Avoid long futile looping on a TTY under huge values of hscroll.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* UNBLOCK_INPUT; */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer
179 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
180 }
181 }
182
183 /* Clear the regexp cache w.r.t. a particular syntax table,
184 because it was changed.
185 There is no danger of memory leak here because re_compile_pattern
186 automagically manages the memory in each re_pattern_buffer struct,
187 based on its `allocated' and `buffer' values. */
188 void
189 clear_regexp_cache (void)
190 {
191 int i;
192
193 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
194 /* It's tempting to compare with the syntax-table we've actually changed,
195 but it's not sufficient because char-table inheritance means that
196 modifying one syntax-table can change others at the same time. */
197 if (!EQ (searchbufs[i].syntax_table, Qt))
198 searchbufs[i].regexp = Qnil;
199 }
200
201 /* Compile a regexp if necessary, but first check to see if there's one in
202 the cache.
203 PATTERN is the pattern to compile.
204 TRANSLATE is a translation table for ignoring case, or nil for none.
205 REGP is the structure that says where to store the "register"
206 values that will result from matching this pattern.
207 If it is 0, we should compile the pattern not to record any
208 subexpression bounds.
209 POSIX is nonzero if we want full backtracking (POSIX style)
210 for this pattern. 0 means backtrack only enough to get a valid match. */
211
212 struct re_pattern_buffer *
213 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
214 {
215 struct regexp_cache *cp, **cpp;
216
217 for (cpp = &searchbuf_head; ; cpp = &cp->next)
218 {
219 cp = *cpp;
220 /* Entries are initialized to nil, and may be set to nil by
221 compile_pattern_1 if the pattern isn't valid. Don't apply
222 string accessors in those cases. However, compile_pattern_1
223 is only applied to the cache entry we pick here to reuse. So
224 nil should never appear before a non-nil entry. */
225 if (NILP (cp->regexp))
226 goto compile_it;
227 if (SCHARS (cp->regexp) == SCHARS (pattern)
228 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
229 && !NILP (Fstring_equal (cp->regexp, pattern))
230 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
231 && cp->posix == posix
232 && (EQ (cp->syntax_table, Qt)
233 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
234 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
235 && cp->buf.charset_unibyte == charset_unibyte)
236 break;
237
238 /* If we're at the end of the cache, compile into the nil cell
239 we found, or the last (least recently used) cell with a
240 string value. */
241 if (cp->next == 0)
242 {
243 compile_it:
244 compile_pattern_1 (cp, pattern, translate, posix);
245 break;
246 }
247 }
248
249 /* When we get here, cp (aka *cpp) contains the compiled pattern,
250 either because we found it in the cache or because we just compiled it.
251 Move it to the front of the queue to mark it as most recently used. */
252 *cpp = cp->next;
253 cp->next = searchbuf_head;
254 searchbuf_head = cp;
255
256 /* Advise the searching functions about the space we have allocated
257 for register data. */
258 if (regp)
259 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
260
261 /* The compiled pattern can be used both for multibyte and unibyte
262 target. But, we have to tell which the pattern is used for. */
263 cp->buf.target_multibyte = multibyte;
264
265 return &cp->buf;
266 }
267
268 \f
269 static Lisp_Object
270 looking_at_1 (Lisp_Object string, int posix)
271 {
272 Lisp_Object val;
273 unsigned char *p1, *p2;
274 ptrdiff_t s1, s2;
275 register ptrdiff_t i;
276 struct re_pattern_buffer *bufp;
277
278 if (running_asynch_code)
279 save_search_regs ();
280
281 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
282 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
283 = BVAR (current_buffer, case_eqv_table);
284
285 CHECK_STRING (string);
286 bufp = compile_pattern (string,
287 (NILP (Vinhibit_changing_match_data)
288 ? &search_regs : NULL),
289 (!NILP (BVAR (current_buffer, case_fold_search))
290 ? BVAR (current_buffer, case_canon_table) : Qnil),
291 posix,
292 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
293
294 immediate_quit = 1;
295 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
296
297 /* Get pointers and sizes of the two strings
298 that make up the visible portion of the buffer. */
299
300 p1 = BEGV_ADDR;
301 s1 = GPT_BYTE - BEGV_BYTE;
302 p2 = GAP_END_ADDR;
303 s2 = ZV_BYTE - GPT_BYTE;
304 if (s1 < 0)
305 {
306 p2 = p1;
307 s2 = ZV_BYTE - BEGV_BYTE;
308 s1 = 0;
309 }
310 if (s2 < 0)
311 {
312 s1 = ZV_BYTE - BEGV_BYTE;
313 s2 = 0;
314 }
315
316 re_match_object = Qnil;
317
318 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
319 PT_BYTE - BEGV_BYTE,
320 (NILP (Vinhibit_changing_match_data)
321 ? &search_regs : NULL),
322 ZV_BYTE - BEGV_BYTE);
323 immediate_quit = 0;
324
325 if (i == -2)
326 matcher_overflow ();
327
328 val = (0 <= i ? Qt : Qnil);
329 if (NILP (Vinhibit_changing_match_data) && i >= 0)
330 for (i = 0; i < search_regs.num_regs; i++)
331 if (search_regs.start[i] >= 0)
332 {
333 search_regs.start[i]
334 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
335 search_regs.end[i]
336 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
337 }
338
339 /* Set last_thing_searched only when match data is changed. */
340 if (NILP (Vinhibit_changing_match_data))
341 XSETBUFFER (last_thing_searched, current_buffer);
342
343 return val;
344 }
345
346 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
347 doc: /* Return t if text after point matches regular expression REGEXP.
348 This function modifies the match data that `match-beginning',
349 `match-end' and `match-data' access; save and restore the match
350 data if you want to preserve them. */)
351 (Lisp_Object regexp)
352 {
353 return looking_at_1 (regexp, 0);
354 }
355
356 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
357 doc: /* Return t if text after point matches regular expression REGEXP.
