(code_convert_region): Don't copy old text if undo disabled.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348
349 #else /* not emacs */
350
351 #include "mulelib.h"
352
353 #endif /* not emacs */
354
355 Lisp_Object Qcoding_system, Qeol_type;
356 Lisp_Object Qbuffer_file_coding_system;
357 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358 Lisp_Object Qno_conversion, Qundecided;
359 Lisp_Object Qcoding_system_history;
360 Lisp_Object Qsafe_chars;
361 Lisp_Object Qvalid_codes;
362
363 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365 Lisp_Object Qstart_process, Qopen_network_stream;
366 Lisp_Object Qtarget_idx;
367
368 Lisp_Object Vselect_safe_coding_system_function;
369
370 /* Mnemonic string for each format of end-of-line. */
371 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
372 /* Mnemonic string to indicate format of end-of-line is not yet
373 decided. */
374 Lisp_Object eol_mnemonic_undecided;
375
376 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
377 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
378 int system_eol_type;
379
380 #ifdef emacs
381
382 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
383
384 Lisp_Object Qcoding_system_p, Qcoding_system_error;
385
386 /* Coding system emacs-mule and raw-text are for converting only
387 end-of-line format. */
388 Lisp_Object Qemacs_mule, Qraw_text;
389
390 /* Coding-systems are handed between Emacs Lisp programs and C internal
391 routines by the following three variables. */
392 /* Coding-system for reading files and receiving data from process. */
393 Lisp_Object Vcoding_system_for_read;
394 /* Coding-system for writing files and sending data to process. */
395 Lisp_Object Vcoding_system_for_write;
396 /* Coding-system actually used in the latest I/O. */
397 Lisp_Object Vlast_coding_system_used;
398
399 /* A vector of length 256 which contains information about special
400 Latin codes (especially for dealing with Microsoft codes). */
401 Lisp_Object Vlatin_extra_code_table;
402
403 /* Flag to inhibit code conversion of end-of-line format. */
404 int inhibit_eol_conversion;
405
406 /* Flag to inhibit ISO2022 escape sequence detection. */
407 int inhibit_iso_escape_detection;
408
409 /* Flag to make buffer-file-coding-system inherit from process-coding. */
410 int inherit_process_coding_system;
411
412 /* Coding system to be used to encode text for terminal display. */
413 struct coding_system terminal_coding;
414
415 /* Coding system to be used to encode text for terminal display when
416 terminal coding system is nil. */
417 struct coding_system safe_terminal_coding;
418
419 /* Coding system of what is sent from terminal keyboard. */
420 struct coding_system keyboard_coding;
421
422 /* Default coding system to be used to write a file. */
423 struct coding_system default_buffer_file_coding;
424
425 Lisp_Object Vfile_coding_system_alist;
426 Lisp_Object Vprocess_coding_system_alist;
427 Lisp_Object Vnetwork_coding_system_alist;
428
429 Lisp_Object Vlocale_coding_system;
430
431 #endif /* emacs */
432
433 Lisp_Object Qcoding_category, Qcoding_category_index;
434
435 /* List of symbols `coding-category-xxx' ordered by priority. */
436 Lisp_Object Vcoding_category_list;
437
438 /* Table of coding categories (Lisp symbols). */
439 Lisp_Object Vcoding_category_table;
440
441 /* Table of names of symbol for each coding-category. */
442 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
443 "coding-category-emacs-mule",
444 "coding-category-sjis",
445 "coding-category-iso-7",
446 "coding-category-iso-7-tight",
447 "coding-category-iso-8-1",
448 "coding-category-iso-8-2",
449 "coding-category-iso-7-else",
450 "coding-category-iso-8-else",
451 "coding-category-ccl",
452 "coding-category-big5",
453 "coding-category-utf-8",
454 "coding-category-utf-16-be",
455 "coding-category-utf-16-le",
456 "coding-category-raw-text",
457 "coding-category-binary"
458 };
459
460 /* Table of pointers to coding systems corresponding to each coding
461 categories. */
462 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
463
464 /* Table of coding category masks. Nth element is a mask for a coding
465 category of which priority is Nth. */
466 static
467 int coding_priorities[CODING_CATEGORY_IDX_MAX];
468
469 /* Flag to tell if we look up translation table on character code
470 conversion. */
471 Lisp_Object Venable_character_translation;
472 /* Standard translation table to look up on decoding (reading). */
473 Lisp_Object Vstandard_translation_table_for_decode;
474 /* Standard translation table to look up on encoding (writing). */
475 Lisp_Object Vstandard_translation_table_for_encode;
476
477 Lisp_Object Qtranslation_table;
478 Lisp_Object Qtranslation_table_id;
479 Lisp_Object Qtranslation_table_for_decode;
480 Lisp_Object Qtranslation_table_for_encode;
481
482 /* Alist of charsets vs revision number. */
483 Lisp_Object Vcharset_revision_alist;
484
485 /* Default coding systems used for process I/O. */
486 Lisp_Object Vdefault_process_coding_system;
487
488 /* Global flag to tell that we can't call post-read-conversion and
489 pre-write-conversion functions. Usually the value is zero, but it
490 is set to 1 temporarily while such functions are running. This is
491 to avoid infinite recursive call. */
492 static int inhibit_pre_post_conversion;
493
494 /* Char-table containing safe coding systems of each character. */
495 Lisp_Object Vchar_coding_system_table;
496 Lisp_Object Qchar_coding_system;
497
498 /* Return `safe-chars' property of coding system CODING. Don't check
499 validity of CODING. */
500
501 Lisp_Object
502 coding_safe_chars (coding)
503 struct coding_system *coding;
504 {
505 Lisp_Object coding_spec, plist, safe_chars;
506
507 coding_spec = Fget (coding->symbol, Qcoding_system);
508 plist = XVECTOR (coding_spec)->contents[3];
509 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
510 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
511 }
512
513 #define CODING_SAFE_CHAR_P(safe_chars, c) \
514 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
515
516 \f
517 /*** 2. Emacs internal format (emacs-mule) handlers ***/
518
519 /* Emacs' internal format for representation of multiple character
520 sets is a kind of multi-byte encoding, i.e. characters are
521 represented by variable-length sequences of one-byte codes.
522
523 ASCII characters and control characters (e.g. `tab', `newline') are
524 represented by one-byte sequences which are their ASCII codes, in
525 the range 0x00 through 0x7F.
526
527 8-bit characters of the range 0x80..0x9F are represented by
528 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
529 code + 0x20).
530
531 8-bit characters of the range 0xA0..0xFF are represented by
532 one-byte sequences which are their 8-bit code.
533
534 The other characters are represented by a sequence of `base
535 leading-code', optional `extended leading-code', and one or two
536 `position-code's. The length of the sequence is determined by the
537 base leading-code. Leading-code takes the range 0x81 through 0x9D,
538 whereas extended leading-code and position-code take the range 0xA0
539 through 0xFF. See `charset.h' for more details about leading-code
540 and position-code.
541
542 --- CODE RANGE of Emacs' internal format ---
543 character set range
544 ------------- -----
545 ascii 0x00..0x7F
546 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
547 eight-bit-graphic 0xA0..0xBF
548 ELSE 0x81..0x9D + [0xA0..0xFF]+
549 ---------------------------------------------
550
551 As this is the internal character representation, the format is
552 usually not used externally (i.e. in a file or in a data sent to a
553 process). But, it is possible to have a text externally in this
554 format (i.e. by encoding by the coding system `emacs-mule').
555
556 In that case, a sequence of one-byte codes has a slightly different
557 form.
558
559 Firstly, all characters in eight-bit-control are represented by
560 one-byte sequences which are their 8-bit code.
561
562 Next, character composition data are represented by the byte
563 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
564 where,
565 METHOD is 0xF0 plus one of composition method (enum
566 composition_method),
567
568 BYTES is 0xA0 plus the byte length of these composition data,
569
570 CHARS is 0xA0 plus the number of characters composed by these
571 data,
572
573 COMPONENTs are characters of multibyte form or composition
574 rules encoded by two-byte of ASCII codes.
575
576 In addition, for backward compatibility, the following formats are
577 also recognized as composition data on decoding.
578
579 0x80 MSEQ ...
580 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
581
582 Here,
583 MSEQ is a multibyte form but in these special format:
584 ASCII: 0xA0 ASCII_CODE+0x80,
585 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
586 RULE is a one byte code of the range 0xA0..0xF0 that
587 represents a composition rule.
588 */
589
590 enum emacs_code_class_type emacs_code_class[256];
591
592 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
593 Check if a text is encoded in Emacs' internal format. If it is,
594 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
595
596 static int
597 detect_coding_emacs_mule (src, src_end, multibytep)
598 unsigned char *src, *src_end;
599 int multibytep;
600 {
601 unsigned char c;
602 int composing = 0;
603 /* Dummy for ONE_MORE_BYTE. */
604 struct coding_system dummy_coding;
605 struct coding_system *coding = &dummy_coding;
606
607 while (1)
608 {
609 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
610
611 if (composing)
612 {
613 if (c < 0xA0)
614 composing = 0;
615 else if (c == 0xA0)
616 {
617 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
618 c &= 0x7F;
619 }
620 else
621 c -= 0x20;
622 }
623
624 if (c < 0x20)
625 {
626 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
627 return 0;
628 }
629 else if (c >= 0x80 && c < 0xA0)
630 {
631 if (c == 0x80)
632 /* Old leading code for a composite character. */
633 composing = 1;
634 else
635 {
636 unsigned char *src_base = src - 1;
637 int bytes;
638
639 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
640 bytes))
641 return 0;
642 src = src_base + bytes;
643 }
644 }
645 }
646 label_end_of_loop:
647 return CODING_CATEGORY_MASK_EMACS_MULE;
648 }
649
650
651 /* Record the starting position START and METHOD of one composition. */
652
653 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
654 do { \
655 struct composition_data *cmp_data = coding->cmp_data; \
656 int *data = cmp_data->data + cmp_data->used; \
657 coding->cmp_data_start = cmp_data->used; \
658 data[0] = -1; \
659 data[1] = cmp_data->char_offset + start; \
660 data[3] = (int) method; \
661 cmp_data->used += 4; \
662 } while (0)
663
664 /* Record the ending position END of the current composition. */
665
666 #define CODING_ADD_COMPOSITION_END(coding, end) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + coding->cmp_data_start; \
670 data[0] = cmp_data->used - coding->cmp_data_start; \
671 data[2] = cmp_data->char_offset + end; \
672 } while (0)
673
674 /* Record one COMPONENT (alternate character or composition rule). */
675
676 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
677 (coding->cmp_data->data[coding->cmp_data->used++] = component)
678
679
680 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
681 is not less than SRC_END, return -1 without incrementing Src. */
682
683 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
684
685
686 /* Decode a character represented as a component of composition
687 sequence of Emacs 20 style at SRC. Set C to that character, store
688 its multibyte form sequence at P, and set P to the end of that
689 sequence. If no valid character is found, set C to -1. */
690
691 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
692 do { \
693 int bytes; \
694 \
695 c = SAFE_ONE_MORE_BYTE (); \
696 if (c < 0) \
697 break; \
698 if (CHAR_HEAD_P (c)) \
699 c = -1; \
700 else if (c == 0xA0) \
701 { \
702 c = SAFE_ONE_MORE_BYTE (); \
703 if (c < 0xA0) \
704 c = -1; \
705 else \
706 { \
707 c -= 0xA0; \
708 *p++ = c; \
709 } \
710 } \
711 else if (BASE_LEADING_CODE_P (c - 0x20)) \
712 { \
713 unsigned char *p0 = p; \
714 \
715 c -= 0x20; \
716 *p++ = c; \
717 bytes = BYTES_BY_CHAR_HEAD (c); \
718 while (--bytes) \
719 { \
720 c = SAFE_ONE_MORE_BYTE (); \
721 if (c < 0) \
722 break; \
723 *p++ = c; \
724 } \
725 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
726 c = STRING_CHAR (p0, bytes); \
727 else \
728 c = -1; \
729 } \
730 else \
731 c = -1; \
732 } while (0)
733
734
735 /* Decode a composition rule represented as a component of composition
736 sequence of Emacs 20 style at SRC. Set C to the rule. If not
737 valid rule is found, set C to -1. */
738
739 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
740 do { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 c -= 0xA0; \
743 if (c < 0 || c >= 81) \
744 c = -1; \
745 else \
746 { \
747 gref = c / 9, nref = c % 9; \
748 c = COMPOSITION_ENCODE_RULE (gref, nref); \
749 } \
750 } while (0)
751
752
753 /* Decode composition sequence encoded by `emacs-mule' at the source
754 pointed by SRC. SRC_END is the end of source. Store information
755 of the composition in CODING->cmp_data.
756
757 For backward compatibility, decode also a composition sequence of
758 Emacs 20 style. In that case, the composition sequence contains
759 characters that should be extracted into a buffer or string. Store
760 those characters at *DESTINATION in multibyte form.
761
762 If we encounter an invalid byte sequence, return 0.
763 If we encounter an insufficient source or destination, or
764 insufficient space in CODING->cmp_data, return 1.
765 Otherwise, return consumed bytes in the source.
766
767 */
768 static INLINE int
769 decode_composition_emacs_mule (coding, src, src_end,
770 destination, dst_end, dst_bytes)
771 struct coding_system *coding;
772 unsigned char *src, *src_end, **destination, *dst_end;
773 int dst_bytes;
774 {
775 unsigned char *dst = *destination;
776 int method, data_len, nchars;
777 unsigned char *src_base = src++;
778 /* Store components of composition. */
779 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
780 int ncomponent;
781 /* Store multibyte form of characters to be composed. This is for
782 Emacs 20 style composition sequence. */
783 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
784 unsigned char *bufp = buf;
785 int c, i, gref, nref;
786
787 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
788 >= COMPOSITION_DATA_SIZE)
789 {
790 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
791 return -1;
792 }
793
794 ONE_MORE_BYTE (c);
795 if (c - 0xF0 >= COMPOSITION_RELATIVE
796 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
797 {
798 int with_rule;
799
800 method = c - 0xF0;
801 with_rule = (method == COMPOSITION_WITH_RULE
802 || method == COMPOSITION_WITH_RULE_ALTCHARS);
803 ONE_MORE_BYTE (c);
804 data_len = c - 0xA0;
805 if (data_len < 4
806 || src_base + data_len > src_end)
807 return 0;
808 ONE_MORE_BYTE (c);
809 nchars = c - 0xA0;
810 if (c < 1)
811 return 0;
812 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
813 {
814 if (ncomponent % 2 && with_rule)
815 {
816 ONE_MORE_BYTE (gref);
817 gref -= 32;
818 ONE_MORE_BYTE (nref);
819 nref -= 32;
820 c = COMPOSITION_ENCODE_RULE (gref, nref);
821 }
822 else
823 {
824 int bytes;
825 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
826 c = STRING_CHAR (src, bytes);
827 else
828 c = *src, bytes = 1;
829 src += bytes;
830 }
831 component[ncomponent] = c;
832 }
833 }
834 else
835 {
836 /* This may be an old Emacs 20 style format. See the comment at
837 the section 2 of this file. */
838 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
839 if (src == src_end
840 && !(coding->mode & CODING_MODE_LAST_BLOCK))
841 goto label_end_of_loop;
842
843 src_end = src;
844 src = src_base + 1;
845 if (c < 0xC0)
846 {
847 method = COMPOSITION_RELATIVE;
848 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
849 {
850 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
851 if (c < 0)
852 break;
853 component[ncomponent++] = c;
854 }
855 if (ncomponent < 2)
856 return 0;
857 nchars = ncomponent;
858 }
859 else if (c == 0xFF)
860 {
861 method = COMPOSITION_WITH_RULE;
862 src++;
863 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
864 if (c < 0)
865 return 0;
866 component[0] = c;
867 for (ncomponent = 1;
868 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
869 {
870 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
871 if (c < 0)
872 break;
873 component[ncomponent++] = c;
874 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
875 if (c < 0)
876 break;
877 component[ncomponent++] = c;
878 }
879 if (ncomponent < 3)
880 return 0;
881 nchars = (ncomponent + 1) / 2;
882 }
883 else
884 return 0;
885 }
886
887 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
888 {
889 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
890 for (i = 0; i < ncomponent; i++)
891 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
892 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
893 if (buf < bufp)
894 {
895 unsigned char *p = buf;
896 EMIT_BYTES (p, bufp);
897 *destination += bufp - buf;
898 coding->produced_char += nchars;
899 }
900 return (src - src_base);
901 }
902 label_end_of_loop:
903 return -1;
904 }
905
906 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
907
908 static void
909 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
910 struct coding_system *coding;
911 unsigned char *source, *destination;
912 int src_bytes, dst_bytes;
913 {
914 unsigned char *src = source;
915 unsigned char *src_end = source + src_bytes;
916 unsigned char *dst = destination;
917 unsigned char *dst_end = destination + dst_bytes;
918 /* SRC_BASE remembers the start position in source in each loop.
919 The loop will be exited when there's not enough source code, or
920 when there's not enough destination area to produce a
921 character. */
922 unsigned char *src_base;
923
924 coding->produced_char = 0;
925 while ((src_base = src) < src_end)
926 {
927 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
928 int bytes;
929
930 if (*src == '\r')
931 {
932 int c = *src++;
933
934 if (coding->eol_type == CODING_EOL_CR)
935 c = '\n';
936 else if (coding->eol_type == CODING_EOL_CRLF)
937 {
938 ONE_MORE_BYTE (c);
939 if (c != '\n')
940 {
941 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
942 {
943 coding->result = CODING_FINISH_INCONSISTENT_EOL;
944 goto label_end_of_loop;
945 }
946 src--;
947 c = '\r';
948 }
949 }
950 *dst++ = c;
951 coding->produced_char++;
952 continue;
953 }
954 else if (*src == '\n')
955 {
956 if ((coding->eol_type == CODING_EOL_CR
957 || coding->eol_type == CODING_EOL_CRLF)
958 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
959 {
960 coding->result = CODING_FINISH_INCONSISTENT_EOL;
961 goto label_end_of_loop;
962 }
963 *dst++ = *src++;
964 coding->produced_char++;
965 continue;
966 }
967 else if (*src == 0x80)
968 {
969 /* Start of composition data. */
970 int consumed = decode_composition_emacs_mule (coding, src, src_end,
971 &dst, dst_end,
972 dst_bytes);
973 if (consumed < 0)
974 goto label_end_of_loop;
975 else if (consumed > 0)
976 {
977 src += consumed;
978 continue;
979 }
980 bytes = CHAR_STRING (*src, tmp);
981 p = tmp;
982 src++;
983 }
984 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
985 {
986 p = src;
987 src += bytes;
988 }
989 else
990 {
991 bytes = CHAR_STRING (*src, tmp);
992 p = tmp;
993 src++;
994 }
995 if (dst + bytes >= (dst_bytes ? dst_end : src))
996 {
997 coding->result = CODING_FINISH_INSUFFICIENT_DST;
998 break;
999 }
1000 while (bytes--) *dst++ = *p++;
1001 coding->produced_char++;
1002 }
1003 label_end_of_loop:
1004 coding->consumed = coding->consumed_char = src_base - source;
1005 coding->produced = dst - destination;
1006 }
1007
1008
1009 /* Encode composition data stored at DATA into a special byte sequence
1010 starting by 0x80. Update CODING->cmp_data_start and maybe
1011 CODING->cmp_data for the next call. */
1012
1013 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1014 do { \
1015 unsigned char buf[1024], *p0 = buf, *p; \
1016 int len = data[0]; \
1017 int i; \
1018 \
1019 buf[0] = 0x80; \
1020 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1021 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1022 p = buf + 4; \
1023 if (data[3] == COMPOSITION_WITH_RULE \
1024 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1025 { \
1026 p += CHAR_STRING (data[4], p); \
1027 for (i = 5; i < len; i += 2) \
1028 { \
1029 int gref, nref; \
1030 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1031 *p++ = 0x20 + gref; \
1032 *p++ = 0x20 + nref; \
1033 p += CHAR_STRING (data[i + 1], p); \
1034 } \
1035 } \
1036 else \
1037 { \
1038 for (i = 4; i < len; i++) \
1039 p += CHAR_STRING (data[i], p); \
1040 } \
1041 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1042 \
1043 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1044 { \
1045 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1046 goto label_end_of_loop; \
1047 } \
1048 while (p0 < p) \
1049 *dst++ = *p0++; \
1050 coding->cmp_data_start += data[0]; \
1051 if (coding->cmp_data_start == coding->cmp_data->used \
1052 && coding->cmp_data->next) \
1053 { \
1054 coding->cmp_data = coding->cmp_data->next; \
1055 coding->cmp_data_start = 0; \
1056 } \
1057 } while (0)
1058
1059
1060 static void encode_eol P_ ((struct coding_system *, unsigned char *,
1061 unsigned char *, int, int));
1062
1063 static void
1064 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1065 struct coding_system *coding;
1066 unsigned char *source, *destination;
1067 int src_bytes, dst_bytes;
1068 {
1069 unsigned char *src = source;
1070 unsigned char *src_end = source + src_bytes;
1071 unsigned char *dst = destination;
1072 unsigned char *dst_end = destination + dst_bytes;
1073 unsigned char *src_base;
1074 int c;
1075 int char_offset;
1076 int *data;
1077
1078 Lisp_Object translation_table;
1079
1080 translation_table = Qnil;
1081
1082 /* Optimization for the case that there's no composition. */
1083 if (!coding->cmp_data || coding->cmp_data->used == 0)
1084 {
1085 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1086 return;
1087 }
1088
1089 char_offset = coding->cmp_data->char_offset;
1090 data = coding->cmp_data->data + coding->cmp_data_start;
1091 while (1)
1092 {
1093 src_base = src;
1094
1095 /* If SRC starts a composition, encode the information about the
1096 composition in advance. */
1097 if (coding->cmp_data_start < coding->cmp_data->used
1098 && char_offset + coding->consumed_char == data[1])
1099 {
1100 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1101 char_offset = coding->cmp_data->char_offset;
1102 data = coding->cmp_data->data + coding->cmp_data_start;
1103 }
1104
1105 ONE_MORE_CHAR (c);
1106 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1107 || coding->eol_type == CODING_EOL_CR))
1108 {
1109 if (coding->eol_type == CODING_EOL_CRLF)
1110 EMIT_TWO_BYTES ('\r', c);
1111 else
1112 EMIT_ONE_BYTE ('\r');
1113 }
1114 else if (SINGLE_BYTE_CHAR_P (c))
1115 EMIT_ONE_BYTE (c);
1116 else
1117 EMIT_BYTES (src_base, src);
1118 coding->consumed_char++;
1119 }
1120 label_end_of_loop:
1121 coding->consumed = src_base - source;
1122 coding->produced = coding->produced_char = dst - destination;
1123 return;
1124 }
1125
1126 \f
1127 /*** 3. ISO2022 handlers ***/
1128
1129 /* The following note describes the coding system ISO2022 briefly.
1130 Since the intention of this note is to help understand the
1131 functions in this file, some parts are NOT ACCURATE or are OVERLY
1132 SIMPLIFIED. For thorough understanding, please refer to the
1133 original document of ISO2022. This is equivalent to the standard
1134 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1135
1136 ISO2022 provides many mechanisms to encode several character sets
1137 in 7-bit and 8-bit environments. For 7-bit environments, all text
1138 is encoded using bytes less than 128. This may make the encoded
1139 text a little bit longer, but the text passes more easily through
1140 several types of gateway, some of which strip off the MSB (Most
1141 Significant Bit).
1142
1143 There are two kinds of character sets: control character sets and
1144 graphic character sets. The former contain control characters such
1145 as `newline' and `escape' to provide control functions (control
1146 functions are also provided by escape sequences). The latter
1147 contain graphic characters such as 'A' and '-'. Emacs recognizes
1148 two control character sets and many graphic character sets.
1149
1150 Graphic character sets are classified into one of the following
1151 four classes, according to the number of bytes (DIMENSION) and
1152 number of characters in one dimension (CHARS) of the set:
1153 - DIMENSION1_CHARS94
1154 - DIMENSION1_CHARS96
1155 - DIMENSION2_CHARS94
1156 - DIMENSION2_CHARS96
1157
1158 In addition, each character set is assigned an identification tag,
1159 unique for each set, called the "final character" (denoted as <F>
1160 hereafter). The <F> of each character set is decided by ECMA(*)
1161 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1162 (0x30..0x3F are for private use only).
1163
1164 Note (*): ECMA = European Computer Manufacturers Association
1165
1166 Here are examples of graphic character sets [NAME(<F>)]:
1167 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1168 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1169 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1170 o DIMENSION2_CHARS96 -- none for the moment
1171
1172 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1173 C0 [0x00..0x1F] -- control character plane 0
1174 GL [0x20..0x7F] -- graphic character plane 0
1175 C1 [0x80..0x9F] -- control character plane 1
1176 GR [0xA0..0xFF] -- graphic character plane 1
1177
1178 A control character set is directly designated and invoked to C0 or
1179 C1 by an escape sequence. The most common case is that:
1180 - ISO646's control character set is designated/invoked to C0, and
1181 - ISO6429's control character set is designated/invoked to C1,
1182 and usually these designations/invocations are omitted in encoded
1183 text. In a 7-bit environment, only C0 can be used, and a control
1184 character for C1 is encoded by an appropriate escape sequence to
1185 fit into the environment. All control characters for C1 are
1186 defined to have corresponding escape sequences.
1187
1188 A graphic character set is at first designated to one of four
1189 graphic registers (G0 through G3), then these graphic registers are
1190 invoked to GL or GR. These designations and invocations can be
1191 done independently. The most common case is that G0 is invoked to
1192 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1193 these invocations and designations are omitted in encoded text.
1194 In a 7-bit environment, only GL can be used.
1195
1196 When a graphic character set of CHARS94 is invoked to GL, codes
1197 0x20 and 0x7F of the GL area work as control characters SPACE and
1198 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1199 be used.
1200
1201 There are two ways of invocation: locking-shift and single-shift.
1202 With locking-shift, the invocation lasts until the next different
1203 invocation, whereas with single-shift, the invocation affects the
1204 following character only and doesn't affect the locking-shift
1205 state. Invocations are done by the following control characters or
1206 escape sequences:
1207
1208 ----------------------------------------------------------------------
1209 abbrev function cntrl escape seq description
1210 ----------------------------------------------------------------------
1211 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1212 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1213 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1214 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1215 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1216 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1217 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1218 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1219 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1220 ----------------------------------------------------------------------
1221 (*) These are not used by any known coding system.
1222
1223 Control characters for these functions are defined by macros
1224 ISO_CODE_XXX in `coding.h'.
1225
1226 Designations are done by the following escape sequences:
1227 ----------------------------------------------------------------------
1228 escape sequence description
1229 ----------------------------------------------------------------------
1230 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1231 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1232 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1233 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1234 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1235 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1236 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1237 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1238 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1239 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1240 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1241 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1242 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1243 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1244 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1245 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1246 ----------------------------------------------------------------------
1247
1248 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1249 of dimension 1, chars 94, and final character <F>, etc...
1250
1251 Note (*): Although these designations are not allowed in ISO2022,
1252 Emacs accepts them on decoding, and produces them on encoding
1253 CHARS96 character sets in a coding system which is characterized as
1254 7-bit environment, non-locking-shift, and non-single-shift.
1255
1256 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1257 '(' can be omitted. We refer to this as "short-form" hereafter.
