Merge from trunk.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
253
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
256
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
259
260 #ifdef GC_MALLOC_CHECK
261
262 enum mem_type allocated_mem_type;
263
264 #endif /* GC_MALLOC_CHECK */
265
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
270
271 A red-black tree is a balanced binary tree with the following
272 properties:
273
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
280
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
283
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
289
290 struct mem_node
291 {
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
295
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
298
299 /* Start and end of allocated region. */
300 void *start, *end;
301
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
304
305 /* Memory type. */
306 enum mem_type type;
307 };
308
309 /* Base address of stack. Set in main. */
310
311 Lisp_Object *stack_base;
312
313 /* Root of the tree describing allocated Lisp memory. */
314
315 static struct mem_node *mem_root;
316
317 /* Lowest and highest known address in the heap. */
318
319 static void *min_heap_address, *max_heap_address;
320
321 /* Sentinel node of the tree. */
322
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
325
326 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
327 static struct mem_node *mem_insert (void *, void *, enum mem_type);
328 static void mem_insert_fixup (struct mem_node *);
329 static void mem_rotate_left (struct mem_node *);
330 static void mem_rotate_right (struct mem_node *);
331 static void mem_delete (struct mem_node *);
332 static void mem_delete_fixup (struct mem_node *);
333 static struct mem_node *mem_find (void *);
334 #endif
335
336 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
337
338 #ifndef DEADP
339 # define DEADP(x) 0
340 #endif
341
342 /* Recording what needs to be marked for gc. */
343
344 struct gcpro *gcprolist;
345
346 /* Addresses of staticpro'd variables. Initialize it to a nonzero
347 value; otherwise some compilers put it into BSS. */
348
349 #define NSTATICS 0x800
350 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
351
352 /* Index of next unused slot in staticvec. */
353
354 static int staticidx;
355
356 static void *pure_alloc (size_t, int);
357
358
359 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
360 ALIGNMENT must be a power of 2. */
361
362 #define ALIGN(ptr, ALIGNMENT) \
363 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
364 & ~ ((ALIGNMENT) - 1)))
365
366 static void
367 XFLOAT_INIT (Lisp_Object f, double n)
368 {
369 XFLOAT (f)->u.data = n;
370 }
371
372 \f
373 /************************************************************************
374 Malloc
375 ************************************************************************/
376
377 /* Function malloc calls this if it finds we are near exhausting storage. */
378
379 void
380 malloc_warning (const char *str)
381 {
382 pending_malloc_warning = str;
383 }
384
385
386 /* Display an already-pending malloc warning. */
387
388 void
389 display_malloc_warning (void)
390 {
391 call3 (intern ("display-warning"),
392 intern ("alloc"),
393 build_string (pending_malloc_warning),
394 intern ("emergency"));
395 pending_malloc_warning = 0;
396 }
397 \f
398 /* Called if we can't allocate relocatable space for a buffer. */
399
400 void
401 buffer_memory_full (ptrdiff_t nbytes)
402 {
403 /* If buffers use the relocating allocator, no need to free
404 spare_memory, because we may have plenty of malloc space left
405 that we could get, and if we don't, the malloc that fails will
406 itself cause spare_memory to be freed. If buffers don't use the
407 relocating allocator, treat this like any other failing
408 malloc. */
409
410 #ifndef REL_ALLOC
411 memory_full (nbytes);
412 #else
413 /* This used to call error, but if we've run out of memory, we could
414 get infinite recursion trying to build the string. */
415 xsignal (Qnil, Vmemory_signal_data);
416 #endif
417 }
418
419 /* A common multiple of the positive integers A and B. Ideally this
420 would be the least common multiple, but there's no way to do that
421 as a constant expression in C, so do the best that we can easily do. */
422 #define COMMON_MULTIPLE(a, b) \
423 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
424
425 #ifndef XMALLOC_OVERRUN_CHECK
426 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
427 #else
428
429 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
430 around each block.
431
432 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
433 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
434 block size in little-endian order. The trailer consists of
435 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
436
437 The header is used to detect whether this block has been allocated
438 through these functions, as some low-level libc functions may
439 bypass the malloc hooks. */
440
441 #define XMALLOC_OVERRUN_CHECK_SIZE 16
442 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
443 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
444
445 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
446 hold a size_t value and (2) the header size is a multiple of the
447 alignment that Emacs needs for C types and for USE_LSB_TAG. */
448 #define XMALLOC_BASE_ALIGNMENT \
449 alignof (union { long double d; intmax_t i; void *p; })
450
451 #if USE_LSB_TAG
452 # define XMALLOC_HEADER_ALIGNMENT \
453 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
454 #else
455 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
456 #endif
457 #define XMALLOC_OVERRUN_SIZE_SIZE \
458 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
459 + XMALLOC_HEADER_ALIGNMENT - 1) \
460 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
461 - XMALLOC_OVERRUN_CHECK_SIZE)
462
463 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
464 { '\x9a', '\x9b', '\xae', '\xaf',
465 '\xbf', '\xbe', '\xce', '\xcf',
466 '\xea', '\xeb', '\xec', '\xed',
467 '\xdf', '\xde', '\x9c', '\x9d' };
468
469 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
470 { '\xaa', '\xab', '\xac', '\xad',
471 '\xba', '\xbb', '\xbc', '\xbd',
472 '\xca', '\xcb', '\xcc', '\xcd',
473 '\xda', '\xdb', '\xdc', '\xdd' };
474
475 /* Insert and extract the block size in the header. */
476
477 static void
478 xmalloc_put_size (unsigned char *ptr, size_t size)
479 {
480 int i;
481 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
482 {
483 *--ptr = size & ((1 << CHAR_BIT) - 1);
484 size >>= CHAR_BIT;
485 }
486 }
487
488 static size_t
489 xmalloc_get_size (unsigned char *ptr)
490 {
491 size_t size = 0;
492 int i;
493 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
494 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
495 {
496 size <<= CHAR_BIT;
497 size += *ptr++;
498 }
499 return size;
500 }
501
502
503 /* Like malloc, but wraps allocated block with header and trailer. */
504
505 static void *
506 overrun_check_malloc (size_t size)
507 {
508 register unsigned char *val;
509 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
510 emacs_abort ();
511
512 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
513 if (val)
514 {
515 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
516 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
517 xmalloc_put_size (val, size);
518 memcpy (val + size, xmalloc_overrun_check_trailer,
519 XMALLOC_OVERRUN_CHECK_SIZE);
520 }
521 return val;
522 }
523
524
525 /* Like realloc, but checks old block for overrun, and wraps new block
526 with header and trailer. */
527
528 static void *
529 overrun_check_realloc (void *block, size_t size)
530 {
531 register unsigned char *val = (unsigned char *) block;
532 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
533 emacs_abort ();
534
535 if (val
536 && memcmp (xmalloc_overrun_check_header,
537 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
538 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
539 {
540 size_t osize = xmalloc_get_size (val);
541 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
542 XMALLOC_OVERRUN_CHECK_SIZE))
543 emacs_abort ();
544 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
545 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
546 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
547 }
548
549 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
550
551 if (val)
552 {
553 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
554 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
555 xmalloc_put_size (val, size);
556 memcpy (val + size, xmalloc_overrun_check_trailer,
557 XMALLOC_OVERRUN_CHECK_SIZE);
558 }
559 return val;
560 }
561
562 /* Like free, but checks block for overrun. */
563
564 static void
565 overrun_check_free (void *block)
566 {
567 unsigned char *val = (unsigned char *) block;
568
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
573 {
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 #ifdef XMALLOC_CLEAR_FREE_MEMORY
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
581 #else
582 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
583 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
584 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
585 #endif
586 }
587
588 free (val);
589 }
590
591 #undef malloc
592 #undef realloc
593 #undef free
594 #define malloc overrun_check_malloc
595 #define realloc overrun_check_realloc
596 #define free overrun_check_free
597 #endif
598
599 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
600 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
601 If that variable is set, block input while in one of Emacs's memory
602 allocation functions. There should be no need for this debugging
603 option, since signal handlers do not allocate memory, but Emacs
604 formerly allocated memory in signal handlers and this compile-time
605 option remains as a way to help debug the issue should it rear its
606 ugly head again. */
607 #ifdef XMALLOC_BLOCK_INPUT_CHECK
608 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
609 static void
610 malloc_block_input (void)
611 {
612 if (block_input_in_memory_allocators)
613 block_input ();
614 }
615 static void
616 malloc_unblock_input (void)
617 {
618 if (block_input_in_memory_allocators)
619 unblock_input ();
620 }
621 # define MALLOC_BLOCK_INPUT malloc_block_input ()
622 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
623 #else
624 # define MALLOC_BLOCK_INPUT ((void) 0)
625 # define MALLOC_UNBLOCK_INPUT ((void) 0)
626 #endif
627
628 #define MALLOC_PROBE(size) \
629 do { \
630 if (profiler_memory_running) \
631 malloc_probe (size); \
632 } while (0)
633
634
635 /* Like malloc but check for no memory and block interrupt input.. */
636
637 void *
638 xmalloc (size_t size)
639 {
640 void *val;
641
642 MALLOC_BLOCK_INPUT;
643 val = malloc (size);
644 MALLOC_UNBLOCK_INPUT;
645
646 if (!val && size)
647 memory_full (size);
648 MALLOC_PROBE (size);
649 return val;
650 }
651
652 /* Like the above, but zeroes out the memory just allocated. */
653
654 void *
655 xzalloc (size_t size)
656 {
657 void *val;
658
659 MALLOC_BLOCK_INPUT;
660 val = malloc (size);
661 MALLOC_UNBLOCK_INPUT;
662
663 if (!val && size)
664 memory_full (size);
665 memset (val, 0, size);
666 MALLOC_PROBE (size);
667 return val;
668 }
669
670 /* Like realloc but check for no memory and block interrupt input.. */
671
672 void *
673 xrealloc (void *block, size_t size)
674 {
675 void *val;
676
677 MALLOC_BLOCK_INPUT;
678 /* We must call malloc explicitly when BLOCK is 0, since some
679 reallocs don't do this. */
680 if (! block)
681 val = malloc (size);
682 else
683 val = realloc (block, size);
684 MALLOC_UNBLOCK_INPUT;
685
686 if (!val && size)
687 memory_full (size);
688 MALLOC_PROBE (size);
689 return val;
690 }
691
692
693 /* Like free but block interrupt input. */
694
695 void
696 xfree (void *block)
697 {
698 if (!block)
699 return;
700 MALLOC_BLOCK_INPUT;
701 free (block);
702 MALLOC_UNBLOCK_INPUT;
703 /* We don't call refill_memory_reserve here
704 because in practice the call in r_alloc_free seems to suffice. */
705 }
706
707
708 /* Other parts of Emacs pass large int values to allocator functions
709 expecting ptrdiff_t. This is portable in practice, but check it to
710 be safe. */
711 verify (INT_MAX <= PTRDIFF_MAX);
712
713
714 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
715 Signal an error on memory exhaustion, and block interrupt input. */
716
717 void *
718 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
719 {
720 eassert (0 <= nitems && 0 < item_size);
721 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
722 memory_full (SIZE_MAX);
723 return xmalloc (nitems * item_size);
724 }
725
726
727 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
729
730 void *
731 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
732 {
733 eassert (0 <= nitems && 0 < item_size);
734 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
735 memory_full (SIZE_MAX);
736 return xrealloc (pa, nitems * item_size);
737 }
738
739
740 /* Grow PA, which points to an array of *NITEMS items, and return the
741 location of the reallocated array, updating *NITEMS to reflect its
742 new size. The new array will contain at least NITEMS_INCR_MIN more
743 items, but will not contain more than NITEMS_MAX items total.
744 ITEM_SIZE is the size of each item, in bytes.
745
746 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
747 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
748 infinity.
749
750 If PA is null, then allocate a new array instead of reallocating
751 the old one.
752
753 Block interrupt input as needed. If memory exhaustion occurs, set
754 *NITEMS to zero if PA is null, and signal an error (i.e., do not
755 return).
756
757 Thus, to grow an array A without saving its old contents, do
758 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
759 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
760 and signals an error, and later this code is reexecuted and
761 attempts to free A. */
762
763 void *
764 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
765 ptrdiff_t nitems_max, ptrdiff_t item_size)
766 {
767 /* The approximate size to use for initial small allocation
768 requests. This is the largest "small" request for the GNU C
769 library malloc. */
770 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
771
772 /* If the array is tiny, grow it to about (but no greater than)
773 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
774 ptrdiff_t n = *nitems;
775 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
776 ptrdiff_t half_again = n >> 1;
777 ptrdiff_t incr_estimate = max (tiny_max, half_again);
778
779 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
780 NITEMS_MAX, and what the C language can represent safely. */
781 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
782 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
783 ? nitems_max : C_language_max);
784 ptrdiff_t nitems_incr_max = n_max - n;
785 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
786
787 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
788 if (! pa)
789 *nitems = 0;
790 if (nitems_incr_max < incr)
791 memory_full (SIZE_MAX);
792 n += incr;
793 pa = xrealloc (pa, n * item_size);
794 *nitems = n;
795 return pa;
796 }
797
798
799 /* Like strdup, but uses xmalloc. */
800
801 char *
802 xstrdup (const char *s)
803 {
804 size_t len = strlen (s) + 1;
805 char *p = xmalloc (len);
806 memcpy (p, s, len);
807 return p;
808 }
809
810 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
811 argument is a const pointer. */
812
813 void
814 xputenv (char const *string)
815 {
816 if (putenv ((char *) string) != 0)
817 memory_full (0);
818 }
819
820 /* Unwind for SAFE_ALLOCA */
821
822 Lisp_Object
823 safe_alloca_unwind (Lisp_Object arg)
824 {
825 free_save_value (arg);
826 return Qnil;
827 }
828
829 /* Return a newly allocated memory block of SIZE bytes, remembering
830 to free it when unwinding. */
831 void *
832 record_xmalloc (size_t size)
833 {
834 void *p = xmalloc (size);
835 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
836 return p;
837 }
838
839
840 /* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allocated memory block (for strings, for conses, ...). */
843
844 #if ! USE_LSB_TAG
845 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
846 #endif
847
848 static void *
849 lisp_malloc (size_t nbytes, enum mem_type type)
850 {
851 register void *val;
852
853 MALLOC_BLOCK_INPUT;
854
855 #ifdef GC_MALLOC_CHECK
856 allocated_mem_type = type;
857 #endif
858
859 val = malloc (nbytes);
860
861 #if ! USE_LSB_TAG
862 /* If the memory just allocated cannot be addressed thru a Lisp
863 object's pointer, and it needs to be,
864 that's equivalent to running out of memory. */
865 if (val && type != MEM_TYPE_NON_LISP)
866 {
867 Lisp_Object tem;
868 XSETCONS (tem, (char *) val + nbytes - 1);
869 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
870 {
871 lisp_malloc_loser = val;
872 free (val);
873 val = 0;
874 }
875 }
876 #endif
877
878 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
879 if (val && type != MEM_TYPE_NON_LISP)
880 mem_insert (val, (char *) val + nbytes, type);
881 #endif
882
883 MALLOC_UNBLOCK_INPUT;
884 if (!val && nbytes)
885 memory_full (nbytes);
886 MALLOC_PROBE (nbytes);
887 return val;
888 }
889
890 /* Free BLOCK. This must be called to free memory allocated with a
891 call to lisp_malloc. */
892
893 static void
894 lisp_free (void *block)
895 {
896 MALLOC_BLOCK_INPUT;
897 free (block);
898 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
899 mem_delete (mem_find (block));
900 #endif
901 MALLOC_UNBLOCK_INPUT;
902 }
903
904 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
905
906 /* The entry point is lisp_align_malloc which returns blocks of at most
907 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
908
909 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
910 #define USE_POSIX_MEMALIGN 1
911 #endif
912
913 /* BLOCK_ALIGN has to be a power of 2. */
914 #define BLOCK_ALIGN (1 << 10)
915
916 /* Padding to leave at the end of a malloc'd block. This is to give
917 malloc a chance to minimize the amount of memory wasted to alignment.
918 It should be tuned to the particular malloc library used.
919 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
920 posix_memalign on the other hand would ideally prefer a value of 4
921 because otherwise, there's 1020 bytes wasted between each ablocks.
922 In Emacs, testing shows that those 1020 can most of the time be
923 efficiently used by malloc to place other objects, so a value of 0 can
924 still preferable unless you have a lot of aligned blocks and virtually
925 nothing else. */
926 #define BLOCK_PADDING 0
927 #define BLOCK_BYTES \
928 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
929
930 /* Internal data structures and constants. */
931
932 #define ABLOCKS_SIZE 16
933
934 /* An aligned block of memory. */
935 struct ablock
936 {
937 union
938 {
939 char payload[BLOCK_BYTES];
940 struct ablock *next_free;
941 } x;
942 /* `abase' is the aligned base of the ablocks. */
943 /* It is overloaded to hold the virtual `busy' field that counts
944 the number of used ablock in the parent ablocks.
945 The first ablock has the `busy' field, the others have the `abase'
946 field. To tell the difference, we assume that pointers will have
947 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
948 is used to tell whether the real base of the parent ablocks is `abase'
949 (if not, the word before the first ablock holds a pointer to the
950 real base). */
951 struct ablocks *abase;
952 /* The padding of all but the last ablock is unused. The padding of
953 the last ablock in an ablocks is not allocated. */
954 #if BLOCK_PADDING
955 char padding[BLOCK_PADDING];
956 #endif
957 };
958
959 /* A bunch of consecutive aligned blocks. */
960 struct ablocks
961 {
962 struct ablock blocks[ABLOCKS_SIZE];
963 };
964
965 /* Size of the block requested from malloc or posix_memalign. */
966 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
967
968 #define ABLOCK_ABASE(block) \
969 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
970 ? (struct ablocks *)(block) \
971 : (block)->abase)
972
973 /* Virtual `busy' field. */
974 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
975
976 /* Pointer to the (not necessarily aligned) malloc block. */
977 #ifdef USE_POSIX_MEMALIGN
978 #define ABLOCKS_BASE(abase) (abase)
979 #else
980 #define ABLOCKS_BASE(abase) \
981 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
982 #endif
983
984 /* The list of free ablock. */
985 static struct ablock *free_ablock;
986
987 /* Allocate an aligned block of nbytes.
988 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
989 smaller or equal to BLOCK_BYTES. */
990 static void *
991 lisp_align_malloc (size_t nbytes, enum mem_type type)
992 {
993 void *base, *val;
994 struct ablocks *abase;
995
996 eassert (nbytes <= BLOCK_BYTES);
997
998 MALLOC_BLOCK_INPUT;
999
1000 #ifdef GC_MALLOC_CHECK
1001 allocated_mem_type = type;
1002 #endif
1003
1004 if (!free_ablock)
1005 {
1006 int i;
1007 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1008
1009 #ifdef DOUG_LEA_MALLOC
1010 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1011 because mapped region contents are not preserved in
1012 a dumped Emacs. */
1013 mallopt (M_MMAP_MAX, 0);
1014 #endif
1015
1016 #ifdef USE_POSIX_MEMALIGN
1017 {
1018 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1019 if (err)
1020 base = NULL;
1021 abase = base;
1022 }
1023 #else
1024 base = malloc (ABLOCKS_BYTES);
1025 abase = ALIGN (base, BLOCK_ALIGN);
1026 #endif
1027
1028 if (base == 0)
1029 {
1030 MALLOC_UNBLOCK_INPUT;
1031 memory_full (ABLOCKS_BYTES);
1032 }
1033
1034 aligned = (base == abase);
1035 if (!aligned)
1036 ((void**)abase)[-1] = base;
1037
1038 #ifdef DOUG_LEA_MALLOC
1039 /* Back to a reasonable maximum of mmap'ed areas. */
1040 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1041 #endif
1042
1043 #if ! USE_LSB_TAG
1044 /* If the memory just allocated cannot be addressed thru a Lisp
1045 object's pointer, and it needs to be, that's equivalent to
1046 running out of memory. */
1047 if (type != MEM_TYPE_NON_LISP)
1048 {
1049 Lisp_Object tem;
1050 char *end = (char *) base + ABLOCKS_BYTES - 1;
1051 XSETCONS (tem, end);
1052 if ((char *) XCONS (tem) != end)
1053 {
1054 lisp_malloc_loser = base;
1055 free (base);
1056 MALLOC_UNBLOCK_INPUT;
1057 memory_full (SIZE_MAX);
1058 }
1059 }
1060 #endif
1061
1062 /* Initialize the blocks and put them on the free list.
1063 If `base' was not properly aligned, we can't use the last block. */
1064 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1065 {
1066 abase->blocks[i].abase = abase;
1067 abase->blocks[i].x.next_free = free_ablock;
1068 free_ablock = &abase->blocks[i];
1069 }
1070 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1071
1072 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1073 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1074 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1075 eassert (ABLOCKS_BASE (abase) == base);
1076 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1077 }
1078
1079 abase = ABLOCK_ABASE (free_ablock);
1080 ABLOCKS_BUSY (abase) =
1081 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1082 val = free_ablock;
1083 free_ablock = free_ablock->x.next_free;
1084
1085 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1086 if (type != MEM_TYPE_NON_LISP)
1087 mem_insert (val, (char *) val + nbytes, type);
1088 #endif
1089
1090 MALLOC_UNBLOCK_INPUT;
1091
1092 MALLOC_PROBE (nbytes);
1093
1094 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1095 return val;
1096 }
1097
1098 static void
1099 lisp_align_free (void *block)
1100 {
1101 struct ablock *ablock = block;
1102 struct ablocks *abase = ABLOCK_ABASE (ablock);
1103
1104 MALLOC_BLOCK_INPUT;
1105 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1106 mem_delete (mem_find (block));
1107 #endif
1108 /* Put on free list. */
1109 ablock->x.next_free = free_ablock;
1110 free_ablock = ablock;
1111 /* Update busy count. */
1112 ABLOCKS_BUSY (abase)
1113 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1114
1115 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1116 { /* All the blocks are free. */
1117 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1118 struct ablock **tem = &free_ablock;
1119 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1120
1121 while (*tem)
1122 {
1123 if (*tem >= (struct ablock *) abase && *tem < atop)
1124 {
1125 i++;
1126 *tem = (*tem)->x.next_free;
1127 }
1128 else
1129 tem = &(*tem)->x.next_free;
1130 }
1131 eassert ((aligned & 1) == aligned);
1132 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1133 #ifdef USE_POSIX_MEMALIGN
1134 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1135 #endif
1136 free (ABLOCKS_BASE (abase));
1137 }
1138 MALLOC_UNBLOCK_INPUT;
1139 }
1140
1141 \f
1142 /***********************************************************************
1143 Interval Allocation
1144 ***********************************************************************/
1145
1146 /* Number of intervals allocated in an interval_block structure.
