Replace bcopy, bzero, bcmp by memcpy, memmove, memset, memcmp
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 #include <signal.h>
35
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
39
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
43
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
58
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
61
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
65
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
71
72 #ifdef HAVE_FCNTL_H
73 #include <fcntl.h>
74 #endif
75 #ifndef O_WRONLY
76 #define O_WRONLY 1
77 #endif
78
79 #ifdef WINDOWSNT
80 #include <fcntl.h>
81 #include "w32.h"
82 #endif
83
84 #ifdef DOUG_LEA_MALLOC
85
86 #include <malloc.h>
87 /* malloc.h #defines this as size_t, at least in glibc2. */
88 #ifndef __malloc_size_t
89 #define __malloc_size_t int
90 #endif
91
92 /* Specify maximum number of areas to mmap. It would be nice to use a
93 value that explicitly means "no limit". */
94
95 #define MMAP_MAX_AREAS 100000000
96
97 #else /* not DOUG_LEA_MALLOC */
98
99 /* The following come from gmalloc.c. */
100
101 #define __malloc_size_t size_t
102 extern __malloc_size_t _bytes_used;
103 extern __malloc_size_t __malloc_extra_blocks;
104
105 #endif /* not DOUG_LEA_MALLOC */
106
107 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
108
109 /* When GTK uses the file chooser dialog, different backends can be loaded
110 dynamically. One such a backend is the Gnome VFS backend that gets loaded
111 if you run Gnome. That backend creates several threads and also allocates
112 memory with malloc.
113
114 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
115 functions below are called from malloc, there is a chance that one
116 of these threads preempts the Emacs main thread and the hook variables
117 end up in an inconsistent state. So we have a mutex to prevent that (note
118 that the backend handles concurrent access to malloc within its own threads
119 but Emacs code running in the main thread is not included in that control).
120
121 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
122 happens in one of the backend threads we will have two threads that tries
123 to run Emacs code at once, and the code is not prepared for that.
124 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
125
126 static pthread_mutex_t alloc_mutex;
127
128 #define BLOCK_INPUT_ALLOC \
129 do \
130 { \
131 if (pthread_equal (pthread_self (), main_thread)) \
132 BLOCK_INPUT; \
133 pthread_mutex_lock (&alloc_mutex); \
134 } \
135 while (0)
136 #define UNBLOCK_INPUT_ALLOC \
137 do \
138 { \
139 pthread_mutex_unlock (&alloc_mutex); \
140 if (pthread_equal (pthread_self (), main_thread)) \
141 UNBLOCK_INPUT; \
142 } \
143 while (0)
144
145 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
146
147 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
148 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
149
150 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
151
152 /* Value of _bytes_used, when spare_memory was freed. */
153
154 static __malloc_size_t bytes_used_when_full;
155
156 static __malloc_size_t bytes_used_when_reconsidered;
157
158 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
159 to a struct Lisp_String. */
160
161 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
162 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
163 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
164
165 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
166 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
167 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
168
169 /* Value is the number of bytes/chars of S, a pointer to a struct
170 Lisp_String. This must be used instead of STRING_BYTES (S) or
171 S->size during GC, because S->size contains the mark bit for
172 strings. */
173
174 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
175 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
176
177 /* Number of bytes of consing done since the last gc. */
178
179 int consing_since_gc;
180
181 /* Count the amount of consing of various sorts of space. */
182
183 EMACS_INT cons_cells_consed;
184 EMACS_INT floats_consed;
185 EMACS_INT vector_cells_consed;
186 EMACS_INT symbols_consed;
187 EMACS_INT string_chars_consed;
188 EMACS_INT misc_objects_consed;
189 EMACS_INT intervals_consed;
190 EMACS_INT strings_consed;
191
192 /* Minimum number of bytes of consing since GC before next GC. */
193
194 EMACS_INT gc_cons_threshold;
195
196 /* Similar minimum, computed from Vgc_cons_percentage. */
197
198 EMACS_INT gc_relative_threshold;
199
200 static Lisp_Object Vgc_cons_percentage;
201
202 /* Minimum number of bytes of consing since GC before next GC,
203 when memory is full. */
204
205 EMACS_INT memory_full_cons_threshold;
206
207 /* Nonzero during GC. */
208
209 int gc_in_progress;
210
211 /* Nonzero means abort if try to GC.
212 This is for code which is written on the assumption that
213 no GC will happen, so as to verify that assumption. */
214
215 int abort_on_gc;
216
217 /* Nonzero means display messages at beginning and end of GC. */
218
219 int garbage_collection_messages;
220
221 #ifndef VIRT_ADDR_VARIES
222 extern
223 #endif /* VIRT_ADDR_VARIES */
224 int malloc_sbrk_used;
225
226 #ifndef VIRT_ADDR_VARIES
227 extern
228 #endif /* VIRT_ADDR_VARIES */
229 int malloc_sbrk_unused;
230
231 /* Number of live and free conses etc. */
232
233 static int total_conses, total_markers, total_symbols, total_vector_size;
234 static int total_free_conses, total_free_markers, total_free_symbols;
235 static int total_free_floats, total_floats;
236
237 /* Points to memory space allocated as "spare", to be freed if we run
238 out of memory. We keep one large block, four cons-blocks, and
239 two string blocks. */
240
241 static char *spare_memory[7];
242
243 /* Amount of spare memory to keep in large reserve block. */
244
245 #define SPARE_MEMORY (1 << 14)
246
247 /* Number of extra blocks malloc should get when it needs more core. */
248
249 static int malloc_hysteresis;
250
251 /* Non-nil means defun should do purecopy on the function definition. */
252
253 Lisp_Object Vpurify_flag;
254
255 /* Non-nil means we are handling a memory-full error. */
256
257 Lisp_Object Vmemory_full;
258
259 /* Initialize it to a nonzero value to force it into data space
260 (rather than bss space). That way unexec will remap it into text
261 space (pure), on some systems. We have not implemented the
262 remapping on more recent systems because this is less important
263 nowadays than in the days of small memories and timesharing. */
264
265 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
266 #define PUREBEG (char *) pure
267
268 /* Pointer to the pure area, and its size. */
269
270 static char *purebeg;
271 static size_t pure_size;
272
273 /* Number of bytes of pure storage used before pure storage overflowed.
274 If this is non-zero, this implies that an overflow occurred. */
275
276 static size_t pure_bytes_used_before_overflow;
277
278 /* Value is non-zero if P points into pure space. */
279
280 #define PURE_POINTER_P(P) \
281 (((PNTR_COMPARISON_TYPE) (P) \
282 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
283 && ((PNTR_COMPARISON_TYPE) (P) \
284 >= (PNTR_COMPARISON_TYPE) purebeg))
285
286 /* Total number of bytes allocated in pure storage. */
287
288 EMACS_INT pure_bytes_used;
289
290 /* Index in pure at which next pure Lisp object will be allocated.. */
291
292 static EMACS_INT pure_bytes_used_lisp;
293
294 /* Number of bytes allocated for non-Lisp objects in pure storage. */
295
296 static EMACS_INT pure_bytes_used_non_lisp;
297
298 /* If nonzero, this is a warning delivered by malloc and not yet
299 displayed. */
300
301 char *pending_malloc_warning;
302
303 /* Pre-computed signal argument for use when memory is exhausted. */
304
305 Lisp_Object Vmemory_signal_data;
306
307 /* Maximum amount of C stack to save when a GC happens. */
308
309 #ifndef MAX_SAVE_STACK
310 #define MAX_SAVE_STACK 16000
311 #endif
312
313 /* Buffer in which we save a copy of the C stack at each GC. */
314
315 static char *stack_copy;
316 static int stack_copy_size;
317
318 /* Non-zero means ignore malloc warnings. Set during initialization.
319 Currently not used. */
320
321 static int ignore_warnings;
322
323 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
324
325 /* Hook run after GC has finished. */
326
327 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
328
329 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
330 EMACS_INT gcs_done; /* accumulated GCs */
331
332 static void mark_buffer (Lisp_Object);
333 static void mark_terminals (void);
334 extern void mark_kboards (void);
335 extern void mark_ttys (void);
336 extern void mark_backtrace (void);
337 static void gc_sweep (void);
338 static void mark_glyph_matrix (struct glyph_matrix *);
339 static void mark_face_cache (struct face_cache *);
340
341 #ifdef HAVE_WINDOW_SYSTEM
342 extern void mark_fringe_data (void);
343 #endif /* HAVE_WINDOW_SYSTEM */
344
345 static struct Lisp_String *allocate_string (void);
346 static void compact_small_strings (void);
347 static void free_large_strings (void);
348 static void sweep_strings (void);
349
350 extern int message_enable_multibyte;
351
352 /* When scanning the C stack for live Lisp objects, Emacs keeps track
353 of what memory allocated via lisp_malloc is intended for what
354 purpose. This enumeration specifies the type of memory. */
355
356 enum mem_type
357 {
358 MEM_TYPE_NON_LISP,
359 MEM_TYPE_BUFFER,
360 MEM_TYPE_CONS,
361 MEM_TYPE_STRING,
362 MEM_TYPE_MISC,
363 MEM_TYPE_SYMBOL,
364 MEM_TYPE_FLOAT,
365 /* We used to keep separate mem_types for subtypes of vectors such as
366 process, hash_table, frame, terminal, and window, but we never made
367 use of the distinction, so it only caused source-code complexity
368 and runtime slowdown. Minor but pointless. */
369 MEM_TYPE_VECTORLIKE
370 };
371
372 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
373 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
374 void refill_memory_reserve (void);
375
376
377 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
378
379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
380 #include <stdio.h> /* For fprintf. */
381 #endif
382
383 /* A unique object in pure space used to make some Lisp objects
384 on free lists recognizable in O(1). */
385
386 static Lisp_Object Vdead;
387
388 #ifdef GC_MALLOC_CHECK
389
390 enum mem_type allocated_mem_type;
391 static int dont_register_blocks;
392
393 #endif /* GC_MALLOC_CHECK */
394
395 /* A node in the red-black tree describing allocated memory containing
396 Lisp data. Each such block is recorded with its start and end
397 address when it is allocated, and removed from the tree when it
398 is freed.
399
400 A red-black tree is a balanced binary tree with the following
401 properties:
402
403 1. Every node is either red or black.
404 2. Every leaf is black.
405 3. If a node is red, then both of its children are black.
406 4. Every simple path from a node to a descendant leaf contains
407 the same number of black nodes.
408 5. The root is always black.
409
410 When nodes are inserted into the tree, or deleted from the tree,
411 the tree is "fixed" so that these properties are always true.
412
413 A red-black tree with N internal nodes has height at most 2
414 log(N+1). Searches, insertions and deletions are done in O(log N).
415 Please see a text book about data structures for a detailed
416 description of red-black trees. Any book worth its salt should
417 describe them. */
418
419 struct mem_node
420 {
421 /* Children of this node. These pointers are never NULL. When there
422 is no child, the value is MEM_NIL, which points to a dummy node. */
423 struct mem_node *left, *right;
424
425 /* The parent of this node. In the root node, this is NULL. */
426 struct mem_node *parent;
427
428 /* Start and end of allocated region. */
429 void *start, *end;
430
431 /* Node color. */
432 enum {MEM_BLACK, MEM_RED} color;
433
434 /* Memory type. */
435 enum mem_type type;
436 };
437
438 /* Base address of stack. Set in main. */
439
440 Lisp_Object *stack_base;
441
442 /* Root of the tree describing allocated Lisp memory. */
443
444 static struct mem_node *mem_root;
445
446 /* Lowest and highest known address in the heap. */
447
448 static void *min_heap_address, *max_heap_address;
449
450 /* Sentinel node of the tree. */
451
452 static struct mem_node mem_z;
453 #define MEM_NIL &mem_z
454
455 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
456 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
457 static void lisp_free (POINTER_TYPE *);
458 static void mark_stack (void);
459 static int live_vector_p (struct mem_node *, void *);
460 static int live_buffer_p (struct mem_node *, void *);
461 static int live_string_p (struct mem_node *, void *);
462 static int live_cons_p (struct mem_node *, void *);
463 static int live_symbol_p (struct mem_node *, void *);
464 static int live_float_p (struct mem_node *, void *);
465 static int live_misc_p (struct mem_node *, void *);
466 static void mark_maybe_object (Lisp_Object);
467 static void mark_memory (void *, void *, int);
468 static void mem_init (void);
469 static struct mem_node *mem_insert (void *, void *, enum mem_type);
470 static void mem_insert_fixup (struct mem_node *);
471 static void mem_rotate_left (struct mem_node *);
472 static void mem_rotate_right (struct mem_node *);
473 static void mem_delete (struct mem_node *);
474 static void mem_delete_fixup (struct mem_node *);
475 static INLINE struct mem_node *mem_find (void *);
476
477
478 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
479 static void check_gcpros (void);
480 #endif
481
482 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
483
484 /* Recording what needs to be marked for gc. */
485
486 struct gcpro *gcprolist;
487
488 /* Addresses of staticpro'd variables. Initialize it to a nonzero
489 value; otherwise some compilers put it into BSS. */
490
491 #define NSTATICS 0x640
492 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
493
494 /* Index of next unused slot in staticvec. */
495
496 static int staticidx = 0;
497
498 static POINTER_TYPE *pure_alloc (size_t, int);
499
500
501 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
502 ALIGNMENT must be a power of 2. */
503
504 #define ALIGN(ptr, ALIGNMENT) \
505 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
506 & ~((ALIGNMENT) - 1)))
507
508
509 \f
510 /************************************************************************
511 Malloc
512 ************************************************************************/
513
514 /* Function malloc calls this if it finds we are near exhausting storage. */
515
516 void
517 malloc_warning (char *str)
518 {
519 pending_malloc_warning = str;
520 }
521
522
523 /* Display an already-pending malloc warning. */
524
525 void
526 display_malloc_warning (void)
527 {
528 call3 (intern ("display-warning"),
529 intern ("alloc"),
530 build_string (pending_malloc_warning),
531 intern ("emergency"));
532 pending_malloc_warning = 0;
533 }
534
535
536 #ifdef DOUG_LEA_MALLOC
537 # define BYTES_USED (mallinfo ().uordblks)
538 #else
539 # define BYTES_USED _bytes_used
540 #endif
541 \f
542 /* Called if we can't allocate relocatable space for a buffer. */
543
544 void
545 buffer_memory_full (void)
546 {
547 /* If buffers use the relocating allocator, no need to free
548 spare_memory, because we may have plenty of malloc space left
549 that we could get, and if we don't, the malloc that fails will
550 itself cause spare_memory to be freed. If buffers don't use the
551 relocating allocator, treat this like any other failing
552 malloc. */
553
554 #ifndef REL_ALLOC
555 memory_full ();
556 #endif
557
558 /* This used to call error, but if we've run out of memory, we could
559 get infinite recursion trying to build the string. */
560 xsignal (Qnil, Vmemory_signal_data);
561 }
562
563
564 #ifdef XMALLOC_OVERRUN_CHECK
565
566 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
567 and a 16 byte trailer around each block.
568
569 The header consists of 12 fixed bytes + a 4 byte integer contaning the
570 original block size, while the trailer consists of 16 fixed bytes.
571
572 The header is used to detect whether this block has been allocated
573 through these functions -- as it seems that some low-level libc
574 functions may bypass the malloc hooks.
575 */
576
577
578 #define XMALLOC_OVERRUN_CHECK_SIZE 16
579
580 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
581 { 0x9a, 0x9b, 0xae, 0xaf,
582 0xbf, 0xbe, 0xce, 0xcf,
583 0xea, 0xeb, 0xec, 0xed };
584
585 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
586 { 0xaa, 0xab, 0xac, 0xad,
587 0xba, 0xbb, 0xbc, 0xbd,
588 0xca, 0xcb, 0xcc, 0xcd,
589 0xda, 0xdb, 0xdc, 0xdd };
590
591 /* Macros to insert and extract the block size in the header. */
592
593 #define XMALLOC_PUT_SIZE(ptr, size) \
594 (ptr[-1] = (size & 0xff), \
595 ptr[-2] = ((size >> 8) & 0xff), \
596 ptr[-3] = ((size >> 16) & 0xff), \
597 ptr[-4] = ((size >> 24) & 0xff))
598
599 #define XMALLOC_GET_SIZE(ptr) \
600 (size_t)((unsigned)(ptr[-1]) | \
601 ((unsigned)(ptr[-2]) << 8) | \
602 ((unsigned)(ptr[-3]) << 16) | \
603 ((unsigned)(ptr[-4]) << 24))
604
605
606 /* The call depth in overrun_check functions. For example, this might happen:
607 xmalloc()
608 overrun_check_malloc()
609 -> malloc -> (via hook)_-> emacs_blocked_malloc
610 -> overrun_check_malloc
611 call malloc (hooks are NULL, so real malloc is called).
612 malloc returns 10000.
613 add overhead, return 10016.
614 <- (back in overrun_check_malloc)
615 add overhead again, return 10032
616 xmalloc returns 10032.
617
618 (time passes).
619
620 xfree(10032)
621 overrun_check_free(10032)
622 decrease overhed
623 free(10016) <- crash, because 10000 is the original pointer. */
624
625 static int check_depth;
626
627 /* Like malloc, but wraps allocated block with header and trailer. */
628
629 POINTER_TYPE *
630 overrun_check_malloc (size)
631 size_t size;
632 {
633 register unsigned char *val;
634 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
635
636 val = (unsigned char *) malloc (size + overhead);
637 if (val && check_depth == 1)
638 {
639 memcpy (val, xmalloc_overrun_check_header,
640 XMALLOC_OVERRUN_CHECK_SIZE - 4);
641 val += XMALLOC_OVERRUN_CHECK_SIZE;
642 XMALLOC_PUT_SIZE(val, size);
643 memcpy (val + size, xmalloc_overrun_check_trailer,
644 XMALLOC_OVERRUN_CHECK_SIZE);
645 }
646 --check_depth;
647 return (POINTER_TYPE *)val;
648 }
649
650
651 /* Like realloc, but checks old block for overrun, and wraps new block
652 with header and trailer. */
653
654 POINTER_TYPE *
655 overrun_check_realloc (block, size)
656 POINTER_TYPE *block;
657 size_t size;
658 {
659 register unsigned char *val = (unsigned char *)block;
660 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
661
662 if (val
663 && check_depth == 1
664 && memcmp (xmalloc_overrun_check_header,
665 val - XMALLOC_OVERRUN_CHECK_SIZE,
666 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
667 {
668 size_t osize = XMALLOC_GET_SIZE (val);
669 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
670 XMALLOC_OVERRUN_CHECK_SIZE))
671 abort ();
672 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
673 val -= XMALLOC_OVERRUN_CHECK_SIZE;
674 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
675 }
676
677 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
678
679 if (val && check_depth == 1)
680 {
681 memcpy (val, xmalloc_overrun_check_header,
682 XMALLOC_OVERRUN_CHECK_SIZE - 4);
683 val += XMALLOC_OVERRUN_CHECK_SIZE;
684 XMALLOC_PUT_SIZE(val, size);
685 memcpy (val + size, xmalloc_overrun_check_trailer,
686 XMALLOC_OVERRUN_CHECK_SIZE);
687 }
688 --check_depth;
689 return (POINTER_TYPE *)val;
690 }
691
692 /* Like free, but checks block for overrun. */
693
694 void
695 overrun_check_free (block)
696 POINTER_TYPE *block;
697 {
698 unsigned char *val = (unsigned char *)block;
699
700 ++check_depth;
701 if (val
702 && check_depth == 1
703 && memcmp (xmalloc_overrun_check_header,
704 val - XMALLOC_OVERRUN_CHECK_SIZE,
705 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
706 {
707 size_t osize = XMALLOC_GET_SIZE (val);
708 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
709 XMALLOC_OVERRUN_CHECK_SIZE))
710 abort ();
711 #ifdef XMALLOC_CLEAR_FREE_MEMORY
712 val -= XMALLOC_OVERRUN_CHECK_SIZE;
713 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
714 #else
715 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE;
717 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
718 #endif
719 }
720
721 free (val);
722 --check_depth;
723 }
724
725 #undef malloc
726 #undef realloc
727 #undef free
728 #define malloc overrun_check_malloc
729 #define realloc overrun_check_realloc
730 #define free overrun_check_free
731 #endif
732
733 #ifdef SYNC_INPUT
734 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
735 there's no need to block input around malloc. */
736 #define MALLOC_BLOCK_INPUT ((void)0)
737 #define MALLOC_UNBLOCK_INPUT ((void)0)
738 #else
739 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
740 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
741 #endif
742
743 /* Like malloc but check for no memory and block interrupt input.. */
744
745 POINTER_TYPE *
746 xmalloc (size_t size)
747 {
748 register POINTER_TYPE *val;
749
750 MALLOC_BLOCK_INPUT;
751 val = (POINTER_TYPE *) malloc (size);
752 MALLOC_UNBLOCK_INPUT;
753
754 if (!val && size)
755 memory_full ();
756 return val;
757 }
758
759
760 /* Like realloc but check for no memory and block interrupt input.. */
761
762 POINTER_TYPE *
763 xrealloc (POINTER_TYPE *block, size_t size)
764 {
765 register POINTER_TYPE *val;
766
767 MALLOC_BLOCK_INPUT;
768 /* We must call malloc explicitly when BLOCK is 0, since some
769 reallocs don't do this. */
770 if (! block)
771 val = (POINTER_TYPE *) malloc (size);
772 else
773 val = (POINTER_TYPE *) realloc (block, size);
774 MALLOC_UNBLOCK_INPUT;
775
776 if (!val && size) memory_full ();
777 return val;
778 }
779
780
781 /* Like free but block interrupt input. */
782
783 void
784 xfree (POINTER_TYPE *block)
785 {
786 if (!block)
787 return;
788 MALLOC_BLOCK_INPUT;
789 free (block);
790 MALLOC_UNBLOCK_INPUT;
791 /* We don't call refill_memory_reserve here
792 because that duplicates doing so in emacs_blocked_free
793 and the criterion should go there. */
794 }
795
796
797 /* Like strdup, but uses xmalloc. */
798
799 char *
800 xstrdup (const char *s)
801 {
802 size_t len = strlen (s) + 1;
803 char *p = (char *) xmalloc (len);
804 memcpy (p, s, len);
805 return p;
806 }
807
808
809 /* Unwind for SAFE_ALLOCA */
810
811 Lisp_Object
812 safe_alloca_unwind (Lisp_Object arg)
813 {
814 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
815
816 p->dogc = 0;
817 xfree (p->pointer);
818 p->pointer = 0;
819 free_misc (arg);
820 return Qnil;
821 }
822
823
824 /* Like malloc but used for allocating Lisp data. NBYTES is the
825 number of bytes to allocate, TYPE describes the intended use of the
826 allcated memory block (for strings, for conses, ...). */
827
828 #ifndef USE_LSB_TAG
829 static void *lisp_malloc_loser;
830 #endif
831
832 static POINTER_TYPE *
833 lisp_malloc (size_t nbytes, enum mem_type type)
834 {
835 register void *val;
836
837 MALLOC_BLOCK_INPUT;
838
839 #ifdef GC_MALLOC_CHECK
840 allocated_mem_type = type;
841 #endif
842
843 val = (void *) malloc (nbytes);
844
845 #ifndef USE_LSB_TAG
846 /* If the memory just allocated cannot be addressed thru a Lisp
847 object's pointer, and it needs to be,
848 that's equivalent to running out of memory. */
849 if (val && type != MEM_TYPE_NON_LISP)
850 {
851 Lisp_Object tem;
852 XSETCONS (tem, (char *) val + nbytes - 1);
853 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
854 {
855 lisp_malloc_loser = val;
856 free (val);
857 val = 0;
858 }
859 }
860 #endif
861
862 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
863 if (val && type != MEM_TYPE_NON_LISP)
864 mem_insert (val, (char *) val + nbytes, type);
865 #endif
866
867 MALLOC_UNBLOCK_INPUT;
868 if (!val && nbytes)
869 memory_full ();
870 return val;
871 }
872
873 /* Free BLOCK. This must be called to free memory allocated with a
874 call to lisp_malloc. */
875
876 static void
877 lisp_free (POINTER_TYPE *block)
878 {
879 MALLOC_BLOCK_INPUT;
880 free (block);
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 mem_delete (mem_find (block));
883 #endif
884 MALLOC_UNBLOCK_INPUT;
885 }
886
887 /* Allocation of aligned blocks of memory to store Lisp data. */
888 /* The entry point is lisp_align_malloc which returns blocks of at most */
889 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
890
891 /* Use posix_memalloc if the system has it and we're using the system's
892 malloc (because our gmalloc.c routines don't have posix_memalign although
893 its memalloc could be used). */
894 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
895 #define USE_POSIX_MEMALIGN 1
896 #endif
897
898 /* BLOCK_ALIGN has to be a power of 2. */
899 #define BLOCK_ALIGN (1 << 10)
900
901 /* Padding to leave at the end of a malloc'd block. This is to give
902 malloc a chance to minimize the amount of memory wasted to alignment.