1258
1259 Now you may notice that there are a lot of ways of encoding the
1260 same multilingual text in ISO2022. Actually, there exist many
1261 coding systems such as Compound Text (used in X11's inter client
1262 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1263 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1264 localized platforms), and all of these are variants of ISO2022.
1265
1266 In addition to the above, Emacs handles two more kinds of escape
1267 sequences: ISO6429's direction specification and Emacs' private
1268 sequence for specifying character composition.
1269
1270 ISO6429's direction specification takes the following form:
1271 o CSI ']' -- end of the current direction
1272 o CSI '0' ']' -- end of the current direction
1273 o CSI '1' ']' -- start of left-to-right text
1274 o CSI '2' ']' -- start of right-to-left text
1275 The control character CSI (0x9B: control sequence introducer) is
1276 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1277
1278 Character composition specification takes the following form:
1279 o ESC '0' -- start relative composition
1280 o ESC '1' -- end composition
1281 o ESC '2' -- start rule-base composition (*)
1282 o ESC '3' -- start relative composition with alternate chars (**)
1283 o ESC '4' -- start rule-base composition with alternate chars (**)
1284 Since these are not standard escape sequences of any ISO standard,
1285 the use of them with these meanings is restricted to Emacs only.
1286
1287 (*) This form is used only in Emacs 20.5 and older versions,
1288 but the newer versions can safely decode it.
1289 (**) This form is used only in Emacs 21.1 and newer versions,
1290 and the older versions can't decode it.
1291
1292 Here's a list of example usages of these composition escape
1293 sequences (categorized by `enum composition_method').
1294
1295 COMPOSITION_RELATIVE:
1296 ESC 0 CHAR [ CHAR ] ESC 1
1297 COMPOSITION_WITH_RULE:
1298 ESC 2 CHAR [ RULE CHAR ] ESC 1
1299 COMPOSITION_WITH_ALTCHARS:
1300 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1301 COMPOSITION_WITH_RULE_ALTCHARS:
1302 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1303
1304 enum iso_code_class_type iso_code_class[256];
1305
1306 #define CHARSET_OK(idx, charset, c) \
1307 (coding_system_table[idx] \
1308 && (charset == CHARSET_ASCII \
1309 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1310 CODING_SAFE_CHAR_P (safe_chars, c))) \
1311 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1312 charset) \
1313 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1314
1315 #define SHIFT_OUT_OK(idx) \
1316 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1317
1318 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1319 Check if a text is encoded in ISO2022. If it is, return an
1320 integer in which appropriate flag bits any of:
1321 CODING_CATEGORY_MASK_ISO_7
1322 CODING_CATEGORY_MASK_ISO_7_TIGHT
1323 CODING_CATEGORY_MASK_ISO_8_1
1324 CODING_CATEGORY_MASK_ISO_8_2
1325 CODING_CATEGORY_MASK_ISO_7_ELSE
1326 CODING_CATEGORY_MASK_ISO_8_ELSE
1327 are set. If a code which should never appear in ISO2022 is found,
1328 returns 0. */
1329
1330 static int
1331 detect_coding_iso2022 (src, src_end, multibytep)
1332 unsigned char *src, *src_end;
1333 int multibytep;
1334 {
1335 int mask = CODING_CATEGORY_MASK_ISO;
1336 int mask_found = 0;
1337 int reg[4], shift_out = 0, single_shifting = 0;
1338 int c, c1, charset;
1339 /* Dummy for ONE_MORE_BYTE. */
1340 struct coding_system dummy_coding;
1341 struct coding_system *coding = &dummy_coding;
1342 Lisp_Object safe_chars;
1343
1344 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1345 while (mask && src < src_end)
1346 {
1347 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1348 switch (c)
1349 {
1350 case ISO_CODE_ESC:
1351 if (inhibit_iso_escape_detection)
1352 break;
1353 single_shifting = 0;
1354 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1355 if (c >= '(' && c <= '/')
1356 {
1357 /* Designation sequence for a charset of dimension 1. */
1358 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1359 if (c1 < ' ' || c1 >= 0x80
1360 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1361 /* Invalid designation sequence. Just ignore. */
1362 break;
1363 reg[(c - '(') % 4] = charset;
1364 }
1365 else if (c == '$')
1366 {
1367 /* Designation sequence for a charset of dimension 2. */
1368 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1369 if (c >= '@' && c <= 'B')
1370 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1371 reg[0] = charset = iso_charset_table[1][0][c];
1372 else if (c >= '(' && c <= '/')
1373 {
1374 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1375 if (c1 < ' ' || c1 >= 0x80
1376 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1377 /* Invalid designation sequence. Just ignore. */
1378 break;
1379 reg[(c - '(') % 4] = charset;
1380 }
1381 else
1382 /* Invalid designation sequence. Just ignore. */
1383 break;
1384 }
1385 else if (c == 'N' || c == 'O')
1386 {
1387 /* ESC <Fe> for SS2 or SS3. */
1388 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1389 break;
1390 }
1391 else if (c >= '0' && c <= '4')
1392 {
1393 /* ESC <Fp> for start/end composition. */
1394 mask_found |= CODING_CATEGORY_MASK_ISO;
1395 break;
1396 }
1397 else
1398 /* Invalid escape sequence. Just ignore. */
1399 break;
1400
1401 /* We found a valid designation sequence for CHARSET. */
1402 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1403 c = MAKE_CHAR (charset, 0, 0);
1404 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1405 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1406 else
1407 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1408 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1409 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1410 else
1411 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1412 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1413 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1414 else
1415 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1416 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1417 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1418 else
1419 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1420 break;
1421
1422 case ISO_CODE_SO:
1423 if (inhibit_iso_escape_detection)
1424 break;
1425 single_shifting = 0;
1426 if (shift_out == 0
1427 && (reg[1] >= 0
1428 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1429 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1430 {
1431 /* Locking shift out. */
1432 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1433 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1434 }
1435 break;
1436
1437 case ISO_CODE_SI:
1438 if (inhibit_iso_escape_detection)
1439 break;
1440 single_shifting = 0;
1441 if (shift_out == 1)
1442 {
1443 /* Locking shift in. */
1444 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1445 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1446 }
1447 break;
1448
1449 case ISO_CODE_CSI:
1450 single_shifting = 0;
1451 case ISO_CODE_SS2:
1452 case ISO_CODE_SS3:
1453 {
1454 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1455
1456 if (inhibit_iso_escape_detection)
1457 break;
1458 if (c != ISO_CODE_CSI)
1459 {
1460 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1461 & CODING_FLAG_ISO_SINGLE_SHIFT)
1462 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1463 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1464 & CODING_FLAG_ISO_SINGLE_SHIFT)
1465 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1466 single_shifting = 1;
1467 }
1468 if (VECTORP (Vlatin_extra_code_table)
1469 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1470 {
1471 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1472 & CODING_FLAG_ISO_LATIN_EXTRA)
1473 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1474 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1475 & CODING_FLAG_ISO_LATIN_EXTRA)
1476 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1477 }
1478 mask &= newmask;
1479 mask_found |= newmask;
1480 }
1481 break;
1482
1483 default:
1484 if (c < 0x80)
1485 {
1486 single_shifting = 0;
1487 break;
1488 }
1489 else if (c < 0xA0)
1490 {
1491 single_shifting = 0;
1492 if (VECTORP (Vlatin_extra_code_table)
1493 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1494 {
1495 int newmask = 0;
1496
1497 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1498 & CODING_FLAG_ISO_LATIN_EXTRA)
1499 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1500 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1501 & CODING_FLAG_ISO_LATIN_EXTRA)
1502 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1503 mask &= newmask;
1504 mask_found |= newmask;
1505 }
1506 else
1507 return 0;
1508 }
1509 else
1510 {
1511 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1512 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1513 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1514 /* Check the length of succeeding codes of the range
1515 0xA0..0FF. If the byte length is odd, we exclude
1516 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1517 when we are not single shifting. */
1518 if (!single_shifting
1519 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1520 {
1521 int i = 1;
1522 while (src < src_end)
1523 {
1524 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1525 if (c < 0xA0)
1526 break;
1527 i++;
1528 }
1529
1530 if (i & 1 && src < src_end)
1531 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1532 else
1533 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1534 }
1535 }
1536 break;
1537 }
1538 }
1539 label_end_of_loop:
1540 return (mask & mask_found);
1541 }
1542
1543 /* Decode a character of which charset is CHARSET, the 1st position
1544 code is C1, the 2nd position code is C2, and return the decoded
1545 character code. If the variable `translation_table' is non-nil,
1546 returned the translated code. */
1547
1548 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1549 (NILP (translation_table) \
1550 ? MAKE_CHAR (charset, c1, c2) \
1551 : translate_char (translation_table, -1, charset, c1, c2))
1552
1553 /* Set designation state into CODING. */
1554 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1555 do { \
1556 int charset, c; \
1557 \
1558 if (final_char < '0' || final_char >= 128) \
1559 goto label_invalid_code; \
1560 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1561 make_number (chars), \
1562 make_number (final_char)); \
1563 c = MAKE_CHAR (charset, 0, 0); \
1564 if (charset >= 0 \
1565 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1566 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1567 { \
1568 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1569 && reg == 0 \
1570 && charset == CHARSET_ASCII) \
1571 { \
1572 /* We should insert this designation sequence as is so \
1573 that it is surely written back to a file. */ \
1574 coding->spec.iso2022.last_invalid_designation_register = -1; \
1575 goto label_invalid_code; \
1576 } \
1577 coding->spec.iso2022.last_invalid_designation_register = -1; \
1578 if ((coding->mode & CODING_MODE_DIRECTION) \
1579 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1580 charset = CHARSET_REVERSE_CHARSET (charset); \
1581 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1582 } \
1583 else \
1584 { \
1585 coding->spec.iso2022.last_invalid_designation_register = reg; \
1586 goto label_invalid_code; \
1587 } \
1588 } while (0)
1589
1590 /* Allocate a memory block for storing information about compositions.
1591 The block is chained to the already allocated blocks. */
1592
1593 void
1594 coding_allocate_composition_data (coding, char_offset)
1595 struct coding_system *coding;
1596 int char_offset;
1597 {
1598 struct composition_data *cmp_data
1599 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1600
1601 cmp_data->char_offset = char_offset;
1602 cmp_data->used = 0;
1603 cmp_data->prev = coding->cmp_data;
1604 cmp_data->next = NULL;
1605 if (coding->cmp_data)
1606 coding->cmp_data->next = cmp_data;
1607 coding->cmp_data = cmp_data;
1608 coding->cmp_data_start = 0;
1609 }
1610
1611 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1612 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1613 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1614 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1615 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1616 */
1617
1618 #define DECODE_COMPOSITION_START(c1) \
1619 do { \
1620 if (coding->composing == COMPOSITION_DISABLED) \
1621 { \
1622 *dst++ = ISO_CODE_ESC; \
1623 *dst++ = c1 & 0x7f; \
1624 coding->produced_char += 2; \
1625 } \
1626 else if (!COMPOSING_P (coding)) \
1627 { \
1628 /* This is surely the start of a composition. We must be sure \
1629 that coding->cmp_data has enough space to store the \
1630 information about the composition. If not, terminate the \
1631 current decoding loop, allocate one more memory block for \
1632 coding->cmp_data in the caller, then start the decoding \
1633 loop again. We can't allocate memory here directly because \
1634 it may cause buffer/string relocation. */ \
1635 if (!coding->cmp_data \
1636 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1637 >= COMPOSITION_DATA_SIZE)) \
1638 { \
1639 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1640 goto label_end_of_loop; \
1641 } \
1642 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1643 : c1 == '2' ? COMPOSITION_WITH_RULE \
1644 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1645 : COMPOSITION_WITH_RULE_ALTCHARS); \
1646 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1647 coding->composing); \
1648 coding->composition_rule_follows = 0; \
1649 } \
1650 else \
1651 { \
1652 /* We are already handling a composition. If the method is \
1653 the following two, the codes following the current escape \
1654 sequence are actual characters stored in a buffer. */ \
1655 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1656 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1657 { \
1658 coding->composing = COMPOSITION_RELATIVE; \
1659 coding->composition_rule_follows = 0; \
1660 } \
1661 } \
1662 } while (0)
1663
1664 /* Handle composition end sequence ESC 1. */
1665
1666 #define DECODE_COMPOSITION_END(c1) \
1667 do { \
1668 if (! COMPOSING_P (coding)) \
1669 { \
1670 *dst++ = ISO_CODE_ESC; \
1671 *dst++ = c1; \
1672 coding->produced_char += 2; \
1673 } \
1674 else \
1675 { \
1676 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1677 coding->composing = COMPOSITION_NO; \
1678 } \
1679 } while (0)
1680
1681 /* Decode a composition rule from the byte C1 (and maybe one more byte
1682 from SRC) and store one encoded composition rule in
1683 coding->cmp_data. */
1684
1685 #define DECODE_COMPOSITION_RULE(c1) \
1686 do { \
1687 int rule = 0; \
1688 (c1) -= 32; \
1689 if (c1 < 81) /* old format (before ver.21) */ \
1690 { \
1691 int gref = (c1) / 9; \
1692 int nref = (c1) % 9; \
1693 if (gref == 4) gref = 10; \
1694 if (nref == 4) nref = 10; \
1695 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1696 } \
1697 else if (c1 < 93) /* new format (after ver.21) */ \
1698 { \
1699 ONE_MORE_BYTE (c2); \
1700 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1701 } \
1702 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1703 coding->composition_rule_follows = 0; \
1704 } while (0)
1705
1706
1707 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1708
1709 static void
1710 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1711 struct coding_system *coding;
1712 unsigned char *source, *destination;
1713 int src_bytes, dst_bytes;
1714 {
1715 unsigned char *src = source;
1716 unsigned char *src_end = source + src_bytes;
1717 unsigned char *dst = destination;
1718 unsigned char *dst_end = destination + dst_bytes;
1719 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1720 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1721 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1722 /* SRC_BASE remembers the start position in source in each loop.
1723 The loop will be exited when there's not enough source code
1724 (within macro ONE_MORE_BYTE), or when there's not enough
1725 destination area to produce a character (within macro
1726 EMIT_CHAR). */
1727 unsigned char *src_base;
1728 int c, charset;
1729 Lisp_Object translation_table;
1730 Lisp_Object safe_chars;
1731
1732 safe_chars = coding_safe_chars (coding);
1733
1734 if (NILP (Venable_character_translation))
1735 translation_table = Qnil;
1736 else
1737 {
1738 translation_table = coding->translation_table_for_decode;
1739 if (NILP (translation_table))
1740 translation_table = Vstandard_translation_table_for_decode;
1741 }
1742
1743 coding->result = CODING_FINISH_NORMAL;
1744
1745 while (1)
1746 {
1747 int c1, c2;
1748
1749 src_base = src;
1750 ONE_MORE_BYTE (c1);
1751
1752 /* We produce no character or one character. */
1753 switch (iso_code_class [c1])
1754 {
1755 case ISO_0x20_or_0x7F:
1756 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1757 {
1758 DECODE_COMPOSITION_RULE (c1);
1759 continue;
1760 }
1761 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1762 {
1763 /* This is SPACE or DEL. */
1764 charset = CHARSET_ASCII;
1765 break;
1766 }
1767 /* This is a graphic character, we fall down ... */
1768
1769 case ISO_graphic_plane_0:
1770 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1771 {
1772 DECODE_COMPOSITION_RULE (c1);
1773 continue;
1774 }
1775 charset = charset0;
1776 break;
1777
1778 case ISO_0xA0_or_0xFF:
1779 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1780 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1781 goto label_invalid_code;
1782 /* This is a graphic character, we fall down ... */
1783
1784 case ISO_graphic_plane_1:
1785 if (charset1 < 0)
1786 goto label_invalid_code;
1787 charset = charset1;
1788 break;
1789
1790 case ISO_control_0:
1791 if (COMPOSING_P (coding))
1792 DECODE_COMPOSITION_END ('1');
1793
1794 /* All ISO2022 control characters in this class have the
1795 same representation in Emacs internal format. */
1796 if (c1 == '\n'
1797 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1798 && (coding->eol_type == CODING_EOL_CR
1799 || coding->eol_type == CODING_EOL_CRLF))
1800 {
1801 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1802 goto label_end_of_loop;
1803 }
1804 charset = CHARSET_ASCII;
1805 break;
1806
1807 case ISO_control_1:
1808 if (COMPOSING_P (coding))
1809 DECODE_COMPOSITION_END ('1');
1810 goto label_invalid_code;
1811
1812 case ISO_carriage_return:
1813 if (COMPOSING_P (coding))
1814 DECODE_COMPOSITION_END ('1');
1815
1816 if (coding->eol_type == CODING_EOL_CR)
1817 c1 = '\n';
1818 else if (coding->eol_type == CODING_EOL_CRLF)
1819 {
1820 ONE_MORE_BYTE (c1);
1821 if (c1 != ISO_CODE_LF)
1822 {
1823 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1824 {
1825 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1826 goto label_end_of_loop;
1827 }
1828 src--;
1829 c1 = '\r';
1830 }
1831 }
1832 charset = CHARSET_ASCII;
1833 break;
1834
1835 case ISO_shift_out:
1836 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1837 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1838 goto label_invalid_code;
1839 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1840 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1841 continue;
1842
1843 case ISO_shift_in:
1844 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1845 goto label_invalid_code;
1846 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1847 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1848 continue;
1849
1850 case ISO_single_shift_2_7:
1851 case ISO_single_shift_2:
1852 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1853 goto label_invalid_code;
1854 /* SS2 is handled as an escape sequence of ESC 'N' */
1855 c1 = 'N';
1856 goto label_escape_sequence;
1857
1858 case ISO_single_shift_3:
1859 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1860 goto label_invalid_code;
1861 /* SS2 is handled as an escape sequence of ESC 'O' */
1862 c1 = 'O';
1863 goto label_escape_sequence;
1864
1865 case ISO_control_sequence_introducer:
1866 /* CSI is handled as an escape sequence of ESC '[' ... */
1867 c1 = '[';
1868 goto label_escape_sequence;
1869
1870 case ISO_escape:
1871 ONE_MORE_BYTE (c1);
1872 label_escape_sequence:
1873 /* Escape sequences handled by Emacs are invocation,
1874 designation, direction specification, and character
1875 composition specification. */
1876 switch (c1)
1877 {
1878 case '&': /* revision of following character set */
1879 ONE_MORE_BYTE (c1);
1880 if (!(c1 >= '@' && c1 <= '~'))
1881 goto label_invalid_code;
1882 ONE_MORE_BYTE (c1);
1883 if (c1 != ISO_CODE_ESC)
1884 goto label_invalid_code;
1885 ONE_MORE_BYTE (c1);
1886 goto label_escape_sequence;
1887
1888 case '$': /* designation of 2-byte character set */
1889 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1890 goto label_invalid_code;
1891 ONE_MORE_BYTE (c1);
1892 if (c1 >= '@' && c1 <= 'B')
1893 { /* designation of JISX0208.1978, GB2312.1980,
1894 or JISX0208.1980 */
1895 DECODE_DESIGNATION (0, 2, 94, c1);
1896 }
1897 else if (c1 >= 0x28 && c1 <= 0x2B)
1898 { /* designation of DIMENSION2_CHARS94 character set */
1899 ONE_MORE_BYTE (c2);
1900 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1901 }
1902 else if (c1 >= 0x2C && c1 <= 0x2F)
1903 { /* designation of DIMENSION2_CHARS96 character set */
1904 ONE_MORE_BYTE (c2);
1905 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1906 }
1907 else
1908 goto label_invalid_code;
1909 /* We must update these variables now. */
1910 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1911 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1912 continue;
1913
1914 case 'n': /* invocation of locking-shift-2 */
1915 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1916 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1917 goto label_invalid_code;
1918 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1919 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1920 continue;
1921
1922 case 'o': /* invocation of locking-shift-3 */
1923 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1924 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1925 goto label_invalid_code;
1926 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1927 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1928 continue;
1929
1930 case 'N': /* invocation of single-shift-2 */
1931 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1932 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1933 goto label_invalid_code;
1934 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1935 ONE_MORE_BYTE (c1);
1936 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1937 goto label_invalid_code;
1938 break;
1939
1940 case 'O': /* invocation of single-shift-3 */
1941 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1942 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1943 goto label_invalid_code;
1944 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1945 ONE_MORE_BYTE (c1);
1946 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1947 goto label_invalid_code;
1948 break;
1949
1950 case '0': case '2': case '3': case '4': /* start composition */
1951 DECODE_COMPOSITION_START (c1);
1952 continue;
1953
1954 case '1': /* end composition */
1955 DECODE_COMPOSITION_END (c1);
1956 continue;
1957
1958 case '[': /* specification of direction */
1959 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1960 goto label_invalid_code;
1961 /* For the moment, nested direction is not supported.
1962 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1963 left-to-right, and nonzero means right-to-left. */
1964 ONE_MORE_BYTE (c1);
1965 switch (c1)
1966 {
1967 case ']': /* end of the current direction */
1968 coding->mode &= ~CODING_MODE_DIRECTION;
1969
1970 case '0': /* end of the current direction */
1971 case '1': /* start of left-to-right direction */
1972 ONE_MORE_BYTE (c1);
1973 if (c1 == ']')
1974 coding->mode &= ~CODING_MODE_DIRECTION;
1975 else
1976 goto label_invalid_code;
1977 break;
1978
1979 case '2': /* start of right-to-left direction */
1980 ONE_MORE_BYTE (c1);
1981 if (c1 == ']')
1982 coding->mode |= CODING_MODE_DIRECTION;
1983 else
1984 goto label_invalid_code;
1985 break;
1986
1987 default:
1988 goto label_invalid_code;
1989 }
1990 continue;
1991
1992 default:
1993 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1994 goto label_invalid_code;
1995 if (c1 >= 0x28 && c1 <= 0x2B)
1996 { /* designation of DIMENSION1_CHARS94 character set */
1997 ONE_MORE_BYTE (c2);
1998 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1999 }
2000 else if (c1 >= 0x2C && c1 <= 0x2F)
2001 { /* designation of DIMENSION1_CHARS96 character set */
2002 ONE_MORE_BYTE (c2);
2003 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2004 }
2005 else
2006 goto label_invalid_code;
2007 /* We must update these variables now. */
2008 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2009 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2010 continue;
2011 }
2012 }
2013
2014 /* Now we know CHARSET and 1st position code C1 of a character.
2015 Produce a multibyte sequence for that character while getting
2016 2nd position code C2 if necessary. */
2017 if (CHARSET_DIMENSION (charset) == 2)
2018 {
2019 ONE_MORE_BYTE (c2);
2020 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2021 /* C2 is not in a valid range. */
2022 goto label_invalid_code;
2023 }
2024 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2025 EMIT_CHAR (c);
2026 continue;
2027
2028 label_invalid_code:
2029 coding->errors++;
2030 if (COMPOSING_P (coding))
2031 DECODE_COMPOSITION_END ('1');
2032 src = src_base;
2033 c = *src++;
2034 EMIT_CHAR (c);
2035 }
2036
2037 label_end_of_loop:
2038 coding->consumed = coding->consumed_char = src_base - source;
2039 coding->produced = dst - destination;
2040 return;
2041 }
2042
2043
2044 /* ISO2022 encoding stuff. */
2045
2046 /*
2047 It is not enough to say just "ISO2022" on encoding, we have to
2048 specify more details. In Emacs, each ISO2022 coding system
2049 variant has the following specifications:
2050 1. Initial designation to G0 through G3.
2051 2. Allows short-form designation?
2052 3. ASCII should be designated to G0 before control characters?
2053 4. ASCII should be designated to G0 at end of line?
2054 5. 7-bit environment or 8-bit environment?
2055 6. Use locking-shift?
2056 7. Use Single-shift?
2057 And the following two are only for Japanese:
2058 8. Use ASCII in place of JIS0201-1976-Roman?
2059 9. Use JISX0208-1983 in place of JISX0208-1978?
2060 These specifications are encoded in `coding->flags' as flag bits
2061 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2062 details.