358 Find the longest match, in accord with Posix regular expression rules.
359 This function modifies the match data that `match-beginning',
360 `match-end' and `match-data' access; save and restore the match
361 data if you want to preserve them. */)
362 (Lisp_Object regexp)
363 {
364 return looking_at_1 (regexp, 1);
365 }
366 \f
367 static Lisp_Object
368 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
369 {
370 ptrdiff_t val;
371 struct re_pattern_buffer *bufp;
372 EMACS_INT pos;
373 ptrdiff_t pos_byte, i;
374
375 if (running_asynch_code)
376 save_search_regs ();
377
378 CHECK_STRING (regexp);
379 CHECK_STRING (string);
380
381 if (NILP (start))
382 pos = 0, pos_byte = 0;
383 else
384 {
385 ptrdiff_t len = SCHARS (string);
386
387 CHECK_NUMBER (start);
388 pos = XINT (start);
389 if (pos < 0 && -pos <= len)
390 pos = len + pos;
391 else if (0 > pos || pos > len)
392 args_out_of_range (string, start);
393 pos_byte = string_char_to_byte (string, pos);
394 }
395
396 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
397 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
398 = BVAR (current_buffer, case_eqv_table);
399
400 bufp = compile_pattern (regexp,
401 (NILP (Vinhibit_changing_match_data)
402 ? &search_regs : NULL),
403 (!NILP (BVAR (current_buffer, case_fold_search))
404 ? BVAR (current_buffer, case_canon_table) : Qnil),
405 posix,
406 STRING_MULTIBYTE (string));
407 immediate_quit = 1;
408 re_match_object = string;
409
410 val = re_search (bufp, SSDATA (string),
411 SBYTES (string), pos_byte,
412 SBYTES (string) - pos_byte,
413 (NILP (Vinhibit_changing_match_data)
414 ? &search_regs : NULL));
415 immediate_quit = 0;
416
417 /* Set last_thing_searched only when match data is changed. */
418 if (NILP (Vinhibit_changing_match_data))
419 last_thing_searched = Qt;
420
421 if (val == -2)
422 matcher_overflow ();
423 if (val < 0) return Qnil;
424
425 if (NILP (Vinhibit_changing_match_data))
426 for (i = 0; i < search_regs.num_regs; i++)
427 if (search_regs.start[i] >= 0)
428 {
429 search_regs.start[i]
430 = string_byte_to_char (string, search_regs.start[i]);
431 search_regs.end[i]
432 = string_byte_to_char (string, search_regs.end[i]);
433 }
434
435 return make_number (string_byte_to_char (string, val));
436 }
437
438 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
439 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
440 Matching ignores case if `case-fold-search' is non-nil.
441 If third arg START is non-nil, start search at that index in STRING.
442 For index of first char beyond the match, do (match-end 0).
443 `match-end' and `match-beginning' also give indices of substrings
444 matched by parenthesis constructs in the pattern.
445
446 You can use the function `match-string' to extract the substrings
447 matched by the parenthesis constructions in REGEXP. */)
448 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
449 {
450 return string_match_1 (regexp, string, start, 0);
451 }
452
453 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
454 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
455 Find the longest match, in accord with Posix regular expression rules.
456 Case is ignored if `case-fold-search' is non-nil in the current buffer.
457 If third arg START is non-nil, start search at that index in STRING.
458 For index of first char beyond the match, do (match-end 0).
459 `match-end' and `match-beginning' also give indices of substrings
460 matched by parenthesis constructs in the pattern. */)
461 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
462 {
463 return string_match_1 (regexp, string, start, 1);
464 }
465
466 /* Match REGEXP against STRING, searching all of STRING,
467 and return the index of the match, or negative on failure.
468 This does not clobber the match data. */
469
470 ptrdiff_t
471 fast_string_match (Lisp_Object regexp, Lisp_Object string)
472 {
473 ptrdiff_t val;
474 struct re_pattern_buffer *bufp;
475
476 bufp = compile_pattern (regexp, 0, Qnil,
477 0, STRING_MULTIBYTE (string));
478 immediate_quit = 1;
479 re_match_object = string;
480
481 val = re_search (bufp, SSDATA (string),
482 SBYTES (string), 0,
483 SBYTES (string), 0);
484 immediate_quit = 0;
485 return val;
486 }
487
488 /* Match REGEXP against STRING, searching all of STRING ignoring case,
489 and return the index of the match, or negative on failure.
490 This does not clobber the match data.
491 We assume that STRING contains single-byte characters. */
492
493 ptrdiff_t
494 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498 size_t len = strlen (string);
499
500 regexp = string_make_unibyte (regexp);
501 re_match_object = Qt;
502 bufp = compile_pattern (regexp, 0,
503 Vascii_canon_table, 0,
504 0);
505 immediate_quit = 1;
506 val = re_search (bufp, string, len, 0, len, 0);
507 immediate_quit = 0;
508 return val;
509 }
510
511 /* Like fast_string_match but ignore case. */
512
513 ptrdiff_t
514 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
515 {
516 ptrdiff_t val;
517 struct re_pattern_buffer *bufp;
518
519 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
520 0, STRING_MULTIBYTE (string));
521 immediate_quit = 1;
522 re_match_object = string;
523
524 val = re_search (bufp, SSDATA (string),
525 SBYTES (string), 0,
526 SBYTES (string), 0);
527 immediate_quit = 0;
528 return val;
529 }
530 \f
531 /* Match REGEXP against the characters after POS to LIMIT, and return
532 the number of matched characters. If STRING is non-nil, match
533 against the characters in it. In that case, POS and LIMIT are
534 indices into the string. This function doesn't modify the match
535 data. */
536
537 ptrdiff_t
538 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
539 {
540 int multibyte;
541 struct re_pattern_buffer *buf;
542 unsigned char *p1, *p2;
543 ptrdiff_t s1, s2;
544 ptrdiff_t len;
545
546 if (STRINGP (string))
547 {
548 if (pos_byte < 0)
549 pos_byte = string_char_to_byte (string, pos);
550 if (limit_byte < 0)
551 limit_byte = string_char_to_byte (string, limit);
552 p1 = NULL;
553 s1 = 0;
554 p2 = SDATA (string);
555 s2 = SBYTES (string);
556 re_match_object = string;
557 multibyte = STRING_MULTIBYTE (string);
558 }
559 else
560 {
561 if (pos_byte < 0)
562 pos_byte = CHAR_TO_BYTE (pos);
563 if (limit_byte < 0)
564 limit_byte = CHAR_TO_BYTE (limit);
565 pos_byte -= BEGV_BYTE;
566 limit_byte -= BEGV_BYTE;
567 p1 = BEGV_ADDR;
568 s1 = GPT_BYTE - BEGV_BYTE;
569 p2 = GAP_END_ADDR;
570 s2 = ZV_BYTE - GPT_BYTE;
571 if (s1 < 0)
572 {
573 p2 = p1;
574 s2 = ZV_BYTE - BEGV_BYTE;
575 s1 = 0;
576 }
577 if (s2 < 0)
578 {
579 s1 = ZV_BYTE - BEGV_BYTE;
580 s2 = 0;
581 }
582 re_match_object = Qnil;
583 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
584 }
585
586 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
587 immediate_quit = 1;
588 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
589 pos_byte, NULL, limit_byte);
590 immediate_quit = 0;
591
592 return len;
593 }
594
595 \f
596 /* The newline cache: remembering which sections of text have no newlines. */
597
598 /* If the user has requested newline caching, make sure it's on.