1147 The 1020 is 1024 minus malloc overhead. */
1148
1149 #define INTERVAL_BLOCK_SIZE \
1150 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1151
1152 /* Intervals are allocated in chunks in the form of an interval_block
1153 structure. */
1154
1155 struct interval_block
1156 {
1157 /* Place `intervals' first, to preserve alignment. */
1158 struct interval intervals[INTERVAL_BLOCK_SIZE];
1159 struct interval_block *next;
1160 };
1161
1162 /* Current interval block. Its `next' pointer points to older
1163 blocks. */
1164
1165 static struct interval_block *interval_block;
1166
1167 /* Index in interval_block above of the next unused interval
1168 structure. */
1169
1170 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1171
1172 /* Number of free and live intervals. */
1173
1174 static EMACS_INT total_free_intervals, total_intervals;
1175
1176 /* List of free intervals. */
1177
1178 static INTERVAL interval_free_list;
1179
1180 /* Return a new interval. */
1181
1182 INTERVAL
1183 make_interval (void)
1184 {
1185 INTERVAL val;
1186
1187 MALLOC_BLOCK_INPUT;
1188
1189 if (interval_free_list)
1190 {
1191 val = interval_free_list;
1192 interval_free_list = INTERVAL_PARENT (interval_free_list);
1193 }
1194 else
1195 {
1196 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1197 {
1198 struct interval_block *newi
1199 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1200
1201 newi->next = interval_block;
1202 interval_block = newi;
1203 interval_block_index = 0;
1204 total_free_intervals += INTERVAL_BLOCK_SIZE;
1205 }
1206 val = &interval_block->intervals[interval_block_index++];
1207 }
1208
1209 MALLOC_UNBLOCK_INPUT;
1210
1211 consing_since_gc += sizeof (struct interval);
1212 intervals_consed++;
1213 total_free_intervals--;
1214 RESET_INTERVAL (val);
1215 val->gcmarkbit = 0;
1216 return val;
1217 }
1218
1219
1220 /* Mark Lisp objects in interval I. */
1221
1222 static void
1223 mark_interval (register INTERVAL i, Lisp_Object dummy)
1224 {
1225 /* Intervals should never be shared. So, if extra internal checking is
1226 enabled, GC aborts if it seems to have visited an interval twice. */
1227 eassert (!i->gcmarkbit);
1228 i->gcmarkbit = 1;
1229 mark_object (i->plist);
1230 }
1231
1232 /* Mark the interval tree rooted in I. */
1233
1234 #define MARK_INTERVAL_TREE(i) \
1235 do { \
1236 if (i && !i->gcmarkbit) \
1237 traverse_intervals_noorder (i, mark_interval, Qnil); \
1238 } while (0)
1239
1240 /***********************************************************************
1241 String Allocation
1242 ***********************************************************************/
1243
1244 /* Lisp_Strings are allocated in string_block structures. When a new
1245 string_block is allocated, all the Lisp_Strings it contains are
1246 added to a free-list string_free_list. When a new Lisp_String is
1247 needed, it is taken from that list. During the sweep phase of GC,
1248 string_blocks that are entirely free are freed, except two which
1249 we keep.
1250
1251 String data is allocated from sblock structures. Strings larger
1252 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1253 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1254
1255 Sblocks consist internally of sdata structures, one for each
1256 Lisp_String. The sdata structure points to the Lisp_String it
1257 belongs to. The Lisp_String points back to the `u.data' member of
1258 its sdata structure.
1259
1260 When a Lisp_String is freed during GC, it is put back on
1261 string_free_list, and its `data' member and its sdata's `string'
1262 pointer is set to null. The size of the string is recorded in the
1263 `u.nbytes' member of the sdata. So, sdata structures that are no
1264 longer used, can be easily recognized, and it's easy to compact the
1265 sblocks of small strings which we do in compact_small_strings. */
1266
1267 /* Size in bytes of an sblock structure used for small strings. This
1268 is 8192 minus malloc overhead. */
1269
1270 #define SBLOCK_SIZE 8188
1271
1272 /* Strings larger than this are considered large strings. String data
1273 for large strings is allocated from individual sblocks. */
1274
1275 #define LARGE_STRING_BYTES 1024
1276
1277 /* Structure describing string memory sub-allocated from an sblock.
1278 This is where the contents of Lisp strings are stored. */
1279
1280 struct sdata
1281 {
1282 /* Back-pointer to the string this sdata belongs to. If null, this
1283 structure is free, and the NBYTES member of the union below
1284 contains the string's byte size (the same value that STRING_BYTES
1285 would return if STRING were non-null). If non-null, STRING_BYTES
1286 (STRING) is the size of the data, and DATA contains the string's
1287 contents. */
1288 struct Lisp_String *string;
1289
1290 #ifdef GC_CHECK_STRING_BYTES
1291
1292 ptrdiff_t nbytes;
1293 unsigned char data[1];
1294
1295 #define SDATA_NBYTES(S) (S)->nbytes
1296 #define SDATA_DATA(S) (S)->data
1297 #define SDATA_SELECTOR(member) member
1298
1299 #else /* not GC_CHECK_STRING_BYTES */
1300
1301 union
1302 {
1303 /* When STRING is non-null. */
1304 unsigned char data[1];
1305
1306 /* When STRING is null. */
1307 ptrdiff_t nbytes;
1308 } u;
1309
1310 #define SDATA_NBYTES(S) (S)->u.nbytes
1311 #define SDATA_DATA(S) (S)->u.data
1312 #define SDATA_SELECTOR(member) u.member
1313
1314 #endif /* not GC_CHECK_STRING_BYTES */
1315
1316 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1317 };
1318
1319
1320 /* Structure describing a block of memory which is sub-allocated to
1321 obtain string data memory for strings. Blocks for small strings
1322 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1323 as large as needed. */
1324
1325 struct sblock
1326 {
1327 /* Next in list. */
1328 struct sblock *next;
1329
1330 /* Pointer to the next free sdata block. This points past the end
1331 of the sblock if there isn't any space left in this block. */
1332 struct sdata *next_free;
1333
1334 /* Start of data. */
1335 struct sdata first_data;
1336 };
1337
1338 /* Number of Lisp strings in a string_block structure. The 1020 is
1339 1024 minus malloc overhead. */
1340
1341 #define STRING_BLOCK_SIZE \
1342 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1343
1344 /* Structure describing a block from which Lisp_String structures
1345 are allocated. */
1346
1347 struct string_block
1348 {
1349 /* Place `strings' first, to preserve alignment. */
1350 struct Lisp_String strings[STRING_BLOCK_SIZE];
1351 struct string_block *next;
1352 };
1353
1354 /* Head and tail of the list of sblock structures holding Lisp string
1355 data. We always allocate from current_sblock. The NEXT pointers
1356 in the sblock structures go from oldest_sblock to current_sblock. */
1357
1358 static struct sblock *oldest_sblock, *current_sblock;
1359
1360 /* List of sblocks for large strings. */
1361
1362 static struct sblock *large_sblocks;
1363
1364 /* List of string_block structures. */
1365
1366 static struct string_block *string_blocks;
1367
1368 /* Free-list of Lisp_Strings. */
1369
1370 static struct Lisp_String *string_free_list;
1371
1372 /* Number of live and free Lisp_Strings. */
1373
1374 static EMACS_INT total_strings, total_free_strings;
1375
1376 /* Number of bytes used by live strings. */
1377
1378 static EMACS_INT total_string_bytes;
1379
1380 /* Given a pointer to a Lisp_String S which is on the free-list
1381 string_free_list, return a pointer to its successor in the
1382 free-list. */
1383
1384 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1385
1386 /* Return a pointer to the sdata structure belonging to Lisp string S.
1387 S must be live, i.e. S->data must not be null. S->data is actually
1388 a pointer to the `u.data' member of its sdata structure; the
1389 structure starts at a constant offset in front of that. */
1390
1391 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1392
1393
1394 #ifdef GC_CHECK_STRING_OVERRUN
1395
1396 /* We check for overrun in string data blocks by appending a small
1397 "cookie" after each allocated string data block, and check for the
1398 presence of this cookie during GC. */
1399
1400 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1401 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1402 { '\xde', '\xad', '\xbe', '\xef' };
1403
1404 #else
1405 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1406 #endif
1407
1408 /* Value is the size of an sdata structure large enough to hold NBYTES
1409 bytes of string data. The value returned includes a terminating
1410 NUL byte, the size of the sdata structure, and padding. */
1411
1412 #ifdef GC_CHECK_STRING_BYTES
1413
1414 #define SDATA_SIZE(NBYTES) \
1415 ((SDATA_DATA_OFFSET \
1416 + (NBYTES) + 1 \
1417 + sizeof (ptrdiff_t) - 1) \
1418 & ~(sizeof (ptrdiff_t) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1423 less than the size of that member. The 'max' is not needed when
1424 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1425 alignment code reserves enough space. */
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1430 ? NBYTES \
1431 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1432 + 1 \
1433 + sizeof (ptrdiff_t) - 1) \
1434 & ~(sizeof (ptrdiff_t) - 1))
1435
1436 #endif /* not GC_CHECK_STRING_BYTES */
1437
1438 /* Extra bytes to allocate for each string. */
1439
1440 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1441
1442 /* Exact bound on the number of bytes in a string, not counting the
1443 terminating null. A string cannot contain more bytes than
1444 STRING_BYTES_BOUND, nor can it be so long that the size_t
1445 arithmetic in allocate_string_data would overflow while it is
1446 calculating a value to be passed to malloc. */
1447 static ptrdiff_t const STRING_BYTES_MAX =
1448 min (STRING_BYTES_BOUND,
1449 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1450 - GC_STRING_EXTRA
1451 - offsetof (struct sblock, first_data)
1452 - SDATA_DATA_OFFSET)
1453 & ~(sizeof (EMACS_INT) - 1)));
1454
1455 /* Initialize string allocation. Called from init_alloc_once. */
1456
1457 static void
1458 init_strings (void)
1459 {
1460 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1461 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1462 }
1463
1464
1465 #ifdef GC_CHECK_STRING_BYTES
1466
1467 static int check_string_bytes_count;
1468
1469 /* Like STRING_BYTES, but with debugging check. Can be
1470 called during GC, so pay attention to the mark bit. */
1471
1472 ptrdiff_t
1473 string_bytes (struct Lisp_String *s)
1474 {
1475 ptrdiff_t nbytes =
1476 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1477
1478 if (!PURE_POINTER_P (s)
1479 && s->data
1480 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1481 emacs_abort ();
1482 return nbytes;
1483 }
1484
1485 /* Check validity of Lisp strings' string_bytes member in B. */
1486
1487 static void
1488 check_sblock (struct sblock *b)
1489 {
1490 struct sdata *from, *end, *from_end;
1491
1492 end = b->next_free;
1493
1494 for (from = &b->first_data; from < end; from = from_end)
1495 {
1496 /* Compute the next FROM here because copying below may
1497 overwrite data we need to compute it. */
1498 ptrdiff_t nbytes;
1499
1500 /* Check that the string size recorded in the string is the
1501 same as the one recorded in the sdata structure. */
1502 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1503 : SDATA_NBYTES (from));
1504 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1505 }
1506 }
1507
1508
1509 /* Check validity of Lisp strings' string_bytes member. ALL_P
1510 means check all strings, otherwise check only most
1511 recently allocated strings. Used for hunting a bug. */
1512
1513 static void
1514 check_string_bytes (bool all_p)
1515 {
1516 if (all_p)
1517 {
1518 struct sblock *b;
1519
1520 for (b = large_sblocks; b; b = b->next)
1521 {
1522 struct Lisp_String *s = b->first_data.string;
1523 if (s)
1524 string_bytes (s);
1525 }
1526
1527 for (b = oldest_sblock; b; b = b->next)
1528 check_sblock (b);
1529 }
1530 else if (current_sblock)
1531 check_sblock (current_sblock);
1532 }
1533
1534 #else /* not GC_CHECK_STRING_BYTES */
1535
1536 #define check_string_bytes(all) ((void) 0)
1537
1538 #endif /* GC_CHECK_STRING_BYTES */
1539
1540 #ifdef GC_CHECK_STRING_FREE_LIST
1541
1542 /* Walk through the string free list looking for bogus next pointers.
1543 This may catch buffer overrun from a previous string. */
1544
1545 static void
1546 check_string_free_list (void)
1547 {
1548 struct Lisp_String *s;
1549
1550 /* Pop a Lisp_String off the free-list. */
1551 s = string_free_list;
1552 while (s != NULL)
1553 {
1554 if ((uintptr_t) s < 1024)
1555 emacs_abort ();
1556 s = NEXT_FREE_LISP_STRING (s);
1557 }
1558 }
1559 #else
1560 #define check_string_free_list()
1561 #endif
1562
1563 /* Return a new Lisp_String. */
1564
1565 static struct Lisp_String *
1566 allocate_string (void)
1567 {
1568 struct Lisp_String *s;
1569
1570 MALLOC_BLOCK_INPUT;
1571
1572 /* If the free-list is empty, allocate a new string_block, and
1573 add all the Lisp_Strings in it to the free-list. */
1574 if (string_free_list == NULL)
1575 {
1576 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1577 int i;
1578
1579 b->next = string_blocks;
1580 string_blocks = b;
1581
1582 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1583 {
1584 s = b->strings + i;
1585 /* Every string on a free list should have NULL data pointer. */
1586 s->data = NULL;
1587 NEXT_FREE_LISP_STRING (s) = string_free_list;
1588 string_free_list = s;
1589 }
1590
1591 total_free_strings += STRING_BLOCK_SIZE;
1592 }
1593
1594 check_string_free_list ();
1595
1596 /* Pop a Lisp_String off the free-list. */
1597 s = string_free_list;
1598 string_free_list = NEXT_FREE_LISP_STRING (s);
1599
1600 MALLOC_UNBLOCK_INPUT;
1601
1602 --total_free_strings;
1603 ++total_strings;
1604 ++strings_consed;
1605 consing_since_gc += sizeof *s;
1606
1607 #ifdef GC_CHECK_STRING_BYTES
1608 if (!noninteractive)
1609 {
1610 if (++check_string_bytes_count == 200)
1611 {
1612 check_string_bytes_count = 0;
1613 check_string_bytes (1);
1614 }
1615 else
1616 check_string_bytes (0);
1617 }
1618 #endif /* GC_CHECK_STRING_BYTES */
1619
1620 return s;
1621 }
1622
1623
1624 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1625 plus a NUL byte at the end. Allocate an sdata structure for S, and
1626 set S->data to its `u.data' member. Store a NUL byte at the end of
1627 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1628 S->data if it was initially non-null. */
1629
1630 void
1631 allocate_string_data (struct Lisp_String *s,
1632 EMACS_INT nchars, EMACS_INT nbytes)
1633 {
1634 struct sdata *data, *old_data;
1635 struct sblock *b;
1636 ptrdiff_t needed, old_nbytes;
1637
1638 if (STRING_BYTES_MAX < nbytes)
1639 string_overflow ();
1640
1641 /* Determine the number of bytes needed to store NBYTES bytes
1642 of string data. */
1643 needed = SDATA_SIZE (nbytes);
1644 if (s->data)
1645 {
1646 old_data = SDATA_OF_STRING (s);
1647 old_nbytes = STRING_BYTES (s);
1648 }
1649 else
1650 old_data = NULL;
1651
1652 MALLOC_BLOCK_INPUT;
1653
1654 if (nbytes > LARGE_STRING_BYTES)
1655 {
1656 size_t size = offsetof (struct sblock, first_data) + needed;
1657
1658 #ifdef DOUG_LEA_MALLOC
1659 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1660 because mapped region contents are not preserved in
1661 a dumped Emacs.
1662
1663 In case you think of allowing it in a dumped Emacs at the
1664 cost of not being able to re-dump, there's another reason:
1665 mmap'ed data typically have an address towards the top of the
1666 address space, which won't fit into an EMACS_INT (at least on
1667 32-bit systems with the current tagging scheme). --fx */
1668 mallopt (M_MMAP_MAX, 0);
1669 #endif
1670
1671 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1672
1673 #ifdef DOUG_LEA_MALLOC
1674 /* Back to a reasonable maximum of mmap'ed areas. */
1675 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1676 #endif
1677
1678 b->next_free = &b->first_data;
1679 b->first_data.string = NULL;
1680 b->next = large_sblocks;
1681 large_sblocks = b;
1682 }
1683 else if (current_sblock == NULL
1684 || (((char *) current_sblock + SBLOCK_SIZE
1685 - (char *) current_sblock->next_free)
1686 < (needed + GC_STRING_EXTRA)))
1687 {
1688 /* Not enough room in the current sblock. */
1689 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1690 b->next_free = &b->first_data;
1691 b->first_data.string = NULL;
1692 b->next = NULL;
1693
1694 if (current_sblock)
1695 current_sblock->next = b;
1696 else
1697 oldest_sblock = b;
1698 current_sblock = b;
1699 }
1700 else
1701 b = current_sblock;
1702
1703 data = b->next_free;
1704 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1705
1706 MALLOC_UNBLOCK_INPUT;
1707
1708 data->string = s;
1709 s->data = SDATA_DATA (data);
1710 #ifdef GC_CHECK_STRING_BYTES
1711 SDATA_NBYTES (data) = nbytes;
1712 #endif
1713 s->size = nchars;
1714 s->size_byte = nbytes;
1715 s->data[nbytes] = '\0';
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717 memcpy ((char *) data + needed, string_overrun_cookie,
1718 GC_STRING_OVERRUN_COOKIE_SIZE);
1719 #endif
1720
1721 /* Note that Faset may call to this function when S has already data
1722 assigned. In this case, mark data as free by setting it's string
1723 back-pointer to null, and record the size of the data in it. */
1724 if (old_data)
1725 {
1726 SDATA_NBYTES (old_data) = old_nbytes;
1727 old_data->string = NULL;
1728 }
1729
1730 consing_since_gc += needed;
1731 }
1732
1733
1734 /* Sweep and compact strings. */
1735
1736 static void
1737 sweep_strings (void)
1738 {
1739 struct string_block *b, *next;
1740 struct string_block *live_blocks = NULL;
1741
1742 string_free_list = NULL;
1743 total_strings = total_free_strings = 0;
1744 total_string_bytes = 0;
1745
1746 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1747 for (b = string_blocks; b; b = next)
1748 {
1749 int i, nfree = 0;
1750 struct Lisp_String *free_list_before = string_free_list;
1751
1752 next = b->next;
1753
1754 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1755 {
1756 struct Lisp_String *s = b->strings + i;
1757
1758 if (s->data)
1759 {
1760 /* String was not on free-list before. */
1761 if (STRING_MARKED_P (s))
1762 {
1763 /* String is live; unmark it and its intervals. */
1764 UNMARK_STRING (s);
1765
1766 /* Do not use string_(set|get)_intervals here. */
1767 s->intervals = balance_intervals (s->intervals);
1768
1769 ++total_strings;
1770 total_string_bytes += STRING_BYTES (s);
1771 }
1772 else
1773 {
1774 /* String is dead. Put it on the free-list. */
1775 struct sdata *data = SDATA_OF_STRING (s);
1776
1777 /* Save the size of S in its sdata so that we know
1778 how large that is. Reset the sdata's string
1779 back-pointer so that we know it's free. */
1780 #ifdef GC_CHECK_STRING_BYTES
1781 if (string_bytes (s) != SDATA_NBYTES (data))
1782 emacs_abort ();
1783 #else
1784 data->u.nbytes = STRING_BYTES (s);
1785 #endif
1786 data->string = NULL;
1787
1788 /* Reset the strings's `data' member so that we
1789 know it's free. */
1790 s->data = NULL;
1791
1792 /* Put the string on the free-list. */
1793 NEXT_FREE_LISP_STRING (s) = string_free_list;
1794 string_free_list = s;
1795 ++nfree;
1796 }
1797 }
1798 else
1799 {
1800 /* S was on the free-list before. Put it there again. */
1801 NEXT_FREE_LISP_STRING (s) = string_free_list;
1802 string_free_list = s;
1803 ++nfree;
1804 }
1805 }
1806
1807 /* Free blocks that contain free Lisp_Strings only, except
1808 the first two of them. */
1809 if (nfree == STRING_BLOCK_SIZE
1810 && total_free_strings > STRING_BLOCK_SIZE)
1811 {
1812 lisp_free (b);
1813 string_free_list = free_list_before;
1814 }
1815 else
1816 {
1817 total_free_strings += nfree;
1818 b->next = live_blocks;
1819 live_blocks = b;
1820 }
1821 }
1822
1823 check_string_free_list ();
1824
1825 string_blocks = live_blocks;
1826 free_large_strings ();
1827 compact_small_strings ();
1828
1829 check_string_free_list ();
1830 }
1831
1832
1833 /* Free dead large strings. */
1834
1835 static void
1836 free_large_strings (void)
1837 {
1838 struct sblock *b, *next;
1839 struct sblock *live_blocks = NULL;
1840
1841 for (b = large_sblocks; b; b = next)
1842 {
1843 next = b->next;
1844
1845 if (b->first_data.string == NULL)
1846 lisp_free (b);
1847 else
1848 {
1849 b->next = live_blocks;
1850 live_blocks = b;
1851 }
1852 }
1853
1854 large_sblocks = live_blocks;
1855 }
1856
1857
1858 /* Compact data of small strings. Free sblocks that don't contain
1859 data of live strings after compaction. */
1860
1861 static void
1862 compact_small_strings (void)
1863 {
1864 struct sblock *b, *tb, *next;
1865 struct sdata *from, *to, *end, *tb_end;
1866 struct sdata *to_end, *from_end;
1867
1868 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1869 to, and TB_END is the end of TB. */
1870 tb = oldest_sblock;
1871 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1872 to = &tb->first_data;
1873
1874 /* Step through the blocks from the oldest to the youngest. We
1875 expect that old blocks will stabilize over time, so that less
1876 copying will happen this way. */
1877 for (b = oldest_sblock; b; b = b->next)
1878 {
1879 end = b->next_free;
1880 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1881
1882 for (from = &b->first_data; from < end; from = from_end)
1883 {
1884 /* Compute the next FROM here because copying below may
1885 overwrite data we need to compute it. */
1886 ptrdiff_t nbytes;
1887 struct Lisp_String *s = from->string;
1888
1889 #ifdef GC_CHECK_STRING_BYTES
1890 /* Check that the string size recorded in the string is the
1891 same as the one recorded in the sdata structure. */
1892 if (s && string_bytes (s) != SDATA_NBYTES (from))
1893 emacs_abort ();
1894 #endif /* GC_CHECK_STRING_BYTES */
1895
1896 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1897 eassert (nbytes <= LARGE_STRING_BYTES);
1898
1899 nbytes = SDATA_SIZE (nbytes);
1900 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1901
1902 #ifdef GC_CHECK_STRING_OVERRUN
1903 if (memcmp (string_overrun_cookie,
1904 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1905 GC_STRING_OVERRUN_COOKIE_SIZE))
1906 emacs_abort ();
1907 #endif
1908
1909 /* Non-NULL S means it's alive. Copy its data. */
1910 if (s)
1911 {
1912 /* If TB is full, proceed with the next sblock. */
1913 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1914 if (to_end > tb_end)
1915 {
1916 tb->next_free = to;
1917 tb = tb->next;
1918 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1919 to = &tb->first_data;
1920 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1921 }
1922
1923 /* Copy, and update the string's `data' pointer. */
1924 if (from != to)
1925 {
1926 eassert (tb != b || to < from);
1927 memmove (to, from, nbytes + GC_STRING_EXTRA);
1928 to->string->data = SDATA_DATA (to);
1929 }
1930
1931 /* Advance past the sdata we copied to. */
1932 to = to_end;
1933 }
1934 }
1935 }
1936
1937 /* The rest of the sblocks following TB don't contain live data, so
1938 we can free them. */
1939 for (b = tb->next; b; b = next)
1940 {
1941 next = b->next;
1942 lisp_free (b);
1943 }
1944
1945 tb->next_free = to;
1946 tb->next = NULL;
1947 current_sblock = tb;
1948 }
1949
1950 void
1951 string_overflow (void)
1952 {
1953 error ("Maximum string size exceeded");
1954 }
1955
1956 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1957 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1958 LENGTH must be an integer.
