needed, it is taken from that list. During the sweep phase of GC,
1530 string_blocks that are entirely free are freed, except two which
1531 we keep.
1532
1533 String data is allocated from sblock structures. Strings larger
1534 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1535 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1536
1537 Sblocks consist internally of sdata structures, one for each
1538 Lisp_String. The sdata structure points to the Lisp_String it
1539 belongs to. The Lisp_String points back to the `u.data' member of
1540 its sdata structure.
1541
1542 When a Lisp_String is freed during GC, it is put back on
1543 string_free_list, and its `data' member and its sdata's `string'
1544 pointer is set to null. The size of the string is recorded in the
1545 `u.nbytes' member of the sdata. So, sdata structures that are no
1546 longer used, can be easily recognized, and it's easy to compact the
1547 sblocks of small strings which we do in compact_small_strings. */
1548
1549 /* Size in bytes of an sblock structure used for small strings. This
1550 is 8192 minus malloc overhead. */
1551
1552 #define SBLOCK_SIZE 8188
1553
1554 /* Strings larger than this are considered large strings. String data
1555 for large strings is allocated from individual sblocks. */
1556
1557 #define LARGE_STRING_BYTES 1024
1558
1559 /* Structure describing string memory sub-allocated from an sblock.
1560 This is where the contents of Lisp strings are stored. */
1561
1562 struct sdata
1563 {
1564 /* Back-pointer to the string this sdata belongs to. If null, this
1565 structure is free, and the NBYTES member of the union below
1566 contains the string's byte size (the same value that STRING_BYTES
1567 would return if STRING were non-null). If non-null, STRING_BYTES
1568 (STRING) is the size of the data, and DATA contains the string's
1569 contents. */
1570 struct Lisp_String *string;
1571
1572 #ifdef GC_CHECK_STRING_BYTES
1573
1574 EMACS_INT nbytes;
1575 unsigned char data[1];
1576
1577 #define SDATA_NBYTES(S) (S)->nbytes
1578 #define SDATA_DATA(S) (S)->data
1579
1580 #else /* not GC_CHECK_STRING_BYTES */
1581
1582 union
1583 {
1584 /* When STRING in non-null. */
1585 unsigned char data[1];
1586
1587 /* When STRING is null. */
1588 EMACS_INT nbytes;
1589 } u;
1590
1591
1592 #define SDATA_NBYTES(S) (S)->u.nbytes
1593 #define SDATA_DATA(S) (S)->u.data
1594
1595 #endif /* not GC_CHECK_STRING_BYTES */
1596 };
1597
1598
1599 /* Structure describing a block of memory which is sub-allocated to
1600 obtain string data memory for strings. Blocks for small strings
1601 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1602 as large as needed. */
1603
1604 struct sblock
1605 {
1606 /* Next in list. */
1607 struct sblock *next;
1608
1609 /* Pointer to the next free sdata block. This points past the end
1610 of the sblock if there isn't any space left in this block. */
1611 struct sdata *next_free;
1612
1613 /* Start of data. */
1614 struct sdata first_data;
1615 };
1616
1617 /* Number of Lisp strings in a string_block structure. The 1020 is
1618 1024 minus malloc overhead. */
1619
1620 #define STRING_BLOCK_SIZE \
1621 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1622
1623 /* Structure describing a block from which Lisp_String structures
1624 are allocated. */
1625
1626 struct string_block
1627 {
1628 /* Place `strings' first, to preserve alignment. */
1629 struct Lisp_String strings[STRING_BLOCK_SIZE];
1630 struct string_block *next;
1631 };
1632
1633 /* Head and tail of the list of sblock structures holding Lisp string
1634 data. We always allocate from current_sblock. The NEXT pointers
1635 in the sblock structures go from oldest_sblock to current_sblock. */
1636
1637 static struct sblock *oldest_sblock, *current_sblock;
1638
1639 /* List of sblocks for large strings. */
1640
1641 static struct sblock *large_sblocks;
1642
1643 /* List of string_block structures, and how many there are. */
1644
1645 static struct string_block *string_blocks;
1646 static int n_string_blocks;
1647
1648 /* Free-list of Lisp_Strings. */
1649
1650 static struct Lisp_String *string_free_list;
1651
1652 /* Number of live and free Lisp_Strings. */
1653
1654 static int total_strings, total_free_strings;
1655
1656 /* Number of bytes used by live strings. */
1657
1658 static int total_string_size;
1659
1660 /* Given a pointer to a Lisp_String S which is on the free-list
1661 string_free_list, return a pointer to its successor in the
1662 free-list. */
1663
1664 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1665
1666 /* Return a pointer to the sdata structure belonging to Lisp string S.
1667 S must be live, i.e. S->data must not be null. S->data is actually
1668 a pointer to the `u.data' member of its sdata structure; the
1669 structure starts at a constant offset in front of that. */
1670
1671 #ifdef GC_CHECK_STRING_BYTES
1672
1673 #define SDATA_OF_STRING(S) \
1674 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1675 - sizeof (EMACS_INT)))
1676
1677 #else /* not GC_CHECK_STRING_BYTES */
1678
1679 #define SDATA_OF_STRING(S) \
1680 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1681
1682 #endif /* not GC_CHECK_STRING_BYTES */
1683
1684
1685 #ifdef GC_CHECK_STRING_OVERRUN
1686
1687 /* We check for overrun in string data blocks by appending a small
1688 "cookie" after each allocated string data block, and check for the
1689 presence of this cookie during GC. */
1690
1691 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1692 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1693 { 0xde, 0xad, 0xbe, 0xef };
1694
1695 #else
1696 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1697 #endif
1698
1699 /* Value is the size of an sdata structure large enough to hold NBYTES
1700 bytes of string data. The value returned includes a terminating
1701 NUL byte, the size of the sdata structure, and padding. */
1702
1703 #ifdef GC_CHECK_STRING_BYTES
1704
1705 #define SDATA_SIZE(NBYTES) \
1706 ((sizeof (struct Lisp_String *) \
1707 + (NBYTES) + 1 \
1708 + sizeof (EMACS_INT) \
1709 + sizeof (EMACS_INT) - 1) \
1710 & ~(sizeof (EMACS_INT) - 1))
1711
1712 #else /* not GC_CHECK_STRING_BYTES */
1713
1714 #define SDATA_SIZE(NBYTES) \
1715 ((sizeof (struct Lisp_String *) \
1716 + (NBYTES) + 1 \
1717 + sizeof (EMACS_INT) - 1) \
1718 & ~(sizeof (EMACS_INT) - 1))
1719
1720 #endif /* not GC_CHECK_STRING_BYTES */
1721
1722 /* Extra bytes to allocate for each string. */
1723
1724 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1725
1726 /* Initialize string allocation. Called from init_alloc_once. */
1727
1728 static void
1729 init_strings (void)
1730 {
1731 total_strings = total_free_strings = total_string_size = 0;
1732 oldest_sblock = current_sblock = large_sblocks = NULL;
1733 string_blocks = NULL;
1734 n_string_blocks = 0;
1735 string_free_list = NULL;
1736 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1737 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1738 }
1739
1740
1741 #ifdef GC_CHECK_STRING_BYTES
1742
1743 static int check_string_bytes_count;
1744
1745 static void check_string_bytes (int);
1746 static void check_sblock (struct sblock *);
1747
1748 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1749
1750
1751 /* Like GC_STRING_BYTES, but with debugging check. */
1752
1753 int
1754 string_bytes (s)
1755 struct Lisp_String *s;
1756 {
1757 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1758 if (!PURE_POINTER_P (s)
1759 && s->data
1760 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1761 abort ();
1762 return nbytes;
1763 }
1764
1765 /* Check validity of Lisp strings' string_bytes member in B. */
1766
1767 static void
1768 check_sblock (b)
1769 struct sblock *b;
1770 {
1771 struct sdata *from, *end, *from_end;
1772
1773 end = b->next_free;
1774
1775 for (from = &b->first_data; from < end; from = from_end)
1776 {
1777 /* Compute the next FROM here because copying below may
1778 overwrite data we need to compute it. */
1779 int nbytes;
1780
1781 /* Check that the string size recorded in the string is the
1782 same as the one recorded in the sdata structure. */
1783 if (from->string)
1784 CHECK_STRING_BYTES (from->string);
1785
1786 if (from->string)
1787 nbytes = GC_STRING_BYTES (from->string);
1788 else
1789 nbytes = SDATA_NBYTES (from);
1790
1791 nbytes = SDATA_SIZE (nbytes);
1792 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1793 }
1794 }
1795
1796
1797 /* Check validity of Lisp strings' string_bytes member. ALL_P
1798 non-zero means check all strings, otherwise check only most
1799 recently allocated strings. Used for hunting a bug. */
1800
1801 static void
1802 check_string_bytes (all_p)
1803 int all_p;
1804 {
1805 if (all_p)
1806 {
1807 struct sblock *b;
1808
1809 for (b = large_sblocks; b; b = b->next)
1810 {
1811 struct Lisp_String *s = b->first_data.string;
1812 if (s)
1813 CHECK_STRING_BYTES (s);
1814 }
1815
1816 for (b = oldest_sblock; b; b = b->next)
1817 check_sblock (b);
1818 }
1819 else
1820 check_sblock (current_sblock);
1821 }
1822
1823 #endif /* GC_CHECK_STRING_BYTES */
1824
1825 #ifdef GC_CHECK_STRING_FREE_LIST
1826
1827 /* Walk through the string free list looking for bogus next pointers.
1828 This may catch buffer overrun from a previous string. */
1829
1830 static void
1831 check_string_free_list ()
1832 {
1833 struct Lisp_String *s;
1834
1835 /* Pop a Lisp_String off the free-list. */
1836 s = string_free_list;
1837 while (s != NULL)
1838 {
1839 if ((unsigned)s < 1024)
1840 abort();
1841 s = NEXT_FREE_LISP_STRING (s);
1842 }
1843 }
1844 #else
1845 #define check_string_free_list()
1846 #endif
1847
1848 /* Return a new Lisp_String. */
1849
1850 static struct Lisp_String *
1851 allocate_string (void)
1852 {
1853 struct Lisp_String *s;
1854
1855 /* eassert (!handling_signal); */
1856
1857 MALLOC_BLOCK_INPUT;
1858
1859 /* If the free-list is empty, allocate a new string_block, and
1860 add all the Lisp_Strings in it to the free-list. */
1861 if (string_free_list == NULL)
1862 {
1863 struct string_block *b;
1864 int i;
1865
1866 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1867 memset (b, 0, sizeof *b);
1868 b->next = string_blocks;
1869 string_blocks = b;
1870 ++n_string_blocks;
1871
1872 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1873 {
1874 s = b->strings + i;
1875 NEXT_FREE_LISP_STRING (s) = string_free_list;
1876 string_free_list = s;
1877 }
1878
1879 total_free_strings += STRING_BLOCK_SIZE;
1880 }
1881
1882 check_string_free_list ();
1883
1884 /* Pop a Lisp_String off the free-list. */
1885 s = string_free_list;
1886 string_free_list = NEXT_FREE_LISP_STRING (s);
1887
1888 MALLOC_UNBLOCK_INPUT;
1889
1890 /* Probably not strictly necessary, but play it safe. */
1891 memset (s, 0, sizeof *s);
1892
1893 --total_free_strings;
1894 ++total_strings;
1895 ++strings_consed;
1896 consing_since_gc += sizeof *s;
1897
1898 #ifdef GC_CHECK_STRING_BYTES
1899 if (!noninteractive)
1900 {
1901 if (++check_string_bytes_count == 200)
1902 {
1903 check_string_bytes_count = 0;
1904 check_string_bytes (1);
1905 }
1906 else
1907 check_string_bytes (0);
1908 }
1909 #endif /* GC_CHECK_STRING_BYTES */
1910
1911 return s;
1912 }
1913
1914
1915 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1916 plus a NUL byte at the end. Allocate an sdata structure for S, and
1917 set S->data to its `u.data' member. Store a NUL byte at the end of
1918 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1919 S->data if it was initially non-null. */
1920
1921 void
1922 allocate_string_data (struct Lisp_String *s, int nchars, int nbytes)
1923 {
1924 struct sdata *data, *old_data;
1925 struct sblock *b;
1926 int needed, old_nbytes;
1927
1928 /* Determine the number of bytes needed to store NBYTES bytes
1929 of string data. */
1930 needed = SDATA_SIZE (nbytes);
1931 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1932 old_nbytes = GC_STRING_BYTES (s);
1933
1934 MALLOC_BLOCK_INPUT;
1935
1936 if (nbytes > LARGE_STRING_BYTES)
1937 {
1938 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1939
1940 #ifdef DOUG_LEA_MALLOC
1941 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1942 because mapped region contents are not preserved in
1943 a dumped Emacs.
1944
1945 In case you think of allowing it in a dumped Emacs at the
1946 cost of not being able to re-dump, there's another reason:
1947 mmap'ed data typically have an address towards the top of the
1948 address space, which won't fit into an EMACS_INT (at least on
1949 32-bit systems with the current tagging scheme). --fx */
1950 mallopt (M_MMAP_MAX, 0);
1951 #endif
1952
1953 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1954
1955 #ifdef DOUG_LEA_MALLOC
1956 /* Back to a reasonable maximum of mmap'ed areas. */
1957 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1958 #endif
1959
1960 b->next_free = &b->first_data;
1961 b->first_data.string = NULL;
1962 b->next = large_sblocks;
1963 large_sblocks = b;
1964 }
1965 else if (current_sblock == NULL
1966 || (((char *) current_sblock + SBLOCK_SIZE
1967 - (char *) current_sblock->next_free)
1968 < (needed + GC_STRING_EXTRA)))
1969 {
1970 /* Not enough room in the current sblock. */
1971 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1972 b->next_free = &b->first_data;
1973 b->first_data.string = NULL;
1974 b->next = NULL;
1975
1976 if (current_sblock)
1977 current_sblock->next = b;
1978 else
1979 oldest_sblock = b;
1980 current_sblock = b;
1981 }
1982 else
1983 b = current_sblock;
1984
1985 data = b->next_free;
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1987
1988 MALLOC_UNBLOCK_INPUT;
1989
1990 data->string = s;
1991 s->data = SDATA_DATA (data);
1992 #ifdef GC_CHECK_STRING_BYTES
1993 SDATA_NBYTES (data) = nbytes;
1994 #endif
1995 s->size = nchars;
1996 s->size_byte = nbytes;
1997 s->data[nbytes] = '\0';
1998 #ifdef GC_CHECK_STRING_OVERRUN
1999 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
2000 #endif
2001
2002 /* If S had already data assigned, mark that as free by setting its
2003 string back-pointer to null, and recording the size of the data
2004 in it. */
2005 if (old_data)
2006 {
2007 SDATA_NBYTES (old_data) = old_nbytes;
2008 old_data->string = NULL;
2009 }
2010
2011 consing_since_gc += needed;
2012 }
2013
2014
2015 /* Sweep and compact strings. */
2016
2017 static void
2018 sweep_strings (void)
2019 {
2020 struct string_block *b, *next;
2021 struct string_block *live_blocks = NULL;
2022
2023 string_free_list = NULL;
2024 total_strings = total_free_strings = 0;
2025 total_string_size = 0;
2026
2027 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2028 for (b = string_blocks; b; b = next)
2029 {
2030 int i, nfree = 0;
2031 struct Lisp_String *free_list_before = string_free_list;
2032
2033 next = b->next;
2034
2035 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2036 {
2037 struct Lisp_String *s = b->strings + i;
2038
2039 if (s->data)
2040 {
2041 /* String was not on free-list before. */
2042 if (STRING_MARKED_P (s))
2043 {
2044 /* String is live; unmark it and its intervals. */
2045 UNMARK_STRING (s);
2046
2047 if (!NULL_INTERVAL_P (s->intervals))
2048 UNMARK_BALANCE_INTERVALS (s->intervals);
2049
2050 ++total_strings;
2051 total_string_size += STRING_BYTES (s);
2052 }
2053 else
2054 {
2055 /* String is dead. Put it on the free-list. */
2056 struct sdata *data = SDATA_OF_STRING (s);
2057
2058 /* Save the size of S in its sdata so that we know
2059 how large that is. Reset the sdata's string
2060 back-pointer so that we know it's free. */
2061 #ifdef GC_CHECK_STRING_BYTES
2062 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2063 abort ();
2064 #else
2065 data->u.nbytes = GC_STRING_BYTES (s);
2066 #endif
2067 data->string = NULL;
2068
2069 /* Reset the strings's `data' member so that we
2070 know it's free. */
2071 s->data = NULL;
2072
2073 /* Put the string on the free-list. */
2074 NEXT_FREE_LISP_STRING (s) = string_free_list;
2075 string_free_list = s;
2076 ++nfree;
2077 }
2078 }
2079 else
2080 {
2081 /* S was on the free-list before. Put it there again. */
2082 NEXT_FREE_LISP_STRING (s) = string_free_list;
2083 string_free_list = s;
2084 ++nfree;
2085 }
2086 }
2087
2088 /* Free blocks that contain free Lisp_Strings only, except
2089 the first two of them. */
2090 if (nfree == STRING_BLOCK_SIZE
2091 && total_free_strings > STRING_BLOCK_SIZE)
2092 {
2093 lisp_free (b);
2094 --n_string_blocks;
2095 string_free_list = free_list_before;
2096 }
2097 else
2098 {
2099 total_free_strings += nfree;
2100 b->next = live_blocks;
2101 live_blocks = b;
2102 }
2103 }
2104
2105 check_string_free_list ();
2106
2107 string_blocks = live_blocks;
2108 free_large_strings ();
2109 compact_small_strings ();
2110
2111 check_string_free_list ();
2112 }
2113
2114
2115 /* Free dead large strings. */
2116
2117 static void
2118 free_large_strings (void)
2119 {
2120 struct sblock *b, *next;
2121 struct sblock *live_blocks = NULL;
2122
2123 for (b = large_sblocks; b; b = next)
2124 {
2125 next = b->next;
2126
2127 if (b->first_data.string == NULL)
2128 lisp_free (b);
2129 else
2130 {
2131 b->next = live_blocks;
2132 live_blocks = b;
2133 }
2134 }
2135
2136 large_sblocks = live_blocks;
2137 }
2138
2139
2140 /* Compact data of small strings. Free sblocks that don't contain
2141 data of live strings after compaction. */
2142
2143 static void
2144 compact_small_strings (void)
2145 {
2146 struct sblock *b, *tb, *next;
2147 struct sdata *from, *to, *end, *tb_end;
2148 struct sdata *to_end, *from_end;
2149
2150 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2151 to, and TB_END is the end of TB. */
2152 tb = oldest_sblock;
2153 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2154 to = &tb->first_data;
2155
2156 /* Step through the blocks from the oldest to the youngest. We
2157 expect that old blocks will stabilize over time, so that less
2158 copying will happen this way. */
2159 for (b = oldest_sblock; b; b = b->next)
2160 {
2161 end = b->next_free;
2162 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2163
2164 for (from = &b->first_data; from < end; from = from_end)
2165 {
2166 /* Compute the next FROM here because copying below may
2167 overwrite data we need to compute it. */
2168 int nbytes;
2169
2170 #ifdef GC_CHECK_STRING_BYTES
2171 /* Check that the string size recorded in the string is the
2172 same as the one recorded in the sdata structure. */
2173 if (from->string
2174 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2175 abort ();
2176 #endif /* GC_CHECK_STRING_BYTES */
2177
2178 if (from->string)
2179 nbytes = GC_STRING_BYTES (from->string);
2180 else
2181 nbytes = SDATA_NBYTES (from);
2182
2183 if (nbytes > LARGE_STRING_BYTES)
2184 abort ();
2185
2186 nbytes = SDATA_SIZE (nbytes);
2187 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2188
2189 #ifdef GC_CHECK_STRING_OVERRUN
2190 if (memcmp (string_overrun_cookie,
2191 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2192 GC_STRING_OVERRUN_COOKIE_SIZE))
2193 abort ();
2194 #endif
2195
2196 /* FROM->string non-null means it's alive. Copy its data. */
2197 if (from->string)
2198 {
2199 /* If TB is full, proceed with the next sblock. */
2200 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2201 if (to_end > tb_end)
2202 {
2203 tb->next_free = to;
2204 tb = tb->next;
2205 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2206 to = &tb->first_data;
2207 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2208 }
2209
2210 /* Copy, and update the string's `data' pointer. */
2211 if (from != to)
2212 {
2213 xassert (tb != b || to <= from);
2214 memmove (to, from, nbytes + GC_STRING_EXTRA);
2215 to->string->data = SDATA_DATA (to);
2216 }
2217
2218 /* Advance past the sdata we copied to. */
2219 to = to_end;
2220 }
2221 }
2222 }
2223
2224 /* The rest of the sblocks following TB don't contain live data, so
2225 we can free them. */
2226 for (b = tb->next; b; b = next)
2227 {
2228 next = b->next;
2229 lisp_free (b);
2230 }
2231
2232 tb->next_free = to;
2233 tb->next = NULL;
2234 current_sblock = tb;
2235 }
2236
2237
2238 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2239 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2240 LENGTH must be an integer.