599 Otherwise, make sure it's off.
600 This is our cheezy way of associating an action with the change of
601 state of a buffer-local variable. */
602 static void
603 newline_cache_on_off (struct buffer *buf)
604 {
605 if (NILP (BVAR (buf, cache_long_line_scans)))
606 {
607 /* It should be off. */
608 if (buf->newline_cache)
609 {
610 free_region_cache (buf->newline_cache);
611 buf->newline_cache = 0;
612 }
613 }
614 else
615 {
616 /* It should be on. */
617 if (buf->newline_cache == 0)
618 buf->newline_cache = new_region_cache ();
619 }
620 }
621
622 \f
623 /* Search for COUNT instances of the character TARGET between START and END.
624
625 If COUNT is positive, search forwards; END must be >= START.
626 If COUNT is negative, search backwards for the -COUNTth instance;
627 END must be <= START.
628 If COUNT is zero, do anything you please; run rogue, for all I care.
629
630 If END is zero, use BEGV or ZV instead, as appropriate for the
631 direction indicated by COUNT.
632
633 If we find COUNT instances, set *SHORTAGE to zero, and return the
634 position past the COUNTth match. Note that for reverse motion
635 this is not the same as the usual convention for Emacs motion commands.
636
637 If we don't find COUNT instances before reaching END, set *SHORTAGE
638 to the number of TARGETs left unfound, and return END.
639
640 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
641 except when inside redisplay. */
642
643 ptrdiff_t
644 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
645 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
646 {
647 struct region_cache *newline_cache;
648 int direction;
649
650 if (count > 0)
651 {
652 direction = 1;
653 if (! end) end = ZV;
654 }
655 else
656 {
657 direction = -1;
658 if (! end) end = BEGV;
659 }
660
661 newline_cache_on_off (current_buffer);
662 newline_cache = current_buffer->newline_cache;
663
664 if (shortage != 0)
665 *shortage = 0;
666
667 immediate_quit = allow_quit;
668
669 if (count > 0)
670 while (start != end)
671 {
672 /* Our innermost scanning loop is very simple; it doesn't know
673 about gaps, buffer ends, or the newline cache. ceiling is
674 the position of the last character before the next such
675 obstacle --- the last character the dumb search loop should
676 examine. */
677 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
678 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
679 ptrdiff_t tem;
680
681 /* If we're looking for a newline, consult the newline cache
682 to see where we can avoid some scanning. */
683 if (target == '\n' && newline_cache)
684 {
685 ptrdiff_t next_change;
686 immediate_quit = 0;
687 while (region_cache_forward
688 (current_buffer, newline_cache, start_byte, &next_change))
689 start_byte = next_change;
690 immediate_quit = allow_quit;
691
692 /* START should never be after END. */
693 if (start_byte > ceiling_byte)
694 start_byte = ceiling_byte;
695
696 /* Now the text after start is an unknown region, and
697 next_change is the position of the next known region. */
698 ceiling_byte = min (next_change - 1, ceiling_byte);
699 }
700
701 /* The dumb loop can only scan text stored in contiguous
702 bytes. BUFFER_CEILING_OF returns the last character
703 position that is contiguous, so the ceiling is the
704 position after that. */
705 tem = BUFFER_CEILING_OF (start_byte);
706 ceiling_byte = min (tem, ceiling_byte);
707
708 {
709 /* The termination address of the dumb loop. */
710 register unsigned char *ceiling_addr
711 = BYTE_POS_ADDR (ceiling_byte) + 1;
712 register unsigned char *cursor
713 = BYTE_POS_ADDR (start_byte);
714 unsigned char *base = cursor;
715
716 while (cursor < ceiling_addr)
717 {
718 unsigned char *scan_start = cursor;
719
720 /* The dumb loop. */
721 while (*cursor != target && ++cursor < ceiling_addr)
722 ;
723
724 /* If we're looking for newlines, cache the fact that
725 the region from start to cursor is free of them. */
726 if (target == '\n' && newline_cache)
727 know_region_cache (current_buffer, newline_cache,
728 BYTE_TO_CHAR (start_byte + scan_start - base),
729 BYTE_TO_CHAR (start_byte + cursor - base));
730
731 /* Did we find the target character? */
732 if (cursor < ceiling_addr)
733 {
734 if (--count == 0)
735 {
736 immediate_quit = 0;
737 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
738 }
739 cursor++;
740 }
741 }
742
743 start = BYTE_TO_CHAR (start_byte + cursor - base);
744 }
745 }
746 else
747 while (start > end)
748 {
749 /* The last character to check before the next obstacle. */
750 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
751 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
752 ptrdiff_t tem;
753
754 /* Consult the newline cache, if appropriate. */
755 if (target == '\n' && newline_cache)
756 {
757 ptrdiff_t next_change;
758 immediate_quit = 0;
759 while (region_cache_backward
760 (current_buffer, newline_cache, start_byte, &next_change))
761 start_byte = next_change;
762 immediate_quit = allow_quit;
763
764 /* Start should never be at or before end. */
765 if (start_byte <= ceiling_byte)
766 start_byte = ceiling_byte + 1;
767
768 /* Now the text before start is an unknown region, and
769 next_change is the position of the next known region. */
770 ceiling_byte = max (next_change, ceiling_byte);
771 }
772