903 It should be tuned to the particular malloc library used.
904 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
905 posix_memalign on the other hand would ideally prefer a value of 4
906 because otherwise, there's 1020 bytes wasted between each ablocks.
907 In Emacs, testing shows that those 1020 can most of the time be
908 efficiently used by malloc to place other objects, so a value of 0 can
909 still preferable unless you have a lot of aligned blocks and virtually
910 nothing else. */
911 #define BLOCK_PADDING 0
912 #define BLOCK_BYTES \
913 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
914
915 /* Internal data structures and constants. */
916
917 #define ABLOCKS_SIZE 16
918
919 /* An aligned block of memory. */
920 struct ablock
921 {
922 union
923 {
924 char payload[BLOCK_BYTES];
925 struct ablock *next_free;
926 } x;
927 /* `abase' is the aligned base of the ablocks. */
928 /* It is overloaded to hold the virtual `busy' field that counts
929 the number of used ablock in the parent ablocks.
930 The first ablock has the `busy' field, the others have the `abase'
931 field. To tell the difference, we assume that pointers will have
932 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
933 is used to tell whether the real base of the parent ablocks is `abase'
934 (if not, the word before the first ablock holds a pointer to the
935 real base). */
936 struct ablocks *abase;
937 /* The padding of all but the last ablock is unused. The padding of
938 the last ablock in an ablocks is not allocated. */
939 #if BLOCK_PADDING
940 char padding[BLOCK_PADDING];
941 #endif
942 };
943
944 /* A bunch of consecutive aligned blocks. */
945 struct ablocks
946 {
947 struct ablock blocks[ABLOCKS_SIZE];
948 };
949
950 /* Size of the block requested from malloc or memalign. */
951 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
952
953 #define ABLOCK_ABASE(block) \
954 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
955 ? (struct ablocks *)(block) \
956 : (block)->abase)
957
958 /* Virtual `busy' field. */
959 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
960
961 /* Pointer to the (not necessarily aligned) malloc block. */
962 #ifdef USE_POSIX_MEMALIGN
963 #define ABLOCKS_BASE(abase) (abase)
964 #else
965 #define ABLOCKS_BASE(abase) \
966 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
967 #endif
968
969 /* The list of free ablock. */
970 static struct ablock *free_ablock;
971
972 /* Allocate an aligned block of nbytes.
973 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
974 smaller or equal to BLOCK_BYTES. */
975 static POINTER_TYPE *
976 lisp_align_malloc (size_t nbytes, enum mem_type type)
977 {
978 void *base, *val;
979 struct ablocks *abase;
980
981 eassert (nbytes <= BLOCK_BYTES);
982
983 MALLOC_BLOCK_INPUT;
984
985 #ifdef GC_MALLOC_CHECK
986 allocated_mem_type = type;
987 #endif
988
989 if (!free_ablock)
990 {
991 int i;
992 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
993
994 #ifdef DOUG_LEA_MALLOC
995 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
996 because mapped region contents are not preserved in
997 a dumped Emacs. */
998 mallopt (M_MMAP_MAX, 0);
999 #endif
1000
1001 #ifdef USE_POSIX_MEMALIGN
1002 {
1003 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1004 if (err)
1005 base = NULL;
1006 abase = base;
1007 }
1008 #else
1009 base = malloc (ABLOCKS_BYTES);
1010 abase = ALIGN (base, BLOCK_ALIGN);
1011 #endif
1012
1013 if (base == 0)
1014 {
1015 MALLOC_UNBLOCK_INPUT;
1016 memory_full ();
1017 }
1018
1019 aligned = (base == abase);
1020 if (!aligned)
1021 ((void**)abase)[-1] = base;
1022
1023 #ifdef DOUG_LEA_MALLOC
1024 /* Back to a reasonable maximum of mmap'ed areas. */
1025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1026 #endif
1027
1028 #ifndef USE_LSB_TAG
1029 /* If the memory just allocated cannot be addressed thru a Lisp
1030 object's pointer, and it needs to be, that's equivalent to
1031 running out of memory. */
1032 if (type != MEM_TYPE_NON_LISP)
1033 {
1034 Lisp_Object tem;
1035 char *end = (char *) base + ABLOCKS_BYTES - 1;
1036 XSETCONS (tem, end);
1037 if ((char *) XCONS (tem) != end)
1038 {
1039 lisp_malloc_loser = base;
1040 free (base);
1041 MALLOC_UNBLOCK_INPUT;
1042 memory_full ();
1043 }
1044 }
1045 #endif
1046
1047 /* Initialize the blocks and put them on the free list.
1048 Is `base' was not properly aligned, we can't use the last block. */
1049 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1050 {
1051 abase->blocks[i].abase = abase;
1052 abase->blocks[i].x.next_free = free_ablock;
1053 free_ablock = &abase->blocks[i];
1054 }
1055 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1056
1057 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1058 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1059 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1060 eassert (ABLOCKS_BASE (abase) == base);
1061 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1062 }
1063
1064 abase = ABLOCK_ABASE (free_ablock);
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1066 val = free_ablock;
1067 free_ablock = free_ablock->x.next_free;
1068
1069 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1070 if (val && type != MEM_TYPE_NON_LISP)
1071 mem_insert (val, (char *) val + nbytes, type);
1072 #endif
1073
1074 MALLOC_UNBLOCK_INPUT;
1075 if (!val && nbytes)
1076 memory_full ();
1077
1078 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1079 return val;
1080 }
1081
1082 static void
1083 lisp_align_free (POINTER_TYPE *block)
1084 {
1085 struct ablock *ablock = block;
1086 struct ablocks *abase = ABLOCK_ABASE (ablock);
1087
1088 MALLOC_BLOCK_INPUT;
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 mem_delete (mem_find (block));
1091 #endif
1092 /* Put on free list. */
1093 ablock->x.next_free = free_ablock;
1094 free_ablock = ablock;
1095 /* Update busy count. */
1096 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1097
1098 if (2 > (long) ABLOCKS_BUSY (abase))
1099 { /* All the blocks are free. */
1100 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1101 struct ablock **tem = &free_ablock;
1102 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1103
1104 while (*tem)
1105 {
1106 if (*tem >= (struct ablock *) abase && *tem < atop)
1107 {
1108 i++;
1109 *tem = (*tem)->x.next_free;
1110 }
1111 else
1112 tem = &(*tem)->x.next_free;
1113 }
1114 eassert ((aligned & 1) == aligned);
1115 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1116 #ifdef USE_POSIX_MEMALIGN
1117 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1118 #endif
1119 free (ABLOCKS_BASE (abase));
1120 }
1121 MALLOC_UNBLOCK_INPUT;
1122 }
1123
1124 /* Return a new buffer structure allocated from the heap with
1125 a call to lisp_malloc. */
1126
1127 struct buffer *
1128 allocate_buffer (void)
1129 {
1130 struct buffer *b
1131 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1132 MEM_TYPE_BUFFER);
1133 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1134 XSETPVECTYPE (b, PVEC_BUFFER);
1135 return b;
1136 }
1137
1138 \f
1139 #ifndef SYSTEM_MALLOC
1140
1141 /* Arranging to disable input signals while we're in malloc.
1142
1143 This only works with GNU malloc. To help out systems which can't
1144 use GNU malloc, all the calls to malloc, realloc, and free
1145 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1146 pair; unfortunately, we have no idea what C library functions
1147 might call malloc, so we can't really protect them unless you're
1148 using GNU malloc. Fortunately, most of the major operating systems
1149 can use GNU malloc. */
1150
1151 #ifndef SYNC_INPUT
1152 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1153 there's no need to block input around malloc. */
1154
1155 #ifndef DOUG_LEA_MALLOC
1156 extern void * (*__malloc_hook) (size_t, const void *);
1157 extern void * (*__realloc_hook) (void *, size_t, const void *);
1158 extern void (*__free_hook) (void *, const void *);
1159 /* Else declared in malloc.h, perhaps with an extra arg. */
1160 #endif /* DOUG_LEA_MALLOC */
1161 static void * (*old_malloc_hook) (size_t, const void *);
1162 static void * (*old_realloc_hook) (void *, size_t, const void*);
1163 static void (*old_free_hook) (void*, const void*);
1164
1165 /* This function is used as the hook for free to call. */
1166
1167 static void
1168 emacs_blocked_free (ptr, ptr2)
1169 void *ptr;
1170 const void *ptr2;
1171 {
1172 BLOCK_INPUT_ALLOC;
1173
1174 #ifdef GC_MALLOC_CHECK
1175 if (ptr)
1176 {
1177 struct mem_node *m;
1178
1179 m = mem_find (ptr);
1180 if (m == MEM_NIL || m->start != ptr)
1181 {
1182 fprintf (stderr,
1183 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1184 abort ();
1185 }
1186 else
1187 {
1188 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1189 mem_delete (m);
1190 }
1191 }
1192 #endif /* GC_MALLOC_CHECK */
1193
1194 __free_hook = old_free_hook;
1195 free (ptr);
1196
1197 /* If we released our reserve (due to running out of memory),
1198 and we have a fair amount free once again,
1199 try to set aside another reserve in case we run out once more. */
1200 if (! NILP (Vmemory_full)
1201 /* Verify there is enough space that even with the malloc
1202 hysteresis this call won't run out again.
1203 The code here is correct as long as SPARE_MEMORY
1204 is substantially larger than the block size malloc uses. */
1205 && (bytes_used_when_full
1206 > ((bytes_used_when_reconsidered = BYTES_USED)
1207 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1208 refill_memory_reserve ();
1209
1210 __free_hook = emacs_blocked_free;
1211 UNBLOCK_INPUT_ALLOC;
1212 }
1213
1214
1215 /* This function is the malloc hook that Emacs uses. */
1216
1217 static void *
1218 emacs_blocked_malloc (size, ptr)
1219 size_t size;
1220 const void *ptr;
1221 {
1222 void *value;
1223
1224 BLOCK_INPUT_ALLOC;
1225 __malloc_hook = old_malloc_hook;
1226 #ifdef DOUG_LEA_MALLOC
1227 /* Segfaults on my system. --lorentey */
1228 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1229 #else
1230 __malloc_extra_blocks = malloc_hysteresis;
1231 #endif
1232
1233 value = (void *) malloc (size);
1234
1235 #ifdef GC_MALLOC_CHECK
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Malloc returned %p which is already in use\n",
1241 value);
1242 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1243 m->start, m->end, (char *) m->end - (char *) m->start,
1244 m->type);
1245 abort ();
1246 }
1247
1248 if (!dont_register_blocks)
1249 {
1250 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1251 allocated_mem_type = MEM_TYPE_NON_LISP;
1252 }
1253 }
1254 #endif /* GC_MALLOC_CHECK */
1255
1256 __malloc_hook = emacs_blocked_malloc;
1257 UNBLOCK_INPUT_ALLOC;
1258
1259 /* fprintf (stderr, "%p malloc\n", value); */
1260 return value;
1261 }
1262
1263
1264 /* This function is the realloc hook that Emacs uses. */
1265
1266 static void *
1267 emacs_blocked_realloc (ptr, size, ptr2)
1268 void *ptr;
1269 size_t size;
1270 const void *ptr2;
1271 {
1272 void *value;
1273
1274 BLOCK_INPUT_ALLOC;
1275 __realloc_hook = old_realloc_hook;
1276
1277 #ifdef GC_MALLOC_CHECK
1278 if (ptr)
1279 {
1280 struct mem_node *m = mem_find (ptr);
1281 if (m == MEM_NIL || m->start != ptr)
1282 {
1283 fprintf (stderr,
1284 "Realloc of %p which wasn't allocated with malloc\n",
1285 ptr);
1286 abort ();
1287 }
1288
1289 mem_delete (m);
1290 }
1291
1292 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1293
1294 /* Prevent malloc from registering blocks. */
1295 dont_register_blocks = 1;
1296 #endif /* GC_MALLOC_CHECK */
1297
1298 value = (void *) realloc (ptr, size);
1299
1300 #ifdef GC_MALLOC_CHECK
1301 dont_register_blocks = 0;
1302
1303 {
1304 struct mem_node *m = mem_find (value);
1305 if (m != MEM_NIL)
1306 {
1307 fprintf (stderr, "Realloc returns memory that is already in use\n");
1308 abort ();
1309 }
1310
1311 /* Can't handle zero size regions in the red-black tree. */
1312 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1313 }
1314
1315 /* fprintf (stderr, "%p <- realloc\n", value); */
1316 #endif /* GC_MALLOC_CHECK */
1317
1318 __realloc_hook = emacs_blocked_realloc;
1319 UNBLOCK_INPUT_ALLOC;
1320
1321 return value;
1322 }
1323
1324
1325 #ifdef HAVE_GTK_AND_PTHREAD
1326 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1327 normal malloc. Some thread implementations need this as they call
1328 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1329 calls malloc because it is the first call, and we have an endless loop. */
1330
1331 void
1332 reset_malloc_hooks ()
1333 {
1334 __free_hook = old_free_hook;
1335 __malloc_hook = old_malloc_hook;
1336 __realloc_hook = old_realloc_hook;
1337 }
1338 #endif /* HAVE_GTK_AND_PTHREAD */
1339
1340
1341 /* Called from main to set up malloc to use our hooks. */
1342
1343 void
1344 uninterrupt_malloc ()
1345 {
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 #ifdef DOUG_LEA_MALLOC
1348 pthread_mutexattr_t attr;
1349
1350 /* GLIBC has a faster way to do this, but lets keep it portable.
1351 This is according to the Single UNIX Specification. */
1352 pthread_mutexattr_init (&attr);
1353 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1354 pthread_mutex_init (&alloc_mutex, &attr);
1355 #else /* !DOUG_LEA_MALLOC */
1356 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1357 and the bundled gmalloc.c doesn't require it. */
1358 pthread_mutex_init (&alloc_mutex, NULL);
1359 #endif /* !DOUG_LEA_MALLOC */
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1361
1362 if (__free_hook != emacs_blocked_free)
1363 old_free_hook = __free_hook;
1364 __free_hook = emacs_blocked_free;
1365
1366 if (__malloc_hook != emacs_blocked_malloc)
1367 old_malloc_hook = __malloc_hook;
1368 __malloc_hook = emacs_blocked_malloc;
1369
1370 if (__realloc_hook != emacs_blocked_realloc)
1371 old_realloc_hook = __realloc_hook;
1372 __realloc_hook = emacs_blocked_realloc;
1373 }
1374
1375 #endif /* not SYNC_INPUT */
1376 #endif /* not SYSTEM_MALLOC */
1377
1378
1379 \f
1380 /***********************************************************************
1381 Interval Allocation
1382 ***********************************************************************/
1383
1384 /* Number of intervals allocated in an interval_block structure.
1385 The 1020 is 1024 minus malloc overhead. */
1386
1387 #define INTERVAL_BLOCK_SIZE \
1388 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1389
1390 /* Intervals are allocated in chunks in form of an interval_block
1391 structure. */
1392
1393 struct interval_block
1394 {
1395 /* Place `intervals' first, to preserve alignment. */
1396 struct interval intervals[INTERVAL_BLOCK_SIZE];
1397 struct interval_block *next;
1398 };
1399
1400 /* Current interval block. Its `next' pointer points to older
1401 blocks. */
1402
1403 static struct interval_block *interval_block;
1404
1405 /* Index in interval_block above of the next unused interval
1406 structure. */
1407
1408 static int interval_block_index;
1409
1410 /* Number of free and live intervals. */
1411
1412 static int total_free_intervals, total_intervals;
1413
1414 /* List of free intervals. */
1415
1416 INTERVAL interval_free_list;
1417
1418 /* Total number of interval blocks now in use. */
1419
1420 static int n_interval_blocks;
1421
1422
1423 /* Initialize interval allocation. */
1424
1425 static void
1426 init_intervals (void)
1427 {
1428 interval_block = NULL;
1429 interval_block_index = INTERVAL_BLOCK_SIZE;
1430 interval_free_list = 0;
1431 n_interval_blocks = 0;
1432 }
1433
1434
1435 /* Return a new interval. */
1436
1437 INTERVAL
1438 make_interval (void)
1439 {
1440 INTERVAL val;
1441
1442 /* eassert (!handling_signal); */
1443
1444 MALLOC_BLOCK_INPUT;
1445
1446 if (interval_free_list)
1447 {
1448 val = interval_free_list;
1449 interval_free_list = INTERVAL_PARENT (interval_free_list);
1450 }
1451 else
1452 {
1453 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1454 {
1455 register struct interval_block *newi;
1456
1457 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1458 MEM_TYPE_NON_LISP);
1459
1460 newi->next = interval_block;
1461 interval_block = newi;
1462 interval_block_index = 0;
1463 n_interval_blocks++;
1464 }
1465 val = &interval_block->intervals[interval_block_index++];
1466 }
1467
1468 MALLOC_UNBLOCK_INPUT;
1469
1470 consing_since_gc += sizeof (struct interval);
1471 intervals_consed++;
1472 RESET_INTERVAL (val);
1473 val->gcmarkbit = 0;
1474 return val;
1475 }
1476
1477
1478 /* Mark Lisp objects in interval I. */
1479
1480 static void
1481 mark_interval (register INTERVAL i, Lisp_Object dummy)
1482 {
1483 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1484 i->gcmarkbit = 1;
1485 mark_object (i->plist);
1486 }
1487
1488
1489 /* Mark the interval tree rooted in TREE. Don't call this directly;
1490 use the macro MARK_INTERVAL_TREE instead. */
1491
1492 static void
1493 mark_interval_tree (register INTERVAL tree)
1494 {
1495 /* No need to test if this tree has been marked already; this
1496 function is always called through the MARK_INTERVAL_TREE macro,
1497 which takes care of that. */
1498
1499 traverse_intervals_noorder (tree, mark_interval, Qnil);
1500 }
1501
1502
1503 /* Mark the interval tree rooted in I. */
1504
1505 #define MARK_INTERVAL_TREE(i) \
1506 do { \
1507 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1508 mark_interval_tree (i); \
1509 } while (0)
1510
1511
1512 #define UNMARK_BALANCE_INTERVALS(i) \
1513 do { \
1514 if (! NULL_INTERVAL_P (i)) \
1515 (i) = balance_intervals (i); \
1516 } while (0)
1517
1518 \f
1519 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1520 can't create number objects in macros. */
1521 #ifndef make_number
1522 Lisp_Object
1523 make_number (n)
1524 EMACS_INT n;
1525 {
1526 Lisp_Object obj;
1527 obj.s.val = n;
1528 obj.s.type = Lisp_Int;
1529 return obj;
1530 }
1531 #endif
1532 \f
1533 /***********************************************************************
1534 String Allocation
1535 ***********************************************************************/
1536
1537 /* Lisp_Strings are allocated in string_block structures. When a new
1538 string_block is allocated, all the Lisp_Strings it contains are
1539 added to a free-list string_free_list. When a new Lisp_String is
1540 needed, it is taken from that list. During the sweep phase of GC,
1541 string_blocks that are entirely free are freed, except two which
1542 we keep.
1543
1544 String data is allocated from sblock structures. Strings larger
1545 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1546 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1547
1548 Sblocks consist internally of sdata structures, one for each
1549 Lisp_String. The sdata structure points to the Lisp_String it
1550 belongs to. The Lisp_String points back to the `u.data' member of
1551 its sdata structure.
1552
1553 When a Lisp_String is freed during GC, it is put back on
1554 string_free_list, and its `data' member and its sdata's `string'
1555 pointer is set to null. The size of the string is recorded in the
1556 `u.nbytes' member of the sdata. So, sdata structures that are no
1557 longer used, can be easily recognized, and it's easy to compact the
1558 sblocks of small strings which we do in compact_small_strings. */
1559
1560 /* Size in bytes of an sblock structure used for small strings. This
1561 is 8192 minus malloc overhead. */
1562
1563 #define SBLOCK_SIZE 8188
1564
1565 /* Strings larger than this are considered large strings. String data
1566 for large strings is allocated from individual sblocks. */
1567
1568 #define LARGE_STRING_BYTES 1024
1569
1570 /* Structure describing string memory sub-allocated from an sblock.