1959 INIT must be an integer that represents a character. */)
1960 (Lisp_Object length, Lisp_Object init)
1961 {
1962 register Lisp_Object val;
1963 register unsigned char *p, *end;
1964 int c;
1965 EMACS_INT nbytes;
1966
1967 CHECK_NATNUM (length);
1968 CHECK_CHARACTER (init);
1969
1970 c = XFASTINT (init);
1971 if (ASCII_CHAR_P (c))
1972 {
1973 nbytes = XINT (length);
1974 val = make_uninit_string (nbytes);
1975 p = SDATA (val);
1976 end = p + SCHARS (val);
1977 while (p != end)
1978 *p++ = c;
1979 }
1980 else
1981 {
1982 unsigned char str[MAX_MULTIBYTE_LENGTH];
1983 int len = CHAR_STRING (c, str);
1984 EMACS_INT string_len = XINT (length);
1985
1986 if (string_len > STRING_BYTES_MAX / len)
1987 string_overflow ();
1988 nbytes = len * string_len;
1989 val = make_uninit_multibyte_string (string_len, nbytes);
1990 p = SDATA (val);
1991 end = p + nbytes;
1992 while (p != end)
1993 {
1994 memcpy (p, str, len);
1995 p += len;
1996 }
1997 }
1998
1999 *p = 0;
2000 return val;
2001 }
2002
2003
2004 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2005 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2006 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2007 (Lisp_Object length, Lisp_Object init)
2008 {
2009 register Lisp_Object val;
2010 struct Lisp_Bool_Vector *p;
2011 ptrdiff_t length_in_chars;
2012 EMACS_INT length_in_elts;
2013 int bits_per_value;
2014 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2015 / word_size);
2016
2017 CHECK_NATNUM (length);
2018
2019 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2020
2021 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2022
2023 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2024
2025 /* No Lisp_Object to trace in there. */
2026 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2027
2028 p = XBOOL_VECTOR (val);
2029 p->size = XFASTINT (length);
2030
2031 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2032 / BOOL_VECTOR_BITS_PER_CHAR);
2033 if (length_in_chars)
2034 {
2035 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2036
2037 /* Clear any extraneous bits in the last byte. */
2038 p->data[length_in_chars - 1]
2039 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2040 }
2041
2042 return val;
2043 }
2044
2045
2046 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2047 of characters from the contents. This string may be unibyte or
2048 multibyte, depending on the contents. */
2049
2050 Lisp_Object
2051 make_string (const char *contents, ptrdiff_t nbytes)
2052 {
2053 register Lisp_Object val;
2054 ptrdiff_t nchars, multibyte_nbytes;
2055
2056 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2057 &nchars, &multibyte_nbytes);
2058 if (nbytes == nchars || nbytes != multibyte_nbytes)
2059 /* CONTENTS contains no multibyte sequences or contains an invalid
2060 multibyte sequence. We must make unibyte string. */
2061 val = make_unibyte_string (contents, nbytes);
2062 else
2063 val = make_multibyte_string (contents, nchars, nbytes);
2064 return val;
2065 }
2066
2067
2068 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2069
2070 Lisp_Object
2071 make_unibyte_string (const char *contents, ptrdiff_t length)
2072 {
2073 register Lisp_Object val;
2074 val = make_uninit_string (length);
2075 memcpy (SDATA (val), contents, length);
2076 return val;
2077 }
2078
2079
2080 /* Make a multibyte string from NCHARS characters occupying NBYTES
2081 bytes at CONTENTS. */
2082
2083 Lisp_Object
2084 make_multibyte_string (const char *contents,
2085 ptrdiff_t nchars, ptrdiff_t nbytes)
2086 {
2087 register Lisp_Object val;
2088 val = make_uninit_multibyte_string (nchars, nbytes);
2089 memcpy (SDATA (val), contents, nbytes);
2090 return val;
2091 }
2092
2093
2094 /* Make a string from NCHARS characters occupying NBYTES bytes at
2095 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2096
2097 Lisp_Object
2098 make_string_from_bytes (const char *contents,
2099 ptrdiff_t nchars, ptrdiff_t nbytes)
2100 {
2101 register Lisp_Object val;
2102 val = make_uninit_multibyte_string (nchars, nbytes);
2103 memcpy (SDATA (val), contents, nbytes);
2104 if (SBYTES (val) == SCHARS (val))
2105 STRING_SET_UNIBYTE (val);
2106 return val;
2107 }
2108
2109
2110 /* Make a string from NCHARS characters occupying NBYTES bytes at
2111 CONTENTS. The argument MULTIBYTE controls whether to label the
2112 string as multibyte. If NCHARS is negative, it counts the number of
2113 characters by itself. */
2114
2115 Lisp_Object
2116 make_specified_string (const char *contents,
2117 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2118 {
2119 Lisp_Object val;
2120
2121 if (nchars < 0)
2122 {
2123 if (multibyte)
2124 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2125 nbytes);
2126 else
2127 nchars = nbytes;
2128 }
2129 val = make_uninit_multibyte_string (nchars, nbytes);
2130 memcpy (SDATA (val), contents, nbytes);
2131 if (!multibyte)
2132 STRING_SET_UNIBYTE (val);
2133 return val;
2134 }
2135
2136
2137 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2138 occupying LENGTH bytes. */
2139
2140 Lisp_Object
2141 make_uninit_string (EMACS_INT length)
2142 {
2143 Lisp_Object val;
2144
2145 if (!length)
2146 return empty_unibyte_string;
2147 val = make_uninit_multibyte_string (length, length);
2148 STRING_SET_UNIBYTE (val);
2149 return val;
2150 }
2151
2152
2153 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2154 which occupy NBYTES bytes. */
2155
2156 Lisp_Object
2157 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2158 {
2159 Lisp_Object string;
2160 struct Lisp_String *s;
2161
2162 if (nchars < 0)
2163 emacs_abort ();
2164 if (!nbytes)
2165 return empty_multibyte_string;
2166
2167 s = allocate_string ();
2168 s->intervals = NULL;
2169 allocate_string_data (s, nchars, nbytes);
2170 XSETSTRING (string, s);
2171 string_chars_consed += nbytes;
2172 return string;
2173 }
2174
2175 /* Print arguments to BUF according to a FORMAT, then return
2176 a Lisp_String initialized with the data from BUF. */
2177
2178 Lisp_Object
2179 make_formatted_string (char *buf, const char *format, ...)
2180 {
2181 va_list ap;
2182 int length;
2183
2184 va_start (ap, format);
2185 length = vsprintf (buf, format, ap);
2186 va_end (ap);
2187 return make_string (buf, length);
2188 }
2189
2190 \f
2191 /***********************************************************************
2192 Float Allocation
2193 ***********************************************************************/
2194
2195 /* We store float cells inside of float_blocks, allocating a new
2196 float_block with malloc whenever necessary. Float cells reclaimed
2197 by GC are put on a free list to be reallocated before allocating
2198 any new float cells from the latest float_block. */
2199
2200 #define FLOAT_BLOCK_SIZE \
2201 (((BLOCK_BYTES - sizeof (struct float_block *) \
2202 /* The compiler might add padding at the end. */ \
2203 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2204 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2205
2206 #define GETMARKBIT(block,n) \
2207 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2208 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2209 & 1)
2210
2211 #define SETMARKBIT(block,n) \
2212 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2213 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2214
2215 #define UNSETMARKBIT(block,n) \
2216 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2217 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2218
2219 #define FLOAT_BLOCK(fptr) \
2220 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2221
2222 #define FLOAT_INDEX(fptr) \
2223 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2224
2225 struct float_block
2226 {
2227 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2228 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2229 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2230 struct float_block *next;
2231 };
2232
2233 #define FLOAT_MARKED_P(fptr) \
2234 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2235
2236 #define FLOAT_MARK(fptr) \
2237 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2238
2239 #define FLOAT_UNMARK(fptr) \
2240 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2241
2242 /* Current float_block. */
2243
2244 static struct float_block *float_block;
2245
2246 /* Index of first unused Lisp_Float in the current float_block. */
2247
2248 static int float_block_index = FLOAT_BLOCK_SIZE;
2249
2250 /* Free-list of Lisp_Floats. */
2251
2252 static struct Lisp_Float *float_free_list;
2253
2254 /* Return a new float object with value FLOAT_VALUE. */
2255
2256 Lisp_Object
2257 make_float (double float_value)
2258 {
2259 register Lisp_Object val;
2260
2261 MALLOC_BLOCK_INPUT;
2262
2263 if (float_free_list)
2264 {
2265 /* We use the data field for chaining the free list
2266 so that we won't use the same field that has the mark bit. */
2267 XSETFLOAT (val, float_free_list);
2268 float_free_list = float_free_list->u.chain;
2269 }
2270 else
2271 {
2272 if (float_block_index == FLOAT_BLOCK_SIZE)
2273 {
2274 struct float_block *new
2275 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2276 new->next = float_block;
2277 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2278 float_block = new;
2279 float_block_index = 0;
2280 total_free_floats += FLOAT_BLOCK_SIZE;
2281 }
2282 XSETFLOAT (val, &float_block->floats[float_block_index]);
2283 float_block_index++;
2284 }
2285
2286 MALLOC_UNBLOCK_INPUT;
2287
2288 XFLOAT_INIT (val, float_value);
2289 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2290 consing_since_gc += sizeof (struct Lisp_Float);
2291 floats_consed++;
2292 total_free_floats--;
2293 return val;
2294 }
2295
2296
2297 \f
2298 /***********************************************************************
2299 Cons Allocation
2300 ***********************************************************************/
2301
2302 /* We store cons cells inside of cons_blocks, allocating a new
2303 cons_block with malloc whenever necessary. Cons cells reclaimed by
2304 GC are put on a free list to be reallocated before allocating
2305 any new cons cells from the latest cons_block. */
2306
2307 #define CONS_BLOCK_SIZE \
2308 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2309 /* The compiler might add padding at the end. */ \
2310 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2311 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2312
2313 #define CONS_BLOCK(fptr) \
2314 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2315
2316 #define CONS_INDEX(fptr) \
2317 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2318
2319 struct cons_block
2320 {
2321 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2322 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2323 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2324 struct cons_block *next;
2325 };
2326
2327 #define CONS_MARKED_P(fptr) \
2328 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2329
2330 #define CONS_MARK(fptr) \
2331 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2332
2333 #define CONS_UNMARK(fptr) \
2334 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2335
2336 /* Current cons_block. */
2337
2338 static struct cons_block *cons_block;
2339
2340 /* Index of first unused Lisp_Cons in the current block. */
2341
2342 static int cons_block_index = CONS_BLOCK_SIZE;
2343
2344 /* Free-list of Lisp_Cons structures. */
2345
2346 static struct Lisp_Cons *cons_free_list;
2347
2348 /* Explicitly free a cons cell by putting it on the free-list. */
2349
2350 void
2351 free_cons (struct Lisp_Cons *ptr)
2352 {
2353 ptr->u.chain = cons_free_list;
2354 #if GC_MARK_STACK
2355 ptr->car = Vdead;
2356 #endif
2357 cons_free_list = ptr;
2358 consing_since_gc -= sizeof *ptr;
2359 total_free_conses++;
2360 }
2361
2362 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2363 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2364 (Lisp_Object car, Lisp_Object cdr)
2365 {
2366 register Lisp_Object val;
2367
2368 MALLOC_BLOCK_INPUT;
2369
2370 if (cons_free_list)
2371 {
2372 /* We use the cdr for chaining the free list
2373 so that we won't use the same field that has the mark bit. */
2374 XSETCONS (val, cons_free_list);
2375 cons_free_list = cons_free_list->u.chain;
2376 }
2377 else
2378 {
2379 if (cons_block_index == CONS_BLOCK_SIZE)
2380 {
2381 struct cons_block *new
2382 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2383 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2384 new->next = cons_block;
2385 cons_block = new;
2386 cons_block_index = 0;
2387 total_free_conses += CONS_BLOCK_SIZE;
2388 }
2389 XSETCONS (val, &cons_block->conses[cons_block_index]);
2390 cons_block_index++;
2391 }
2392
2393 MALLOC_UNBLOCK_INPUT;
2394
2395 XSETCAR (val, car);
2396 XSETCDR (val, cdr);
2397 eassert (!CONS_MARKED_P (XCONS (val)));
2398 consing_since_gc += sizeof (struct Lisp_Cons);
2399 total_free_conses--;
2400 cons_cells_consed++;
2401 return val;
2402 }
2403
2404 #ifdef GC_CHECK_CONS_LIST
2405 /* Get an error now if there's any junk in the cons free list. */
2406 void
2407 check_cons_list (void)
2408 {
2409 struct Lisp_Cons *tail = cons_free_list;
2410
2411 while (tail)
2412 tail = tail->u.chain;
2413 }
2414 #endif
2415
2416 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2417
2418 Lisp_Object
2419 list1 (Lisp_Object arg1)
2420 {
2421 return Fcons (arg1, Qnil);
2422 }
2423
2424 Lisp_Object
2425 list2 (Lisp_Object arg1, Lisp_Object arg2)
2426 {
2427 return Fcons (arg1, Fcons (arg2, Qnil));
2428 }
2429
2430
2431 Lisp_Object
2432 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2433 {
2434 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2435 }
2436
2437
2438 Lisp_Object
2439 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2440 {
2441 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2442 }
2443
2444
2445 Lisp_Object
2446 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2447 {
2448 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2449 Fcons (arg5, Qnil)))));
2450 }
2451
2452 /* Make a list of COUNT Lisp_Objects, where ARG is the
2453 first one. Allocate conses from pure space if TYPE
2454 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2455
2456 Lisp_Object
2457 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2458 {
2459 va_list ap;
2460 ptrdiff_t i;
2461 Lisp_Object val, *objp;
2462
2463 /* Change to SAFE_ALLOCA if you hit this eassert. */
2464 eassert (count <= MAX_ALLOCA / word_size);
2465
2466 objp = alloca (count * word_size);
2467 objp[0] = arg;
2468 va_start (ap, arg);
2469 for (i = 1; i < count; i++)
2470 objp[i] = va_arg (ap, Lisp_Object);
2471 va_end (ap);
2472
2473 for (val = Qnil, i = count - 1; i >= 0; i--)
2474 {
2475 if (type == CONSTYPE_PURE)
2476 val = pure_cons (objp[i], val);
2477 else if (type == CONSTYPE_HEAP)
2478 val = Fcons (objp[i], val);
2479 else
2480 emacs_abort ();
2481 }
2482 return val;
2483 }
2484
2485 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2486 doc: /* Return a newly created list with specified arguments as elements.
2487 Any number of arguments, even zero arguments, are allowed.
2488 usage: (list &rest OBJECTS) */)
2489 (ptrdiff_t nargs, Lisp_Object *args)
2490 {
2491 register Lisp_Object val;
2492 val = Qnil;
2493
2494 while (nargs > 0)
2495 {
2496 nargs--;
2497 val = Fcons (args[nargs], val);
2498 }
2499 return val;
2500 }
2501
2502
2503 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2504 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2505 (register Lisp_Object length, Lisp_Object init)
2506 {
2507 register Lisp_Object val;
2508 register EMACS_INT size;
2509
2510 CHECK_NATNUM (length);
2511 size = XFASTINT (length);
2512
2513 val = Qnil;
2514 while (size > 0)
2515 {
2516 val = Fcons (init, val);
2517 --size;
2518
2519 if (size > 0)
2520 {
2521 val = Fcons (init, val);
2522 --size;
2523
2524 if (size > 0)
2525 {
2526 val = Fcons (init, val);
2527 --size;
2528
2529 if (size > 0)
2530 {
2531 val = Fcons (init, val);
2532 --size;
2533
2534 if (size > 0)
2535 {
2536 val = Fcons (init, val);
2537 --size;
2538 }
2539 }
2540 }
2541 }
2542
2543 QUIT;
2544 }
2545
2546 return val;
2547 }
2548
2549
2550 \f
2551 /***********************************************************************
2552 Vector Allocation
2553 ***********************************************************************/
2554
2555 /* This value is balanced well enough to avoid too much internal overhead
2556 for the most common cases; it's not required to be a power of two, but
2557 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2558
2559 #define VECTOR_BLOCK_SIZE 4096
2560
2561 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2562 enum
2563 {
2564 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2565 };
2566
2567 /* ROUNDUP_SIZE must be a power of 2. */
2568 verify ((roundup_size & (roundup_size - 1)) == 0);
2569
2570 /* Verify assumptions described above. */
2571 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2572 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2573
2574 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2575
2576 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2577
2578 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2579
2580 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2581
2582 /* Size of the minimal vector allocated from block. */
2583
2584 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2585
2586 /* Size of the largest vector allocated from block. */
2587
2588 #define VBLOCK_BYTES_MAX \
2589 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2590
2591 /* We maintain one free list for each possible block-allocated
2592 vector size, and this is the number of free lists we have. */
2593
2594 #define VECTOR_MAX_FREE_LIST_INDEX \
2595 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2596
2597 /* Common shortcut to advance vector pointer over a block data. */
2598
2599 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2600
2601 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2602
2603 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2604
2605 /* Get and set the next field in block-allocated vectorlike objects on
2606 the free list. Doing it this way respects C's aliasing rules.