773 /* Stop scanning before the gap. */
774 tem = BUFFER_FLOOR_OF (start_byte - 1);
775 ceiling_byte = max (tem, ceiling_byte);
776
777 {
778 /* The termination address of the dumb loop. */
779 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
780 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
781 unsigned char *base = cursor;
782
783 while (cursor >= ceiling_addr)
784 {
785 unsigned char *scan_start = cursor;
786
787 while (*cursor != target && --cursor >= ceiling_addr)
788 ;
789
790 /* If we're looking for newlines, cache the fact that
791 the region from after the cursor to start is free of them. */
792 if (target == '\n' && newline_cache)
793 know_region_cache (current_buffer, newline_cache,
794 BYTE_TO_CHAR (start_byte + cursor - base),
795 BYTE_TO_CHAR (start_byte + scan_start - base));
796
797 /* Did we find the target character? */
798 if (cursor >= ceiling_addr)
799 {
800 if (++count >= 0)
801 {
802 immediate_quit = 0;
803 return BYTE_TO_CHAR (start_byte + cursor - base);
804 }
805 cursor--;
806 }
807 }
808
809 start = BYTE_TO_CHAR (start_byte + cursor - base);
810 }
811 }
812
813 immediate_quit = 0;
814 if (shortage != 0)
815 *shortage = count * direction;
816 return start;
817 }
818 \f
819 /* Search for COUNT instances of a line boundary, which means either a
820 newline or (if selective display enabled) a carriage return.
821 Start at START. If COUNT is negative, search backwards.
822
823 We report the resulting position by calling TEMP_SET_PT_BOTH.
824
825 If we find COUNT instances. we position after (always after,
826 even if scanning backwards) the COUNTth match, and return 0.
827
828 If we don't find COUNT instances before reaching the end of the
829 buffer (or the beginning, if scanning backwards), we return
830 the number of line boundaries left unfound, and position at
831 the limit we bumped up against.
832
833 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
834 except in special cases. */
835
836 EMACS_INT
837 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
838 ptrdiff_t limit, ptrdiff_t limit_byte,
839 register EMACS_INT count, int allow_quit)
840 {
841 int direction = ((count > 0) ? 1 : -1);
842
843 register unsigned char *cursor;
844 unsigned char *base;
845
846 ptrdiff_t ceiling;
847 register unsigned char *ceiling_addr;
848
849 int old_immediate_quit = immediate_quit;
850
851 /* The code that follows is like scan_buffer
852 but checks for either newline or carriage return. */
853
854 if (allow_quit)
855 immediate_quit++;
856
857 start_byte = CHAR_TO_BYTE (start);
858
859 if (count > 0)
860 {
861 while (start_byte < limit_byte)
862 {
863 ceiling = BUFFER_CEILING_OF (start_byte);
864 ceiling = min (limit_byte - 1, ceiling);
865 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
866 base = (cursor = BYTE_POS_ADDR (start_byte));
867 while (1)
868 {
869 while (*cursor != '\n' && ++cursor != ceiling_addr)
870 ;
871
872 if (cursor != ceiling_addr)
873 {
874 if (--count == 0)
875 {
876 immediate_quit = old_immediate_quit;
877 start_byte = start_byte + cursor - base + 1;
878 start = BYTE_TO_CHAR (start_byte);
879 TEMP_SET_PT_BOTH (start, start_byte);
880 return 0;
881 }
882 else
883 if (++cursor == ceiling_addr)
884 break;
885 }
886 else
887 break;
888 }
889 start_byte += cursor - base;
890 }
891 }
892 else
893 {
894 while (start_byte > limit_byte)
895 {
896 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
897 ceiling = max (limit_byte, ceiling);
898 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
899 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
900 while (1)
901 {
902 while (--cursor != ceiling_addr && *cursor != '\n')
903 ;
904
905 if (cursor != ceiling_addr)
906 {
907 if (++count == 0)
908 {
909 immediate_quit = old_immediate_quit;
910 /* Return the position AFTER the match we found. */
911 start_byte = start_byte + cursor - base + 1;
912 start = BYTE_TO_CHAR (start_byte);
913 TEMP_SET_PT_BOTH (start, start_byte);
914 return 0;
915 }
916 }
917 else
918 break;
919 }
920 /* Here we add 1 to compensate for the last decrement
921 of CURSOR, which took it past the valid range. */
922 start_byte += cursor - base + 1;
923 }
924 }
925
926 TEMP_SET_PT_BOTH (limit, limit_byte);
927 immediate_quit = old_immediate_quit;
928
929 return count * direction;
930 }
931
932 ptrdiff_t
933 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
934 {
935 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
936 }
937
938 /* Like find_next_newline, but returns position before the newline,
939 not after, and only search up to TO. This isn't just
940 find_next_newline (...)-1, because you might hit TO. */
941
942 ptrdiff_t
943 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
944 {
945 ptrdiff_t shortage;
946 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
947
948 if (shortage == 0)
949 pos--;
950
951 return pos;
952 }
953 \f
954 /* Subroutines of Lisp buffer search functions. */
955
956 static Lisp_Object
957 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
958 Lisp_Object count, int direction, int RE, int posix)
959 {
960 register EMACS_INT np;
961 EMACS_INT lim;
962 ptrdiff_t lim_byte;
963 EMACS_INT n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 ptrdiff_t len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1103 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 ptrdiff_t len = SCHARS (string);