2241 INIT must be an integer that represents a character. */)
2242 (Lisp_Object length, Lisp_Object init)
2243 {
2244 register Lisp_Object val;
2245 register unsigned char *p, *end;
2246 int c, nbytes;
2247
2248 CHECK_NATNUM (length);
2249 CHECK_NUMBER (init);
2250
2251 c = XINT (init);
2252 if (ASCII_CHAR_P (c))
2253 {
2254 nbytes = XINT (length);
2255 val = make_uninit_string (nbytes);
2256 p = SDATA (val);
2257 end = p + SCHARS (val);
2258 while (p != end)
2259 *p++ = c;
2260 }
2261 else
2262 {
2263 unsigned char str[MAX_MULTIBYTE_LENGTH];
2264 int len = CHAR_STRING (c, str);
2265
2266 nbytes = len * XINT (length);
2267 val = make_uninit_multibyte_string (XINT (length), nbytes);
2268 p = SDATA (val);
2269 end = p + nbytes;
2270 while (p != end)
2271 {
2272 memcpy (p, str, len);
2273 p += len;
2274 }
2275 }
2276
2277 *p = 0;
2278 return val;
2279 }
2280
2281
2282 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2283 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2284 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2285 (Lisp_Object length, Lisp_Object init)
2286 {
2287 register Lisp_Object val;
2288 struct Lisp_Bool_Vector *p;
2289 int real_init, i;
2290 int length_in_chars, length_in_elts, bits_per_value;
2291
2292 CHECK_NATNUM (length);
2293
2294 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2295
2296 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2297 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2298 / BOOL_VECTOR_BITS_PER_CHAR);
2299
2300 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2301 slot `size' of the struct Lisp_Bool_Vector. */
2302 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2303
2304 /* Get rid of any bits that would cause confusion. */
2305 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2306 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2307 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2308
2309 p = XBOOL_VECTOR (val);
2310 p->size = XFASTINT (length);
2311
2312 real_init = (NILP (init) ? 0 : -1);
2313 for (i = 0; i < length_in_chars ; i++)
2314 p->data[i] = real_init;
2315
2316 /* Clear the extraneous bits in the last byte. */
2317 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2318 p->data[length_in_chars - 1]
2319 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2320
2321 return val;
2322 }
2323
2324
2325 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2326 of characters from the contents. This string may be unibyte or
2327 multibyte, depending on the contents. */
2328
2329 Lisp_Object
2330 make_string (const char *contents, int nbytes)
2331 {
2332 register Lisp_Object val;
2333 int nchars, multibyte_nbytes;
2334
2335 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2336 if (nbytes == nchars || nbytes != multibyte_nbytes)
2337 /* CONTENTS contains no multibyte sequences or contains an invalid
2338 multibyte sequence. We must make unibyte string. */
2339 val = make_unibyte_string (contents, nbytes);
2340 else
2341 val = make_multibyte_string (contents, nchars, nbytes);
2342 return val;
2343 }
2344
2345
2346 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2347
2348 Lisp_Object
2349 make_unibyte_string (const char *contents, int length)
2350 {
2351 register Lisp_Object val;
2352 val = make_uninit_string (length);
2353 memcpy (SDATA (val), contents, length);
2354 STRING_SET_UNIBYTE (val);
2355 return val;
2356 }
2357
2358
2359 /* Make a multibyte string from NCHARS characters occupying NBYTES
2360 bytes at CONTENTS. */
2361
2362 Lisp_Object
2363 make_multibyte_string (const char *contents, int nchars, int nbytes)
2364 {
2365 register Lisp_Object val;
2366 val = make_uninit_multibyte_string (nchars, nbytes);
2367 memcpy (SDATA (val), contents, nbytes);
2368 return val;
2369 }
2370
2371
2372 /* Make a string from NCHARS characters occupying NBYTES bytes at
2373 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2374
2375 Lisp_Object
2376 make_string_from_bytes (const char *contents, int nchars, int nbytes)
2377 {
2378 register Lisp_Object val;
2379 val = make_uninit_multibyte_string (nchars, nbytes);
2380 memcpy (SDATA (val), contents, nbytes);
2381 if (SBYTES (val) == SCHARS (val))
2382 STRING_SET_UNIBYTE (val);
2383 return val;
2384 }
2385
2386
2387 /* Make a string from NCHARS characters occupying NBYTES bytes at
2388 CONTENTS. The argument MULTIBYTE controls whether to label the
2389 string as multibyte. If NCHARS is negative, it counts the number of
2390 characters by itself. */
2391
2392 Lisp_Object
2393 make_specified_string (const char *contents, int nchars, int nbytes, int multibyte)
2394 {
2395 register Lisp_Object val;
2396
2397 if (nchars < 0)
2398 {
2399 if (multibyte)
2400 nchars = multibyte_chars_in_text (contents, nbytes);
2401 else
2402 nchars = nbytes;
2403 }
2404 val = make_uninit_multibyte_string (nchars, nbytes);
2405 memcpy (SDATA (val), contents, nbytes);
2406 if (!multibyte)
2407 STRING_SET_UNIBYTE (val);
2408 return val;
2409 }
2410
2411
2412 /* Make a string from the data at STR, treating it as multibyte if the
2413 data warrants. */
2414
2415 Lisp_Object
2416 build_string (const char *str)
2417 {
2418 return make_string (str, strlen (str));
2419 }
2420
2421
2422 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2423 occupying LENGTH bytes. */
2424
2425 Lisp_Object
2426 make_uninit_string (int length)
2427 {
2428 Lisp_Object val;
2429
2430 if (!length)
2431 return empty_unibyte_string;
2432 val = make_uninit_multibyte_string (length, length);
2433 STRING_SET_UNIBYTE (val);
2434 return val;
2435 }
2436
2437
2438 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2439 which occupy NBYTES bytes. */
2440
2441 Lisp_Object
2442 make_uninit_multibyte_string (int nchars, int nbytes)
2443 {
2444 Lisp_Object string;
2445 struct Lisp_String *s;
2446
2447 if (nchars < 0)
2448 abort ();
2449 if (!nbytes)
2450 return empty_multibyte_string;
2451
2452 s = allocate_string ();
2453 allocate_string_data (s, nchars, nbytes);
2454 XSETSTRING (string, s);
2455 string_chars_consed += nbytes;
2456 return string;
2457 }
2458
2459
2460 \f
2461 /***********************************************************************
2462 Float Allocation
2463 ***********************************************************************/
2464
2465 /* We store float cells inside of float_blocks, allocating a new
2466 float_block with malloc whenever necessary. Float cells reclaimed
2467 by GC are put on a free list to be reallocated before allocating
2468 any new float cells from the latest float_block. */
2469
2470 #define FLOAT_BLOCK_SIZE \
2471 (((BLOCK_BYTES - sizeof (struct float_block *) \
2472 /* The compiler might add padding at the end. */ \
2473 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2474 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2475
2476 #define GETMARKBIT(block,n) \
2477 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2479 & 1)
2480
2481 #define SETMARKBIT(block,n) \
2482 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2483 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2484
2485 #define UNSETMARKBIT(block,n) \
2486 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2487 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2488
2489 #define FLOAT_BLOCK(fptr) \
2490 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2491
2492 #define FLOAT_INDEX(fptr) \
2493 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2494
2495 struct float_block
2496 {
2497 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2498 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2499 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2500 struct float_block *next;
2501 };
2502
2503 #define FLOAT_MARKED_P(fptr) \
2504 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2505
2506 #define FLOAT_MARK(fptr) \
2507 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2508
2509 #define FLOAT_UNMARK(fptr) \
2510 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2511
2512 /* Current float_block. */
2513
2514 struct float_block *float_block;
2515
2516 /* Index of first unused Lisp_Float in the current float_block. */
2517
2518 int float_block_index;
2519
2520 /* Total number of float blocks now in use. */
2521
2522 int n_float_blocks;
2523
2524 /* Free-list of Lisp_Floats. */
2525
2526 struct Lisp_Float *float_free_list;
2527
2528
2529 /* Initialize float allocation. */
2530
2531 static void
2532 init_float (void)
2533 {
2534 float_block = NULL;
2535 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2536 float_free_list = 0;
2537 n_float_blocks = 0;
2538 }
2539
2540
2541 /* Explicitly free a float cell by putting it on the free-list. */
2542
2543 static void
2544 free_float (struct Lisp_Float *ptr)
2545 {
2546 ptr->u.chain = float_free_list;
2547 float_free_list = ptr;
2548 }
2549
2550
2551 /* Return a new float object with value FLOAT_VALUE. */
2552
2553 Lisp_Object
2554 make_float (double float_value)
2555 {
2556 register Lisp_Object val;
2557
2558 /* eassert (!handling_signal); */
2559
2560 MALLOC_BLOCK_INPUT;
2561
2562 if (float_free_list)
2563 {
2564 /* We use the data field for chaining the free list
2565 so that we won't use the same field that has the mark bit. */
2566 XSETFLOAT (val, float_free_list);
2567 float_free_list = float_free_list->u.chain;
2568 }
2569 else
2570 {
2571 if (float_block_index == FLOAT_BLOCK_SIZE)
2572 {
2573 register struct float_block *new;
2574
2575 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2576 MEM_TYPE_FLOAT);
2577 new->next = float_block;
2578 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2579 float_block = new;
2580 float_block_index = 0;
2581 n_float_blocks++;
2582 }
2583 XSETFLOAT (val, &float_block->floats[float_block_index]);
2584 float_block_index++;
2585 }
2586
2587 MALLOC_UNBLOCK_INPUT;
2588
2589 XFLOAT_INIT (val, float_value);
2590 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2591 consing_since_gc += sizeof (struct Lisp_Float);
2592 floats_consed++;
2593 return val;
2594 }
2595
2596
2597 \f
2598 /***********************************************************************
2599 Cons Allocation
2600 ***********************************************************************/
2601
2602 /* We store cons cells inside of cons_blocks, allocating a new
2603 cons_block with malloc whenever necessary. Cons cells reclaimed by
2604 GC are put on a free list to be reallocated before allocating
2605 any new cons cells from the latest cons_block. */
2606
2607 #define CONS_BLOCK_SIZE \
2608 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2609 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2610
2611 #define CONS_BLOCK(fptr) \
2612 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2613
2614 #define CONS_INDEX(fptr) \
2615 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2616
2617 struct cons_block
2618 {
2619 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2620 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2621 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2622 struct cons_block *next;
2623 };
2624
2625 #define CONS_MARKED_P(fptr) \
2626 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2627
2628 #define CONS_MARK(fptr) \
2629 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2630
2631 #define CONS_UNMARK(fptr) \
2632 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2633
2634 /* Current cons_block. */
2635
2636 struct cons_block *cons_block;
2637
2638 /* Index of first unused Lisp_Cons in the current block. */
2639
2640 int cons_block_index;
2641
2642 /* Free-list of Lisp_Cons structures. */
2643
2644 struct Lisp_Cons *cons_free_list;
2645
2646 /* Total number of cons blocks now in use. */
2647
2648 static int n_cons_blocks;
2649
2650
2651 /* Initialize cons allocation. */
2652
2653 static void
2654 init_cons (void)
2655 {
2656 cons_block = NULL;
2657 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2658 cons_free_list = 0;
2659 n_cons_blocks = 0;
2660 }
2661
2662
2663 /* Explicitly free a cons cell by putting it on the free-list. */
2664
2665 void
2666 free_cons (struct Lisp_Cons *ptr)
2667 {
2668 ptr->u.chain = cons_free_list;
2669 #if GC_MARK_STACK
2670 ptr->car = Vdead;
2671 #endif
2672 cons_free_list = ptr;
2673 }
2674
2675 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2676 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2677 (Lisp_Object car, Lisp_Object cdr)
2678 {
2679 register Lisp_Object val;
2680
2681 /* eassert (!handling_signal); */
2682
2683 MALLOC_BLOCK_INPUT;
2684
2685 if (cons_free_list)
2686 {
2687 /* We use the cdr for chaining the free list
2688 so that we won't use the same field that has the mark bit. */
2689 XSETCONS (val, cons_free_list);
2690 cons_free_list = cons_free_list->u.chain;
2691 }
2692 else
2693 {
2694 if (cons_block_index == CONS_BLOCK_SIZE)
2695 {
2696 register struct cons_block *new;
2697 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2698 MEM_TYPE_CONS);
2699 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2700 new->next = cons_block;
2701 cons_block = new;
2702 cons_block_index = 0;
2703 n_cons_blocks++;
2704 }
2705 XSETCONS (val, &cons_block->conses[cons_block_index]);
2706 cons_block_index++;
2707 }
2708
2709 MALLOC_UNBLOCK_INPUT;
2710
2711 XSETCAR (val, car);
2712 XSETCDR (val, cdr);
2713 eassert (!CONS_MARKED_P (XCONS (val)));
2714 consing_since_gc += sizeof (struct Lisp_Cons);
2715 cons_cells_consed++;
2716 return val;
2717 }
2718
2719 /* Get an error now if there's any junk in the cons free list. */
2720 void
2721 check_cons_list (void)
2722 {
2723 #ifdef GC_CHECK_CONS_LIST
2724 struct Lisp_Cons *tail = cons_free_list;
2725
2726 while (tail)
2727 tail = tail->u.chain;
2728 #endif
2729 }
2730
2731 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2732
2733 Lisp_Object
2734 list1 (Lisp_Object arg1)
2735 {
2736 return Fcons (arg1, Qnil);
2737 }
2738
2739 Lisp_Object
2740 list2 (Lisp_Object arg1, Lisp_Object arg2)
2741 {
2742 return Fcons (arg1, Fcons (arg2, Qnil));
2743 }
2744
2745
2746 Lisp_Object
2747 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2748 {
2749 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2750 }
2751
2752
2753 Lisp_Object
2754 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2755 {
2756 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2757 }
2758
2759
2760 Lisp_Object
2761 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2762 {
2763 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2764 Fcons (arg5, Qnil)))));
2765 }
2766
2767
2768 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2769 doc: /* Return a newly created list with specified arguments as elements.