2063 */
2064
2065 /* Produce codes (escape sequence) for designating CHARSET to graphic
2066 register REG at DST, and increment DST. If <final-char> of CHARSET is
2067 '@', 'A', or 'B' and the coding system CODING allows, produce
2068 designation sequence of short-form. */
2069
2070 #define ENCODE_DESIGNATION(charset, reg, coding) \
2071 do { \
2072 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2073 char *intermediate_char_94 = "()*+"; \
2074 char *intermediate_char_96 = ",-./"; \
2075 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2076 \
2077 if (revision < 255) \
2078 { \
2079 *dst++ = ISO_CODE_ESC; \
2080 *dst++ = '&'; \
2081 *dst++ = '@' + revision; \
2082 } \
2083 *dst++ = ISO_CODE_ESC; \
2084 if (CHARSET_DIMENSION (charset) == 1) \
2085 { \
2086 if (CHARSET_CHARS (charset) == 94) \
2087 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2088 else \
2089 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2090 } \
2091 else \
2092 { \
2093 *dst++ = '$'; \
2094 if (CHARSET_CHARS (charset) == 94) \
2095 { \
2096 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2097 || reg != 0 \
2098 || final_char < '@' || final_char > 'B') \
2099 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2100 } \
2101 else \
2102 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2103 } \
2104 *dst++ = final_char; \
2105 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2106 } while (0)
2107
2108 /* The following two macros produce codes (control character or escape
2109 sequence) for ISO2022 single-shift functions (single-shift-2 and
2110 single-shift-3). */
2111
2112 #define ENCODE_SINGLE_SHIFT_2 \
2113 do { \
2114 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2115 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2116 else \
2117 *dst++ = ISO_CODE_SS2; \
2118 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2119 } while (0)
2120
2121 #define ENCODE_SINGLE_SHIFT_3 \
2122 do { \
2123 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2124 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2125 else \
2126 *dst++ = ISO_CODE_SS3; \
2127 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2128 } while (0)
2129
2130 /* The following four macros produce codes (control character or
2131 escape sequence) for ISO2022 locking-shift functions (shift-in,
2132 shift-out, locking-shift-2, and locking-shift-3). */
2133
2134 #define ENCODE_SHIFT_IN \
2135 do { \
2136 *dst++ = ISO_CODE_SI; \
2137 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2138 } while (0)
2139
2140 #define ENCODE_SHIFT_OUT \
2141 do { \
2142 *dst++ = ISO_CODE_SO; \
2143 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2144 } while (0)
2145
2146 #define ENCODE_LOCKING_SHIFT_2 \
2147 do { \
2148 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2149 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2150 } while (0)
2151
2152 #define ENCODE_LOCKING_SHIFT_3 \
2153 do { \
2154 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2155 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2156 } while (0)
2157
2158 /* Produce codes for a DIMENSION1 character whose character set is
2159 CHARSET and whose position-code is C1. Designation and invocation
2160 sequences are also produced in advance if necessary. */
2161
2162 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2163 do { \
2164 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2165 { \
2166 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2167 *dst++ = c1 & 0x7F; \
2168 else \
2169 *dst++ = c1 | 0x80; \
2170 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2171 break; \
2172 } \
2173 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2174 { \
2175 *dst++ = c1 & 0x7F; \
2176 break; \
2177 } \
2178 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2179 { \
2180 *dst++ = c1 | 0x80; \
2181 break; \
2182 } \
2183 else \
2184 /* Since CHARSET is not yet invoked to any graphic planes, we \
2185 must invoke it, or, at first, designate it to some graphic \
2186 register. Then repeat the loop to actually produce the \
2187 character. */ \
2188 dst = encode_invocation_designation (charset, coding, dst); \
2189 } while (1)
2190
2191 /* Produce codes for a DIMENSION2 character whose character set is
2192 CHARSET and whose position-codes are C1 and C2. Designation and
2193 invocation codes are also produced in advance if necessary. */
2194
2195 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2196 do { \
2197 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2198 { \
2199 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2200 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2201 else \
2202 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2203 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2204 break; \
2205 } \
2206 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2207 { \
2208 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2209 break; \
2210 } \
2211 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2212 { \
2213 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2214 break; \
2215 } \
2216 else \
2217 /* Since CHARSET is not yet invoked to any graphic planes, we \
2218 must invoke it, or, at first, designate it to some graphic \
2219 register. Then repeat the loop to actually produce the \
2220 character. */ \
2221 dst = encode_invocation_designation (charset, coding, dst); \
2222 } while (1)
2223
2224 #define ENCODE_ISO_CHARACTER(c) \
2225 do { \
2226 int charset, c1, c2; \
2227 \
2228 SPLIT_CHAR (c, charset, c1, c2); \
2229 if (CHARSET_DEFINED_P (charset)) \
2230 { \
2231 if (CHARSET_DIMENSION (charset) == 1) \
2232 { \
2233 if (charset == CHARSET_ASCII \
2234 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2235 charset = charset_latin_jisx0201; \
2236 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2237 } \
2238 else \
2239 { \
2240 if (charset == charset_jisx0208 \
2241 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2242 charset = charset_jisx0208_1978; \
2243 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2244 } \
2245 } \
2246 else \
2247 { \
2248 *dst++ = c1; \
2249 if (c2 >= 0) \
2250 *dst++ = c2; \
2251 } \
2252 } while (0)
2253
2254
2255 /* Instead of encoding character C, produce one or two `?'s. */
2256
2257 #define ENCODE_UNSAFE_CHARACTER(c) \
2258 do { \
2259 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2260 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2261 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2262 } while (0)
2263
2264
2265 /* Produce designation and invocation codes at a place pointed by DST
2266 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2267 Return new DST. */
2268
2269 unsigned char *
2270 encode_invocation_designation (charset, coding, dst)
2271 int charset;
2272 struct coding_system *coding;
2273 unsigned char *dst;
2274 {
2275 int reg; /* graphic register number */
2276
2277 /* At first, check designations. */
2278 for (reg = 0; reg < 4; reg++)
2279 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2280 break;
2281
2282 if (reg >= 4)
2283 {
2284 /* CHARSET is not yet designated to any graphic registers. */
2285 /* At first check the requested designation. */
2286 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2287 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2288 /* Since CHARSET requests no special designation, designate it
2289 to graphic register 0. */
2290 reg = 0;
2291
2292 ENCODE_DESIGNATION (charset, reg, coding);
2293 }
2294
2295 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2296 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2297 {
2298 /* Since the graphic register REG is not invoked to any graphic
2299 planes, invoke it to graphic plane 0. */
2300 switch (reg)
2301 {
2302 case 0: /* graphic register 0 */
2303 ENCODE_SHIFT_IN;
2304 break;
2305
2306 case 1: /* graphic register 1 */
2307 ENCODE_SHIFT_OUT;
2308 break;
2309
2310 case 2: /* graphic register 2 */
2311 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2312 ENCODE_SINGLE_SHIFT_2;
2313 else
2314 ENCODE_LOCKING_SHIFT_2;
2315 break;
2316
2317 case 3: /* graphic register 3 */
2318 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2319 ENCODE_SINGLE_SHIFT_3;
2320 else
2321 ENCODE_LOCKING_SHIFT_3;
2322 break;
2323 }
2324 }
2325
2326 return dst;
2327 }
2328
2329 /* Produce 2-byte codes for encoded composition rule RULE. */
2330
2331 #define ENCODE_COMPOSITION_RULE(rule) \
2332 do { \
2333 int gref, nref; \
2334 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2335 *dst++ = 32 + 81 + gref; \
2336 *dst++ = 32 + nref; \
2337 } while (0)
2338
2339 /* Produce codes for indicating the start of a composition sequence
2340 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2341 which specify information about the composition. See the comment
2342 in coding.h for the format of DATA. */
2343
2344 #define ENCODE_COMPOSITION_START(coding, data) \
2345 do { \
2346 coding->composing = data[3]; \
2347 *dst++ = ISO_CODE_ESC; \
2348 if (coding->composing == COMPOSITION_RELATIVE) \
2349 *dst++ = '0'; \
2350 else \
2351 { \
2352 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2353 ? '3' : '4'); \
2354 coding->cmp_data_index = coding->cmp_data_start + 4; \
2355 coding->composition_rule_follows = 0; \
2356 } \
2357 } while (0)
2358
2359 /* Produce codes for indicating the end of the current composition. */
2360
2361 #define ENCODE_COMPOSITION_END(coding, data) \
2362 do { \
2363 *dst++ = ISO_CODE_ESC; \
2364 *dst++ = '1'; \
2365 coding->cmp_data_start += data[0]; \
2366 coding->composing = COMPOSITION_NO; \
2367 if (coding->cmp_data_start == coding->cmp_data->used \
2368 && coding->cmp_data->next) \
2369 { \
2370 coding->cmp_data = coding->cmp_data->next; \
2371 coding->cmp_data_start = 0; \
2372 } \
2373 } while (0)
2374
2375 /* Produce composition start sequence ESC 0. Here, this sequence
2376 doesn't mean the start of a new composition but means that we have
2377 just produced components (alternate chars and composition rules) of
2378 the composition and the actual text follows in SRC. */
2379
2380 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2381 do { \
2382 *dst++ = ISO_CODE_ESC; \
2383 *dst++ = '0'; \
2384 coding->composing = COMPOSITION_RELATIVE; \
2385 } while (0)
2386
2387 /* The following three macros produce codes for indicating direction
2388 of text. */
2389 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2390 do { \
2391 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2392 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2393 else \
2394 *dst++ = ISO_CODE_CSI; \
2395 } while (0)
2396
2397 #define ENCODE_DIRECTION_R2L \
2398 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2399
2400 #define ENCODE_DIRECTION_L2R \
2401 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2402
2403 /* Produce codes for designation and invocation to reset the graphic
2404 planes and registers to initial state. */
2405 #define ENCODE_RESET_PLANE_AND_REGISTER \
2406 do { \
2407 int reg; \
2408 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2409 ENCODE_SHIFT_IN; \
2410 for (reg = 0; reg < 4; reg++) \
2411 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2412 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2413 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2414 ENCODE_DESIGNATION \
2415 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2416 } while (0)
2417
2418 /* Produce designation sequences of charsets in the line started from
2419 SRC to a place pointed by DST, and return updated DST.
2420
2421 If the current block ends before any end-of-line, we may fail to
2422 find all the necessary designations. */
2423
2424 static unsigned char *
2425 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2426 struct coding_system *coding;
2427 Lisp_Object translation_table;
2428 unsigned char *src, *src_end, *dst;
2429 {
2430 int charset, c, found = 0, reg;
2431 /* Table of charsets to be designated to each graphic register. */
2432 int r[4];
2433
2434 for (reg = 0; reg < 4; reg++)
2435 r[reg] = -1;
2436
2437 while (found < 4)
2438 {
2439 ONE_MORE_CHAR (c);
2440 if (c == '\n')
2441 break;
2442
2443 charset = CHAR_CHARSET (c);
2444 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2445 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2446 {
2447 found++;
2448 r[reg] = charset;
2449 }
2450 }
2451
2452 label_end_of_loop:
2453 if (found)
2454 {
2455 for (reg = 0; reg < 4; reg++)
2456 if (r[reg] >= 0
2457 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2458 ENCODE_DESIGNATION (r[reg], reg, coding);
2459 }
2460
2461 return dst;
2462 }
2463
2464 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2465
2466 static void
2467 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2468 struct coding_system *coding;
2469 unsigned char *source, *destination;
2470 int src_bytes, dst_bytes;
2471 {
2472 unsigned char *src = source;
2473 unsigned char *src_end = source + src_bytes;
2474 unsigned char *dst = destination;
2475 unsigned char *dst_end = destination + dst_bytes;
2476 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2477 from DST_END to assure overflow checking is necessary only at the
2478 head of loop. */
2479 unsigned char *adjusted_dst_end = dst_end - 19;
2480 /* SRC_BASE remembers the start position in source in each loop.
2481 The loop will be exited when there's not enough source text to
2482 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2483 there's not enough destination area to produce encoded codes
2484 (within macro EMIT_BYTES). */
2485 unsigned char *src_base;
2486 int c;
2487 Lisp_Object translation_table;
2488 Lisp_Object safe_chars;
2489
2490 safe_chars = coding_safe_chars (coding);
2491
2492 if (NILP (Venable_character_translation))
2493 translation_table = Qnil;
2494 else
2495 {
2496 translation_table = coding->translation_table_for_encode;
2497 if (NILP (translation_table))
2498 translation_table = Vstandard_translation_table_for_encode;
2499 }
2500
2501 coding->consumed_char = 0;
2502 coding->errors = 0;
2503 while (1)
2504 {
2505 src_base = src;
2506
2507 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2508 {
2509 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2510 break;
2511 }
2512
2513 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2514 && CODING_SPEC_ISO_BOL (coding))
2515 {
2516 /* We have to produce designation sequences if any now. */
2517 dst = encode_designation_at_bol (coding, translation_table,
2518 src, src_end, dst);
2519 CODING_SPEC_ISO_BOL (coding) = 0;
2520 }
2521
2522 /* Check composition start and end. */
2523 if (coding->composing != COMPOSITION_DISABLED
2524 && coding->cmp_data_start < coding->cmp_data->used)
2525 {
2526 struct composition_data *cmp_data = coding->cmp_data;
2527 int *data = cmp_data->data + coding->cmp_data_start;
2528 int this_pos = cmp_data->char_offset + coding->consumed_char;
2529
2530 if (coding->composing == COMPOSITION_RELATIVE)
2531 {
2532 if (this_pos == data[2])
2533 {
2534 ENCODE_COMPOSITION_END (coding, data);
2535 cmp_data = coding->cmp_data;
2536 data = cmp_data->data + coding->cmp_data_start;
2537 }
2538 }
2539 else if (COMPOSING_P (coding))
2540 {
2541 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2542 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2543 /* We have consumed components of the composition.
2544 What follows in SRC is the composition's base
2545 text. */
2546 ENCODE_COMPOSITION_FAKE_START (coding);
2547 else
2548 {
2549 int c = cmp_data->data[coding->cmp_data_index++];
2550 if (coding->composition_rule_follows)
2551 {
2552 ENCODE_COMPOSITION_RULE (c);
2553 coding->composition_rule_follows = 0;
2554 }
2555 else
2556 {
2557 if (coding->flags & CODING_FLAG_ISO_SAFE
2558 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2559 ENCODE_UNSAFE_CHARACTER (c);
2560 else
2561 ENCODE_ISO_CHARACTER (c);
2562 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2563 coding->composition_rule_follows = 1;
2564 }
2565 continue;
2566 }
2567 }
2568 if (!COMPOSING_P (coding))
2569 {
2570 if (this_pos == data[1])
2571 {
2572 ENCODE_COMPOSITION_START (coding, data);
2573 continue;
2574 }
2575 }
2576 }
2577
2578 ONE_MORE_CHAR (c);
2579
2580 /* Now encode the character C. */
2581 if (c < 0x20 || c == 0x7F)
2582 {
2583 if (c == '\r')
2584 {
2585 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2586 {
2587 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2588 ENCODE_RESET_PLANE_AND_REGISTER;
2589 *dst++ = c;
2590 continue;
2591 }
2592 /* fall down to treat '\r' as '\n' ... */
2593 c = '\n';
2594 }
2595 if (c == '\n')
2596 {
2597 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2598 ENCODE_RESET_PLANE_AND_REGISTER;
2599 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2600 bcopy (coding->spec.iso2022.initial_designation,
2601 coding->spec.iso2022.current_designation,
2602 sizeof coding->spec.iso2022.initial_designation);
2603 if (coding->eol_type == CODING_EOL_LF
2604 || coding->eol_type == CODING_EOL_UNDECIDED)
2605 *dst++ = ISO_CODE_LF;
2606 else if (coding->eol_type == CODING_EOL_CRLF)
2607 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2608 else
2609 *dst++ = ISO_CODE_CR;
2610 CODING_SPEC_ISO_BOL (coding) = 1;
2611 }
2612 else
2613 {
2614 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2615 ENCODE_RESET_PLANE_AND_REGISTER;
2616 *dst++ = c;
2617 }
2618 }
2619 else if (ASCII_BYTE_P (c))
2620 ENCODE_ISO_CHARACTER (c);
2621 else if (SINGLE_BYTE_CHAR_P (c))
2622 {
2623 *dst++ = c;
2624 coding->errors++;
2625 }
2626 else if (coding->flags & CODING_FLAG_ISO_SAFE
2627 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2628 ENCODE_UNSAFE_CHARACTER (c);
2629 else
2630 ENCODE_ISO_CHARACTER (c);
2631
2632 coding->consumed_char++;
2633 }
2634
2635 label_end_of_loop:
2636 coding->consumed = src_base - source;
2637 coding->produced = coding->produced_char = dst - destination;
2638 }
2639
2640 \f
2641 /*** 4. SJIS and BIG5 handlers ***/
2642
2643 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2644 quite widely. So, for the moment, Emacs supports them in the bare
2645 C code. But, in the future, they may be supported only by CCL. */
2646
2647 /* SJIS is a coding system encoding three character sets: ASCII, right
2648 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2649 as is. A character of charset katakana-jisx0201 is encoded by
2650 "position-code + 0x80". A character of charset japanese-jisx0208
2651 is encoded in 2-byte but two position-codes are divided and shifted
2652 so that it fits in the range below.
2653
2654 --- CODE RANGE of SJIS ---
2655 (character set) (range)
2656 ASCII 0x00 .. 0x7F
2657 KATAKANA-JISX0201 0xA1 .. 0xDF
2658 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2659 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2660 -------------------------------
2661
2662 */
2663
2664 /* BIG5 is a coding system encoding two character sets: ASCII and
2665 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2666 character set and is encoded in two bytes.
2667
2668 --- CODE RANGE of BIG5 ---
2669 (character set) (range)
2670 ASCII 0x00 .. 0x7F
2671 Big5 (1st byte) 0xA1 .. 0xFE
2672 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2673 --------------------------
2674
2675 Since the number of characters in Big5 is larger than maximum
2676 characters in Emacs' charset (96x96), it can't be handled as one
2677 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2678 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2679 contains frequently used characters and the latter contains less
2680 frequently used characters. */
2681
2682 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2683 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2684 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2685 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2686
2687 /* Number of Big5 characters which have the same code in 1st byte. */
2688 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2689
2690 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2691 do { \
2692 unsigned int temp \
2693 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2694 if (b1 < 0xC9) \
2695 charset = charset_big5_1; \
2696 else \
2697 { \
2698 charset = charset_big5_2; \
2699 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2700 } \
2701 c1 = temp / (0xFF - 0xA1) + 0x21; \
2702 c2 = temp % (0xFF - 0xA1) + 0x21; \
2703 } while (0)
2704
2705 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2706 do { \
2707 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2708 if (charset == charset_big5_2) \
2709 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2710 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2711 b2 = temp % BIG5_SAME_ROW; \
2712 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2713 } while (0)
2714
2715 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2716 Check if a text is encoded in SJIS. If it is, return
2717 CODING_CATEGORY_MASK_SJIS, else return 0. */
2718
2719 static int
2720 detect_coding_sjis (src, src_end, multibytep)
2721 unsigned char *src, *src_end;
2722 int multibytep;
2723 {
2724 int c;
2725 /* Dummy for ONE_MORE_BYTE. */
2726 struct coding_system dummy_coding;
2727 struct coding_system *coding = &dummy_coding;
2728
2729 while (1)
2730 {
2731 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2732 if (c < 0x80)
2733 continue;
2734 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2735 return 0;
2736 if (c <= 0x9F || c >= 0xE0)
2737 {
2738 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2739 if (c < 0x40 || c == 0x7F || c > 0xFC)
2740 return 0;
2741 }
2742 }
2743 label_end_of_loop:
2744 return CODING_CATEGORY_MASK_SJIS;
2745 }
2746
2747 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2748 Check if a text is encoded in BIG5. If it is, return
2749 CODING_CATEGORY_MASK_BIG5, else return 0. */
2750
2751 static int
2752 detect_coding_big5 (src, src_end, multibytep)
2753 unsigned char *src, *src_end;
2754 int multibytep;
2755 {
2756 int c;
2757 /* Dummy for ONE_MORE_BYTE. */
2758 struct coding_system dummy_coding;
2759 struct coding_system *coding = &dummy_coding;
2760
2761 while (1)
2762 {
2763 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2764 if (c < 0x80)
2765 continue;
2766 if (c < 0xA1 || c > 0xFE)
2767 return 0;
2768 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2769 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2770 return 0;
2771 }
2772 label_end_of_loop:
2773 return CODING_CATEGORY_MASK_BIG5;
2774 }
2775
2776 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2777 Check if a text is encoded in UTF-8. If it is, return
2778 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2779
2780 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2781 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2782 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2783 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2784 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2785 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2786 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2787
2788 static int
2789 detect_coding_utf_8 (src, src_end, multibytep)
2790 unsigned char *src, *src_end;
2791 int multibytep;
2792 {
2793 unsigned char c;
2794 int seq_maybe_bytes;
2795 /* Dummy for ONE_MORE_BYTE. */
2796 struct coding_system dummy_coding;
2797 struct coding_system *coding = &dummy_coding;
2798
2799 while (1)
2800 {
2801 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2802 if (UTF_8_1_OCTET_P (c))
2803 continue;
2804 else if (UTF_8_2_OCTET_LEADING_P (c))
2805 seq_maybe_bytes = 1;
2806 else if (UTF_8_3_OCTET_LEADING_P (c))
2807 seq_maybe_bytes = 2;
2808 else if (UTF_8_4_OCTET_LEADING_P (c))
2809 seq_maybe_bytes = 3;
2810 else if (UTF_8_5_OCTET_LEADING_P (c))
2811 seq_maybe_bytes = 4;
2812 else if (UTF_8_6_OCTET_LEADING_P (c))
2813 seq_maybe_bytes = 5;
2814 else
2815 return 0;
2816
2817 do
2818 {
2819 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2820 if (!UTF_8_EXTRA_OCTET_P (c))
2821 return 0;
2822 seq_maybe_bytes--;
2823 }
2824 while (seq_maybe_bytes > 0);
2825 }
2826
2827 label_end_of_loop:
2828 return CODING_CATEGORY_MASK_UTF_8;
2829 }
2830
2831 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2832 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2833 Little Endian (otherwise). If it is, return
2834 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2835 else return 0. */
2836
2837 #define UTF_16_INVALID_P(val) \
2838 (((val) == 0xFFFE) \
2839 || ((val) == 0xFFFF))
2840
2841 #define UTF_16_HIGH_SURROGATE_P(val) \
2842 (((val) & 0xD800) == 0xD800)
2843
2844 #define UTF_16_LOW_SURROGATE_P(val) \
2845 (((val) & 0xDC00) == 0xDC00)
2846
2847 static int
2848 detect_coding_utf_16 (src, src_end, multibytep)
2849 unsigned char *src, *src_end;
2850 int multibytep;
2851 {
2852 unsigned char c1, c2;
2853 /* Dummy for TWO_MORE_BYTES. */
2854 struct coding_system dummy_coding;
2855 struct coding_system *coding = &dummy_coding;
2856
2857 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2858 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2859
2860 if ((c1 == 0xFF) && (c2 == 0xFE))
2861 return CODING_CATEGORY_MASK_UTF_16_LE;
2862 else if ((c1 == 0xFE) && (c2 == 0xFF))
2863 return CODING_CATEGORY_MASK_UTF_16_BE;
2864
2865 label_end_of_loop:
2866 return 0;
2867 }
2868
2869 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2870 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2871
2872 static void
2873 decode_coding_sjis_big5 (coding, source, destination,
2874 src_bytes, dst_bytes, sjis_p)
2875 struct coding_system *coding;
2876 unsigned char *source, *destination;
2877 int src_bytes, dst_bytes;
2878 int sjis_p;
2879 {
2880 unsigned char *src = source;
2881 unsigned char *src_end = source + src_bytes;
2882 unsigned char *dst = destination;
2883 unsigned char *dst_end = destination + dst_bytes;
2884 /* SRC_BASE remembers the start position in source in each loop.
2885 The loop will be exited when there's not enough source code
2886 (within macro ONE_MORE_BYTE), or when there's not enough
2887 destination area to produce a character (within macro
2888 EMIT_CHAR). */
2889 unsigned char *src_base;
2890 Lisp_Object translation_table;
2891
2892 if (NILP (Venable_character_translation))
2893 translation_table = Qnil;
2894 else
2895 {
2896 translation_table = coding->translation_table_for_decode;
2897 if (NILP (translation_table))
2898 translation_table = Vstandard_translation_table_for_decode;
2899 }
2900
2901 coding->produced_char = 0;
2902 while (1)
2903 {
2904 int c, charset, c1, c2;
2905
2906 src_base = src;
2907 ONE_MORE_BYTE (c1);
2908
2909 if (c1 < 0x80)
2910 {
2911 charset = CHARSET_ASCII;
2912 if (c1 < 0x20)
2913 {
2914 if (c1 == '\r')
2915 {
2916 if (coding->eol_type == CODING_EOL_CRLF)
2917 {
2918 ONE_MORE_BYTE (c2);
2919 if (c2 == '\n')
2920 c1 = c2;
2921 else if (coding->mode
2922 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2923 {
2924 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2925 goto label_end_of_loop;
2926 }
2927 else
2928 /* To process C2 again, SRC is subtracted by 1. */
2929 src--;
2930 }
2931 else if (coding->eol_type == CODING_EOL_CR)
2932 c1 = '\n';
2933 }
2934 else if (c1 == '\n'
2935 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2936 && (coding->eol_type == CODING_EOL_CR
2937 || coding->eol_type == CODING_EOL_CRLF))
2938 {
2939 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2940 goto label_end_of_loop;
2941 }
2942 }
2943 }
2944 else
2945 {
2946 if (sjis_p)
2947 {
2948 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2949 goto label_invalid_code;
2950 if (c1 <= 0x9F || c1 >= 0xE0)
2951 {
2952 /* SJIS -> JISX0208 */
2953 ONE_MORE_BYTE (c2);
2954 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2955 goto label_invalid_code;
2956 DECODE_SJIS (c1, c2, c1, c2);
2957 charset = charset_jisx0208;
2958 }
2959 else
2960 /* SJIS -> JISX0201-Kana */
2961 charset = charset_katakana_jisx0201;
2962 }
2963 else
2964 {
2965 /* BIG5 -> Big5 */
2966 if (c1 < 0xA0 || c1 > 0xFE)
2967 goto label_invalid_code;
2968 ONE_MORE_BYTE (c2);
2969 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2970 goto label_invalid_code;
2971 DECODE_BIG5 (c1, c2, charset, c1, c2);
2972 }
2973 }
2974
2975 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2976 EMIT_CHAR (c);
2977 continue;
2978
2979 label_invalid_code:
2980 coding->errors++;
2981 src = src_base;
2982 c = *src++;
2983 EMIT_CHAR (c);
2984 }
2985
2986 label_end_of_loop:
2987 coding->consumed = coding->consumed_char = src_base - source;
2988 coding->produced = dst - destination;
2989 return;
2990 }
2991
2992 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2993 This function can encode charsets `ascii', `katakana-jisx0201',
2994 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2995 are sure that all these charsets are registered as official charset
2996 (i.e. do not have extended leading-codes). Characters of other
2997 charsets are produced without any encoding. If SJIS_P is 1, encode
2998 SJIS text, else encode BIG5 text. */
2999
3000 static void
3001 encode_coding_sjis_big5 (coding, source, destination,
3002 src_bytes, dst_bytes, sjis_p)
3003 struct coding_system *coding;
3004 unsigned char *source, *destination;
3005 int src_bytes, dst_bytes;
3006 int sjis_p;
3007 {
3008 unsigned char *src = source;
3009 unsigned char *src_end = source + src_bytes;
3010 unsigned char *dst = destination;
3011 unsigned char *dst_end = destination + dst_bytes;
3012 /* SRC_BASE remembers the start position in source in each loop.
3013 The loop will be exited when there's not enough source text to
3014 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3015 there's not enough destination area to produce encoded codes
3016 (within macro EMIT_BYTES). */
3017 unsigned char *src_base;
3018 Lisp_Object translation_table;
3019
3020 if (NILP (Venable_character_translation))
3021 translation_table = Qnil;
3022 else
3023 {
3024 translation_table = coding->translation_table_for_encode;
3025 if (NILP (translation_table))
3026 translation_table = Vstandard_translation_table_for_encode;
3027 }
3028
3029 while (1)
3030 {
3031 int c, charset, c1, c2;
3032
3033 src_base = src;
3034 ONE_MORE_CHAR (c);
3035
3036 /* Now encode the character C. */
3037 if (SINGLE_BYTE_CHAR_P (c))
3038 {
3039 switch (c)
3040 {
3041 case '\r':
3042 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3043 {
3044 EMIT_ONE_BYTE (c);
3045 break;
3046 }
3047 c = '\n';
3048 case '\n':
3049 if (coding->eol_type == CODING_EOL_CRLF)
3050 {
3051 EMIT_TWO_BYTES ('\r', c);
3052 break;
3053 }
3054 else if (coding->eol_type == CODING_EOL_CR)
3055 c = '\r';
3056 default:
3057 EMIT_ONE_BYTE (c);
3058 }
3059 }
3060 else
3061 {
3062 SPLIT_CHAR (c, charset, c1, c2);
3063 if (sjis_p)
3064 {
3065 if (charset == charset_jisx0208
3066 || charset == charset_jisx0208_1978)
3067 {
3068 ENCODE_SJIS (c1, c2, c1, c2);
3069 EMIT_TWO_BYTES (c1, c2);
3070 }
3071 else if (charset == charset_katakana_jisx0201)
3072 EMIT_ONE_BYTE (c1 | 0x80);
3073 else if (charset == charset_latin_jisx0201)
3074 EMIT_ONE_BYTE (c1);
3075 else
3076 /* There's no way other than producing the internal
3077 codes as is. */
3078 EMIT_BYTES (src_base, src);
3079 }
3080 else
3081 {
3082 if (charset == charset_big5_1 || charset == charset_big5_2)
3083 {
3084 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3085 EMIT_TWO_BYTES (c1, c2);
3086 }
3087 else
3088 /* There's no way other than producing the internal
3089 codes as is. */
3090 EMIT_BYTES (src_base, src);
3091 }
3092 }
3093 coding->consumed_char++;
3094 }
3095
3096 label_end_of_loop:
3097 coding->consumed = src_base - source;
3098 coding->produced = coding->produced_char = dst - destination;
3099 }
3100
3101 \f
3102 /*** 5. CCL handlers ***/
3103
3104 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3105 Check if a text is encoded in a coding system of which
3106 encoder/decoder are written in CCL program. If it is, return
3107 CODING_CATEGORY_MASK_CCL, else return 0. */
3108
3109 static int
3110 detect_coding_ccl (src, src_end, multibytep)
3111 unsigned char *src, *src_end;
3112 int multibytep;
3113 {
3114 unsigned char *valid;
3115 int c;
3116 /* Dummy for ONE_MORE_BYTE. */
3117 struct coding_system dummy_coding;
3118 struct coding_system *coding = &dummy_coding;
3119
3120 /* No coding system is assigned to coding-category-ccl. */
3121 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3122 return 0;
3123
3124 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3125 while (1)
3126 {
3127 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3128 if (! valid[c])
3129 return 0;
3130 }
3131 label_end_of_loop:
3132 return CODING_CATEGORY_MASK_CCL;
3133 }
3134
3135 \f
3136 /*** 6. End-of-line handlers ***/
3137
3138 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3139
3140 static void
3141 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3142 struct coding_system *coding;
3143 unsigned char *source, *destination;
3144 int src_bytes, dst_bytes;
3145 {
3146 unsigned char *src = source;
3147 unsigned char *dst = destination;
3148 unsigned char *src_end = src + src_bytes;
3149 unsigned char *dst_end = dst + dst_bytes;
3150 Lisp_Object translation_table;
3151 /* SRC_BASE remembers the start position in source in each loop.