2607 We could instead make 'contents' a union, but that would mean
2608 changes everywhere that the code uses 'contents'. */
2609 static struct Lisp_Vector *
2610 next_in_free_list (struct Lisp_Vector *v)
2611 {
2612 intptr_t i = XLI (v->contents[0]);
2613 return (struct Lisp_Vector *) i;
2614 }
2615 static void
2616 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2617 {
2618 v->contents[0] = XIL ((intptr_t) next);
2619 }
2620
2621 /* Common shortcut to setup vector on a free list. */
2622
2623 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2624 do { \
2625 (tmp) = ((nbytes - header_size) / word_size); \
2626 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2627 eassert ((nbytes) % roundup_size == 0); \
2628 (tmp) = VINDEX (nbytes); \
2629 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2630 set_next_in_free_list (v, vector_free_lists[tmp]); \
2631 vector_free_lists[tmp] = (v); \
2632 total_free_vector_slots += (nbytes) / word_size; \
2633 } while (0)
2634
2635 /* This internal type is used to maintain the list of large vectors
2636 which are allocated at their own, e.g. outside of vector blocks. */
2637
2638 struct large_vector
2639 {
2640 union {
2641 struct large_vector *vector;
2642 #if USE_LSB_TAG
2643 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2644 unsigned char c[vroundup (sizeof (struct large_vector *))];
2645 #endif
2646 } next;
2647 struct Lisp_Vector v;
2648 };
2649
2650 /* This internal type is used to maintain an underlying storage
2651 for small vectors. */
2652
2653 struct vector_block
2654 {
2655 char data[VECTOR_BLOCK_BYTES];
2656 struct vector_block *next;
2657 };
2658
2659 /* Chain of vector blocks. */
2660
2661 static struct vector_block *vector_blocks;
2662
2663 /* Vector free lists, where NTH item points to a chain of free
2664 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2665
2666 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2667
2668 /* Singly-linked list of large vectors. */
2669
2670 static struct large_vector *large_vectors;
2671
2672 /* The only vector with 0 slots, allocated from pure space. */
2673
2674 Lisp_Object zero_vector;
2675
2676 /* Number of live vectors. */
2677
2678 static EMACS_INT total_vectors;
2679
2680 /* Total size of live and free vectors, in Lisp_Object units. */
2681
2682 static EMACS_INT total_vector_slots, total_free_vector_slots;
2683
2684 /* Get a new vector block. */
2685
2686 static struct vector_block *
2687 allocate_vector_block (void)
2688 {
2689 struct vector_block *block = xmalloc (sizeof *block);
2690
2691 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2692 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2693 MEM_TYPE_VECTOR_BLOCK);
2694 #endif
2695
2696 block->next = vector_blocks;
2697 vector_blocks = block;
2698 return block;
2699 }
2700
2701 /* Called once to initialize vector allocation. */
2702
2703 static void
2704 init_vectors (void)
2705 {
2706 zero_vector = make_pure_vector (0);
2707 }
2708
2709 /* Allocate vector from a vector block. */
2710
2711 static struct Lisp_Vector *
2712 allocate_vector_from_block (size_t nbytes)
2713 {
2714 struct Lisp_Vector *vector;
2715 struct vector_block *block;
2716 size_t index, restbytes;
2717
2718 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2719 eassert (nbytes % roundup_size == 0);
2720
2721 /* First, try to allocate from a free list
2722 containing vectors of the requested size. */
2723 index = VINDEX (nbytes);
2724 if (vector_free_lists[index])
2725 {
2726 vector = vector_free_lists[index];
2727 vector_free_lists[index] = next_in_free_list (vector);
2728 total_free_vector_slots -= nbytes / word_size;
2729 return vector;
2730 }
2731
2732 /* Next, check free lists containing larger vectors. Since
2733 we will split the result, we should have remaining space
2734 large enough to use for one-slot vector at least. */
2735 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2736 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2737 if (vector_free_lists[index])
2738 {
2739 /* This vector is larger than requested. */
2740 vector = vector_free_lists[index];
2741 vector_free_lists[index] = next_in_free_list (vector);
2742 total_free_vector_slots -= nbytes / word_size;
2743
2744 /* Excess bytes are used for the smaller vector,
2745 which should be set on an appropriate free list. */
2746 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2747 eassert (restbytes % roundup_size == 0);
2748 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2749 return vector;
2750 }
2751
2752 /* Finally, need a new vector block. */
2753 block = allocate_vector_block ();
2754
2755 /* New vector will be at the beginning of this block. */
2756 vector = (struct Lisp_Vector *) block->data;
2757
2758 /* If the rest of space from this block is large enough
2759 for one-slot vector at least, set up it on a free list. */
2760 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2761 if (restbytes >= VBLOCK_BYTES_MIN)
2762 {
2763 eassert (restbytes % roundup_size == 0);
2764 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2765 }
2766 return vector;
2767 }
2768
2769 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2770
2771 #define VECTOR_IN_BLOCK(vector, block) \
2772 ((char *) (vector) <= (block)->data \
2773 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2774
2775 /* Return the memory footprint of V in bytes. */
2776
2777 static ptrdiff_t
2778 vector_nbytes (struct Lisp_Vector *v)
2779 {
2780 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2781
2782 if (size & PSEUDOVECTOR_FLAG)
2783 {
2784 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2785 size = (bool_header_size
2786 + (((struct Lisp_Bool_Vector *) v)->size
2787 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2788 / BOOL_VECTOR_BITS_PER_CHAR);
2789 else
2790 size = (header_size
2791 + ((size & PSEUDOVECTOR_SIZE_MASK)
2792 + ((size & PSEUDOVECTOR_REST_MASK)
2793 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2794 }
2795 else
2796 size = header_size + size * word_size;
2797 return vroundup (size);
2798 }
2799
2800 /* Reclaim space used by unmarked vectors. */
2801
2802 static void
2803 sweep_vectors (void)
2804 {
2805 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2806 struct large_vector *lv, **lvprev = &large_vectors;
2807 struct Lisp_Vector *vector, *next;
2808
2809 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2810 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2811
2812 /* Looking through vector blocks. */
2813
2814 for (block = vector_blocks; block; block = *bprev)
2815 {
2816 bool free_this_block = 0;
2817 ptrdiff_t nbytes;
2818
2819 for (vector = (struct Lisp_Vector *) block->data;
2820 VECTOR_IN_BLOCK (vector, block); vector = next)
2821 {
2822 if (VECTOR_MARKED_P (vector))
2823 {
2824 VECTOR_UNMARK (vector);
2825 total_vectors++;
2826 nbytes = vector_nbytes (vector);
2827 total_vector_slots += nbytes / word_size;
2828 next = ADVANCE (vector, nbytes);
2829 }
2830 else
2831 {
2832 ptrdiff_t total_bytes;
2833
2834 nbytes = vector_nbytes (vector);
2835 total_bytes = nbytes;
2836 next = ADVANCE (vector, nbytes);
2837
2838 /* While NEXT is not marked, try to coalesce with VECTOR,
2839 thus making VECTOR of the largest possible size. */
2840
2841 while (VECTOR_IN_BLOCK (next, block))
2842 {
2843 if (VECTOR_MARKED_P (next))
2844 break;
2845 nbytes = vector_nbytes (next);
2846 total_bytes += nbytes;
2847 next = ADVANCE (next, nbytes);
2848 }
2849
2850 eassert (total_bytes % roundup_size == 0);
2851
2852 if (vector == (struct Lisp_Vector *) block->data
2853 && !VECTOR_IN_BLOCK (next, block))
2854 /* This block should be freed because all of it's
2855 space was coalesced into the only free vector. */
2856 free_this_block = 1;
2857 else
2858 {
2859 int tmp;
2860 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2861 }
2862 }
2863 }
2864
2865 if (free_this_block)
2866 {
2867 *bprev = block->next;
2868 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2869 mem_delete (mem_find (block->data));
2870 #endif
2871 xfree (block);
2872 }
2873 else
2874 bprev = &block->next;
2875 }
2876
2877 /* Sweep large vectors. */
2878
2879 for (lv = large_vectors; lv; lv = *lvprev)
2880 {
2881 vector = &lv->v;
2882 if (VECTOR_MARKED_P (vector))
2883 {
2884 VECTOR_UNMARK (vector);
2885 total_vectors++;
2886 if (vector->header.size & PSEUDOVECTOR_FLAG)
2887 {
2888 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2889
2890 /* All non-bool pseudovectors are small enough to be allocated
2891 from vector blocks. This code should be redesigned if some
2892 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2893 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2894
2895 total_vector_slots
2896 += (bool_header_size
2897 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2898 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2899 }
2900 else
2901 total_vector_slots
2902 += header_size / word_size + vector->header.size;
2903 lvprev = &lv->next.vector;
2904 }
2905 else
2906 {
2907 *lvprev = lv->next.vector;
2908 lisp_free (lv);
2909 }
2910 }
2911 }
2912
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (ptrdiff_t len)
2918 {
2919 struct Lisp_Vector *p;
2920
2921 MALLOC_BLOCK_INPUT;
2922
2923 if (len == 0)
2924 p = XVECTOR (zero_vector);
2925 else
2926 {
2927 size_t nbytes = header_size + len * word_size;
2928
2929 #ifdef DOUG_LEA_MALLOC
2930 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2931 because mapped region contents are not preserved in
2932 a dumped Emacs. */
2933 mallopt (M_MMAP_MAX, 0);
2934 #endif
2935
2936 if (nbytes <= VBLOCK_BYTES_MAX)
2937 p = allocate_vector_from_block (vroundup (nbytes));
2938 else
2939 {
2940 struct large_vector *lv
2941 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2942 MEM_TYPE_VECTORLIKE);
2943 lv->next.vector = large_vectors;
2944 large_vectors = lv;
2945 p = &lv->v;
2946 }
2947
2948 #ifdef DOUG_LEA_MALLOC
2949 /* Back to a reasonable maximum of mmap'ed areas. */
2950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2951 #endif
2952
2953 consing_since_gc += nbytes;
2954 vector_cells_consed += len;
2955 }
2956
2957 MALLOC_UNBLOCK_INPUT;
2958
2959 return p;
2960 }
2961
2962
2963 /* Allocate a vector with LEN slots. */
2964
2965 struct Lisp_Vector *
2966 allocate_vector (EMACS_INT len)
2967 {
2968 struct Lisp_Vector *v;
2969 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2970
2971 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2972 memory_full (SIZE_MAX);
2973 v = allocate_vectorlike (len);
2974 v->header.size = len;
2975 return v;
2976 }
2977
2978
2979 /* Allocate other vector-like structures. */
2980
2981 struct Lisp_Vector *
2982 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2983 {
2984 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2985 int i;
2986
2987 /* Catch bogus values. */
2988 eassert (tag <= PVEC_FONT);
2989 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2990 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2991
2992 /* Only the first lisplen slots will be traced normally by the GC. */
2993 for (i = 0; i < lisplen; ++i)
2994 v->contents[i] = Qnil;
2995
2996 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2997 return v;
2998 }
2999
3000 struct buffer *
3001 allocate_buffer (void)
3002 {
3003 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3004
3005 BUFFER_PVEC_INIT (b);
3006 /* Put B on the chain of all buffers including killed ones. */
3007 b->next = all_buffers;
3008 all_buffers = b;
3009 /* Note that the rest fields of B are not initialized. */
3010 return b;
3011 }
3012
3013 struct Lisp_Hash_Table *
3014 allocate_hash_table (void)
3015 {
3016 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3017 }
3018
3019 struct window *
3020 allocate_window (void)
3021 {
3022 struct window *w;
3023
3024 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3025 /* Users assumes that non-Lisp data is zeroed. */
3026 memset (&w->current_matrix, 0,
3027 sizeof (*w) - offsetof (struct window, current_matrix));
3028 return w;
3029 }
3030
3031 struct terminal *
3032 allocate_terminal (void)
3033 {
3034 struct terminal *t;
3035
3036 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3037 /* Users assumes that non-Lisp data is zeroed. */
3038 memset (&t->next_terminal, 0,
3039 sizeof (*t) - offsetof (struct terminal, next_terminal));
3040 return t;
3041 }
3042
3043 struct frame *
3044 allocate_frame (void)
3045 {
3046 struct frame *f;
3047
3048 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3049 /* Users assumes that non-Lisp data is zeroed. */
3050 memset (&f->face_cache, 0,
3051 sizeof (*f) - offsetof (struct frame, face_cache));
3052 return f;
3053 }
3054
3055 struct Lisp_Process *
3056 allocate_process (void)
3057 {
3058 struct Lisp_Process *p;
3059
3060 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3061 /* Users assumes that non-Lisp data is zeroed. */
3062 memset (&p->pid, 0,
3063 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3064 return p;
3065 }
3066
3067 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3068 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3069 See also the function `vector'. */)
3070 (register Lisp_Object length, Lisp_Object init)
3071 {
3072 Lisp_Object vector;
3073 register ptrdiff_t sizei;
3074 register ptrdiff_t i;
3075 register struct Lisp_Vector *p;
3076
3077 CHECK_NATNUM (length);
3078
3079 p = allocate_vector (XFASTINT (length));
3080 sizei = XFASTINT (length);
3081 for (i = 0; i < sizei; i++)
3082 p->contents[i] = init;
3083
3084 XSETVECTOR (vector, p);
3085 return vector;
3086 }
3087
3088
3089 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3090 doc: /* Return a newly created vector with specified arguments as elements.
3091 Any number of arguments, even zero arguments, are allowed.
3092 usage: (vector &rest OBJECTS) */)
3093 (ptrdiff_t nargs, Lisp_Object *args)
3094 {
3095 ptrdiff_t i;
3096 register Lisp_Object val = make_uninit_vector (nargs);
3097 register struct Lisp_Vector *p = XVECTOR (val);
3098
3099 for (i = 0; i < nargs; i++)
3100 p->contents[i] = args[i];
3101 return val;
3102 }
3103
3104 void
3105 make_byte_code (struct Lisp_Vector *v)
3106 {
3107 if (v->header.size > 1 && STRINGP (v->contents[1])
3108 && STRING_MULTIBYTE (v->contents[1]))
3109 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3110 earlier because they produced a raw 8-bit string for byte-code
3111 and now such a byte-code string is loaded as multibyte while
3112 raw 8-bit characters converted to multibyte form. Thus, now we
3113 must convert them back to the original unibyte form. */
3114 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3115 XSETPVECTYPE (v, PVEC_COMPILED);
3116 }
3117
3118 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3119 doc: /* Create a byte-code object with specified arguments as elements.
3120 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3121 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3122 and (optional) INTERACTIVE-SPEC.
3123 The first four arguments are required; at most six have any
3124 significance.
3125 The ARGLIST can be either like the one of `lambda', in which case the arguments
3126 will be dynamically bound before executing the byte code, or it can be an
3127 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3128 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3129 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3130 argument to catch the left-over arguments. If such an integer is used, the
3131 arguments will not be dynamically bound but will be instead pushed on the
3132 stack before executing the byte-code.
3133 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3134 (ptrdiff_t nargs, Lisp_Object *args)
3135 {
3136 ptrdiff_t i;
3137 register Lisp_Object val = make_uninit_vector (nargs);
3138 register struct Lisp_Vector *p = XVECTOR (val);
3139
3140 /* We used to purecopy everything here, if purify-flag was set. This worked
3141 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3142 dangerous, since make-byte-code is used during execution to build
3143 closures, so any closure built during the preload phase would end up
3144 copied into pure space, including its free variables, which is sometimes
3145 just wasteful and other times plainly wrong (e.g. those free vars may want
3146 to be setcar'd). */
3147
3148 for (i = 0; i < nargs; i++)
3149 p->contents[i] = args[i];
3150 make_byte_code (p);
3151 XSETCOMPILED (val, p);
3152 return val;
3153 }
3154
3155
3156 \f
3157 /***********************************************************************
3158 Symbol Allocation
3159 ***********************************************************************/
3160
3161 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3162 of the required alignment if LSB tags are used. */
3163
3164 union aligned_Lisp_Symbol
3165 {
3166 struct Lisp_Symbol s;
3167 #if USE_LSB_TAG
3168 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3169 & -GCALIGNMENT];
3170 #endif
3171 };
3172
3173 /* Each symbol_block is just under 1020 bytes long, since malloc
3174 really allocates in units of powers of two and uses 4 bytes for its
3175 own overhead. */
3176
3177 #define SYMBOL_BLOCK_SIZE \
3178 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3179
3180 struct symbol_block
3181 {
3182 /* Place `symbols' first, to preserve alignment. */
3183 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3184 struct symbol_block *next;
3185 };
3186
3187 /* Current symbol block and index of first unused Lisp_Symbol
3188 structure in it. */
3189
3190 static struct symbol_block *symbol_block;
3191 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3192
3193 /* List of free symbols. */
3194
3195 static struct Lisp_Symbol *symbol_free_list;
3196
3197 static void
3198 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3199 {
3200 XSYMBOL (sym)->name = name;
3201 }
3202
3203 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3204 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3205 Its value is void, and its function definition and property list are nil. */)
3206 (Lisp_Object name)
3207 {
3208 register Lisp_Object val;
3209 register struct Lisp_Symbol *p;
3210
3211 CHECK_STRING (name);
3212
3213 MALLOC_BLOCK_INPUT;
3214
3215 if (symbol_free_list)
3216 {
3217 XSETSYMBOL (val, symbol_free_list);
3218 symbol_free_list = symbol_free_list->next;
3219 }
3220 else
3221 {
3222 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3223 {
3224 struct symbol_block *new
3225 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3226 new->next = symbol_block;
3227 symbol_block = new;
3228 symbol_block_index = 0;
3229 total_free_symbols += SYMBOL_BLOCK_SIZE;
3230 }
3231 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3232 symbol_block_index++;
3233 }
3234
3235 MALLOC_UNBLOCK_INPUT;
3236
3237 p = XSYMBOL (val);
3238 set_symbol_name (val, name);
3239 set_symbol_plist (val, Qnil);
3240 p->redirect = SYMBOL_PLAINVAL;
3241 SET_SYMBOL_VAL (p, Qunbound);
3242 set_symbol_function (val, Qnil);
3243 set_symbol_next (val, NULL);
3244 p->gcmarkbit = 0;
3245 p->interned = SYMBOL_UNINTERNED;
3246 p->constant = 0;
3247 p->declared_special = 0;
3248 consing_since_gc += sizeof (struct Lisp_Symbol);
3249 symbols_consed++;
3250 total_free_symbols--;
3251 return val;
3252 }
3253
3254
3255 \f
3256 /***********************************************************************
3257 Marker (Misc) Allocation
3258 ***********************************************************************/
3259
3260 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3261 the required alignment when LSB tags are used. */
3262
3263 union aligned_Lisp_Misc
3264 {
3265 union Lisp_Misc m;
3266 #if USE_LSB_TAG
3267 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3268 & -GCALIGNMENT];
3269 #endif
3270 };
3271
3272 /* Allocation of markers and other objects that share that structure.
3273 Works like allocation of conses. */
3274
3275 #define MARKER_BLOCK_SIZE \
3276 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3277
3278 struct marker_block
3279 {
3280 /* Place `markers' first, to preserve alignment. */
3281 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3282 struct marker_block *next;
3283 };
3284
3285 static struct marker_block *marker_block;
3286 static int marker_block_index = MARKER_BLOCK_SIZE;
3287
3288 static union Lisp_Misc *marker_free_list;
3289
3290 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3291
3292 static Lisp_Object
3293 allocate_misc (enum Lisp_Misc_Type type)
3294 {
3295 Lisp_Object val;
3296
3297 MALLOC_BLOCK_INPUT;
3298
3299 if (marker_free_list)
3300 {
3301 XSETMISC (val, marker_free_list);
3302 marker_free_list = marker_free_list->u_free.chain;
3303 }
3304 else
3305 {
3306 if (marker_block_index == MARKER_BLOCK_SIZE)
3307 {
3308 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3309 new->next = marker_block;
3310 marker_block = new;
3311 marker_block_index = 0;
3312 total_free_markers += MARKER_BLOCK_SIZE;
3313 }
3314 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3315 marker_block_index++;
3316 }
3317
3318 MALLOC_UNBLOCK_INPUT;
3319
3320 --total_free_markers;
3321 consing_since_gc += sizeof (union Lisp_Misc);
3322 misc_objects_consed++;
3323 XMISCANY (val)->type = type;
3324 XMISCANY (val)->gcmarkbit = 0;
3325 return val;
3326 }
3327
3328 /* Free a Lisp_Misc object. */
3329
3330 void
3331 free_misc (Lisp_Object misc)
3332 {
3333 XMISCANY (misc)->type = Lisp_Misc_Free;
3334 XMISC (misc)->u_free.chain = marker_free_list;
3335 marker_free_list = XMISC (misc);
3336 consing_since_gc -= sizeof (union Lisp_Misc);
3337 total_free_markers++;
3338 }
3339
3340 /* Verify properties of Lisp_Save_Value's representation
3341 that are assumed here and elsewhere. */
3342
3343 verify (SAVE_UNUSED == 0);
3344 verify ((SAVE_INTEGER | SAVE_POINTER | SAVE_OBJECT) >> SAVE_SLOT_BITS == 0);
3345
3346 /* Return a Lisp_Save_Value object with the data saved according to
3347 DATA_TYPE. DATA_TYPE should be one of SAVE_TYPE_INT_INT, etc. */
3348
3349 Lisp_Object
3350 make_save_value (enum Lisp_Save_Type save_type, ...)
3351 {
3352 va_list ap;
3353 int i;
3354 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3355 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3356
3357 eassert (0 < save_type
3358 && (save_type < 1 << (SAVE_TYPE_BITS - 1)
3359 || save_type == SAVE_TYPE_MEMORY));
3360 p->save_type = save_type;
3361 va_start (ap, save_type);
3362 save_type &= ~ (1 << (SAVE_TYPE_BITS - 1));
3363
3364 for (i = 0; save_type; i++, save_type >>= SAVE_SLOT_BITS)
3365 switch (save_type & ((1 << SAVE_SLOT_BITS) - 1))
3366 {
3367 case SAVE_POINTER:
3368 p->data[i].pointer = va_arg (ap, void *);
3369 break;
3370
3371 case SAVE_INTEGER:
3372 p->data[i].integer = va_arg (ap, ptrdiff_t);
3373 break;
3374
3375 case SAVE_OBJECT:
3376 p->data[i].object = va_arg (ap, Lisp_Object);
3377 break;
3378
3379 default:
3380 emacs_abort ();
3381 }
3382
3383 va_end (ap);
3384 return val;
3385 }
3386
3387 /* The most common task it to save just one C pointer. */
3388
3389 Lisp_Object
3390 make_save_pointer (void *pointer)
3391 {
3392 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3393 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3394 p->save_type = SAVE_POINTER;
3395 p->data[0].pointer = pointer;
3396 return val;
3397 }
3398
3399 /* Free a Lisp_Save_Value object. Do not use this function
3400 if SAVE contains pointer other than returned by xmalloc. */
3401
3402 static void
3403 free_save_value (Lisp_Object save)
3404 {
3405 xfree (XSAVE_POINTER (save, 0));
3406 free_misc (save);
3407 }
3408
3409 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3410
3411 Lisp_Object
3412 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3413 {
3414 register Lisp_Object overlay;
3415
3416 overlay = allocate_misc (Lisp_Misc_Overlay);
3417 OVERLAY_START (overlay) = start;
3418 OVERLAY_END (overlay) = end;
3419 set_overlay_plist (overlay, plist);
3420 XOVERLAY (overlay)->next = NULL;
3421 return overlay;
3422 }
3423
3424 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3425 doc: /* Return a newly allocated marker which does not point at any place. */)
3426 (void)
3427 {
3428 register Lisp_Object val;
3429 register struct Lisp_Marker *p;
3430
3431 val = allocate_misc (Lisp_Misc_Marker);
3432 p = XMARKER (val);
3433 p->buffer = 0;
3434 p->bytepos = 0;
3435 p->charpos = 0;
3436 p->next = NULL;
3437 p->insertion_type = 0;
3438 return val;
3439 }
3440
3441 /* Return a newly allocated marker which points into BUF
3442 at character position CHARPOS and byte position BYTEPOS. */
3443
3444 Lisp_Object
3445 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3446 {
3447 Lisp_Object obj;
3448 struct Lisp_Marker *m;
3449
3450 /* No dead buffers here. */
3451 eassert (BUFFER_LIVE_P (buf));
3452
3453 /* Every character is at least one byte. */
3454 eassert (charpos <= bytepos);
3455
3456 obj = allocate_misc (Lisp_Misc_Marker);
3457 m = XMARKER (obj);
3458 m->buffer = buf;
3459 m->charpos = charpos;
3460 m->bytepos = bytepos;
3461 m->insertion_type = 0;
3462 m->next = BUF_MARKERS (buf);
3463 BUF_MARKERS (buf) = m;
3464 return obj;
3465 }
3466
3467 /* Put MARKER back on the free list after using it temporarily. */
3468
3469 void
3470 free_marker (Lisp_Object marker)
3471 {
3472 unchain_marker (XMARKER (marker));
3473 free_misc (marker);
3474 }
3475
3476 \f
3477 /* Return a newly created vector or string with specified arguments as
3478 elements. If all the arguments are characters that can fit
3479 in a string of events, make a string; otherwise, make a vector.
3480
3481 Any number of arguments, even zero arguments, are allowed. */
3482
3483 Lisp_Object
3484 make_event_array (register int nargs, Lisp_Object *args)
3485 {
3486 int i;
3487
3488 for (i = 0; i < nargs; i++)
3489 /* The things that fit in a string
3490 are characters that are in 0...127,
3491 after discarding the meta bit and all the bits above it. */
3492 if (!INTEGERP (args[i])
3493 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3494 return Fvector (nargs, args);
3495
3496 /* Since the loop exited, we know that all the things in it are
3497 characters, so we can make a string. */
3498 {
3499 Lisp_Object result;
3500
3501 result = Fmake_string (make_number (nargs), make_number (0));
3502 for (i = 0; i < nargs; i++)
3503 {
3504 SSET (result, i, XINT (args[i]));
3505 /* Move the meta bit to the right place for a string char. */
3506 if (XINT (args[i]) & CHAR_META)
3507 SSET (result, i, SREF (result, i) | 0x80);
3508 }
3509
3510 return result;
3511 }
3512 }
3513
3514
3515 \f
3516 /************************************************************************
3517 Memory Full Handling
3518 ************************************************************************/
3519
3520
3521 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3522 there may have been size_t overflow so that malloc was never
3523 called, or perhaps malloc was invoked successfully but the
3524 resulting pointer had problems fitting into a tagged EMACS_INT. In
3525 either case this counts as memory being full even though malloc did
3526 not fail. */
3527
3528 void
3529 memory_full (size_t nbytes)
3530 {
3531 /* Do not go into hysterics merely because a large request failed. */
3532 bool enough_free_memory = 0;
3533 if (SPARE_MEMORY < nbytes)
3534 {
3535 void *p;
3536
3537 MALLOC_BLOCK_INPUT;
3538 p = malloc (SPARE_MEMORY);
3539 if (p)
3540 {
3541 free (p);
3542 enough_free_memory = 1;
3543 }
3544 MALLOC_UNBLOCK_INPUT;
3545 }
3546
3547 if (! enough_free_memory)
3548 {
3549 int i;
3550
3551 Vmemory_full = Qt;
3552
3553 memory_full_cons_threshold = sizeof (struct cons_block);
3554
3555 /* The first time we get here, free the spare memory. */
3556 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3557 if (spare_memory[i])
3558 {
3559 if (i == 0)
3560 free (spare_memory[i]);
3561 else if (i >= 1 && i <= 4)
3562 lisp_align_free (spare_memory[i]);
3563 else
3564 lisp_free (spare_memory[i]);
3565 spare_memory[i] = 0;
3566 }
3567 }
3568
3569 /* This used to call error, but if we've run out of memory, we could
3570 get infinite recursion trying to build the string. */
3571 xsignal (Qnil, Vmemory_signal_data);
3572 }
3573
3574 /* If we released our reserve (due to running out of memory),
3575 and we have a fair amount free once again,
3576 try to set aside another reserve in case we run out once more.