1107 ptrdiff_t len_byte = SBYTES (string);
1108 register ptrdiff_t i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 ptrdiff_t s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 ptrdiff_t val;
1161
1162 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1163 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1164 (NILP (Vinhibit_changing_match_data)
1165 ? &search_regs : &search_regs_1),
1166 /* Don't allow match past current point */
1167 pos_byte - BEGV_BYTE);
1168 if (val == -2)
1169 {
1170 matcher_overflow ();
1171 }
1172 if (val >= 0)
1173 {
1174 if (NILP (Vinhibit_changing_match_data))
1175 {
1176 pos_byte = search_regs.start[0] + BEGV_BYTE;
1177 for (i = 0; i < search_regs.num_regs; i++)
1178 if (search_regs.start[i] >= 0)
1179 {
1180 search_regs.start[i]
1181 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1182 search_regs.end[i]
1183 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1184 }
1185 XSETBUFFER (last_thing_searched, current_buffer);
1186 /* Set pos to the new position. */
1187 pos = search_regs.start[0];
1188 }
1189 else
1190 {
1191 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1192 /* Set pos to the new position. */
1193 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1194 }
1195 }
1196 else
1197 {
1198 immediate_quit = 0;
1199 return (n);
1200 }
1201 n++;
1202 }
1203 while (n > 0)
1204 {
1205 ptrdiff_t val;
1206
1207 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1208 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1209 (NILP (Vinhibit_changing_match_data)
1210 ? &search_regs : &search_regs_1),
1211 lim_byte - BEGV_BYTE);
1212 if (val == -2)
1213 {
1214 matcher_overflow ();
1215 }
1216 if (val >= 0)
1217 {
1218 if (NILP (Vinhibit_changing_match_data))
1219 {
1220 pos_byte = search_regs.end[0] + BEGV_BYTE;
1221 for (i = 0; i < search_regs.num_regs; i++)
1222 if (search_regs.start[i] >= 0)
1223 {
1224 search_regs.start[i]
1225 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1226 search_regs.end[i]
1227 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1228 }
1229 XSETBUFFER (last_thing_searched, current_buffer);
1230 pos = search_regs.end[0];
1231 }
1232 else
1233 {
1234 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1235 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1236 }
1237 }
1238 else
1239 {
1240 immediate_quit = 0;
1241 return (0 - n);
1242 }
1243 n--;
1244 }
1245 immediate_quit = 0;
1246 return (pos);
1247 }
1248 else /* non-RE case */
1249 {
1250 unsigned char *raw_pattern, *pat;
1251 ptrdiff_t raw_pattern_size;
1252 ptrdiff_t raw_pattern_size_byte;
1253 unsigned char *patbuf;
1254 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1255 unsigned char *base_pat;
1256 /* Set to positive if we find a non-ASCII char that need
1257 translation. Otherwise set to zero later. */
1258 int char_base = -1;
1259 int boyer_moore_ok = 1;
1260
1261 /* MULTIBYTE says whether the text to be searched is multibyte.
1262 We must convert PATTERN to match that, or we will not really
1263 find things right. */
1264
1265 if (multibyte == STRING_MULTIBYTE (string))
1266 {
1267 raw_pattern = SDATA (string);
1268 raw_pattern_size = SCHARS (string);
1269 raw_pattern_size_byte = SBYTES (string);
1270 }
1271 else if (multibyte)
1272 {
1273 raw_pattern_size = SCHARS (string);
1274 raw_pattern_size_byte
1275 = count_size_as_multibyte (SDATA (string),
1276 raw_pattern_size);
1277 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1278 copy_text (SDATA (string), raw_pattern,
1279 SCHARS (string), 0, 1);
1280 }
1281 else
1282 {
1283 /* Converting multibyte to single-byte.
1284
1285 ??? Perhaps this conversion should be done in a special way
1286 by subtracting nonascii-insert-offset from each non-ASCII char,
1287 so that only the multibyte chars which really correspond to
1288 the chosen single-byte character set can possibly match. */
1289 raw_pattern_size = SCHARS (string);
1290 raw_pattern_size_byte = SCHARS (string);
1291 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1292 copy_text (SDATA (string), raw_pattern,
1293 SBYTES (string), 1, 0);
1294 }
1295
1296 /* Copy and optionally translate the pattern. */
1297 len = raw_pattern_size;
1298 len_byte = raw_pattern_size_byte;
1299 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1300 pat = patbuf;
1301 base_pat = raw_pattern;
1302 if (multibyte)
1303 {
1304 /* Fill patbuf by translated characters in STRING while
1305 checking if we can use boyer-moore search. If TRT is
1306 non-nil, we can use boyer-moore search only if TRT can be
1307 represented by the byte array of 256 elements. For that,
1308 all non-ASCII case-equivalents of all case-sensitive
1309 characters in STRING must belong to the same charset and
1310 row. */
1311
1312 while (--len >= 0)
1313 {
1314 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1315 int c, translated, inverse;
1316 int in_charlen, charlen;
1317
1318 /* If we got here and the RE flag is set, it's because we're
1319 dealing with a regexp known to be trivial, so the backslash
1320 just quotes the next character. */
1321 if (RE && *base_pat == '\\')
1322 {
1323 len--;
1324 raw_pattern_size--;
1325 len_byte--;
1326 base_pat++;
1327 }