3152 The loop will be exited when there's not enough source code
3153 (within macro ONE_MORE_BYTE), or when there's not enough
3154 destination area to produce a character (within macro
3155 EMIT_CHAR). */
3156 unsigned char *src_base;
3157 int c;
3158
3159 translation_table = Qnil;
3160 switch (coding->eol_type)
3161 {
3162 case CODING_EOL_CRLF:
3163 while (1)
3164 {
3165 src_base = src;
3166 ONE_MORE_BYTE (c);
3167 if (c == '\r')
3168 {
3169 ONE_MORE_BYTE (c);
3170 if (c != '\n')
3171 {
3172 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3173 {
3174 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3175 goto label_end_of_loop;
3176 }
3177 src--;
3178 c = '\r';
3179 }
3180 }
3181 else if (c == '\n'
3182 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3183 {
3184 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3185 goto label_end_of_loop;
3186 }
3187 EMIT_CHAR (c);
3188 }
3189 break;
3190
3191 case CODING_EOL_CR:
3192 while (1)
3193 {
3194 src_base = src;
3195 ONE_MORE_BYTE (c);
3196 if (c == '\n')
3197 {
3198 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3199 {
3200 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3201 goto label_end_of_loop;
3202 }
3203 }
3204 else if (c == '\r')
3205 c = '\n';
3206 EMIT_CHAR (c);
3207 }
3208 break;
3209
3210 default: /* no need for EOL handling */
3211 while (1)
3212 {
3213 src_base = src;
3214 ONE_MORE_BYTE (c);
3215 EMIT_CHAR (c);
3216 }
3217 }
3218
3219 label_end_of_loop:
3220 coding->consumed = coding->consumed_char = src_base - source;
3221 coding->produced = dst - destination;
3222 return;
3223 }
3224
3225 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3226 format of end-of-line according to `coding->eol_type'. It also
3227 convert multibyte form 8-bit characters to unibyte if
3228 CODING->src_multibyte is nonzero. If `coding->mode &
3229 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3230 also means end-of-line. */
3231
3232 static void
3233 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3234 struct coding_system *coding;
3235 unsigned char *source, *destination;
3236 int src_bytes, dst_bytes;
3237 {
3238 unsigned char *src = source;
3239 unsigned char *dst = destination;
3240 unsigned char *src_end = src + src_bytes;
3241 unsigned char *dst_end = dst + dst_bytes;
3242 Lisp_Object translation_table;
3243 /* SRC_BASE remembers the start position in source in each loop.
3244 The loop will be exited when there's not enough source text to
3245 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3246 there's not enough destination area to produce encoded codes
3247 (within macro EMIT_BYTES). */
3248 unsigned char *src_base;
3249 int c;
3250 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3251
3252 translation_table = Qnil;
3253 if (coding->src_multibyte
3254 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3255 {
3256 src_end--;
3257 src_bytes--;
3258 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3259 }
3260
3261 if (coding->eol_type == CODING_EOL_CRLF)
3262 {
3263 while (src < src_end)
3264 {
3265 src_base = src;
3266 c = *src++;
3267 if (c >= 0x20)
3268 EMIT_ONE_BYTE (c);
3269 else if (c == '\n' || (c == '\r' && selective_display))
3270 EMIT_TWO_BYTES ('\r', '\n');
3271 else
3272 EMIT_ONE_BYTE (c);
3273 }
3274 src_base = src;
3275 label_end_of_loop:
3276 ;
3277 }
3278 else
3279 {
3280 if (!dst_bytes || src_bytes <= dst_bytes)
3281 {
3282 safe_bcopy (src, dst, src_bytes);
3283 src_base = src_end;
3284 dst += src_bytes;
3285 }
3286 else
3287 {
3288 if (coding->src_multibyte
3289 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3290 dst_bytes--;
3291 safe_bcopy (src, dst, dst_bytes);
3292 src_base = src + dst_bytes;
3293 dst = destination + dst_bytes;
3294 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3295 }
3296 if (coding->eol_type == CODING_EOL_CR)
3297 {
3298 for (src = destination; src < dst; src++)
3299 if (*src == '\n') *src = '\r';
3300 }
3301 else if (selective_display)
3302 {
3303 for (src = destination; src < dst; src++)
3304 if (*src == '\r') *src = '\n';
3305 }
3306 }
3307 if (coding->src_multibyte)
3308 dst = destination + str_as_unibyte (destination, dst - destination);
3309
3310 coding->consumed = src_base - source;
3311 coding->produced = dst - destination;
3312 coding->produced_char = coding->produced;
3313 }
3314
3315 \f
3316 /*** 7. C library functions ***/
3317
3318 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3319 has a property `coding-system'. The value of this property is a
3320 vector of length 5 (called the coding-vector). Among elements of
3321 this vector, the first (element[0]) and the fifth (element[4])
3322 carry important information for decoding/encoding. Before
3323 decoding/encoding, this information should be set in fields of a
3324 structure of type `coding_system'.
3325
3326 The value of the property `coding-system' can be a symbol of another
3327 subsidiary coding-system. In that case, Emacs gets coding-vector
3328 from that symbol.
3329
3330 `element[0]' contains information to be set in `coding->type'. The
3331 value and its meaning is as follows:
3332
3333 0 -- coding_type_emacs_mule
3334 1 -- coding_type_sjis
3335 2 -- coding_type_iso2022
3336 3 -- coding_type_big5
3337 4 -- coding_type_ccl encoder/decoder written in CCL
3338 nil -- coding_type_no_conversion
3339 t -- coding_type_undecided (automatic conversion on decoding,
3340 no-conversion on encoding)
3341
3342 `element[4]' contains information to be set in `coding->flags' and
3343 `coding->spec'. The meaning varies by `coding->type'.
3344
3345 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3346 of length 32 (of which the first 13 sub-elements are used now).
3347 Meanings of these sub-elements are:
3348
3349 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3350 If the value is an integer of valid charset, the charset is
3351 assumed to be designated to graphic register N initially.
3352
3353 If the value is minus, it is a minus value of charset which
3354 reserves graphic register N, which means that the charset is
3355 not designated initially but should be designated to graphic
3356 register N just before encoding a character in that charset.
3357
3358 If the value is nil, graphic register N is never used on
3359 encoding.
3360
3361 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3362 Each value takes t or nil. See the section ISO2022 of
3363 `coding.h' for more information.
3364
3365 If `coding->type' is `coding_type_big5', element[4] is t to denote
3366 BIG5-ETen or nil to denote BIG5-HKU.
3367
3368 If `coding->type' takes the other value, element[4] is ignored.
3369
3370 Emacs Lisp's coding systems also carry information about format of
3371 end-of-line in a value of property `eol-type'. If the value is
3372 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3373 means CODING_EOL_CR. If it is not integer, it should be a vector
3374 of subsidiary coding systems of which property `eol-type' has one
3375 of the above values.
3376
3377 */
3378
3379 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3380 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3381 is setup so that no conversion is necessary and return -1, else
3382 return 0. */
3383
3384 int
3385 setup_coding_system (coding_system, coding)
3386 Lisp_Object coding_system;
3387 struct coding_system *coding;
3388 {
3389 Lisp_Object coding_spec, coding_type, eol_type, plist;
3390 Lisp_Object val;
3391
3392 /* At first, zero clear all members. */
3393 bzero (coding, sizeof (struct coding_system));
3394
3395 /* Initialize some fields required for all kinds of coding systems. */
3396 coding->symbol = coding_system;
3397 coding->heading_ascii = -1;
3398 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3399 coding->composing = COMPOSITION_DISABLED;
3400 coding->cmp_data = NULL;
3401
3402 if (NILP (coding_system))
3403 goto label_invalid_coding_system;
3404
3405 coding_spec = Fget (coding_system, Qcoding_system);
3406
3407 if (!VECTORP (coding_spec)
3408 || XVECTOR (coding_spec)->size != 5
3409 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3410 goto label_invalid_coding_system;
3411
3412 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3413 if (VECTORP (eol_type))
3414 {
3415 coding->eol_type = CODING_EOL_UNDECIDED;
3416 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3417 }
3418 else if (XFASTINT (eol_type) == 1)
3419 {
3420 coding->eol_type = CODING_EOL_CRLF;
3421 coding->common_flags
3422 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3423 }
3424 else if (XFASTINT (eol_type) == 2)
3425 {
3426 coding->eol_type = CODING_EOL_CR;
3427 coding->common_flags
3428 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3429 }
3430 else
3431 coding->eol_type = CODING_EOL_LF;
3432
3433 coding_type = XVECTOR (coding_spec)->contents[0];
3434 /* Try short cut. */
3435 if (SYMBOLP (coding_type))
3436 {
3437 if (EQ (coding_type, Qt))
3438 {
3439 coding->type = coding_type_undecided;
3440 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3441 }
3442 else
3443 coding->type = coding_type_no_conversion;
3444 /* Initialize this member. Any thing other than
3445 CODING_CATEGORY_IDX_UTF_16_BE and
3446 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3447 special treatment in detect_eol. */
3448 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3449
3450 return 0;
3451 }
3452
3453 /* Get values of coding system properties:
3454 `post-read-conversion', `pre-write-conversion',
3455 `translation-table-for-decode', `translation-table-for-encode'. */
3456 plist = XVECTOR (coding_spec)->contents[3];
3457 /* Pre & post conversion functions should be disabled if
3458 inhibit_eol_conversion is nonzero. This is the case that a code
3459 conversion function is called while those functions are running. */
3460 if (! inhibit_pre_post_conversion)
3461 {
3462 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3463 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3464 }
3465 val = Fplist_get (plist, Qtranslation_table_for_decode);
3466 if (SYMBOLP (val))
3467 val = Fget (val, Qtranslation_table_for_decode);
3468 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3469 val = Fplist_get (plist, Qtranslation_table_for_encode);
3470 if (SYMBOLP (val))
3471 val = Fget (val, Qtranslation_table_for_encode);
3472 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3473 val = Fplist_get (plist, Qcoding_category);
3474 if (!NILP (val))
3475 {
3476 val = Fget (val, Qcoding_category_index);
3477 if (INTEGERP (val))
3478 coding->category_idx = XINT (val);
3479 else
3480 goto label_invalid_coding_system;
3481 }
3482 else
3483 goto label_invalid_coding_system;
3484
3485 /* If the coding system has non-nil `composition' property, enable
3486 composition handling. */
3487 val = Fplist_get (plist, Qcomposition);
3488 if (!NILP (val))
3489 coding->composing = COMPOSITION_NO;
3490
3491 switch (XFASTINT (coding_type))
3492 {
3493 case 0:
3494 coding->type = coding_type_emacs_mule;
3495 coding->common_flags
3496 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3497 coding->composing = COMPOSITION_NO;
3498 if (!NILP (coding->post_read_conversion))
3499 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3500 if (!NILP (coding->pre_write_conversion))
3501 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3502 break;
3503
3504 case 1:
3505 coding->type = coding_type_sjis;
3506 coding->common_flags
3507 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3508 break;
3509
3510 case 2:
3511 coding->type = coding_type_iso2022;
3512 coding->common_flags
3513 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3514 {
3515 Lisp_Object val, temp;
3516 Lisp_Object *flags;
3517 int i, charset, reg_bits = 0;
3518
3519 val = XVECTOR (coding_spec)->contents[4];
3520
3521 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3522 goto label_invalid_coding_system;
3523
3524 flags = XVECTOR (val)->contents;
3525 coding->flags
3526 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3527 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3528 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3529 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3530 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3531 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3532 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3533 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3534 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3535 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3536 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3537 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3538 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3539 );
3540
3541 /* Invoke graphic register 0 to plane 0. */
3542 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3543 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3544 CODING_SPEC_ISO_INVOCATION (coding, 1)
3545 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3546 /* Not single shifting at first. */
3547 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3548 /* Beginning of buffer should also be regarded as bol. */
3549 CODING_SPEC_ISO_BOL (coding) = 1;
3550
3551 for (charset = 0; charset <= MAX_CHARSET; charset++)
3552 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3553 val = Vcharset_revision_alist;
3554 while (CONSP (val))
3555 {
3556 charset = get_charset_id (Fcar_safe (XCAR (val)));
3557 if (charset >= 0
3558 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3559 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3560 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3561 val = XCDR (val);
3562 }
3563
3564 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3565 FLAGS[REG] can be one of below:
3566 integer CHARSET: CHARSET occupies register I,
3567 t: designate nothing to REG initially, but can be used
3568 by any charsets,
3569 list of integer, nil, or t: designate the first
3570 element (if integer) to REG initially, the remaining
3571 elements (if integer) is designated to REG on request,
3572 if an element is t, REG can be used by any charsets,
3573 nil: REG is never used. */
3574 for (charset = 0; charset <= MAX_CHARSET; charset++)
3575 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3576 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3577 for (i = 0; i < 4; i++)
3578 {
3579 if ((INTEGERP (flags[i])
3580 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3581 || (charset = get_charset_id (flags[i])) >= 0)
3582 {
3583 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3584 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3585 }
3586 else if (EQ (flags[i], Qt))
3587 {
3588 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3589 reg_bits |= 1 << i;
3590 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3591 }
3592 else if (CONSP (flags[i]))
3593 {
3594 Lisp_Object tail;
3595 tail = flags[i];
3596
3597 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3598 if ((INTEGERP (XCAR (tail))
3599 && (charset = XINT (XCAR (tail)),
3600 CHARSET_VALID_P (charset)))
3601 || (charset = get_charset_id (XCAR (tail))) >= 0)
3602 {
3603 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3604 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3605 }
3606 else
3607 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3608 tail = XCDR (tail);
3609 while (CONSP (tail))
3610 {
3611 if ((INTEGERP (XCAR (tail))
3612 && (charset = XINT (XCAR (tail)),
3613 CHARSET_VALID_P (charset)))
3614 || (charset = get_charset_id (XCAR (tail))) >= 0)
3615 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3616 = i;
3617 else if (EQ (XCAR (tail), Qt))
3618 reg_bits |= 1 << i;
3619 tail = XCDR (tail);
3620 }
3621 }
3622 else
3623 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3624
3625 CODING_SPEC_ISO_DESIGNATION (coding, i)
3626 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3627 }
3628
3629 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3630 {
3631 /* REG 1 can be used only by locking shift in 7-bit env. */
3632 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3633 reg_bits &= ~2;
3634 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3635 /* Without any shifting, only REG 0 and 1 can be used. */
3636 reg_bits &= 3;
3637 }
3638
3639 if (reg_bits)
3640 for (charset = 0; charset <= MAX_CHARSET; charset++)
3641 {
3642 if (CHARSET_DEFINED_P (charset)
3643 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3644 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3645 {
3646 /* There exist some default graphic registers to be
3647 used by CHARSET. */
3648
3649 /* We had better avoid designating a charset of
3650 CHARS96 to REG 0 as far as possible. */
3651 if (CHARSET_CHARS (charset) == 96)
3652 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3653 = (reg_bits & 2
3654 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3655 else
3656 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3657 = (reg_bits & 1
3658 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3659 }
3660 }
3661 }
3662 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3663 coding->spec.iso2022.last_invalid_designation_register = -1;
3664 break;
3665
3666 case 3:
3667 coding->type = coding_type_big5;
3668 coding->common_flags
3669 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3670 coding->flags
3671 = (NILP (XVECTOR (coding_spec)->contents[4])
3672 ? CODING_FLAG_BIG5_HKU
3673 : CODING_FLAG_BIG5_ETEN);
3674 break;
3675
3676 case 4:
3677 coding->type = coding_type_ccl;
3678 coding->common_flags
3679 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3680 {
3681 val = XVECTOR (coding_spec)->contents[4];
3682 if (! CONSP (val)
3683 || setup_ccl_program (&(coding->spec.ccl.decoder),
3684 XCAR (val)) < 0
3685 || setup_ccl_program (&(coding->spec.ccl.encoder),
3686 XCDR (val)) < 0)
3687 goto label_invalid_coding_system;
3688
3689 bzero (coding->spec.ccl.valid_codes, 256);
3690 val = Fplist_get (plist, Qvalid_codes);
3691 if (CONSP (val))
3692 {
3693 Lisp_Object this;
3694
3695 for (; CONSP (val); val = XCDR (val))
3696 {
3697 this = XCAR (val);
3698 if (INTEGERP (this)
3699 && XINT (this) >= 0 && XINT (this) < 256)
3700 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3701 else if (CONSP (this)
3702 && INTEGERP (XCAR (this))
3703 && INTEGERP (XCDR (this)))
3704 {
3705 int start = XINT (XCAR (this));
3706 int end = XINT (XCDR (this));
3707
3708 if (start >= 0 && start <= end && end < 256)
3709 while (start <= end)
3710 coding->spec.ccl.valid_codes[start++] = 1;
3711 }
3712 }
3713 }
3714 }
3715 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3716 coding->spec.ccl.cr_carryover = 0;
3717 coding->spec.ccl.eight_bit_carryover[0] = 0;
3718 break;
3719
3720 case 5:
3721 coding->type = coding_type_raw_text;
3722 break;
3723
3724 default:
3725 goto label_invalid_coding_system;
3726 }
3727 return 0;
3728
3729 label_invalid_coding_system:
3730 coding->type = coding_type_no_conversion;
3731 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3732 coding->common_flags = 0;
3733 coding->eol_type = CODING_EOL_LF;
3734 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3735 return -1;
3736 }
3737
3738 /* Free memory blocks allocated for storing composition information. */
3739
3740 void
3741 coding_free_composition_data (coding)
3742 struct coding_system *coding;
3743 {
3744 struct composition_data *cmp_data = coding->cmp_data, *next;
3745
3746 if (!cmp_data)
3747 return;
3748 /* Memory blocks are chained. At first, rewind to the first, then,
3749 free blocks one by one. */
3750 while (cmp_data->prev)
3751 cmp_data = cmp_data->prev;
3752 while (cmp_data)
3753 {
3754 next = cmp_data->next;
3755 xfree (cmp_data);
3756 cmp_data = next;
3757 }
3758 coding->cmp_data = NULL;
3759 }
3760
3761 /* Set `char_offset' member of all memory blocks pointed by
3762 coding->cmp_data to POS. */
3763
3764 void
3765 coding_adjust_composition_offset (coding, pos)
3766 struct coding_system *coding;
3767 int pos;
3768 {
3769 struct composition_data *cmp_data;
3770
3771 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3772 cmp_data->char_offset = pos;
3773 }
3774
3775 /* Setup raw-text or one of its subsidiaries in the structure
3776 coding_system CODING according to the already setup value eol_type
3777 in CODING. CODING should be setup for some coding system in
3778 advance. */
3779
3780 void
3781 setup_raw_text_coding_system (coding)
3782 struct coding_system *coding;
3783 {
3784 if (coding->type != coding_type_raw_text)
3785 {
3786 coding->symbol = Qraw_text;
3787 coding->type = coding_type_raw_text;
3788 if (coding->eol_type != CODING_EOL_UNDECIDED)
3789 {
3790 Lisp_Object subsidiaries;
3791 subsidiaries = Fget (Qraw_text, Qeol_type);
3792
3793 if (VECTORP (subsidiaries)
3794 && XVECTOR (subsidiaries)->size == 3)
3795 coding->symbol
3796 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3797 }
3798 setup_coding_system (coding->symbol, coding);
3799 }
3800 return;
3801 }
3802
3803 /* Emacs has a mechanism to automatically detect a coding system if it
3804 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3805 it's impossible to distinguish some coding systems accurately
3806 because they use the same range of codes. So, at first, coding
3807 systems are categorized into 7, those are:
3808
3809 o coding-category-emacs-mule
3810
3811 The category for a coding system which has the same code range
3812 as Emacs' internal format. Assigned the coding-system (Lisp
3813 symbol) `emacs-mule' by default.
3814
3815 o coding-category-sjis
3816
3817 The category for a coding system which has the same code range
3818 as SJIS. Assigned the coding-system (Lisp
3819 symbol) `japanese-shift-jis' by default.
3820
3821 o coding-category-iso-7
3822
3823 The category for a coding system which has the same code range
3824 as ISO2022 of 7-bit environment. This doesn't use any locking
3825 shift and single shift functions. This can encode/decode all
3826 charsets. Assigned the coding-system (Lisp symbol)
3827 `iso-2022-7bit' by default.
3828
3829 o coding-category-iso-7-tight
3830
3831 Same as coding-category-iso-7 except that this can
3832 encode/decode only the specified charsets.
3833
3834 o coding-category-iso-8-1
3835
3836 The category for a coding system which has the same code range
3837 as ISO2022 of 8-bit environment and graphic plane 1 used only
3838 for DIMENSION1 charset. This doesn't use any locking shift
3839 and single shift functions. Assigned the coding-system (Lisp
3840 symbol) `iso-latin-1' by default.
3841
3842 o coding-category-iso-8-2
3843
3844 The category for a coding system which has the same code range
3845 as ISO2022 of 8-bit environment and graphic plane 1 used only
3846 for DIMENSION2 charset. This doesn't use any locking shift
3847 and single shift functions. Assigned the coding-system (Lisp
3848 symbol) `japanese-iso-8bit' by default.
3849
3850 o coding-category-iso-7-else
3851
3852 The category for a coding system which has the same code range
3853 as ISO2022 of 7-bit environment but uses locking shift or
3854 single shift functions. Assigned the coding-system (Lisp
3855 symbol) `iso-2022-7bit-lock' by default.
3856
3857 o coding-category-iso-8-else
3858
3859 The category for a coding system which has the same code range
3860 as ISO2022 of 8-bit environment but uses locking shift or
3861 single shift functions. Assigned the coding-system (Lisp
3862 symbol) `iso-2022-8bit-ss2' by default.
3863
3864 o coding-category-big5
3865
3866 The category for a coding system which has the same code range
3867 as BIG5. Assigned the coding-system (Lisp symbol)
3868 `cn-big5' by default.
3869
3870 o coding-category-utf-8
3871
3872 The category for a coding system which has the same code range
3873 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3874 symbol) `utf-8' by default.
3875
3876 o coding-category-utf-16-be
3877
3878 The category for a coding system in which a text has an
3879 Unicode signature (cf. Unicode Standard) in the order of BIG
3880 endian at the head. Assigned the coding-system (Lisp symbol)
3881 `utf-16-be' by default.
3882
3883 o coding-category-utf-16-le
3884
3885 The category for a coding system in which a text has an
3886 Unicode signature (cf. Unicode Standard) in the order of
3887 LITTLE endian at the head. Assigned the coding-system (Lisp
3888 symbol) `utf-16-le' by default.
3889
3890 o coding-category-ccl
3891
3892 The category for a coding system of which encoder/decoder is
3893 written in CCL programs. The default value is nil, i.e., no
3894 coding system is assigned.
3895
3896 o coding-category-binary
3897
3898 The category for a coding system not categorized in any of the
3899 above. Assigned the coding-system (Lisp symbol)
3900 `no-conversion' by default.
3901
3902 Each of them is a Lisp symbol and the value is an actual
3903 `coding-system' (this is also a Lisp symbol) assigned by a user.
3904 What Emacs does actually is to detect a category of coding system.
3905 Then, it uses a `coding-system' assigned to it. If Emacs can't
3906 decide a single possible category, it selects a category of the
3907 highest priority. Priorities of categories are also specified by a
3908 user in a Lisp variable `coding-category-list'.
3909
3910 */
3911
3912 static
3913 int ascii_skip_code[256];
3914
3915 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3916 If it detects possible coding systems, return an integer in which
3917 appropriate flag bits are set. Flag bits are defined by macros
3918 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3919 it should point the table `coding_priorities'. In that case, only
3920 the flag bit for a coding system of the highest priority is set in
3921 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3922 range 0x80..0x9F are in multibyte form.
3923
3924 How many ASCII characters are at the head is returned as *SKIP. */
3925
3926 static int
3927 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3928 unsigned char *source;
3929 int src_bytes, *priorities, *skip;
3930 int multibytep;
3931 {
3932 register unsigned char c;
3933 unsigned char *src = source, *src_end = source + src_bytes;
3934 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3935 int i;
3936
3937 /* At first, skip all ASCII characters and control characters except
3938 for three ISO2022 specific control characters. */
3939 ascii_skip_code[ISO_CODE_SO] = 0;
3940 ascii_skip_code[ISO_CODE_SI] = 0;
3941 ascii_skip_code[ISO_CODE_ESC] = 0;
3942
3943 label_loop_detect_coding:
3944 while (src < src_end && ascii_skip_code[*src]) src++;
3945 *skip = src - source;
3946
3947 if (src >= src_end)
3948 /* We found nothing other than ASCII. There's nothing to do. */
3949 return 0;
3950
3951 c = *src;
3952 /* The text seems to be encoded in some multilingual coding system.