2770 Any number of arguments, even zero arguments, are allowed.
2771 usage: (list &rest OBJECTS) */)
2772 (int nargs, register Lisp_Object *args)
2773 {
2774 register Lisp_Object val;
2775 val = Qnil;
2776
2777 while (nargs > 0)
2778 {
2779 nargs--;
2780 val = Fcons (args[nargs], val);
2781 }
2782 return val;
2783 }
2784
2785
2786 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2787 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2788 (register Lisp_Object length, Lisp_Object init)
2789 {
2790 register Lisp_Object val;
2791 register int size;
2792
2793 CHECK_NATNUM (length);
2794 size = XFASTINT (length);
2795
2796 val = Qnil;
2797 while (size > 0)
2798 {
2799 val = Fcons (init, val);
2800 --size;
2801
2802 if (size > 0)
2803 {
2804 val = Fcons (init, val);
2805 --size;
2806
2807 if (size > 0)
2808 {
2809 val = Fcons (init, val);
2810 --size;
2811
2812 if (size > 0)
2813 {
2814 val = Fcons (init, val);
2815 --size;
2816
2817 if (size > 0)
2818 {
2819 val = Fcons (init, val);
2820 --size;
2821 }
2822 }
2823 }
2824 }
2825
2826 QUIT;
2827 }
2828
2829 return val;
2830 }
2831
2832
2833 \f
2834 /***********************************************************************
2835 Vector Allocation
2836 ***********************************************************************/
2837
2838 /* Singly-linked list of all vectors. */
2839
2840 static struct Lisp_Vector *all_vectors;
2841
2842 /* Total number of vector-like objects now in use. */
2843
2844 static int n_vectors;
2845
2846
2847 /* Value is a pointer to a newly allocated Lisp_Vector structure
2848 with room for LEN Lisp_Objects. */
2849
2850 static struct Lisp_Vector *
2851 allocate_vectorlike (EMACS_INT len)
2852 {
2853 struct Lisp_Vector *p;
2854 size_t nbytes;
2855
2856 MALLOC_BLOCK_INPUT;
2857
2858 #ifdef DOUG_LEA_MALLOC
2859 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2860 because mapped region contents are not preserved in
2861 a dumped Emacs. */
2862 mallopt (M_MMAP_MAX, 0);
2863 #endif
2864
2865 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2866 /* eassert (!handling_signal); */
2867
2868 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2869 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2870
2871 #ifdef DOUG_LEA_MALLOC
2872 /* Back to a reasonable maximum of mmap'ed areas. */
2873 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2874 #endif
2875
2876 consing_since_gc += nbytes;
2877 vector_cells_consed += len;
2878
2879 p->next = all_vectors;
2880 all_vectors = p;
2881
2882 MALLOC_UNBLOCK_INPUT;
2883
2884 ++n_vectors;
2885 return p;
2886 }
2887
2888
2889 /* Allocate a vector with NSLOTS slots. */
2890
2891 struct Lisp_Vector *
2892 allocate_vector (EMACS_INT nslots)
2893 {
2894 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2895 v->size = nslots;
2896 return v;
2897 }
2898
2899
2900 /* Allocate other vector-like structures. */
2901
2902 struct Lisp_Vector *
2903 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2904 {
2905 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2906 EMACS_INT i;
2907
2908 /* Only the first lisplen slots will be traced normally by the GC. */
2909 v->size = lisplen;
2910 for (i = 0; i < lisplen; ++i)
2911 v->contents[i] = Qnil;
2912
2913 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2914 return v;
2915 }
2916
2917 struct Lisp_Hash_Table *
2918 allocate_hash_table (void)
2919 {
2920 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2921 }
2922
2923
2924 struct window *
2925 allocate_window (void)
2926 {
2927 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2928 }
2929
2930
2931 struct terminal *
2932 allocate_terminal (void)
2933 {
2934 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2935 next_terminal, PVEC_TERMINAL);
2936 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2937 memset (&t->next_terminal, 0,
2938 (char*) (t + 1) - (char*) &t->next_terminal);
2939
2940 return t;
2941 }
2942
2943 struct frame *
2944 allocate_frame (void)
2945 {
2946 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2947 face_cache, PVEC_FRAME);
2948 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2949 memset (&f->face_cache, 0,
2950 (char *) (f + 1) - (char *) &f->face_cache);
2951 return f;
2952 }
2953
2954
2955 struct Lisp_Process *
2956 allocate_process (void)
2957 {
2958 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2959 }
2960
2961
2962 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2963 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2964 See also the function `vector'. */)
2965 (register Lisp_Object length, Lisp_Object init)
2966 {
2967 Lisp_Object vector;
2968 register EMACS_INT sizei;
2969 register int index;
2970 register struct Lisp_Vector *p;
2971
2972 CHECK_NATNUM (length);
2973 sizei = XFASTINT (length);
2974
2975 p = allocate_vector (sizei);
2976 for (index = 0; index < sizei; index++)
2977 p->contents[index] = init;
2978
2979 XSETVECTOR (vector, p);
2980 return vector;
2981 }
2982
2983
2984 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2985 doc: /* Return a newly created vector with specified arguments as elements.
2986 Any number of arguments, even zero arguments, are allowed.
2987 usage: (vector &rest OBJECTS) */)
2988 (register int nargs, Lisp_Object *args)
2989 {
2990 register Lisp_Object len, val;
2991 register int index;
2992 register struct Lisp_Vector *p;
2993
2994 XSETFASTINT (len, nargs);
2995 val = Fmake_vector (len, Qnil);
2996 p = XVECTOR (val);
2997 for (index = 0; index < nargs; index++)
2998 p->contents[index] = args[index];
2999 return val;
3000 }
3001
3002
3003 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3004 doc: /* Create a byte-code object with specified arguments as elements.
3005 The arguments should be the arglist, bytecode-string, constant vector,
3006 stack size, (optional) doc string, and (optional) interactive spec.
3007 The first four arguments are required; at most six have any
3008 significance.
3009 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3010 (register int nargs, Lisp_Object *args)
3011 {
3012 register Lisp_Object len, val;
3013 register int index;
3014 register struct Lisp_Vector *p;
3015
3016 XSETFASTINT (len, nargs);
3017 if (!NILP (Vpurify_flag))
3018 val = make_pure_vector ((EMACS_INT) nargs);
3019 else
3020 val = Fmake_vector (len, Qnil);
3021
3022 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3023 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3024 earlier because they produced a raw 8-bit string for byte-code
3025 and now such a byte-code string is loaded as multibyte while
3026 raw 8-bit characters converted to multibyte form. Thus, now we
3027 must convert them back to the original unibyte form. */
3028 args[1] = Fstring_as_unibyte (args[1]);
3029
3030 p = XVECTOR (val);
3031 for (index = 0; index < nargs; index++)
3032 {
3033 if (!NILP (Vpurify_flag))
3034 args[index] = Fpurecopy (args[index]);
3035 p->contents[index] = args[index];
3036 }
3037 XSETPVECTYPE (p, PVEC_COMPILED);
3038 XSETCOMPILED (val, p);
3039 return val;
3040 }
3041
3042
3043 \f
3044 /***********************************************************************
3045 Symbol Allocation
3046 ***********************************************************************/
3047
3048 /* Each symbol_block is just under 1020 bytes long, since malloc
3049 really allocates in units of powers of two and uses 4 bytes for its
3050 own overhead. */
3051
3052 #define SYMBOL_BLOCK_SIZE \
3053 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3054
3055 struct symbol_block
3056 {
3057 /* Place `symbols' first, to preserve alignment. */
3058 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3059 struct symbol_block *next;
3060 };
3061
3062 /* Current symbol block and index of first unused Lisp_Symbol
3063 structure in it. */
3064
3065 static struct symbol_block *symbol_block;
3066 static int symbol_block_index;
3067
3068 /* List of free symbols. */
3069
3070 static struct Lisp_Symbol *symbol_free_list;
3071
3072 /* Total number of symbol blocks now in use. */
3073
3074 static int n_symbol_blocks;
3075
3076
3077 /* Initialize symbol allocation. */
3078
3079 static void
3080 init_symbol (void)
3081 {
3082 symbol_block = NULL;
3083 symbol_block_index = SYMBOL_BLOCK_SIZE;
3084 symbol_free_list = 0;
3085 n_symbol_blocks = 0;
3086 }
3087
3088
3089 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3090 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3091 Its value and function definition are void, and its property list is nil. */)
3092 (Lisp_Object name)
3093 {
3094 register Lisp_Object val;
3095 register struct Lisp_Symbol *p;
3096
3097 CHECK_STRING (name);
3098
3099 /* eassert (!handling_signal); */
3100
3101 MALLOC_BLOCK_INPUT;
3102
3103 if (symbol_free_list)
3104 {
3105 XSETSYMBOL (val, symbol_free_list);
3106 symbol_free_list = symbol_free_list->next;
3107 }
3108 else
3109 {
3110 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3111 {
3112 struct symbol_block *new;
3113 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3114 MEM_TYPE_SYMBOL);
3115 new->next = symbol_block;
3116 symbol_block = new;
3117 symbol_block_index = 0;
3118 n_symbol_blocks++;
3119 }
3120 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3121 symbol_block_index++;
3122 }
3123
3124 MALLOC_UNBLOCK_INPUT;
3125
3126 p = XSYMBOL (val);
3127 p->xname = name;
3128 p->plist = Qnil;
3129 p->redirect = SYMBOL_PLAINVAL;
3130 SET_SYMBOL_VAL (p, Qunbound);
3131 p->function = Qunbound;
3132 p->next = NULL;
3133 p->gcmarkbit = 0;
3134 p->interned = SYMBOL_UNINTERNED;
3135 p->constant = 0;
3136 consing_since_gc += sizeof (struct Lisp_Symbol);
3137 symbols_consed++;
3138 return val;
3139 }
3140
3141
3142 \f
3143 /***********************************************************************
3144 Marker (Misc) Allocation
3145 ***********************************************************************/
3146
3147 /* Allocation of markers and other objects that share that structure.
3148 Works like allocation of conses. */
3149
3150 #define MARKER_BLOCK_SIZE \
3151 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3152
3153 struct marker_block
3154 {
3155 /* Place `markers' first, to preserve alignment. */
3156 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3157 struct marker_block *next;
3158 };
3159
3160 static struct marker_block *marker_block;
3161 static int marker_block_index;
3162
3163 static union Lisp_Misc *marker_free_list;
3164
3165 /* Total number of marker blocks now in use. */
3166
3167 static int n_marker_blocks;
3168
3169 static void
3170 init_marker (void)
3171 {
3172 marker_block = NULL;
3173 marker_block_index = MARKER_BLOCK_SIZE;
3174 marker_free_list = 0;
3175 n_marker_blocks = 0;
3176 }
3177
3178 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3179
3180 Lisp_Object
3181 allocate_misc (void)
3182 {
3183 Lisp_Object val;
3184
3185 /* eassert (!handling_signal); */
3186
3187 MALLOC_BLOCK_INPUT;
3188
3189 if (marker_free_list)
3190 {
3191 XSETMISC (val, marker_free_list);
3192 marker_free_list = marker_free_list->u_free.chain;
3193 }
3194 else
3195 {
3196 if (marker_block_index == MARKER_BLOCK_SIZE)
3197 {
3198 struct marker_block *new;
3199 new = (struct marker_block *) lisp_malloc (sizeof *new,
3200 MEM_TYPE_MISC);
3201 new->next = marker_block;
3202 marker_block = new;
3203 marker_block_index = 0;
3204 n_marker_blocks++;
3205 total_free_markers += MARKER_BLOCK_SIZE;
3206 }
3207 XSETMISC (val, &marker_block->markers[marker_block_index]);
3208 marker_block_index++;
3209 }
3210
3211 MALLOC_UNBLOCK_INPUT;
3212
3213 --total_free_markers;
3214 consing_since_gc += sizeof (union Lisp_Misc);
3215 misc_objects_consed++;
3216 XMISCANY (val)->gcmarkbit = 0;
3217 return val;
3218 }
3219
3220 /* Free a Lisp_Misc object */
3221
3222 void
3223 free_misc (Lisp_Object misc)
3224 {
3225 XMISCTYPE (misc) = Lisp_Misc_Free;
3226 XMISC (misc)->u_free.chain = marker_free_list;
3227 marker_free_list = XMISC (misc);
3228
3229 total_free_markers++;
3230 }
3231
3232 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3233 INTEGER. This is used to package C values to call record_unwind_protect.
3234 The unwind function can get the C values back using XSAVE_VALUE. */
3235
3236 Lisp_Object
3237 make_save_value (void *pointer, int integer)
3238 {
3239 register Lisp_Object val;
3240 register struct Lisp_Save_Value *p;
3241
3242 val = allocate_misc ();
3243 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3244 p = XSAVE_VALUE (val);
3245 p->pointer = pointer;
3246 p->integer = integer;
3247 p->dogc = 0;
3248 return val;
3249 }
3250
3251 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3252 doc: /* Return a newly allocated marker which does not point at any place. */)
3253 (void)
3254 {
3255 register Lisp_Object val;
3256 register struct Lisp_Marker *p;
3257
3258 val = allocate_misc ();
3259 XMISCTYPE (val) = Lisp_Misc_Marker;
3260 p = XMARKER (val);
3261 p->buffer = 0;
3262 p->bytepos = 0;
3263 p->charpos = 0;
3264 p->next = NULL;
3265 p->insertion_type = 0;
3266 return val;
3267 }
3268
3269 /* Put MARKER back on the free list after using it temporarily. */
3270
3271 void
3272 free_marker (Lisp_Object marker)
3273 {
3274 unchain_marker (XMARKER (marker));
3275 free_misc (marker);
3276 }
3277
3278 \f
3279 /* Return a newly created vector or string with specified arguments as
3280 elements. If all the arguments are characters that can fit
3281 in a string of events, make a string; otherwise, make a vector.
3282
3283 Any number of arguments, even zero arguments, are allowed. */
3284
3285 Lisp_Object
3286 make_event_array (register int nargs, Lisp_Object *args)
3287 {
3288 int i;
3289
3290 for (i = 0; i < nargs; i++)
3291 /* The things that fit in a string
3292 are characters that are in 0...127,
3293 after discarding the meta bit and all the bits above it. */
3294 if (!INTEGERP (args[i])
3295 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3296 return Fvector (nargs, args);
3297
3298 /* Since the loop exited, we know that all the things in it are
3299 characters, so we can make a string. */
3300 {
3301 Lisp_Object result;
3302
3303 result = Fmake_string (make_number (nargs), make_number (0));
3304 for (i = 0; i < nargs; i++)
3305 {
3306 SSET (result, i, XINT (args[i]));
3307 /* Move the meta bit to the right place for a string char. */
3308 if (XINT (args[i]) & CHAR_META)
3309 SSET (result, i, SREF (result, i) | 0x80);
3310 }
3311
3312 return result;
3313 }
3314 }
3315
3316
3317 \f
3318 /************************************************************************
3319 Memory Full Handling
3320 ************************************************************************/
3321
3322
3323 /* Called if malloc returns zero. */
3324
3325 void
3326 memory_full (void)
3327 {
3328 int i;
3329
3330 Vmemory_full = Qt;
3331
3332 memory_full_cons_threshold = sizeof (struct cons_block);
3333
3334 /* The first time we get here, free the spare memory. */
3335 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3336 if (spare_memory[i])
3337 {
3338 if (i == 0)
3339 free (spare_memory[i]);
3340 else if (i >= 1 && i <= 4)
3341 lisp_align_free (spare_memory[i]);
3342 else
3343 lisp_free (spare_memory[i]);
3344 spare_memory[i] = 0;
3345 }
3346
3347 /* Record the space now used. When it decreases substantially,
3348 we can refill the memory reserve. */
3349 #ifndef SYSTEM_MALLOC
3350 bytes_used_when_full = BYTES_USED;
3351 #endif
3352
3353 /* This used to call error, but if we've run out of memory, we could
3354 get infinite recursion trying to build the string. */
3355 xsignal (Qnil, Vmemory_signal_data);
3356 }
3357
3358 /* If we released our reserve (due to running out of memory),
3359 and we have a fair amount free once again,
3360 try to set aside another reserve in case we run out once more.