1328
1329 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1330
1331 if (NILP (trt))
1332 {
1333 str = base_pat;
1334 charlen = in_charlen;
1335 }
1336 else
1337 {
1338 /* Translate the character. */
1339 TRANSLATE (translated, trt, c);
1340 charlen = CHAR_STRING (translated, str_base);
1341 str = str_base;
1342
1343 /* Check if C has any other case-equivalents. */
1344 TRANSLATE (inverse, inverse_trt, c);
1345 /* If so, check if we can use boyer-moore. */
1346 if (c != inverse && boyer_moore_ok)
1347 {
1348 /* Check if all equivalents belong to the same
1349 group of characters. Note that the check of C
1350 itself is done by the last iteration. */
1351 int this_char_base = -1;
1352
1353 while (boyer_moore_ok)
1354 {
1355 if (ASCII_BYTE_P (inverse))
1356 {
1357 if (this_char_base > 0)
1358 boyer_moore_ok = 0;
1359 else
1360 this_char_base = 0;
1361 }
1362 else if (CHAR_BYTE8_P (inverse))
1363 /* Boyer-moore search can't handle a
1364 translation of an eight-bit
1365 character. */
1366 boyer_moore_ok = 0;
1367 else if (this_char_base < 0)
1368 {
1369 this_char_base = inverse & ~0x3F;
1370 if (char_base < 0)
1371 char_base = this_char_base;
1372 else if (this_char_base != char_base)
1373 boyer_moore_ok = 0;
1374 }
1375 else if ((inverse & ~0x3F) != this_char_base)
1376 boyer_moore_ok = 0;
1377 if (c == inverse)
1378 break;
1379 TRANSLATE (inverse, inverse_trt, inverse);
1380 }
1381 }
1382 }
1383
1384 /* Store this character into the translated pattern. */
1385 memcpy (pat, str, charlen);
1386 pat += charlen;
1387 base_pat += in_charlen;
1388 len_byte -= in_charlen;
1389 }
1390
1391 /* If char_base is still negative we didn't find any translated
1392 non-ASCII characters. */
1393 if (char_base < 0)
1394 char_base = 0;
1395 }
1396 else
1397 {
1398 /* Unibyte buffer. */
1399 char_base = 0;
1400 while (--len >= 0)
1401 {
1402 int c, translated;
1403
1404 /* If we got here and the RE flag is set, it's because we're
1405 dealing with a regexp known to be trivial, so the backslash
1406 just quotes the next character. */
1407 if (RE && *base_pat == '\\')
1408 {
1409 len--;
1410 raw_pattern_size--;
1411 base_pat++;
1412 }
1413 c = *base_pat++;
1414 TRANSLATE (translated, trt, c);
1415 *pat++ = translated;
1416 }
1417 }
1418
1419 len_byte = pat - patbuf;
1420 pat = base_pat = patbuf;
1421
1422 if (boyer_moore_ok)
1423 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1424 pos_byte, lim_byte,
1425 char_base);
1426 else
1427 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1428 pos, pos_byte, lim, lim_byte);
1429 }
1430 }
1431 \f
1432 /* Do a simple string search N times for the string PAT,
1433 whose length is LEN/LEN_BYTE,
1434 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1435 TRT is the translation table.
1436
1437 Return the character position where the match is found.
1438 Otherwise, if M matches remained to be found, return -M.
1439
1440 This kind of search works regardless of what is in PAT and
1441 regardless of what is in TRT. It is used in cases where
1442 boyer_moore cannot work. */
1443
1444 static EMACS_INT
1445 simple_search (EMACS_INT n, unsigned char *pat,
1446 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1447 ptrdiff_t pos, ptrdiff_t pos_byte,
1448 ptrdiff_t lim, ptrdiff_t lim_byte)
1449 {
1450 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1451 int forward = n > 0;
1452 /* Number of buffer bytes matched. Note that this may be different
1453 from len_byte in a multibyte buffer. */
1454 ptrdiff_t match_byte = PTRDIFF_MIN;
1455
1456 if (lim > pos && multibyte)
1457 while (n > 0)
1458 {
1459 while (1)
1460 {
1461 /* Try matching at position POS. */
1462 ptrdiff_t this_pos = pos;
1463 ptrdiff_t this_pos_byte = pos_byte;
1464 ptrdiff_t this_len = len;
1465 unsigned char *p = pat;
1466 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1467 goto stop;
1468
1469 while (this_len > 0)
1470 {
1471 int charlen, buf_charlen;
1472 int pat_ch, buf_ch;
1473
1474 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1475 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1476 buf_charlen);
1477 TRANSLATE (buf_ch, trt, buf_ch);
1478
1479 if (buf_ch != pat_ch)
1480 break;
1481
1482 this_len--;
1483 p += charlen;
1484
1485 this_pos_byte += buf_charlen;
1486 this_pos++;
1487 }
1488
1489 if (this_len == 0)
1490 {
1491 match_byte = this_pos_byte - pos_byte;
1492 pos += len;
1493 pos_byte += match_byte;
1494 break;
1495 }
1496
1497 INC_BOTH (pos, pos_byte);
1498 }
1499
1500 n--;
1501 }
1502 else if (lim > pos)
1503 while (n > 0)
1504 {
1505 while (1)
1506 {
1507 /* Try matching at position POS. */
1508 ptrdiff_t this_pos = pos;
1509 ptrdiff_t this_len = len;
1510 unsigned char *p = pat;
1511
1512 if (pos + len > lim)
1513 goto stop;
1514
1515 while (this_len > 0)
1516 {
1517 int pat_ch = *p++;
1518 int buf_ch = FETCH_BYTE (this_pos);
1519 TRANSLATE (buf_ch, trt, buf_ch);
1520
1521 if (buf_ch != pat_ch)
1522 break;
1523
1524 this_len--;
1525 this_pos++;
1526 }
1527
1528 if (this_len == 0)
1529 {
1530 match_byte = len;
1531 pos += len;
1532 break;
1533 }
1534
1535 pos++;
1536 }
1537
1538 n--;
1539 }
1540 /* Backwards search. */
1541 else if (lim < pos && multibyte)
1542 while (n < 0)
1543 {
1544 while (1)
1545 {
1546 /* Try matching at position POS. */