3953 Now, try to find in which coding system the text is encoded. */
3954 if (c < 0x80)
3955 {
3956 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3957 /* C is an ISO2022 specific control code of C0. */
3958 mask = detect_coding_iso2022 (src, src_end, multibytep);
3959 if (mask == 0)
3960 {
3961 /* No valid ISO2022 code follows C. Try again. */
3962 src++;
3963 if (c == ISO_CODE_ESC)
3964 ascii_skip_code[ISO_CODE_ESC] = 1;
3965 else
3966 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3967 goto label_loop_detect_coding;
3968 }
3969 if (priorities)
3970 {
3971 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3972 {
3973 if (mask & priorities[i])
3974 return priorities[i];
3975 }
3976 return CODING_CATEGORY_MASK_RAW_TEXT;
3977 }
3978 }
3979 else
3980 {
3981 int try;
3982
3983 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3984 c = src[1] - 0x20;
3985
3986 if (c < 0xA0)
3987 {
3988 /* C is the first byte of SJIS character code,
3989 or a leading-code of Emacs' internal format (emacs-mule),
3990 or the first byte of UTF-16. */
3991 try = (CODING_CATEGORY_MASK_SJIS
3992 | CODING_CATEGORY_MASK_EMACS_MULE
3993 | CODING_CATEGORY_MASK_UTF_16_BE
3994 | CODING_CATEGORY_MASK_UTF_16_LE);
3995
3996 /* Or, if C is a special latin extra code,
3997 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3998 or is an ISO2022 control-sequence-introducer (CSI),
3999 we should also consider the possibility of ISO2022 codings. */
4000 if ((VECTORP (Vlatin_extra_code_table)
4001 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4002 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4003 || (c == ISO_CODE_CSI
4004 && (src < src_end
4005 && (*src == ']'
4006 || ((*src == '0' || *src == '1' || *src == '2')
4007 && src + 1 < src_end
4008 && src[1] == ']')))))
4009 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4010 | CODING_CATEGORY_MASK_ISO_8BIT);
4011 }
4012 else
4013 /* C is a character of ISO2022 in graphic plane right,
4014 or a SJIS's 1-byte character code (i.e. JISX0201),
4015 or the first byte of BIG5's 2-byte code,
4016 or the first byte of UTF-8/16. */
4017 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4018 | CODING_CATEGORY_MASK_ISO_8BIT
4019 | CODING_CATEGORY_MASK_SJIS
4020 | CODING_CATEGORY_MASK_BIG5
4021 | CODING_CATEGORY_MASK_UTF_8
4022 | CODING_CATEGORY_MASK_UTF_16_BE
4023 | CODING_CATEGORY_MASK_UTF_16_LE);
4024
4025 /* Or, we may have to consider the possibility of CCL. */
4026 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4027 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4028 ->spec.ccl.valid_codes)[c])
4029 try |= CODING_CATEGORY_MASK_CCL;
4030
4031 mask = 0;
4032 utf16_examined_p = iso2022_examined_p = 0;
4033 if (priorities)
4034 {
4035 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4036 {
4037 if (!iso2022_examined_p
4038 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4039 {
4040 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4041 iso2022_examined_p = 1;
4042 }
4043 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4044 mask |= detect_coding_sjis (src, src_end, multibytep);
4045 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4046 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4047 else if (!utf16_examined_p
4048 && (priorities[i] & try &
4049 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4050 {
4051 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4052 utf16_examined_p = 1;
4053 }
4054 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4055 mask |= detect_coding_big5 (src, src_end, multibytep);
4056 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4057 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4058 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4059 mask |= detect_coding_ccl (src, src_end, multibytep);
4060 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4061 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4062 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4063 mask |= CODING_CATEGORY_MASK_BINARY;
4064 if (mask & priorities[i])
4065 return priorities[i];
4066 }
4067 return CODING_CATEGORY_MASK_RAW_TEXT;
4068 }
4069 if (try & CODING_CATEGORY_MASK_ISO)
4070 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4071 if (try & CODING_CATEGORY_MASK_SJIS)
4072 mask |= detect_coding_sjis (src, src_end, multibytep);
4073 if (try & CODING_CATEGORY_MASK_BIG5)
4074 mask |= detect_coding_big5 (src, src_end, multibytep);
4075 if (try & CODING_CATEGORY_MASK_UTF_8)
4076 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4077 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4078 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4079 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4080 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4081 if (try & CODING_CATEGORY_MASK_CCL)
4082 mask |= detect_coding_ccl (src, src_end, multibytep);
4083 }
4084 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4085 }
4086
4087 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4088 The information of the detected coding system is set in CODING. */
4089
4090 void
4091 detect_coding (coding, src, src_bytes)
4092 struct coding_system *coding;
4093 unsigned char *src;
4094 int src_bytes;
4095 {
4096 unsigned int idx;
4097 int skip, mask;
4098 Lisp_Object val;
4099
4100 val = Vcoding_category_list;
4101 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4102 coding->src_multibyte);
4103 coding->heading_ascii = skip;
4104
4105 if (!mask) return;
4106
4107 /* We found a single coding system of the highest priority in MASK. */
4108 idx = 0;
4109 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4110 if (! mask)
4111 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4112
4113 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4114
4115 if (coding->eol_type != CODING_EOL_UNDECIDED)
4116 {
4117 Lisp_Object tmp;
4118
4119 tmp = Fget (val, Qeol_type);
4120 if (VECTORP (tmp))
4121 val = XVECTOR (tmp)->contents[coding->eol_type];
4122 }
4123
4124 /* Setup this new coding system while preserving some slots. */
4125 {
4126 int src_multibyte = coding->src_multibyte;
4127 int dst_multibyte = coding->dst_multibyte;
4128
4129 setup_coding_system (val, coding);
4130 coding->src_multibyte = src_multibyte;
4131 coding->dst_multibyte = dst_multibyte;
4132 coding->heading_ascii = skip;
4133 }
4134 }
4135
4136 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4137 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4138 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4139
4140 How many non-eol characters are at the head is returned as *SKIP. */
4141
4142 #define MAX_EOL_CHECK_COUNT 3
4143
4144 static int
4145 detect_eol_type (source, src_bytes, skip)
4146 unsigned char *source;
4147 int src_bytes, *skip;
4148 {
4149 unsigned char *src = source, *src_end = src + src_bytes;
4150 unsigned char c;
4151 int total = 0; /* How many end-of-lines are found so far. */
4152 int eol_type = CODING_EOL_UNDECIDED;
4153 int this_eol_type;
4154
4155 *skip = 0;
4156
4157 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4158 {
4159 c = *src++;
4160 if (c == '\n' || c == '\r')
4161 {
4162 if (*skip == 0)
4163 *skip = src - 1 - source;
4164 total++;
4165 if (c == '\n')
4166 this_eol_type = CODING_EOL_LF;
4167 else if (src >= src_end || *src != '\n')
4168 this_eol_type = CODING_EOL_CR;
4169 else
4170 this_eol_type = CODING_EOL_CRLF, src++;
4171
4172 if (eol_type == CODING_EOL_UNDECIDED)
4173 /* This is the first end-of-line. */
4174 eol_type = this_eol_type;
4175 else if (eol_type != this_eol_type)
4176 {
4177 /* The found type is different from what found before. */
4178 eol_type = CODING_EOL_INCONSISTENT;
4179 break;
4180 }
4181 }
4182 }
4183
4184 if (*skip == 0)
4185 *skip = src_end - source;
4186 return eol_type;
4187 }
4188
4189 /* Like detect_eol_type, but detect EOL type in 2-octet
4190 big-endian/little-endian format for coding systems utf-16-be and
4191 utf-16-le. */
4192
4193 static int
4194 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4195 unsigned char *source;
4196 int src_bytes, *skip, big_endian_p;
4197 {
4198 unsigned char *src = source, *src_end = src + src_bytes;
4199 unsigned int c1, c2;
4200 int total = 0; /* How many end-of-lines are found so far. */
4201 int eol_type = CODING_EOL_UNDECIDED;
4202 int this_eol_type;
4203 int msb, lsb;
4204
4205 if (big_endian_p)
4206 msb = 0, lsb = 1;
4207 else
4208 msb = 1, lsb = 0;
4209
4210 *skip = 0;
4211
4212 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4213 {
4214 c1 = (src[msb] << 8) | (src[lsb]);
4215 src += 2;
4216
4217 if (c1 == '\n' || c1 == '\r')
4218 {
4219 if (*skip == 0)
4220 *skip = src - 2 - source;
4221 total++;
4222 if (c1 == '\n')
4223 {
4224 this_eol_type = CODING_EOL_LF;
4225 }
4226 else
4227 {
4228 if ((src + 1) >= src_end)
4229 {
4230 this_eol_type = CODING_EOL_CR;
4231 }
4232 else
4233 {
4234 c2 = (src[msb] << 8) | (src[lsb]);
4235 if (c2 == '\n')
4236 this_eol_type = CODING_EOL_CRLF, src += 2;
4237 else
4238 this_eol_type = CODING_EOL_CR;
4239 }
4240 }
4241
4242 if (eol_type == CODING_EOL_UNDECIDED)
4243 /* This is the first end-of-line. */
4244 eol_type = this_eol_type;
4245 else if (eol_type != this_eol_type)
4246 {
4247 /* The found type is different from what found before. */
4248 eol_type = CODING_EOL_INCONSISTENT;
4249 break;
4250 }
4251 }
4252 }
4253
4254 if (*skip == 0)
4255 *skip = src_end - source;
4256 return eol_type;
4257 }
4258
4259 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4260 is encoded. If it detects an appropriate format of end-of-line, it
4261 sets the information in *CODING. */
4262
4263 void
4264 detect_eol (coding, src, src_bytes)
4265 struct coding_system *coding;
4266 unsigned char *src;
4267 int src_bytes;
4268 {
4269 Lisp_Object val;
4270 int skip;
4271 int eol_type;
4272
4273 switch (coding->category_idx)
4274 {
4275 case CODING_CATEGORY_IDX_UTF_16_BE:
4276 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4277 break;
4278 case CODING_CATEGORY_IDX_UTF_16_LE:
4279 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4280 break;
4281 default:
4282 eol_type = detect_eol_type (src, src_bytes, &skip);
4283 break;
4284 }
4285
4286 if (coding->heading_ascii > skip)
4287 coding->heading_ascii = skip;
4288 else
4289 skip = coding->heading_ascii;
4290
4291 if (eol_type == CODING_EOL_UNDECIDED)
4292 return;
4293 if (eol_type == CODING_EOL_INCONSISTENT)
4294 {
4295 #if 0
4296 /* This code is suppressed until we find a better way to
4297 distinguish raw text file and binary file. */
4298
4299 /* If we have already detected that the coding is raw-text, the
4300 coding should actually be no-conversion. */
4301 if (coding->type == coding_type_raw_text)
4302 {
4303 setup_coding_system (Qno_conversion, coding);
4304 return;
4305 }
4306 /* Else, let's decode only text code anyway. */
4307 #endif /* 0 */
4308 eol_type = CODING_EOL_LF;
4309 }
4310
4311 val = Fget (coding->symbol, Qeol_type);
4312 if (VECTORP (val) && XVECTOR (val)->size == 3)
4313 {
4314 int src_multibyte = coding->src_multibyte;
4315 int dst_multibyte = coding->dst_multibyte;
4316
4317 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4318 coding->src_multibyte = src_multibyte;
4319 coding->dst_multibyte = dst_multibyte;
4320 coding->heading_ascii = skip;
4321 }
4322 }
4323
4324 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4325
4326 #define DECODING_BUFFER_MAG(coding) \
4327 (coding->type == coding_type_iso2022 \
4328 ? 3 \
4329 : (coding->type == coding_type_ccl \
4330 ? coding->spec.ccl.decoder.buf_magnification \
4331 : 2))
4332
4333 /* Return maximum size (bytes) of a buffer enough for decoding
4334 SRC_BYTES of text encoded in CODING. */
4335
4336 int
4337 decoding_buffer_size (coding, src_bytes)
4338 struct coding_system *coding;
4339 int src_bytes;
4340 {
4341 return (src_bytes * DECODING_BUFFER_MAG (coding)
4342 + CONVERSION_BUFFER_EXTRA_ROOM);
4343 }
4344
4345 /* Return maximum size (bytes) of a buffer enough for encoding
4346 SRC_BYTES of text to CODING. */
4347
4348 int
4349 encoding_buffer_size (coding, src_bytes)
4350 struct coding_system *coding;
4351 int src_bytes;
4352 {
4353 int magnification;
4354
4355 if (coding->type == coding_type_ccl)
4356 magnification = coding->spec.ccl.encoder.buf_magnification;
4357 else if (CODING_REQUIRE_ENCODING (coding))
4358 magnification = 3;
4359 else
4360 magnification = 1;
4361
4362 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4363 }
4364
4365 /* Working buffer for code conversion. */
4366 struct conversion_buffer
4367 {
4368 int size; /* size of data. */
4369 int on_stack; /* 1 if allocated by alloca. */
4370 unsigned char *data;
4371 };
4372
4373 /* Don't use alloca for allocating memory space larger than this, lest
4374 we overflow their stack. */
4375 #define MAX_ALLOCA 16*1024
4376
4377 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4378 #define allocate_conversion_buffer(buf, len) \
4379 do { \
4380 if (len < MAX_ALLOCA) \
4381 { \
4382 buf.data = (unsigned char *) alloca (len); \
4383 buf.on_stack = 1; \
4384 } \
4385 else \
4386 { \
4387 buf.data = (unsigned char *) xmalloc (len); \
4388 buf.on_stack = 0; \
4389 } \
4390 buf.size = len; \
4391 } while (0)
4392
4393 /* Double the allocated memory for *BUF. */
4394 static void
4395 extend_conversion_buffer (buf)
4396 struct conversion_buffer *buf;
4397 {
4398 if (buf->on_stack)
4399 {
4400 unsigned char *save = buf->data;
4401 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4402 bcopy (save, buf->data, buf->size);
4403 buf->on_stack = 0;
4404 }
4405 else
4406 {
4407 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4408 }
4409 buf->size *= 2;
4410 }
4411
4412 /* Free the allocated memory for BUF if it is not on stack. */
4413 static void
4414 free_conversion_buffer (buf)
4415 struct conversion_buffer *buf;
4416 {
4417 if (!buf->on_stack)
4418 xfree (buf->data);
4419 }
4420
4421 int
4422 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4423 struct coding_system *coding;
4424 unsigned char *source, *destination;
4425 int src_bytes, dst_bytes, encodep;
4426 {
4427 struct ccl_program *ccl
4428 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4429 unsigned char *dst = destination;
4430
4431 ccl->suppress_error = coding->suppress_error;
4432 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4433 if (encodep)
4434 {
4435 /* On encoding, EOL format is converted within ccl_driver. For
4436 that, setup proper information in the structure CCL. */
4437 ccl->eol_type = coding->eol_type;
4438 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4439 ccl->eol_type = CODING_EOL_LF;
4440 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4441 }
4442 ccl->multibyte = coding->src_multibyte;
4443 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4444 {
4445 /* Move carryover bytes to DESTINATION. */
4446 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4447 while (*p)
4448 *dst++ = *p++;
4449 coding->spec.ccl.eight_bit_carryover[0] = 0;
4450 if (dst_bytes)
4451 dst_bytes -= dst - destination;
4452 }
4453
4454 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4455 &(coding->consumed))
4456 + dst - destination);
4457
4458 if (encodep)
4459 {
4460 coding->produced_char = coding->produced;
4461 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4462 }
4463 else if (!ccl->eight_bit_control)
4464 {
4465 /* The produced bytes forms a valid multibyte sequence. */
4466 coding->produced_char
4467 = multibyte_chars_in_text (destination, coding->produced);
4468 coding->spec.ccl.eight_bit_carryover[0] = 0;
4469 }
4470 else
4471 {
4472 /* On decoding, the destination should always multibyte. But,
4473 CCL program might have been generated an invalid multibyte
4474 sequence. Here we make such a sequence valid as
4475 multibyte. */
4476 int bytes
4477 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4478
4479 if ((coding->consumed < src_bytes
4480 || !ccl->last_block)
4481 && coding->produced >= 1
4482 && destination[coding->produced - 1] >= 0x80)
4483 {
4484 /* We should not convert the tailing 8-bit codes to
4485 multibyte form even if they doesn't form a valid
4486 multibyte sequence. They may form a valid sequence in
4487 the next call. */
4488 int carryover = 0;
4489
4490 if (destination[coding->produced - 1] < 0xA0)
4491 carryover = 1;
4492 else if (coding->produced >= 2)
4493 {
4494 if (destination[coding->produced - 2] >= 0x80)
4495 {
4496 if (destination[coding->produced - 2] < 0xA0)
4497 carryover = 2;
4498 else if (coding->produced >= 3
4499 && destination[coding->produced - 3] >= 0x80
4500 && destination[coding->produced - 3] < 0xA0)
4501 carryover = 3;
4502 }
4503 }
4504 if (carryover > 0)
4505 {
4506 BCOPY_SHORT (destination + coding->produced - carryover,
4507 coding->spec.ccl.eight_bit_carryover,
4508 carryover);
4509 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4510 coding->produced -= carryover;
4511 }
4512 }
4513 coding->produced = str_as_multibyte (destination, bytes,
4514 coding->produced,
4515 &(coding->produced_char));
4516 }
4517
4518 switch (ccl->status)
4519 {
4520 case CCL_STAT_SUSPEND_BY_SRC:
4521 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4522 break;
4523 case CCL_STAT_SUSPEND_BY_DST:
4524 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4525 break;
4526 case CCL_STAT_QUIT:
4527 case CCL_STAT_INVALID_CMD:
4528 coding->result = CODING_FINISH_INTERRUPT;
4529 break;
4530 default:
4531 coding->result = CODING_FINISH_NORMAL;
4532 break;
4533 }
4534 return coding->result;
4535 }
4536
4537 /* Decode EOL format of the text at PTR of BYTES length destructively
4538 according to CODING->eol_type. This is called after the CCL
4539 program produced a decoded text at PTR. If we do CRLF->LF
4540 conversion, update CODING->produced and CODING->produced_char. */
4541
4542 static void
4543 decode_eol_post_ccl (coding, ptr, bytes)
4544 struct coding_system *coding;
4545 unsigned char *ptr;
4546 int bytes;
4547 {
4548 Lisp_Object val, saved_coding_symbol;
4549 unsigned char *pend = ptr + bytes;
4550 int dummy;
4551
4552 /* Remember the current coding system symbol. We set it back when
4553 an inconsistent EOL is found so that `last-coding-system-used' is
4554 set to the coding system that doesn't specify EOL conversion. */
4555 saved_coding_symbol = coding->symbol;
4556
4557 coding->spec.ccl.cr_carryover = 0;
4558 if (coding->eol_type == CODING_EOL_UNDECIDED)
4559 {
4560 /* Here, to avoid the call of setup_coding_system, we directly
4561 call detect_eol_type. */
4562 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4563 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4564 coding->eol_type = CODING_EOL_LF;
4565 if (coding->eol_type != CODING_EOL_UNDECIDED)
4566 {
4567 val = Fget (coding->symbol, Qeol_type);
4568 if (VECTORP (val) && XVECTOR (val)->size == 3)
4569 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4570 }
4571 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4572 }
4573
4574 if (coding->eol_type == CODING_EOL_LF
4575 || coding->eol_type == CODING_EOL_UNDECIDED)
4576 {
4577 /* We have nothing to do. */
4578 ptr = pend;
4579 }
4580 else if (coding->eol_type == CODING_EOL_CRLF)
4581 {
4582 unsigned char *pstart = ptr, *p = ptr;
4583
4584 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4585 && *(pend - 1) == '\r')
4586 {
4587 /* If the last character is CR, we can't handle it here
4588 because LF will be in the not-yet-decoded source text.
4589 Recorded that the CR is not yet processed. */
4590 coding->spec.ccl.cr_carryover = 1;
4591 coding->produced--;
4592 coding->produced_char--;
4593 pend--;
4594 }
4595 while (ptr < pend)
4596 {
4597 if (*ptr == '\r')
4598 {
4599 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4600 {
4601 *p++ = '\n';
4602 ptr += 2;
4603 }
4604 else
4605 {
4606 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4607 goto undo_eol_conversion;
4608 *p++ = *ptr++;
4609 }
4610 }
4611 else if (*ptr == '\n'
4612 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4613 goto undo_eol_conversion;
4614 else
4615 *p++ = *ptr++;
4616 continue;
4617
4618 undo_eol_conversion:
4619 /* We have faced with inconsistent EOL format at PTR.
4620 Convert all LFs before PTR back to CRLFs. */
4621 for (p--, ptr--; p >= pstart; p--)
4622 {
4623 if (*p == '\n')
4624 *ptr-- = '\n', *ptr-- = '\r';
4625 else
4626 *ptr-- = *p;
4627 }
4628 /* If carryover is recorded, cancel it because we don't
4629 convert CRLF anymore. */
4630 if (coding->spec.ccl.cr_carryover)
4631 {
4632 coding->spec.ccl.cr_carryover = 0;
4633 coding->produced++;
4634 coding->produced_char++;
4635 pend++;
4636 }
4637 p = ptr = pend;
4638 coding->eol_type = CODING_EOL_LF;
4639 coding->symbol = saved_coding_symbol;
4640 }
4641 if (p < pend)
4642 {
4643 /* As each two-byte sequence CRLF was converted to LF, (PEND
4644 - P) is the number of deleted characters. */
4645 coding->produced -= pend - p;
4646 coding->produced_char -= pend - p;
4647 }
4648 }
4649 else /* i.e. coding->eol_type == CODING_EOL_CR */
4650 {
4651 unsigned char *p = ptr;
4652
4653 for (; ptr < pend; ptr++)
4654 {
4655 if (*ptr == '\r')
4656 *ptr = '\n';
4657 else if (*ptr == '\n'
4658 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4659 {
4660 for (; p < ptr; p++)
4661 {
4662 if (*p == '\n')
4663 *p = '\r';
4664 }
4665 ptr = pend;
4666 coding->eol_type = CODING_EOL_LF;
4667 coding->symbol = saved_coding_symbol;
4668 }
4669 }
4670 }
4671 }
4672
4673 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4674 decoding, it may detect coding system and format of end-of-line if
4675 those are not yet decided. The source should be unibyte, the
4676 result is multibyte if CODING->dst_multibyte is nonzero, else
4677 unibyte. */
4678
4679 int
4680 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4681 struct coding_system *coding;
4682 unsigned char *source, *destination;
4683 int src_bytes, dst_bytes;
4684 {
4685 if (coding->type == coding_type_undecided)
4686 detect_coding (coding, source, src_bytes);
4687
4688 if (coding->eol_type == CODING_EOL_UNDECIDED
4689 && coding->type != coding_type_ccl)
4690 {
4691 detect_eol (coding, source, src_bytes);
4692 /* We had better recover the original eol format if we
4693 encounter an inconsistent eol format while decoding. */
4694 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4695 }
4696
4697 coding->produced = coding->produced_char = 0;
4698 coding->consumed = coding->consumed_char = 0;
4699 coding->errors = 0;
4700 coding->result = CODING_FINISH_NORMAL;
4701
4702 switch (coding->type)
4703 {
4704 case coding_type_sjis:
4705 decode_coding_sjis_big5 (coding, source, destination,
4706 src_bytes, dst_bytes, 1);
4707 break;
4708
4709 case coding_type_iso2022:
4710 decode_coding_iso2022 (coding, source, destination,
4711 src_bytes, dst_bytes);
4712 break;
4713
4714 case coding_type_big5:
4715 decode_coding_sjis_big5 (coding, source, destination,
4716 src_bytes, dst_bytes, 0);
4717 break;
4718
4719 case coding_type_emacs_mule:
4720 decode_coding_emacs_mule (coding, source, destination,
4721 src_bytes, dst_bytes);
4722 break;
4723
4724 case coding_type_ccl:
4725 if (coding->spec.ccl.cr_carryover)
4726 {
4727 /* Set the CR which is not processed by the previous call of
4728 decode_eol_post_ccl in DESTINATION. */
4729 *destination = '\r';
4730 coding->produced++;
4731 coding->produced_char++;
4732 dst_bytes--;
4733 }
4734 ccl_coding_driver (coding, source,
4735 destination + coding->spec.ccl.cr_carryover,
4736 src_bytes, dst_bytes, 0);
4737 if (coding->eol_type != CODING_EOL_LF)
4738 decode_eol_post_ccl (coding, destination, coding->produced);
4739 break;
4740
4741 default:
4742 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4743 }
4744
4745 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4746 && coding->mode & CODING_MODE_LAST_BLOCK
4747 && coding->consumed == src_bytes)
4748 coding->result = CODING_FINISH_NORMAL;
4749
4750 if (coding->mode & CODING_MODE_LAST_BLOCK
4751 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4752 {
4753 unsigned char *src = source + coding->consumed;
4754 unsigned char *dst = destination + coding->produced;
4755
4756 src_bytes -= coding->consumed;
4757 coding->errors++;
4758 if (COMPOSING_P (coding))
4759 DECODE_COMPOSITION_END ('1');
4760 while (src_bytes--)
4761 {
4762 int c = *src++;
4763 dst += CHAR_STRING (c, dst);
4764 coding->produced_char++;
4765 }
4766 coding->consumed = coding->consumed_char = src - source;
4767 coding->produced = dst - destination;
4768 coding->result = CODING_FINISH_NORMAL;
4769 }
4770
4771 if (!coding->dst_multibyte)
4772 {
4773 coding->produced = str_as_unibyte (destination, coding->produced);
4774 coding->produced_char = coding->produced;
4775 }
4776
4777 return coding->result;
4778 }
4779
4780 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4781 multibyteness of the source is CODING->src_multibyte, the
4782 multibyteness of the result is always unibyte. */
4783
4784 int
4785 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4786 struct coding_system *coding;
4787 unsigned char *source, *destination;
4788 int src_bytes, dst_bytes;
4789 {
4790 coding->produced = coding->produced_char = 0;
4791 coding->consumed = coding->consumed_char = 0;
4792 coding->errors = 0;
4793 coding->result = CODING_FINISH_NORMAL;
4794
4795 switch (coding->type)
4796 {
4797 case coding_type_sjis:
4798 encode_coding_sjis_big5 (coding, source, destination,
4799 src_bytes, dst_bytes, 1);
4800 break;
4801
4802 case coding_type_iso2022:
4803 encode_coding_iso2022 (coding, source, destination,
4804 src_bytes, dst_bytes);
4805 break;
4806
4807 case coding_type_big5:
4808 encode_coding_sjis_big5 (coding, source, destination,
4809 src_bytes, dst_bytes, 0);
4810 break;
4811
4812 case coding_type_emacs_mule:
4813 encode_coding_emacs_mule (coding, source, destination,
4814 src_bytes, dst_bytes);
4815 break;
4816
4817 case coding_type_ccl:
4818 ccl_coding_driver (coding, source, destination,
4819 src_bytes, dst_bytes, 1);
4820 break;
4821
4822 default:
4823 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4824 }
4825
4826 if (coding->mode & CODING_MODE_LAST_BLOCK
4827 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4828 {
4829 unsigned char *src = source + coding->consumed;
4830 unsigned char *dst = destination + coding->produced;
4831
4832 if (coding->type == coding_type_iso2022)
4833 ENCODE_RESET_PLANE_AND_REGISTER;
4834 if (COMPOSING_P (coding))
4835 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4836 if (coding->consumed < src_bytes)
4837 {
4838 int len = src_bytes - coding->consumed;
4839
4840 BCOPY_SHORT (src, dst, len);
4841 if (coding->src_multibyte)
4842 len = str_as_unibyte (dst, len);
4843 dst += len;
4844 coding->consumed = src_bytes;
4845 }
4846 coding->produced = coding->produced_char = dst - destination;
4847 coding->result = CODING_FINISH_NORMAL;
4848 }
4849
4850 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4851 && coding->consumed == src_bytes)
4852 coding->result = CODING_FINISH_NORMAL;
4853
4854 return coding->result;
4855 }
4856
4857 /* Scan text in the region between *BEG and *END (byte positions),
4858 skip characters which we don't have to decode by coding system
4859 CODING at the head and tail, then set *BEG and *END to the region
4860 of the text we actually have to convert. The caller should move
4861 the gap out of the region in advance if the region is from a
4862 buffer.
4863
4864 If STR is not NULL, *BEG and *END are indices into STR. */
4865
4866 static void
4867 shrink_decoding_region (beg, end, coding, str)
4868 int *beg, *end;
4869 struct coding_system *coding;
4870 unsigned char *str;
4871 {
4872 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4873 int eol_conversion;
4874 Lisp_Object translation_table;
4875
4876 if (coding->type == coding_type_ccl
4877 || coding->type == coding_type_undecided
4878 || coding->eol_type != CODING_EOL_LF
4879 || !NILP (coding->post_read_conversion)
4880 || coding->composing != COMPOSITION_DISABLED)
4881 {
4882 /* We can't skip any data. */
4883 return;
4884 }
4885 if (coding->type == coding_type_no_conversion
4886 || coding->type == coding_type_raw_text
4887 || coding->type == coding_type_emacs_mule)
4888 {
4889 /* We need no conversion, but don't have to skip any data here.