3577
3578 This is called when a relocatable block is freed in ralloc.c,
3579 and also directly from this file, in case we're not using ralloc.c. */
3580
3581 void
3582 refill_memory_reserve (void)
3583 {
3584 #ifndef SYSTEM_MALLOC
3585 if (spare_memory[0] == 0)
3586 spare_memory[0] = malloc (SPARE_MEMORY);
3587 if (spare_memory[1] == 0)
3588 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3589 MEM_TYPE_SPARE);
3590 if (spare_memory[2] == 0)
3591 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3592 MEM_TYPE_SPARE);
3593 if (spare_memory[3] == 0)
3594 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3595 MEM_TYPE_SPARE);
3596 if (spare_memory[4] == 0)
3597 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3598 MEM_TYPE_SPARE);
3599 if (spare_memory[5] == 0)
3600 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3601 MEM_TYPE_SPARE);
3602 if (spare_memory[6] == 0)
3603 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3604 MEM_TYPE_SPARE);
3605 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3606 Vmemory_full = Qnil;
3607 #endif
3608 }
3609 \f
3610 /************************************************************************
3611 C Stack Marking
3612 ************************************************************************/
3613
3614 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3615
3616 /* Conservative C stack marking requires a method to identify possibly
3617 live Lisp objects given a pointer value. We do this by keeping
3618 track of blocks of Lisp data that are allocated in a red-black tree
3619 (see also the comment of mem_node which is the type of nodes in
3620 that tree). Function lisp_malloc adds information for an allocated
3621 block to the red-black tree with calls to mem_insert, and function
3622 lisp_free removes it with mem_delete. Functions live_string_p etc
3623 call mem_find to lookup information about a given pointer in the
3624 tree, and use that to determine if the pointer points to a Lisp
3625 object or not. */
3626
3627 /* Initialize this part of alloc.c. */
3628
3629 static void
3630 mem_init (void)
3631 {
3632 mem_z.left = mem_z.right = MEM_NIL;
3633 mem_z.parent = NULL;
3634 mem_z.color = MEM_BLACK;
3635 mem_z.start = mem_z.end = NULL;
3636 mem_root = MEM_NIL;
3637 }
3638
3639
3640 /* Value is a pointer to the mem_node containing START. Value is
3641 MEM_NIL if there is no node in the tree containing START. */
3642
3643 static struct mem_node *
3644 mem_find (void *start)
3645 {
3646 struct mem_node *p;
3647
3648 if (start < min_heap_address || start > max_heap_address)
3649 return MEM_NIL;
3650
3651 /* Make the search always successful to speed up the loop below. */
3652 mem_z.start = start;
3653 mem_z.end = (char *) start + 1;
3654
3655 p = mem_root;
3656 while (start < p->start || start >= p->end)
3657 p = start < p->start ? p->left : p->right;
3658 return p;
3659 }
3660
3661
3662 /* Insert a new node into the tree for a block of memory with start
3663 address START, end address END, and type TYPE. Value is a
3664 pointer to the node that was inserted. */
3665
3666 static struct mem_node *
3667 mem_insert (void *start, void *end, enum mem_type type)
3668 {
3669 struct mem_node *c, *parent, *x;
3670
3671 if (min_heap_address == NULL || start < min_heap_address)
3672 min_heap_address = start;
3673 if (max_heap_address == NULL || end > max_heap_address)
3674 max_heap_address = end;
3675
3676 /* See where in the tree a node for START belongs. In this
3677 particular application, it shouldn't happen that a node is already
3678 present. For debugging purposes, let's check that. */
3679 c = mem_root;
3680 parent = NULL;
3681
3682 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3683
3684 while (c != MEM_NIL)
3685 {
3686 if (start >= c->start && start < c->end)
3687 emacs_abort ();
3688 parent = c;
3689 c = start < c->start ? c->left : c->right;
3690 }
3691
3692 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3693
3694 while (c != MEM_NIL)
3695 {
3696 parent = c;
3697 c = start < c->start ? c->left : c->right;
3698 }
3699
3700 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3701
3702 /* Create a new node. */
3703 #ifdef GC_MALLOC_CHECK
3704 x = malloc (sizeof *x);
3705 if (x == NULL)
3706 emacs_abort ();
3707 #else
3708 x = xmalloc (sizeof *x);
3709 #endif
3710 x->start = start;
3711 x->end = end;
3712 x->type = type;
3713 x->parent = parent;
3714 x->left = x->right = MEM_NIL;
3715 x->color = MEM_RED;
3716
3717 /* Insert it as child of PARENT or install it as root. */
3718 if (parent)
3719 {
3720 if (start < parent->start)
3721 parent->left = x;
3722 else
3723 parent->right = x;
3724 }
3725 else
3726 mem_root = x;
3727
3728 /* Re-establish red-black tree properties. */
3729 mem_insert_fixup (x);
3730
3731 return x;
3732 }
3733
3734
3735 /* Re-establish the red-black properties of the tree, and thereby
3736 balance the tree, after node X has been inserted; X is always red. */
3737
3738 static void
3739 mem_insert_fixup (struct mem_node *x)
3740 {
3741 while (x != mem_root && x->parent->color == MEM_RED)
3742 {
3743 /* X is red and its parent is red. This is a violation of
3744 red-black tree property #3. */
3745
3746 if (x->parent == x->parent->parent->left)
3747 {
3748 /* We're on the left side of our grandparent, and Y is our
3749 "uncle". */
3750 struct mem_node *y = x->parent->parent->right;
3751
3752 if (y->color == MEM_RED)
3753 {
3754 /* Uncle and parent are red but should be black because
3755 X is red. Change the colors accordingly and proceed
3756 with the grandparent. */
3757 x->parent->color = MEM_BLACK;
3758 y->color = MEM_BLACK;
3759 x->parent->parent->color = MEM_RED;
3760 x = x->parent->parent;
3761 }
3762 else
3763 {
3764 /* Parent and uncle have different colors; parent is
3765 red, uncle is black. */
3766 if (x == x->parent->right)
3767 {
3768 x = x->parent;
3769 mem_rotate_left (x);
3770 }
3771
3772 x->parent->color = MEM_BLACK;
3773 x->parent->parent->color = MEM_RED;
3774 mem_rotate_right (x->parent->parent);
3775 }
3776 }
3777 else
3778 {
3779 /* This is the symmetrical case of above. */
3780 struct mem_node *y = x->parent->parent->left;
3781
3782 if (y->color == MEM_RED)
3783 {
3784 x->parent->color = MEM_BLACK;
3785 y->color = MEM_BLACK;
3786 x->parent->parent->color = MEM_RED;
3787 x = x->parent->parent;
3788 }
3789 else
3790 {
3791 if (x == x->parent->left)
3792 {
3793 x = x->parent;
3794 mem_rotate_right (x);
3795 }
3796
3797 x->parent->color = MEM_BLACK;
3798 x->parent->parent->color = MEM_RED;
3799 mem_rotate_left (x->parent->parent);
3800 }
3801 }
3802 }
3803
3804 /* The root may have been changed to red due to the algorithm. Set
3805 it to black so that property #5 is satisfied. */
3806 mem_root->color = MEM_BLACK;
3807 }
3808
3809
3810 /* (x) (y)
3811 / \ / \
3812 a (y) ===> (x) c
3813 / \ / \
3814 b c a b */
3815
3816 static void
3817 mem_rotate_left (struct mem_node *x)
3818 {
3819 struct mem_node *y;
3820
3821 /* Turn y's left sub-tree into x's right sub-tree. */
3822 y = x->right;
3823 x->right = y->left;
3824 if (y->left != MEM_NIL)
3825 y->left->parent = x;
3826
3827 /* Y's parent was x's parent. */
3828 if (y != MEM_NIL)
3829 y->parent = x->parent;
3830
3831 /* Get the parent to point to y instead of x. */
3832 if (x->parent)
3833 {
3834 if (x == x->parent->left)
3835 x->parent->left = y;
3836 else
3837 x->parent->right = y;
3838 }
3839 else
3840 mem_root = y;
3841
3842 /* Put x on y's left. */
3843 y->left = x;
3844 if (x != MEM_NIL)
3845 x->parent = y;
3846 }
3847
3848
3849 /* (x) (Y)
3850 / \ / \
3851 (y) c ===> a (x)
3852 / \ / \
3853 a b b c */
3854
3855 static void
3856 mem_rotate_right (struct mem_node *x)
3857 {
3858 struct mem_node *y = x->left;
3859
3860 x->left = y->right;
3861 if (y->right != MEM_NIL)
3862 y->right->parent = x;
3863
3864 if (y != MEM_NIL)
3865 y->parent = x->parent;
3866 if (x->parent)
3867 {
3868 if (x == x->parent->right)
3869 x->parent->right = y;
3870 else
3871 x->parent->left = y;
3872 }
3873 else
3874 mem_root = y;
3875
3876 y->right = x;
3877 if (x != MEM_NIL)
3878 x->parent = y;
3879 }
3880
3881
3882 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3883
3884 static void
3885 mem_delete (struct mem_node *z)
3886 {
3887 struct mem_node *x, *y;
3888
3889 if (!z || z == MEM_NIL)
3890 return;
3891
3892 if (z->left == MEM_NIL || z->right == MEM_NIL)
3893 y = z;
3894 else
3895 {
3896 y = z->right;
3897 while (y->left != MEM_NIL)
3898 y = y->left;
3899 }
3900
3901 if (y->left != MEM_NIL)
3902 x = y->left;
3903 else
3904 x = y->right;
3905
3906 x->parent = y->parent;
3907 if (y->parent)
3908 {
3909 if (y == y->parent->left)
3910 y->parent->left = x;
3911 else
3912 y->parent->right = x;
3913 }
3914 else
3915 mem_root = x;
3916
3917 if (y != z)
3918 {
3919 z->start = y->start;
3920 z->end = y->end;
3921 z->type = y->type;
3922 }
3923
3924 if (y->color == MEM_BLACK)
3925 mem_delete_fixup (x);
3926
3927 #ifdef GC_MALLOC_CHECK
3928 free (y);
3929 #else
3930 xfree (y);
3931 #endif
3932 }
3933
3934
3935 /* Re-establish the red-black properties of the tree, after a
3936 deletion. */
3937
3938 static void
3939 mem_delete_fixup (struct mem_node *x)
3940 {
3941 while (x != mem_root && x->color == MEM_BLACK)
3942 {
3943 if (x == x->parent->left)
3944 {
3945 struct mem_node *w = x->parent->right;
3946
3947 if (w->color == MEM_RED)
3948 {
3949 w->color = MEM_BLACK;
3950 x->parent->color = MEM_RED;
3951 mem_rotate_left (x->parent);
3952 w = x->parent->right;
3953 }
3954
3955 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3956 {
3957 w->color = MEM_RED;
3958 x = x->parent;
3959 }
3960 else
3961 {
3962 if (w->right->color == MEM_BLACK)
3963 {
3964 w->left->color = MEM_BLACK;
3965 w->color = MEM_RED;
3966 mem_rotate_right (w);
3967 w = x->parent->right;
3968 }
3969 w->color = x->parent->color;
3970 x->parent->color = MEM_BLACK;
3971 w->right->color = MEM_BLACK;
3972 mem_rotate_left (x->parent);
3973 x = mem_root;
3974 }
3975 }
3976 else
3977 {
3978 struct mem_node *w = x->parent->left;
3979
3980 if (w->color == MEM_RED)
3981 {
3982 w->color = MEM_BLACK;
3983 x->parent->color = MEM_RED;
3984 mem_rotate_right (x->parent);
3985 w = x->parent->left;
3986 }
3987
3988 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3989 {
3990 w->color = MEM_RED;
3991 x = x->parent;
3992 }
3993 else
3994 {
3995 if (w->left->color == MEM_BLACK)
3996 {
3997 w->right->color = MEM_BLACK;
3998 w->color = MEM_RED;
3999 mem_rotate_left (w);
4000 w = x->parent->left;
4001 }
4002
4003 w->color = x->parent->color;
4004 x->parent->color = MEM_BLACK;
4005 w->left->color = MEM_BLACK;
4006 mem_rotate_right (x->parent);
4007 x = mem_root;
4008 }
4009 }
4010 }
4011
4012 x->color = MEM_BLACK;
4013 }
4014
4015
4016 /* Value is non-zero if P is a pointer to a live Lisp string on
4017 the heap. M is a pointer to the mem_block for P. */
4018
4019 static bool
4020 live_string_p (struct mem_node *m, void *p)
4021 {
4022 if (m->type == MEM_TYPE_STRING)
4023 {
4024 struct string_block *b = (struct string_block *) m->start;
4025 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4026
4027 /* P must point to the start of a Lisp_String structure, and it
4028 must not be on the free-list. */
4029 return (offset >= 0
4030 && offset % sizeof b->strings[0] == 0
4031 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4032 && ((struct Lisp_String *) p)->data != NULL);
4033 }
4034 else
4035 return 0;
4036 }
4037
4038
4039 /* Value is non-zero if P is a pointer to a live Lisp cons on
4040 the heap. M is a pointer to the mem_block for P. */
4041
4042 static bool
4043 live_cons_p (struct mem_node *m, void *p)
4044 {
4045 if (m->type == MEM_TYPE_CONS)
4046 {
4047 struct cons_block *b = (struct cons_block *) m->start;
4048 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4049
4050 /* P must point to the start of a Lisp_Cons, not be
4051 one of the unused cells in the current cons block,
4052 and not be on the free-list. */
4053 return (offset >= 0
4054 && offset % sizeof b->conses[0] == 0
4055 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4056 && (b != cons_block
4057 || offset / sizeof b->conses[0] < cons_block_index)
4058 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4059 }
4060 else
4061 return 0;
4062 }
4063
4064
4065 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4066 the heap. M is a pointer to the mem_block for P. */
4067
4068 static bool
4069 live_symbol_p (struct mem_node *m, void *p)
4070 {
4071 if (m->type == MEM_TYPE_SYMBOL)
4072 {
4073 struct symbol_block *b = (struct symbol_block *) m->start;
4074 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4075
4076 /* P must point to the start of a Lisp_Symbol, not be
4077 one of the unused cells in the current symbol block,
4078 and not be on the free-list. */
4079 return (offset >= 0
4080 && offset % sizeof b->symbols[0] == 0
4081 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4082 && (b != symbol_block
4083 || offset / sizeof b->symbols[0] < symbol_block_index)
4084 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4085 }
4086 else
4087 return 0;
4088 }
4089
4090
4091 /* Value is non-zero if P is a pointer to a live Lisp float on
4092 the heap. M is a pointer to the mem_block for P. */
4093
4094 static bool
4095 live_float_p (struct mem_node *m, void *p)
4096 {
4097 if (m->type == MEM_TYPE_FLOAT)
4098 {
4099 struct float_block *b = (struct float_block *) m->start;
4100 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4101
4102 /* P must point to the start of a Lisp_Float and not be
4103 one of the unused cells in the current float block. */
4104 return (offset >= 0
4105 && offset % sizeof b->floats[0] == 0
4106 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4107 && (b != float_block
4108 || offset / sizeof b->floats[0] < float_block_index));
4109 }
4110 else
4111 return 0;
4112 }
4113
4114
4115 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4116 the heap. M is a pointer to the mem_block for P. */
4117
4118 static bool
4119 live_misc_p (struct mem_node *m, void *p)
4120 {
4121 if (m->type == MEM_TYPE_MISC)
4122 {
4123 struct marker_block *b = (struct marker_block *) m->start;
4124 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4125
4126 /* P must point to the start of a Lisp_Misc, not be
4127 one of the unused cells in the current misc block,
4128 and not be on the free-list. */
4129 return (offset >= 0
4130 && offset % sizeof b->markers[0] == 0
4131 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4132 && (b != marker_block
4133 || offset / sizeof b->markers[0] < marker_block_index)
4134 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4135 }
4136 else
4137 return 0;
4138 }
4139
4140
4141 /* Value is non-zero if P is a pointer to a live vector-like object.
4142 M is a pointer to the mem_block for P. */
4143
4144 static bool
4145 live_vector_p (struct mem_node *m, void *p)
4146 {
4147 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4148 {
4149 /* This memory node corresponds to a vector block. */
4150 struct vector_block *block = (struct vector_block *) m->start;
4151 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4152
4153 /* P is in the block's allocation range. Scan the block
4154 up to P and see whether P points to the start of some
4155 vector which is not on a free list. FIXME: check whether
4156 some allocation patterns (probably a lot of short vectors)
4157 may cause a substantial overhead of this loop. */
4158 while (VECTOR_IN_BLOCK (vector, block)
4159 && vector <= (struct Lisp_Vector *) p)
4160 {
4161 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4162 return 1;
4163 else
4164 vector = ADVANCE (vector, vector_nbytes (vector));
4165 }
4166 }
4167 else if (m->type == MEM_TYPE_VECTORLIKE
4168 && (char *) p == ((char *) m->start
4169 + offsetof (struct large_vector, v)))
4170 /* This memory node corresponds to a large vector. */
4171 return 1;
4172 return 0;
4173 }
4174
4175
4176 /* Value is non-zero if P is a pointer to a live buffer. M is a
4177 pointer to the mem_block for P. */
4178
4179 static bool
4180 live_buffer_p (struct mem_node *m, void *p)
4181 {
4182 /* P must point to the start of the block, and the buffer
4183 must not have been killed. */
4184 return (m->type == MEM_TYPE_BUFFER
4185 && p == m->start
4186 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4187 }
4188
4189 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4190
4191 #if GC_MARK_STACK
4192
4193 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4194
4195 /* Array of objects that are kept alive because the C stack contains
4196 a pattern that looks like a reference to them . */
4197
4198 #define MAX_ZOMBIES 10
4199 static Lisp_Object zombies[MAX_ZOMBIES];
4200
4201 /* Number of zombie objects. */
4202
4203 static EMACS_INT nzombies;
4204
4205 /* Number of garbage collections. */
4206
4207 static EMACS_INT ngcs;
4208
4209 /* Average percentage of zombies per collection. */
4210
4211 static double avg_zombies;
4212
4213 /* Max. number of live and zombie objects. */
4214
4215 static EMACS_INT max_live, max_zombies;
4216
4217 /* Average number of live objects per GC. */
4218
4219 static double avg_live;
4220
4221 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4222 doc: /* Show information about live and zombie objects. */)
4223 (void)
4224 {
4225 Lisp_Object args[8], zombie_list = Qnil;
4226 EMACS_INT i;
4227 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4228 zombie_list = Fcons (zombies[i], zombie_list);
4229 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4230 args[1] = make_number (ngcs);
4231 args[2] = make_float (avg_live);
4232 args[3] = make_float (avg_zombies);
4233 args[4] = make_float (avg_zombies / avg_live / 100);
4234 args[5] = make_number (max_live);
4235 args[6] = make_number (max_zombies);
4236 args[7] = zombie_list;
4237 return Fmessage (8, args);
4238 }
4239
4240 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4241
4242
4243 /* Mark OBJ if we can prove it's a Lisp_Object. */
4244
4245 static void
4246 mark_maybe_object (Lisp_Object obj)
4247 {
4248 void *po;
4249 struct mem_node *m;
4250
4251 if (INTEGERP (obj))
4252 return;
4253
4254 po = (void *) XPNTR (obj);
4255 m = mem_find (po);
4256
4257 if (m != MEM_NIL)
4258 {
4259 bool mark_p = 0;
4260
4261 switch (XTYPE (obj))
4262 {
4263 case Lisp_String:
4264 mark_p = (live_string_p (m, po)
4265 && !STRING_MARKED_P ((struct Lisp_String *) po));
4266 break;
4267
4268 case Lisp_Cons:
4269 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4270 break;
4271
4272 case Lisp_Symbol:
4273 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4274 break;
4275
4276 case Lisp_Float:
4277 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4278 break;
4279
4280 case Lisp_Vectorlike:
4281 /* Note: can't check BUFFERP before we know it's a
4282 buffer because checking that dereferences the pointer
4283 PO which might point anywhere. */
4284 if (live_vector_p (m, po))
4285 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4286 else if (live_buffer_p (m, po))
4287 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4288 break;
4289
4290 case Lisp_Misc:
4291 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4292 break;
4293
4294 default:
4295 break;
4296 }
4297
4298 if (mark_p)
4299 {
4300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4301 if (nzombies < MAX_ZOMBIES)
4302 zombies[nzombies] = obj;
4303 ++nzombies;
4304 #endif
4305 mark_object (obj);
4306 }
4307 }
4308 }
4309
4310
4311 /* If P points to Lisp data, mark that as live if it isn't already
4312 marked. */
4313
4314 static void
4315 mark_maybe_pointer (void *p)
4316 {
4317 struct mem_node *m;
4318
4319 /* Quickly rule out some values which can't point to Lisp data.