1547 ptrdiff_t this_pos = pos;
1548 ptrdiff_t this_pos_byte = pos_byte;
1549 ptrdiff_t this_len = len;
1550 const unsigned char *p = pat + len_byte;
1551
1552 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1553 goto stop;
1554
1555 while (this_len > 0)
1556 {
1557 int pat_ch, buf_ch;
1558
1559 DEC_BOTH (this_pos, this_pos_byte);
1560 PREV_CHAR_BOUNDARY (p, pat);
1561 pat_ch = STRING_CHAR (p);
1562 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1563 TRANSLATE (buf_ch, trt, buf_ch);
1564
1565 if (buf_ch != pat_ch)
1566 break;
1567
1568 this_len--;
1569 }
1570
1571 if (this_len == 0)
1572 {
1573 match_byte = pos_byte - this_pos_byte;
1574 pos = this_pos;
1575 pos_byte = this_pos_byte;
1576 break;
1577 }
1578
1579 DEC_BOTH (pos, pos_byte);
1580 }
1581
1582 n++;
1583 }
1584 else if (lim < pos)
1585 while (n < 0)
1586 {
1587 while (1)
1588 {
1589 /* Try matching at position POS. */
1590 ptrdiff_t this_pos = pos - len;
1591 ptrdiff_t this_len = len;
1592 unsigned char *p = pat;
1593
1594 if (this_pos < lim)
1595 goto stop;
1596
1597 while (this_len > 0)
1598 {
1599 int pat_ch = *p++;
1600 int buf_ch = FETCH_BYTE (this_pos);
1601 TRANSLATE (buf_ch, trt, buf_ch);
1602
1603 if (buf_ch != pat_ch)
1604 break;
1605 this_len--;
1606 this_pos++;
1607 }
1608
1609 if (this_len == 0)
1610 {
1611 match_byte = len;
1612 pos -= len;
1613 break;
1614 }
1615
1616 pos--;
1617 }
1618
1619 n++;
1620 }
1621
1622 stop:
1623 if (n == 0)
1624 {
1625 eassert (match_byte != PTRDIFF_MIN);
1626 if (forward)
1627 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1628 else
1629 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1630
1631 return pos;
1632 }
1633 else if (n > 0)
1634 return -n;
1635 else
1636 return n;
1637 }
1638 \f
1639 /* Do Boyer-Moore search N times for the string BASE_PAT,
1640 whose length is LEN_BYTE,
1641 from buffer position POS_BYTE until LIM_BYTE.
1642 DIRECTION says which direction we search in.
1643 TRT and INVERSE_TRT are translation tables.
1644 Characters in PAT are already translated by TRT.
1645
1646 This kind of search works if all the characters in BASE_PAT that
1647 have nontrivial translation are the same aside from the last byte.
1648 This makes it possible to translate just the last byte of a
1649 character, and do so after just a simple test of the context.
1650 CHAR_BASE is nonzero if there is such a non-ASCII character.
1651
1652 If that criterion is not satisfied, do not call this function. */
1653
1654 static EMACS_INT
1655 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1656 ptrdiff_t len_byte,
1657 Lisp_Object trt, Lisp_Object inverse_trt,
1658 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1659 int char_base)
1660 {
1661 int direction = ((n > 0) ? 1 : -1);
1662 register ptrdiff_t dirlen;
1663 ptrdiff_t limit;
1664 int stride_for_teases = 0;
1665 int BM_tab[0400];
1666 register unsigned char *cursor, *p_limit;
1667 register ptrdiff_t i;
1668 register int j;
1669 unsigned char *pat, *pat_end;
1670 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1671
1672 unsigned char simple_translate[0400];
1673 /* These are set to the preceding bytes of a byte to be translated
1674 if char_base is nonzero. As the maximum byte length of a
1675 multibyte character is 5, we have to check at most four previous
1676 bytes. */
1677 int translate_prev_byte1 = 0;
1678 int translate_prev_byte2 = 0;
1679 int translate_prev_byte3 = 0;
1680
1681 /* The general approach is that we are going to maintain that we know
1682 the first (closest to the present position, in whatever direction
1683 we're searching) character that could possibly be the last
1684 (furthest from present position) character of a valid match. We
1685 advance the state of our knowledge by looking at that character
1686 and seeing whether it indeed matches the last character of the
1687 pattern. If it does, we take a closer look. If it does not, we
1688 move our pointer (to putative last characters) as far as is
1689 logically possible. This amount of movement, which I call a
1690 stride, will be the length of the pattern if the actual character
1691 appears nowhere in the pattern, otherwise it will be the distance
1692 from the last occurrence of that character to the end of the
1693 pattern. If the amount is zero we have a possible match. */
1694
1695 /* Here we make a "mickey mouse" BM table. The stride of the search
1696 is determined only by the last character of the putative match.
1697 If that character does not match, we will stride the proper
1698 distance to propose a match that superimposes it on the last
1699 instance of a character that matches it (per trt), or misses
1700 it entirely if there is none. */
1701
1702 dirlen = len_byte * direction;
1703
1704 /* Record position after the end of the pattern. */
1705 pat_end = base_pat + len_byte;
1706 /* BASE_PAT points to a character that we start scanning from.
1707 It is the first character in a forward search,
1708 the last character in a backward search. */
1709 if (direction < 0)
1710 base_pat = pat_end - 1;
1711
1712 /* A character that does not appear in the pattern induces a
1713 stride equal to the pattern length. */
1714 for (i = 0; i < 0400; i++)
1715 BM_tab[i] = dirlen;
1716
1717 /* We use this for translation, instead of TRT itself.