4890 Decoding routine handles them effectively anyway. */
4891 return;
4892 }
4893
4894 translation_table = coding->translation_table_for_decode;
4895 if (NILP (translation_table) && !NILP (Venable_character_translation))
4896 translation_table = Vstandard_translation_table_for_decode;
4897 if (CHAR_TABLE_P (translation_table))
4898 {
4899 int i;
4900 for (i = 0; i < 128; i++)
4901 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4902 break;
4903 if (i < 128)
4904 /* Some ASCII character should be translated. We give up
4905 shrinking. */
4906 return;
4907 }
4908
4909 if (coding->heading_ascii >= 0)
4910 /* Detection routine has already found how much we can skip at the
4911 head. */
4912 *beg += coding->heading_ascii;
4913
4914 if (str)
4915 {
4916 begp_orig = begp = str + *beg;
4917 endp_orig = endp = str + *end;
4918 }
4919 else
4920 {
4921 begp_orig = begp = BYTE_POS_ADDR (*beg);
4922 endp_orig = endp = begp + *end - *beg;
4923 }
4924
4925 eol_conversion = (coding->eol_type == CODING_EOL_CR
4926 || coding->eol_type == CODING_EOL_CRLF);
4927
4928 switch (coding->type)
4929 {
4930 case coding_type_sjis:
4931 case coding_type_big5:
4932 /* We can skip all ASCII characters at the head. */
4933 if (coding->heading_ascii < 0)
4934 {
4935 if (eol_conversion)
4936 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4937 else
4938 while (begp < endp && *begp < 0x80) begp++;
4939 }
4940 /* We can skip all ASCII characters at the tail except for the
4941 second byte of SJIS or BIG5 code. */
4942 if (eol_conversion)
4943 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4944 else
4945 while (begp < endp && endp[-1] < 0x80) endp--;
4946 /* Do not consider LF as ascii if preceded by CR, since that
4947 confuses eol decoding. */
4948 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4949 endp++;
4950 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4951 endp++;
4952 break;
4953
4954 case coding_type_iso2022:
4955 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4956 /* We can't skip any data. */
4957 break;
4958 if (coding->heading_ascii < 0)
4959 {
4960 /* We can skip all ASCII characters at the head except for a
4961 few control codes. */
4962 while (begp < endp && (c = *begp) < 0x80
4963 && c != ISO_CODE_CR && c != ISO_CODE_SO
4964 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4965 && (!eol_conversion || c != ISO_CODE_LF))
4966 begp++;
4967 }
4968 switch (coding->category_idx)
4969 {
4970 case CODING_CATEGORY_IDX_ISO_8_1:
4971 case CODING_CATEGORY_IDX_ISO_8_2:
4972 /* We can skip all ASCII characters at the tail. */
4973 if (eol_conversion)
4974 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4975 else
4976 while (begp < endp && endp[-1] < 0x80) endp--;
4977 /* Do not consider LF as ascii if preceded by CR, since that
4978 confuses eol decoding. */
4979 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4980 endp++;
4981 break;
4982
4983 case CODING_CATEGORY_IDX_ISO_7:
4984 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4985 {
4986 /* We can skip all characters at the tail except for 8-bit
4987 codes and ESC and the following 2-byte at the tail. */
4988 unsigned char *eight_bit = NULL;
4989
4990 if (eol_conversion)
4991 while (begp < endp
4992 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4993 {
4994 if (!eight_bit && c & 0x80) eight_bit = endp;
4995 endp--;
4996 }
4997 else
4998 while (begp < endp
4999 && (c = endp[-1]) != ISO_CODE_ESC)
5000 {
5001 if (!eight_bit && c & 0x80) eight_bit = endp;
5002 endp--;
5003 }
5004 /* Do not consider LF as ascii if preceded by CR, since that
5005 confuses eol decoding. */
5006 if (begp < endp && endp < endp_orig
5007 && endp[-1] == '\r' && endp[0] == '\n')
5008 endp++;
5009 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5010 {
5011 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5012 /* This is an ASCII designation sequence. We can
5013 surely skip the tail. But, if we have
5014 encountered an 8-bit code, skip only the codes
5015 after that. */
5016 endp = eight_bit ? eight_bit : endp + 2;
5017 else
5018 /* Hmmm, we can't skip the tail. */
5019 endp = endp_orig;
5020 }
5021 else if (eight_bit)
5022 endp = eight_bit;
5023 }
5024 }
5025 break;
5026
5027 default:
5028 abort ();
5029 }
5030 *beg += begp - begp_orig;
5031 *end += endp - endp_orig;
5032 return;
5033 }
5034
5035 /* Like shrink_decoding_region but for encoding. */
5036
5037 static void
5038 shrink_encoding_region (beg, end, coding, str)
5039 int *beg, *end;
5040 struct coding_system *coding;
5041 unsigned char *str;
5042 {
5043 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5044 int eol_conversion;
5045 Lisp_Object translation_table;
5046
5047 if (coding->type == coding_type_ccl
5048 || coding->eol_type == CODING_EOL_CRLF
5049 || coding->eol_type == CODING_EOL_CR
5050 || (coding->cmp_data && coding->cmp_data->used > 0))
5051 {
5052 /* We can't skip any data. */
5053 return;
5054 }
5055 if (coding->type == coding_type_no_conversion
5056 || coding->type == coding_type_raw_text
5057 || coding->type == coding_type_emacs_mule
5058 || coding->type == coding_type_undecided)
5059 {
5060 /* We need no conversion, but don't have to skip any data here.
5061 Encoding routine handles them effectively anyway. */
5062 return;
5063 }
5064
5065 translation_table = coding->translation_table_for_encode;
5066 if (NILP (translation_table) && !NILP (Venable_character_translation))
5067 translation_table = Vstandard_translation_table_for_encode;
5068 if (CHAR_TABLE_P (translation_table))
5069 {
5070 int i;
5071 for (i = 0; i < 128; i++)
5072 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5073 break;
5074 if (i < 128)
5075 /* Some ASCII character should be translated. We give up
5076 shrinking. */
5077 return;
5078 }
5079
5080 if (str)
5081 {
5082 begp_orig = begp = str + *beg;
5083 endp_orig = endp = str + *end;
5084 }
5085 else
5086 {
5087 begp_orig = begp = BYTE_POS_ADDR (*beg);
5088 endp_orig = endp = begp + *end - *beg;
5089 }
5090
5091 eol_conversion = (coding->eol_type == CODING_EOL_CR
5092 || coding->eol_type == CODING_EOL_CRLF);
5093
5094 /* Here, we don't have to check coding->pre_write_conversion because
5095 the caller is expected to have handled it already. */
5096 switch (coding->type)
5097 {
5098 case coding_type_iso2022:
5099 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5100 /* We can't skip any data. */
5101 break;
5102 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5103 {
5104 unsigned char *bol = begp;
5105 while (begp < endp && *begp < 0x80)
5106 {
5107 begp++;
5108 if (begp[-1] == '\n')
5109 bol = begp;
5110 }
5111 begp = bol;
5112 goto label_skip_tail;
5113 }
5114 /* fall down ... */
5115
5116 case coding_type_sjis:
5117 case coding_type_big5:
5118 /* We can skip all ASCII characters at the head and tail. */
5119 if (eol_conversion)
5120 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5121 else
5122 while (begp < endp && *begp < 0x80) begp++;
5123 label_skip_tail:
5124 if (eol_conversion)
5125 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5126 else
5127 while (begp < endp && *(endp - 1) < 0x80) endp--;
5128 break;
5129
5130 default:
5131 abort ();
5132 }
5133
5134 *beg += begp - begp_orig;
5135 *end += endp - endp_orig;
5136 return;
5137 }
5138
5139 /* As shrinking conversion region requires some overhead, we don't try
5140 shrinking if the length of conversion region is less than this
5141 value. */
5142 static int shrink_conversion_region_threshhold = 1024;
5143
5144 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5145 do { \
5146 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5147 { \
5148 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5149 else shrink_decoding_region (beg, end, coding, str); \
5150 } \
5151 } while (0)
5152
5153 static Lisp_Object
5154 code_convert_region_unwind (dummy)
5155 Lisp_Object dummy;
5156 {
5157 inhibit_pre_post_conversion = 0;
5158 return Qnil;
5159 }
5160
5161 /* Store information about all compositions in the range FROM and TO
5162 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5163 buffer or a string, defaults to the current buffer. */
5164
5165 void
5166 coding_save_composition (coding, from, to, obj)
5167 struct coding_system *coding;
5168 int from, to;
5169 Lisp_Object obj;
5170 {
5171 Lisp_Object prop;
5172 int start, end;
5173
5174 if (coding->composing == COMPOSITION_DISABLED)
5175 return;
5176 if (!coding->cmp_data)
5177 coding_allocate_composition_data (coding, from);
5178 if (!find_composition (from, to, &start, &end, &prop, obj)
5179 || end > to)
5180 return;
5181 if (start < from
5182 && (!find_composition (end, to, &start, &end, &prop, obj)
5183 || end > to))
5184 return;
5185 coding->composing = COMPOSITION_NO;
5186 do
5187 {
5188 if (COMPOSITION_VALID_P (start, end, prop))
5189 {
5190 enum composition_method method = COMPOSITION_METHOD (prop);
5191 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5192 >= COMPOSITION_DATA_SIZE)
5193 coding_allocate_composition_data (coding, from);
5194 /* For relative composition, we remember start and end
5195 positions, for the other compositions, we also remember
5196 components. */
5197 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5198 if (method != COMPOSITION_RELATIVE)
5199 {
5200 /* We must store a*/
5201 Lisp_Object val, ch;
5202
5203 val = COMPOSITION_COMPONENTS (prop);
5204 if (CONSP (val))
5205 while (CONSP (val))
5206 {
5207 ch = XCAR (val), val = XCDR (val);
5208 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5209 }
5210 else if (VECTORP (val) || STRINGP (val))
5211 {
5212 int len = (VECTORP (val)
5213 ? XVECTOR (val)->size : XSTRING (val)->size);
5214 int i;
5215 for (i = 0; i < len; i++)
5216 {
5217 ch = (STRINGP (val)
5218 ? Faref (val, make_number (i))
5219 : XVECTOR (val)->contents[i]);
5220 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5221 }
5222 }
5223 else /* INTEGERP (val) */
5224 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5225 }
5226 CODING_ADD_COMPOSITION_END (coding, end - from);
5227 }
5228 start = end;
5229 }
5230 while (start < to
5231 && find_composition (start, to, &start, &end, &prop, obj)
5232 && end <= to);
5233
5234 /* Make coding->cmp_data point to the first memory block. */
5235 while (coding->cmp_data->prev)
5236 coding->cmp_data = coding->cmp_data->prev;
5237 coding->cmp_data_start = 0;
5238 }
5239
5240 /* Reflect the saved information about compositions to OBJ.
5241 CODING->cmp_data points to a memory block for the information. OBJ
5242 is a buffer or a string, defaults to the current buffer. */
5243
5244 void
5245 coding_restore_composition (coding, obj)
5246 struct coding_system *coding;
5247 Lisp_Object obj;
5248 {
5249 struct composition_data *cmp_data = coding->cmp_data;
5250
5251 if (!cmp_data)
5252 return;
5253
5254 while (cmp_data->prev)
5255 cmp_data = cmp_data->prev;
5256
5257 while (cmp_data)
5258 {
5259 int i;
5260
5261 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5262 i += cmp_data->data[i])
5263 {
5264 int *data = cmp_data->data + i;
5265 enum composition_method method = (enum composition_method) data[3];
5266 Lisp_Object components;
5267
5268 if (method == COMPOSITION_RELATIVE)
5269 components = Qnil;
5270 else
5271 {
5272 int len = data[0] - 4, j;
5273 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5274
5275 for (j = 0; j < len; j++)
5276 args[j] = make_number (data[4 + j]);
5277 components = (method == COMPOSITION_WITH_ALTCHARS
5278 ? Fstring (len, args) : Fvector (len, args));
5279 }
5280 compose_text (data[1], data[2], components, Qnil, obj);
5281 }
5282 cmp_data = cmp_data->next;
5283 }
5284 }
5285
5286 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5287 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5288 coding system CODING, and return the status code of code conversion
5289 (currently, this value has no meaning).
5290
5291 How many characters (and bytes) are converted to how many
5292 characters (and bytes) are recorded in members of the structure
5293 CODING.
5294
5295 If REPLACE is nonzero, we do various things as if the original text
5296 is deleted and a new text is inserted. See the comments in
5297 replace_range (insdel.c) to know what we are doing.
5298
5299 If REPLACE is zero, it is assumed that the source text is unibyte.
5300 Otherwise, it is assumed that the source text is multibyte. */
5301
5302 int
5303 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5304 int from, from_byte, to, to_byte, encodep, replace;
5305 struct coding_system *coding;
5306 {
5307 int len = to - from, len_byte = to_byte - from_byte;
5308 int nchars_del = 0, nbytes_del = 0;
5309 int require, inserted, inserted_byte;
5310 int head_skip, tail_skip, total_skip = 0;
5311 Lisp_Object saved_coding_symbol;
5312 int first = 1;
5313 unsigned char *src, *dst;
5314 Lisp_Object deletion;
5315 int orig_point = PT, orig_len = len;
5316 int prev_Z;
5317 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5318
5319 deletion = Qnil;
5320 saved_coding_symbol = coding->symbol;
5321
5322 if (from < PT && PT < to)
5323 {
5324 TEMP_SET_PT_BOTH (from, from_byte);
5325 orig_point = from;
5326 }
5327
5328 if (replace)
5329 {
5330 int saved_from = from;
5331 int saved_inhibit_modification_hooks;
5332
5333 prepare_to_modify_buffer (from, to, &from);
5334 if (saved_from != from)
5335 {
5336 to = from + len;
5337 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5338 len_byte = to_byte - from_byte;
5339 }
5340
5341 /* The code conversion routine can not preserve text properties
5342 for now. So, we must remove all text properties in the
5343 region. Here, we must suppress all modification hooks. */
5344 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5345 inhibit_modification_hooks = 1;
5346 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5347 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5348 }
5349
5350 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5351 {
5352 /* We must detect encoding of text and eol format. */
5353
5354 if (from < GPT && to > GPT)
5355 move_gap_both (from, from_byte);
5356 if (coding->type == coding_type_undecided)
5357 {
5358 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5359 if (coding->type == coding_type_undecided)
5360 {
5361 /* It seems that the text contains only ASCII, but we
5362 should not leave it undecided because the deeper
5363 decoding routine (decode_coding) tries to detect the
5364 encodings again in vain. */
5365 coding->type = coding_type_emacs_mule;
5366 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5367 /* As emacs-mule decoder will handle composition, we
5368 need this setting to allocate coding->cmp_data
5369 later. */
5370 coding->composing = COMPOSITION_NO;
5371 }
5372 }
5373 if (coding->eol_type == CODING_EOL_UNDECIDED
5374 && coding->type != coding_type_ccl)
5375 {
5376 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5377 if (coding->eol_type == CODING_EOL_UNDECIDED)
5378 coding->eol_type = CODING_EOL_LF;
5379 /* We had better recover the original eol format if we
5380 encounter an inconsistent eol format while decoding. */
5381 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5382 }
5383 }
5384
5385 /* Now we convert the text. */
5386
5387 /* For encoding, we must process pre-write-conversion in advance. */
5388 if (! inhibit_pre_post_conversion
5389 && encodep
5390 && SYMBOLP (coding->pre_write_conversion)
5391 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5392 {
5393 /* The function in pre-write-conversion may put a new text in a
5394 new buffer. */
5395 struct buffer *prev = current_buffer;
5396 Lisp_Object new;
5397
5398 record_unwind_protect (code_convert_region_unwind, Qnil);
5399 /* We should not call any more pre-write/post-read-conversion
5400 functions while this pre-write-conversion is running. */
5401 inhibit_pre_post_conversion = 1;
5402 call2 (coding->pre_write_conversion,
5403 make_number (from), make_number (to));
5404 inhibit_pre_post_conversion = 0;
5405 /* Discard the unwind protect. */
5406 specpdl_ptr--;
5407
5408 if (current_buffer != prev)
5409 {
5410 len = ZV - BEGV;
5411 new = Fcurrent_buffer ();
5412 set_buffer_internal_1 (prev);
5413 del_range_2 (from, from_byte, to, to_byte, 0);
5414 TEMP_SET_PT_BOTH (from, from_byte);
5415 insert_from_buffer (XBUFFER (new), 1, len, 0);
5416 Fkill_buffer (new);
5417 if (orig_point >= to)
5418 orig_point += len - orig_len;
5419 else if (orig_point > from)
5420 orig_point = from;
5421 orig_len = len;
5422 to = from + len;
5423 from_byte = CHAR_TO_BYTE (from);
5424 to_byte = CHAR_TO_BYTE (to);
5425 len_byte = to_byte - from_byte;
5426 TEMP_SET_PT_BOTH (from, from_byte);
5427 }
5428 }
5429
5430 if (replace)
5431 {
5432 if (! EQ (current_buffer->undo_list, Qt))
5433 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5434 else
5435 {
5436 nchars_del = to - from;
5437 nbytes_del = to_byte - from_byte;
5438 }
5439 }
5440
5441 if (coding->composing != COMPOSITION_DISABLED)
5442 {
5443 if (encodep)
5444 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5445 else
5446 coding_allocate_composition_data (coding, from);
5447 }
5448
5449 /* Try to skip the heading and tailing ASCIIs. */
5450 if (coding->type != coding_type_ccl)
5451 {
5452 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5453
5454 if (from < GPT && GPT < to)
5455 move_gap_both (from, from_byte);
5456 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5457 if (from_byte == to_byte
5458 && (encodep || NILP (coding->post_read_conversion))
5459 && ! CODING_REQUIRE_FLUSHING (coding))
5460 {
5461 coding->produced = len_byte;
5462 coding->produced_char = len;
5463 if (!replace)
5464 /* We must record and adjust for this new text now. */
5465 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5466 return 0;
5467 }
5468
5469 head_skip = from_byte - from_byte_orig;
5470 tail_skip = to_byte_orig - to_byte;
5471 total_skip = head_skip + tail_skip;
5472 from += head_skip;
5473 to -= tail_skip;
5474 len -= total_skip; len_byte -= total_skip;
5475 }
5476
5477 /* For conversion, we must put the gap before the text in addition to
5478 making the gap larger for efficient decoding. The required gap
5479 size starts from 2000 which is the magic number used in make_gap.
5480 But, after one batch of conversion, it will be incremented if we
5481 find that it is not enough . */
5482 require = 2000;
5483
5484 if (GAP_SIZE < require)
5485 make_gap (require - GAP_SIZE);
5486 move_gap_both (from, from_byte);
5487
5488 inserted = inserted_byte = 0;
5489
5490 GAP_SIZE += len_byte;
5491 ZV -= len;
5492 Z -= len;
5493 ZV_BYTE -= len_byte;
5494 Z_BYTE -= len_byte;
5495
5496 if (GPT - BEG < BEG_UNCHANGED)
5497 BEG_UNCHANGED = GPT - BEG;
5498 if (Z - GPT < END_UNCHANGED)
5499 END_UNCHANGED = Z - GPT;
5500
5501 if (!encodep && coding->src_multibyte)
5502 {
5503 /* Decoding routines expects that the source text is unibyte.
5504 We must convert 8-bit characters of multibyte form to
5505 unibyte. */
5506 int len_byte_orig = len_byte;
5507 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5508 if (len_byte < len_byte_orig)
5509 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5510 len_byte);
5511 coding->src_multibyte = 0;
5512 }
5513
5514 for (;;)
5515 {
5516 int result;
5517
5518 /* The buffer memory is now:
5519 +--------+converted-text+---------+-------original-text-------+---+
5520 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5521 |<---------------------- GAP ----------------------->| */
5522 src = GAP_END_ADDR - len_byte;
5523 dst = GPT_ADDR + inserted_byte;
5524
5525 if (encodep)
5526 result = encode_coding (coding, src, dst, len_byte, 0);
5527 else
5528 {
5529 if (coding->composing != COMPOSITION_DISABLED)
5530 coding->cmp_data->char_offset = from + inserted;
5531 result = decode_coding (coding, src, dst, len_byte, 0);
5532 }
5533
5534 /* The buffer memory is now:
5535 +--------+-------converted-text----+--+------original-text----+---+
5536 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5537 |<---------------------- GAP ----------------------->| */
5538
5539 inserted += coding->produced_char;
5540 inserted_byte += coding->produced;
5541 len_byte -= coding->consumed;
5542
5543 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5544 {
5545 coding_allocate_composition_data (coding, from + inserted);
5546 continue;
5547 }
5548
5549 src += coding->consumed;
5550 dst += coding->produced;
5551
5552 if (result == CODING_FINISH_NORMAL)
5553 {
5554 src += len_byte;
5555 break;
5556 }
5557 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5558 {
5559 unsigned char *pend = dst, *p = pend - inserted_byte;
5560 Lisp_Object eol_type;
5561
5562 /* Encode LFs back to the original eol format (CR or CRLF). */
5563 if (coding->eol_type == CODING_EOL_CR)
5564 {
5565 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5566 }
5567 else
5568 {
5569 int count = 0;
5570
5571 while (p < pend) if (*p++ == '\n') count++;
5572 if (src - dst < count)
5573 {
5574 /* We don't have sufficient room for encoding LFs
5575 back to CRLF. We must record converted and
5576 not-yet-converted text back to the buffer
5577 content, enlarge the gap, then record them out of
5578 the buffer contents again. */
5579 int add = len_byte + inserted_byte;
5580
5581 GAP_SIZE -= add;
5582 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5583 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5584 make_gap (count - GAP_SIZE);
5585 GAP_SIZE += add;
5586 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5587 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5588 /* Don't forget to update SRC, DST, and PEND. */
5589 src = GAP_END_ADDR - len_byte;
5590 dst = GPT_ADDR + inserted_byte;
5591 pend = dst;
5592 }
5593 inserted += count;
5594 inserted_byte += count;
5595 coding->produced += count;
5596 p = dst = pend + count;
5597 while (count)
5598 {
5599 *--p = *--pend;
5600 if (*p == '\n') count--, *--p = '\r';
5601 }
5602 }
5603
5604 /* Suppress eol-format conversion in the further conversion. */
5605 coding->eol_type = CODING_EOL_LF;
5606
5607 /* Set the coding system symbol to that for Unix-like EOL. */
5608 eol_type = Fget (saved_coding_symbol, Qeol_type);
5609 if (VECTORP (eol_type)
5610 && XVECTOR (eol_type)->size == 3
5611 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5612 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5613 else
5614 coding->symbol = saved_coding_symbol;
5615
5616 continue;
5617 }
5618 if (len_byte <= 0)
5619 {
5620 if (coding->type != coding_type_ccl
5621 || coding->mode & CODING_MODE_LAST_BLOCK)
5622 break;
5623 coding->mode |= CODING_MODE_LAST_BLOCK;
5624 continue;
5625 }
5626 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5627 {
5628 /* The source text ends in invalid codes. Let's just
5629 make them valid buffer contents, and finish conversion. */
5630 if (multibyte_p)
5631 {
5632 unsigned char *start = dst;
5633
5634 inserted += len_byte;
5635 while (len_byte--)
5636 {
5637 int c = *src++;
5638 dst += CHAR_STRING (c, dst);
5639 }
5640
5641 inserted_byte += dst - start;
5642 }
5643 else
5644 {
5645 inserted += len_byte;
5646 inserted_byte += len_byte;
5647 while (len_byte--)
5648 *dst++ = *src++;
5649 }
5650 break;
5651 }
5652 if (result == CODING_FINISH_INTERRUPT)
5653 {
5654 /* The conversion procedure was interrupted by a user. */
5655 break;
5656 }
5657 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5658 if (coding->consumed < 1)
5659 {
5660 /* It's quite strange to require more memory without
5661 consuming any bytes. Perhaps CCL program bug. */
5662 break;
5663 }
5664 if (first)
5665 {
5666 /* We have just done the first batch of conversion which was
5667 stopped because of insufficient gap. Let's reconsider the
5668 required gap size (i.e. SRT - DST) now.