3361
3362 This is called when a relocatable block is freed in ralloc.c,
3363 and also directly from this file, in case we're not using ralloc.c. */
3364
3365 void
3366 refill_memory_reserve (void)
3367 {
3368 #ifndef SYSTEM_MALLOC
3369 if (spare_memory[0] == 0)
3370 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3371 if (spare_memory[1] == 0)
3372 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3373 MEM_TYPE_CONS);
3374 if (spare_memory[2] == 0)
3375 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3376 MEM_TYPE_CONS);
3377 if (spare_memory[3] == 0)
3378 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3379 MEM_TYPE_CONS);
3380 if (spare_memory[4] == 0)
3381 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3382 MEM_TYPE_CONS);
3383 if (spare_memory[5] == 0)
3384 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3385 MEM_TYPE_STRING);
3386 if (spare_memory[6] == 0)
3387 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3388 MEM_TYPE_STRING);
3389 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3390 Vmemory_full = Qnil;
3391 #endif
3392 }
3393 \f
3394 /************************************************************************
3395 C Stack Marking
3396 ************************************************************************/
3397
3398 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3399
3400 /* Conservative C stack marking requires a method to identify possibly
3401 live Lisp objects given a pointer value. We do this by keeping
3402 track of blocks of Lisp data that are allocated in a red-black tree
3403 (see also the comment of mem_node which is the type of nodes in
3404 that tree). Function lisp_malloc adds information for an allocated
3405 block to the red-black tree with calls to mem_insert, and function
3406 lisp_free removes it with mem_delete. Functions live_string_p etc
3407 call mem_find to lookup information about a given pointer in the
3408 tree, and use that to determine if the pointer points to a Lisp
3409 object or not. */
3410
3411 /* Initialize this part of alloc.c. */
3412
3413 static void
3414 mem_init (void)
3415 {
3416 mem_z.left = mem_z.right = MEM_NIL;
3417 mem_z.parent = NULL;
3418 mem_z.color = MEM_BLACK;
3419 mem_z.start = mem_z.end = NULL;
3420 mem_root = MEM_NIL;
3421 }
3422
3423
3424 /* Value is a pointer to the mem_node containing START. Value is
3425 MEM_NIL if there is no node in the tree containing START. */
3426
3427 static INLINE struct mem_node *
3428 mem_find (void *start)
3429 {
3430 struct mem_node *p;
3431
3432 if (start < min_heap_address || start > max_heap_address)
3433 return MEM_NIL;
3434
3435 /* Make the search always successful to speed up the loop below. */
3436 mem_z.start = start;
3437 mem_z.end = (char *) start + 1;
3438
3439 p = mem_root;
3440 while (start < p->start || start >= p->end)
3441 p = start < p->start ? p->left : p->right;
3442 return p;
3443 }
3444
3445
3446 /* Insert a new node into the tree for a block of memory with start
3447 address START, end address END, and type TYPE. Value is a
3448 pointer to the node that was inserted. */
3449
3450 static struct mem_node *
3451 mem_insert (void *start, void *end, enum mem_type type)
3452 {
3453 struct mem_node *c, *parent, *x;
3454
3455 if (min_heap_address == NULL || start < min_heap_address)
3456 min_heap_address = start;
3457 if (max_heap_address == NULL || end > max_heap_address)
3458 max_heap_address = end;
3459
3460 /* See where in the tree a node for START belongs. In this
3461 particular application, it shouldn't happen that a node is already
3462 present. For debugging purposes, let's check that. */
3463 c = mem_root;
3464 parent = NULL;
3465
3466 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3467
3468 while (c != MEM_NIL)
3469 {
3470 if (start >= c->start && start < c->end)
3471 abort ();
3472 parent = c;
3473 c = start < c->start ? c->left : c->right;
3474 }
3475
3476 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3477
3478 while (c != MEM_NIL)
3479 {
3480 parent = c;
3481 c = start < c->start ? c->left : c->right;
3482 }
3483
3484 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3485
3486 /* Create a new node. */
3487 #ifdef GC_MALLOC_CHECK
3488 x = (struct mem_node *) _malloc_internal (sizeof *x);
3489 if (x == NULL)
3490 abort ();
3491 #else
3492 x = (struct mem_node *) xmalloc (sizeof *x);
3493 #endif
3494 x->start = start;
3495 x->end = end;
3496 x->type = type;
3497 x->parent = parent;
3498 x->left = x->right = MEM_NIL;
3499 x->color = MEM_RED;
3500
3501 /* Insert it as child of PARENT or install it as root. */
3502 if (parent)
3503 {
3504 if (start < parent->start)
3505 parent->left = x;
3506 else
3507 parent->right = x;
3508 }
3509 else
3510 mem_root = x;
3511
3512 /* Re-establish red-black tree properties. */
3513 mem_insert_fixup (x);
3514
3515 return x;
3516 }
3517
3518
3519 /* Re-establish the red-black properties of the tree, and thereby
3520 balance the tree, after node X has been inserted; X is always red. */
3521
3522 static void
3523 mem_insert_fixup (struct mem_node *x)
3524 {
3525 while (x != mem_root && x->parent->color == MEM_RED)
3526 {
3527 /* X is red and its parent is red. This is a violation of
3528 red-black tree property #3. */
3529
3530 if (x->parent == x->parent->parent->left)
3531 {
3532 /* We're on the left side of our grandparent, and Y is our
3533 "uncle". */
3534 struct mem_node *y = x->parent->parent->right;
3535
3536 if (y->color == MEM_RED)
3537 {
3538 /* Uncle and parent are red but should be black because
3539 X is red. Change the colors accordingly and proceed
3540 with the grandparent. */
3541 x->parent->color = MEM_BLACK;
3542 y->color = MEM_BLACK;
3543 x->parent->parent->color = MEM_RED;
3544 x = x->parent->parent;
3545 }
3546 else
3547 {
3548 /* Parent and uncle have different colors; parent is
3549 red, uncle is black. */
3550 if (x == x->parent->right)
3551 {
3552 x = x->parent;
3553 mem_rotate_left (x);
3554 }
3555
3556 x->parent->color = MEM_BLACK;
3557 x->parent->parent->color = MEM_RED;
3558 mem_rotate_right (x->parent->parent);
3559 }
3560 }
3561 else
3562 {
3563 /* This is the symmetrical case of above. */
3564 struct mem_node *y = x->parent->parent->left;
3565
3566 if (y->color == MEM_RED)
3567 {
3568 x->parent->color = MEM_BLACK;
3569 y->color = MEM_BLACK;
3570 x->parent->parent->color = MEM_RED;
3571 x = x->parent->parent;
3572 }
3573 else
3574 {
3575 if (x == x->parent->left)
3576 {
3577 x = x->parent;
3578 mem_rotate_right (x);
3579 }
3580
3581 x->parent->color = MEM_BLACK;
3582 x->parent->parent->color = MEM_RED;
3583 mem_rotate_left (x->parent->parent);
3584 }
3585 }
3586 }
3587
3588 /* The root may have been changed to red due to the algorithm. Set
3589 it to black so that property #5 is satisfied. */
3590 mem_root->color = MEM_BLACK;
3591 }
3592
3593
3594 /* (x) (y)
3595 / \ / \
3596 a (y) ===> (x) c
3597 / \ / \
3598 b c a b */
3599
3600 static void
3601 mem_rotate_left (struct mem_node *x)
3602 {
3603 struct mem_node *y;
3604
3605 /* Turn y's left sub-tree into x's right sub-tree. */
3606 y = x->right;
3607 x->right = y->left;
3608 if (y->left != MEM_NIL)
3609 y->left->parent = x;
3610
3611 /* Y's parent was x's parent. */
3612 if (y != MEM_NIL)
3613 y->parent = x->parent;
3614
3615 /* Get the parent to point to y instead of x. */
3616 if (x->parent)
3617 {
3618 if (x == x->parent->left)
3619 x->parent->left = y;
3620 else
3621 x->parent->right = y;
3622 }
3623 else
3624 mem_root = y;
3625
3626 /* Put x on y's left. */
3627 y->left = x;
3628 if (x != MEM_NIL)
3629 x->parent = y;
3630 }
3631
3632
3633 /* (x) (Y)
3634 / \ / \
3635 (y) c ===> a (x)
3636 / \ / \
3637 a b b c */
3638
3639 static void
3640 mem_rotate_right (struct mem_node *x)
3641 {
3642 struct mem_node *y = x->left;
3643
3644 x->left = y->right;
3645 if (y->right != MEM_NIL)
3646 y->right->parent = x;
3647
3648 if (y != MEM_NIL)
3649 y->parent = x->parent;
3650 if (x->parent)
3651 {
3652 if (x == x->parent->right)
3653 x->parent->right = y;
3654 else
3655 x->parent->left = y;
3656 }
3657 else
3658 mem_root = y;
3659
3660 y->right = x;
3661 if (x != MEM_NIL)
3662 x->parent = y;
3663 }
3664
3665
3666 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3667
3668 static void
3669 mem_delete (struct mem_node *z)
3670 {
3671 struct mem_node *x, *y;
3672
3673 if (!z || z == MEM_NIL)
3674 return;
3675
3676 if (z->left == MEM_NIL || z->right == MEM_NIL)
3677 y = z;
3678 else
3679 {
3680 y = z->right;
3681 while (y->left != MEM_NIL)
3682 y = y->left;
3683 }
3684
3685 if (y->left != MEM_NIL)
3686 x = y->left;
3687 else
3688 x = y->right;
3689
3690 x->parent = y->parent;
3691 if (y->parent)
3692 {
3693 if (y == y->parent->left)
3694 y->parent->left = x;
3695 else
3696 y->parent->right = x;
3697 }
3698 else
3699 mem_root = x;
3700
3701 if (y != z)
3702 {
3703 z->start = y->start;
3704 z->end = y->end;
3705 z->type = y->type;
3706 }
3707
3708 if (y->color == MEM_BLACK)
3709 mem_delete_fixup (x);
3710
3711 #ifdef GC_MALLOC_CHECK
3712 _free_internal (y);
3713 #else
3714 xfree (y);
3715 #endif
3716 }
3717
3718
3719 /* Re-establish the red-black properties of the tree, after a
3720 deletion. */
3721
3722 static void
3723 mem_delete_fixup (struct mem_node *x)
3724 {
3725 while (x != mem_root && x->color == MEM_BLACK)
3726 {
3727 if (x == x->parent->left)
3728 {
3729 struct mem_node *w = x->parent->right;
3730
3731 if (w->color == MEM_RED)
3732 {
3733 w->color = MEM_BLACK;
3734 x->parent->color = MEM_RED;
3735 mem_rotate_left (x->parent);
3736 w = x->parent->right;
3737 }
3738
3739 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3740 {
3741 w->color = MEM_RED;
3742 x = x->parent;
3743 }
3744 else
3745 {
3746 if (w->right->color == MEM_BLACK)
3747 {
3748 w->left->color = MEM_BLACK;
3749 w->color = MEM_RED;
3750 mem_rotate_right (w);
3751 w = x->parent->right;
3752 }
3753 w->color = x->parent->color;
3754 x->parent->color = MEM_BLACK;
3755 w->right->color = MEM_BLACK;
3756 mem_rotate_left (x->parent);
3757 x = mem_root;
3758 }
3759 }
3760 else
3761 {
3762 struct mem_node *w = x->parent->left;
3763
3764 if (w->color == MEM_RED)
3765 {
3766 w->color = MEM_BLACK;
3767 x->parent->color = MEM_RED;
3768 mem_rotate_right (x->parent);
3769 w = x->parent->left;
3770 }
3771
3772 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3773 {
3774 w->color = MEM_RED;
3775 x = x->parent;
3776 }
3777 else
3778 {
3779 if (w->left->color == MEM_BLACK)
3780 {
3781 w->right->color = MEM_BLACK;
3782 w->color = MEM_RED;
3783 mem_rotate_left (w);
3784 w = x->parent->left;
3785 }
3786
3787 w->color = x->parent->color;
3788 x->parent->color = MEM_BLACK;
3789 w->left->color = MEM_BLACK;
3790 mem_rotate_right (x->parent);
3791 x = mem_root;
3792 }
3793 }
3794 }
3795
3796 x->color = MEM_BLACK;
3797 }
3798
3799
3800 /* Value is non-zero if P is a pointer to a live Lisp string on
3801 the heap. M is a pointer to the mem_block for P. */
3802
3803 static INLINE int
3804 live_string_p (struct mem_node *m, void *p)
3805 {
3806 if (m->type == MEM_TYPE_STRING)
3807 {
3808 struct string_block *b = (struct string_block *) m->start;
3809 int offset = (char *) p - (char *) &b->strings[0];
3810
3811 /* P must point to the start of a Lisp_String structure, and it
3812 must not be on the free-list. */
3813 return (offset >= 0
3814 && offset % sizeof b->strings[0] == 0
3815 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3816 && ((struct Lisp_String *) p)->data != NULL);
3817 }
3818 else
3819 return 0;
3820 }
3821
3822
3823 /* Value is non-zero if P is a pointer to a live Lisp cons on
3824 the heap. M is a pointer to the mem_block for P. */
3825
3826 static INLINE int
3827 live_cons_p (struct mem_node *m, void *p)
3828 {
3829 if (m->type == MEM_TYPE_CONS)
3830 {
3831 struct cons_block *b = (struct cons_block *) m->start;
3832 int offset = (char *) p - (char *) &b->conses[0];
3833
3834 /* P must point to the start of a Lisp_Cons, not be
3835 one of the unused cells in the current cons block,
3836 and not be on the free-list. */
3837 return (offset >= 0
3838 && offset % sizeof b->conses[0] == 0
3839 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3840 && (b != cons_block
3841 || offset / sizeof b->conses[0] < cons_block_index)
3842 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3843 }
3844 else
3845 return 0;
3846 }
3847
3848
3849 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3850 the heap. M is a pointer to the mem_block for P. */
3851
3852 static INLINE int
3853 live_symbol_p (struct mem_node *m, void *p)
3854 {
3855 if (m->type == MEM_TYPE_SYMBOL)
3856 {
3857 struct symbol_block *b = (struct symbol_block *) m->start;
3858 int offset = (char *) p - (char *) &b->symbols[0];
3859
3860 /* P must point to the start of a Lisp_Symbol, not be
3861 one of the unused cells in the current symbol block,
3862 and not be on the free-list. */
3863 return (offset >= 0
3864 && offset % sizeof b->symbols[0] == 0
3865 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3866 && (b != symbol_block
3867 || offset / sizeof b->symbols[0] < symbol_block_index)
3868 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3869 }
3870 else
3871 return 0;
3872 }
3873
3874
3875 /* Value is non-zero if P is a pointer to a live Lisp float on
3876 the heap. M is a pointer to the mem_block for P. */
3877
3878 static INLINE int
3879 live_float_p (struct mem_node *m, void *p)
3880 {
3881 if (m->type == MEM_TYPE_FLOAT)
3882 {
3883 struct float_block *b = (struct float_block *) m->start;
3884 int offset = (char *) p - (char *) &b->floats[0];
3885
3886 /* P must point to the start of a Lisp_Float and not be
3887 one of the unused cells in the current float block. */
3888 return (offset >= 0
3889 && offset % sizeof b->floats[0] == 0
3890 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3891 && (b != float_block
3892 || offset / sizeof b->floats[0] < float_block_index));
3893 }
3894 else
3895 return 0;
3896 }
3897
3898
3899 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3900 the heap. M is a pointer to the mem_block for P. */
3901
3902 static INLINE int
3903 live_misc_p (struct mem_node *m, void *p)
3904 {
3905 if (m->type == MEM_TYPE_MISC)
3906 {
3907 struct marker_block *b = (struct marker_block *) m->start;
3908 int offset = (char *) p - (char *) &b->markers[0];
3909
3910 /* P must point to the start of a Lisp_Misc, not be
3911 one of the unused cells in the current misc block,
3912 and not be on the free-list. */
3913 return (offset >= 0
3914 && offset % sizeof b->markers[0] == 0
3915 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3916 && (b != marker_block
3917 || offset / sizeof b->markers[0] < marker_block_index)
3918 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3919 }
3920 else
3921 return 0;
3922 }
3923
3924
3925 /* Value is non-zero if P is a pointer to a live vector-like object.