4320 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4321 Otherwise, assume that Lisp data is aligned on even addresses. */
4322 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4323 return;
4324
4325 m = mem_find (p);
4326 if (m != MEM_NIL)
4327 {
4328 Lisp_Object obj = Qnil;
4329
4330 switch (m->type)
4331 {
4332 case MEM_TYPE_NON_LISP:
4333 case MEM_TYPE_SPARE:
4334 /* Nothing to do; not a pointer to Lisp memory. */
4335 break;
4336
4337 case MEM_TYPE_BUFFER:
4338 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4339 XSETVECTOR (obj, p);
4340 break;
4341
4342 case MEM_TYPE_CONS:
4343 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4344 XSETCONS (obj, p);
4345 break;
4346
4347 case MEM_TYPE_STRING:
4348 if (live_string_p (m, p)
4349 && !STRING_MARKED_P ((struct Lisp_String *) p))
4350 XSETSTRING (obj, p);
4351 break;
4352
4353 case MEM_TYPE_MISC:
4354 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4355 XSETMISC (obj, p);
4356 break;
4357
4358 case MEM_TYPE_SYMBOL:
4359 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4360 XSETSYMBOL (obj, p);
4361 break;
4362
4363 case MEM_TYPE_FLOAT:
4364 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4365 XSETFLOAT (obj, p);
4366 break;
4367
4368 case MEM_TYPE_VECTORLIKE:
4369 case MEM_TYPE_VECTOR_BLOCK:
4370 if (live_vector_p (m, p))
4371 {
4372 Lisp_Object tem;
4373 XSETVECTOR (tem, p);
4374 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4375 obj = tem;
4376 }
4377 break;
4378
4379 default:
4380 emacs_abort ();
4381 }
4382
4383 if (!NILP (obj))
4384 mark_object (obj);
4385 }
4386 }
4387
4388
4389 /* Alignment of pointer values. Use alignof, as it sometimes returns
4390 a smaller alignment than GCC's __alignof__ and mark_memory might
4391 miss objects if __alignof__ were used. */
4392 #define GC_POINTER_ALIGNMENT alignof (void *)
4393
4394 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4395 not suffice, which is the typical case. A host where a Lisp_Object is
4396 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4397 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4398 suffice to widen it to to a Lisp_Object and check it that way. */
4399 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4400 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4401 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4402 nor mark_maybe_object can follow the pointers. This should not occur on
4403 any practical porting target. */
4404 # error "MSB type bits straddle pointer-word boundaries"
4405 # endif
4406 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4407 pointer words that hold pointers ORed with type bits. */
4408 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4409 #else
4410 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4411 words that hold unmodified pointers. */
4412 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4413 #endif
4414
4415 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4416 or END+OFFSET..START. */
4417
4418 static void
4419 mark_memory (void *start, void *end)
4420 #if defined (__clang__) && defined (__has_feature)
4421 #if __has_feature(address_sanitizer)
4422 /* Do not allow -faddress-sanitizer to check this function, since it
4423 crosses the function stack boundary, and thus would yield many
4424 false positives. */
4425 __attribute__((no_address_safety_analysis))
4426 #endif
4427 #endif
4428 {
4429 void **pp;
4430 int i;
4431
4432 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4433 nzombies = 0;
4434 #endif
4435
4436 /* Make START the pointer to the start of the memory region,
4437 if it isn't already. */
4438 if (end < start)
4439 {
4440 void *tem = start;
4441 start = end;
4442 end = tem;
4443 }
4444
4445 /* Mark Lisp data pointed to. This is necessary because, in some
4446 situations, the C compiler optimizes Lisp objects away, so that
4447 only a pointer to them remains. Example:
4448
4449 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4450 ()
4451 {
4452 Lisp_Object obj = build_string ("test");
4453 struct Lisp_String *s = XSTRING (obj);
4454 Fgarbage_collect ();
4455 fprintf (stderr, "test `%s'\n", s->data);
4456 return Qnil;
4457 }
4458
4459 Here, `obj' isn't really used, and the compiler optimizes it
4460 away. The only reference to the life string is through the
4461 pointer `s'. */
4462
4463 for (pp = start; (void *) pp < end; pp++)
4464 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4465 {
4466 void *p = *(void **) ((char *) pp + i);
4467 mark_maybe_pointer (p);
4468 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4469 mark_maybe_object (XIL ((intptr_t) p));
4470 }
4471 }
4472
4473 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4474
4475 static bool setjmp_tested_p;
4476 static int longjmps_done;
4477
4478 #define SETJMP_WILL_LIKELY_WORK "\
4479 \n\
4480 Emacs garbage collector has been changed to use conservative stack\n\
4481 marking. Emacs has determined that the method it uses to do the\n\
4482 marking will likely work on your system, but this isn't sure.\n\
4483 \n\
4484 If you are a system-programmer, or can get the help of a local wizard\n\
4485 who is, please take a look at the function mark_stack in alloc.c, and\n\
4486 verify that the methods used are appropriate for your system.\n\
4487 \n\
4488 Please mail the result to <emacs-devel@gnu.org>.\n\
4489 "
4490
4491 #define SETJMP_WILL_NOT_WORK "\
4492 \n\
4493 Emacs garbage collector has been changed to use conservative stack\n\
4494 marking. Emacs has determined that the default method it uses to do the\n\
4495 marking will not work on your system. We will need a system-dependent\n\
4496 solution for your system.\n\
4497 \n\
4498 Please take a look at the function mark_stack in alloc.c, and\n\
4499 try to find a way to make it work on your system.\n\
4500 \n\
4501 Note that you may get false negatives, depending on the compiler.\n\
4502 In particular, you need to use -O with GCC for this test.\n\
4503 \n\
4504 Please mail the result to <emacs-devel@gnu.org>.\n\
4505 "
4506
4507
4508 /* Perform a quick check if it looks like setjmp saves registers in a
4509 jmp_buf. Print a message to stderr saying so. When this test
4510 succeeds, this is _not_ a proof that setjmp is sufficient for
4511 conservative stack marking. Only the sources or a disassembly
4512 can prove that. */
4513
4514 static void
4515 test_setjmp (void)
4516 {
4517 char buf[10];
4518 register int x;
4519 sys_jmp_buf jbuf;
4520
4521 /* Arrange for X to be put in a register. */
4522 sprintf (buf, "1");
4523 x = strlen (buf);
4524 x = 2 * x - 1;
4525
4526 sys_setjmp (jbuf);
4527 if (longjmps_done == 1)
4528 {
4529 /* Came here after the longjmp at the end of the function.
4530
4531 If x == 1, the longjmp has restored the register to its
4532 value before the setjmp, and we can hope that setjmp
4533 saves all such registers in the jmp_buf, although that
4534 isn't sure.
4535
4536 For other values of X, either something really strange is
4537 taking place, or the setjmp just didn't save the register. */
4538
4539 if (x == 1)
4540 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4541 else
4542 {
4543 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4544 exit (1);
4545 }
4546 }
4547
4548 ++longjmps_done;
4549 x = 2;
4550 if (longjmps_done == 1)
4551 sys_longjmp (jbuf, 1);
4552 }
4553
4554 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4555
4556
4557 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4558
4559 /* Abort if anything GCPRO'd doesn't survive the GC. */
4560
4561 static void
4562 check_gcpros (void)
4563 {
4564 struct gcpro *p;
4565 ptrdiff_t i;
4566
4567 for (p = gcprolist; p; p = p->next)
4568 for (i = 0; i < p->nvars; ++i)
4569 if (!survives_gc_p (p->var[i]))
4570 /* FIXME: It's not necessarily a bug. It might just be that the
4571 GCPRO is unnecessary or should release the object sooner. */
4572 emacs_abort ();
4573 }
4574
4575 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4576
4577 static void
4578 dump_zombies (void)
4579 {
4580 int i;
4581
4582 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4583 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4584 {
4585 fprintf (stderr, " %d = ", i);
4586 debug_print (zombies[i]);
4587 }
4588 }
4589
4590 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4591
4592
4593 /* Mark live Lisp objects on the C stack.
4594
4595 There are several system-dependent problems to consider when
4596 porting this to new architectures:
4597
4598 Processor Registers
4599
4600 We have to mark Lisp objects in CPU registers that can hold local
4601 variables or are used to pass parameters.
4602
4603 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4604 something that either saves relevant registers on the stack, or
4605 calls mark_maybe_object passing it each register's contents.
4606
4607 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4608 implementation assumes that calling setjmp saves registers we need
4609 to see in a jmp_buf which itself lies on the stack. This doesn't
4610 have to be true! It must be verified for each system, possibly
4611 by taking a look at the source code of setjmp.
4612
4613 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4614 can use it as a machine independent method to store all registers
4615 to the stack. In this case the macros described in the previous
4616 two paragraphs are not used.
4617
4618 Stack Layout
4619
4620 Architectures differ in the way their processor stack is organized.
4621 For example, the stack might look like this
4622
4623 +----------------+
4624 | Lisp_Object | size = 4
4625 +----------------+
4626 | something else | size = 2
4627 +----------------+
4628 | Lisp_Object | size = 4
4629 +----------------+
4630 | ... |
4631
4632 In such a case, not every Lisp_Object will be aligned equally. To
4633 find all Lisp_Object on the stack it won't be sufficient to walk
4634 the stack in steps of 4 bytes. Instead, two passes will be
4635 necessary, one starting at the start of the stack, and a second
4636 pass starting at the start of the stack + 2. Likewise, if the
4637 minimal alignment of Lisp_Objects on the stack is 1, four passes
4638 would be necessary, each one starting with one byte more offset
4639 from the stack start. */
4640
4641 static void
4642 mark_stack (void)
4643 {
4644 void *end;
4645
4646 #ifdef HAVE___BUILTIN_UNWIND_INIT
4647 /* Force callee-saved registers and register windows onto the stack.
4648 This is the preferred method if available, obviating the need for
4649 machine dependent methods. */
4650 __builtin_unwind_init ();
4651 end = &end;
4652 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4653 #ifndef GC_SAVE_REGISTERS_ON_STACK
4654 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4655 union aligned_jmpbuf {
4656 Lisp_Object o;
4657 sys_jmp_buf j;
4658 } j;
4659 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4660 #endif
4661 /* This trick flushes the register windows so that all the state of
4662 the process is contained in the stack. */
4663 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4664 needed on ia64 too. See mach_dep.c, where it also says inline
4665 assembler doesn't work with relevant proprietary compilers. */
4666 #ifdef __sparc__
4667 #if defined (__sparc64__) && defined (__FreeBSD__)
4668 /* FreeBSD does not have a ta 3 handler. */
4669 asm ("flushw");
4670 #else
4671 asm ("ta 3");
4672 #endif
4673 #endif
4674
4675 /* Save registers that we need to see on the stack. We need to see
4676 registers used to hold register variables and registers used to
4677 pass parameters. */
4678 #ifdef GC_SAVE_REGISTERS_ON_STACK
4679 GC_SAVE_REGISTERS_ON_STACK (end);
4680 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4681
4682 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4683 setjmp will definitely work, test it
4684 and print a message with the result
4685 of the test. */
4686 if (!setjmp_tested_p)
4687 {
4688 setjmp_tested_p = 1;
4689 test_setjmp ();
4690 }
4691 #endif /* GC_SETJMP_WORKS */
4692
4693 sys_setjmp (j.j);
4694 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4695 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4696 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4697
4698 /* This assumes that the stack is a contiguous region in memory. If
4699 that's not the case, something has to be done here to iterate
4700 over the stack segments. */
4701 mark_memory (stack_base, end);
4702
4703 /* Allow for marking a secondary stack, like the register stack on the
4704 ia64. */
4705 #ifdef GC_MARK_SECONDARY_STACK
4706 GC_MARK_SECONDARY_STACK ();
4707 #endif
4708
4709 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4710 check_gcpros ();
4711 #endif
4712 }
4713
4714 #endif /* GC_MARK_STACK != 0 */
4715
4716
4717 /* Determine whether it is safe to access memory at address P. */
4718 static int
4719 valid_pointer_p (void *p)
4720 {
4721 #ifdef WINDOWSNT
4722 return w32_valid_pointer_p (p, 16);
4723 #else
4724 int fd[2];
4725
4726 /* Obviously, we cannot just access it (we would SEGV trying), so we
4727 trick the o/s to tell us whether p is a valid pointer.
4728 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4729 not validate p in that case. */
4730
4731 if (pipe (fd) == 0)
4732 {
4733 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4734 emacs_close (fd[1]);
4735 emacs_close (fd[0]);
4736 return valid;
4737 }
4738
4739 return -1;
4740 #endif
4741 }
4742
4743 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4744 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4745 cannot validate OBJ. This function can be quite slow, so its primary
4746 use is the manual debugging. The only exception is print_object, where
4747 we use it to check whether the memory referenced by the pointer of
4748 Lisp_Save_Value object contains valid objects. */
4749
4750 int
4751 valid_lisp_object_p (Lisp_Object obj)
4752 {
4753 void *p;
4754 #if GC_MARK_STACK
4755 struct mem_node *m;
4756 #endif
4757
4758 if (INTEGERP (obj))
4759 return 1;
4760
4761 p = (void *) XPNTR (obj);
4762 if (PURE_POINTER_P (p))
4763 return 1;
4764
4765 if (p == &buffer_defaults || p == &buffer_local_symbols)
4766 return 2;
4767
4768 #if !GC_MARK_STACK
4769 return valid_pointer_p (p);
4770 #else
4771
4772 m = mem_find (p);
4773
4774 if (m == MEM_NIL)
4775 {
4776 int valid = valid_pointer_p (p);
4777 if (valid <= 0)
4778 return valid;
4779
4780 if (SUBRP (obj))
4781 return 1;
4782
4783 return 0;
4784 }
4785
4786 switch (m->type)
4787 {
4788 case MEM_TYPE_NON_LISP:
4789 case MEM_TYPE_SPARE:
4790 return 0;
4791
4792 case MEM_TYPE_BUFFER:
4793 return live_buffer_p (m, p) ? 1 : 2;
4794
4795 case MEM_TYPE_CONS:
4796 return live_cons_p (m, p);
4797
4798 case MEM_TYPE_STRING:
4799 return live_string_p (m, p);
4800
4801 case MEM_TYPE_MISC:
4802 return live_misc_p (m, p);
4803
4804 case MEM_TYPE_SYMBOL:
4805 return live_symbol_p (m, p);
4806
4807 case MEM_TYPE_FLOAT:
4808 return live_float_p (m, p);
4809
4810 case MEM_TYPE_VECTORLIKE:
4811 case MEM_TYPE_VECTOR_BLOCK:
4812 return live_vector_p (m, p);
4813
4814 default:
4815 break;
4816 }
4817
4818 return 0;
4819 #endif
4820 }
4821
4822
4823
4824 \f
4825 /***********************************************************************
4826 Pure Storage Management
4827 ***********************************************************************/
4828
4829 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4830 pointer to it. TYPE is the Lisp type for which the memory is
4831 allocated. TYPE < 0 means it's not used for a Lisp object. */
4832
4833 static void *
4834 pure_alloc (size_t size, int type)
4835 {
4836 void *result;
4837 #if USE_LSB_TAG
4838 size_t alignment = GCALIGNMENT;
4839 #else
4840 size_t alignment = alignof (EMACS_INT);
4841
4842 /* Give Lisp_Floats an extra alignment. */
4843 if (type == Lisp_Float)
4844 alignment = alignof (struct Lisp_Float);
4845 #endif
4846
4847 again:
4848 if (type >= 0)
4849 {
4850 /* Allocate space for a Lisp object from the beginning of the free
4851 space with taking account of alignment. */
4852 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4853 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4854 }
4855 else
4856 {
4857 /* Allocate space for a non-Lisp object from the end of the free
4858 space. */
4859 pure_bytes_used_non_lisp += size;
4860 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4861 }
4862 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4863
4864 if (pure_bytes_used <= pure_size)
4865 return result;
4866
4867 /* Don't allocate a large amount here,
4868 because it might get mmap'd and then its address
4869 might not be usable. */
4870 purebeg = xmalloc (10000);
4871 pure_size = 10000;
4872 pure_bytes_used_before_overflow += pure_bytes_used - size;
4873 pure_bytes_used = 0;
4874 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4875 goto again;
4876 }
4877
4878
4879 /* Print a warning if PURESIZE is too small. */
4880
4881 void
4882 check_pure_size (void)
4883 {
4884 if (pure_bytes_used_before_overflow)
4885 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4886 " bytes needed)"),
4887 pure_bytes_used + pure_bytes_used_before_overflow);
4888 }
4889
4890
4891 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4892 the non-Lisp data pool of the pure storage, and return its start
4893 address. Return NULL if not found. */
4894
4895 static char *
4896 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4897 {
4898 int i;
4899 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4900 const unsigned char *p;
4901 char *non_lisp_beg;
4902
4903 if (pure_bytes_used_non_lisp <= nbytes)
4904 return NULL;
4905
4906 /* Set up the Boyer-Moore table. */
4907 skip = nbytes + 1;
4908 for (i = 0; i < 256; i++)
4909 bm_skip[i] = skip;
4910
4911 p = (const unsigned char *) data;
4912 while (--skip > 0)
4913 bm_skip[*p++] = skip;
4914
4915 last_char_skip = bm_skip['\0'];
4916
4917 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4918 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4919
4920 /* See the comments in the function `boyer_moore' (search.c) for the
4921 use of `infinity'. */
4922 infinity = pure_bytes_used_non_lisp + 1;
4923 bm_skip['\0'] = infinity;
4924
4925 p = (const unsigned char *) non_lisp_beg + nbytes;
4926 start = 0;
4927 do
4928 {
4929 /* Check the last character (== '\0'). */
4930 do
4931 {
4932 start += bm_skip[*(p + start)];
4933 }
4934 while (start <= start_max);
4935
4936 if (start < infinity)
4937 /* Couldn't find the last character. */
4938 return NULL;
4939
4940 /* No less than `infinity' means we could find the last
4941 character at `p[start - infinity]'. */
4942 start -= infinity;
4943
4944 /* Check the remaining characters. */
4945 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4946 /* Found. */
4947 return non_lisp_beg + start;
4948
4949 start += last_char_skip;
4950 }
4951 while (start <= start_max);
4952
4953 return NULL;
4954 }
4955
4956
4957 /* Return a string allocated in pure space. DATA is a buffer holding
4958 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4959 means make the result string multibyte.
4960
4961 Must get an error if pure storage is full, since if it cannot hold
4962 a large string it may be able to hold conses that point to that
4963 string; then the string is not protected from gc. */
4964
4965 Lisp_Object
4966 make_pure_string (const char *data,
4967 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4968 {
4969 Lisp_Object string;
4970 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4971 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4972 if (s->data == NULL)
4973 {
4974 s->data = pure_alloc (nbytes + 1, -1);
4975 memcpy (s->data, data, nbytes);
4976 s->data[nbytes] = '\0';
4977 }
4978 s->size = nchars;
4979 s->size_byte = multibyte ? nbytes : -1;
4980 s->intervals = NULL;
4981 XSETSTRING (string, s);
4982 return string;
4983 }
4984
4985 /* Return a string allocated in pure space. Do not
4986 allocate the string data, just point to DATA. */
4987
4988 Lisp_Object
4989 make_pure_c_string (const char *data, ptrdiff_t nchars)
4990 {
4991 Lisp_Object string;
4992 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4993 s->size = nchars;
4994 s->size_byte = -1;
4995 s->data = (unsigned char *) data;
4996 s->intervals = NULL;
4997 XSETSTRING (string, s);
4998 return string;
4999 }
5000
5001 /* Return a cons allocated from pure space. Give it pure copies
5002 of CAR as car and CDR as cdr. */
5003
5004 Lisp_Object
5005 pure_cons (Lisp_Object car, Lisp_Object cdr)
5006 {
5007 Lisp_Object new;
5008 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5009 XSETCONS (new, p);
5010 XSETCAR (new, Fpurecopy (car));
5011 XSETCDR (new, Fpurecopy (cdr));
5012 return new;
5013 }
5014
5015
5016 /* Value is a float object with value NUM allocated from pure space. */
5017
5018 static Lisp_Object
5019 make_pure_float (double num)
5020 {
5021 Lisp_Object new;
5022 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5023 XSETFLOAT (new, p);
5024 XFLOAT_INIT (new, num);
5025 return new;
5026 }
5027
5028
5029 /* Return a vector with room for LEN Lisp_Objects allocated from
5030 pure space. */
5031
5032 static Lisp_Object
5033 make_pure_vector (ptrdiff_t len)
5034 {
5035 Lisp_Object new;
5036 size_t size = header_size + len * word_size;
5037 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5038 XSETVECTOR (new, p);
5039 XVECTOR (new)->header.size = len;
5040 return new;
5041 }
5042
5043
5044 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5045 doc: /* Make a copy of object OBJ in pure storage.
5046 Recursively copies contents of vectors and cons cells.
5047 Does not copy symbols. Copies strings without text properties. */)
5048 (register Lisp_Object obj)
5049 {
5050 if (NILP (Vpurify_flag))
5051 return obj;
5052
5053 if (PURE_POINTER_P (XPNTR (obj)))
5054 return obj;
5055
5056 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5057 {
5058 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5059 if (!NILP (tmp))
5060 return tmp;
5061 }
5062
5063 if (CONSP (obj))
5064 obj = pure_cons (XCAR (obj), XCDR (obj));
5065 else if (FLOATP (obj))
5066 obj = make_pure_float (XFLOAT_DATA (obj));
5067 else if (STRINGP (obj))
5068 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5069 SBYTES (obj),
5070 STRING_MULTIBYTE (obj));
5071 else if (COMPILEDP (obj) || VECTORP (obj))
5072 {
5073 register struct Lisp_Vector *vec;
5074 register ptrdiff_t i;
5075 ptrdiff_t size;
5076
5077 size = ASIZE (obj);
5078 if (size & PSEUDOVECTOR_FLAG)
5079 size &= PSEUDOVECTOR_SIZE_MASK;
5080 vec = XVECTOR (make_pure_vector (size));
5081 for (i = 0; i < size; i++)
5082 vec->contents[i] = Fpurecopy (AREF (obj, i));
5083 if (COMPILEDP (obj))
5084 {
5085 XSETPVECTYPE (vec, PVEC_COMPILED);
5086 XSETCOMPILED (obj, vec);
5087 }
5088 else
5089 XSETVECTOR (obj, vec);
5090 }
5091 else if (MARKERP (obj))
5092 error ("Attempt to copy a marker to pure storage");
5093 else
5094 /* Not purified, don't hash-cons. */
5095 return obj;
5096
5097 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5098 Fputhash (obj, obj, Vpurify_flag);
5099
5100 return obj;
5101 }
5102
5103
5104 \f
5105 /***********************************************************************
5106 Protection from GC
5107 ***********************************************************************/
5108
5109 /* Put an entry in staticvec, pointing at the variable with address
5110 VARADDRESS. */
5111
5112 void
5113 staticpro (Lisp_Object *varaddress)
5114 {
5115 staticvec[staticidx++] = varaddress;
5116 if (staticidx >= NSTATICS)
5117 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5118 }
5119
5120 \f
5121 /***********************************************************************
5122 Protection from GC
5123 ***********************************************************************/
5124
5125 /* Temporarily prevent garbage collection. */
5126
5127 ptrdiff_t
5128 inhibit_garbage_collection (void)
5129 {
5130 ptrdiff_t count = SPECPDL_INDEX ();
5131
5132 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5133 return count;
5134 }
5135
5136 /* Used to avoid possible overflows when
5137 converting from C to Lisp integers. */
5138
5139 static Lisp_Object
5140 bounded_number (EMACS_INT number)
5141 {
5142 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5143 }
5144
5145 /* Calculate total bytes of live objects. */
5146
5147 static size_t
5148 total_bytes_of_live_objects (void)
5149 {
5150 size_t tot = 0;
5151 tot += total_conses * sizeof (struct Lisp_Cons);
5152 tot += total_symbols * sizeof (struct Lisp_Symbol);
5153 tot += total_markers * sizeof (union Lisp_Misc);
5154 tot += total_string_bytes;
5155 tot += total_vector_slots * word_size;
5156 tot += total_floats * sizeof (struct Lisp_Float);
5157 tot += total_intervals * sizeof (struct interval);
5158 tot += total_strings * sizeof (struct Lisp_String);
5159 return tot;
5160 }
5161
5162 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5163 doc: /* Reclaim storage for Lisp objects no longer needed.
5164 Garbage collection happens automatically if you cons more than
5165 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5166 `garbage-collect' normally returns a list with info on amount of space in use,
5167 where each entry has the form (NAME SIZE USED FREE), where:
5168 - NAME is a symbol describing the kind of objects this entry represents,
5169 - SIZE is the number of bytes used by each one,
5170 - USED is the number of those objects that were found live in the heap,
5171 - FREE is the number of those objects that are not live but that Emacs
5172 keeps around for future allocations (maybe because it does not know how
5173 to return them to the OS).