5669
5670 We have converted ORIG bytes (== coding->consumed) into
5671 NEW bytes (coding->produced). To convert the remaining
5672 LEN bytes, we may need REQUIRE bytes of gap, where:
5673 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5674 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5675 Here, we are sure that NEW >= ORIG. */
5676 float ratio = coding->produced - coding->consumed;
5677 ratio /= coding->consumed;
5678 require = len_byte * ratio;
5679 first = 0;
5680 }
5681 if ((src - dst) < (require + 2000))
5682 {
5683 /* See the comment above the previous call of make_gap. */
5684 int add = len_byte + inserted_byte;
5685
5686 GAP_SIZE -= add;
5687 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5688 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5689 make_gap (require + 2000);
5690 GAP_SIZE += add;
5691 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5692 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5693 }
5694 }
5695 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5696
5697 if (encodep && coding->dst_multibyte)
5698 {
5699 /* The output is unibyte. We must convert 8-bit characters to
5700 multibyte form. */
5701 if (inserted_byte * 2 > GAP_SIZE)
5702 {
5703 GAP_SIZE -= inserted_byte;
5704 ZV += inserted_byte; Z += inserted_byte;
5705 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5706 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5707 make_gap (inserted_byte - GAP_SIZE);
5708 GAP_SIZE += inserted_byte;
5709 ZV -= inserted_byte; Z -= inserted_byte;
5710 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5711 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5712 }
5713 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5714 }
5715
5716 /* If we shrank the conversion area, adjust it now. */
5717 if (total_skip > 0)
5718 {
5719 if (tail_skip > 0)
5720 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5721 inserted += total_skip; inserted_byte += total_skip;
5722 GAP_SIZE += total_skip;
5723 GPT -= head_skip; GPT_BYTE -= head_skip;
5724 ZV -= total_skip; ZV_BYTE -= total_skip;
5725 Z -= total_skip; Z_BYTE -= total_skip;
5726 from -= head_skip; from_byte -= head_skip;
5727 to += tail_skip; to_byte += tail_skip;
5728 }
5729
5730 prev_Z = Z;
5731 if (! EQ (current_buffer->undo_list, Qt))
5732 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5733 else
5734 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5735 inserted, inserted_byte);
5736 inserted = Z - prev_Z;
5737
5738 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5739 coding_restore_composition (coding, Fcurrent_buffer ());
5740 coding_free_composition_data (coding);
5741
5742 if (! inhibit_pre_post_conversion
5743 && ! encodep && ! NILP (coding->post_read_conversion))
5744 {
5745 Lisp_Object val;
5746
5747 if (from != PT)
5748 TEMP_SET_PT_BOTH (from, from_byte);
5749 prev_Z = Z;
5750 record_unwind_protect (code_convert_region_unwind, Qnil);
5751 /* We should not call any more pre-write/post-read-conversion
5752 functions while this post-read-conversion is running. */
5753 inhibit_pre_post_conversion = 1;
5754 val = call1 (coding->post_read_conversion, make_number (inserted));
5755 inhibit_pre_post_conversion = 0;
5756 /* Discard the unwind protect. */
5757 specpdl_ptr--;
5758 CHECK_NUMBER (val);
5759 inserted += Z - prev_Z;
5760 }
5761
5762 if (orig_point >= from)
5763 {
5764 if (orig_point >= from + orig_len)
5765 orig_point += inserted - orig_len;
5766 else
5767 orig_point = from;
5768 TEMP_SET_PT (orig_point);
5769 }
5770
5771 if (replace)
5772 {
5773 signal_after_change (from, to - from, inserted);
5774 update_compositions (from, from + inserted, CHECK_BORDER);
5775 }
5776
5777 {
5778 coding->consumed = to_byte - from_byte;
5779 coding->consumed_char = to - from;
5780 coding->produced = inserted_byte;
5781 coding->produced_char = inserted;
5782 }
5783
5784 return 0;
5785 }
5786
5787 Lisp_Object
5788 run_pre_post_conversion_on_str (str, coding, encodep)
5789 Lisp_Object str;
5790 struct coding_system *coding;
5791 int encodep;
5792 {
5793 int count = specpdl_ptr - specpdl;
5794 struct gcpro gcpro1;
5795 int multibyte = STRING_MULTIBYTE (str);
5796
5797 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5798 record_unwind_protect (code_convert_region_unwind, Qnil);
5799 GCPRO1 (str);
5800 temp_output_buffer_setup (" *code-converting-work*");
5801 set_buffer_internal (XBUFFER (Vstandard_output));
5802 /* We must insert the contents of STR as is without
5803 unibyte<->multibyte conversion. For that, we adjust the
5804 multibyteness of the working buffer to that of STR. */
5805 Ferase_buffer ();
5806 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5807 insert_from_string (str, 0, 0,
5808 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5809 UNGCPRO;
5810 inhibit_pre_post_conversion = 1;
5811 if (encodep)
5812 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5813 else
5814 {
5815 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5816 call1 (coding->post_read_conversion, make_number (Z - BEG));
5817 }
5818 inhibit_pre_post_conversion = 0;
5819 str = make_buffer_string (BEG, Z, 1);
5820 return unbind_to (count, str);
5821 }
5822
5823 Lisp_Object
5824 decode_coding_string (str, coding, nocopy)
5825 Lisp_Object str;
5826 struct coding_system *coding;
5827 int nocopy;
5828 {
5829 int len;
5830 struct conversion_buffer buf;
5831 int from, to_byte;
5832 Lisp_Object saved_coding_symbol;
5833 int result;
5834 int require_decoding;
5835 int shrinked_bytes = 0;
5836 Lisp_Object newstr;
5837 int consumed, consumed_char, produced, produced_char;
5838
5839 from = 0;
5840 to_byte = STRING_BYTES (XSTRING (str));
5841
5842 saved_coding_symbol = coding->symbol;
5843 coding->src_multibyte = STRING_MULTIBYTE (str);
5844 coding->dst_multibyte = 1;
5845 if (CODING_REQUIRE_DETECTION (coding))
5846 {
5847 /* See the comments in code_convert_region. */
5848 if (coding->type == coding_type_undecided)
5849 {
5850 detect_coding (coding, XSTRING (str)->data, to_byte);
5851 if (coding->type == coding_type_undecided)
5852 {
5853 coding->type = coding_type_emacs_mule;
5854 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5855 /* As emacs-mule decoder will handle composition, we
5856 need this setting to allocate coding->cmp_data
5857 later. */
5858 coding->composing = COMPOSITION_NO;
5859 }
5860 }
5861 if (coding->eol_type == CODING_EOL_UNDECIDED
5862 && coding->type != coding_type_ccl)
5863 {
5864 saved_coding_symbol = coding->symbol;
5865 detect_eol (coding, XSTRING (str)->data, to_byte);
5866 if (coding->eol_type == CODING_EOL_UNDECIDED)
5867 coding->eol_type = CODING_EOL_LF;
5868 /* We had better recover the original eol format if we
5869 encounter an inconsistent eol format while decoding. */
5870 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5871 }
5872 }
5873
5874 if (coding->type == coding_type_no_conversion
5875 || coding->type == coding_type_raw_text)
5876 coding->dst_multibyte = 0;
5877
5878 require_decoding = CODING_REQUIRE_DECODING (coding);
5879
5880 if (STRING_MULTIBYTE (str))
5881 {
5882 /* Decoding routines expect the source text to be unibyte. */
5883 str = Fstring_as_unibyte (str);
5884 to_byte = STRING_BYTES (XSTRING (str));
5885 nocopy = 1;
5886 coding->src_multibyte = 0;
5887 }
5888
5889 /* Try to skip the heading and tailing ASCIIs. */
5890 if (require_decoding && coding->type != coding_type_ccl)
5891 {
5892 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5893 0);
5894 if (from == to_byte)
5895 require_decoding = 0;
5896 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5897 }
5898
5899 if (!require_decoding)
5900 {
5901 coding->consumed = STRING_BYTES (XSTRING (str));
5902 coding->consumed_char = XSTRING (str)->size;
5903 if (coding->dst_multibyte)
5904 {
5905 str = Fstring_as_multibyte (str);
5906 nocopy = 1;
5907 }
5908 coding->produced = STRING_BYTES (XSTRING (str));
5909 coding->produced_char = XSTRING (str)->size;
5910 return (nocopy ? str : Fcopy_sequence (str));
5911 }
5912
5913 if (coding->composing != COMPOSITION_DISABLED)
5914 coding_allocate_composition_data (coding, from);
5915 len = decoding_buffer_size (coding, to_byte - from);
5916 allocate_conversion_buffer (buf, len);
5917
5918 consumed = consumed_char = produced = produced_char = 0;
5919 while (1)
5920 {
5921 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5922 buf.data + produced, to_byte - from - consumed,
5923 buf.size - produced);
5924 consumed += coding->consumed;
5925 consumed_char += coding->consumed_char;
5926 produced += coding->produced;
5927 produced_char += coding->produced_char;
5928 if (result == CODING_FINISH_NORMAL
5929 || (result == CODING_FINISH_INSUFFICIENT_SRC
5930 && coding->consumed == 0))
5931 break;
5932 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5933 coding_allocate_composition_data (coding, from + produced_char);
5934 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5935 extend_conversion_buffer (&buf);
5936 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5937 {
5938 Lisp_Object eol_type;
5939
5940 /* Recover the original EOL format. */
5941 if (coding->eol_type == CODING_EOL_CR)
5942 {
5943 unsigned char *p;
5944 for (p = buf.data; p < buf.data + produced; p++)
5945 if (*p == '\n') *p = '\r';
5946 }
5947 else if (coding->eol_type == CODING_EOL_CRLF)
5948 {
5949 int num_eol = 0;
5950 unsigned char *p0, *p1;
5951 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5952 if (*p0 == '\n') num_eol++;
5953 if (produced + num_eol >= buf.size)
5954 extend_conversion_buffer (&buf);
5955 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5956 {
5957 *--p1 = *--p0;
5958 if (*p0 == '\n') *--p1 = '\r';
5959 }
5960 produced += num_eol;
5961 produced_char += num_eol;
5962 }
5963 /* Suppress eol-format conversion in the further conversion. */
5964 coding->eol_type = CODING_EOL_LF;
5965
5966 /* Set the coding system symbol to that for Unix-like EOL. */
5967 eol_type = Fget (saved_coding_symbol, Qeol_type);
5968 if (VECTORP (eol_type)
5969 && XVECTOR (eol_type)->size == 3
5970 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5971 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5972 else
5973 coding->symbol = saved_coding_symbol;
5974
5975
5976 }
5977 }
5978
5979 coding->consumed = consumed;
5980 coding->consumed_char = consumed_char;
5981 coding->produced = produced;
5982 coding->produced_char = produced_char;
5983
5984 if (coding->dst_multibyte)
5985 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5986 produced + shrinked_bytes);
5987 else
5988 newstr = make_uninit_string (produced + shrinked_bytes);
5989 if (from > 0)
5990 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5991 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5992 if (shrinked_bytes > from)
5993 bcopy (XSTRING (str)->data + to_byte,
5994 XSTRING (newstr)->data + from + produced,
5995 shrinked_bytes - from);
5996 free_conversion_buffer (&buf);
5997
5998 if (coding->cmp_data && coding->cmp_data->used)
5999 coding_restore_composition (coding, newstr);
6000 coding_free_composition_data (coding);
6001
6002 if (SYMBOLP (coding->post_read_conversion)
6003 && !NILP (Ffboundp (coding->post_read_conversion)))
6004 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6005
6006 return newstr;
6007 }
6008
6009 Lisp_Object
6010 encode_coding_string (str, coding, nocopy)
6011 Lisp_Object str;
6012 struct coding_system *coding;
6013 int nocopy;
6014 {
6015 int len;
6016 struct conversion_buffer buf;
6017 int from, to, to_byte;
6018 int result;
6019 int shrinked_bytes = 0;
6020 Lisp_Object newstr;
6021 int consumed, consumed_char, produced, produced_char;
6022
6023 if (SYMBOLP (coding->pre_write_conversion)
6024 && !NILP (Ffboundp (coding->pre_write_conversion)))
6025 str = run_pre_post_conversion_on_str (str, coding, 1);
6026
6027 from = 0;
6028 to = XSTRING (str)->size;
6029 to_byte = STRING_BYTES (XSTRING (str));
6030
6031 /* Encoding routines determine the multibyteness of the source text
6032 by coding->src_multibyte. */
6033 coding->src_multibyte = STRING_MULTIBYTE (str);
6034 coding->dst_multibyte = 0;
6035 if (! CODING_REQUIRE_ENCODING (coding))
6036 {
6037 coding->consumed = STRING_BYTES (XSTRING (str));
6038 coding->consumed_char = XSTRING (str)->size;
6039 if (STRING_MULTIBYTE (str))
6040 {
6041 str = Fstring_as_unibyte (str);
6042 nocopy = 1;
6043 }
6044 coding->produced = STRING_BYTES (XSTRING (str));
6045 coding->produced_char = XSTRING (str)->size;
6046 return (nocopy ? str : Fcopy_sequence (str));
6047 }
6048
6049 if (coding->composing != COMPOSITION_DISABLED)
6050 coding_save_composition (coding, from, to, str);
6051
6052 /* Try to skip the heading and tailing ASCIIs. */
6053 if (coding->type != coding_type_ccl)
6054 {
6055 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6056 1);
6057 if (from == to_byte)
6058 return (nocopy ? str : Fcopy_sequence (str));
6059 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6060 }
6061
6062 len = encoding_buffer_size (coding, to_byte - from);
6063 allocate_conversion_buffer (buf, len);
6064
6065 consumed = consumed_char = produced = produced_char = 0;
6066 while (1)
6067 {
6068 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6069 buf.data + produced, to_byte - from - consumed,
6070 buf.size - produced);
6071 consumed += coding->consumed;
6072 consumed_char += coding->consumed_char;
6073 produced += coding->produced;
6074 produced_char += coding->produced_char;
6075 if (result == CODING_FINISH_NORMAL
6076 || (result == CODING_FINISH_INSUFFICIENT_SRC
6077 && coding->consumed == 0))
6078 break;
6079 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6080 extend_conversion_buffer (&buf);
6081 }
6082
6083 coding->consumed = consumed;
6084 coding->consumed_char = consumed_char;
6085 coding->produced = produced;
6086 coding->produced_char = produced_char;
6087
6088 newstr = make_uninit_string (produced + shrinked_bytes);
6089 if (from > 0)
6090 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6091 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6092 if (shrinked_bytes > from)
6093 bcopy (XSTRING (str)->data + to_byte,
6094 XSTRING (newstr)->data + from + produced,
6095 shrinked_bytes - from);
6096
6097 free_conversion_buffer (&buf);
6098 coding_free_composition_data (coding);
6099
6100 return newstr;
6101 }
6102
6103 \f
6104 #ifdef emacs
6105 /*** 8. Emacs Lisp library functions ***/
6106
6107 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6108 doc: /* Return t if OBJECT is nil or a coding-system.
6109 See the documentation of `make-coding-system' for information
6110 about coding-system objects. */)
6111 (obj)
6112 Lisp_Object obj;
6113 {
6114 if (NILP (obj))
6115 return Qt;
6116 if (!SYMBOLP (obj))
6117 return Qnil;
6118 /* Get coding-spec vector for OBJ. */
6119 obj = Fget (obj, Qcoding_system);
6120 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6121 ? Qt : Qnil);
6122 }
6123
6124 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6125 Sread_non_nil_coding_system, 1, 1, 0,
6126 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6127 (prompt)
6128 Lisp_Object prompt;
6129 {
6130 Lisp_Object val;
6131 do
6132 {
6133 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6134 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6135 }
6136 while (XSTRING (val)->size == 0);
6137 return (Fintern (val, Qnil));
6138 }
6139
6140 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6141 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6142 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6143 (prompt, default_coding_system)
6144 Lisp_Object prompt, default_coding_system;
6145 {
6146 Lisp_Object val;
6147 if (SYMBOLP (default_coding_system))
6148 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
6149 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6150 Qt, Qnil, Qcoding_system_history,
6151 default_coding_system, Qnil);
6152 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6153 }
6154
6155 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6156 1, 1, 0,
6157 doc: /* Check validity of CODING-SYSTEM.
6158 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6159 It is valid if it is a symbol with a non-nil `coding-system' property.
6160 The value of property should be a vector of length 5. */)
6161 (coding_system)
6162 Lisp_Object coding_system;
6163 {
6164 CHECK_SYMBOL (coding_system);
6165 if (!NILP (Fcoding_system_p (coding_system)))
6166 return coding_system;
6167 while (1)
6168 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6169 }
6170 \f
6171 Lisp_Object
6172 detect_coding_system (src, src_bytes, highest, multibytep)
6173 unsigned char *src;
6174 int src_bytes, highest;
6175 int multibytep;
6176 {
6177 int coding_mask, eol_type;
6178 Lisp_Object val, tmp;
6179 int dummy;
6180
6181 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6182 eol_type = detect_eol_type (src, src_bytes, &dummy);
6183 if (eol_type == CODING_EOL_INCONSISTENT)
6184 eol_type = CODING_EOL_UNDECIDED;
6185
6186 if (!coding_mask)
6187 {
6188 val = Qundecided;
6189 if (eol_type != CODING_EOL_UNDECIDED)
6190 {
6191 Lisp_Object val2;
6192 val2 = Fget (Qundecided, Qeol_type);
6193 if (VECTORP (val2))
6194 val = XVECTOR (val2)->contents[eol_type];
6195 }
6196 return (highest ? val : Fcons (val, Qnil));
6197 }
6198
6199 /* At first, gather possible coding systems in VAL. */
6200 val = Qnil;
6201 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6202 {
6203 Lisp_Object category_val, category_index;
6204
6205 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6206 category_val = Fsymbol_value (XCAR (tmp));
6207 if (!NILP (category_val)
6208 && NATNUMP (category_index)
6209 && (coding_mask & (1 << XFASTINT (category_index))))
6210 {
6211 val = Fcons (category_val, val);
6212 if (highest)
6213 break;
6214 }
6215 }
6216 if (!highest)
6217 val = Fnreverse (val);
6218
6219 /* Then, replace the elements with subsidiary coding systems. */
6220 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6221 {
6222 if (eol_type != CODING_EOL_UNDECIDED
6223 && eol_type != CODING_EOL_INCONSISTENT)
6224 {
6225 Lisp_Object eol;
6226 eol = Fget (XCAR (tmp), Qeol_type);
6227 if (VECTORP (eol))
6228 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6229 }
6230 }
6231 return (highest ? XCAR (val) : val);
6232 }
6233
6234 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6235 2, 3, 0,
6236 doc: /* Detect coding system of the text in the region between START and END.
6237 Return a list of possible coding systems ordered by priority.
6238
6239 If only ASCII characters are found, it returns a list of single element
6240 `undecided' or its subsidiary coding system according to a detected
6241 end-of-line format.
6242
6243 If optional argument HIGHEST is non-nil, return the coding system of
6244 highest priority. */)
6245 (start, end, highest)
6246 Lisp_Object start, end, highest;
6247 {
6248 int from, to;
6249 int from_byte, to_byte;
6250 int include_anchor_byte = 0;
6251
6252 CHECK_NUMBER_COERCE_MARKER (start);
6253 CHECK_NUMBER_COERCE_MARKER (end);
6254
6255 validate_region (&start, &end);
6256 from = XINT (start), to = XINT (end);
6257 from_byte = CHAR_TO_BYTE (from);
6258 to_byte = CHAR_TO_BYTE (to);
6259
6260 if (from < GPT && to >= GPT)
6261 move_gap_both (to, to_byte);
6262 /* If we an anchor byte `\0' follows the region, we include it in
6263 the detecting source. Then code detectors can handle the tailing
6264 byte sequence more accurately.
6265
6266 Fix me: This is not an perfect solution. It is better that we
6267 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6268 */
6269 if (to == Z || (to == GPT && GAP_SIZE > 0))
6270 include_anchor_byte = 1;
6271 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6272 to_byte - from_byte + include_anchor_byte,
6273 !NILP (highest),
6274 !NILP (current_buffer
6275 ->enable_multibyte_characters));
6276 }
6277
6278 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6279 1, 2, 0,
6280 doc: /* Detect coding system of the text in STRING.
6281 Return a list of possible coding systems ordered by priority.
6282
6283 If only ASCII characters are found, it returns a list of single element
6284 `undecided' or its subsidiary coding system according to a detected
6285 end-of-line format.
6286
6287 If optional argument HIGHEST is non-nil, return the coding system of
6288 highest priority. */)
6289 (string, highest)
6290 Lisp_Object string, highest;
6291 {
6292 CHECK_STRING (string);
6293
6294 return detect_coding_system (XSTRING (string)->data,
6295 /* "+ 1" is to include the anchor byte
6296 `\0'. With this, code detectors can
6297 handle the tailing bytes more
6298 accurately. */
6299 STRING_BYTES (XSTRING (string)) + 1,
6300 !NILP (highest),
6301 STRING_MULTIBYTE (string));
6302 }
6303
6304 /* Return an intersection of lists L1 and L2. */
6305
6306 static Lisp_Object
6307 intersection (l1, l2)
6308 Lisp_Object l1, l2;
6309 {
6310 Lisp_Object val;
6311
6312 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
6313 {
6314 if (!NILP (Fmemq (XCAR (l1), l2)))
6315 val = Fcons (XCAR (l1), val);
6316 }
6317 return val;
6318 }
6319
6320
6321 /* Subroutine for Fsafe_coding_systems_region_internal.
6322
6323 Return a list of coding systems that safely encode the multibyte
6324 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6325 possible coding systems. If it is nil, it means that we have not
6326 yet found any coding systems.
6327
6328 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6329 element of WORK_TABLE is set to t once the element is looked up.
6330
6331 If a non-ASCII single byte char is found, set
6332 *single_byte_char_found to 1. */
6333
6334 static Lisp_Object
6335 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6336 unsigned char *p, *pend;
6337 Lisp_Object safe_codings, work_table;
6338 int *single_byte_char_found;
6339 {
6340 int c, len, idx;
6341 Lisp_Object val;
6342
6343 while (p < pend)
6344 {
6345 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6346 p += len;
6347 if (ASCII_BYTE_P (c))
6348 /* We can ignore ASCII characters here. */
6349 continue;
6350 if (SINGLE_BYTE_CHAR_P (c))
6351 *single_byte_char_found = 1;
6352 if (NILP (safe_codings))
6353 continue;
6354 /* Check the safe coding systems for C. */
6355 val = char_table_ref_and_index (work_table, c, &idx);
6356 if (EQ (val, Qt))
6357 /* This element was already checked. Ignore it. */
6358 continue;
6359 /* Remember that we checked this element. */
6360 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6361
6362 /* If there are some safe coding systems for C and we have
6363 already found the other set of coding systems for the
6364 different characters, get the intersection of them. */
6365 if (!EQ (safe_codings, Qt) && !NILP (val))
6366 val = intersection (safe_codings, val);
6367 safe_codings = val;
6368 }
6369 return safe_codings;
6370 }
6371
6372
6373 /* Return a list of coding systems that safely encode the text between
6374 START and END. If the text contains only ASCII or is unibyte,
6375 return t. */
6376
6377 DEFUN ("find-coding-systems-region-internal",
6378 Ffind_coding_systems_region_internal,
6379 Sfind_coding_systems_region_internal, 2, 2, 0,
6380 doc: /* Internal use only. */)
6381 (start, end)
6382 Lisp_Object start, end;
6383 {
6384 Lisp_Object work_table, safe_codings;
6385 int non_ascii_p = 0;
6386 int single_byte_char_found = 0;
6387 unsigned char *p1, *p1end, *p2, *p2end, *p;
6388
6389 if (STRINGP (start))
6390 {
6391 if (!STRING_MULTIBYTE (start))
6392 return Qt;
6393 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6394 p2 = p2end = p1end;
6395 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6396 non_ascii_p = 1;
6397 }
6398 else
6399 {
6400 int from, to, stop;
6401
6402 CHECK_NUMBER_COERCE_MARKER (start);
6403 CHECK_NUMBER_COERCE_MARKER (end);
6404 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6405 args_out_of_range (start, end);
6406 if (NILP (current_buffer->enable_multibyte_characters))
6407 return Qt;
6408 from = CHAR_TO_BYTE (XINT (start));
6409 to = CHAR_TO_BYTE (XINT (end));
6410 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6411 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6412 if (stop == to)
6413 p2 = p2end = p1end;
6414 else
6415 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6416 if (XINT (end) - XINT (start) != to - from)
6417 non_ascii_p = 1;
6418 }
6419
6420 if (!non_ascii_p)
6421 {
6422 /* We are sure that the text contains no multibyte character.
6423 Check if it contains eight-bit-graphic. */
6424 p = p1;
6425 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6426 if (p == p1end)
6427 {
6428 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6429 if (p == p2end)
6430 return Qt;
6431 }
6432 }
6433
6434 /* The text contains non-ASCII characters. */
6435 work_table = Fcopy_sequence (Vchar_coding_system_table);
6436 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6437 &single_byte_char_found);
6438 if (p2 < p2end)
6439 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6440 &single_byte_char_found);
6441
6442 if (EQ (safe_codings, Qt))
6443 ; /* Nothing to be done. */
6444 else if (!single_byte_char_found)
6445 {
6446 /* Append generic coding systems. */
6447 Lisp_Object args[2];
6448 args[0] = safe_codings;
6449 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6450 make_number (0));
6451 safe_codings = Fappend (2, args);
6452 }
6453 else
6454 safe_codings = Fcons (Qraw_text,
6455 Fcons (Qemacs_mule,
6456 Fcons (Qno_conversion, safe_codings)));
6457 return safe_codings;
6458 }
6459
6460
6461 Lisp_Object
6462 code_convert_region1 (start, end, coding_system, encodep)
6463 Lisp_Object start, end, coding_system;
6464 int encodep;
6465 {
6466 struct coding_system coding;
6467 int from, to;
6468
6469 CHECK_NUMBER_COERCE_MARKER (start);
6470 CHECK_NUMBER_COERCE_MARKER (end);
6471 CHECK_SYMBOL (coding_system);
6472
6473 validate_region (&start, &end);
6474 from = XFASTINT (start);
6475 to = XFASTINT (end);
6476
6477 if (NILP (coding_system))
6478 return make_number (to - from);
6479
6480 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6481 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6482
6483 coding.mode |= CODING_MODE_LAST_BLOCK;
6484 coding.src_multibyte = coding.dst_multibyte
6485 = !NILP (current_buffer->enable_multibyte_characters);
6486 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6487 &coding, encodep, 1);
6488 Vlast_coding_system_used = coding.symbol;
6489 return make_number (coding.produced_char);
6490 }
6491
6492 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6493 3, 3, "r\nzCoding system: ",
6494 doc: /* Decode the current region from the specified coding system.
6495 When called from a program, takes three arguments:
6496 START, END, and CODING-SYSTEM. START and END are buffer positions.
6497 This function sets `last-coding-system-used' to the precise coding system
6498 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6499 not fully specified.)
6500 It returns the length of the decoded text. */)
6501 (start, end, coding_system)
6502 Lisp_Object start, end, coding_system;
6503 {
6504 return code_convert_region1 (start, end, coding_system, 0);
6505 }
6506
6507 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6508 3, 3, "r\nzCoding system: ",
6509 doc: /* Encode the current region into the specified coding system.
6510 When called from a program, takes three arguments:
6511 START, END, and CODING-SYSTEM. START and END are buffer positions.
6512 This function sets `last-coding-system-used' to the precise coding system
6513 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6514 not fully specified.)
6515 It returns the length of the encoded text. */)
6516 (start, end, coding_system)
6517 Lisp_Object start, end, coding_system;
6518 {
6519 return code_convert_region1 (start, end, coding_system, 1);
6520 }
6521
6522 Lisp_Object
6523 code_convert_string1 (string, coding_system, nocopy, encodep)
6524 Lisp_Object string, coding_system, nocopy;
6525 int encodep;
6526 {
6527 struct coding_system coding;
6528
6529 CHECK_STRING (string);
6530 CHECK_SYMBOL (coding_system);
6531
6532 if (NILP (coding_system))
6533 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6534
6535 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6536 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6537
6538 coding.mode |= CODING_MODE_LAST_BLOCK;
6539 string = (encodep
6540 ? encode_coding_string (string, &coding, !NILP (nocopy))
6541 : decode_coding_string (string, &coding, !NILP (nocopy)));
6542 Vlast_coding_system_used = coding.symbol;
6543
6544 return string;
6545 }
6546
6547 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6548 2, 3, 0,
6549 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
6550 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6551 if the decoding operation is trivial.
6552 This function sets `last-coding-system-used' to the precise coding system
6553 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6554 not fully specified.) */)
6555 (string, coding_system, nocopy)
6556 Lisp_Object string, coding_system, nocopy;
6557 {
6558 return code_convert_string1 (string, coding_system, nocopy, 0);
6559 }
6560
6561 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6562 2, 3, 0,
6563 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
6564 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6565 if the encoding operation is trivial.
6566 This function sets `last-coding-system-used' to the precise coding system
6567 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6568 not fully specified.) */)
6569 (string, coding_system, nocopy)
6570 Lisp_Object string, coding_system, nocopy;
6571 {
6572 return code_convert_string1 (string, coding_system, nocopy, 1);
6573 }
6574
6575 /* Encode or decode STRING according to CODING_SYSTEM.