3926 M is a pointer to the mem_block for P. */
3927
3928 static INLINE int
3929 live_vector_p (struct mem_node *m, void *p)
3930 {
3931 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3932 }
3933
3934
3935 /* Value is non-zero if P is a pointer to a live buffer. M is a
3936 pointer to the mem_block for P. */
3937
3938 static INLINE int
3939 live_buffer_p (struct mem_node *m, void *p)
3940 {
3941 /* P must point to the start of the block, and the buffer
3942 must not have been killed. */
3943 return (m->type == MEM_TYPE_BUFFER
3944 && p == m->start
3945 && !NILP (((struct buffer *) p)->name));
3946 }
3947
3948 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3949
3950 #if GC_MARK_STACK
3951
3952 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3953
3954 /* Array of objects that are kept alive because the C stack contains
3955 a pattern that looks like a reference to them . */
3956
3957 #define MAX_ZOMBIES 10
3958 static Lisp_Object zombies[MAX_ZOMBIES];
3959
3960 /* Number of zombie objects. */
3961
3962 static int nzombies;
3963
3964 /* Number of garbage collections. */
3965
3966 static int ngcs;
3967
3968 /* Average percentage of zombies per collection. */
3969
3970 static double avg_zombies;
3971
3972 /* Max. number of live and zombie objects. */
3973
3974 static int max_live, max_zombies;
3975
3976 /* Average number of live objects per GC. */
3977
3978 static double avg_live;
3979
3980 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3981 doc: /* Show information about live and zombie objects. */)
3982 (void)
3983 {
3984 Lisp_Object args[8], zombie_list = Qnil;
3985 int i;
3986 for (i = 0; i < nzombies; i++)
3987 zombie_list = Fcons (zombies[i], zombie_list);
3988 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3989 args[1] = make_number (ngcs);
3990 args[2] = make_float (avg_live);
3991 args[3] = make_float (avg_zombies);
3992 args[4] = make_float (avg_zombies / avg_live / 100);
3993 args[5] = make_number (max_live);
3994 args[6] = make_number (max_zombies);
3995 args[7] = zombie_list;
3996 return Fmessage (8, args);
3997 }
3998
3999 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4000
4001
4002 /* Mark OBJ if we can prove it's a Lisp_Object. */
4003
4004 static INLINE void
4005 mark_maybe_object (Lisp_Object obj)
4006 {
4007 void *po = (void *) XPNTR (obj);
4008 struct mem_node *m = mem_find (po);
4009
4010 if (m != MEM_NIL)
4011 {
4012 int mark_p = 0;
4013
4014 switch (XTYPE (obj))
4015 {
4016 case Lisp_String:
4017 mark_p = (live_string_p (m, po)
4018 && !STRING_MARKED_P ((struct Lisp_String *) po));
4019 break;
4020
4021 case Lisp_Cons:
4022 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4023 break;
4024
4025 case Lisp_Symbol:
4026 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4027 break;
4028
4029 case Lisp_Float:
4030 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4031 break;
4032
4033 case Lisp_Vectorlike:
4034 /* Note: can't check BUFFERP before we know it's a
4035 buffer because checking that dereferences the pointer
4036 PO which might point anywhere. */
4037 if (live_vector_p (m, po))
4038 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4039 else if (live_buffer_p (m, po))
4040 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4041 break;
4042
4043 case Lisp_Misc:
4044 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4045 break;
4046
4047 default:
4048 break;
4049 }
4050
4051 if (mark_p)
4052 {
4053 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4054 if (nzombies < MAX_ZOMBIES)
4055 zombies[nzombies] = obj;
4056 ++nzombies;
4057 #endif
4058 mark_object (obj);
4059 }
4060 }
4061 }
4062
4063
4064 /* If P points to Lisp data, mark that as live if it isn't already
4065 marked. */
4066
4067 static INLINE void
4068 mark_maybe_pointer (void *p)
4069 {
4070 struct mem_node *m;
4071
4072 /* Quickly rule out some values which can't point to Lisp data. */
4073 if ((EMACS_INT) p %
4074 #ifdef USE_LSB_TAG
4075 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4076 #else
4077 2 /* We assume that Lisp data is aligned on even addresses. */
4078 #endif
4079 )
4080 return;
4081
4082 m = mem_find (p);
4083 if (m != MEM_NIL)
4084 {
4085 Lisp_Object obj = Qnil;
4086
4087 switch (m->type)
4088 {
4089 case MEM_TYPE_NON_LISP:
4090 /* Nothing to do; not a pointer to Lisp memory. */
4091 break;
4092
4093 case MEM_TYPE_BUFFER:
4094 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4095 XSETVECTOR (obj, p);
4096 break;
4097
4098 case MEM_TYPE_CONS:
4099 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4100 XSETCONS (obj, p);
4101 break;
4102
4103 case MEM_TYPE_STRING:
4104 if (live_string_p (m, p)
4105 && !STRING_MARKED_P ((struct Lisp_String *) p))
4106 XSETSTRING (obj, p);
4107 break;
4108
4109 case MEM_TYPE_MISC:
4110 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4111 XSETMISC (obj, p);
4112 break;
4113
4114 case MEM_TYPE_SYMBOL:
4115 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4116 XSETSYMBOL (obj, p);
4117 break;
4118
4119 case MEM_TYPE_FLOAT:
4120 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4121 XSETFLOAT (obj, p);
4122 break;
4123
4124 case MEM_TYPE_VECTORLIKE:
4125 if (live_vector_p (m, p))
4126 {
4127 Lisp_Object tem;
4128 XSETVECTOR (tem, p);
4129 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4130 obj = tem;
4131 }
4132 break;
4133
4134 default:
4135 abort ();
4136 }
4137
4138 if (!NILP (obj))
4139 mark_object (obj);
4140 }
4141 }
4142
4143
4144 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4145 or END+OFFSET..START. */
4146
4147 static void
4148 mark_memory (void *start, void *end, int offset)
4149 {
4150 Lisp_Object *p;
4151 void **pp;
4152
4153 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4154 nzombies = 0;
4155 #endif
4156
4157 /* Make START the pointer to the start of the memory region,
4158 if it isn't already. */
4159 if (end < start)
4160 {
4161 void *tem = start;
4162 start = end;
4163 end = tem;
4164 }
4165
4166 /* Mark Lisp_Objects. */
4167 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4168 mark_maybe_object (*p);
4169
4170 /* Mark Lisp data pointed to. This is necessary because, in some
4171 situations, the C compiler optimizes Lisp objects away, so that
4172 only a pointer to them remains. Example:
4173
4174 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4175 ()
4176 {
4177 Lisp_Object obj = build_string ("test");
4178 struct Lisp_String *s = XSTRING (obj);
4179 Fgarbage_collect ();
4180 fprintf (stderr, "test `%s'\n", s->data);
4181 return Qnil;
4182 }
4183
4184 Here, `obj' isn't really used, and the compiler optimizes it
4185 away. The only reference to the life string is through the
4186 pointer `s'. */
4187
4188 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4189 mark_maybe_pointer (*pp);
4190 }
4191
4192 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4193 the GCC system configuration. In gcc 3.2, the only systems for
4194 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4195 by others?) and ns32k-pc532-min. */
4196
4197 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4198
4199 static int setjmp_tested_p, longjmps_done;
4200
4201 #define SETJMP_WILL_LIKELY_WORK "\
4202 \n\
4203 Emacs garbage collector has been changed to use conservative stack\n\
4204 marking. Emacs has determined that the method it uses to do the\n\
4205 marking will likely work on your system, but this isn't sure.\n\
4206 \n\
4207 If you are a system-programmer, or can get the help of a local wizard\n\
4208 who is, please take a look at the function mark_stack in alloc.c, and\n\
4209 verify that the methods used are appropriate for your system.\n\
4210 \n\
4211 Please mail the result to <emacs-devel@gnu.org>.\n\
4212 "
4213
4214 #define SETJMP_WILL_NOT_WORK "\
4215 \n\
4216 Emacs garbage collector has been changed to use conservative stack\n\
4217 marking. Emacs has determined that the default method it uses to do the\n\
4218 marking will not work on your system. We will need a system-dependent\n\
4219 solution for your system.\n\
4220 \n\
4221 Please take a look at the function mark_stack in alloc.c, and\n\
4222 try to find a way to make it work on your system.\n\
4223 \n\
4224 Note that you may get false negatives, depending on the compiler.\n\
4225 In particular, you need to use -O with GCC for this test.\n\
4226 \n\
4227 Please mail the result to <emacs-devel@gnu.org>.\n\
4228 "
4229
4230
4231 /* Perform a quick check if it looks like setjmp saves registers in a
4232 jmp_buf. Print a message to stderr saying so. When this test
4233 succeeds, this is _not_ a proof that setjmp is sufficient for
4234 conservative stack marking. Only the sources or a disassembly
4235 can prove that. */
4236
4237 static void
4238 test_setjmp ()
4239 {
4240 char buf[10];
4241 register int x;
4242 jmp_buf jbuf;
4243 int result = 0;
4244
4245 /* Arrange for X to be put in a register. */
4246 sprintf (buf, "1");
4247 x = strlen (buf);
4248 x = 2 * x - 1;
4249
4250 setjmp (jbuf);
4251 if (longjmps_done == 1)
4252 {
4253 /* Came here after the longjmp at the end of the function.
4254
4255 If x == 1, the longjmp has restored the register to its
4256 value before the setjmp, and we can hope that setjmp
4257 saves all such registers in the jmp_buf, although that
4258 isn't sure.
4259
4260 For other values of X, either something really strange is
4261 taking place, or the setjmp just didn't save the register. */
4262
4263 if (x == 1)
4264 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4265 else
4266 {
4267 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4268 exit (1);
4269 }
4270 }
4271
4272 ++longjmps_done;
4273 x = 2;
4274 if (longjmps_done == 1)
4275 longjmp (jbuf, 1);
4276 }
4277
4278 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4279
4280
4281 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4282
4283 /* Abort if anything GCPRO'd doesn't survive the GC. */
4284
4285 static void
4286 check_gcpros ()
4287 {
4288 struct gcpro *p;
4289 int i;
4290
4291 for (p = gcprolist; p; p = p->next)
4292 for (i = 0; i < p->nvars; ++i)
4293 if (!survives_gc_p (p->var[i]))
4294 /* FIXME: It's not necessarily a bug. It might just be that the
4295 GCPRO is unnecessary or should release the object sooner. */
4296 abort ();
4297 }
4298
4299 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4300
4301 static void
4302 dump_zombies ()
4303 {
4304 int i;
4305
4306 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4307 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4308 {
4309 fprintf (stderr, " %d = ", i);
4310 debug_print (zombies[i]);
4311 }
4312 }
4313
4314 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4315
4316
4317 /* Mark live Lisp objects on the C stack.
4318
4319 There are several system-dependent problems to consider when
4320 porting this to new architectures:
4321
4322 Processor Registers
4323
4324 We have to mark Lisp objects in CPU registers that can hold local
4325 variables or are used to pass parameters.
4326
4327 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4328 something that either saves relevant registers on the stack, or
4329 calls mark_maybe_object passing it each register's contents.
4330
4331 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4332 implementation assumes that calling setjmp saves registers we need
4333 to see in a jmp_buf which itself lies on the stack. This doesn't
4334 have to be true! It must be verified for each system, possibly
4335 by taking a look at the source code of setjmp.
4336
4337 Stack Layout
4338
4339 Architectures differ in the way their processor stack is organized.
4340 For example, the stack might look like this
4341
4342 +----------------+
4343 | Lisp_Object | size = 4
4344 +----------------+
4345 | something else | size = 2
4346 +----------------+
4347 | Lisp_Object | size = 4
4348 +----------------+
4349 | ... |
4350
4351 In such a case, not every Lisp_Object will be aligned equally. To
4352 find all Lisp_Object on the stack it won't be sufficient to walk
4353 the stack in steps of 4 bytes. Instead, two passes will be
4354 necessary, one starting at the start of the stack, and a second
4355 pass starting at the start of the stack + 2. Likewise, if the
4356 minimal alignment of Lisp_Objects on the stack is 1, four passes
4357 would be necessary, each one starting with one byte more offset
4358 from the stack start.
4359
4360 The current code assumes by default that Lisp_Objects are aligned
4361 equally on the stack. */
4362
4363 static void
4364 mark_stack (void)
4365 {
4366 int i;
4367 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4368 union aligned_jmpbuf {
4369 Lisp_Object o;
4370 jmp_buf j;
4371 } j;
4372 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4373 void *end;
4374
4375 /* This trick flushes the register windows so that all the state of
4376 the process is contained in the stack. */
4377 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4378 needed on ia64 too. See mach_dep.c, where it also says inline
4379 assembler doesn't work with relevant proprietary compilers. */
4380 #ifdef __sparc__
4381 #if defined (__sparc64__) && defined (__FreeBSD__)
4382 /* FreeBSD does not have a ta 3 handler. */
4383 asm ("flushw");
4384 #else
4385 asm ("ta 3");
4386 #endif
4387 #endif
4388
4389 /* Save registers that we need to see on the stack. We need to see
4390 registers used to hold register variables and registers used to
4391 pass parameters. */
4392 #ifdef GC_SAVE_REGISTERS_ON_STACK
4393 GC_SAVE_REGISTERS_ON_STACK (end);
4394 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4395
4396 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4397 setjmp will definitely work, test it
4398 and print a message with the result
4399 of the test. */
4400 if (!setjmp_tested_p)
4401 {
4402 setjmp_tested_p = 1;
4403 test_setjmp ();
4404 }
4405 #endif /* GC_SETJMP_WORKS */
4406
4407 setjmp (j.j);
4408 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4409 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4410
4411 /* This assumes that the stack is a contiguous region in memory. If
4412 that's not the case, something has to be done here to iterate
4413 over the stack segments. */
4414 #ifndef GC_LISP_OBJECT_ALIGNMENT
4415 #ifdef __GNUC__
4416 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4417 #else
4418 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4419 #endif
4420 #endif
4421 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4422 mark_memory (stack_base, end, i);
4423 /* Allow for marking a secondary stack, like the register stack on the
4424 ia64. */
4425 #ifdef GC_MARK_SECONDARY_STACK
4426 GC_MARK_SECONDARY_STACK ();
4427 #endif
4428
4429 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4430 check_gcpros ();
4431 #endif
4432 }
4433
4434 #endif /* GC_MARK_STACK != 0 */
4435
4436
4437 /* Determine whether it is safe to access memory at address P. */
4438 static int
4439 valid_pointer_p (void *p)
4440 {
4441 #ifdef WINDOWSNT
4442 return w32_valid_pointer_p (p, 16);
4443 #else
4444 int fd;
4445
4446 /* Obviously, we cannot just access it (we would SEGV trying), so we
4447 trick the o/s to tell us whether p is a valid pointer.
4448 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4449 not validate p in that case. */
4450
4451 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4452 {
4453 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4454 emacs_close (fd);
4455 unlink ("__Valid__Lisp__Object__");
4456 return valid;
4457 }
4458
4459 return -1;
4460 #endif
4461 }
4462
4463 /* Return 1 if OBJ is a valid lisp object.
4464 Return 0 if OBJ is NOT a valid lisp object.
4465 Return -1 if we cannot validate OBJ.
4466 This function can be quite slow,
4467 so it should only be used in code for manual debugging. */
4468
4469 int
4470 valid_lisp_object_p (Lisp_Object obj)
4471 {
4472 void *p;
4473 #if GC_MARK_STACK
4474 struct mem_node *m;
4475 #endif
4476
4477 if (INTEGERP (obj))
4478 return 1;
4479
4480 p = (void *) XPNTR (obj);
4481 if (PURE_POINTER_P (p))
4482 return 1;
4483
4484 #if !GC_MARK_STACK
4485 return valid_pointer_p (p);
4486 #else
4487
4488 m = mem_find (p);
4489
4490 if (m == MEM_NIL)
4491 {
4492 int valid = valid_pointer_p (p);
4493 if (valid <= 0)
4494 return valid;
4495
4496 if (SUBRP (obj))
4497 return 1;
4498
4499 return 0;
4500 }
4501
4502 switch (m->type)
4503 {
4504 case MEM_TYPE_NON_LISP:
4505 return 0;
4506
4507 case MEM_TYPE_BUFFER:
4508 return live_buffer_p (m, p);
4509
4510 case MEM_TYPE_CONS:
4511 return live_cons_p (m, p);
4512
4513 case MEM_TYPE_STRING:
4514 return live_string_p (m, p);
4515
4516 case MEM_TYPE_MISC:
4517 return live_misc_p (m, p);
4518
4519 case MEM_TYPE_SYMBOL:
4520 return live_symbol_p (m, p);
4521
4522 case MEM_TYPE_FLOAT:
4523 return live_float_p (m, p);
4524
4525 case MEM_TYPE_VECTORLIKE:
4526 return live_vector_p (m, p);
4527
4528 default:
4529 break;
4530 }
4531
4532 return 0;
4533 #endif
4534 }
4535
4536
4537
4538 \f
4539 /***********************************************************************
4540 Pure Storage Management
4541 ***********************************************************************/
4542
4543 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4544 pointer to it. TYPE is the Lisp type for which the memory is
4545 allocated. TYPE < 0 means it's not used for a Lisp object. */
4546
4547 static POINTER_TYPE *
4548 pure_alloc (size_t size, int type)
4549 {
4550 POINTER_TYPE *result;
4551 #ifdef USE_LSB_TAG
4552 size_t alignment = (1 << GCTYPEBITS);
4553 #else
4554 size_t alignment = sizeof (EMACS_INT);
4555
4556 /* Give Lisp_Floats an extra alignment. */
4557 if (type == Lisp_Float)
4558 {
4559 #if defined __GNUC__ && __GNUC__ >= 2
4560 alignment = __alignof (struct Lisp_Float);
4561 #else
4562 alignment = sizeof (struct Lisp_Float);
4563 #endif
4564 }
4565 #endif
4566
4567 again:
4568 if (type >= 0)
4569 {
4570 /* Allocate space for a Lisp object from the beginning of the free
4571 space with taking account of alignment. */
4572 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4573 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4574 }
4575 else
4576 {
4577 /* Allocate space for a non-Lisp object from the end of the free
4578 space. */
4579 pure_bytes_used_non_lisp += size;
4580 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4581 }
4582 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4583
4584 if (pure_bytes_used <= pure_size)
4585 return result;
4586
4587 /* Don't allocate a large amount here,
4588 because it might get mmap'd and then its address
4589 might not be usable. */
4590 purebeg = (char *) xmalloc (10000);
4591 pure_size = 10000;
4592 pure_bytes_used_before_overflow += pure_bytes_used - size;
4593 pure_bytes_used = 0;
4594 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4595 goto again;
4596 }
4597
4598
4599 /* Print a warning if PURESIZE is too small. */
4600
4601 void
4602 check_pure_size (void)
4603 {
4604 if (pure_bytes_used_before_overflow)
4605 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4606 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4607 }
4608
4609
4610 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4611 the non-Lisp data pool of the pure storage, and return its start
4612 address. Return NULL if not found. */
4613
4614 static char *
4615 find_string_data_in_pure (const char *data, int nbytes)
4616 {
4617 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4618 const unsigned char *p;
4619 char *non_lisp_beg;
4620
4621 if (pure_bytes_used_non_lisp < nbytes + 1)
4622 return NULL;
4623
4624 /* Set up the Boyer-Moore table. */
4625 skip = nbytes + 1;
4626 for (i = 0; i < 256; i++)
4627 bm_skip[i] = skip;
4628
4629 p = (const unsigned char *) data;
4630 while (--skip > 0)
4631 bm_skip[*p++] = skip;
4632
4633 last_char_skip = bm_skip['\0'];
4634
4635 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4636 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4637
4638 /* See the comments in the function `boyer_moore' (search.c) for the
4639 use of `infinity'. */
4640 infinity = pure_bytes_used_non_lisp + 1;
4641 bm_skip['\0'] = infinity;
4642
4643 p = (const unsigned char *) non_lisp_beg + nbytes;
4644 start = 0;
4645 do
4646 {
4647 /* Check the last character (== '\0'). */
4648 do
4649 {
4650 start += bm_skip[*(p + start)];
4651 }
4652 while (start <= start_max);
4653
4654 if (start < infinity)
4655 /* Couldn't find the last character. */
4656 return NULL;
4657
4658 /* No less than `infinity' means we could find the last
4659 character at `p[start - infinity]'. */
4660 start -= infinity;
4661
4662 /* Check the remaining characters. */
4663 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4664 /* Found. */
4665 return non_lisp_beg + start;
4666
4667 start += last_char_skip;
4668 }
4669 while (start <= start_max);
4670
4671 return NULL;
4672 }
4673
4674
4675 /* Return a string allocated in pure space. DATA is a buffer holding
4676 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4677 non-zero means make the result string multibyte.