5174 However, if there was overflow in pure space, `garbage-collect'
5175 returns nil, because real GC can't be done.
5176 See Info node `(elisp)Garbage Collection'. */)
5177 (void)
5178 {
5179 struct buffer *nextb;
5180 char stack_top_variable;
5181 ptrdiff_t i;
5182 bool message_p;
5183 ptrdiff_t count = SPECPDL_INDEX ();
5184 EMACS_TIME start;
5185 Lisp_Object retval = Qnil;
5186 size_t tot_before = 0;
5187
5188 if (abort_on_gc)
5189 emacs_abort ();
5190
5191 /* Can't GC if pure storage overflowed because we can't determine
5192 if something is a pure object or not. */
5193 if (pure_bytes_used_before_overflow)
5194 return Qnil;
5195
5196 /* Record this function, so it appears on the profiler's backtraces. */
5197 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5198
5199 check_cons_list ();
5200
5201 /* Don't keep undo information around forever.
5202 Do this early on, so it is no problem if the user quits. */
5203 FOR_EACH_BUFFER (nextb)
5204 compact_buffer (nextb);
5205
5206 if (profiler_memory_running)
5207 tot_before = total_bytes_of_live_objects ();
5208
5209 start = current_emacs_time ();
5210
5211 /* In case user calls debug_print during GC,
5212 don't let that cause a recursive GC. */
5213 consing_since_gc = 0;
5214
5215 /* Save what's currently displayed in the echo area. */
5216 message_p = push_message ();
5217 record_unwind_protect (pop_message_unwind, Qnil);
5218
5219 /* Save a copy of the contents of the stack, for debugging. */
5220 #if MAX_SAVE_STACK > 0
5221 if (NILP (Vpurify_flag))
5222 {
5223 char *stack;
5224 ptrdiff_t stack_size;
5225 if (&stack_top_variable < stack_bottom)
5226 {
5227 stack = &stack_top_variable;
5228 stack_size = stack_bottom - &stack_top_variable;
5229 }
5230 else
5231 {
5232 stack = stack_bottom;
5233 stack_size = &stack_top_variable - stack_bottom;
5234 }
5235 if (stack_size <= MAX_SAVE_STACK)
5236 {
5237 if (stack_copy_size < stack_size)
5238 {
5239 stack_copy = xrealloc (stack_copy, stack_size);
5240 stack_copy_size = stack_size;
5241 }
5242 memcpy (stack_copy, stack, stack_size);
5243 }
5244 }
5245 #endif /* MAX_SAVE_STACK > 0 */
5246
5247 if (garbage_collection_messages)
5248 message1_nolog ("Garbage collecting...");
5249
5250 block_input ();
5251
5252 shrink_regexp_cache ();
5253
5254 gc_in_progress = 1;
5255
5256 /* Mark all the special slots that serve as the roots of accessibility. */
5257
5258 mark_buffer (&buffer_defaults);
5259 mark_buffer (&buffer_local_symbols);
5260
5261 for (i = 0; i < staticidx; i++)
5262 mark_object (*staticvec[i]);
5263
5264 mark_specpdl ();
5265 mark_terminals ();
5266 mark_kboards ();
5267
5268 #ifdef USE_GTK
5269 xg_mark_data ();
5270 #endif
5271
5272 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5273 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5274 mark_stack ();
5275 #else
5276 {
5277 register struct gcpro *tail;
5278 for (tail = gcprolist; tail; tail = tail->next)
5279 for (i = 0; i < tail->nvars; i++)
5280 mark_object (tail->var[i]);
5281 }
5282 mark_byte_stack ();
5283 {
5284 struct catchtag *catch;
5285 struct handler *handler;
5286
5287 for (catch = catchlist; catch; catch = catch->next)
5288 {
5289 mark_object (catch->tag);
5290 mark_object (catch->val);
5291 }
5292 for (handler = handlerlist; handler; handler = handler->next)
5293 {
5294 mark_object (handler->handler);
5295 mark_object (handler->var);
5296 }
5297 }
5298 #endif
5299
5300 #ifdef HAVE_WINDOW_SYSTEM
5301 mark_fringe_data ();
5302 #endif
5303
5304 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5305 mark_stack ();
5306 #endif
5307
5308 /* Everything is now marked, except for the things that require special
5309 finalization, i.e. the undo_list.
5310 Look thru every buffer's undo list
5311 for elements that update markers that were not marked,
5312 and delete them. */
5313 FOR_EACH_BUFFER (nextb)
5314 {
5315 /* If a buffer's undo list is Qt, that means that undo is
5316 turned off in that buffer. Calling truncate_undo_list on
5317 Qt tends to return NULL, which effectively turns undo back on.
5318 So don't call truncate_undo_list if undo_list is Qt. */
5319 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5320 {
5321 Lisp_Object tail, prev;
5322 tail = nextb->INTERNAL_FIELD (undo_list);
5323 prev = Qnil;
5324 while (CONSP (tail))
5325 {
5326 if (CONSP (XCAR (tail))
5327 && MARKERP (XCAR (XCAR (tail)))
5328 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5329 {
5330 if (NILP (prev))
5331 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5332 else
5333 {
5334 tail = XCDR (tail);
5335 XSETCDR (prev, tail);
5336 }
5337 }
5338 else
5339 {
5340 prev = tail;
5341 tail = XCDR (tail);
5342 }
5343 }
5344 }
5345 /* Now that we have stripped the elements that need not be in the
5346 undo_list any more, we can finally mark the list. */
5347 mark_object (nextb->INTERNAL_FIELD (undo_list));
5348 }
5349
5350 gc_sweep ();
5351
5352 /* Clear the mark bits that we set in certain root slots. */
5353
5354 unmark_byte_stack ();
5355 VECTOR_UNMARK (&buffer_defaults);
5356 VECTOR_UNMARK (&buffer_local_symbols);
5357
5358 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5359 dump_zombies ();
5360 #endif
5361
5362 check_cons_list ();
5363
5364 gc_in_progress = 0;
5365
5366 unblock_input ();
5367
5368 consing_since_gc = 0;
5369 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5370 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5371
5372 gc_relative_threshold = 0;
5373 if (FLOATP (Vgc_cons_percentage))
5374 { /* Set gc_cons_combined_threshold. */
5375 double tot = total_bytes_of_live_objects ();
5376
5377 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5378 if (0 < tot)
5379 {
5380 if (tot < TYPE_MAXIMUM (EMACS_INT))
5381 gc_relative_threshold = tot;
5382 else
5383 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5384 }
5385 }
5386
5387 if (garbage_collection_messages)
5388 {
5389 if (message_p || minibuf_level > 0)
5390 restore_message ();
5391 else
5392 message1_nolog ("Garbage collecting...done");
5393 }
5394
5395 unbind_to (count, Qnil);
5396 {
5397 Lisp_Object total[11];
5398 int total_size = 10;
5399
5400 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5401 bounded_number (total_conses),
5402 bounded_number (total_free_conses));
5403
5404 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5405 bounded_number (total_symbols),
5406 bounded_number (total_free_symbols));
5407
5408 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5409 bounded_number (total_markers),
5410 bounded_number (total_free_markers));
5411
5412 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5413 bounded_number (total_strings),
5414 bounded_number (total_free_strings));
5415
5416 total[4] = list3 (Qstring_bytes, make_number (1),
5417 bounded_number (total_string_bytes));
5418
5419 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5420 bounded_number (total_vectors));
5421
5422 total[6] = list4 (Qvector_slots, make_number (word_size),
5423 bounded_number (total_vector_slots),
5424 bounded_number (total_free_vector_slots));
5425
5426 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5427 bounded_number (total_floats),
5428 bounded_number (total_free_floats));
5429
5430 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5431 bounded_number (total_intervals),
5432 bounded_number (total_free_intervals));
5433
5434 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5435 bounded_number (total_buffers));
5436
5437 #ifdef DOUG_LEA_MALLOC
5438 total_size++;
5439 total[10] = list4 (Qheap, make_number (1024),
5440 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5441 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5442 #endif
5443 retval = Flist (total_size, total);
5444 }
5445
5446 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5447 {
5448 /* Compute average percentage of zombies. */
5449 double nlive
5450 = (total_conses + total_symbols + total_markers + total_strings
5451 + total_vectors + total_floats + total_intervals + total_buffers);
5452
5453 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5454 max_live = max (nlive, max_live);
5455 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5456 max_zombies = max (nzombies, max_zombies);
5457 ++ngcs;
5458 }
5459 #endif
5460
5461 if (!NILP (Vpost_gc_hook))
5462 {
5463 ptrdiff_t gc_count = inhibit_garbage_collection ();
5464 safe_run_hooks (Qpost_gc_hook);
5465 unbind_to (gc_count, Qnil);
5466 }
5467
5468 /* Accumulate statistics. */
5469 if (FLOATP (Vgc_elapsed))
5470 {
5471 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5472 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5473 + EMACS_TIME_TO_DOUBLE (since_start));
5474 }
5475
5476 gcs_done++;
5477
5478 /* Collect profiling data. */
5479 if (profiler_memory_running)
5480 {
5481 size_t swept = 0;
5482 size_t tot_after = total_bytes_of_live_objects ();
5483 if (tot_before > tot_after)
5484 swept = tot_before - tot_after;
5485 malloc_probe (swept);
5486 }
5487
5488 return retval;
5489 }
5490
5491
5492 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5493 only interesting objects referenced from glyphs are strings. */
5494
5495 static void
5496 mark_glyph_matrix (struct glyph_matrix *matrix)
5497 {
5498 struct glyph_row *row = matrix->rows;
5499 struct glyph_row *end = row + matrix->nrows;
5500
5501 for (; row < end; ++row)
5502 if (row->enabled_p)
5503 {
5504 int area;
5505 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5506 {
5507 struct glyph *glyph = row->glyphs[area];
5508 struct glyph *end_glyph = glyph + row->used[area];
5509
5510 for (; glyph < end_glyph; ++glyph)
5511 if (STRINGP (glyph->object)
5512 && !STRING_MARKED_P (XSTRING (glyph->object)))
5513 mark_object (glyph->object);
5514 }
5515 }
5516 }
5517
5518
5519 /* Mark Lisp faces in the face cache C. */
5520
5521 static void
5522 mark_face_cache (struct face_cache *c)
5523 {
5524 if (c)
5525 {
5526 int i, j;
5527 for (i = 0; i < c->used; ++i)
5528 {
5529 struct face *face = FACE_FROM_ID (c->f, i);
5530
5531 if (face)
5532 {
5533 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5534 mark_object (face->lface[j]);
5535 }
5536 }
5537 }
5538 }
5539
5540
5541 \f
5542 /* Mark reference to a Lisp_Object.
5543 If the object referred to has not been seen yet, recursively mark
5544 all the references contained in it. */
5545
5546 #define LAST_MARKED_SIZE 500
5547 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5548 static int last_marked_index;
5549
5550 /* For debugging--call abort when we cdr down this many
5551 links of a list, in mark_object. In debugging,
5552 the call to abort will hit a breakpoint.
5553 Normally this is zero and the check never goes off. */
5554 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5555
5556 static void
5557 mark_vectorlike (struct Lisp_Vector *ptr)
5558 {
5559 ptrdiff_t size = ptr->header.size;
5560 ptrdiff_t i;
5561
5562 eassert (!VECTOR_MARKED_P (ptr));
5563 VECTOR_MARK (ptr); /* Else mark it. */
5564 if (size & PSEUDOVECTOR_FLAG)
5565 size &= PSEUDOVECTOR_SIZE_MASK;
5566
5567 /* Note that this size is not the memory-footprint size, but only
5568 the number of Lisp_Object fields that we should trace.
5569 The distinction is used e.g. by Lisp_Process which places extra
5570 non-Lisp_Object fields at the end of the structure... */
5571 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5572 mark_object (ptr->contents[i]);
5573 }
5574
5575 /* Like mark_vectorlike but optimized for char-tables (and
5576 sub-char-tables) assuming that the contents are mostly integers or
5577 symbols. */
5578
5579 static void
5580 mark_char_table (struct Lisp_Vector *ptr)
5581 {
5582 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5583 int i;
5584
5585 eassert (!VECTOR_MARKED_P (ptr));
5586 VECTOR_MARK (ptr);
5587 for (i = 0; i < size; i++)
5588 {
5589 Lisp_Object val = ptr->contents[i];
5590
5591 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5592 continue;
5593 if (SUB_CHAR_TABLE_P (val))
5594 {
5595 if (! VECTOR_MARKED_P (XVECTOR (val)))
5596 mark_char_table (XVECTOR (val));
5597 }
5598 else
5599 mark_object (val);
5600 }
5601 }
5602
5603 /* Mark the chain of overlays starting at PTR. */
5604
5605 static void
5606 mark_overlay (struct Lisp_Overlay *ptr)
5607 {
5608 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5609 {
5610 ptr->gcmarkbit = 1;
5611 mark_object (ptr->start);
5612 mark_object (ptr->end);
5613 mark_object (ptr->plist);
5614 }
5615 }
5616
5617 /* Mark Lisp_Objects and special pointers in BUFFER. */
5618
5619 static void
5620 mark_buffer (struct buffer *buffer)
5621 {
5622 /* This is handled much like other pseudovectors... */
5623 mark_vectorlike ((struct Lisp_Vector *) buffer);
5624
5625 /* ...but there are some buffer-specific things. */
5626
5627 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5628
5629 /* For now, we just don't mark the undo_list. It's done later in
5630 a special way just before the sweep phase, and after stripping
5631 some of its elements that are not needed any more. */
5632
5633 mark_overlay (buffer->overlays_before);
5634 mark_overlay (buffer->overlays_after);
5635
5636 /* If this is an indirect buffer, mark its base buffer. */
5637 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5638 mark_buffer (buffer->base_buffer);
5639 }
5640
5641 /* Remove killed buffers or items whose car is a killed buffer from
5642 LIST, and mark other items. Return changed LIST, which is marked. */
5643
5644 static Lisp_Object
5645 mark_discard_killed_buffers (Lisp_Object list)
5646 {
5647 Lisp_Object tail, *prev = &list;
5648
5649 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5650 tail = XCDR (tail))
5651 {
5652 Lisp_Object tem = XCAR (tail);
5653 if (CONSP (tem))
5654 tem = XCAR (tem);
5655 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5656 *prev = XCDR (tail);
5657 else
5658 {
5659 CONS_MARK (XCONS (tail));
5660 mark_object (XCAR (tail));
5661 prev = xcdr_addr (tail);
5662 }
5663 }
5664 mark_object (tail);
5665 return list;
5666 }
5667
5668 /* Determine type of generic Lisp_Object and mark it accordingly. */
5669
5670 void
5671 mark_object (Lisp_Object arg)
5672 {
5673 register Lisp_Object obj = arg;
5674 #ifdef GC_CHECK_MARKED_OBJECTS
5675 void *po;
5676 struct mem_node *m;
5677 #endif
5678 ptrdiff_t cdr_count = 0;
5679
5680 loop:
5681
5682 if (PURE_POINTER_P (XPNTR (obj)))
5683 return;
5684
5685 last_marked[last_marked_index++] = obj;
5686 if (last_marked_index == LAST_MARKED_SIZE)
5687 last_marked_index = 0;
5688
5689 /* Perform some sanity checks on the objects marked here. Abort if
5690 we encounter an object we know is bogus. This increases GC time
5691 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5692 #ifdef GC_CHECK_MARKED_OBJECTS
5693
5694 po = (void *) XPNTR (obj);
5695
5696 /* Check that the object pointed to by PO is known to be a Lisp
5697 structure allocated from the heap. */
5698 #define CHECK_ALLOCATED() \
5699 do { \
5700 m = mem_find (po); \
5701 if (m == MEM_NIL) \
5702 emacs_abort (); \
5703 } while (0)
5704
5705 /* Check that the object pointed to by PO is live, using predicate
5706 function LIVEP. */
5707 #define CHECK_LIVE(LIVEP) \
5708 do { \
5709 if (!LIVEP (m, po)) \
5710 emacs_abort (); \
5711 } while (0)
5712
5713 /* Check both of the above conditions. */
5714 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5715 do { \
5716 CHECK_ALLOCATED (); \
5717 CHECK_LIVE (LIVEP); \
5718 } while (0) \
5719
5720 #else /* not GC_CHECK_MARKED_OBJECTS */
5721
5722 #define CHECK_LIVE(LIVEP) (void) 0
5723 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5724
5725 #endif /* not GC_CHECK_MARKED_OBJECTS */
5726
5727 switch (XTYPE (obj))
5728 {
5729 case Lisp_String:
5730 {
5731 register struct Lisp_String *ptr = XSTRING (obj);
5732 if (STRING_MARKED_P (ptr))
5733 break;
5734 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5735 MARK_STRING (ptr);
5736 MARK_INTERVAL_TREE (ptr->intervals);
5737 #ifdef GC_CHECK_STRING_BYTES
5738 /* Check that the string size recorded in the string is the
5739 same as the one recorded in the sdata structure. */
5740 string_bytes (ptr);
5741 #endif /* GC_CHECK_STRING_BYTES */
5742 }
5743 break;
5744
5745 case Lisp_Vectorlike:
5746 {
5747 register struct Lisp_Vector *ptr = XVECTOR (obj);
5748 register ptrdiff_t pvectype;
5749
5750 if (VECTOR_MARKED_P (ptr))
5751 break;
5752
5753 #ifdef GC_CHECK_MARKED_OBJECTS
5754 m = mem_find (po);
5755 if (m == MEM_NIL && !SUBRP (obj))
5756 emacs_abort ();
5757 #endif /* GC_CHECK_MARKED_OBJECTS */
5758
5759 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5760 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5761 >> PSEUDOVECTOR_AREA_BITS);
5762 else
5763 pvectype = PVEC_NORMAL_VECTOR;
5764
5765 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5766 CHECK_LIVE (live_vector_p);
5767
5768 switch (pvectype)
5769 {
5770 case PVEC_BUFFER:
5771 #ifdef GC_CHECK_MARKED_OBJECTS
5772 {
5773 struct buffer *b;
5774 FOR_EACH_BUFFER (b)
5775 if (b == po)
5776 break;
5777 if (b == NULL)
5778 emacs_abort ();
5779 }
5780 #endif /* GC_CHECK_MARKED_OBJECTS */
5781 mark_buffer ((struct buffer *) ptr);
5782 break;
5783
5784 case PVEC_COMPILED:
5785 { /* We could treat this just like a vector, but it is better
5786 to save the COMPILED_CONSTANTS element for last and avoid
5787 recursion there. */
5788 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5789 int i;
5790
5791 VECTOR_MARK (ptr);
5792 for (i = 0; i < size; i++)
5793 if (i != COMPILED_CONSTANTS)
5794 mark_object (ptr->contents[i]);
5795 if (size > COMPILED_CONSTANTS)
5796 {
5797 obj = ptr->contents[COMPILED_CONSTANTS];
5798 goto loop;
5799 }
5800 }
5801 break;
5802
5803 case PVEC_FRAME:
5804 mark_vectorlike (ptr);
5805 mark_face_cache (((struct frame *) ptr)->face_cache);
5806 break;
5807
5808 case PVEC_WINDOW:
5809 {
5810 struct window *w = (struct window *) ptr;
5811
5812 mark_vectorlike (ptr);
5813
5814 /* Mark glyph matrices, if any. Marking window
5815 matrices is sufficient because frame matrices
5816 use the same glyph memory. */
5817 if (w->current_matrix)
5818 {
5819 mark_glyph_matrix (w->current_matrix);
5820 mark_glyph_matrix (w->desired_matrix);
5821 }
5822
5823 /* Filter out killed buffers from both buffer lists
5824 in attempt to help GC to reclaim killed buffers faster.
5825 We can do it elsewhere for live windows, but this is the
5826 best place to do it for dead windows. */
5827 wset_prev_buffers
5828 (w, mark_discard_killed_buffers (w->prev_buffers));
5829 wset_next_buffers
5830 (w, mark_discard_killed_buffers (w->next_buffers));
5831 }
5832 break;
5833
5834 case PVEC_HASH_TABLE:
5835 {
5836 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5837
5838 mark_vectorlike (ptr);
5839 mark_object (h->test.name);
5840 mark_object (h->test.user_hash_function);
5841 mark_object (h->test.user_cmp_function);
5842 /* If hash table is not weak, mark all keys and values.
5843 For weak tables, mark only the vector. */
5844 if (NILP (h->weak))
5845 mark_object (h->key_and_value);
5846 else
5847 VECTOR_MARK (XVECTOR (h->key_and_value));
5848 }
5849 break;
5850
5851 case PVEC_CHAR_TABLE:
5852 mark_char_table (ptr);
5853 break;
5854
5855 case PVEC_BOOL_VECTOR:
5856 /* No Lisp_Objects to mark in a bool vector. */
5857 VECTOR_MARK (ptr);
5858 break;
5859
5860 case PVEC_SUBR:
5861 break;
5862
5863 case PVEC_FREE:
5864 emacs_abort ();
5865
5866 default:
5867 mark_vectorlike (ptr);
5868 }
5869 }
5870 break;
5871
5872 case Lisp_Symbol:
5873 {
5874 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5875 struct Lisp_Symbol *ptrx;
5876
5877 if (ptr->gcmarkbit)
5878 break;
5879 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5880 ptr->gcmarkbit = 1;
5881 mark_object (ptr->function);
5882 mark_object (ptr->plist);
5883 switch (ptr->redirect)
5884 {
5885 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5886 case SYMBOL_VARALIAS:
5887 {
5888 Lisp_Object tem;
5889 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5890 mark_object (tem);
5891 break;
5892 }
5893 case SYMBOL_LOCALIZED:
5894 {
5895 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5896 Lisp_Object where = blv->where;
5897 /* If the value is set up for a killed buffer or deleted
5898 frame, restore it's global binding. If the value is
5899 forwarded to a C variable, either it's not a Lisp_Object
5900 var, or it's staticpro'd already. */
5901 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5902 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5903 swap_in_global_binding (ptr);
5904 mark_object (blv->where);
5905 mark_object (blv->valcell);
5906 mark_object (blv->defcell);
5907 break;
5908 }
5909 case SYMBOL_FORWARDED:
5910 /* If the value is forwarded to a buffer or keyboard field,
5911 these are marked when we see the corresponding object.
5912 And if it's forwarded to a C variable, either it's not
5913 a Lisp_Object var, or it's staticpro'd already. */
5914 break;
5915 default: emacs_abort ();
5916 }
5917 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5918 MARK_STRING (XSTRING (ptr->name));
5919 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5920
5921 ptr = ptr->next;
5922 if (ptr)
5923 {
5924 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5925 XSETSYMBOL (obj, ptrx);
5926 goto loop;
5927 }
5928 }
5929 break;
5930
5931 case Lisp_Misc:
5932 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5933
5934 if (XMISCANY (obj)->gcmarkbit)
5935 break;
5936
5937 switch (XMISCTYPE (obj))
5938 {
5939 case Lisp_Misc_Marker:
5940 /* DO NOT mark thru the marker's chain.