1571 This is where the contents of Lisp strings are stored. */
1572
1573 struct sdata
1574 {
1575 /* Back-pointer to the string this sdata belongs to. If null, this
1576 structure is free, and the NBYTES member of the union below
1577 contains the string's byte size (the same value that STRING_BYTES
1578 would return if STRING were non-null). If non-null, STRING_BYTES
1579 (STRING) is the size of the data, and DATA contains the string's
1580 contents. */
1581 struct Lisp_String *string;
1582
1583 #ifdef GC_CHECK_STRING_BYTES
1584
1585 EMACS_INT nbytes;
1586 unsigned char data[1];
1587
1588 #define SDATA_NBYTES(S) (S)->nbytes
1589 #define SDATA_DATA(S) (S)->data
1590
1591 #else /* not GC_CHECK_STRING_BYTES */
1592
1593 union
1594 {
1595 /* When STRING in non-null. */
1596 unsigned char data[1];
1597
1598 /* When STRING is null. */
1599 EMACS_INT nbytes;
1600 } u;
1601
1602
1603 #define SDATA_NBYTES(S) (S)->u.nbytes
1604 #define SDATA_DATA(S) (S)->u.data
1605
1606 #endif /* not GC_CHECK_STRING_BYTES */
1607 };
1608
1609
1610 /* Structure describing a block of memory which is sub-allocated to
1611 obtain string data memory for strings. Blocks for small strings
1612 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1613 as large as needed. */
1614
1615 struct sblock
1616 {
1617 /* Next in list. */
1618 struct sblock *next;
1619
1620 /* Pointer to the next free sdata block. This points past the end
1621 of the sblock if there isn't any space left in this block. */
1622 struct sdata *next_free;
1623
1624 /* Start of data. */
1625 struct sdata first_data;
1626 };
1627
1628 /* Number of Lisp strings in a string_block structure. The 1020 is
1629 1024 minus malloc overhead. */
1630
1631 #define STRING_BLOCK_SIZE \
1632 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1633
1634 /* Structure describing a block from which Lisp_String structures
1635 are allocated. */
1636
1637 struct string_block
1638 {
1639 /* Place `strings' first, to preserve alignment. */
1640 struct Lisp_String strings[STRING_BLOCK_SIZE];
1641 struct string_block *next;
1642 };
1643
1644 /* Head and tail of the list of sblock structures holding Lisp string
1645 data. We always allocate from current_sblock. The NEXT pointers
1646 in the sblock structures go from oldest_sblock to current_sblock. */
1647
1648 static struct sblock *oldest_sblock, *current_sblock;
1649
1650 /* List of sblocks for large strings. */
1651
1652 static struct sblock *large_sblocks;
1653
1654 /* List of string_block structures, and how many there are. */
1655
1656 static struct string_block *string_blocks;
1657 static int n_string_blocks;
1658
1659 /* Free-list of Lisp_Strings. */
1660
1661 static struct Lisp_String *string_free_list;
1662
1663 /* Number of live and free Lisp_Strings. */
1664
1665 static int total_strings, total_free_strings;
1666
1667 /* Number of bytes used by live strings. */
1668
1669 static int total_string_size;
1670
1671 /* Given a pointer to a Lisp_String S which is on the free-list
1672 string_free_list, return a pointer to its successor in the
1673 free-list. */
1674
1675 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1676
1677 /* Return a pointer to the sdata structure belonging to Lisp string S.
1678 S must be live, i.e. S->data must not be null. S->data is actually
1679 a pointer to the `u.data' member of its sdata structure; the
1680 structure starts at a constant offset in front of that. */
1681
1682 #ifdef GC_CHECK_STRING_BYTES
1683
1684 #define SDATA_OF_STRING(S) \
1685 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1686 - sizeof (EMACS_INT)))
1687
1688 #else /* not GC_CHECK_STRING_BYTES */
1689
1690 #define SDATA_OF_STRING(S) \
1691 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1692
1693 #endif /* not GC_CHECK_STRING_BYTES */
1694
1695
1696 #ifdef GC_CHECK_STRING_OVERRUN
1697
1698 /* We check for overrun in string data blocks by appending a small
1699 "cookie" after each allocated string data block, and check for the
1700 presence of this cookie during GC. */
1701
1702 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1703 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1704 { 0xde, 0xad, 0xbe, 0xef };
1705
1706 #else
1707 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1708 #endif
1709
1710 /* Value is the size of an sdata structure large enough to hold NBYTES
1711 bytes of string data. The value returned includes a terminating
1712 NUL byte, the size of the sdata structure, and padding. */
1713
1714 #ifdef GC_CHECK_STRING_BYTES
1715
1716 #define SDATA_SIZE(NBYTES) \
1717 ((sizeof (struct Lisp_String *) \
1718 + (NBYTES) + 1 \
1719 + sizeof (EMACS_INT) \
1720 + sizeof (EMACS_INT) - 1) \
1721 & ~(sizeof (EMACS_INT) - 1))
1722
1723 #else /* not GC_CHECK_STRING_BYTES */
1724
1725 #define SDATA_SIZE(NBYTES) \
1726 ((sizeof (struct Lisp_String *) \
1727 + (NBYTES) + 1 \
1728 + sizeof (EMACS_INT) - 1) \
1729 & ~(sizeof (EMACS_INT) - 1))
1730
1731 #endif /* not GC_CHECK_STRING_BYTES */
1732
1733 /* Extra bytes to allocate for each string. */
1734
1735 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1736
1737 /* Initialize string allocation. Called from init_alloc_once. */
1738
1739 static void
1740 init_strings (void)
1741 {
1742 total_strings = total_free_strings = total_string_size = 0;
1743 oldest_sblock = current_sblock = large_sblocks = NULL;
1744 string_blocks = NULL;
1745 n_string_blocks = 0;
1746 string_free_list = NULL;
1747 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1748 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1749 }
1750
1751
1752 #ifdef GC_CHECK_STRING_BYTES
1753
1754 static int check_string_bytes_count;
1755
1756 static void check_string_bytes (int);
1757 static void check_sblock (struct sblock *);
1758
1759 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1760
1761
1762 /* Like GC_STRING_BYTES, but with debugging check. */
1763
1764 int
1765 string_bytes (s)
1766 struct Lisp_String *s;
1767 {
1768 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1769 if (!PURE_POINTER_P (s)
1770 && s->data
1771 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1772 abort ();
1773 return nbytes;
1774 }
1775
1776 /* Check validity of Lisp strings' string_bytes member in B. */
1777
1778 static void
1779 check_sblock (b)
1780 struct sblock *b;
1781 {
1782 struct sdata *from, *end, *from_end;
1783
1784 end = b->next_free;
1785
1786 for (from = &b->first_data; from < end; from = from_end)
1787 {
1788 /* Compute the next FROM here because copying below may
1789 overwrite data we need to compute it. */
1790 int nbytes;
1791
1792 /* Check that the string size recorded in the string is the
1793 same as the one recorded in the sdata structure. */
1794 if (from->string)
1795 CHECK_STRING_BYTES (from->string);
1796
1797 if (from->string)
1798 nbytes = GC_STRING_BYTES (from->string);
1799 else
1800 nbytes = SDATA_NBYTES (from);
1801
1802 nbytes = SDATA_SIZE (nbytes);
1803 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1804 }
1805 }
1806
1807
1808 /* Check validity of Lisp strings' string_bytes member. ALL_P
1809 non-zero means check all strings, otherwise check only most
1810 recently allocated strings. Used for hunting a bug. */
1811
1812 static void
1813 check_string_bytes (all_p)
1814 int all_p;
1815 {
1816 if (all_p)
1817 {
1818 struct sblock *b;
1819
1820 for (b = large_sblocks; b; b = b->next)
1821 {
1822 struct Lisp_String *s = b->first_data.string;
1823 if (s)
1824 CHECK_STRING_BYTES (s);
1825 }
1826
1827 for (b = oldest_sblock; b; b = b->next)
1828 check_sblock (b);
1829 }
1830 else
1831 check_sblock (current_sblock);
1832 }
1833
1834 #endif /* GC_CHECK_STRING_BYTES */
1835
1836 #ifdef GC_CHECK_STRING_FREE_LIST
1837
1838 /* Walk through the string free list looking for bogus next pointers.
1839 This may catch buffer overrun from a previous string. */
1840
1841 static void
1842 check_string_free_list ()
1843 {
1844 struct Lisp_String *s;
1845
1846 /* Pop a Lisp_String off the free-list. */
1847 s = string_free_list;
1848 while (s != NULL)
1849 {
1850 if ((unsigned)s < 1024)
1851 abort();
1852 s = NEXT_FREE_LISP_STRING (s);
1853 }
1854 }
1855 #else
1856 #define check_string_free_list()
1857 #endif
1858
1859 /* Return a new Lisp_String. */
1860
1861 static struct Lisp_String *
1862 allocate_string (void)
1863 {
1864 struct Lisp_String *s;
1865
1866 /* eassert (!handling_signal); */
1867
1868 MALLOC_BLOCK_INPUT;
1869
1870 /* If the free-list is empty, allocate a new string_block, and
1871 add all the Lisp_Strings in it to the free-list. */
1872 if (string_free_list == NULL)
1873 {
1874 struct string_block *b;
1875 int i;
1876
1877 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1878 memset (b, 0, sizeof *b);
1879 b->next = string_blocks;
1880 string_blocks = b;
1881 ++n_string_blocks;
1882
1883 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1884 {
1885 s = b->strings + i;
1886 NEXT_FREE_LISP_STRING (s) = string_free_list;
1887 string_free_list = s;
1888 }
1889
1890 total_free_strings += STRING_BLOCK_SIZE;
1891 }
1892
1893 check_string_free_list ();
1894
1895 /* Pop a Lisp_String off the free-list. */
1896 s = string_free_list;
1897 string_free_list = NEXT_FREE_LISP_STRING (s);
1898
1899 MALLOC_UNBLOCK_INPUT;
1900
1901 /* Probably not strictly necessary, but play it safe. */
1902 memset (s, 0, sizeof *s);
1903
1904 --total_free_strings;
1905 ++total_strings;
1906 ++strings_consed;
1907 consing_since_gc += sizeof *s;
1908
1909 #ifdef GC_CHECK_STRING_BYTES
1910 if (!noninteractive)
1911 {
1912 if (++check_string_bytes_count == 200)
1913 {
1914 check_string_bytes_count = 0;
1915 check_string_bytes (1);
1916 }
1917 else
1918 check_string_bytes (0);
1919 }
1920 #endif /* GC_CHECK_STRING_BYTES */
1921
1922 return s;
1923 }
1924
1925
1926 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1927 plus a NUL byte at the end. Allocate an sdata structure for S, and
1928 set S->data to its `u.data' member. Store a NUL byte at the end of
1929 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1930 S->data if it was initially non-null. */
1931
1932 void
1933 allocate_string_data (struct Lisp_String *s, int nchars, int nbytes)
1934 {
1935 struct sdata *data, *old_data;
1936 struct sblock *b;
1937 int needed, old_nbytes;
1938
1939 /* Determine the number of bytes needed to store NBYTES bytes
1940 of string data. */
1941 needed = SDATA_SIZE (nbytes);
1942 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1943 old_nbytes = GC_STRING_BYTES (s);
1944
1945 MALLOC_BLOCK_INPUT;
1946
1947 if (nbytes > LARGE_STRING_BYTES)
1948 {
1949 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1950
1951 #ifdef DOUG_LEA_MALLOC
1952 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1953 because mapped region contents are not preserved in
1954 a dumped Emacs.
1955
1956 In case you think of allowing it in a dumped Emacs at the
1957 cost of not being able to re-dump, there's another reason:
1958 mmap'ed data typically have an address towards the top of the
1959 address space, which won't fit into an EMACS_INT (at least on
1960 32-bit systems with the current tagging scheme). --fx */
1961 mallopt (M_MMAP_MAX, 0);
1962 #endif
1963
1964 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1965
1966 #ifdef DOUG_LEA_MALLOC
1967 /* Back to a reasonable maximum of mmap'ed areas. */
1968 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1969 #endif
1970
1971 b->next_free = &b->first_data;
1972 b->first_data.string = NULL;
1973 b->next = large_sblocks;
1974 large_sblocks = b;
1975 }
1976 else if (current_sblock == NULL
1977 || (((char *) current_sblock + SBLOCK_SIZE
1978 - (char *) current_sblock->next_free)
1979 < (needed + GC_STRING_EXTRA)))
1980 {
1981 /* Not enough room in the current sblock. */
1982 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1983 b->next_free = &b->first_data;
1984 b->first_data.string = NULL;
1985 b->next = NULL;
1986
1987 if (current_sblock)
1988 current_sblock->next = b;
1989 else
1990 oldest_sblock = b;
1991 current_sblock = b;
1992 }
1993 else
1994 b = current_sblock;
1995
1996 data = b->next_free;
1997 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1998
1999 MALLOC_UNBLOCK_INPUT;
2000
2001 data->string = s;
2002 s->data = SDATA_DATA (data);
2003 #ifdef GC_CHECK_STRING_BYTES
2004 SDATA_NBYTES (data) = nbytes;
2005 #endif
2006 s->size = nchars;
2007 s->size_byte = nbytes;
2008 s->data[nbytes] = '\0';
2009 #ifdef GC_CHECK_STRING_OVERRUN
2010 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
2011 #endif
2012
2013 /* If S had already data assigned, mark that as free by setting its
2014 string back-pointer to null, and recording the size of the data
2015 in it. */
2016 if (old_data)
2017 {
2018 SDATA_NBYTES (old_data) = old_nbytes;
2019 old_data->string = NULL;
2020 }
2021
2022 consing_since_gc += needed;
2023 }
2024
2025
2026 /* Sweep and compact strings. */
2027
2028 static void
2029 sweep_strings (void)
2030 {
2031 struct string_block *b, *next;
2032 struct string_block *live_blocks = NULL;
2033
2034 string_free_list = NULL;
2035 total_strings = total_free_strings = 0;
2036 total_string_size = 0;
2037
2038 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2039 for (b = string_blocks; b; b = next)
2040 {
2041 int i, nfree = 0;
2042 struct Lisp_String *free_list_before = string_free_list;
2043
2044 next = b->next;
2045
2046 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2047 {
2048 struct Lisp_String *s = b->strings + i;
2049
2050 if (s->data)
2051 {
2052 /* String was not on free-list before. */
2053 if (STRING_MARKED_P (s))
2054 {
2055 /* String is live; unmark it and its intervals. */
2056 UNMARK_STRING (s);
2057
2058 if (!NULL_INTERVAL_P (s->intervals))
2059 UNMARK_BALANCE_INTERVALS (s->intervals);
2060
2061 ++total_strings;
2062 total_string_size += STRING_BYTES (s);
2063 }
2064 else
2065 {
2066 /* String is dead. Put it on the free-list. */
2067 struct sdata *data = SDATA_OF_STRING (s);
2068
2069 /* Save the size of S in its sdata so that we know
2070 how large that is. Reset the sdata's string
2071 back-pointer so that we know it's free. */
2072 #ifdef GC_CHECK_STRING_BYTES
2073 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2074 abort ();
2075 #else
2076 data->u.nbytes = GC_STRING_BYTES (s);
2077 #endif
2078 data->string = NULL;
2079
2080 /* Reset the strings's `data' member so that we
2081 know it's free. */
2082 s->data = NULL;
2083
2084 /* Put the string on the free-list. */
2085 NEXT_FREE_LISP_STRING (s) = string_free_list;
2086 string_free_list = s;
2087 ++nfree;
2088 }
2089 }
2090 else
2091 {
2092 /* S was on the free-list before. Put it there again. */
2093 NEXT_FREE_LISP_STRING (s) = string_free_list;
2094 string_free_list = s;
2095 ++nfree;
2096 }
2097 }
2098
2099 /* Free blocks that contain free Lisp_Strings only, except
2100 the first two of them. */
2101 if (nfree == STRING_BLOCK_SIZE
2102 && total_free_strings > STRING_BLOCK_SIZE)
2103 {
2104 lisp_free (b);
2105 --n_string_blocks;
2106 string_free_list = free_list_before;
2107 }
2108 else
2109 {
2110 total_free_strings += nfree;
2111 b->next = live_blocks;
2112 live_blocks = b;
2113 }
2114 }
2115
2116 check_string_free_list ();
2117
2118 string_blocks = live_blocks;
2119 free_large_strings ();
2120 compact_small_strings ();
2121
2122 check_string_free_list ();
2123 }
2124
2125
2126 /* Free dead large strings. */
2127
2128 static void
2129 free_large_strings (void)
2130 {
2131 struct sblock *b, *next;
2132 struct sblock *live_blocks = NULL;
2133
2134 for (b = large_sblocks; b; b = next)
2135 {
2136 next = b->next;
2137
2138 if (b->first_data.string == NULL)
2139 lisp_free (b);
2140 else
2141 {
2142 b->next = live_blocks;
2143 live_blocks = b;
2144 }
2145 }
2146
2147 large_sblocks = live_blocks;
2148 }
2149
2150
2151 /* Compact data of small strings. Free sblocks that don't contain
2152 data of live strings after compaction. */
2153
2154 static void
2155 compact_small_strings (void)
2156 {
2157 struct sblock *b, *tb, *next;
2158 struct sdata *from, *to, *end, *tb_end;
2159 struct sdata *to_end, *from_end;
2160
2161 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2162 to, and TB_END is the end of TB. */
2163 tb = oldest_sblock;
2164 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2165 to = &tb->first_data;
2166
2167 /* Step through the blocks from the oldest to the youngest. We
2168 expect that old blocks will stabilize over time, so that less
2169 copying will happen this way. */
2170 for (b = oldest_sblock; b; b = b->next)
2171 {
2172 end = b->next_free;
2173 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2174
2175 for (from = &b->first_data; from < end; from = from_end)
2176 {
2177 /* Compute the next FROM here because copying below may
2178 overwrite data we need to compute it. */
2179 int nbytes;
2180
2181 #ifdef GC_CHECK_STRING_BYTES
2182 /* Check that the string size recorded in the string is the
2183 same as the one recorded in the sdata structure. */
2184 if (from->string
2185 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2186 abort ();
2187 #endif /* GC_CHECK_STRING_BYTES */
2188
2189 if (from->string)
2190 nbytes = GC_STRING_BYTES (from->string);
2191 else
2192 nbytes = SDATA_NBYTES (from);
2193
2194 if (nbytes > LARGE_STRING_BYTES)
2195 abort ();
2196
2197 nbytes = SDATA_SIZE (nbytes);
2198 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2199
2200 #ifdef GC_CHECK_STRING_OVERRUN
2201 if (memcmp (string_overrun_cookie,
2202 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2203 GC_STRING_OVERRUN_COOKIE_SIZE))
2204 abort ();
2205 #endif
2206
2207 /* FROM->string non-null means it's alive. Copy its data. */
2208 if (from->string)
2209 {
2210 /* If TB is full, proceed with the next sblock. */
2211 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2212 if (to_end > tb_end)
2213 {
2214 tb->next_free = to;
2215 tb = tb->next;
2216 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2217 to = &tb->first_data;
2218 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2219 }
2220
2221 /* Copy, and update the string's `data' pointer. */
2222 if (from != to)
2223 {
2224 xassert (tb != b || to <= from);
2225 memmove (to, from, nbytes + GC_STRING_EXTRA);
2226 to->string->data = SDATA_DATA (to);
2227 }
2228
2229 /* Advance past the sdata we copied to. */
2230 to = to_end;
2231 }
2232 }
2233 }
2234
2235 /* The rest of the sblocks following TB don't contain live data, so
2236 we can free them. */
2237 for (b = tb->next; b; b = next)
2238 {
2239 next = b->next;
2240 lisp_free (b);
2241 }
2242
2243 tb->next_free = to;
2244 tb->next = NULL;
2245 current_sblock = tb;
2246 }
2247
2248
2249 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2250 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2251 LENGTH must be an integer.