6576 Do not set Vlast_coding_system_used.
6577
6578 This function is called only from macros DECODE_FILE and
6579 ENCODE_FILE, thus we ignore character composition. */
6580
6581 Lisp_Object
6582 code_convert_string_norecord (string, coding_system, encodep)
6583 Lisp_Object string, coding_system;
6584 int encodep;
6585 {
6586 struct coding_system coding;
6587
6588 CHECK_STRING (string);
6589 CHECK_SYMBOL (coding_system);
6590
6591 if (NILP (coding_system))
6592 return string;
6593
6594 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6595 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6596
6597 coding.composing = COMPOSITION_DISABLED;
6598 coding.mode |= CODING_MODE_LAST_BLOCK;
6599 return (encodep
6600 ? encode_coding_string (string, &coding, 1)
6601 : decode_coding_string (string, &coding, 1));
6602 }
6603 \f
6604 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6605 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
6606 Return the corresponding character. */)
6607 (code)
6608 Lisp_Object code;
6609 {
6610 unsigned char c1, c2, s1, s2;
6611 Lisp_Object val;
6612
6613 CHECK_NUMBER (code);
6614 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6615 if (s1 == 0)
6616 {
6617 if (s2 < 0x80)
6618 XSETFASTINT (val, s2);
6619 else if (s2 >= 0xA0 || s2 <= 0xDF)
6620 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6621 else
6622 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6623 }
6624 else
6625 {
6626 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
6627 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6628 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6629 DECODE_SJIS (s1, s2, c1, c2);
6630 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6631 }
6632 return val;
6633 }
6634
6635 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6636 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
6637 Return the corresponding code in SJIS. */)
6638 (ch)
6639 Lisp_Object ch;
6640 {
6641 int charset, c1, c2, s1, s2;
6642 Lisp_Object val;
6643
6644 CHECK_NUMBER (ch);
6645 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6646 if (charset == CHARSET_ASCII)
6647 {
6648 val = ch;
6649 }
6650 else if (charset == charset_jisx0208
6651 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6652 {
6653 ENCODE_SJIS (c1, c2, s1, s2);
6654 XSETFASTINT (val, (s1 << 8) | s2);
6655 }
6656 else if (charset == charset_katakana_jisx0201
6657 && c1 > 0x20 && c2 < 0xE0)
6658 {
6659 XSETFASTINT (val, c1 | 0x80);
6660 }
6661 else
6662 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6663 return val;
6664 }
6665
6666 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6667 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
6668 Return the corresponding character. */)
6669 (code)
6670 Lisp_Object code;
6671 {
6672 int charset;
6673 unsigned char b1, b2, c1, c2;
6674 Lisp_Object val;
6675
6676 CHECK_NUMBER (code);
6677 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6678 if (b1 == 0)
6679 {
6680 if (b2 >= 0x80)
6681 error ("Invalid BIG5 code: %x", XFASTINT (code));
6682 val = code;
6683 }
6684 else
6685 {
6686 if ((b1 < 0xA1 || b1 > 0xFE)
6687 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6688 error ("Invalid BIG5 code: %x", XFASTINT (code));
6689 DECODE_BIG5 (b1, b2, charset, c1, c2);
6690 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6691 }
6692 return val;
6693 }
6694
6695 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6696 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
6697 Return the corresponding character code in Big5. */)
6698 (ch)
6699 Lisp_Object ch;
6700 {
6701 int charset, c1, c2, b1, b2;
6702 Lisp_Object val;
6703
6704 CHECK_NUMBER (ch);
6705 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6706 if (charset == CHARSET_ASCII)
6707 {
6708 val = ch;
6709 }
6710 else if ((charset == charset_big5_1
6711 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6712 || (charset == charset_big5_2
6713 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6714 {
6715 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6716 XSETFASTINT (val, (b1 << 8) | b2);
6717 }
6718 else
6719 error ("Can't encode to Big5: %d", XFASTINT (ch));
6720 return val;
6721 }
6722 \f
6723 DEFUN ("set-terminal-coding-system-internal",
6724 Fset_terminal_coding_system_internal,
6725 Sset_terminal_coding_system_internal, 1, 1, 0,
6726 doc: /* Internal use only. */)
6727 (coding_system)
6728 Lisp_Object coding_system;
6729 {
6730 CHECK_SYMBOL (coding_system);
6731 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6732 /* We had better not send unsafe characters to terminal. */
6733 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6734 /* Character composition should be disabled. */
6735 terminal_coding.composing = COMPOSITION_DISABLED;
6736 /* Error notification should be suppressed. */
6737 terminal_coding.suppress_error = 1;
6738 terminal_coding.src_multibyte = 1;
6739 terminal_coding.dst_multibyte = 0;
6740 return Qnil;
6741 }
6742
6743 DEFUN ("set-safe-terminal-coding-system-internal",
6744 Fset_safe_terminal_coding_system_internal,
6745 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
6746 doc: /* Internal use only. */)
6747 (coding_system)
6748 Lisp_Object coding_system;
6749 {
6750 CHECK_SYMBOL (coding_system);
6751 setup_coding_system (Fcheck_coding_system (coding_system),
6752 &safe_terminal_coding);
6753 /* Character composition should be disabled. */
6754 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6755 /* Error notification should be suppressed. */
6756 terminal_coding.suppress_error = 1;
6757 safe_terminal_coding.src_multibyte = 1;
6758 safe_terminal_coding.dst_multibyte = 0;
6759 return Qnil;
6760 }
6761
6762 DEFUN ("terminal-coding-system",
6763 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6764 doc: /* Return coding system specified for terminal output. */)
6765 ()
6766 {
6767 return terminal_coding.symbol;
6768 }
6769
6770 DEFUN ("set-keyboard-coding-system-internal",
6771 Fset_keyboard_coding_system_internal,
6772 Sset_keyboard_coding_system_internal, 1, 1, 0,
6773 doc: /* Internal use only. */)
6774 (coding_system)
6775 Lisp_Object coding_system;
6776 {
6777 CHECK_SYMBOL (coding_system);
6778 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6779 /* Character composition should be disabled. */
6780 keyboard_coding.composing = COMPOSITION_DISABLED;
6781 return Qnil;
6782 }
6783
6784 DEFUN ("keyboard-coding-system",
6785 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6786 doc: /* Return coding system specified for decoding keyboard input. */)
6787 ()
6788 {
6789 return keyboard_coding.symbol;
6790 }
6791
6792 \f
6793 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6794 Sfind_operation_coding_system, 1, MANY, 0,
6795 doc: /* Choose a coding system for an operation based on the target name.
6796 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
6797 DECODING-SYSTEM is the coding system to use for decoding
6798 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
6799 for encoding (in case OPERATION does encoding).
6800
6801 The first argument OPERATION specifies an I/O primitive:
6802 For file I/O, `insert-file-contents' or `write-region'.
6803 For process I/O, `call-process', `call-process-region', or `start-process'.
6804 For network I/O, `open-network-stream'.
6805
6806 The remaining arguments should be the same arguments that were passed
6807 to the primitive. Depending on which primitive, one of those arguments
6808 is selected as the TARGET. For example, if OPERATION does file I/O,
6809 whichever argument specifies the file name is TARGET.
6810
6811 TARGET has a meaning which depends on OPERATION:
6812 For file I/O, TARGET is a file name.
6813 For process I/O, TARGET is a process name.
6814 For network I/O, TARGET is a service name or a port number
6815
6816 This function looks up what specified for TARGET in,
6817 `file-coding-system-alist', `process-coding-system-alist',
6818 or `network-coding-system-alist' depending on OPERATION.
6819 They may specify a coding system, a cons of coding systems,
6820 or a function symbol to call.
6821 In the last case, we call the function with one argument,
6822 which is a list of all the arguments given to this function.
6823
6824 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
6825 (nargs, args)
6826 int nargs;
6827 Lisp_Object *args;
6828 {
6829 Lisp_Object operation, target_idx, target, val;
6830 register Lisp_Object chain;
6831
6832 if (nargs < 2)
6833 error ("Too few arguments");
6834 operation = args[0];
6835 if (!SYMBOLP (operation)
6836 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6837 error ("Invalid first argument");
6838 if (nargs < 1 + XINT (target_idx))
6839 error ("Too few arguments for operation: %s",
6840 XSYMBOL (operation)->name->data);
6841 target = args[XINT (target_idx) + 1];
6842 if (!(STRINGP (target)
6843 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6844 error ("Invalid argument %d", XINT (target_idx) + 1);
6845
6846 chain = ((EQ (operation, Qinsert_file_contents)
6847 || EQ (operation, Qwrite_region))
6848 ? Vfile_coding_system_alist
6849 : (EQ (operation, Qopen_network_stream)
6850 ? Vnetwork_coding_system_alist
6851 : Vprocess_coding_system_alist));
6852 if (NILP (chain))
6853 return Qnil;
6854
6855 for (; CONSP (chain); chain = XCDR (chain))
6856 {
6857 Lisp_Object elt;
6858 elt = XCAR (chain);
6859
6860 if (CONSP (elt)
6861 && ((STRINGP (target)
6862 && STRINGP (XCAR (elt))
6863 && fast_string_match (XCAR (elt), target) >= 0)
6864 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6865 {
6866 val = XCDR (elt);
6867 /* Here, if VAL is both a valid coding system and a valid
6868 function symbol, we return VAL as a coding system. */
6869 if (CONSP (val))
6870 return val;
6871 if (! SYMBOLP (val))
6872 return Qnil;
6873 if (! NILP (Fcoding_system_p (val)))
6874 return Fcons (val, val);
6875 if (! NILP (Ffboundp (val)))
6876 {
6877 val = call1 (val, Flist (nargs, args));
6878 if (CONSP (val))
6879 return val;
6880 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6881 return Fcons (val, val);
6882 }
6883 return Qnil;
6884 }
6885 }
6886 return Qnil;
6887 }
6888
6889 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6890 Supdate_coding_systems_internal, 0, 0, 0,
6891 doc: /* Update internal database for ISO2022 and CCL based coding systems.
6892 When values of any coding categories are changed, you must
6893 call this function. */)
6894 ()
6895 {
6896 int i;
6897
6898 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6899 {
6900 Lisp_Object val;
6901
6902 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
6903 if (!NILP (val))
6904 {
6905 if (! coding_system_table[i])
6906 coding_system_table[i] = ((struct coding_system *)
6907 xmalloc (sizeof (struct coding_system)));
6908 setup_coding_system (val, coding_system_table[i]);
6909 }
6910 else if (coding_system_table[i])
6911 {
6912 xfree (coding_system_table[i]);
6913 coding_system_table[i] = NULL;
6914 }
6915 }
6916
6917 return Qnil;
6918 }
6919
6920 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6921 Sset_coding_priority_internal, 0, 0, 0,
6922 doc: /* Update internal database for the current value of `coding-category-list'.
6923 This function is internal use only. */)
6924 ()
6925 {
6926 int i = 0, idx;
6927 Lisp_Object val;
6928
6929 val = Vcoding_category_list;
6930
6931 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6932 {
6933 if (! SYMBOLP (XCAR (val)))
6934 break;
6935 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6936 if (idx >= CODING_CATEGORY_IDX_MAX)
6937 break;
6938 coding_priorities[i++] = (1 << idx);
6939 val = XCDR (val);
6940 }
6941 /* If coding-category-list is valid and contains all coding
6942 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6943 the following code saves Emacs from crashing. */
6944 while (i < CODING_CATEGORY_IDX_MAX)
6945 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6946
6947 return Qnil;
6948 }
6949
6950 #endif /* emacs */
6951
6952 \f
6953 /*** 9. Post-amble ***/
6954
6955 void
6956 init_coding_once ()
6957 {
6958 int i;
6959
6960 /* Emacs' internal format specific initialize routine. */
6961 for (i = 0; i <= 0x20; i++)
6962 emacs_code_class[i] = EMACS_control_code;
6963 emacs_code_class[0x0A] = EMACS_linefeed_code;
6964 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6965 for (i = 0x21 ; i < 0x7F; i++)
6966 emacs_code_class[i] = EMACS_ascii_code;
6967 emacs_code_class[0x7F] = EMACS_control_code;
6968 for (i = 0x80; i < 0xFF; i++)
6969 emacs_code_class[i] = EMACS_invalid_code;
6970 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6971 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6972 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6973 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6974
6975 /* ISO2022 specific initialize routine. */
6976 for (i = 0; i < 0x20; i++)
6977 iso_code_class[i] = ISO_control_0;
6978 for (i = 0x21; i < 0x7F; i++)
6979 iso_code_class[i] = ISO_graphic_plane_0;
6980 for (i = 0x80; i < 0xA0; i++)
6981 iso_code_class[i] = ISO_control_1;
6982 for (i = 0xA1; i < 0xFF; i++)
6983 iso_code_class[i] = ISO_graphic_plane_1;
6984 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6985 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6986 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6987 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6988 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6989 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6990 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6991 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6992 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6993 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6994
6995 setup_coding_system (Qnil, &keyboard_coding);
6996 setup_coding_system (Qnil, &terminal_coding);
6997 setup_coding_system (Qnil, &safe_terminal_coding);
6998 setup_coding_system (Qnil, &default_buffer_file_coding);
6999
7000 bzero (coding_system_table, sizeof coding_system_table);
7001
7002 bzero (ascii_skip_code, sizeof ascii_skip_code);
7003 for (i = 0; i < 128; i++)
7004 ascii_skip_code[i] = 1;
7005
7006 #if defined (MSDOS) || defined (WINDOWSNT)
7007 system_eol_type = CODING_EOL_CRLF;
7008 #else
7009 system_eol_type = CODING_EOL_LF;
7010 #endif
7011
7012 inhibit_pre_post_conversion = 0;
7013 }
7014
7015 #ifdef emacs
7016
7017 void
7018 syms_of_coding ()
7019 {
7020 Qtarget_idx = intern ("target-idx");
7021 staticpro (&Qtarget_idx);
7022
7023 Qcoding_system_history = intern ("coding-system-history");
7024 staticpro (&Qcoding_system_history);
7025 Fset (Qcoding_system_history, Qnil);
7026
7027 /* Target FILENAME is the first argument. */
7028 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7029 /* Target FILENAME is the third argument. */
7030 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7031
7032 Qcall_process = intern ("call-process");
7033 staticpro (&Qcall_process);
7034 /* Target PROGRAM is the first argument. */
7035 Fput (Qcall_process, Qtarget_idx, make_number (0));
7036
7037 Qcall_process_region = intern ("call-process-region");
7038 staticpro (&Qcall_process_region);
7039 /* Target PROGRAM is the third argument. */
7040 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7041
7042 Qstart_process = intern ("start-process");
7043 staticpro (&Qstart_process);
7044 /* Target PROGRAM is the third argument. */
7045 Fput (Qstart_process, Qtarget_idx, make_number (2));
7046
7047 Qopen_network_stream = intern ("open-network-stream");
7048 staticpro (&Qopen_network_stream);
7049 /* Target SERVICE is the fourth argument. */
7050 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7051
7052 Qcoding_system = intern ("coding-system");
7053 staticpro (&Qcoding_system);
7054
7055 Qeol_type = intern ("eol-type");
7056 staticpro (&Qeol_type);
7057
7058 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7059 staticpro (&Qbuffer_file_coding_system);
7060
7061 Qpost_read_conversion = intern ("post-read-conversion");
7062 staticpro (&Qpost_read_conversion);
7063
7064 Qpre_write_conversion = intern ("pre-write-conversion");
7065 staticpro (&Qpre_write_conversion);
7066
7067 Qno_conversion = intern ("no-conversion");
7068 staticpro (&Qno_conversion);
7069
7070 Qundecided = intern ("undecided");
7071 staticpro (&Qundecided);
7072
7073 Qcoding_system_p = intern ("coding-system-p");
7074 staticpro (&Qcoding_system_p);
7075
7076 Qcoding_system_error = intern ("coding-system-error");
7077 staticpro (&Qcoding_system_error);
7078
7079 Fput (Qcoding_system_error, Qerror_conditions,
7080 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7081 Fput (Qcoding_system_error, Qerror_message,
7082 build_string ("Invalid coding system"));
7083
7084 Qcoding_category = intern ("coding-category");
7085 staticpro (&Qcoding_category);
7086 Qcoding_category_index = intern ("coding-category-index");
7087 staticpro (&Qcoding_category_index);
7088
7089 Vcoding_category_table
7090 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7091 staticpro (&Vcoding_category_table);
7092 {
7093 int i;
7094 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7095 {
7096 XVECTOR (Vcoding_category_table)->contents[i]
7097 = intern (coding_category_name[i]);
7098 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7099 Qcoding_category_index, make_number (i));
7100 }
7101 }
7102
7103 Qtranslation_table = intern ("translation-table");
7104 staticpro (&Qtranslation_table);
7105 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7106
7107 Qtranslation_table_id = intern ("translation-table-id");
7108 staticpro (&Qtranslation_table_id);
7109
7110 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7111 staticpro (&Qtranslation_table_for_decode);
7112
7113 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7114 staticpro (&Qtranslation_table_for_encode);
7115
7116 Qsafe_chars = intern ("safe-chars");
7117 staticpro (&Qsafe_chars);
7118
7119 Qchar_coding_system = intern ("char-coding-system");
7120 staticpro (&Qchar_coding_system);
7121
7122 /* Intern this now in case it isn't already done.
7123 Setting this variable twice is harmless.
7124 But don't staticpro it here--that is done in alloc.c. */
7125 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7126 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7127 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (2));
7128
7129 Qvalid_codes = intern ("valid-codes");
7130 staticpro (&Qvalid_codes);
7131
7132 Qemacs_mule = intern ("emacs-mule");
7133 staticpro (&Qemacs_mule);
7134
7135 Qraw_text = intern ("raw-text");
7136 staticpro (&Qraw_text);
7137
7138 defsubr (&Scoding_system_p);
7139 defsubr (&Sread_coding_system);
7140 defsubr (&Sread_non_nil_coding_system);
7141 defsubr (&Scheck_coding_system);
7142 defsubr (&Sdetect_coding_region);
7143 defsubr (&Sdetect_coding_string);
7144 defsubr (&Sfind_coding_systems_region_internal);
7145 defsubr (&Sdecode_coding_region);
7146 defsubr (&Sencode_coding_region);
7147 defsubr (&Sdecode_coding_string);
7148 defsubr (&Sencode_coding_string);
7149 defsubr (&Sdecode_sjis_char);
7150 defsubr (&Sencode_sjis_char);
7151 defsubr (&Sdecode_big5_char);
7152 defsubr (&Sencode_big5_char);
7153 defsubr (&Sset_terminal_coding_system_internal);
7154 defsubr (&Sset_safe_terminal_coding_system_internal);
7155 defsubr (&Sterminal_coding_system);
7156 defsubr (&Sset_keyboard_coding_system_internal);
7157 defsubr (&Skeyboard_coding_system);
7158 defsubr (&Sfind_operation_coding_system);
7159 defsubr (&Supdate_coding_systems_internal);
7160 defsubr (&Sset_coding_priority_internal);
7161
7162 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7163 doc: /* List of coding systems.
7164
7165 Do not alter the value of this variable manually. This variable should be
7166 updated by the functions `make-coding-system' and
7167 `define-coding-system-alias'. */);
7168 Vcoding_system_list = Qnil;
7169
7170 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7171 doc: /* Alist of coding system names.
7172 Each element is one element list of coding system name.
7173 This variable is given to `completing-read' as TABLE argument.
7174
7175 Do not alter the value of this variable manually. This variable should be
7176 updated by the functions `make-coding-system' and
7177 `define-coding-system-alias'. */);
7178 Vcoding_system_alist = Qnil;
7179
7180 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7181 doc: /* List of coding-categories (symbols) ordered by priority.
7182
7183 On detecting a coding system, Emacs tries code detection algorithms
7184 associated with each coding-category one by one in this order. When
7185 one algorithm agrees with a byte sequence of source text, the coding
7186 system bound to the corresponding coding-category is selected. */);
7187 {
7188 int i;
7189
7190 Vcoding_category_list = Qnil;
7191 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7192 Vcoding_category_list
7193 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7194 Vcoding_category_list);
7195 }
7196
7197 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7198 doc: /* Specify the coding system for read operations.
7199 It is useful to bind this variable with `let', but do not set it globally.
7200 If the value is a coding system, it is used for decoding on read operation.
7201 If not, an appropriate element is used from one of the coding system alists:
7202 There are three such tables, `file-coding-system-alist',
7203 `process-coding-system-alist', and `network-coding-system-alist'. */);
7204 Vcoding_system_for_read = Qnil;
7205
7206 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7207 doc: /* Specify the coding system for write operations.
7208 Programs bind this variable with `let', but you should not set it globally.
7209 If the value is a coding system, it is used for encoding of output,
7210 when writing it to a file and when sending it to a file or subprocess.
7211
7212 If this does not specify a coding system, an appropriate element
7213 is used from one of the coding system alists:
7214 There are three such tables, `file-coding-system-alist',
7215 `process-coding-system-alist', and `network-coding-system-alist'.
7216 For output to files, if the above procedure does not specify a coding system,
7217 the value of `buffer-file-coding-system' is used. */);
7218 Vcoding_system_for_write = Qnil;
7219
7220 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7221 doc: /* Coding system used in the latest file or process I/O. */);
7222 Vlast_coding_system_used = Qnil;
7223
7224 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7225 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7226 See info node `Coding Systems' and info node `Text and Binary' concerning
7227 such conversion. */);
7228 inhibit_eol_conversion = 0;
7229
7230 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7231 doc: /* Non-nil means process buffer inherits coding system of process output.
7232 Bind it to t if the process output is to be treated as if it were a file
7233 read from some filesystem. */);
7234 inherit_process_coding_system = 0;
7235
7236 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7237 doc: /* Alist to decide a coding system to use for a file I/O operation.
7238 The format is ((PATTERN . VAL) ...),
7239 where PATTERN is a regular expression matching a file name,
7240 VAL is a coding system, a cons of coding systems, or a function symbol.
7241 If VAL is a coding system, it is used for both decoding and encoding
7242 the file contents.
7243 If VAL is a cons of coding systems, the car part is used for decoding,
7244 and the cdr part is used for encoding.
7245 If VAL is a function symbol, the function must return a coding system
7246 or a cons of coding systems which are used as above. The function gets
7247 the arguments with which `find-operation-coding-systems' was called.
7248
7249 See also the function `find-operation-coding-system'
7250 and the variable `auto-coding-alist'. */);
7251 Vfile_coding_system_alist = Qnil;
7252
7253 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7254 doc: /* Alist to decide a coding system to use for a process I/O operation.
7255 The format is ((PATTERN . VAL) ...),
7256 where PATTERN is a regular expression matching a program name,
7257 VAL is a coding system, a cons of coding systems, or a function symbol.
7258 If VAL is a coding system, it is used for both decoding what received
7259 from the program and encoding what sent to the program.
7260 If VAL is a cons of coding systems, the car part is used for decoding,
7261 and the cdr part is used for encoding.
7262 If VAL is a function symbol, the function must return a coding system
7263 or a cons of coding systems which are used as above.
7264
7265 See also the function `find-operation-coding-system'. */);
7266 Vprocess_coding_system_alist = Qnil;
7267
7268 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7269 doc: /* Alist to decide a coding system to use for a network I/O operation.
7270 The format is ((PATTERN . VAL) ...),
7271 where PATTERN is a regular expression matching a network service name
7272 or is a port number to connect to,
7273 VAL is a coding system, a cons of coding systems, or a function symbol.
7274 If VAL is a coding system, it is used for both decoding what received
7275 from the network stream and encoding what sent to the network stream.
7276 If VAL is a cons of coding systems, the car part is used for decoding,
7277 and the cdr part is used for encoding.
7278 If VAL is a function symbol, the function must return a coding system
7279 or a cons of coding systems which are used as above.
7280
7281 See also the function `find-operation-coding-system'. */);
7282 Vnetwork_coding_system_alist = Qnil;
7283
7284 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7285 doc: /* Coding system to use with system messages.
7286 Also used for decoding keyboard input on X Window system. */);
7287 Vlocale_coding_system = Qnil;
7288
7289 /* The eol mnemonics are reset in startup.el system-dependently. */
7290 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7291 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7292 eol_mnemonic_unix = build_string (":");
7293
7294 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7295 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7296 eol_mnemonic_dos = build_string ("\\");
7297
7298 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7299 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7300 eol_mnemonic_mac = build_string ("/");
7301
7302 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7303 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7304 eol_mnemonic_undecided = build_string (":");
7305
7306 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7307 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7308 Venable_character_translation = Qt;
7309
7310 DEFVAR_LISP ("standard-translation-table-for-decode",
7311 &Vstandard_translation_table_for_decode,
7312 doc: /* Table for translating characters while decoding. */);
7313 Vstandard_translation_table_for_decode = Qnil;
7314
7315 DEFVAR_LISP ("standard-translation-table-for-encode",
7316 &Vstandard_translation_table_for_encode,
7317 doc: /* Table for translating characters while encoding. */);
7318 Vstandard_translation_table_for_encode = Qnil;
7319
7320 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7321 doc: /* Alist of charsets vs revision numbers.
7322 While encoding, if a charset (car part of an element) is found,
7323 designate it with the escape sequence identifying revision (cdr part of the element). */);
7324 Vcharset_revision_alist = Qnil;
7325
7326 DEFVAR_LISP ("default-process-coding-system",
7327 &Vdefault_process_coding_system,
7328 doc: /* Cons of coding systems used for process I/O by default.
7329 The car part is used for decoding a process output,
7330 the cdr part is used for encoding a text to be sent to a process. */);
7331 Vdefault_process_coding_system = Qnil;
7332
7333 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7334 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7335 This is a vector of length 256.
7336 If Nth element is non-nil, the existence of code N in a file
7337 \(or output of subprocess) doesn't prevent it to be detected as
7338 a coding system of ISO 2022 variant which has a flag
7339 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7340 or reading output of a subprocess.
7341 Only 128th through 159th elements has a meaning. */);
7342 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7343
7344 DEFVAR_LISP ("select-safe-coding-system-function",
7345 &Vselect_safe_coding_system_function,
7346 doc: /* Function to call to select safe coding system for encoding a text.
7347
7348 If set, this function is called to force a user to select a proper
7349 coding system which can encode the text in the case that a default
7350 coding system used in each operation can't encode the text.
7351
7352 The default value is `select-safe-coding-system' (which see). */);
7353 Vselect_safe_coding_system_function = Qnil;
7354
7355 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7356 doc: /* Char-table containing safe coding systems of each characters.
7357 Each element doesn't include such generic coding systems that can
7358 encode any characters. They are in the first extra slot. */);
7359 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7360
7361 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7362 &inhibit_iso_escape_detection,
7363 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7364
7365 By default, on reading a file, Emacs tries to detect how the text is
7366 encoded. This code detection is sensitive to escape sequences. If
7367 the sequence is valid as ISO2022, the code is determined as one of
7368 the ISO2022 encodings, and the file is decoded by the corresponding
7369 coding system (e.g. `iso-2022-7bit').
7370
7371 However, there may be a case that you want to read escape sequences in
7372 a file as is. In such a case, you can set this variable to non-nil.
7373 Then, as the code detection ignores any escape sequences, no file is
7374 detected as encoded in some ISO2022 encoding. The result is that all
7375 escape sequences become visible in a buffer.
7376
7377 The default value is nil, and it is strongly recommended not to change
7378 it. That is because many Emacs Lisp source files that contain
7379 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7380 in Emacs's distribution, and they won't be decoded correctly on
7381 reading if you suppress escape sequence detection.
7382
7383 The other way to read escape sequences in a file without decoding is
7384 to explicitly specify some coding system that doesn't use ISO2022's
7385 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7386 inhibit_iso_escape_detection = 0;
7387 }
7388
7389 char *
7390 emacs_strerror (error_number)
7391 int error_number;
7392 {
7393 char *str;
7394
7395 synchronize_system_messages_locale ();
7396 str = strerror (error_number);
7397
7398 if (! NILP (Vlocale_coding_system))
7399 {
7400 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7401 Vlocale_coding_system,
7402 0);
7403 str = (char *) XSTRING (dec)->data;
7404 }
7405
7406 return str;
7407 }
7408
7409 #endif /* emacs */
7410