4678
4679 Must get an error if pure storage is full, since if it cannot hold
4680 a large string it may be able to hold conses that point to that
4681 string; then the string is not protected from gc. */
4682
4683 Lisp_Object
4684 make_pure_string (const char *data, int nchars, int nbytes, int multibyte)
4685 {
4686 Lisp_Object string;
4687 struct Lisp_String *s;
4688
4689 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4690 s->data = find_string_data_in_pure (data, nbytes);
4691 if (s->data == NULL)
4692 {
4693 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4694 memcpy (s->data, data, nbytes);
4695 s->data[nbytes] = '\0';
4696 }
4697 s->size = nchars;
4698 s->size_byte = multibyte ? nbytes : -1;
4699 s->intervals = NULL_INTERVAL;
4700 XSETSTRING (string, s);
4701 return string;
4702 }
4703
4704 /* Return a string a string allocated in pure space. Do not allocate
4705 the string data, just point to DATA. */
4706
4707 Lisp_Object
4708 make_pure_c_string (const char *data)
4709 {
4710 Lisp_Object string;
4711 struct Lisp_String *s;
4712 int nchars = strlen (data);
4713
4714 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4715 s->size = nchars;
4716 s->size_byte = -1;
4717 s->data = (unsigned char *) data;
4718 s->intervals = NULL_INTERVAL;
4719 XSETSTRING (string, s);
4720 return string;
4721 }
4722
4723 /* Return a cons allocated from pure space. Give it pure copies
4724 of CAR as car and CDR as cdr. */
4725
4726 Lisp_Object
4727 pure_cons (Lisp_Object car, Lisp_Object cdr)
4728 {
4729 register Lisp_Object new;
4730 struct Lisp_Cons *p;
4731
4732 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4733 XSETCONS (new, p);
4734 XSETCAR (new, Fpurecopy (car));
4735 XSETCDR (new, Fpurecopy (cdr));
4736 return new;
4737 }
4738
4739
4740 /* Value is a float object with value NUM allocated from pure space. */
4741
4742 static Lisp_Object
4743 make_pure_float (double num)
4744 {
4745 register Lisp_Object new;
4746 struct Lisp_Float *p;
4747
4748 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4749 XSETFLOAT (new, p);
4750 XFLOAT_INIT (new, num);
4751 return new;
4752 }
4753
4754
4755 /* Return a vector with room for LEN Lisp_Objects allocated from
4756 pure space. */
4757
4758 Lisp_Object
4759 make_pure_vector (EMACS_INT len)
4760 {
4761 Lisp_Object new;
4762 struct Lisp_Vector *p;
4763 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4764
4765 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4766 XSETVECTOR (new, p);
4767 XVECTOR (new)->size = len;
4768 return new;
4769 }
4770
4771
4772 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4773 doc: /* Make a copy of object OBJ in pure storage.
4774 Recursively copies contents of vectors and cons cells.
4775 Does not copy symbols. Copies strings without text properties. */)
4776 (register Lisp_Object obj)
4777 {
4778 if (NILP (Vpurify_flag))
4779 return obj;
4780
4781 if (PURE_POINTER_P (XPNTR (obj)))
4782 return obj;
4783
4784 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4785 {
4786 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4787 if (!NILP (tmp))
4788 return tmp;
4789 }
4790
4791 if (CONSP (obj))
4792 obj = pure_cons (XCAR (obj), XCDR (obj));
4793 else if (FLOATP (obj))
4794 obj = make_pure_float (XFLOAT_DATA (obj));
4795 else if (STRINGP (obj))
4796 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4797 SBYTES (obj),
4798 STRING_MULTIBYTE (obj));
4799 else if (COMPILEDP (obj) || VECTORP (obj))
4800 {
4801 register struct Lisp_Vector *vec;
4802 register int i;
4803 EMACS_INT size;
4804
4805 size = XVECTOR (obj)->size;
4806 if (size & PSEUDOVECTOR_FLAG)
4807 size &= PSEUDOVECTOR_SIZE_MASK;
4808 vec = XVECTOR (make_pure_vector (size));
4809 for (i = 0; i < size; i++)
4810 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4811 if (COMPILEDP (obj))
4812 {
4813 XSETPVECTYPE (vec, PVEC_COMPILED);
4814 XSETCOMPILED (obj, vec);
4815 }
4816 else
4817 XSETVECTOR (obj, vec);
4818 }
4819 else if (MARKERP (obj))
4820 error ("Attempt to copy a marker to pure storage");
4821 else
4822 /* Not purified, don't hash-cons. */
4823 return obj;
4824
4825 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4826 Fputhash (obj, obj, Vpurify_flag);
4827
4828 return obj;
4829 }
4830
4831
4832 \f
4833 /***********************************************************************
4834 Protection from GC
4835 ***********************************************************************/
4836
4837 /* Put an entry in staticvec, pointing at the variable with address
4838 VARADDRESS. */
4839
4840 void
4841 staticpro (Lisp_Object *varaddress)
4842 {
4843 staticvec[staticidx++] = varaddress;
4844 if (staticidx >= NSTATICS)
4845 abort ();
4846 }
4847
4848 \f
4849 /***********************************************************************
4850 Protection from GC
4851 ***********************************************************************/
4852
4853 /* Temporarily prevent garbage collection. */
4854
4855 int
4856 inhibit_garbage_collection (void)
4857 {
4858 int count = SPECPDL_INDEX ();
4859 int nbits = min (VALBITS, BITS_PER_INT);
4860
4861 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4862 return count;
4863 }
4864
4865
4866 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4867 doc: /* Reclaim storage for Lisp objects no longer needed.
4868 Garbage collection happens automatically if you cons more than
4869 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4870 `garbage-collect' normally returns a list with info on amount of space in use:
4871 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4872 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4873 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4874 (USED-STRINGS . FREE-STRINGS))
4875 However, if there was overflow in pure space, `garbage-collect'
4876 returns nil, because real GC can't be done. */)
4877 (void)
4878 {
4879 register struct specbinding *bind;
4880 struct catchtag *catch;
4881 struct handler *handler;
4882 char stack_top_variable;
4883 register int i;
4884 int message_p;
4885 Lisp_Object total[8];
4886 int count = SPECPDL_INDEX ();
4887 EMACS_TIME t1, t2, t3;
4888
4889 if (abort_on_gc)
4890 abort ();
4891
4892 /* Can't GC if pure storage overflowed because we can't determine
4893 if something is a pure object or not. */
4894 if (pure_bytes_used_before_overflow)
4895 return Qnil;
4896
4897 CHECK_CONS_LIST ();
4898
4899 /* Don't keep undo information around forever.
4900 Do this early on, so it is no problem if the user quits. */
4901 {
4902 register struct buffer *nextb = all_buffers;
4903
4904 while (nextb)
4905 {
4906 /* If a buffer's undo list is Qt, that means that undo is
4907 turned off in that buffer. Calling truncate_undo_list on
4908 Qt tends to return NULL, which effectively turns undo back on.
4909 So don't call truncate_undo_list if undo_list is Qt. */
4910 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4911 truncate_undo_list (nextb);
4912
4913 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4914 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4915 && ! nextb->text->inhibit_shrinking)
4916 {
4917 /* If a buffer's gap size is more than 10% of the buffer
4918 size, or larger than 2000 bytes, then shrink it
4919 accordingly. Keep a minimum size of 20 bytes. */
4920 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4921
4922 if (nextb->text->gap_size > size)
4923 {
4924 struct buffer *save_current = current_buffer;
4925 current_buffer = nextb;
4926 make_gap (-(nextb->text->gap_size - size));
4927 current_buffer = save_current;
4928 }
4929 }
4930
4931 nextb = nextb->next;
4932 }
4933 }
4934
4935 EMACS_GET_TIME (t1);
4936
4937 /* In case user calls debug_print during GC,
4938 don't let that cause a recursive GC. */
4939 consing_since_gc = 0;
4940
4941 /* Save what's currently displayed in the echo area. */
4942 message_p = push_message ();
4943 record_unwind_protect (pop_message_unwind, Qnil);
4944
4945 /* Save a copy of the contents of the stack, for debugging. */
4946 #if MAX_SAVE_STACK > 0
4947 if (NILP (Vpurify_flag))
4948 {
4949 i = &stack_top_variable - stack_bottom;
4950 if (i < 0) i = -i;
4951 if (i < MAX_SAVE_STACK)
4952 {
4953 if (stack_copy == 0)
4954 stack_copy = (char *) xmalloc (stack_copy_size = i);
4955 else if (stack_copy_size < i)
4956 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4957 if (stack_copy)
4958 {
4959 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4960 memcpy (stack_copy, stack_bottom, i);
4961 else
4962 memcpy (stack_copy, &stack_top_variable, i);
4963 }
4964 }
4965 }
4966 #endif /* MAX_SAVE_STACK > 0 */
4967
4968 if (garbage_collection_messages)
4969 message1_nolog ("Garbage collecting...");
4970
4971 BLOCK_INPUT;
4972
4973 shrink_regexp_cache ();
4974
4975 gc_in_progress = 1;
4976
4977 /* clear_marks (); */
4978
4979 /* Mark all the special slots that serve as the roots of accessibility. */
4980
4981 for (i = 0; i < staticidx; i++)
4982 mark_object (*staticvec[i]);
4983
4984 for (bind = specpdl; bind != specpdl_ptr; bind++)
4985 {
4986 mark_object (bind->symbol);
4987 mark_object (bind->old_value);
4988 }
4989 mark_terminals ();
4990 mark_kboards ();
4991 mark_ttys ();
4992
4993 #ifdef USE_GTK
4994 {
4995 extern void xg_mark_data (void);
4996 xg_mark_data ();
4997 }
4998 #endif
4999
5000 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5001 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5002 mark_stack ();
5003 #else
5004 {
5005 register struct gcpro *tail;
5006 for (tail = gcprolist; tail; tail = tail->next)
5007 for (i = 0; i < tail->nvars; i++)
5008 mark_object (tail->var[i]);
5009 }
5010 #endif
5011
5012 mark_byte_stack ();
5013 for (catch = catchlist; catch; catch = catch->next)
5014 {
5015 mark_object (catch->tag);
5016 mark_object (catch->val);
5017 }
5018 for (handler = handlerlist; handler; handler = handler->next)
5019 {
5020 mark_object (handler->handler);
5021 mark_object (handler->var);
5022 }
5023 mark_backtrace ();
5024
5025 #ifdef HAVE_WINDOW_SYSTEM
5026 mark_fringe_data ();
5027 #endif
5028
5029 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5030 mark_stack ();
5031 #endif
5032
5033 /* Everything is now marked, except for the things that require special
5034 finalization, i.e. the undo_list.
5035 Look thru every buffer's undo list
5036 for elements that update markers that were not marked,
5037 and delete them. */
5038 {
5039 register struct buffer *nextb = all_buffers;
5040
5041 while (nextb)
5042 {
5043 /* If a buffer's undo list is Qt, that means that undo is
5044 turned off in that buffer. Calling truncate_undo_list on
5045 Qt tends to return NULL, which effectively turns undo back on.
5046 So don't call truncate_undo_list if undo_list is Qt. */
5047 if (! EQ (nextb->undo_list, Qt))
5048 {
5049 Lisp_Object tail, prev;
5050 tail = nextb->undo_list;
5051 prev = Qnil;
5052 while (CONSP (tail))
5053 {
5054 if (CONSP (XCAR (tail))
5055 && MARKERP (XCAR (XCAR (tail)))
5056 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5057 {
5058 if (NILP (prev))
5059 nextb->undo_list = tail = XCDR (tail);
5060 else
5061 {
5062 tail = XCDR (tail);
5063 XSETCDR (prev, tail);
5064 }
5065 }
5066 else
5067 {
5068 prev = tail;
5069 tail = XCDR (tail);
5070 }
5071 }
5072 }
5073 /* Now that we have stripped the elements that need not be in the
5074 undo_list any more, we can finally mark the list. */
5075 mark_object (nextb->undo_list);
5076
5077 nextb = nextb->next;
5078 }
5079 }
5080
5081 gc_sweep ();
5082
5083 /* Clear the mark bits that we set in certain root slots. */
5084
5085 unmark_byte_stack ();
5086 VECTOR_UNMARK (&buffer_defaults);
5087 VECTOR_UNMARK (&buffer_local_symbols);
5088
5089 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5090 dump_zombies ();
5091 #endif
5092
5093 UNBLOCK_INPUT;
5094
5095 CHECK_CONS_LIST ();
5096
5097 /* clear_marks (); */
5098 gc_in_progress = 0;
5099
5100 consing_since_gc = 0;
5101 if (gc_cons_threshold < 10000)
5102 gc_cons_threshold = 10000;
5103
5104 if (FLOATP (Vgc_cons_percentage))
5105 { /* Set gc_cons_combined_threshold. */
5106 EMACS_INT total = 0;
5107
5108 total += total_conses * sizeof (struct Lisp_Cons);
5109 total += total_symbols * sizeof (struct Lisp_Symbol);
5110 total += total_markers * sizeof (union Lisp_Misc);
5111 total += total_string_size;
5112 total += total_vector_size * sizeof (Lisp_Object);
5113 total += total_floats * sizeof (struct Lisp_Float);
5114 total += total_intervals * sizeof (struct interval);
5115 total += total_strings * sizeof (struct Lisp_String);
5116
5117 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5118 }
5119 else
5120 gc_relative_threshold = 0;
5121
5122 if (garbage_collection_messages)
5123 {
5124 if (message_p || minibuf_level > 0)
5125 restore_message ();
5126 else
5127 message1_nolog ("Garbage collecting...done");
5128 }
5129
5130 unbind_to (count, Qnil);
5131
5132 total[0] = Fcons (make_number (total_conses),
5133 make_number (total_free_conses));
5134 total[1] = Fcons (make_number (total_symbols),
5135 make_number (total_free_symbols));
5136 total[2] = Fcons (make_number (total_markers),
5137 make_number (total_free_markers));
5138 total[3] = make_number (total_string_size);
5139 total[4] = make_number (total_vector_size);
5140 total[5] = Fcons (make_number (total_floats),
5141 make_number (total_free_floats));
5142 total[6] = Fcons (make_number (total_intervals),
5143 make_number (total_free_intervals));
5144 total[7] = Fcons (make_number (total_strings),
5145 make_number (total_free_strings));
5146
5147 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5148 {
5149 /* Compute average percentage of zombies. */
5150 double nlive = 0;
5151
5152 for (i = 0; i < 7; ++i)
5153 if (CONSP (total[i]))
5154 nlive += XFASTINT (XCAR (total[i]));
5155
5156 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5157 max_live = max (nlive, max_live);
5158 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5159 max_zombies = max (nzombies, max_zombies);
5160 ++ngcs;
5161 }
5162 #endif
5163
5164 if (!NILP (Vpost_gc_hook))
5165 {
5166 int count = inhibit_garbage_collection ();
5167 safe_run_hooks (Qpost_gc_hook);
5168 unbind_to (count, Qnil);
5169 }
5170
5171 /* Accumulate statistics. */
5172 EMACS_GET_TIME (t2);
5173 EMACS_SUB_TIME (t3, t2, t1);
5174 if (FLOATP (Vgc_elapsed))
5175 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5176 EMACS_SECS (t3) +
5177 EMACS_USECS (t3) * 1.0e-6);
5178 gcs_done++;
5179
5180 return Flist (sizeof total / sizeof *total, total);
5181 }
5182
5183
5184 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5185 only interesting objects referenced from glyphs are strings. */
5186
5187 static void
5188 mark_glyph_matrix (struct glyph_matrix *matrix)
5189 {
5190 struct glyph_row *row = matrix->rows;
5191 struct glyph_row *end = row + matrix->nrows;
5192
5193 for (; row < end; ++row)
5194 if (row->enabled_p)
5195 {
5196 int area;
5197 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5198 {
5199 struct glyph *glyph = row->glyphs[area];
5200 struct glyph *end_glyph = glyph + row->used[area];
5201
5202 for (; glyph < end_glyph; ++glyph)
5203 if (STRINGP (glyph->object)
5204 && !STRING_MARKED_P (XSTRING (glyph->object)))
5205 mark_object (glyph->object);
5206 }
5207 }
5208 }
5209
5210
5211 /* Mark Lisp faces in the face cache C. */
5212
5213 static void
5214 mark_face_cache (struct face_cache *c)
5215 {
5216 if (c)
5217 {
5218 int i, j;
5219 for (i = 0; i < c->used; ++i)
5220 {
5221 struct face *face = FACE_FROM_ID (c->f, i);
5222
5223 if (face)
5224 {
5225 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5226 mark_object (face->lface[j]);
5227 }
5228 }
5229 }
5230 }
5231
5232
5233 \f
5234 /* Mark reference to a Lisp_Object.