2252 INIT must be an integer that represents a character. */)
2253 (length, init)
2254 Lisp_Object length, init;
2255 {
2256 register Lisp_Object val;
2257 register unsigned char *p, *end;
2258 int c, nbytes;
2259
2260 CHECK_NATNUM (length);
2261 CHECK_NUMBER (init);
2262
2263 c = XINT (init);
2264 if (ASCII_CHAR_P (c))
2265 {
2266 nbytes = XINT (length);
2267 val = make_uninit_string (nbytes);
2268 p = SDATA (val);
2269 end = p + SCHARS (val);
2270 while (p != end)
2271 *p++ = c;
2272 }
2273 else
2274 {
2275 unsigned char str[MAX_MULTIBYTE_LENGTH];
2276 int len = CHAR_STRING (c, str);
2277
2278 nbytes = len * XINT (length);
2279 val = make_uninit_multibyte_string (XINT (length), nbytes);
2280 p = SDATA (val);
2281 end = p + nbytes;
2282 while (p != end)
2283 {
2284 memcpy (p, str, len);
2285 p += len;
2286 }
2287 }
2288
2289 *p = 0;
2290 return val;
2291 }
2292
2293
2294 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2295 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2296 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2297 (length, init)
2298 Lisp_Object length, init;
2299 {
2300 register Lisp_Object val;
2301 struct Lisp_Bool_Vector *p;
2302 int real_init, i;
2303 int length_in_chars, length_in_elts, bits_per_value;
2304
2305 CHECK_NATNUM (length);
2306
2307 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2308
2309 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2310 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2311 / BOOL_VECTOR_BITS_PER_CHAR);
2312
2313 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2314 slot `size' of the struct Lisp_Bool_Vector. */
2315 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2316
2317 /* Get rid of any bits that would cause confusion. */
2318 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2319 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2320 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2321
2322 p = XBOOL_VECTOR (val);
2323 p->size = XFASTINT (length);
2324
2325 real_init = (NILP (init) ? 0 : -1);
2326 for (i = 0; i < length_in_chars ; i++)
2327 p->data[i] = real_init;
2328
2329 /* Clear the extraneous bits in the last byte. */
2330 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2331 p->data[length_in_chars - 1]
2332 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2333
2334 return val;
2335 }
2336
2337
2338 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2339 of characters from the contents. This string may be unibyte or
2340 multibyte, depending on the contents. */
2341
2342 Lisp_Object
2343 make_string (const char *contents, int nbytes)
2344 {
2345 register Lisp_Object val;
2346 int nchars, multibyte_nbytes;
2347
2348 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2349 if (nbytes == nchars || nbytes != multibyte_nbytes)
2350 /* CONTENTS contains no multibyte sequences or contains an invalid
2351 multibyte sequence. We must make unibyte string. */
2352 val = make_unibyte_string (contents, nbytes);
2353 else
2354 val = make_multibyte_string (contents, nchars, nbytes);
2355 return val;
2356 }
2357
2358
2359 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2360
2361 Lisp_Object
2362 make_unibyte_string (const char *contents, int length)
2363 {
2364 register Lisp_Object val;
2365 val = make_uninit_string (length);
2366 memcpy (SDATA (val), contents, length);
2367 STRING_SET_UNIBYTE (val);
2368 return val;
2369 }
2370
2371
2372 /* Make a multibyte string from NCHARS characters occupying NBYTES
2373 bytes at CONTENTS. */
2374
2375 Lisp_Object
2376 make_multibyte_string (const char *contents, int nchars, int nbytes)
2377 {
2378 register Lisp_Object val;
2379 val = make_uninit_multibyte_string (nchars, nbytes);
2380 memcpy (SDATA (val), contents, nbytes);
2381 return val;
2382 }
2383
2384
2385 /* Make a string from NCHARS characters occupying NBYTES bytes at
2386 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2387
2388 Lisp_Object
2389 make_string_from_bytes (const char *contents, int nchars, int nbytes)
2390 {
2391 register Lisp_Object val;
2392 val = make_uninit_multibyte_string (nchars, nbytes);
2393 memcpy (SDATA (val), contents, nbytes);
2394 if (SBYTES (val) == SCHARS (val))
2395 STRING_SET_UNIBYTE (val);
2396 return val;
2397 }
2398
2399
2400 /* Make a string from NCHARS characters occupying NBYTES bytes at
2401 CONTENTS. The argument MULTIBYTE controls whether to label the
2402 string as multibyte. If NCHARS is negative, it counts the number of
2403 characters by itself. */
2404
2405 Lisp_Object
2406 make_specified_string (const char *contents, int nchars, int nbytes, int multibyte)
2407 {
2408 register Lisp_Object val;
2409
2410 if (nchars < 0)
2411 {
2412 if (multibyte)
2413 nchars = multibyte_chars_in_text (contents, nbytes);
2414 else
2415 nchars = nbytes;
2416 }
2417 val = make_uninit_multibyte_string (nchars, nbytes);
2418 memcpy (SDATA (val), contents, nbytes);
2419 if (!multibyte)
2420 STRING_SET_UNIBYTE (val);
2421 return val;
2422 }
2423
2424
2425 /* Make a string from the data at STR, treating it as multibyte if the
2426 data warrants. */
2427
2428 Lisp_Object
2429 build_string (const char *str)
2430 {
2431 return make_string (str, strlen (str));
2432 }
2433
2434
2435 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2436 occupying LENGTH bytes. */
2437
2438 Lisp_Object
2439 make_uninit_string (int length)
2440 {
2441 Lisp_Object val;
2442
2443 if (!length)
2444 return empty_unibyte_string;
2445 val = make_uninit_multibyte_string (length, length);
2446 STRING_SET_UNIBYTE (val);
2447 return val;
2448 }
2449
2450
2451 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2452 which occupy NBYTES bytes. */
2453
2454 Lisp_Object
2455 make_uninit_multibyte_string (int nchars, int nbytes)
2456 {
2457 Lisp_Object string;
2458 struct Lisp_String *s;
2459
2460 if (nchars < 0)
2461 abort ();
2462 if (!nbytes)
2463 return empty_multibyte_string;
2464
2465 s = allocate_string ();
2466 allocate_string_data (s, nchars, nbytes);
2467 XSETSTRING (string, s);
2468 string_chars_consed += nbytes;
2469 return string;
2470 }
2471
2472
2473 \f
2474 /***********************************************************************
2475 Float Allocation
2476 ***********************************************************************/
2477
2478 /* We store float cells inside of float_blocks, allocating a new
2479 float_block with malloc whenever necessary. Float cells reclaimed
2480 by GC are put on a free list to be reallocated before allocating
2481 any new float cells from the latest float_block. */
2482
2483 #define FLOAT_BLOCK_SIZE \
2484 (((BLOCK_BYTES - sizeof (struct float_block *) \
2485 /* The compiler might add padding at the end. */ \
2486 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2487 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2488
2489 #define GETMARKBIT(block,n) \
2490 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2491 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2492 & 1)
2493
2494 #define SETMARKBIT(block,n) \
2495 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2496 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2497
2498 #define UNSETMARKBIT(block,n) \
2499 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2500 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2501
2502 #define FLOAT_BLOCK(fptr) \
2503 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2504
2505 #define FLOAT_INDEX(fptr) \
2506 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2507
2508 struct float_block
2509 {
2510 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2511 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2512 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2513 struct float_block *next;
2514 };
2515
2516 #define FLOAT_MARKED_P(fptr) \
2517 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2518
2519 #define FLOAT_MARK(fptr) \
2520 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2521
2522 #define FLOAT_UNMARK(fptr) \
2523 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2524
2525 /* Current float_block. */
2526
2527 struct float_block *float_block;
2528
2529 /* Index of first unused Lisp_Float in the current float_block. */
2530
2531 int float_block_index;
2532
2533 /* Total number of float blocks now in use. */
2534
2535 int n_float_blocks;
2536
2537 /* Free-list of Lisp_Floats. */
2538
2539 struct Lisp_Float *float_free_list;
2540
2541
2542 /* Initialize float allocation. */
2543
2544 static void
2545 init_float (void)
2546 {
2547 float_block = NULL;
2548 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2549 float_free_list = 0;
2550 n_float_blocks = 0;
2551 }
2552
2553
2554 /* Explicitly free a float cell by putting it on the free-list. */
2555
2556 static void
2557 free_float (struct Lisp_Float *ptr)
2558 {
2559 ptr->u.chain = float_free_list;
2560 float_free_list = ptr;
2561 }
2562
2563
2564 /* Return a new float object with value FLOAT_VALUE. */
2565
2566 Lisp_Object
2567 make_float (double float_value)
2568 {
2569 register Lisp_Object val;
2570
2571 /* eassert (!handling_signal); */
2572
2573 MALLOC_BLOCK_INPUT;
2574
2575 if (float_free_list)
2576 {
2577 /* We use the data field for chaining the free list
2578 so that we won't use the same field that has the mark bit. */
2579 XSETFLOAT (val, float_free_list);
2580 float_free_list = float_free_list->u.chain;
2581 }
2582 else
2583 {
2584 if (float_block_index == FLOAT_BLOCK_SIZE)
2585 {
2586 register struct float_block *new;
2587
2588 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2589 MEM_TYPE_FLOAT);
2590 new->next = float_block;
2591 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2592 float_block = new;
2593 float_block_index = 0;
2594 n_float_blocks++;
2595 }
2596 XSETFLOAT (val, &float_block->floats[float_block_index]);
2597 float_block_index++;
2598 }
2599
2600 MALLOC_UNBLOCK_INPUT;
2601
2602 XFLOAT_INIT (val, float_value);
2603 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2604 consing_since_gc += sizeof (struct Lisp_Float);
2605 floats_consed++;
2606 return val;
2607 }
2608
2609
2610 \f
2611 /***********************************************************************
2612 Cons Allocation
2613 ***********************************************************************/
2614
2615 /* We store cons cells inside of cons_blocks, allocating a new
2616 cons_block with malloc whenever necessary. Cons cells reclaimed by
2617 GC are put on a free list to be reallocated before allocating
2618 any new cons cells from the latest cons_block. */
2619
2620 #define CONS_BLOCK_SIZE \
2621 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2622 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2623
2624 #define CONS_BLOCK(fptr) \
2625 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2626
2627 #define CONS_INDEX(fptr) \
2628 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2629
2630 struct cons_block
2631 {
2632 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2633 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2634 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2635 struct cons_block *next;
2636 };
2637
2638 #define CONS_MARKED_P(fptr) \
2639 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2640
2641 #define CONS_MARK(fptr) \
2642 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2643
2644 #define CONS_UNMARK(fptr) \
2645 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2646
2647 /* Current cons_block. */
2648
2649 struct cons_block *cons_block;
2650
2651 /* Index of first unused Lisp_Cons in the current block. */
2652
2653 int cons_block_index;
2654
2655 /* Free-list of Lisp_Cons structures. */
2656
2657 struct Lisp_Cons *cons_free_list;
2658
2659 /* Total number of cons blocks now in use. */
2660
2661 static int n_cons_blocks;
2662
2663
2664 /* Initialize cons allocation. */
2665
2666 static void
2667 init_cons (void)
2668 {
2669 cons_block = NULL;
2670 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2671 cons_free_list = 0;
2672 n_cons_blocks = 0;
2673 }
2674
2675
2676 /* Explicitly free a cons cell by putting it on the free-list. */
2677
2678 void
2679 free_cons (struct Lisp_Cons *ptr)
2680 {
2681 ptr->u.chain = cons_free_list;
2682 #if GC_MARK_STACK
2683 ptr->car = Vdead;
2684 #endif
2685 cons_free_list = ptr;
2686 }
2687
2688 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2689 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2690 (car, cdr)
2691 Lisp_Object car, cdr;
2692 {
2693 register Lisp_Object val;
2694
2695 /* eassert (!handling_signal); */
2696
2697 MALLOC_BLOCK_INPUT;
2698
2699 if (cons_free_list)
2700 {
2701 /* We use the cdr for chaining the free list
2702 so that we won't use the same field that has the mark bit. */
2703 XSETCONS (val, cons_free_list);
2704 cons_free_list = cons_free_list->u.chain;
2705 }
2706 else
2707 {
2708 if (cons_block_index == CONS_BLOCK_SIZE)
2709 {
2710 register struct cons_block *new;
2711 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2712 MEM_TYPE_CONS);
2713 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2714 new->next = cons_block;
2715 cons_block = new;
2716 cons_block_index = 0;
2717 n_cons_blocks++;
2718 }
2719 XSETCONS (val, &cons_block->conses[cons_block_index]);
2720 cons_block_index++;
2721 }
2722
2723 MALLOC_UNBLOCK_INPUT;
2724
2725 XSETCAR (val, car);
2726 XSETCDR (val, cdr);
2727 eassert (!CONS_MARKED_P (XCONS (val)));
2728 consing_since_gc += sizeof (struct Lisp_Cons);
2729 cons_cells_consed++;
2730 return val;
2731 }
2732
2733 /* Get an error now if there's any junk in the cons free list. */
2734 void
2735 check_cons_list (void)
2736 {
2737 #ifdef GC_CHECK_CONS_LIST
2738 struct Lisp_Cons *tail = cons_free_list;
2739
2740 while (tail)
2741 tail = tail->u.chain;
2742 #endif
2743 }
2744
2745 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2746
2747 Lisp_Object
2748 list1 (Lisp_Object arg1)
2749 {
2750 return Fcons (arg1, Qnil);
2751 }
2752
2753 Lisp_Object
2754 list2 (Lisp_Object arg1, Lisp_Object arg2)
2755 {
2756 return Fcons (arg1, Fcons (arg2, Qnil));
2757 }
2758
2759
2760 Lisp_Object
2761 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2762 {
2763 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2764 }
2765
2766
2767 Lisp_Object
2768 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2769 {
2770 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2771 }
2772
2773
2774 Lisp_Object
2775 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2776 {
2777 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2778 Fcons (arg5, Qnil)))));
2779 }
2780
2781
2782 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2783 doc: /* Return a newly created list with specified arguments as elements.
2784 Any number of arguments, even zero arguments, are allowed.
2785 usage: (list &rest OBJECTS) */)
2786 (nargs, args)
2787 int nargs;
2788 register Lisp_Object *args;
2789 {
2790 register Lisp_Object val;
2791 val = Qnil;
2792
2793 while (nargs > 0)
2794 {
2795 nargs--;
2796 val = Fcons (args[nargs], val);
2797 }
2798 return val;
2799 }
2800
2801
2802 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2803 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2804 (length, init)
2805 register Lisp_Object length, init;
2806 {
2807 register Lisp_Object val;
2808 register int size;
2809
2810 CHECK_NATNUM (length);
2811 size = XFASTINT (length);
2812
2813 val = Qnil;
2814 while (size > 0)
2815 {
2816 val = Fcons (init, val);
2817 --size;
2818
2819 if (size > 0)
2820 {
2821 val = Fcons (init, val);
2822 --size;
2823
2824 if (size > 0)
2825 {
2826 val = Fcons (init, val);
2827 --size;
2828
2829 if (size > 0)
2830 {
2831 val = Fcons (init, val);
2832 --size;
2833
2834 if (size > 0)
2835 {
2836 val = Fcons (init, val);
2837 --size;
2838 }
2839 }
2840 }
2841 }
2842
2843 QUIT;
2844 }
2845
2846 return val;
2847 }
2848
2849
2850 \f
2851 /***********************************************************************
2852 Vector Allocation
2853 ***********************************************************************/
2854
2855 /* Singly-linked list of all vectors. */
2856
2857 static struct Lisp_Vector *all_vectors;
2858
2859 /* Total number of vector-like objects now in use. */
2860
2861 static int n_vectors;
2862
2863
2864 /* Value is a pointer to a newly allocated Lisp_Vector structure
2865 with room for LEN Lisp_Objects. */
2866
2867 static struct Lisp_Vector *
2868 allocate_vectorlike (EMACS_INT len)
2869 {
2870 struct Lisp_Vector *p;
2871 size_t nbytes;
2872
2873 MALLOC_BLOCK_INPUT;
2874
2875 #ifdef DOUG_LEA_MALLOC
2876 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2877 because mapped region contents are not preserved in
2878 a dumped Emacs. */
2879 mallopt (M_MMAP_MAX, 0);
2880 #endif
2881
2882 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2883 /* eassert (!handling_signal); */
2884
2885 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2886 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2887
2888 #ifdef DOUG_LEA_MALLOC
2889 /* Back to a reasonable maximum of mmap'ed areas. */
2890 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2891 #endif
2892
2893 consing_since_gc += nbytes;
2894 vector_cells_consed += len;
2895
2896 p->next = all_vectors;
2897 all_vectors = p;
2898
2899 MALLOC_UNBLOCK_INPUT;
2900
2901 ++n_vectors;
2902 return p;
2903 }
2904
2905
2906 /* Allocate a vector with NSLOTS slots. */
2907
2908 struct Lisp_Vector *
2909 allocate_vector (EMACS_INT nslots)
2910 {
2911 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2912 v->size = nslots;
2913 return v;
2914 }
2915
2916
2917 /* Allocate other vector-like structures. */
2918
2919 struct Lisp_Vector *
2920 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2921 {
2922 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2923 EMACS_INT i;
2924
2925 /* Only the first lisplen slots will be traced normally by the GC. */
2926 v->size = lisplen;
2927 for (i = 0; i < lisplen; ++i)
2928 v->contents[i] = Qnil;
2929
2930 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2931 return v;
2932 }
2933
2934 struct Lisp_Hash_Table *
2935 allocate_hash_table (void)
2936 {
2937 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2938 }
2939
2940
2941 struct window *
2942 allocate_window (void)
2943 {
2944 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2945 }
2946
2947
2948 struct terminal *
2949 allocate_terminal (void)
2950 {
2951 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2952 next_terminal, PVEC_TERMINAL);
2953 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2954 memset (&t->next_terminal, 0,
2955 (char*) (t + 1) - (char*) &t->next_terminal);
2956
2957 return t;
2958 }
2959
2960 struct frame *
2961 allocate_frame (void)
2962 {
2963 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2964 face_cache, PVEC_FRAME);
2965 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2966 memset (&f->face_cache, 0,
2967 (char *) (f + 1) - (char *) &f->face_cache);
2968 return f;
2969 }
2970
2971
2972 struct Lisp_Process *
2973 allocate_process (void)
2974 {
2975 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2976 }
2977
2978
2979 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2980 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2981 See also the function `vector'. */)
2982 (length, init)
2983 register Lisp_Object length, init;
2984 {
2985 Lisp_Object vector;
2986 register EMACS_INT sizei;
2987 register int index;
2988 register struct Lisp_Vector *p;
2989
2990 CHECK_NATNUM (length);
2991 sizei = XFASTINT (length);
2992
2993 p = allocate_vector (sizei);
2994 for (index = 0; index < sizei; index++)
2995 p->contents[index] = init;
2996
2997 XSETVECTOR (vector, p);
2998 return vector;
2999 }
3000
3001
3002 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3003 doc: /* Return a newly created vector with specified arguments as elements.
3004 Any number of arguments, even zero arguments, are allowed.
3005 usage: (vector &rest OBJECTS) */)
3006 (nargs, args)
3007 register int nargs;
3008 Lisp_Object *args;
3009 {
3010 register Lisp_Object len, val;
3011 register int index;
3012 register struct Lisp_Vector *p;
3013
3014 XSETFASTINT (len, nargs);
3015 val = Fmake_vector (len, Qnil);
3016 p = XVECTOR (val);
3017 for (index = 0; index < nargs; index++)
3018 p->contents[index] = args[index];
3019 return val;
3020 }
3021
3022
3023 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3024 doc: /* Create a byte-code object with specified arguments as elements.
3025 The arguments should be the arglist, bytecode-string, constant vector,
3026 stack size, (optional) doc string, and (optional) interactive spec.
3027 The first four arguments are required; at most six have any
3028 significance.
3029 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3030 (nargs, args)
3031 register int nargs;
3032 Lisp_Object *args;
3033 {
3034 register Lisp_Object len, val;
3035 register int index;
3036 register struct Lisp_Vector *p;
3037
3038 XSETFASTINT (len, nargs);
3039 if (!NILP (Vpurify_flag))
3040 val = make_pure_vector ((EMACS_INT) nargs);
3041 else
3042 val = Fmake_vector (len, Qnil);
3043
3044 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3045 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3046 earlier because they produced a raw 8-bit string for byte-code
3047 and now such a byte-code string is loaded as multibyte while
3048 raw 8-bit characters converted to multibyte form. Thus, now we
3049 must convert them back to the original unibyte form. */
3050 args[1] = Fstring_as_unibyte (args[1]);
3051
3052 p = XVECTOR (val);
3053 for (index = 0; index < nargs; index++)
3054 {
3055 if (!NILP (Vpurify_flag))
3056 args[index] = Fpurecopy (args[index]);
3057 p->contents[index] = args[index];
3058 }
3059 XSETPVECTYPE (p, PVEC_COMPILED);
3060 XSETCOMPILED (val, p);
3061 return val;
3062 }
3063
3064
3065 \f
3066 /***********************************************************************
3067 Symbol Allocation
3068 ***********************************************************************/
3069
3070 /* Each symbol_block is just under 1020 bytes long, since malloc
3071 really allocates in units of powers of two and uses 4 bytes for its
3072 own overhead. */
3073
3074 #define SYMBOL_BLOCK_SIZE \
3075 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3076
3077 struct symbol_block
3078 {
3079 /* Place `symbols' first, to preserve alignment. */
3080 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3081 struct symbol_block *next;
3082 };
3083
3084 /* Current symbol block and index of first unused Lisp_Symbol
3085 structure in it. */
3086
3087 static struct symbol_block *symbol_block;
3088 static int symbol_block_index;
3089
3090 /* List of free symbols. */
3091
3092 static struct Lisp_Symbol *symbol_free_list;
3093
3094 /* Total number of symbol blocks now in use. */
3095
3096 static int n_symbol_blocks;
3097
3098
3099 /* Initialize symbol allocation. */
3100
3101 static void
3102 init_symbol (void)
3103 {
3104 symbol_block = NULL;
3105 symbol_block_index = SYMBOL_BLOCK_SIZE;
3106 symbol_free_list = 0;
3107 n_symbol_blocks = 0;
3108 }
3109
3110
3111 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3112 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3113 Its value and function definition are void, and its property list is nil. */)
3114 (name)
3115 Lisp_Object name;
3116 {
3117 register Lisp_Object val;
3118 register struct Lisp_Symbol *p;
3119
3120 CHECK_STRING (name);
3121
3122 /* eassert (!handling_signal); */
3123
3124 MALLOC_BLOCK_INPUT;
3125
3126 if (symbol_free_list)
3127 {
3128 XSETSYMBOL (val, symbol_free_list);
3129 symbol_free_list = symbol_free_list->next;
3130 }
3131 else
3132 {
3133 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3134 {
3135 struct symbol_block *new;
3136 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3137 MEM_TYPE_SYMBOL);
3138 new->next = symbol_block;
3139 symbol_block = new;
3140 symbol_block_index = 0;
3141 n_symbol_blocks++;
3142 }
3143 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3144 symbol_block_index++;
3145 }
3146
3147 MALLOC_UNBLOCK_INPUT;
3148
3149 p = XSYMBOL (val);
3150 p->xname = name;
3151 p->plist = Qnil;
3152 p->redirect = SYMBOL_PLAINVAL;
3153 SET_SYMBOL_VAL (p, Qunbound);
3154 p->function = Qunbound;
3155 p->next = NULL;
3156 p->gcmarkbit = 0;
3157 p->interned = SYMBOL_UNINTERNED;
3158 p->constant = 0;
3159 consing_since_gc += sizeof (struct Lisp_Symbol);
3160 symbols_consed++;
3161 return val;
3162 }
3163
3164
3165 \f
3166 /***********************************************************************
3167 Marker (Misc) Allocation
3168 ***********************************************************************/
3169
3170 /* Allocation of markers and other objects that share that structure.
3171 Works like allocation of conses. */
3172
3173 #define MARKER_BLOCK_SIZE \
3174 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3175
3176 struct marker_block
3177 {
3178 /* Place `markers' first, to preserve alignment. */
3179 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3180 struct marker_block *next;
3181 };
3182
3183 static struct marker_block *marker_block;
3184 static int marker_block_index;
3185
3186 static union Lisp_Misc *marker_free_list;
3187
3188 /* Total number of marker blocks now in use. */
3189
3190 static int n_marker_blocks;
3191
3192 static void
3193 init_marker (void)
3194 {
3195 marker_block = NULL;
3196 marker_block_index = MARKER_BLOCK_SIZE;
3197 marker_free_list = 0;
3198 n_marker_blocks = 0;
3199 }
3200
3201 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3202
3203 Lisp_Object
3204 allocate_misc (void)
3205 {
3206 Lisp_Object val;
3207
3208 /* eassert (!handling_signal); */
3209
3210 MALLOC_BLOCK_INPUT;
3211
3212 if (marker_free_list)
3213 {
3214 XSETMISC (val, marker_free_list);
3215 marker_free_list = marker_free_list->u_free.chain;
3216 }
3217 else
3218 {
3219 if (marker_block_index == MARKER_BLOCK_SIZE)
3220 {
3221 struct marker_block *new;
3222 new = (struct marker_block *) lisp_malloc (sizeof *new,
3223 MEM_TYPE_MISC);
3224 new->next = marker_block;
3225 marker_block = new;
3226 marker_block_index = 0;
3227 n_marker_blocks++;
3228 total_free_markers += MARKER_BLOCK_SIZE;
3229 }
3230 XSETMISC (val, &marker_block->markers[marker_block_index]);
3231 marker_block_index++;
3232 }
3233
3234 MALLOC_UNBLOCK_INPUT;
3235
3236 --total_free_markers;
3237 consing_since_gc += sizeof (union Lisp_Misc);
3238 misc_objects_consed++;
3239 XMISCANY (val)->gcmarkbit = 0;
3240 return val;
3241 }
3242
3243 /* Free a Lisp_Misc object */
3244
3245 void
3246 free_misc (Lisp_Object misc)
3247 {
3248 XMISCTYPE (misc) = Lisp_Misc_Free;
3249 XMISC (misc)->u_free.chain = marker_free_list;
3250 marker_free_list = XMISC (misc);
3251
3252 total_free_markers++;
3253 }
3254
3255 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3256 INTEGER. This is used to package C values to call record_unwind_protect.