5941 The buffer's markers chain does not preserve markers from gc;
5942 instead, markers are removed from the chain when freed by gc. */
5943 XMISCANY (obj)->gcmarkbit = 1;
5944 break;
5945
5946 case Lisp_Misc_Save_Value:
5947 XMISCANY (obj)->gcmarkbit = 1;
5948 {
5949 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5950 /* If `save_type' is zero, `data[0].pointer' is the address
5951 of a memory area containing `data[1].integer' potential
5952 Lisp_Objects. */
5953 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5954 {
5955 Lisp_Object *p = ptr->data[0].pointer;
5956 ptrdiff_t nelt;
5957 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5958 mark_maybe_object (*p);
5959 }
5960 else
5961 {
5962 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5963 int i;
5964 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5965 if (save_type (ptr, i) == SAVE_OBJECT)
5966 mark_object (ptr->data[i].object);
5967 }
5968 }
5969 break;
5970
5971 case Lisp_Misc_Overlay:
5972 mark_overlay (XOVERLAY (obj));
5973 break;
5974
5975 default:
5976 emacs_abort ();
5977 }
5978 break;
5979
5980 case Lisp_Cons:
5981 {
5982 register struct Lisp_Cons *ptr = XCONS (obj);
5983 if (CONS_MARKED_P (ptr))
5984 break;
5985 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5986 CONS_MARK (ptr);
5987 /* If the cdr is nil, avoid recursion for the car. */
5988 if (EQ (ptr->u.cdr, Qnil))
5989 {
5990 obj = ptr->car;
5991 cdr_count = 0;
5992 goto loop;
5993 }
5994 mark_object (ptr->car);
5995 obj = ptr->u.cdr;
5996 cdr_count++;
5997 if (cdr_count == mark_object_loop_halt)
5998 emacs_abort ();
5999 goto loop;
6000 }
6001
6002 case Lisp_Float:
6003 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6004 FLOAT_MARK (XFLOAT (obj));
6005 break;
6006
6007 case_Lisp_Int:
6008 break;
6009
6010 default:
6011 emacs_abort ();
6012 }
6013
6014 #undef CHECK_LIVE
6015 #undef CHECK_ALLOCATED
6016 #undef CHECK_ALLOCATED_AND_LIVE
6017 }
6018 /* Mark the Lisp pointers in the terminal objects.
6019 Called by Fgarbage_collect. */
6020
6021 static void
6022 mark_terminals (void)
6023 {
6024 struct terminal *t;
6025 for (t = terminal_list; t; t = t->next_terminal)
6026 {
6027 eassert (t->name != NULL);
6028 #ifdef HAVE_WINDOW_SYSTEM
6029 /* If a terminal object is reachable from a stacpro'ed object,
6030 it might have been marked already. Make sure the image cache
6031 gets marked. */
6032 mark_image_cache (t->image_cache);
6033 #endif /* HAVE_WINDOW_SYSTEM */
6034 if (!VECTOR_MARKED_P (t))
6035 mark_vectorlike ((struct Lisp_Vector *)t);
6036 }
6037 }
6038
6039
6040
6041 /* Value is non-zero if OBJ will survive the current GC because it's
6042 either marked or does not need to be marked to survive. */
6043
6044 bool
6045 survives_gc_p (Lisp_Object obj)
6046 {
6047 bool survives_p;
6048
6049 switch (XTYPE (obj))
6050 {
6051 case_Lisp_Int:
6052 survives_p = 1;
6053 break;
6054
6055 case Lisp_Symbol:
6056 survives_p = XSYMBOL (obj)->gcmarkbit;
6057 break;
6058
6059 case Lisp_Misc:
6060 survives_p = XMISCANY (obj)->gcmarkbit;
6061 break;
6062
6063 case Lisp_String:
6064 survives_p = STRING_MARKED_P (XSTRING (obj));
6065 break;
6066
6067 case Lisp_Vectorlike:
6068 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6069 break;
6070
6071 case Lisp_Cons:
6072 survives_p = CONS_MARKED_P (XCONS (obj));
6073 break;
6074
6075 case Lisp_Float:
6076 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6077 break;
6078
6079 default:
6080 emacs_abort ();
6081 }
6082
6083 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6084 }
6085
6086
6087 \f
6088 /* Sweep: find all structures not marked, and free them. */
6089
6090 static void
6091 gc_sweep (void)
6092 {
6093 /* Remove or mark entries in weak hash tables.
6094 This must be done before any object is unmarked. */
6095 sweep_weak_hash_tables ();
6096
6097 sweep_strings ();
6098 check_string_bytes (!noninteractive);
6099
6100 /* Put all unmarked conses on free list */
6101 {
6102 register struct cons_block *cblk;
6103 struct cons_block **cprev = &cons_block;
6104 register int lim = cons_block_index;
6105 EMACS_INT num_free = 0, num_used = 0;
6106
6107 cons_free_list = 0;
6108
6109 for (cblk = cons_block; cblk; cblk = *cprev)
6110 {
6111 register int i = 0;
6112 int this_free = 0;
6113 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6114
6115 /* Scan the mark bits an int at a time. */
6116 for (i = 0; i < ilim; i++)
6117 {
6118 if (cblk->gcmarkbits[i] == -1)
6119 {
6120 /* Fast path - all cons cells for this int are marked. */
6121 cblk->gcmarkbits[i] = 0;
6122 num_used += BITS_PER_INT;
6123 }
6124 else
6125 {
6126 /* Some cons cells for this int are not marked.
6127 Find which ones, and free them. */
6128 int start, pos, stop;
6129
6130 start = i * BITS_PER_INT;
6131 stop = lim - start;
6132 if (stop > BITS_PER_INT)
6133 stop = BITS_PER_INT;
6134 stop += start;
6135
6136 for (pos = start; pos < stop; pos++)
6137 {
6138 if (!CONS_MARKED_P (&cblk->conses[pos]))
6139 {
6140 this_free++;
6141 cblk->conses[pos].u.chain = cons_free_list;
6142 cons_free_list = &cblk->conses[pos];
6143 #if GC_MARK_STACK
6144 cons_free_list->car = Vdead;
6145 #endif
6146 }
6147 else
6148 {
6149 num_used++;
6150 CONS_UNMARK (&cblk->conses[pos]);
6151 }
6152 }
6153 }
6154 }
6155
6156 lim = CONS_BLOCK_SIZE;
6157 /* If this block contains only free conses and we have already
6158 seen more than two blocks worth of free conses then deallocate
6159 this block. */
6160 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6161 {
6162 *cprev = cblk->next;
6163 /* Unhook from the free list. */
6164 cons_free_list = cblk->conses[0].u.chain;
6165 lisp_align_free (cblk);
6166 }
6167 else
6168 {
6169 num_free += this_free;
6170 cprev = &cblk->next;
6171 }
6172 }
6173 total_conses = num_used;
6174 total_free_conses = num_free;
6175 }
6176
6177 /* Put all unmarked floats on free list */
6178 {
6179 register struct float_block *fblk;
6180 struct float_block **fprev = &float_block;
6181 register int lim = float_block_index;
6182 EMACS_INT num_free = 0, num_used = 0;
6183
6184 float_free_list = 0;
6185
6186 for (fblk = float_block; fblk; fblk = *fprev)
6187 {
6188 register int i;
6189 int this_free = 0;
6190 for (i = 0; i < lim; i++)
6191 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6192 {
6193 this_free++;
6194 fblk->floats[i].u.chain = float_free_list;
6195 float_free_list = &fblk->floats[i];
6196 }
6197 else
6198 {
6199 num_used++;
6200 FLOAT_UNMARK (&fblk->floats[i]);
6201 }
6202 lim = FLOAT_BLOCK_SIZE;
6203 /* If this block contains only free floats and we have already
6204 seen more than two blocks worth of free floats then deallocate
6205 this block. */
6206 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6207 {
6208 *fprev = fblk->next;
6209 /* Unhook from the free list. */
6210 float_free_list = fblk->floats[0].u.chain;
6211 lisp_align_free (fblk);
6212 }
6213 else
6214 {
6215 num_free += this_free;
6216 fprev = &fblk->next;
6217 }
6218 }
6219 total_floats = num_used;
6220 total_free_floats = num_free;
6221 }
6222
6223 /* Put all unmarked intervals on free list */
6224 {
6225 register struct interval_block *iblk;
6226 struct interval_block **iprev = &interval_block;
6227 register int lim = interval_block_index;
6228 EMACS_INT num_free = 0, num_used = 0;
6229
6230 interval_free_list = 0;
6231
6232 for (iblk = interval_block; iblk; iblk = *iprev)
6233 {
6234 register int i;
6235 int this_free = 0;
6236
6237 for (i = 0; i < lim; i++)
6238 {
6239 if (!iblk->intervals[i].gcmarkbit)
6240 {
6241 set_interval_parent (&iblk->intervals[i], interval_free_list);
6242 interval_free_list = &iblk->intervals[i];
6243 this_free++;
6244 }
6245 else
6246 {
6247 num_used++;
6248 iblk->intervals[i].gcmarkbit = 0;
6249 }
6250 }
6251 lim = INTERVAL_BLOCK_SIZE;
6252 /* If this block contains only free intervals and we have already
6253 seen more than two blocks worth of free intervals then
6254 deallocate this block. */
6255 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6256 {
6257 *iprev = iblk->next;
6258 /* Unhook from the free list. */
6259 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6260 lisp_free (iblk);
6261 }
6262 else
6263 {
6264 num_free += this_free;
6265 iprev = &iblk->next;
6266 }
6267 }
6268 total_intervals = num_used;
6269 total_free_intervals = num_free;
6270 }
6271
6272 /* Put all unmarked symbols on free list */
6273 {
6274 register struct symbol_block *sblk;
6275 struct symbol_block **sprev = &symbol_block;
6276 register int lim = symbol_block_index;
6277 EMACS_INT num_free = 0, num_used = 0;
6278
6279 symbol_free_list = NULL;
6280
6281 for (sblk = symbol_block; sblk; sblk = *sprev)
6282 {
6283 int this_free = 0;
6284 union aligned_Lisp_Symbol *sym = sblk->symbols;
6285 union aligned_Lisp_Symbol *end = sym + lim;
6286
6287 for (; sym < end; ++sym)
6288 {
6289 /* Check if the symbol was created during loadup. In such a case
6290 it might be pointed to by pure bytecode which we don't trace,
6291 so we conservatively assume that it is live. */
6292 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6293
6294 if (!sym->s.gcmarkbit && !pure_p)
6295 {
6296 if (sym->s.redirect == SYMBOL_LOCALIZED)
6297 xfree (SYMBOL_BLV (&sym->s));
6298 sym->s.next = symbol_free_list;
6299 symbol_free_list = &sym->s;
6300 #if GC_MARK_STACK
6301 symbol_free_list->function = Vdead;
6302 #endif
6303 ++this_free;
6304 }
6305 else
6306 {
6307 ++num_used;
6308 if (!pure_p)
6309 UNMARK_STRING (XSTRING (sym->s.name));
6310 sym->s.gcmarkbit = 0;
6311 }
6312 }
6313
6314 lim = SYMBOL_BLOCK_SIZE;
6315 /* If this block contains only free symbols and we have already
6316 seen more than two blocks worth of free symbols then deallocate
6317 this block. */
6318 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6319 {
6320 *sprev = sblk->next;
6321 /* Unhook from the free list. */
6322 symbol_free_list = sblk->symbols[0].s.next;
6323 lisp_free (sblk);
6324 }
6325 else
6326 {
6327 num_free += this_free;
6328 sprev = &sblk->next;
6329 }
6330 }
6331 total_symbols = num_used;
6332 total_free_symbols = num_free;
6333 }
6334
6335 /* Put all unmarked misc's on free list.
6336 For a marker, first unchain it from the buffer it points into. */
6337 {
6338 register struct marker_block *mblk;
6339 struct marker_block **mprev = &marker_block;
6340 register int lim = marker_block_index;
6341 EMACS_INT num_free = 0, num_used = 0;
6342
6343 marker_free_list = 0;
6344
6345 for (mblk = marker_block; mblk; mblk = *mprev)
6346 {
6347 register int i;
6348 int this_free = 0;
6349
6350 for (i = 0; i < lim; i++)
6351 {
6352 if (!mblk->markers[i].m.u_any.gcmarkbit)
6353 {
6354 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6355 unchain_marker (&mblk->markers[i].m.u_marker);
6356 /* Set the type of the freed object to Lisp_Misc_Free.
6357 We could leave the type alone, since nobody checks it,
6358 but this might catch bugs faster. */
6359 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6360 mblk->markers[i].m.u_free.chain = marker_free_list;
6361 marker_free_list = &mblk->markers[i].m;
6362 this_free++;
6363 }
6364 else
6365 {
6366 num_used++;
6367 mblk->markers[i].m.u_any.gcmarkbit = 0;
6368 }
6369 }
6370 lim = MARKER_BLOCK_SIZE;
6371 /* If this block contains only free markers and we have already
6372 seen more than two blocks worth of free markers then deallocate
6373 this block. */
6374 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6375 {
6376 *mprev = mblk->next;
6377 /* Unhook from the free list. */
6378 marker_free_list = mblk->markers[0].m.u_free.chain;
6379 lisp_free (mblk);
6380 }
6381 else
6382 {
6383 num_free += this_free;
6384 mprev = &mblk->next;
6385 }
6386 }
6387
6388 total_markers = num_used;
6389 total_free_markers = num_free;
6390 }
6391
6392 /* Free all unmarked buffers */
6393 {
6394 register struct buffer *buffer, **bprev = &all_buffers;
6395
6396 total_buffers = 0;
6397 for (buffer = all_buffers; buffer; buffer = *bprev)
6398 if (!VECTOR_MARKED_P (buffer))
6399 {
6400 *bprev = buffer->next;
6401 lisp_free (buffer);
6402 }
6403 else
6404 {
6405 VECTOR_UNMARK (buffer);
6406 /* Do not use buffer_(set|get)_intervals here. */
6407 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6408 total_buffers++;
6409 bprev = &buffer->next;
6410 }
6411 }
6412
6413 sweep_vectors ();
6414 check_string_bytes (!noninteractive);
6415 }
6416
6417
6418
6419 \f
6420 /* Debugging aids. */
6421
6422 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6423 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6424 This may be helpful in debugging Emacs's memory usage.
6425 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6426 (void)
6427 {
6428 Lisp_Object end;
6429
6430 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6431
6432 return end;
6433 }
6434
6435 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6436 doc: /* Return a list of counters that measure how much consing there has been.
6437 Each of these counters increments for a certain kind of object.
6438 The counters wrap around from the largest positive integer to zero.
6439 Garbage collection does not decrease them.
6440 The elements of the value are as follows:
6441 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6442 All are in units of 1 = one object consed
6443 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6444 objects consed.
6445 MISCS include overlays, markers, and some internal types.
6446 Frames, windows, buffers, and subprocesses count as vectors
6447 (but the contents of a buffer's text do not count here). */)
6448 (void)
6449 {
6450 return listn (CONSTYPE_HEAP, 8,
6451 bounded_number (cons_cells_consed),
6452 bounded_number (floats_consed),
6453 bounded_number (vector_cells_consed),
6454 bounded_number (symbols_consed),
6455 bounded_number (string_chars_consed),
6456 bounded_number (misc_objects_consed),
6457 bounded_number (intervals_consed),
6458 bounded_number (strings_consed));
6459 }
6460
6461 /* Find at most FIND_MAX symbols which have OBJ as their value or
6462 function. This is used in gdbinit's `xwhichsymbols' command. */
6463
6464 Lisp_Object
6465 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6466 {
6467 struct symbol_block *sblk;
6468 ptrdiff_t gc_count = inhibit_garbage_collection ();
6469 Lisp_Object found = Qnil;
6470
6471 if (! DEADP (obj))
6472 {
6473 for (sblk = symbol_block; sblk; sblk = sblk->next)
6474 {
6475 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6476 int bn;
6477
6478 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6479 {
6480 struct Lisp_Symbol *sym = &aligned_sym->s;
6481 Lisp_Object val;
6482 Lisp_Object tem;
6483
6484 if (sblk == symbol_block && bn >= symbol_block_index)
6485 break;
6486
6487 XSETSYMBOL (tem, sym);
6488 val = find_symbol_value (tem);
6489 if (EQ (val, obj)
6490 || EQ (sym->function, obj)
6491 || (!NILP (sym->function)
6492 && COMPILEDP (sym->function)
6493 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6494 || (!NILP (val)
6495 && COMPILEDP (val)
6496 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6497 {
6498 found = Fcons (tem, found);
6499 if (--find_max == 0)
6500 goto out;
6501 }
6502 }
6503 }
6504 }
6505
6506 out:
6507 unbind_to (gc_count, Qnil);
6508 return found;
6509 }
6510
6511 #ifdef ENABLE_CHECKING
6512
6513 bool suppress_checking;
6514
6515 void
6516 die (const char *msg, const char *file, int line)
6517 {
6518 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6519 file, line, msg);
6520 terminate_due_to_signal (SIGABRT, INT_MAX);
6521 }
6522 #endif
6523 \f
6524 /* Initialization. */
6525
6526 void
6527 init_alloc_once (void)
6528 {
6529 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6530 purebeg = PUREBEG;
6531 pure_size = PURESIZE;
6532
6533 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6534 mem_init ();
6535 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6536 #endif
6537
6538 #ifdef DOUG_LEA_MALLOC
6539 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6540 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6541 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6542 #endif
6543 init_strings ();
6544 init_vectors ();
6545
6546 refill_memory_reserve ();
6547 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6548 }
6549
6550 void
6551 init_alloc (void)
6552 {
6553 gcprolist = 0;
6554 byte_stack_list = 0;
6555 #if GC_MARK_STACK
6556 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6557 setjmp_tested_p = longjmps_done = 0;
6558 #endif
6559 #endif
6560 Vgc_elapsed = make_float (0.0);
6561 gcs_done = 0;
6562 }
6563
6564 void
6565 syms_of_alloc (void)
6566 {
6567 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6568 doc: /* Number of bytes of consing between garbage collections.
6569 Garbage collection can happen automatically once this many bytes have been
6570 allocated since the last garbage collection. All data types count.
6571
6572 Garbage collection happens automatically only when `eval' is called.
6573
6574 By binding this temporarily to a large number, you can effectively
6575 prevent garbage collection during a part of the program.
6576 See also `gc-cons-percentage'. */);
6577
6578 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6579 doc: /* Portion of the heap used for allocation.
6580 Garbage collection can happen automatically once this portion of the heap
6581 has been allocated since the last garbage collection.
6582 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6583 Vgc_cons_percentage = make_float (0.1);
6584
6585 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6586 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6587
6588 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6589 doc: /* Number of cons cells that have been consed so far. */);
6590
6591 DEFVAR_INT ("floats-consed", floats_consed,
6592 doc: /* Number of floats that have been consed so far. */);
6593
6594 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6595 doc: /* Number of vector cells that have been consed so far. */);
6596
6597 DEFVAR_INT ("symbols-consed", symbols_consed,
6598 doc: /* Number of symbols that have been consed so far. */);
6599
6600 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6601 doc: /* Number of string characters that have been consed so far. */);
6602
6603 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6604 doc: /* Number of miscellaneous objects that have been consed so far.
6605 These include markers and overlays, plus certain objects not visible
6606 to users. */);
6607
6608 DEFVAR_INT ("intervals-consed", intervals_consed,
6609 doc: /* Number of intervals that have been consed so far. */);
6610
6611 DEFVAR_INT ("strings-consed", strings_consed,
6612 doc: /* Number of strings that have been consed so far. */);
6613
6614 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6615 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6616 This means that certain objects should be allocated in shared (pure) space.
6617 It can also be set to a hash-table, in which case this table is used to
6618 do hash-consing of the objects allocated to pure space. */);
6619
6620 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6621 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6622 garbage_collection_messages = 0;
6623
6624 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6625 doc: /* Hook run after garbage collection has finished. */);
6626 Vpost_gc_hook = Qnil;
6627 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6628
6629 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6630 doc: /* Precomputed `signal' argument for memory-full error. */);
6631 /* We build this in advance because if we wait until we need it, we might
6632 not be able to allocate the memory to hold it. */
6633 Vmemory_signal_data
6634 = listn (CONSTYPE_PURE, 2, Qerror,
6635 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6636
6637 DEFVAR_LISP ("memory-full", Vmemory_full,
6638 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6639 Vmemory_full = Qnil;
6640
6641 DEFSYM (Qconses, "conses");
6642 DEFSYM (Qsymbols, "symbols");
6643 DEFSYM (Qmiscs, "miscs");
6644 DEFSYM (Qstrings, "strings");
6645 DEFSYM (Qvectors, "vectors");
6646 DEFSYM (Qfloats, "floats");
6647 DEFSYM (Qintervals, "intervals");
6648 DEFSYM (Qbuffers, "buffers");
6649 DEFSYM (Qstring_bytes, "string-bytes");
6650 DEFSYM (Qvector_slots, "vector-slots");
6651 DEFSYM (Qheap, "heap");
6652 DEFSYM (Qautomatic_gc, "Automatic GC");
6653
6654 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6655 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6656
6657 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6658 doc: /* Accumulated time elapsed in garbage collections.
6659 The time is in seconds as a floating point value. */);
6660 DEFVAR_INT ("gcs-done", gcs_done,
6661 doc: /* Accumulated number of garbage collections done. */);
6662
6663 defsubr (&Scons);
6664 defsubr (&Slist);
6665 defsubr (&Svector);
6666 defsubr (&Smake_byte_code);
6667 defsubr (&Smake_list);
6668 defsubr (&Smake_vector);
6669 defsubr (&Smake_string);
6670 defsubr (&Smake_bool_vector);
6671 defsubr (&Smake_symbol);
6672 defsubr (&Smake_marker);
6673 defsubr (&Spurecopy);
6674 defsubr (&Sgarbage_collect);
6675 defsubr (&Smemory_limit);
6676 defsubr (&Smemory_use_counts);
6677
6678 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6679 defsubr (&Sgc_status);
6680 #endif
6681 }
6682
6683 /* When compiled with GCC, GDB might say "No enum type named
6684 pvec_type" if we don't have at least one symbol with that type, and
6685 then xbacktrace could fail. Similarly for the other enums and
6686 their values. Some non-GCC compilers don't like these constructs. */
6687 #ifdef __GNUC__
6688 union
6689 {
6690 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6691 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6692 enum char_bits char_bits;
6693 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6694 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6695 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6696 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6697 enum Lisp_Bits Lisp_Bits;
6698 enum Lisp_Compiled Lisp_Compiled;
6699 enum maxargs maxargs;
6700 enum MAX_ALLOCA MAX_ALLOCA;
6701 enum More_Lisp_Bits More_Lisp_Bits;
6702 enum pvec_type pvec_type;
6703 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6704 #endif /* __GNUC__ */