5235 If the object referred to has not been seen yet, recursively mark
5236 all the references contained in it. */
5237
5238 #define LAST_MARKED_SIZE 500
5239 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5240 int last_marked_index;
5241
5242 /* For debugging--call abort when we cdr down this many
5243 links of a list, in mark_object. In debugging,
5244 the call to abort will hit a breakpoint.
5245 Normally this is zero and the check never goes off. */
5246 static int mark_object_loop_halt;
5247
5248 static void
5249 mark_vectorlike (struct Lisp_Vector *ptr)
5250 {
5251 register EMACS_INT size = ptr->size;
5252 register int i;
5253
5254 eassert (!VECTOR_MARKED_P (ptr));
5255 VECTOR_MARK (ptr); /* Else mark it */
5256 if (size & PSEUDOVECTOR_FLAG)
5257 size &= PSEUDOVECTOR_SIZE_MASK;
5258
5259 /* Note that this size is not the memory-footprint size, but only
5260 the number of Lisp_Object fields that we should trace.
5261 The distinction is used e.g. by Lisp_Process which places extra
5262 non-Lisp_Object fields at the end of the structure. */
5263 for (i = 0; i < size; i++) /* and then mark its elements */
5264 mark_object (ptr->contents[i]);
5265 }
5266
5267 /* Like mark_vectorlike but optimized for char-tables (and
5268 sub-char-tables) assuming that the contents are mostly integers or
5269 symbols. */
5270
5271 static void
5272 mark_char_table (struct Lisp_Vector *ptr)
5273 {
5274 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5275 register int i;
5276
5277 eassert (!VECTOR_MARKED_P (ptr));
5278 VECTOR_MARK (ptr);
5279 for (i = 0; i < size; i++)
5280 {
5281 Lisp_Object val = ptr->contents[i];
5282
5283 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5284 continue;
5285 if (SUB_CHAR_TABLE_P (val))
5286 {
5287 if (! VECTOR_MARKED_P (XVECTOR (val)))
5288 mark_char_table (XVECTOR (val));
5289 }
5290 else
5291 mark_object (val);
5292 }
5293 }
5294
5295 void
5296 mark_object (Lisp_Object arg)
5297 {
5298 register Lisp_Object obj = arg;
5299 #ifdef GC_CHECK_MARKED_OBJECTS
5300 void *po;
5301 struct mem_node *m;
5302 #endif
5303 int cdr_count = 0;
5304
5305 loop:
5306
5307 if (PURE_POINTER_P (XPNTR (obj)))
5308 return;
5309
5310 last_marked[last_marked_index++] = obj;
5311 if (last_marked_index == LAST_MARKED_SIZE)
5312 last_marked_index = 0;
5313
5314 /* Perform some sanity checks on the objects marked here. Abort if
5315 we encounter an object we know is bogus. This increases GC time
5316 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5317 #ifdef GC_CHECK_MARKED_OBJECTS
5318
5319 po = (void *) XPNTR (obj);
5320
5321 /* Check that the object pointed to by PO is known to be a Lisp
5322 structure allocated from the heap. */
5323 #define CHECK_ALLOCATED() \
5324 do { \
5325 m = mem_find (po); \
5326 if (m == MEM_NIL) \
5327 abort (); \
5328 } while (0)
5329
5330 /* Check that the object pointed to by PO is live, using predicate
5331 function LIVEP. */
5332 #define CHECK_LIVE(LIVEP) \
5333 do { \
5334 if (!LIVEP (m, po)) \
5335 abort (); \
5336 } while (0)
5337
5338 /* Check both of the above conditions. */
5339 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5340 do { \
5341 CHECK_ALLOCATED (); \
5342 CHECK_LIVE (LIVEP); \
5343 } while (0) \
5344
5345 #else /* not GC_CHECK_MARKED_OBJECTS */
5346
5347 #define CHECK_ALLOCATED() (void) 0
5348 #define CHECK_LIVE(LIVEP) (void) 0
5349 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5350
5351 #endif /* not GC_CHECK_MARKED_OBJECTS */
5352
5353 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5354 {
5355 case Lisp_String:
5356 {
5357 register struct Lisp_String *ptr = XSTRING (obj);
5358 if (STRING_MARKED_P (ptr))
5359 break;
5360 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5361 MARK_INTERVAL_TREE (ptr->intervals);
5362 MARK_STRING (ptr);
5363 #ifdef GC_CHECK_STRING_BYTES
5364 /* Check that the string size recorded in the string is the
5365 same as the one recorded in the sdata structure. */
5366 CHECK_STRING_BYTES (ptr);
5367 #endif /* GC_CHECK_STRING_BYTES */
5368 }
5369 break;
5370
5371 case Lisp_Vectorlike:
5372 if (VECTOR_MARKED_P (XVECTOR (obj)))
5373 break;
5374 #ifdef GC_CHECK_MARKED_OBJECTS
5375 m = mem_find (po);
5376 if (m == MEM_NIL && !SUBRP (obj)
5377 && po != &buffer_defaults
5378 && po != &buffer_local_symbols)
5379 abort ();
5380 #endif /* GC_CHECK_MARKED_OBJECTS */
5381
5382 if (BUFFERP (obj))
5383 {
5384 #ifdef GC_CHECK_MARKED_OBJECTS
5385 if (po != &buffer_defaults && po != &buffer_local_symbols)
5386 {
5387 struct buffer *b;
5388 for (b = all_buffers; b && b != po; b = b->next)
5389 ;
5390 if (b == NULL)
5391 abort ();
5392 }
5393 #endif /* GC_CHECK_MARKED_OBJECTS */
5394 mark_buffer (obj);
5395 }
5396 else if (SUBRP (obj))
5397 break;
5398 else if (COMPILEDP (obj))
5399 /* We could treat this just like a vector, but it is better to
5400 save the COMPILED_CONSTANTS element for last and avoid
5401 recursion there. */
5402 {
5403 register struct Lisp_Vector *ptr = XVECTOR (obj);
5404 register EMACS_INT size = ptr->size;
5405 register int i;
5406
5407 CHECK_LIVE (live_vector_p);
5408 VECTOR_MARK (ptr); /* Else mark it */
5409 size &= PSEUDOVECTOR_SIZE_MASK;
5410 for (i = 0; i < size; i++) /* and then mark its elements */
5411 {
5412 if (i != COMPILED_CONSTANTS)
5413 mark_object (ptr->contents[i]);
5414 }
5415 obj = ptr->contents[COMPILED_CONSTANTS];
5416 goto loop;
5417 }
5418 else if (FRAMEP (obj))
5419 {
5420 register struct frame *ptr = XFRAME (obj);
5421 mark_vectorlike (XVECTOR (obj));
5422 mark_face_cache (ptr->face_cache);
5423 }
5424 else if (WINDOWP (obj))
5425 {
5426 register struct Lisp_Vector *ptr = XVECTOR (obj);
5427 struct window *w = XWINDOW (obj);
5428 mark_vectorlike (ptr);
5429 /* Mark glyphs for leaf windows. Marking window matrices is
5430 sufficient because frame matrices use the same glyph
5431 memory. */
5432 if (NILP (w->hchild)
5433 && NILP (w->vchild)
5434 && w->current_matrix)
5435 {
5436 mark_glyph_matrix (w->current_matrix);
5437 mark_glyph_matrix (w->desired_matrix);
5438 }
5439 }
5440 else if (HASH_TABLE_P (obj))
5441 {
5442 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5443 mark_vectorlike ((struct Lisp_Vector *)h);
5444 /* If hash table is not weak, mark all keys and values.
5445 For weak tables, mark only the vector. */
5446 if (NILP (h->weak))
5447 mark_object (h->key_and_value);
5448 else
5449 VECTOR_MARK (XVECTOR (h->key_and_value));
5450 }
5451 else if (CHAR_TABLE_P (obj))
5452 mark_char_table (XVECTOR (obj));
5453 else
5454 mark_vectorlike (XVECTOR (obj));
5455 break;
5456
5457 case Lisp_Symbol:
5458 {
5459 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5460 struct Lisp_Symbol *ptrx;
5461
5462 if (ptr->gcmarkbit)
5463 break;
5464 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5465 ptr->gcmarkbit = 1;
5466 mark_object (ptr->function);
5467 mark_object (ptr->plist);
5468 switch (ptr->redirect)
5469 {
5470 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5471 case SYMBOL_VARALIAS:
5472 {
5473 Lisp_Object tem;
5474 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5475 mark_object (tem);
5476 break;
5477 }
5478 case SYMBOL_LOCALIZED:
5479 {
5480 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5481 /* If the value is forwarded to a buffer or keyboard field,
5482 these are marked when we see the corresponding object.
5483 And if it's forwarded to a C variable, either it's not
5484 a Lisp_Object var, or it's staticpro'd already. */
5485 mark_object (blv->where);
5486 mark_object (blv->valcell);
5487 mark_object (blv->defcell);
5488 break;
5489 }
5490 case SYMBOL_FORWARDED:
5491 /* If the value is forwarded to a buffer or keyboard field,
5492 these are marked when we see the corresponding object.
5493 And if it's forwarded to a C variable, either it's not
5494 a Lisp_Object var, or it's staticpro'd already. */
5495 break;
5496 default: abort ();
5497 }
5498 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5499 MARK_STRING (XSTRING (ptr->xname));
5500 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5501
5502 ptr = ptr->next;
5503 if (ptr)
5504 {
5505 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5506 XSETSYMBOL (obj, ptrx);
5507 goto loop;
5508 }
5509 }
5510 break;
5511
5512 case Lisp_Misc:
5513 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5514 if (XMISCANY (obj)->gcmarkbit)
5515 break;
5516 XMISCANY (obj)->gcmarkbit = 1;
5517
5518 switch (XMISCTYPE (obj))
5519 {
5520
5521 case Lisp_Misc_Marker:
5522 /* DO NOT mark thru the marker's chain.
5523 The buffer's markers chain does not preserve markers from gc;
5524 instead, markers are removed from the chain when freed by gc. */
5525 break;
5526
5527 case Lisp_Misc_Save_Value:
5528 #if GC_MARK_STACK
5529 {
5530 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5531 /* If DOGC is set, POINTER is the address of a memory
5532 area containing INTEGER potential Lisp_Objects. */
5533 if (ptr->dogc)
5534 {
5535 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5536 int nelt;
5537 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5538 mark_maybe_object (*p);
5539 }
5540 }
5541 #endif
5542 break;
5543
5544 case Lisp_Misc_Overlay:
5545 {
5546 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5547 mark_object (ptr->start);
5548 mark_object (ptr->end);
5549 mark_object (ptr->plist);
5550 if (ptr->next)
5551 {
5552 XSETMISC (obj, ptr->next);
5553 goto loop;
5554 }
5555 }
5556 break;
5557
5558 default:
5559 abort ();
5560 }
5561 break;
5562
5563 case Lisp_Cons:
5564 {
5565 register struct Lisp_Cons *ptr = XCONS (obj);
5566 if (CONS_MARKED_P (ptr))
5567 break;
5568 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5569 CONS_MARK (ptr);
5570 /* If the cdr is nil, avoid recursion for the car. */
5571 if (EQ (ptr->u.cdr, Qnil))
5572 {
5573 obj = ptr->car;
5574 cdr_count = 0;
5575 goto loop;
5576 }
5577 mark_object (ptr->car);
5578 obj = ptr->u.cdr;
5579 cdr_count++;
5580 if (cdr_count == mark_object_loop_halt)
5581 abort ();
5582 goto loop;
5583 }
5584
5585 case Lisp_Float:
5586 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5587 FLOAT_MARK (XFLOAT (obj));
5588 break;
5589
5590 case_Lisp_Int:
5591 break;
5592
5593 default:
5594 abort ();
5595 }
5596
5597 #undef CHECK_LIVE
5598 #undef CHECK_ALLOCATED
5599 #undef CHECK_ALLOCATED_AND_LIVE
5600 }
5601
5602 /* Mark the pointers in a buffer structure. */
5603
5604 static void
5605 mark_buffer (Lisp_Object buf)
5606 {
5607 register struct buffer *buffer = XBUFFER (buf);
5608 register Lisp_Object *ptr, tmp;
5609 Lisp_Object base_buffer;
5610
5611 eassert (!VECTOR_MARKED_P (buffer));
5612 VECTOR_MARK (buffer);
5613
5614 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5615
5616 /* For now, we just don't mark the undo_list. It's done later in
5617 a special way just before the sweep phase, and after stripping
5618 some of its elements that are not needed any more. */
5619
5620 if (buffer->overlays_before)
5621 {
5622 XSETMISC (tmp, buffer->overlays_before);
5623 mark_object (tmp);
5624 }
5625 if (buffer->overlays_after)
5626 {
5627 XSETMISC (tmp, buffer->overlays_after);
5628 mark_object (tmp);
5629 }
5630
5631 /* buffer-local Lisp variables start at `undo_list',
5632 tho only the ones from `name' on are GC'd normally. */
5633 for (ptr = &buffer->name;
5634 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5635 ptr++)
5636 mark_object (*ptr);
5637
5638 /* If this is an indirect buffer, mark its base buffer. */
5639 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5640 {
5641 XSETBUFFER (base_buffer, buffer->base_buffer);
5642 mark_buffer (base_buffer);
5643 }
5644 }
5645
5646 /* Mark the Lisp pointers in the terminal objects.
5647 Called by the Fgarbage_collector. */
5648
5649 static void
5650 mark_terminals (void)
5651 {
5652 struct terminal *t;
5653 for (t = terminal_list; t; t = t->next_terminal)
5654 {
5655 eassert (t->name != NULL);
5656 if (!VECTOR_MARKED_P (t))
5657 {
5658 #ifdef HAVE_WINDOW_SYSTEM
5659 mark_image_cache (t->image_cache);
5660 #endif /* HAVE_WINDOW_SYSTEM */
5661 mark_vectorlike ((struct Lisp_Vector *)t);
5662 }
5663 }
5664 }
5665
5666
5667
5668 /* Value is non-zero if OBJ will survive the current GC because it's
5669 either marked or does not need to be marked to survive. */
5670
5671 int
5672 survives_gc_p (Lisp_Object obj)
5673 {
5674 int survives_p;
5675
5676 switch (XTYPE (obj))
5677 {
5678 case_Lisp_Int:
5679 survives_p = 1;
5680 break;
5681
5682 case Lisp_Symbol:
5683 survives_p = XSYMBOL (obj)->gcmarkbit;
5684 break;
5685
5686 case Lisp_Misc:
5687 survives_p = XMISCANY (obj)->gcmarkbit;
5688 break;
5689
5690 case Lisp_String:
5691 survives_p = STRING_MARKED_P (XSTRING (obj));
5692 break;
5693
5694 case Lisp_Vectorlike:
5695 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5696 break;
5697
5698 case Lisp_Cons:
5699 survives_p = CONS_MARKED_P (XCONS (obj));
5700 break;
5701
5702 case Lisp_Float:
5703 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5704 break;
5705
5706 default:
5707 abort ();
5708 }
5709
5710 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5711 }
5712
5713
5714 \f
5715 /* Sweep: find all structures not marked, and free them. */
5716
5717 static void
5718 gc_sweep (void)
5719 {
5720 /* Remove or mark entries in weak hash tables.