3257 The unwind function can get the C values back using XSAVE_VALUE. */
3258
3259 Lisp_Object
3260 make_save_value (void *pointer, int integer)
3261 {
3262 register Lisp_Object val;
3263 register struct Lisp_Save_Value *p;
3264
3265 val = allocate_misc ();
3266 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3267 p = XSAVE_VALUE (val);
3268 p->pointer = pointer;
3269 p->integer = integer;
3270 p->dogc = 0;
3271 return val;
3272 }
3273
3274 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3275 doc: /* Return a newly allocated marker which does not point at any place. */)
3276 ()
3277 {
3278 register Lisp_Object val;
3279 register struct Lisp_Marker *p;
3280
3281 val = allocate_misc ();
3282 XMISCTYPE (val) = Lisp_Misc_Marker;
3283 p = XMARKER (val);
3284 p->buffer = 0;
3285 p->bytepos = 0;
3286 p->charpos = 0;
3287 p->next = NULL;
3288 p->insertion_type = 0;
3289 return val;
3290 }
3291
3292 /* Put MARKER back on the free list after using it temporarily. */
3293
3294 void
3295 free_marker (Lisp_Object marker)
3296 {
3297 unchain_marker (XMARKER (marker));
3298 free_misc (marker);
3299 }
3300
3301 \f
3302 /* Return a newly created vector or string with specified arguments as
3303 elements. If all the arguments are characters that can fit
3304 in a string of events, make a string; otherwise, make a vector.
3305
3306 Any number of arguments, even zero arguments, are allowed. */
3307
3308 Lisp_Object
3309 make_event_array (register int nargs, Lisp_Object *args)
3310 {
3311 int i;
3312
3313 for (i = 0; i < nargs; i++)
3314 /* The things that fit in a string
3315 are characters that are in 0...127,
3316 after discarding the meta bit and all the bits above it. */
3317 if (!INTEGERP (args[i])
3318 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3319 return Fvector (nargs, args);
3320
3321 /* Since the loop exited, we know that all the things in it are
3322 characters, so we can make a string. */
3323 {
3324 Lisp_Object result;
3325
3326 result = Fmake_string (make_number (nargs), make_number (0));
3327 for (i = 0; i < nargs; i++)
3328 {
3329 SSET (result, i, XINT (args[i]));
3330 /* Move the meta bit to the right place for a string char. */
3331 if (XINT (args[i]) & CHAR_META)
3332 SSET (result, i, SREF (result, i) | 0x80);
3333 }
3334
3335 return result;
3336 }
3337 }
3338
3339
3340 \f
3341 /************************************************************************
3342 Memory Full Handling
3343 ************************************************************************/
3344
3345
3346 /* Called if malloc returns zero. */
3347
3348 void
3349 memory_full (void)
3350 {
3351 int i;
3352
3353 Vmemory_full = Qt;
3354
3355 memory_full_cons_threshold = sizeof (struct cons_block);
3356
3357 /* The first time we get here, free the spare memory. */
3358 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3359 if (spare_memory[i])
3360 {
3361 if (i == 0)
3362 free (spare_memory[i]);
3363 else if (i >= 1 && i <= 4)
3364 lisp_align_free (spare_memory[i]);
3365 else
3366 lisp_free (spare_memory[i]);
3367 spare_memory[i] = 0;
3368 }
3369
3370 /* Record the space now used. When it decreases substantially,
3371 we can refill the memory reserve. */
3372 #ifndef SYSTEM_MALLOC
3373 bytes_used_when_full = BYTES_USED;
3374 #endif
3375
3376 /* This used to call error, but if we've run out of memory, we could
3377 get infinite recursion trying to build the string. */
3378 xsignal (Qnil, Vmemory_signal_data);
3379 }
3380
3381 /* If we released our reserve (due to running out of memory),
3382 and we have a fair amount free once again,
3383 try to set aside another reserve in case we run out once more.
3384
3385 This is called when a relocatable block is freed in ralloc.c,
3386 and also directly from this file, in case we're not using ralloc.c. */
3387
3388 void
3389 refill_memory_reserve (void)
3390 {
3391 #ifndef SYSTEM_MALLOC
3392 if (spare_memory[0] == 0)
3393 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3394 if (spare_memory[1] == 0)
3395 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3396 MEM_TYPE_CONS);
3397 if (spare_memory[2] == 0)
3398 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3399 MEM_TYPE_CONS);
3400 if (spare_memory[3] == 0)
3401 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3402 MEM_TYPE_CONS);
3403 if (spare_memory[4] == 0)
3404 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3405 MEM_TYPE_CONS);
3406 if (spare_memory[5] == 0)
3407 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3408 MEM_TYPE_STRING);
3409 if (spare_memory[6] == 0)
3410 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3411 MEM_TYPE_STRING);
3412 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3413 Vmemory_full = Qnil;
3414 #endif
3415 }
3416 \f
3417 /************************************************************************
3418 C Stack Marking
3419 ************************************************************************/
3420
3421 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3422
3423 /* Conservative C stack marking requires a method to identify possibly
3424 live Lisp objects given a pointer value. We do this by keeping
3425 track of blocks of Lisp data that are allocated in a red-black tree
3426 (see also the comment of mem_node which is the type of nodes in
3427 that tree). Function lisp_malloc adds information for an allocated
3428 block to the red-black tree with calls to mem_insert, and function
3429 lisp_free removes it with mem_delete. Functions live_string_p etc
3430 call mem_find to lookup information about a given pointer in the
3431 tree, and use that to determine if the pointer points to a Lisp
3432 object or not. */
3433
3434 /* Initialize this part of alloc.c. */
3435
3436 static void
3437 mem_init (void)
3438 {
3439 mem_z.left = mem_z.right = MEM_NIL;
3440 mem_z.parent = NULL;
3441 mem_z.color = MEM_BLACK;
3442 mem_z.start = mem_z.end = NULL;
3443 mem_root = MEM_NIL;
3444 }
3445
3446
3447 /* Value is a pointer to the mem_node containing START. Value is
3448 MEM_NIL if there is no node in the tree containing START. */
3449
3450 static INLINE struct mem_node *
3451 mem_find (void *start)
3452 {
3453 struct mem_node *p;
3454
3455 if (start < min_heap_address || start > max_heap_address)
3456 return MEM_NIL;
3457
3458 /* Make the search always successful to speed up the loop below. */
3459 mem_z.start = start;
3460 mem_z.end = (char *) start + 1;
3461
3462 p = mem_root;
3463 while (start < p->start || start >= p->end)
3464 p = start < p->start ? p->left : p->right;
3465 return p;
3466 }
3467
3468
3469 /* Insert a new node into the tree for a block of memory with start
3470 address START, end address END, and type TYPE. Value is a
3471 pointer to the node that was inserted. */
3472
3473 static struct mem_node *
3474 mem_insert (void *start, void *end, enum mem_type type)
3475 {
3476 struct mem_node *c, *parent, *x;
3477
3478 if (min_heap_address == NULL || start < min_heap_address)
3479 min_heap_address = start;
3480 if (max_heap_address == NULL || end > max_heap_address)
3481 max_heap_address = end;
3482
3483 /* See where in the tree a node for START belongs. In this
3484 particular application, it shouldn't happen that a node is already
3485 present. For debugging purposes, let's check that. */
3486 c = mem_root;
3487 parent = NULL;
3488
3489 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3490
3491 while (c != MEM_NIL)
3492 {
3493 if (start >= c->start && start < c->end)
3494 abort ();
3495 parent = c;
3496 c = start < c->start ? c->left : c->right;
3497 }
3498
3499 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3500
3501 while (c != MEM_NIL)
3502 {
3503 parent = c;
3504 c = start < c->start ? c->left : c->right;
3505 }
3506
3507 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3508
3509 /* Create a new node. */
3510 #ifdef GC_MALLOC_CHECK
3511 x = (struct mem_node *) _malloc_internal (sizeof *x);
3512 if (x == NULL)
3513 abort ();
3514 #else
3515 x = (struct mem_node *) xmalloc (sizeof *x);
3516 #endif
3517 x->start = start;
3518 x->end = end;
3519 x->type = type;
3520 x->parent = parent;
3521 x->left = x->right = MEM_NIL;
3522 x->color = MEM_RED;
3523
3524 /* Insert it as child of PARENT or install it as root. */
3525 if (parent)
3526 {
3527 if (start < parent->start)
3528 parent->left = x;
3529 else
3530 parent->right = x;
3531 }
3532 else
3533 mem_root = x;
3534
3535 /* Re-establish red-black tree properties. */
3536 mem_insert_fixup (x);
3537
3538 return x;
3539 }
3540
3541
3542 /* Re-establish the red-black properties of the tree, and thereby
3543 balance the tree, after node X has been inserted; X is always red. */
3544
3545 static void
3546 mem_insert_fixup (struct mem_node *x)
3547 {
3548 while (x != mem_root && x->parent->color == MEM_RED)
3549 {
3550 /* X is red and its parent is red. This is a violation of
3551 red-black tree property #3. */
3552
3553 if (x->parent == x->parent->parent->left)
3554 {
3555 /* We're on the left side of our grandparent, and Y is our
3556 "uncle". */
3557 struct mem_node *y = x->parent->parent->right;
3558
3559 if (y->color == MEM_RED)
3560 {
3561 /* Uncle and parent are red but should be black because
3562 X is red. Change the colors accordingly and proceed
3563 with the grandparent. */
3564 x->parent->color = MEM_BLACK;
3565 y->color = MEM_BLACK;
3566 x->parent->parent->color = MEM_RED;
3567 x = x->parent->parent;
3568 }
3569 else
3570 {
3571 /* Parent and uncle have different colors; parent is
3572 red, uncle is black. */
3573 if (x == x->parent->right)
3574 {
3575 x = x->parent;
3576 mem_rotate_left (x);
3577 }
3578
3579 x->parent->color = MEM_BLACK;
3580 x->parent->parent->color = MEM_RED;
3581 mem_rotate_right (x->parent->parent);
3582 }
3583 }
3584 else
3585 {
3586 /* This is the symmetrical case of above. */
3587 struct mem_node *y = x->parent->parent->left;
3588
3589 if (y->color == MEM_RED)
3590 {
3591 x->parent->color = MEM_BLACK;
3592 y->color = MEM_BLACK;
3593 x->parent->parent->color = MEM_RED;
3594 x = x->parent->parent;
3595 }
3596 else
3597 {
3598 if (x == x->parent->left)
3599 {
3600 x = x->parent;
3601 mem_rotate_right (x);
3602 }
3603
3604 x->parent->color = MEM_BLACK;
3605 x->parent->parent->color = MEM_RED;
3606 mem_rotate_left (x->parent->parent);
3607 }
3608 }
3609 }
3610
3611 /* The root may have been changed to red due to the algorithm. Set
3612 it to black so that property #5 is satisfied. */
3613 mem_root->color = MEM_BLACK;
3614 }
3615
3616
3617 /* (x) (y)
3618 / \ / \
3619 a (y) ===> (x) c
3620 / \ / \
3621 b c a b */
3622
3623 static void
3624 mem_rotate_left (struct mem_node *x)
3625 {
3626 struct mem_node *y;
3627
3628 /* Turn y's left sub-tree into x's right sub-tree. */
3629 y = x->right;
3630 x->right = y->left;
3631 if (y->left != MEM_NIL)
3632 y->left->parent = x;
3633
3634 /* Y's parent was x's parent. */
3635 if (y != MEM_NIL)
3636 y->parent = x->parent;
3637
3638 /* Get the parent to point to y instead of x. */
3639 if (x->parent)
3640 {
3641 if (x == x->parent->left)
3642 x->parent->left = y;
3643 else
3644 x->parent->right = y;
3645 }
3646 else
3647 mem_root = y;
3648
3649 /* Put x on y's left. */
3650 y->left = x;
3651 if (x != MEM_NIL)
3652 x->parent = y;
3653 }
3654
3655
3656 /* (x) (Y)
3657 / \ / \
3658 (y) c ===> a (x)
3659 / \ / \
3660 a b b c */
3661
3662 static void
3663 mem_rotate_right (struct mem_node *x)
3664 {
3665 struct mem_node *y = x->left;
3666
3667 x->left = y->right;
3668 if (y->right != MEM_NIL)
3669 y->right->parent = x;
3670
3671 if (y != MEM_NIL)
3672 y->parent = x->parent;
3673 if (x->parent)
3674 {
3675 if (x == x->parent->right)
3676 x->parent->right = y;
3677 else
3678 x->parent->left = y;
3679 }
3680 else
3681 mem_root = y;
3682
3683 y->right = x;
3684 if (x != MEM_NIL)
3685 x->parent = y;
3686 }
3687
3688
3689 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3690
3691 static void
3692 mem_delete (struct mem_node *z)
3693 {
3694 struct mem_node *x, *y;
3695
3696 if (!z || z == MEM_NIL)
3697 return;
3698
3699 if (z->left == MEM_NIL || z->right == MEM_NIL)
3700 y = z;
3701 else
3702 {
3703 y = z->right;
3704 while (y->left != MEM_NIL)
3705 y = y->left;
3706 }
3707
3708 if (y->left != MEM_NIL)
3709 x = y->left;
3710 else
3711 x = y->right;
3712
3713 x->parent = y->parent;
3714 if (y->parent)
3715 {
3716 if (y == y->parent->left)
3717 y->parent->left = x;
3718 else
3719 y->parent->right = x;
3720 }
3721 else
3722 mem_root = x;
3723
3724 if (y != z)
3725 {
3726 z->start = y->start;
3727 z->end = y->end;
3728 z->type = y->type;
3729 }
3730
3731 if (y->color == MEM_BLACK)
3732 mem_delete_fixup (x);
3733
3734 #ifdef GC_MALLOC_CHECK
3735 _free_internal (y);
3736 #else
3737 xfree (y);
3738 #endif
3739 }
3740
3741
3742 /* Re-establish the red-black properties of the tree, after a
3743 deletion. */
3744
3745 static void
3746 mem_delete_fixup (struct mem_node *x)
3747 {
3748 while (x != mem_root && x->color == MEM_BLACK)
3749 {
3750 if (x == x->parent->left)
3751 {
3752 struct mem_node *w = x->parent->right;
3753
3754 if (w->color == MEM_RED)
3755 {
3756 w->color = MEM_BLACK;
3757 x->parent->color = MEM_RED;
3758 mem_rotate_left (x->parent);
3759 w = x->parent->right;
3760 }
3761
3762 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3763 {
3764 w->color = MEM_RED;
3765 x = x->parent;
3766 }
3767 else
3768 {
3769 if (w->right->color == MEM_BLACK)
3770 {
3771 w->left->color = MEM_BLACK;
3772 w->color = MEM_RED;
3773 mem_rotate_right (w);
3774 w = x->parent->right;
3775 }
3776 w->color = x->parent->color;
3777 x->parent->color = MEM_BLACK;
3778 w->right->color = MEM_BLACK;
3779 mem_rotate_left (x->parent);
3780 x = mem_root;
3781 }
3782 }
3783 else
3784 {
3785 struct mem_node *w = x->parent->left;
3786
3787 if (w->color == MEM_RED)
3788 {
3789 w->color = MEM_BLACK;
3790 x->parent->color = MEM_RED;
3791 mem_rotate_right (x->parent);
3792 w = x->parent->left;
3793 }
3794
3795 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3796 {
3797 w->color = MEM_RED;
3798 x = x->parent;
3799 }
3800 else
3801 {
3802 if (w->left->color == MEM_BLACK)
3803 {
3804 w->right->color = MEM_BLACK;
3805 w->color = MEM_RED;
3806 mem_rotate_left (w);
3807 w = x->parent->left;
3808 }
3809
3810 w->color = x->parent->color;
3811 x->parent->color = MEM_BLACK;
3812 w->left->color = MEM_BLACK;
3813 mem_rotate_right (x->parent);
3814 x = mem_root;
3815 }
3816 }
3817 }
3818
3819 x->color = MEM_BLACK;
3820 }
3821
3822
3823 /* Value is non-zero if P is a pointer to a live Lisp string on
3824 the heap. M is a pointer to the mem_block for P. */
3825
3826 static INLINE int
3827 live_string_p (struct mem_node *m, void *p)
3828 {
3829 if (m->type == MEM_TYPE_STRING)
3830 {
3831 struct string_block *b = (struct string_block *) m->start;
3832 int offset = (char *) p - (char *) &b->strings[0];
3833
3834 /* P must point to the start of a Lisp_String structure, and it
3835 must not be on the free-list. */
3836 return (offset >= 0
3837 && offset % sizeof b->strings[0] == 0
3838 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3839 && ((struct Lisp_String *) p)->data != NULL);
3840 }
3841 else
3842 return 0;
3843 }
3844
3845
3846 /* Value is non-zero if P is a pointer to a live Lisp cons on
3847 the heap. M is a pointer to the mem_block for P. */
3848
3849 static INLINE int
3850 live_cons_p (struct mem_node *m, void *p)
3851 {
3852 if (m->type == MEM_TYPE_CONS)
3853 {
3854 struct cons_block *b = (struct cons_block *) m->start;
3855 int offset = (char *) p - (char *) &b->conses[0];
3856
3857 /* P must point to the start of a Lisp_Cons, not be
3858 one of the unused cells in the current cons block,
3859 and not be on the free-list. */
3860 return (offset >= 0
3861 && offset % sizeof b->conses[0] == 0
3862 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3863 && (b != cons_block
3864 || offset / sizeof b->conses[0] < cons_block_index)
3865 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3866 }
3867 else
3868 return 0;
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3873 the heap. M is a pointer to the mem_block for P. */
3874
3875 static INLINE int
3876 live_symbol_p (struct mem_node *m, void *p)
3877 {
3878 if (m->type == MEM_TYPE_SYMBOL)
3879 {
3880 struct symbol_block *b = (struct symbol_block *) m->start;
3881 int offset = (char *) p - (char *) &b->symbols[0];
3882
3883 /* P must point to the start of a Lisp_Symbol, not be
3884 one of the unused cells in the current symbol block,
3885 and not be on the free-list. */
3886 return (offset >= 0
3887 && offset % sizeof b->symbols[0] == 0
3888 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3889 && (b != symbol_block
3890 || offset / sizeof b->symbols[0] < symbol_block_index)
3891 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3892 }
3893 else
3894 return 0;
3895 }
3896
3897
3898 /* Value is non-zero if P is a pointer to a live Lisp float on
3899 the heap. M is a pointer to the mem_block for P. */
3900
3901 static INLINE int
3902 live_float_p (struct mem_node *m, void *p)
3903 {
3904 if (m->type == MEM_TYPE_FLOAT)
3905 {
3906 struct float_block *b = (struct float_block *) m->start;
3907 int offset = (char *) p - (char *) &b->floats[0];
3908
3909 /* P must point to the start of a Lisp_Float and not be
3910 one of the unused cells in the current float block. */
3911 return (offset >= 0
3912 && offset % sizeof b->floats[0] == 0
3913 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3914 && (b != float_block
3915 || offset / sizeof b->floats[0] < float_block_index));
3916 }
3917 else
3918 return 0;
3919 }
3920
3921
3922 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3923 the heap. M is a pointer to the mem_block for P. */
3924
3925 static INLINE int
3926 live_misc_p (struct mem_node *m, void *p)
3927 {
3928 if (m->type == MEM_TYPE_MISC)
3929 {
3930 struct marker_block *b = (struct marker_block *) m->start;
3931 int offset = (char *) p - (char *) &b->markers[0];
3932
3933 /* P must point to the start of a Lisp_Misc, not be
3934 one of the unused cells in the current misc block,
3935 and not be on the free-list. */
3936 return (offset >= 0
3937 && offset % sizeof b->markers[0] == 0
3938 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3939 && (b != marker_block
3940 || offset / sizeof b->markers[0] < marker_block_index)
3941 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3942 }
3943 else
3944 return 0;
3945 }
3946
3947
3948 /* Value is non-zero if P is a pointer to a live vector-like object.
3949 M is a pointer to the mem_block for P. */
3950
3951 static INLINE int
3952 live_vector_p (struct mem_node *m, void *p)
3953 {
3954 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3955 }
3956
3957
3958 /* Value is non-zero if P is a pointer to a live buffer. M is a
3959 pointer to the mem_block for P. */
3960
3961 static INLINE int
3962 live_buffer_p (struct mem_node *m, void *p)
3963 {
3964 /* P must point to the start of the block, and the buffer
3965 must not have been killed. */
3966 return (m->type == MEM_TYPE_BUFFER
3967 && p == m->start
3968 && !NILP (((struct buffer *) p)->name));
3969 }
3970
3971 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3972
3973 #if GC_MARK_STACK
3974
3975 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3976
3977 /* Array of objects that are kept alive because the C stack contains
3978 a pattern that looks like a reference to them . */
3979
3980 #define MAX_ZOMBIES 10
3981 static Lisp_Object zombies[MAX_ZOMBIES];
3982
3983 /* Number of zombie objects. */
3984
3985 static int nzombies;
3986
3987 /* Number of garbage collections. */
3988
3989 static int ngcs;
3990
3991 /* Average percentage of zombies per collection. */
3992
3993 static double avg_zombies;
3994
3995 /* Max. number of live and zombie objects. */
3996
3997 static int max_live, max_zombies;
3998
3999 /* Average number of live objects per GC. */
4000
4001 static double avg_live;
4002
4003 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4004 doc: /* Show information about live and zombie objects. */)
4005 ()
4006 {
4007 Lisp_Object args[8], zombie_list = Qnil;
4008 int i;
4009 for (i = 0; i < nzombies; i++)
4010 zombie_list = Fcons (zombies[i], zombie_list);
4011 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4012 args[1] = make_number (ngcs);
4013 args[2] = make_float (avg_live);
4014 args[3] = make_float (avg_zombies);
4015 args[4] = make_float (avg_zombies / avg_live / 100);
4016 args[5] = make_number (max_live);
4017 args[6] = make_number (max_zombies);
4018 args[7] = zombie_list;
4019 return Fmessage (8, args);
4020 }
4021
4022 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4023
4024
4025 /* Mark OBJ if we can prove it's a Lisp_Object. */
4026
4027 static INLINE void
4028 mark_maybe_object (Lisp_Object obj)
4029 {
4030 void *po = (void *) XPNTR (obj);
4031 struct mem_node *m = mem_find (po);
4032
4033 if (m != MEM_NIL)
4034 {
4035 int mark_p = 0;
4036
4037 switch (XTYPE (obj))
4038 {
4039 case Lisp_String:
4040 mark_p = (live_string_p (m, po)
4041 && !STRING_MARKED_P ((struct Lisp_String *) po));
4042 break;
4043
4044 case Lisp_Cons:
4045 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4046 break;
4047
4048 case Lisp_Symbol:
4049 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4050 break;
4051
4052 case Lisp_Float:
4053 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4054 break;
4055
4056 case Lisp_Vectorlike:
4057 /* Note: can't check BUFFERP before we know it's a
4058 buffer because checking that dereferences the pointer
4059 PO which might point anywhere. */
4060 if (live_vector_p (m, po))
4061 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4062 else if (live_buffer_p (m, po))
4063 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4064 break;
4065
4066 case Lisp_Misc:
4067 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4068 break;
4069
4070 default:
4071 break;
4072 }
4073
4074 if (mark_p)
4075 {
4076 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4077 if (nzombies < MAX_ZOMBIES)
4078 zombies[nzombies] = obj;
4079 ++nzombies;
4080 #endif
4081 mark_object (obj);
4082 }
4083 }
4084 }
4085
4086
4087 /* If P points to Lisp data, mark that as live if it isn't already
4088 marked. */
4089
4090 static INLINE void
4091 mark_maybe_pointer (void *p)
4092 {
4093 struct mem_node *m;
4094
4095 /* Quickly rule out some values which can't point to Lisp data. */
4096 if ((EMACS_INT) p %
4097 #ifdef USE_LSB_TAG
4098 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4099 #else
4100 2 /* We assume that Lisp data is aligned on even addresses. */
4101 #endif
4102 )
4103 return;
4104
4105 m = mem_find (p);
4106 if (m != MEM_NIL)
4107 {
4108 Lisp_Object obj = Qnil;
4109
4110 switch (m->type)
4111 {
4112 case MEM_TYPE_NON_LISP:
4113 /* Nothing to do; not a pointer to Lisp memory. */
4114 break;
4115
4116 case MEM_TYPE_BUFFER:
4117 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4118 XSETVECTOR (obj, p);
4119 break;
4120
4121 case MEM_TYPE_CONS:
4122 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4123 XSETCONS (obj, p);
4124 break;
4125
4126 case MEM_TYPE_STRING:
4127 if (live_string_p (m, p)
4128 && !STRING_MARKED_P ((struct Lisp_String *) p))
4129 XSETSTRING (obj, p);
4130 break;
4131
4132 case MEM_TYPE_MISC:
4133 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4134 XSETMISC (obj, p);
4135 break;
4136
4137 case MEM_TYPE_SYMBOL:
4138 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4139 XSETSYMBOL (obj, p);
4140 break;
4141
4142 case MEM_TYPE_FLOAT:
4143 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4144 XSETFLOAT (obj, p);
4145 break;
4146
4147 case MEM_TYPE_VECTORLIKE:
4148 if (live_vector_p (m, p))
4149 {
4150 Lisp_Object tem;
4151 XSETVECTOR (tem, p);
4152 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4153 obj = tem;
4154 }
4155 break;
4156
4157 default:
4158 abort ();
4159 }
4160
4161 if (!NILP (obj))
4162 mark_object (obj);
4163 }
4164 }
4165
4166
4167 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4168 or END+OFFSET..START. */
4169
4170 static void
4171 mark_memory (void *start, void *end, int offset)
4172 {
4173 Lisp_Object *p;
4174 void **pp;
4175
4176 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4177 nzombies = 0;
4178 #endif
4179
4180 /* Make START the pointer to the start of the memory region,
4181 if it isn't already. */
4182 if (end < start)
4183 {
4184 void *tem = start;
4185 start = end;
4186 end = tem;
4187 }
4188
4189 /* Mark Lisp_Objects. */
4190 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4191 mark_maybe_object (*p);
4192
4193 /* Mark Lisp data pointed to. This is necessary because, in some
4194 situations, the C compiler optimizes Lisp objects away, so that
4195 only a pointer to them remains. Example:
4196
4197 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4198 ()
4199 {
4200 Lisp_Object obj = build_string ("test");
4201 struct Lisp_String *s = XSTRING (obj);
4202 Fgarbage_collect ();
4203 fprintf (stderr, "test `%s'\n", s->data);
4204 return Qnil;
4205 }
4206
4207 Here, `obj' isn't really used, and the compiler optimizes it
4208 away. The only reference to the life string is through the
4209 pointer `s'. */
4210
4211 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4212 mark_maybe_pointer (*pp);
4213 }
4214
4215 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4216 the GCC system configuration. In gcc 3.2, the only systems for
4217 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4218 by others?) and ns32k-pc532-min. */
4219
4220 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4221
4222 static int setjmp_tested_p, longjmps_done;
4223
4224 #define SETJMP_WILL_LIKELY_WORK "\
4225 \n\
4226 Emacs garbage collector has been changed to use conservative stack\n\
4227 marking. Emacs has determined that the method it uses to do the\n\
4228 marking will likely work on your system, but this isn't sure.\n\
4229 \n\
4230 If you are a system-programmer, or can get the help of a local wizard\n\
4231 who is, please take a look at the function mark_stack in alloc.c, and\n\
4232 verify that the methods used are appropriate for your system.\n\
4233 \n\
4234 Please mail the result to <emacs-devel@gnu.org>.\n\
4235 "
4236
4237 #define SETJMP_WILL_NOT_WORK "\
4238 \n\
4239 Emacs garbage collector has been changed to use conservative stack\n\
4240 marking. Emacs has determined that the default method it uses to do the\n\
4241 marking will not work on your system. We will need a system-dependent\n\
4242 solution for your system.\n\
4243 \n\
4244 Please take a look at the function mark_stack in alloc.c, and\n\
4245 try to find a way to make it work on your system.\n\
4246 \n\
4247 Note that you may get false negatives, depending on the compiler.\n\
4248 In particular, you need to use -O with GCC for this test.\n\
4249 \n\
4250 Please mail the result to <emacs-devel@gnu.org>.\n\
4251 "
4252
4253
4254 /* Perform a quick check if it looks like setjmp saves registers in a
4255 jmp_buf. Print a message to stderr saying so. When this test
4256 succeeds, this is _not_ a proof that setjmp is sufficient for
4257 conservative stack marking. Only the sources or a disassembly
4258 can prove that. */
4259
4260 static void
4261 test_setjmp ()
4262 {
4263 char buf[10];
4264 register int x;
4265 jmp_buf jbuf;
4266 int result = 0;
4267
4268 /* Arrange for X to be put in a register. */
4269 sprintf (buf, "1");
4270 x = strlen (buf);
4271 x = 2 * x - 1;
4272
4273 setjmp (jbuf);
4274 if (longjmps_done == 1)
4275 {
4276 /* Came here after the longjmp at the end of the function.
4277
4278 If x == 1, the longjmp has restored the register to its
4279 value before the setjmp, and we can hope that setjmp
4280 saves all such registers in the jmp_buf, although that
4281 isn't sure.
4282
4283 For other values of X, either something really strange is
4284 taking place, or the setjmp just didn't save the register. */
4285
4286 if (x == 1)
4287 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4288 else
4289 {
4290 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4291 exit (1);
4292 }
4293 }
4294
4295 ++longjmps_done;
4296 x = 2;
4297 if (longjmps_done == 1)
4298 longjmp (jbuf, 1);
4299 }
4300
4301 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4302
4303
4304 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4305
4306 /* Abort if anything GCPRO'd doesn't survive the GC. */
4307
4308 static void
4309 check_gcpros ()
4310 {
4311 struct gcpro *p;
4312 int i;
4313
4314 for (p = gcprolist; p; p = p->next)
4315 for (i = 0; i < p->nvars; ++i)
4316 if (!survives_gc_p (p->var[i]))
4317 /* FIXME: It's not necessarily a bug. It might just be that the
4318 GCPRO is unnecessary or should release the object sooner. */
4319 abort ();
4320 }
4321
4322 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4323
4324 static void
4325 dump_zombies ()
4326 {
4327 int i;
4328
4329 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4330 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4331 {
4332 fprintf (stderr, " %d = ", i);
4333 debug_print (zombies[i]);
4334 }
4335 }
4336
4337 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4338
4339
4340 /* Mark live Lisp objects on the C stack.
4341
4342 There are several system-dependent problems to consider when
4343 porting this to new architectures:
4344
4345 Processor Registers
4346
4347 We have to mark Lisp objects in CPU registers that can hold local
4348 variables or are used to pass parameters.
4349
4350 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4351 something that either saves relevant registers on the stack, or
4352 calls mark_maybe_object passing it each register's contents.
4353
4354 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4355 implementation assumes that calling setjmp saves registers we need
4356 to see in a jmp_buf which itself lies on the stack. This doesn't
4357 have to be true! It must be verified for each system, possibly
4358 by taking a look at the source code of setjmp.
4359
4360 Stack Layout
4361
4362 Architectures differ in the way their processor stack is organized.
4363 For example, the stack might look like this
4364
4365 +----------------+
4366 | Lisp_Object | size = 4
4367 +----------------+
4368 | something else | size = 2
4369 +----------------+
4370 | Lisp_Object | size = 4
4371 +----------------+
4372 | ... |
4373
4374 In such a case, not every Lisp_Object will be aligned equally. To
4375 find all Lisp_Object on the stack it won't be sufficient to walk
4376 the stack in steps of 4 bytes. Instead, two passes will be
4377 necessary, one starting at the start of the stack, and a second
4378 pass starting at the start of the stack + 2. Likewise, if the
4379 minimal alignment of Lisp_Objects on the stack is 1, four passes
4380 would be necessary, each one starting with one byte more offset
4381 from the stack start.
4382
4383 The current code assumes by default that Lisp_Objects are aligned
4384 equally on the stack. */
4385
4386 static void
4387 mark_stack (void)
4388 {
4389 int i;
4390 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4391 union aligned_jmpbuf {
4392 Lisp_Object o;
4393 jmp_buf j;
4394 } j;
4395 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4396 void *end;
4397
4398 /* This trick flushes the register windows so that all the state of
4399 the process is contained in the stack. */
4400 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4401 needed on ia64 too. See mach_dep.c, where it also says inline
4402 assembler doesn't work with relevant proprietary compilers. */
4403 #ifdef __sparc__
4404 #if defined (__sparc64__) && defined (__FreeBSD__)
4405 /* FreeBSD does not have a ta 3 handler. */
4406 asm ("flushw");
4407 #else
4408 asm ("ta 3");
4409 #endif
4410 #endif
4411
4412 /* Save registers that we need to see on the stack. We need to see
4413 registers used to hold register variables and registers used to
4414 pass parameters. */
4415 #ifdef GC_SAVE_REGISTERS_ON_STACK
4416 GC_SAVE_REGISTERS_ON_STACK (end);
4417 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4418
4419 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4420 setjmp will definitely work, test it
4421 and print a message with the result
4422 of the test. */
4423 if (!setjmp_tested_p)
4424 {
4425 setjmp_tested_p = 1;
4426 test_setjmp ();
4427 }
4428 #endif /* GC_SETJMP_WORKS */
4429
4430 setjmp (j.j);
4431 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4432 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4433
4434 /* This assumes that the stack is a contiguous region in memory. If
4435 that's not the case, something has to be done here to iterate
4436 over the stack segments. */
4437 #ifndef GC_LISP_OBJECT_ALIGNMENT
4438 #ifdef __GNUC__
4439 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4440 #else
4441 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4442 #endif
4443 #endif
4444 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4445 mark_memory (stack_base, end, i);
4446 /* Allow for marking a secondary stack, like the register stack on the
4447 ia64. */
4448 #ifdef GC_MARK_SECONDARY_STACK
4449 GC_MARK_SECONDARY_STACK ();
4450 #endif
4451
4452 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4453 check_gcpros ();
4454 #endif
4455 }
4456
4457 #endif /* GC_MARK_STACK != 0 */
4458
4459
4460 /* Determine whether it is safe to access memory at address P. */
4461 static int
4462 valid_pointer_p (void *p)
4463 {
4464 #ifdef WINDOWSNT
4465 return w32_valid_pointer_p (p, 16);
4466 #else
4467 int fd;
4468
4469 /* Obviously, we cannot just access it (we would SEGV trying), so we
4470 trick the o/s to tell us whether p is a valid pointer.
4471 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4472 not validate p in that case. */
4473
4474 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4475 {
4476 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4477 emacs_close (fd);
4478 unlink ("__Valid__Lisp__Object__");
4479 return valid;
4480 }
4481
4482 return -1;
4483 #endif
4484 }
4485
4486 /* Return 1 if OBJ is a valid lisp object.
4487 Return 0 if OBJ is NOT a valid lisp object.
4488 Return -1 if we cannot validate OBJ.
4489 This function can be quite slow,
4490 so it should only be used in code for manual debugging. */
4491
4492 int
4493 valid_lisp_object_p (Lisp_Object obj)
4494 {
4495 void *p;
4496 #if GC_MARK_STACK
4497 struct mem_node *m;
4498 #endif
4499
4500 if (INTEGERP (obj))
4501 return 1;
4502
4503 p = (void *) XPNTR (obj);
4504 if (PURE_POINTER_P (p))
4505 return 1;
4506
4507 #if !GC_MARK_STACK
4508 return valid_pointer_p (p);
4509 #else
4510
4511 m = mem_find (p);
4512
4513 if (m == MEM_NIL)
4514 {
4515 int valid = valid_pointer_p (p);
4516 if (valid <= 0)
4517 return valid;
4518
4519 if (SUBRP (obj))
4520 return 1;
4521
4522 return 0;
4523 }
4524
4525 switch (m->type)
4526 {
4527 case MEM_TYPE_NON_LISP:
4528 return 0;
4529
4530 case MEM_TYPE_BUFFER:
4531 return live_buffer_p (m, p);
4532
4533 case MEM_TYPE_CONS:
4534 return live_cons_p (m, p);
4535
4536 case MEM_TYPE_STRING:
4537 return live_string_p (m, p);
4538
4539 case MEM_TYPE_MISC:
4540 return live_misc_p (m, p);
4541
4542 case MEM_TYPE_SYMBOL:
4543 return live_symbol_p (m, p);
4544
4545 case MEM_TYPE_FLOAT:
4546 return live_float_p (m, p);
4547
4548 case MEM_TYPE_VECTORLIKE:
4549 return live_vector_p (m, p);
4550
4551 default:
4552 break;
4553 }
4554
4555 return 0;
4556 #endif
4557 }
4558
4559
4560
4561 \f
4562 /***********************************************************************
4563 Pure Storage Management
4564 ***********************************************************************/
4565
4566 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4567 pointer to it. TYPE is the Lisp type for which the memory is
4568 allocated. TYPE < 0 means it's not used for a Lisp object. */
4569
4570 static POINTER_TYPE *
4571 pure_alloc (size_t size, int type)
4572 {
4573 POINTER_TYPE *result;
4574 #ifdef USE_LSB_TAG
4575 size_t alignment = (1 << GCTYPEBITS);
4576 #else
4577 size_t alignment = sizeof (EMACS_INT);
4578
4579 /* Give Lisp_Floats an extra alignment. */
4580 if (type == Lisp_Float)
4581 {
4582 #if defined __GNUC__ && __GNUC__ >= 2
4583 alignment = __alignof (struct Lisp_Float);
4584 #else
4585 alignment = sizeof (struct Lisp_Float);
4586 #endif
4587 }
4588 #endif
4589
4590 again:
4591 if (type >= 0)
4592 {
4593 /* Allocate space for a Lisp object from the beginning of the free
4594 space with taking account of alignment. */
4595 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4596 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4597 }
4598 else
4599 {
4600 /* Allocate space for a non-Lisp object from the end of the free
4601 space. */
4602 pure_bytes_used_non_lisp += size;
4603 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4604 }
4605 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4606
4607 if (pure_bytes_used <= pure_size)
4608 return result;
4609
4610 /* Don't allocate a large amount here,
4611 because it might get mmap'd and then its address
4612 might not be usable. */
4613 purebeg = (char *) xmalloc (10000);
4614 pure_size = 10000;
4615 pure_bytes_used_before_overflow += pure_bytes_used - size;
4616 pure_bytes_used = 0;
4617 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4618 goto again;
4619 }
4620
4621
4622 /* Print a warning if PURESIZE is too small. */
4623
4624 void
4625 check_pure_size (void)
4626 {
4627 if (pure_bytes_used_before_overflow)
4628 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4629 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4630 }
4631
4632
4633 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4634 the non-Lisp data pool of the pure storage, and return its start
4635 address. Return NULL if not found. */
4636
4637 static char *
4638 find_string_data_in_pure (const char *data, int nbytes)
4639 {
4640 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4641 const unsigned char *p;
4642 char *non_lisp_beg;
4643
4644 if (pure_bytes_used_non_lisp < nbytes + 1)
4645 return NULL;
4646
4647 /* Set up the Boyer-Moore table. */
4648 skip = nbytes + 1;
4649 for (i = 0; i < 256; i++)
4650 bm_skip[i] = skip;
4651
4652 p = (const unsigned char *) data;
4653 while (--skip > 0)
4654 bm_skip[*p++] = skip;
4655
4656 last_char_skip = bm_skip['\0'];
4657
4658 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4659 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4660
4661 /* See the comments in the function `boyer_moore' (search.c) for the
4662 use of `infinity'. */
4663 infinity = pure_bytes_used_non_lisp + 1;
4664 bm_skip['\0'] = infinity;
4665
4666 p = (const unsigned char *) non_lisp_beg + nbytes;
4667 start = 0;
4668 do
4669 {
4670 /* Check the last character (== '\0'). */
4671 do
4672 {
4673 start += bm_skip[*(p + start)];
4674 }
4675 while (start <= start_max);
4676
4677 if (start < infinity)
4678 /* Couldn't find the last character. */
4679 return NULL;
4680
4681 /* No less than `infinity' means we could find the last
4682 character at `p[start - infinity]'. */
4683 start -= infinity;
4684
4685 /* Check the remaining characters. */
4686 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4687 /* Found. */
4688 return non_lisp_beg + start;
4689
4690 start += last_char_skip;
4691 }
4692 while (start <= start_max);
4693
4694 return NULL;
4695 }
4696
4697
4698 /* Return a string allocated in pure space. DATA is a buffer holding
4699 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4700 non-zero means make the result string multibyte.
4701
4702 Must get an error if pure storage is full, since if it cannot hold
4703 a large string it may be able to hold conses that point to that
4704 string; then the string is not protected from gc. */
4705
4706 Lisp_Object
4707 make_pure_string (const char *data, int nchars, int nbytes, int multibyte)
4708 {
4709 Lisp_Object string;
4710 struct Lisp_String *s;
4711
4712 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4713 s->data = find_string_data_in_pure (data, nbytes);
4714 if (s->data == NULL)
4715 {
4716 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4717 memcpy (s->data, data, nbytes);
4718 s->data[nbytes] = '\0';
4719 }
4720 s->size = nchars;
4721 s->size_byte = multibyte ? nbytes : -1;
4722 s->intervals = NULL_INTERVAL;
4723 XSETSTRING (string, s);
4724 return string;
4725 }
4726
4727 /* Return a string a string allocated in pure space. Do not allocate
4728 the string data, just point to DATA. */
4729
4730 Lisp_Object
4731 make_pure_c_string (const char *data)
4732 {
4733 Lisp_Object string;
4734 struct Lisp_String *s;
4735 int nchars = strlen (data);
4736
4737 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4738 s->size = nchars;
4739 s->size_byte = -1;
4740 s->data = (unsigned char *) data;
4741 s->intervals = NULL_INTERVAL;
4742 XSETSTRING (string, s);
4743 return string;
4744 }
4745
4746 /* Return a cons allocated from pure space. Give it pure copies
4747 of CAR as car and CDR as cdr. */
4748
4749 Lisp_Object
4750 pure_cons (Lisp_Object car, Lisp_Object cdr)
4751 {
4752 register Lisp_Object new;
4753 struct Lisp_Cons *p;
4754
4755 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4756 XSETCONS (new, p);
4757 XSETCAR (new, Fpurecopy (car));
4758 XSETCDR (new, Fpurecopy (cdr));
4759 return new;
4760 }
4761
4762
4763 /* Value is a float object with value NUM allocated from pure space. */
4764
4765 static Lisp_Object
4766 make_pure_float (double num)
4767 {
4768 register Lisp_Object new;
4769 struct Lisp_Float *p;
4770
4771 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4772 XSETFLOAT (new, p);
4773 XFLOAT_INIT (new, num);
4774 return new;
4775 }
4776
4777
4778 /* Return a vector with room for LEN Lisp_Objects allocated from
4779 pure space. */
4780
4781 Lisp_Object
4782 make_pure_vector (EMACS_INT len)
4783 {
4784 Lisp_Object new;
4785 struct Lisp_Vector *p;
4786 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4787
4788 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4789 XSETVECTOR (new, p);
4790 XVECTOR (new)->size = len;
4791 return new;
4792 }
4793
4794
4795 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4796 doc: /* Make a copy of object OBJ in pure storage.