5721 This must be done before any object is unmarked. */
5722 sweep_weak_hash_tables ();
5723
5724 sweep_strings ();
5725 #ifdef GC_CHECK_STRING_BYTES
5726 if (!noninteractive)
5727 check_string_bytes (1);
5728 #endif
5729
5730 /* Put all unmarked conses on free list */
5731 {
5732 register struct cons_block *cblk;
5733 struct cons_block **cprev = &cons_block;
5734 register int lim = cons_block_index;
5735 register int num_free = 0, num_used = 0;
5736
5737 cons_free_list = 0;
5738
5739 for (cblk = cons_block; cblk; cblk = *cprev)
5740 {
5741 register int i = 0;
5742 int this_free = 0;
5743 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5744
5745 /* Scan the mark bits an int at a time. */
5746 for (i = 0; i <= ilim; i++)
5747 {
5748 if (cblk->gcmarkbits[i] == -1)
5749 {
5750 /* Fast path - all cons cells for this int are marked. */
5751 cblk->gcmarkbits[i] = 0;
5752 num_used += BITS_PER_INT;
5753 }
5754 else
5755 {
5756 /* Some cons cells for this int are not marked.
5757 Find which ones, and free them. */
5758 int start, pos, stop;
5759
5760 start = i * BITS_PER_INT;
5761 stop = lim - start;
5762 if (stop > BITS_PER_INT)
5763 stop = BITS_PER_INT;
5764 stop += start;
5765
5766 for (pos = start; pos < stop; pos++)
5767 {
5768 if (!CONS_MARKED_P (&cblk->conses[pos]))
5769 {
5770 this_free++;
5771 cblk->conses[pos].u.chain = cons_free_list;
5772 cons_free_list = &cblk->conses[pos];
5773 #if GC_MARK_STACK
5774 cons_free_list->car = Vdead;
5775 #endif
5776 }
5777 else
5778 {
5779 num_used++;
5780 CONS_UNMARK (&cblk->conses[pos]);
5781 }
5782 }
5783 }
5784 }
5785
5786 lim = CONS_BLOCK_SIZE;
5787 /* If this block contains only free conses and we have already
5788 seen more than two blocks worth of free conses then deallocate
5789 this block. */
5790 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5791 {
5792 *cprev = cblk->next;
5793 /* Unhook from the free list. */
5794 cons_free_list = cblk->conses[0].u.chain;
5795 lisp_align_free (cblk);
5796 n_cons_blocks--;
5797 }
5798 else
5799 {
5800 num_free += this_free;
5801 cprev = &cblk->next;
5802 }
5803 }
5804 total_conses = num_used;
5805 total_free_conses = num_free;
5806 }
5807
5808 /* Put all unmarked floats on free list */
5809 {
5810 register struct float_block *fblk;
5811 struct float_block **fprev = &float_block;
5812 register int lim = float_block_index;
5813 register int num_free = 0, num_used = 0;
5814
5815 float_free_list = 0;
5816
5817 for (fblk = float_block; fblk; fblk = *fprev)
5818 {
5819 register int i;
5820 int this_free = 0;
5821 for (i = 0; i < lim; i++)
5822 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5823 {
5824 this_free++;
5825 fblk->floats[i].u.chain = float_free_list;
5826 float_free_list = &fblk->floats[i];
5827 }
5828 else
5829 {
5830 num_used++;
5831 FLOAT_UNMARK (&fblk->floats[i]);
5832 }
5833 lim = FLOAT_BLOCK_SIZE;
5834 /* If this block contains only free floats and we have already
5835 seen more than two blocks worth of free floats then deallocate
5836 this block. */
5837 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5838 {
5839 *fprev = fblk->next;
5840 /* Unhook from the free list. */
5841 float_free_list = fblk->floats[0].u.chain;
5842 lisp_align_free (fblk);
5843 n_float_blocks--;
5844 }
5845 else
5846 {
5847 num_free += this_free;
5848 fprev = &fblk->next;
5849 }
5850 }
5851 total_floats = num_used;
5852 total_free_floats = num_free;
5853 }
5854
5855 /* Put all unmarked intervals on free list */
5856 {
5857 register struct interval_block *iblk;
5858 struct interval_block **iprev = &interval_block;
5859 register int lim = interval_block_index;
5860 register int num_free = 0, num_used = 0;
5861
5862 interval_free_list = 0;
5863
5864 for (iblk = interval_block; iblk; iblk = *iprev)
5865 {
5866 register int i;
5867 int this_free = 0;
5868
5869 for (i = 0; i < lim; i++)
5870 {
5871 if (!iblk->intervals[i].gcmarkbit)
5872 {
5873 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5874 interval_free_list = &iblk->intervals[i];
5875 this_free++;
5876 }
5877 else
5878 {
5879 num_used++;
5880 iblk->intervals[i].gcmarkbit = 0;
5881 }
5882 }
5883 lim = INTERVAL_BLOCK_SIZE;
5884 /* If this block contains only free intervals and we have already
5885 seen more than two blocks worth of free intervals then
5886 deallocate this block. */
5887 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5888 {
5889 *iprev = iblk->next;
5890 /* Unhook from the free list. */
5891 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5892 lisp_free (iblk);
5893 n_interval_blocks--;
5894 }
5895 else
5896 {
5897 num_free += this_free;
5898 iprev = &iblk->next;
5899 }
5900 }
5901 total_intervals = num_used;
5902 total_free_intervals = num_free;
5903 }
5904
5905 /* Put all unmarked symbols on free list */
5906 {
5907 register struct symbol_block *sblk;
5908 struct symbol_block **sprev = &symbol_block;
5909 register int lim = symbol_block_index;
5910 register int num_free = 0, num_used = 0;
5911
5912 symbol_free_list = NULL;
5913
5914 for (sblk = symbol_block; sblk; sblk = *sprev)
5915 {
5916 int this_free = 0;
5917 struct Lisp_Symbol *sym = sblk->symbols;
5918 struct Lisp_Symbol *end = sym + lim;
5919
5920 for (; sym < end; ++sym)
5921 {
5922 /* Check if the symbol was created during loadup. In such a case
5923 it might be pointed to by pure bytecode which we don't trace,
5924 so we conservatively assume that it is live. */
5925 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5926
5927 if (!sym->gcmarkbit && !pure_p)
5928 {
5929 if (sym->redirect == SYMBOL_LOCALIZED)
5930 xfree (SYMBOL_BLV (sym));
5931 sym->next = symbol_free_list;
5932 symbol_free_list = sym;
5933 #if GC_MARK_STACK
5934 symbol_free_list->function = Vdead;
5935 #endif
5936 ++this_free;
5937 }
5938 else
5939 {
5940 ++num_used;
5941 if (!pure_p)
5942 UNMARK_STRING (XSTRING (sym->xname));
5943 sym->gcmarkbit = 0;
5944 }
5945 }
5946
5947 lim = SYMBOL_BLOCK_SIZE;
5948 /* If this block contains only free symbols and we have already
5949 seen more than two blocks worth of free symbols then deallocate
5950 this block. */
5951 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5952 {
5953 *sprev = sblk->next;
5954 /* Unhook from the free list. */
5955 symbol_free_list = sblk->symbols[0].next;
5956 lisp_free (sblk);
5957 n_symbol_blocks--;
5958 }
5959 else
5960 {
5961 num_free += this_free;
5962 sprev = &sblk->next;
5963 }
5964 }
5965 total_symbols = num_used;
5966 total_free_symbols = num_free;
5967 }
5968
5969 /* Put all unmarked misc's on free list.
5970 For a marker, first unchain it from the buffer it points into. */
5971 {
5972 register struct marker_block *mblk;
5973 struct marker_block **mprev = &marker_block;
5974 register int lim = marker_block_index;
5975 register int num_free = 0, num_used = 0;
5976
5977 marker_free_list = 0;
5978
5979 for (mblk = marker_block; mblk; mblk = *mprev)
5980 {
5981 register int i;
5982 int this_free = 0;
5983
5984 for (i = 0; i < lim; i++)
5985 {
5986 if (!mblk->markers[i].u_any.gcmarkbit)
5987 {
5988 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5989 unchain_marker (&mblk->markers[i].u_marker);
5990 /* Set the type of the freed object to Lisp_Misc_Free.
5991 We could leave the type alone, since nobody checks it,
5992 but this might catch bugs faster. */
5993 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5994 mblk->markers[i].u_free.chain = marker_free_list;
5995 marker_free_list = &mblk->markers[i];
5996 this_free++;
5997 }
5998 else
5999 {
6000 num_used++;
6001 mblk->markers[i].u_any.gcmarkbit = 0;
6002 }
6003 }
6004 lim = MARKER_BLOCK_SIZE;
6005 /* If this block contains only free markers and we have already
6006 seen more than two blocks worth of free markers then deallocate
6007 this block. */
6008 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6009 {
6010 *mprev = mblk->next;
6011 /* Unhook from the free list. */
6012 marker_free_list = mblk->markers[0].u_free.chain;
6013 lisp_free (mblk);
6014 n_marker_blocks--;
6015 }
6016 else
6017 {
6018 num_free += this_free;
6019 mprev = &mblk->next;
6020 }
6021 }
6022
6023 total_markers = num_used;
6024 total_free_markers = num_free;
6025 }
6026
6027 /* Free all unmarked buffers */
6028 {
6029 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6030
6031 while (buffer)
6032 if (!VECTOR_MARKED_P (buffer))
6033 {
6034 if (prev)
6035 prev->next = buffer->next;
6036 else
6037 all_buffers = buffer->next;
6038 next = buffer->next;
6039 lisp_free (buffer);
6040 buffer = next;
6041 }
6042 else
6043 {
6044 VECTOR_UNMARK (buffer);
6045 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6046 prev = buffer, buffer = buffer->next;
6047 }
6048 }
6049
6050 /* Free all unmarked vectors */
6051 {
6052 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6053 total_vector_size = 0;
6054
6055 while (vector)
6056 if (!VECTOR_MARKED_P (vector))
6057 {
6058 if (prev)
6059 prev->next = vector->next;
6060 else
6061 all_vectors = vector->next;
6062 next = vector->next;
6063 lisp_free (vector);
6064 n_vectors--;
6065 vector = next;
6066
6067 }
6068 else
6069 {
6070 VECTOR_UNMARK (vector);
6071 if (vector->size & PSEUDOVECTOR_FLAG)
6072 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6073 else
6074 total_vector_size += vector->size;
6075 prev = vector, vector = vector->next;
6076 }
6077 }
6078
6079 #ifdef GC_CHECK_STRING_BYTES
6080 if (!noninteractive)
6081 check_string_bytes (1);
6082 #endif
6083 }
6084
6085
6086
6087 \f
6088 /* Debugging aids. */
6089
6090 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6091 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6092 This may be helpful in debugging Emacs's memory usage.
6093 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6094 (void)
6095 {
6096 Lisp_Object end;
6097
6098 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6099
6100 return end;
6101 }
6102
6103 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6104 doc: /* Return a list of counters that measure how much consing there has been.
6105 Each of these counters increments for a certain kind of object.
6106 The counters wrap around from the largest positive integer to zero.
6107 Garbage collection does not decrease them.
6108 The elements of the value are as follows:
6109 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6110 All are in units of 1 = one object consed
6111 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6112 objects consed.
6113 MISCS include overlays, markers, and some internal types.
6114 Frames, windows, buffers, and subprocesses count as vectors
6115 (but the contents of a buffer's text do not count here). */)
6116 (void)
6117 {
6118 Lisp_Object consed[8];
6119
6120 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6121 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6122 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6123 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6124 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6125 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6126 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6127 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6128
6129 return Flist (8, consed);
6130 }
6131
6132 int suppress_checking;
6133
6134 void
6135 die (const char *msg, const char *file, int line)
6136 {
6137 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6138 file, line, msg);
6139 abort ();
6140 }
6141 \f
6142 /* Initialization */
6143
6144 void
6145 init_alloc_once (void)
6146 {
6147 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6148 purebeg = PUREBEG;
6149 pure_size = PURESIZE;
6150 pure_bytes_used = 0;
6151 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6152 pure_bytes_used_before_overflow = 0;
6153
6154 /* Initialize the list of free aligned blocks. */
6155 free_ablock = NULL;
6156
6157 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6158 mem_init ();
6159 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6160 #endif
6161
6162 all_vectors = 0;
6163 ignore_warnings = 1;
6164 #ifdef DOUG_LEA_MALLOC
6165 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6166 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6167 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6168 #endif
6169 init_strings ();
6170 init_cons ();
6171 init_symbol ();
6172 init_marker ();
6173 init_float ();
6174 init_intervals ();
6175 init_weak_hash_tables ();
6176
6177 #ifdef REL_ALLOC
6178 malloc_hysteresis = 32;
6179 #else
6180 malloc_hysteresis = 0;
6181 #endif
6182
6183 refill_memory_reserve ();
6184
6185 ignore_warnings = 0;
6186 gcprolist = 0;
6187 byte_stack_list = 0;
6188 staticidx = 0;
6189 consing_since_gc = 0;
6190 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6191 gc_relative_threshold = 0;
6192
6193 #ifdef VIRT_ADDR_VARIES
6194 malloc_sbrk_unused = 1<<22; /* A large number */
6195 malloc_sbrk_used = 100000; /* as reasonable as any number */
6196 #endif /* VIRT_ADDR_VARIES */
6197 }
6198
6199 void
6200 init_alloc (void)
6201 {
6202 gcprolist = 0;
6203 byte_stack_list = 0;
6204 #if GC_MARK_STACK
6205 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6206 setjmp_tested_p = longjmps_done = 0;
6207 #endif
6208 #endif
6209 Vgc_elapsed = make_float (0.0);
6210 gcs_done = 0;
6211 }
6212
6213 void
6214 syms_of_alloc (void)
6215 {
6216 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6217 doc: /* *Number of bytes of consing between garbage collections.
6218 Garbage collection can happen automatically once this many bytes have been
6219 allocated since the last garbage collection. All data types count.
6220
6221 Garbage collection happens automatically only when `eval' is called.
6222
6223 By binding this temporarily to a large number, you can effectively
6224 prevent garbage collection during a part of the program.
6225 See also `gc-cons-percentage'. */);
6226
6227 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6228 doc: /* *Portion of the heap used for allocation.
6229 Garbage collection can happen automatically once this portion of the heap
6230 has been allocated since the last garbage collection.
6231 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6232 Vgc_cons_percentage = make_float (0.1);
6233
6234 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6235 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6236
6237 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6238 doc: /* Number of cons cells that have been consed so far. */);
6239
6240 DEFVAR_INT ("floats-consed", &floats_consed,
6241 doc: /* Number of floats that have been consed so far. */);
6242
6243 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6244 doc: /* Number of vector cells that have been consed so far. */);
6245
6246 DEFVAR_INT ("symbols-consed", &symbols_consed,
6247 doc: /* Number of symbols that have been consed so far. */);
6248
6249 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6250 doc: /* Number of string characters that have been consed so far. */);
6251
6252 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6253 doc: /* Number of miscellaneous objects that have been consed so far. */);
6254
6255 DEFVAR_INT ("intervals-consed", &intervals_consed,
6256 doc: /* Number of intervals that have been consed so far. */);
6257
6258 DEFVAR_INT ("strings-consed", &strings_consed,
6259 doc: /* Number of strings that have been consed so far. */);
6260
6261 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6262 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6263 This means that certain objects should be allocated in shared (pure) space.
6264 It can also be set to a hash-table, in which case this table is used to
6265 do hash-consing of the objects allocated to pure space. */);
6266
6267 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6268 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6269 garbage_collection_messages = 0;
6270
6271 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6272 doc: /* Hook run after garbage collection has finished. */);
6273 Vpost_gc_hook = Qnil;
6274 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6275 staticpro (&Qpost_gc_hook);
6276
6277 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6278 doc: /* Precomputed `signal' argument for memory-full error. */);
6279 /* We build this in advance because if we wait until we need it, we might
6280 not be able to allocate the memory to hold it. */
6281 Vmemory_signal_data
6282 = pure_cons (Qerror,
6283 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6284
6285 DEFVAR_LISP ("memory-full", &Vmemory_full,
6286 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6287 Vmemory_full = Qnil;
6288
6289 staticpro (&Qgc_cons_threshold);
6290 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6291
6292 staticpro (&Qchar_table_extra_slots);
6293 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6294
6295 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6296 doc: /* Accumulated time elapsed in garbage collections.
6297 The time is in seconds as a floating point value. */);
6298 DEFVAR_INT ("gcs-done", &gcs_done,
6299 doc: /* Accumulated number of garbage collections done. */);
6300
6301 defsubr (&Scons);
6302 defsubr (&Slist);
6303 defsubr (&Svector);
6304 defsubr (&Smake_byte_code);
6305 defsubr (&Smake_list);
6306 defsubr (&Smake_vector);
6307 defsubr (&Smake_string);
6308 defsubr (&Smake_bool_vector);
6309 defsubr (&Smake_symbol);
6310 defsubr (&Smake_marker);
6311 defsubr (&Spurecopy);
6312 defsubr (&Sgarbage_collect);
6313 defsubr (&Smemory_limit);
6314 defsubr (&Smemory_use_counts);
6315
6316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6317 defsubr (&Sgc_status);
6318 #endif
6319 }
6320
6321 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6322 (do not change this comment) */