4797 Recursively copies contents of vectors and cons cells.
4798 Does not copy symbols. Copies strings without text properties. */)
4799 (obj)
4800 register Lisp_Object obj;
4801 {
4802 if (NILP (Vpurify_flag))
4803 return obj;
4804
4805 if (PURE_POINTER_P (XPNTR (obj)))
4806 return obj;
4807
4808 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4809 {
4810 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4811 if (!NILP (tmp))
4812 return tmp;
4813 }
4814
4815 if (CONSP (obj))
4816 obj = pure_cons (XCAR (obj), XCDR (obj));
4817 else if (FLOATP (obj))
4818 obj = make_pure_float (XFLOAT_DATA (obj));
4819 else if (STRINGP (obj))
4820 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4821 SBYTES (obj),
4822 STRING_MULTIBYTE (obj));
4823 else if (COMPILEDP (obj) || VECTORP (obj))
4824 {
4825 register struct Lisp_Vector *vec;
4826 register int i;
4827 EMACS_INT size;
4828
4829 size = XVECTOR (obj)->size;
4830 if (size & PSEUDOVECTOR_FLAG)
4831 size &= PSEUDOVECTOR_SIZE_MASK;
4832 vec = XVECTOR (make_pure_vector (size));
4833 for (i = 0; i < size; i++)
4834 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4835 if (COMPILEDP (obj))
4836 {
4837 XSETPVECTYPE (vec, PVEC_COMPILED);
4838 XSETCOMPILED (obj, vec);
4839 }
4840 else
4841 XSETVECTOR (obj, vec);
4842 }
4843 else if (MARKERP (obj))
4844 error ("Attempt to copy a marker to pure storage");
4845 else
4846 /* Not purified, don't hash-cons. */
4847 return obj;
4848
4849 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4850 Fputhash (obj, obj, Vpurify_flag);
4851
4852 return obj;
4853 }
4854
4855
4856 \f
4857 /***********************************************************************
4858 Protection from GC
4859 ***********************************************************************/
4860
4861 /* Put an entry in staticvec, pointing at the variable with address
4862 VARADDRESS. */
4863
4864 void
4865 staticpro (Lisp_Object *varaddress)
4866 {
4867 staticvec[staticidx++] = varaddress;
4868 if (staticidx >= NSTATICS)
4869 abort ();
4870 }
4871
4872 \f
4873 /***********************************************************************
4874 Protection from GC
4875 ***********************************************************************/
4876
4877 /* Temporarily prevent garbage collection. */
4878
4879 int
4880 inhibit_garbage_collection (void)
4881 {
4882 int count = SPECPDL_INDEX ();
4883 int nbits = min (VALBITS, BITS_PER_INT);
4884
4885 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4886 return count;
4887 }
4888
4889
4890 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4891 doc: /* Reclaim storage for Lisp objects no longer needed.
4892 Garbage collection happens automatically if you cons more than
4893 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4894 `garbage-collect' normally returns a list with info on amount of space in use:
4895 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4896 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4897 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4898 (USED-STRINGS . FREE-STRINGS))
4899 However, if there was overflow in pure space, `garbage-collect'
4900 returns nil, because real GC can't be done. */)
4901 ()
4902 {
4903 register struct specbinding *bind;
4904 struct catchtag *catch;
4905 struct handler *handler;
4906 char stack_top_variable;
4907 register int i;
4908 int message_p;
4909 Lisp_Object total[8];
4910 int count = SPECPDL_INDEX ();
4911 EMACS_TIME t1, t2, t3;
4912
4913 if (abort_on_gc)
4914 abort ();
4915
4916 /* Can't GC if pure storage overflowed because we can't determine
4917 if something is a pure object or not. */
4918 if (pure_bytes_used_before_overflow)
4919 return Qnil;
4920
4921 CHECK_CONS_LIST ();
4922
4923 /* Don't keep undo information around forever.
4924 Do this early on, so it is no problem if the user quits. */
4925 {
4926 register struct buffer *nextb = all_buffers;
4927
4928 while (nextb)
4929 {
4930 /* If a buffer's undo list is Qt, that means that undo is
4931 turned off in that buffer. Calling truncate_undo_list on
4932 Qt tends to return NULL, which effectively turns undo back on.
4933 So don't call truncate_undo_list if undo_list is Qt. */
4934 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4935 truncate_undo_list (nextb);
4936
4937 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4938 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4939 && ! nextb->text->inhibit_shrinking)
4940 {
4941 /* If a buffer's gap size is more than 10% of the buffer
4942 size, or larger than 2000 bytes, then shrink it
4943 accordingly. Keep a minimum size of 20 bytes. */
4944 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4945
4946 if (nextb->text->gap_size > size)
4947 {
4948 struct buffer *save_current = current_buffer;
4949 current_buffer = nextb;
4950 make_gap (-(nextb->text->gap_size - size));
4951 current_buffer = save_current;
4952 }
4953 }
4954
4955 nextb = nextb->next;
4956 }
4957 }
4958
4959 EMACS_GET_TIME (t1);
4960
4961 /* In case user calls debug_print during GC,
4962 don't let that cause a recursive GC. */
4963 consing_since_gc = 0;
4964
4965 /* Save what's currently displayed in the echo area. */
4966 message_p = push_message ();
4967 record_unwind_protect (pop_message_unwind, Qnil);
4968
4969 /* Save a copy of the contents of the stack, for debugging. */
4970 #if MAX_SAVE_STACK > 0
4971 if (NILP (Vpurify_flag))
4972 {
4973 i = &stack_top_variable - stack_bottom;
4974 if (i < 0) i = -i;
4975 if (i < MAX_SAVE_STACK)
4976 {
4977 if (stack_copy == 0)
4978 stack_copy = (char *) xmalloc (stack_copy_size = i);
4979 else if (stack_copy_size < i)
4980 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4981 if (stack_copy)
4982 {
4983 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4984 memcpy (stack_copy, stack_bottom, i);
4985 else
4986 memcpy (stack_copy, &stack_top_variable, i);
4987 }
4988 }
4989 }
4990 #endif /* MAX_SAVE_STACK > 0 */
4991
4992 if (garbage_collection_messages)
4993 message1_nolog ("Garbage collecting...");
4994
4995 BLOCK_INPUT;
4996
4997 shrink_regexp_cache ();
4998
4999 gc_in_progress = 1;
5000
5001 /* clear_marks (); */
5002
5003 /* Mark all the special slots that serve as the roots of accessibility. */
5004
5005 for (i = 0; i < staticidx; i++)
5006 mark_object (*staticvec[i]);
5007
5008 for (bind = specpdl; bind != specpdl_ptr; bind++)
5009 {
5010 mark_object (bind->symbol);
5011 mark_object (bind->old_value);
5012 }
5013 mark_terminals ();
5014 mark_kboards ();
5015 mark_ttys ();
5016
5017 #ifdef USE_GTK
5018 {
5019 extern void xg_mark_data (void);
5020 xg_mark_data ();
5021 }
5022 #endif
5023
5024 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5025 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5026 mark_stack ();
5027 #else
5028 {
5029 register struct gcpro *tail;
5030 for (tail = gcprolist; tail; tail = tail->next)
5031 for (i = 0; i < tail->nvars; i++)
5032 mark_object (tail->var[i]);
5033 }
5034 #endif
5035
5036 mark_byte_stack ();
5037 for (catch = catchlist; catch; catch = catch->next)
5038 {
5039 mark_object (catch->tag);
5040 mark_object (catch->val);
5041 }
5042 for (handler = handlerlist; handler; handler = handler->next)
5043 {
5044 mark_object (handler->handler);
5045 mark_object (handler->var);
5046 }
5047 mark_backtrace ();
5048
5049 #ifdef HAVE_WINDOW_SYSTEM
5050 mark_fringe_data ();
5051 #endif
5052
5053 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5054 mark_stack ();
5055 #endif
5056
5057 /* Everything is now marked, except for the things that require special
5058 finalization, i.e. the undo_list.
5059 Look thru every buffer's undo list
5060 for elements that update markers that were not marked,
5061 and delete them. */
5062 {
5063 register struct buffer *nextb = all_buffers;
5064
5065 while (nextb)
5066 {
5067 /* If a buffer's undo list is Qt, that means that undo is
5068 turned off in that buffer. Calling truncate_undo_list on
5069 Qt tends to return NULL, which effectively turns undo back on.
5070 So don't call truncate_undo_list if undo_list is Qt. */
5071 if (! EQ (nextb->undo_list, Qt))
5072 {
5073 Lisp_Object tail, prev;
5074 tail = nextb->undo_list;
5075 prev = Qnil;
5076 while (CONSP (tail))
5077 {
5078 if (CONSP (XCAR (tail))
5079 && MARKERP (XCAR (XCAR (tail)))
5080 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5081 {
5082 if (NILP (prev))
5083 nextb->undo_list = tail = XCDR (tail);
5084 else
5085 {
5086 tail = XCDR (tail);
5087 XSETCDR (prev, tail);
5088 }
5089 }
5090 else
5091 {
5092 prev = tail;
5093 tail = XCDR (tail);
5094 }
5095 }
5096 }
5097 /* Now that we have stripped the elements that need not be in the
5098 undo_list any more, we can finally mark the list. */
5099 mark_object (nextb->undo_list);
5100
5101 nextb = nextb->next;
5102 }
5103 }
5104
5105 gc_sweep ();
5106
5107 /* Clear the mark bits that we set in certain root slots. */
5108
5109 unmark_byte_stack ();
5110 VECTOR_UNMARK (&buffer_defaults);
5111 VECTOR_UNMARK (&buffer_local_symbols);
5112
5113 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5114 dump_zombies ();
5115 #endif
5116
5117 UNBLOCK_INPUT;
5118
5119 CHECK_CONS_LIST ();
5120
5121 /* clear_marks (); */
5122 gc_in_progress = 0;
5123
5124 consing_since_gc = 0;
5125 if (gc_cons_threshold < 10000)
5126 gc_cons_threshold = 10000;
5127
5128 if (FLOATP (Vgc_cons_percentage))
5129 { /* Set gc_cons_combined_threshold. */
5130 EMACS_INT total = 0;
5131
5132 total += total_conses * sizeof (struct Lisp_Cons);
5133 total += total_symbols * sizeof (struct Lisp_Symbol);
5134 total += total_markers * sizeof (union Lisp_Misc);
5135 total += total_string_size;
5136 total += total_vector_size * sizeof (Lisp_Object);
5137 total += total_floats * sizeof (struct Lisp_Float);
5138 total += total_intervals * sizeof (struct interval);
5139 total += total_strings * sizeof (struct Lisp_String);
5140
5141 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5142 }
5143 else
5144 gc_relative_threshold = 0;
5145
5146 if (garbage_collection_messages)
5147 {
5148 if (message_p || minibuf_level > 0)
5149 restore_message ();
5150 else
5151 message1_nolog ("Garbage collecting...done");
5152 }
5153
5154 unbind_to (count, Qnil);
5155
5156 total[0] = Fcons (make_number (total_conses),
5157 make_number (total_free_conses));
5158 total[1] = Fcons (make_number (total_symbols),
5159 make_number (total_free_symbols));
5160 total[2] = Fcons (make_number (total_markers),
5161 make_number (total_free_markers));
5162 total[3] = make_number (total_string_size);
5163 total[4] = make_number (total_vector_size);
5164 total[5] = Fcons (make_number (total_floats),
5165 make_number (total_free_floats));
5166 total[6] = Fcons (make_number (total_intervals),
5167 make_number (total_free_intervals));
5168 total[7] = Fcons (make_number (total_strings),
5169 make_number (total_free_strings));
5170
5171 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5172 {
5173 /* Compute average percentage of zombies. */
5174 double nlive = 0;
5175
5176 for (i = 0; i < 7; ++i)
5177 if (CONSP (total[i]))
5178 nlive += XFASTINT (XCAR (total[i]));
5179
5180 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5181 max_live = max (nlive, max_live);
5182 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5183 max_zombies = max (nzombies, max_zombies);
5184 ++ngcs;
5185 }
5186 #endif
5187
5188 if (!NILP (Vpost_gc_hook))
5189 {
5190 int count = inhibit_garbage_collection ();
5191 safe_run_hooks (Qpost_gc_hook);
5192 unbind_to (count, Qnil);
5193 }
5194
5195 /* Accumulate statistics. */
5196 EMACS_GET_TIME (t2);
5197 EMACS_SUB_TIME (t3, t2, t1);
5198 if (FLOATP (Vgc_elapsed))
5199 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5200 EMACS_SECS (t3) +
5201 EMACS_USECS (t3) * 1.0e-6);
5202 gcs_done++;
5203
5204 return Flist (sizeof total / sizeof *total, total);
5205 }
5206
5207
5208 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5209 only interesting objects referenced from glyphs are strings. */
5210
5211 static void
5212 mark_glyph_matrix (struct glyph_matrix *matrix)
5213 {
5214 struct glyph_row *row = matrix->rows;
5215 struct glyph_row *end = row + matrix->nrows;
5216
5217 for (; row < end; ++row)
5218 if (row->enabled_p)
5219 {
5220 int area;
5221 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5222 {
5223 struct glyph *glyph = row->glyphs[area];
5224 struct glyph *end_glyph = glyph + row->used[area];
5225
5226 for (; glyph < end_glyph; ++glyph)
5227 if (STRINGP (glyph->object)
5228 && !STRING_MARKED_P (XSTRING (glyph->object)))
5229 mark_object (glyph->object);
5230 }
5231 }
5232 }
5233
5234
5235 /* Mark Lisp faces in the face cache C. */
5236
5237 static void
5238 mark_face_cache (struct face_cache *c)
5239 {
5240 if (c)
5241 {
5242 int i, j;
5243 for (i = 0; i < c->used; ++i)
5244 {
5245 struct face *face = FACE_FROM_ID (c->f, i);
5246
5247 if (face)
5248 {
5249 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5250 mark_object (face->lface[j]);
5251 }
5252 }
5253 }
5254 }
5255
5256
5257 \f
5258 /* Mark reference to a Lisp_Object.
5259 If the object referred to has not been seen yet, recursively mark
5260 all the references contained in it. */
5261
5262 #define LAST_MARKED_SIZE 500
5263 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5264 int last_marked_index;
5265
5266 /* For debugging--call abort when we cdr down this many
5267 links of a list, in mark_object. In debugging,
5268 the call to abort will hit a breakpoint.
5269 Normally this is zero and the check never goes off. */
5270 static int mark_object_loop_halt;
5271
5272 static void
5273 mark_vectorlike (struct Lisp_Vector *ptr)
5274 {
5275 register EMACS_INT size = ptr->size;
5276 register int i;
5277
5278 eassert (!VECTOR_MARKED_P (ptr));
5279 VECTOR_MARK (ptr); /* Else mark it */
5280 if (size & PSEUDOVECTOR_FLAG)
5281 size &= PSEUDOVECTOR_SIZE_MASK;
5282
5283 /* Note that this size is not the memory-footprint size, but only
5284 the number of Lisp_Object fields that we should trace.
5285 The distinction is used e.g. by Lisp_Process which places extra
5286 non-Lisp_Object fields at the end of the structure. */
5287 for (i = 0; i < size; i++) /* and then mark its elements */
5288 mark_object (ptr->contents[i]);
5289 }
5290
5291 /* Like mark_vectorlike but optimized for char-tables (and
5292 sub-char-tables) assuming that the contents are mostly integers or
5293 symbols. */
5294
5295 static void
5296 mark_char_table (struct Lisp_Vector *ptr)
5297 {
5298 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5299 register int i;
5300
5301 eassert (!VECTOR_MARKED_P (ptr));
5302 VECTOR_MARK (ptr);
5303 for (i = 0; i < size; i++)
5304 {
5305 Lisp_Object val = ptr->contents[i];
5306
5307 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5308 continue;
5309 if (SUB_CHAR_TABLE_P (val))
5310 {
5311 if (! VECTOR_MARKED_P (XVECTOR (val)))
5312 mark_char_table (XVECTOR (val));
5313 }
5314 else
5315 mark_object (val);
5316 }
5317 }
5318
5319 void
5320 mark_object (Lisp_Object arg)
5321 {
5322 register Lisp_Object obj = arg;
5323 #ifdef GC_CHECK_MARKED_OBJECTS
5324 void *po;
5325 struct mem_node *m;
5326 #endif
5327 int cdr_count = 0;
5328
5329 loop:
5330
5331 if (PURE_POINTER_P (XPNTR (obj)))
5332 return;
5333
5334 last_marked[last_marked_index++] = obj;
5335 if (last_marked_index == LAST_MARKED_SIZE)
5336 last_marked_index = 0;
5337
5338 /* Perform some sanity checks on the objects marked here. Abort if
5339 we encounter an object we know is bogus. This increases GC time
5340 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5341 #ifdef GC_CHECK_MARKED_OBJECTS
5342
5343 po = (void *) XPNTR (obj);
5344
5345 /* Check that the object pointed to by PO is known to be a Lisp
5346 structure allocated from the heap. */
5347 #define CHECK_ALLOCATED() \
5348 do { \
5349 m = mem_find (po); \
5350 if (m == MEM_NIL) \
5351 abort (); \
5352 } while (0)
5353
5354 /* Check that the object pointed to by PO is live, using predicate
5355 function LIVEP. */
5356 #define CHECK_LIVE(LIVEP) \
5357 do { \
5358 if (!LIVEP (m, po)) \
5359 abort (); \
5360 } while (0)
5361
5362 /* Check both of the above conditions. */
5363 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5364 do { \
5365 CHECK_ALLOCATED (); \
5366 CHECK_LIVE (LIVEP); \
5367 } while (0) \
5368
5369 #else /* not GC_CHECK_MARKED_OBJECTS */
5370
5371 #define CHECK_ALLOCATED() (void) 0
5372 #define CHECK_LIVE(LIVEP) (void) 0
5373 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5374
5375 #endif /* not GC_CHECK_MARKED_OBJECTS */
5376
5377 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5378 {
5379 case Lisp_String:
5380 {
5381 register struct Lisp_String *ptr = XSTRING (obj);
5382 if (STRING_MARKED_P (ptr))
5383 break;
5384 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5385 MARK_INTERVAL_TREE (ptr->intervals);
5386 MARK_STRING (ptr);
5387 #ifdef GC_CHECK_STRING_BYTES
5388 /* Check that the string size recorded in the string is the
5389 same as the one recorded in the sdata structure. */
5390 CHECK_STRING_BYTES (ptr);
5391 #endif /* GC_CHECK_STRING_BYTES */
5392 }
5393 break;
5394
5395 case Lisp_Vectorlike:
5396 if (VECTOR_MARKED_P (XVECTOR (obj)))
5397 break;
5398 #ifdef GC_CHECK_MARKED_OBJECTS
5399 m = mem_find (po);
5400 if (m == MEM_NIL && !SUBRP (obj)
5401 && po != &buffer_defaults
5402 && po != &buffer_local_symbols)
5403 abort ();
5404 #endif /* GC_CHECK_MARKED_OBJECTS */
5405
5406 if (BUFFERP (obj))
5407 {
5408 #ifdef GC_CHECK_MARKED_OBJECTS
5409 if (po != &buffer_defaults && po != &buffer_local_symbols)
5410 {
5411 struct buffer *b;
5412 for (b = all_buffers; b && b != po; b = b->next)
5413 ;
5414 if (b == NULL)
5415 abort ();
5416 }
5417 #endif /* GC_CHECK_MARKED_OBJECTS */
5418 mark_buffer (obj);
5419 }
5420 else if (SUBRP (obj))
5421 break;
5422 else if (COMPILEDP (obj))
5423 /* We could treat this just like a vector, but it is better to
5424 save the COMPILED_CONSTANTS element for last and avoid
5425 recursion there. */
5426 {
5427 register struct Lisp_Vector *ptr = XVECTOR (obj);
5428 register EMACS_INT size = ptr->size;
5429 register int i;
5430
5431 CHECK_LIVE (live_vector_p);
5432 VECTOR_MARK (ptr); /* Else mark it */
5433 size &= PSEUDOVECTOR_SIZE_MASK;
5434 for (i = 0; i < size; i++) /* and then mark its elements */
5435 {
5436 if (i != COMPILED_CONSTANTS)
5437 mark_object (ptr->contents[i]);
5438 }
5439 obj = ptr->contents[COMPILED_CONSTANTS];
5440 goto loop;
5441 }
5442 else if (FRAMEP (obj))
5443 {
5444 register struct frame *ptr = XFRAME (obj);
5445 mark_vectorlike (XVECTOR (obj));
5446 mark_face_cache (ptr->face_cache);
5447 }
5448 else if (WINDOWP (obj))
5449 {
5450 register struct Lisp_Vector *ptr = XVECTOR (obj);
5451 struct window *w = XWINDOW (obj);
5452 mark_vectorlike (ptr);
5453 /* Mark glyphs for leaf windows. Marking window matrices is
5454 sufficient because frame matrices use the same glyph
5455 memory. */
5456 if (NILP (w->hchild)
5457 && NILP (w->vchild)
5458 && w->current_matrix)
5459 {
5460 mark_glyph_matrix (w->current_matrix);
5461 mark_glyph_matrix (w->desired_matrix);
5462 }
5463 }
5464 else if (HASH_TABLE_P (obj))
5465 {
5466 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5467 mark_vectorlike ((struct Lisp_Vector *)h);
5468 /* If hash table is not weak, mark all keys and values.
5469 For weak tables, mark only the vector. */
5470 if (NILP (h->weak))
5471 mark_object (h->key_and_value);
5472 else
5473 VECTOR_MARK (XVECTOR (h->key_and_value));
5474 }
5475 else if (CHAR_TABLE_P (obj))
5476 mark_char_table (XVECTOR (obj));
5477 else
5478 mark_vectorlike (XVECTOR (obj));
5479 break;
5480
5481 case Lisp_Symbol:
5482 {
5483 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5484 struct Lisp_Symbol *ptrx;
5485
5486 if (ptr->gcmarkbit)
5487 break;
5488 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5489 ptr->gcmarkbit = 1;
5490 mark_object (ptr->function);
5491 mark_object (ptr->plist);
5492 switch (ptr->redirect)
5493 {
5494 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5495 case SYMBOL_VARALIAS:
5496 {
5497 Lisp_Object tem;
5498 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5499 mark_object (tem);
5500 break;
5501 }
5502 case SYMBOL_LOCALIZED:
5503 {
5504 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5505 /* If the value is forwarded to a buffer or keyboard field,
5506 these are marked when we see the corresponding object.
5507 And if it's forwarded to a C variable, either it's not
5508 a Lisp_Object var, or it's staticpro'd already. */
5509 mark_object (blv->where);
5510 mark_object (blv->valcell);
5511 mark_object (blv->defcell);
5512 break;
5513 }
5514 case SYMBOL_FORWARDED:
5515 /* If the value is forwarded to a buffer or keyboard field,
5516 these are marked when we see the corresponding object.
5517 And if it's forwarded to a C variable, either it's not
5518 a Lisp_Object var, or it's staticpro'd already. */
5519 break;
5520 default: abort ();
5521 }
5522 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5523 MARK_STRING (XSTRING (ptr->xname));
5524 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5525
5526 ptr = ptr->next;
5527 if (ptr)
5528 {
5529 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5530 XSETSYMBOL (obj, ptrx);
5531 goto loop;
5532 }
5533 }
5534 break;
5535
5536 case Lisp_Misc:
5537 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5538 if (XMISCANY (obj)->gcmarkbit)
5539 break;
5540 XMISCANY (obj)->gcmarkbit = 1;
5541
5542 switch (XMISCTYPE (obj))
5543 {
5544
5545 case Lisp_Misc_Marker:
5546 /* DO NOT mark thru the marker's chain.
5547 The buffer's markers chain does not preserve markers from gc;
5548 instead, markers are removed from the chain when freed by gc. */
5549 break;
5550
5551 case Lisp_Misc_Save_Value:
5552 #if GC_MARK_STACK
5553 {
5554 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5555 /* If DOGC is set, POINTER is the address of a memory
5556 area containing INTEGER potential Lisp_Objects. */
5557 if (ptr->dogc)
5558 {
5559 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5560 int nelt;
5561 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5562 mark_maybe_object (*p);
5563 }
5564 }
5565 #endif
5566 break;
5567
5568 case Lisp_Misc_Overlay:
5569 {
5570 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5571 mark_object (ptr->start);
5572 mark_object (ptr->end);
5573 mark_object (ptr->plist);
5574 if (ptr->next)
5575 {
5576 XSETMISC (obj, ptr->next);
5577 goto loop;
5578 }
5579 }
5580 break;
5581
5582 default:
5583 abort ();
5584 }
5585 break;
5586
5587 case Lisp_Cons:
5588 {
5589 register struct Lisp_Cons *ptr = XCONS (obj);
5590 if (CONS_MARKED_P (ptr))
5591 break;
5592 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5593 CONS_MARK (ptr);
5594 /* If the cdr is nil, avoid recursion for the car. */
5595 if (EQ (ptr->u.cdr, Qnil))
5596 {
5597 obj = ptr->car;
5598 cdr_count = 0;
5599 goto loop;
5600 }
5601 mark_object (ptr->car);
5602 obj = ptr->u.cdr;
5603 cdr_count++;
5604 if (cdr_count == mark_object_loop_halt)
5605 abort ();
5606 goto loop;
5607 }
5608
5609 case Lisp_Float:
5610 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5611 FLOAT_MARK (XFLOAT (obj));
5612 break;
5613
5614 case_Lisp_Int:
5615 break;
5616
5617 default:
5618 abort ();
5619 }
5620
5621 #undef CHECK_LIVE
5622 #undef CHECK_ALLOCATED
5623 #undef CHECK_ALLOCATED_AND_LIVE
5624 }
5625
5626 /* Mark the pointers in a buffer structure. */
5627
5628 static void
5629 mark_buffer (Lisp_Object buf)
5630 {
5631 register struct buffer *buffer = XBUFFER (buf);
5632 register Lisp_Object *ptr, tmp;
5633 Lisp_Object base_buffer;
5634
5635 eassert (!VECTOR_MARKED_P (buffer));
5636 VECTOR_MARK (buffer);
5637
5638 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5639
5640 /* For now, we just don't mark the undo_list. It's done later in
5641 a special way just before the sweep phase, and after stripping
5642 some of its elements that are not needed any more. */
5643
5644 if (buffer->overlays_before)
5645 {
5646 XSETMISC (tmp, buffer->overlays_before);
5647 mark_object (tmp);
5648 }
5649 if (buffer->overlays_after)
5650 {
5651 XSETMISC (tmp, buffer->overlays_after);
5652 mark_object (tmp);
5653 }
5654
5655 /* buffer-local Lisp variables start at `undo_list',
5656 tho only the ones from `name' on are GC'd normally. */
5657 for (ptr = &buffer->name;
5658 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5659 ptr++)
5660 mark_object (*ptr);
5661
5662 /* If this is an indirect buffer, mark its base buffer. */
5663 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5664 {
5665 XSETBUFFER (base_buffer, buffer->base_buffer);
5666 mark_buffer (base_buffer);
5667 }
5668 }
5669
5670 /* Mark the Lisp pointers in the terminal objects.
5671 Called by the Fgarbage_collector. */
5672
5673 static void
5674 mark_terminals (void)
5675 {
5676 struct terminal *t;
5677 for (t = terminal_list; t; t = t->next_terminal)
5678 {
5679 eassert (t->name != NULL);
5680 if (!VECTOR_MARKED_P (t))
5681 {
5682 #ifdef HAVE_WINDOW_SYSTEM
5683 mark_image_cache (t->image_cache);
5684 #endif /* HAVE_WINDOW_SYSTEM */
5685 mark_vectorlike ((struct Lisp_Vector *)t);
5686 }
5687 }
5688 }
5689
5690
5691
5692 /* Value is non-zero if OBJ will survive the current GC because it's
5693 either marked or does not need to be marked to survive. */
5694
5695 int
5696 survives_gc_p (Lisp_Object obj)
5697 {
5698 int survives_p;
5699
5700 switch (XTYPE (obj))
5701 {
5702 case_Lisp_Int:
5703 survives_p = 1;
5704 break;
5705
5706 case Lisp_Symbol:
5707 survives_p = XSYMBOL (obj)->gcmarkbit;
5708 break;
5709
5710 case Lisp_Misc:
5711 survives_p = XMISCANY (obj)->gcmarkbit;
5712 break;
5713
5714 case Lisp_String:
5715 survives_p = STRING_MARKED_P (XSTRING (obj));
5716 break;
5717
5718 case Lisp_Vectorlike:
5719 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5720 break;
5721
5722 case Lisp_Cons:
5723 survives_p = CONS_MARKED_P (XCONS (obj));
5724 break;
5725
5726 case Lisp_Float:
5727 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5728 break;
5729
5730 default:
5731 abort ();
5732 }
5733
5734 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5735 }
5736
5737
5738 \f
5739 /* Sweep: find all structures not marked, and free them. */
5740
5741 static void
5742 gc_sweep (void)
5743 {
5744 /* Remove or mark entries in weak hash tables.
5745 This must be done before any object is unmarked. */
5746 sweep_weak_hash_tables ();
5747
5748 sweep_strings ();
5749 #ifdef GC_CHECK_STRING_BYTES
5750 if (!noninteractive)
5751 check_string_bytes (1);
5752 #endif
5753
5754 /* Put all unmarked conses on free list */
5755 {
5756 register struct cons_block *cblk;
5757 struct cons_block **cprev = &cons_block;
5758 register int lim = cons_block_index;
5759 register int num_free = 0, num_used = 0;
5760
5761 cons_free_list = 0;
5762
5763 for (cblk = cons_block; cblk; cblk = *cprev)
5764 {
5765 register int i = 0;
5766 int this_free = 0;
5767 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5768
5769 /* Scan the mark bits an int at a time. */
5770 for (i = 0; i <= ilim; i++)
5771 {
5772 if (cblk->gcmarkbits[i] == -1)
5773 {
5774 /* Fast path - all cons cells for this int are marked. */
5775 cblk->gcmarkbits[i] = 0;
5776 num_used += BITS_PER_INT;
5777 }
5778 else
5779 {
5780 /* Some cons cells for this int are not marked.
5781 Find which ones, and free them. */
5782 int start, pos, stop;
5783
5784 start = i * BITS_PER_INT;
5785 stop = lim - start;
5786 if (stop > BITS_PER_INT)
5787 stop = BITS_PER_INT;
5788 stop += start;
5789
5790 for (pos = start; pos < stop; pos++)
5791 {
5792 if (!CONS_MARKED_P (&cblk->conses[pos]))
5793 {
5794 this_free++;
5795 cblk->conses[pos].u.chain = cons_free_list;
5796 cons_free_list = &cblk->conses[pos];
5797 #if GC_MARK_STACK
5798 cons_free_list->car = Vdead;
5799 #endif
5800 }
5801 else
5802 {
5803 num_used++;
5804 CONS_UNMARK (&cblk->conses[pos]);
5805 }
5806 }
5807 }
5808 }
5809
5810 lim = CONS_BLOCK_SIZE;
5811 /* If this block contains only free conses and we have already
5812 seen more than two blocks worth of free conses then deallocate
5813 this block. */
5814 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5815 {
5816 *cprev = cblk->next;
5817 /* Unhook from the free list. */
5818 cons_free_list = cblk->conses[0].u.chain;
5819 lisp_align_free (cblk);
5820 n_cons_blocks--;
5821 }
5822 else
5823 {
5824 num_free += this_free;
5825 cprev = &cblk->next;
5826 }
5827 }
5828 total_conses = num_used;
5829 total_free_conses = num_free;
5830 }
5831
5832 /* Put all unmarked floats on free list */
5833 {
5834 register struct float_block *fblk;
5835 struct float_block **fprev = &float_block;
5836 register int lim = float_block_index;
5837 register int num_free = 0, num_used = 0;
5838
5839 float_free_list = 0;
5840
5841 for (fblk = float_block; fblk; fblk = *fprev)
5842 {
5843 register int i;
5844 int this_free = 0;
5845 for (i = 0; i < lim; i++)
5846 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5847 {
5848 this_free++;
5849 fblk->floats[i].u.chain = float_free_list;
5850 float_free_list = &fblk->floats[i];
5851 }
5852 else
5853 {
5854 num_used++;
5855 FLOAT_UNMARK (&fblk->floats[i]);
5856 }
5857 lim = FLOAT_BLOCK_SIZE;
5858 /* If this block contains only free floats and we have already
5859 seen more than two blocks worth of free floats then deallocate
5860 this block. */
5861 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5862 {
5863 *fprev = fblk->next;
5864 /* Unhook from the free list. */
5865 float_free_list = fblk->floats[0].u.chain;
5866 lisp_align_free (fblk);
5867 n_float_blocks--;
5868 }
5869 else
5870 {
5871 num_free += this_free;
5872 fprev = &fblk->next;
5873 }
5874 }
5875 total_floats = num_used;
5876 total_free_floats = num_free;
5877 }
5878
5879 /* Put all unmarked intervals on free list */
5880 {
5881 register struct interval_block *iblk;
5882 struct interval_block **iprev = &interval_block;
5883 register int lim = interval_block_index;
5884 register int num_free = 0, num_used = 0;
5885
5886 interval_free_list = 0;
5887
5888 for (iblk = interval_block; iblk; iblk = *iprev)
5889 {
5890 register int i;
5891 int this_free = 0;
5892
5893 for (i = 0; i < lim; i++)
5894 {
5895 if (!iblk->intervals[i].gcmarkbit)
5896 {
5897 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5898 interval_free_list = &iblk->intervals[i];
5899 this_free++;
5900 }
5901 else
5902 {
5903 num_used++;
5904 iblk->intervals[i].gcmarkbit = 0;
5905 }
5906 }
5907 lim = INTERVAL_BLOCK_SIZE;
5908 /* If this block contains only free intervals and we have already
5909 seen more than two blocks worth of free intervals then
5910 deallocate this block. */
5911 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5912 {
5913 *iprev = iblk->next;
5914 /* Unhook from the free list. */
5915 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5916 lisp_free (iblk);
5917 n_interval_blocks--;
5918 }
5919 else
5920 {
5921 num_free += this_free;
5922 iprev = &iblk->next;
5923 }
5924 }
5925 total_intervals = num_used;
5926 total_free_intervals = num_free;
5927 }
5928
5929 /* Put all unmarked symbols on free list */
5930 {
5931 register struct symbol_block *sblk;
5932 struct symbol_block **sprev = &symbol_block;
5933 register int lim = symbol_block_index;
5934 register int num_free = 0, num_used = 0;
5935
5936 symbol_free_list = NULL;
5937
5938 for (sblk = symbol_block; sblk; sblk = *sprev)
5939 {
5940 int this_free = 0;
5941 struct Lisp_Symbol *sym = sblk->symbols;
5942 struct Lisp_Symbol *end = sym + lim;
5943
5944 for (; sym < end; ++sym)
5945 {
5946 /* Check if the symbol was created during loadup. In such a case
5947 it might be pointed to by pure bytecode which we don't trace,
5948 so we conservatively assume that it is live. */
5949 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5950
5951 if (!sym->gcmarkbit && !pure_p)
5952 {
5953 if (sym->redirect == SYMBOL_LOCALIZED)
5954 xfree (SYMBOL_BLV (sym));
5955 sym->next = symbol_free_list;
5956 symbol_free_list = sym;
5957 #if GC_MARK_STACK
5958 symbol_free_list->function = Vdead;
5959 #endif
5960 ++this_free;
5961 }
5962 else
5963 {
5964 ++num_used;
5965 if (!pure_p)
5966 UNMARK_STRING (XSTRING (sym->xname));
5967 sym->gcmarkbit = 0;
5968 }
5969 }
5970
5971 lim = SYMBOL_BLOCK_SIZE;
5972 /* If this block contains only free symbols and we have already
5973 seen more than two blocks worth of free symbols then deallocate
5974 this block. */
5975 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5976 {
5977 *sprev = sblk->next;
5978 /* Unhook from the free list. */
5979 symbol_free_list = sblk->symbols[0].next;
5980 lisp_free (sblk);
5981 n_symbol_blocks--;
5982 }
5983 else
5984 {
5985 num_free += this_free;
5986 sprev = &sblk->next;
5987 }
5988 }
5989 total_symbols = num_used;
5990 total_free_symbols = num_free;
5991 }
5992
5993 /* Put all unmarked misc's on free list.
5994 For a marker, first unchain it from the buffer it points into. */
5995 {
5996 register struct marker_block *mblk;
5997 struct marker_block **mprev = &marker_block;
5998 register int lim = marker_block_index;
5999 register int num_free = 0, num_used = 0;
6000
6001 marker_free_list = 0;
6002
6003 for (mblk = marker_block; mblk; mblk = *mprev)
6004 {
6005 register int i;
6006 int this_free = 0;
6007
6008 for (i = 0; i < lim; i++)
6009 {
6010 if (!mblk->markers[i].u_any.gcmarkbit)
6011 {
6012 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6013 unchain_marker (&mblk->markers[i].u_marker);
6014 /* Set the type of the freed object to Lisp_Misc_Free.
6015 We could leave the type alone, since nobody checks it,
6016 but this might catch bugs faster. */
6017 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6018 mblk->markers[i].u_free.chain = marker_free_list;
6019 marker_free_list = &mblk->markers[i];
6020 this_free++;
6021 }
6022 else
6023 {
6024 num_used++;
6025 mblk->markers[i].u_any.gcmarkbit = 0;
6026 }
6027 }
6028 lim = MARKER_BLOCK_SIZE;
6029 /* If this block contains only free markers and we have already
6030 seen more than two blocks worth of free markers then deallocate
6031 this block. */
6032 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6033 {
6034 *mprev = mblk->next;
6035 /* Unhook from the free list. */
6036 marker_free_list = mblk->markers[0].u_free.chain;
6037 lisp_free (mblk);
6038 n_marker_blocks--;
6039 }
6040 else
6041 {
6042 num_free += this_free;
6043 mprev = &mblk->next;
6044 }
6045 }
6046
6047 total_markers = num_used;
6048 total_free_markers = num_free;
6049 }
6050
6051 /* Free all unmarked buffers */
6052 {
6053 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6054
6055 while (buffer)
6056 if (!VECTOR_MARKED_P (buffer))
6057 {
6058 if (prev)
6059 prev->next = buffer->next;
6060 else
6061 all_buffers = buffer->next;
6062 next = buffer->next;
6063 lisp_free (buffer);
6064 buffer = next;
6065 }
6066 else
6067 {
6068 VECTOR_UNMARK (buffer);
6069 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6070 prev = buffer, buffer = buffer->next;
6071 }
6072 }
6073
6074 /* Free all unmarked vectors */
6075 {
6076 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6077 total_vector_size = 0;
6078
6079 while (vector)
6080 if (!VECTOR_MARKED_P (vector))
6081 {
6082 if (prev)
6083 prev->next = vector->next;
6084 else
6085 all_vectors = vector->next;
6086 next = vector->next;
6087 lisp_free (vector);
6088 n_vectors--;
6089 vector = next;
6090
6091 }
6092 else
6093 {
6094 VECTOR_UNMARK (vector);
6095 if (vector->size & PSEUDOVECTOR_FLAG)
6096 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6097 else
6098 total_vector_size += vector->size;
6099 prev = vector, vector = vector->next;
6100 }
6101 }
6102
6103 #ifdef GC_CHECK_STRING_BYTES
6104 if (!noninteractive)
6105 check_string_bytes (1);
6106 #endif
6107 }
6108
6109
6110
6111 \f
6112 /* Debugging aids. */
6113
6114 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6115 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6116 This may be helpful in debugging Emacs's memory usage.
6117 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6118 ()
6119 {
6120 Lisp_Object end;
6121
6122 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6123
6124 return end;
6125 }
6126
6127 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6128 doc: /* Return a list of counters that measure how much consing there has been.
6129 Each of these counters increments for a certain kind of object.
6130 The counters wrap around from the largest positive integer to zero.
6131 Garbage collection does not decrease them.
6132 The elements of the value are as follows:
6133 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6134 All are in units of 1 = one object consed
6135 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6136 objects consed.
6137 MISCS include overlays, markers, and some internal types.
6138 Frames, windows, buffers, and subprocesses count as vectors
6139 (but the contents of a buffer's text do not count here). */)
6140 ()
6141 {
6142 Lisp_Object consed[8];
6143
6144 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6145 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6146 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6147 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6148 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6149 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6150 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6151 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6152
6153 return Flist (8, consed);
6154 }
6155
6156 int suppress_checking;
6157
6158 void
6159 die (const char *msg, const char *file, int line)
6160 {
6161 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6162 file, line, msg);
6163 abort ();
6164 }
6165 \f
6166 /* Initialization */
6167
6168 void
6169 init_alloc_once (void)
6170 {
6171 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6172 purebeg = PUREBEG;
6173 pure_size = PURESIZE;
6174 pure_bytes_used = 0;
6175 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6176 pure_bytes_used_before_overflow = 0;
6177
6178 /* Initialize the list of free aligned blocks. */
6179 free_ablock = NULL;
6180
6181 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6182 mem_init ();
6183 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6184 #endif
6185
6186 all_vectors = 0;
6187 ignore_warnings = 1;
6188 #ifdef DOUG_LEA_MALLOC
6189 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6190 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6191 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6192 #endif
6193 init_strings ();
6194 init_cons ();
6195 init_symbol ();
6196 init_marker ();
6197 init_float ();
6198 init_intervals ();
6199 init_weak_hash_tables ();
6200
6201 #ifdef REL_ALLOC
6202 malloc_hysteresis = 32;
6203 #else
6204 malloc_hysteresis = 0;
6205 #endif
6206
6207 refill_memory_reserve ();
6208
6209 ignore_warnings = 0;
6210 gcprolist = 0;
6211 byte_stack_list = 0;
6212 staticidx = 0;
6213 consing_since_gc = 0;
6214 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6215 gc_relative_threshold = 0;
6216
6217 #ifdef VIRT_ADDR_VARIES
6218 malloc_sbrk_unused = 1<<22; /* A large number */
6219 malloc_sbrk_used = 100000; /* as reasonable as any number */
6220 #endif /* VIRT_ADDR_VARIES */
6221 }
6222
6223 void
6224 init_alloc (void)
6225 {
6226 gcprolist = 0;
6227 byte_stack_list = 0;
6228 #if GC_MARK_STACK
6229 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6230 setjmp_tested_p = longjmps_done = 0;
6231 #endif
6232 #endif
6233 Vgc_elapsed = make_float (0.0);
6234 gcs_done = 0;
6235 }
6236
6237 void
6238 syms_of_alloc (void)
6239 {
6240 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6241 doc: /* *Number of bytes of consing between garbage collections.
6242 Garbage collection can happen automatically once this many bytes have been
6243 allocated since the last garbage collection. All data types count.
6244
6245 Garbage collection happens automatically only when `eval' is called.
6246
6247 By binding this temporarily to a large number, you can effectively
6248 prevent garbage collection during a part of the program.
6249 See also `gc-cons-percentage'. */);
6250
6251 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6252 doc: /* *Portion of the heap used for allocation.
6253 Garbage collection can happen automatically once this portion of the heap
6254 has been allocated since the last garbage collection.
6255 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6256 Vgc_cons_percentage = make_float (0.1);
6257
6258 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6259 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6260
6261 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6262 doc: /* Number of cons cells that have been consed so far. */);
6263
6264 DEFVAR_INT ("floats-consed", &floats_consed,
6265 doc: /* Number of floats that have been consed so far. */);
6266
6267 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6268 doc: /* Number of vector cells that have been consed so far. */);
6269
6270 DEFVAR_INT ("symbols-consed", &symbols_consed,
6271 doc: /* Number of symbols that have been consed so far. */);
6272
6273 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6274 doc: /* Number of string characters that have been consed so far. */);
6275
6276 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6277 doc: /* Number of miscellaneous objects that have been consed so far. */);
6278
6279 DEFVAR_INT ("intervals-consed", &intervals_consed,
6280 doc: /* Number of intervals that have been consed so far. */);
6281
6282 DEFVAR_INT ("strings-consed", &strings_consed,
6283 doc: /* Number of strings that have been consed so far. */);
6284
6285 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6286 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6287 This means that certain objects should be allocated in shared (pure) space.
6288 It can also be set to a hash-table, in which case this table is used to
6289 do hash-consing of the objects allocated to pure space. */);
6290
6291 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6292 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6293 garbage_collection_messages = 0;
6294
6295 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6296 doc: /* Hook run after garbage collection has finished. */);
6297 Vpost_gc_hook = Qnil;
6298 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6299 staticpro (&Qpost_gc_hook);
6300
6301 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6302 doc: /* Precomputed `signal' argument for memory-full error. */);
6303 /* We build this in advance because if we wait until we need it, we might
6304 not be able to allocate the memory to hold it. */
6305 Vmemory_signal_data
6306 = pure_cons (Qerror,
6307 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6308
6309 DEFVAR_LISP ("memory-full", &Vmemory_full,
6310 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6311 Vmemory_full = Qnil;
6312
6313 staticpro (&Qgc_cons_threshold);
6314 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6315
6316 staticpro (&Qchar_table_extra_slots);
6317 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6318
6319 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6320 doc: /* Accumulated time elapsed in garbage collections.
6321 The time is in seconds as a floating point value. */);
6322 DEFVAR_INT ("gcs-done", &gcs_done,
6323 doc: /* Accumulated number of garbage collections done. */);
6324
6325 defsubr (&Scons);
6326 defsubr (&Slist);
6327 defsubr (&Svector);
6328 defsubr (&Smake_byte_code);
6329 defsubr (&Smake_list);
6330 defsubr (&Smake_vector);
6331 defsubr (&Smake_string);
6332 defsubr (&Smake_bool_vector);
6333 defsubr (&Smake_symbol);
6334 defsubr (&Smake_marker);
6335 defsubr (&Spurecopy);
6336 defsubr (&Sgarbage_collect);
6337 defsubr (&Smemory_limit);
6338 defsubr (&Smemory_use_counts);
6339
6340 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6341 defsubr (&Sgc_status);
6342 #endif
6343 }
6344
6345 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6346 (do not change this comment) */