1718 We fill this in to handle the characters that actually
1719 occur in the pattern. Others don't matter anyway! */
1720 for (i = 0; i < 0400; i++)
1721 simple_translate[i] = i;
1722
1723 if (char_base)
1724 {
1725 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1726 byte following them are the target of translation. */
1727 unsigned char str[MAX_MULTIBYTE_LENGTH];
1728 int cblen = CHAR_STRING (char_base, str);
1729
1730 translate_prev_byte1 = str[cblen - 2];
1731 if (cblen > 2)
1732 {
1733 translate_prev_byte2 = str[cblen - 3];
1734 if (cblen > 3)
1735 translate_prev_byte3 = str[cblen - 4];
1736 }
1737 }
1738
1739 i = 0;
1740 while (i != dirlen)
1741 {
1742 unsigned char *ptr = base_pat + i;
1743 i += direction;
1744 if (! NILP (trt))
1745 {
1746 /* If the byte currently looking at is the last of a
1747 character to check case-equivalents, set CH to that
1748 character. An ASCII character and a non-ASCII character
1749 matching with CHAR_BASE are to be checked. */
1750 int ch = -1;
1751
1752 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1753 ch = *ptr;
1754 else if (char_base
1755 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1756 {
1757 unsigned char *charstart = ptr - 1;
1758
1759 while (! (CHAR_HEAD_P (*charstart)))
1760 charstart--;
1761 ch = STRING_CHAR (charstart);
1762 if (char_base != (ch & ~0x3F))
1763 ch = -1;
1764 }
1765
1766 if (ch >= 0200 && multibyte)
1767 j = (ch & 0x3F) | 0200;
1768 else
1769 j = *ptr;
1770
1771 if (i == dirlen)
1772 stride_for_teases = BM_tab[j];
1773
1774 BM_tab[j] = dirlen - i;
1775 /* A translation table is accompanied by its inverse -- see
1776 comment following downcase_table for details. */
1777 if (ch >= 0)
1778 {
1779 int starting_ch = ch;
1780 int starting_j = j;
1781
1782 while (1)
1783 {
1784 TRANSLATE (ch, inverse_trt, ch);
1785 if (ch >= 0200 && multibyte)
1786 j = (ch & 0x3F) | 0200;
1787 else
1788 j = ch;
1789
1790 /* For all the characters that map into CH,
1791 set up simple_translate to map the last byte
1792 into STARTING_J. */
1793 simple_translate[j] = starting_j;
1794 if (ch == starting_ch)
1795 break;
1796 BM_tab[j] = dirlen - i;
1797 }
1798 }
1799 }
1800 else
1801 {
1802 j = *ptr;
1803
1804 if (i == dirlen)
1805 stride_for_teases = BM_tab[j];
1806 BM_tab[j] = dirlen - i;
1807 }
1808 /* stride_for_teases tells how much to stride if we get a
1809 match on the far character but are subsequently
1810 disappointed, by recording what the stride would have been
1811 for that character if the last character had been
1812 different. */
1813 }
1814 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1815 /* loop invariant - POS_BYTE points at where last char (first
1816 char if reverse) of pattern would align in a possible match. */
1817 while (n != 0)
1818 {
1819 ptrdiff_t tail_end;
1820 unsigned char *tail_end_ptr;
1821
1822 /* It's been reported that some (broken) compiler thinks that
1823 Boolean expressions in an arithmetic context are unsigned.
1824 Using an explicit ?1:0 prevents this. */
1825 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1826 < 0)
1827 return (n * (0 - direction));
1828 /* First we do the part we can by pointers (maybe nothing) */
1829 QUIT;
1830 pat = base_pat;
1831 limit = pos_byte - dirlen + direction;
1832 if (direction > 0)
1833 {
1834 limit = BUFFER_CEILING_OF (limit);
1835 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1836 can take on without hitting edge of buffer or the gap. */
1837 limit = min (limit, pos_byte + 20000);
1838 limit = min (limit, lim_byte - 1);
1839 }
1840 else
1841 {
1842 limit = BUFFER_FLOOR_OF (limit);
1843 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1844 can take on without hitting edge of buffer or the gap. */
1845 limit = max (limit, pos_byte - 20000);
1846 limit = max (limit, lim_byte);
1847 }
1848 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1849 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1850
1851 if ((limit - pos_byte) * direction > 20)
1852 {
1853 unsigned char *p2;
1854
1855 p_limit = BYTE_POS_ADDR (limit);
1856 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1857 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1858 while (1) /* use one cursor setting as long as i can */
1859 {
1860 if (direction > 0) /* worth duplicating */
1861 {
1862 while (cursor <= p_limit)
1863 {
1864 if (BM_tab[*cursor] == 0)
1865 goto hit;
1866 cursor += BM_tab[*cursor];
1867 }
1868 }
1869 else
1870 {
1871 while (cursor >= p_limit)
1872 {
1873 if (BM_tab[*cursor] == 0)
1874 goto hit;
1875 cursor += BM_tab[*cursor];
1876 }
1877 }
1878 /* If you are here, cursor is beyond the end of the
1879 searched region. You fail to match within the
1880 permitted region and would otherwise try a character
1881 beyond that region. */
1882 break;
1883
1884 hit:
1885 i = dirlen - direction;
1886 if (! NILP (trt))
1887 {
1888 while ((i -= direction) + direction != 0)
1889 {
1890 int ch;
1891 cursor -= direction;
1892 /* Translate only the last byte of a character. */
1893 if (! multibyte
1894 || ((cursor == tail_end_ptr
1895 || CHAR_HEAD_P (cursor[1]))
1896 && (CHAR_HEAD_P (cursor[0])
1897 /* Check if this is the last byte of
1898 a translatable character. */
1899 || (translate_prev_byte1 == cursor[-1]
1900 && (CHAR_HEAD_P (translate_prev_byte1)
1901 || (translate_prev_byte2 == cursor[-2]
1902 && (CHAR_HEAD_P (translate_prev_byte2)
1903 || (translate_prev_byte3 == cursor[-3]))))))))
1904 ch = simple_translate[*cursor];
1905 else
1906 ch = *cursor;
1907 if (pat[i] != ch)
1908 break;
1909 }
1910 }
1911 else
1912 {
1913 while ((i -= direction) + direction != 0)
1914 {
1915 cursor -= direction;
1916 if (pat[i] != *cursor)
1917 break;
1918 }
1919 }
1920 cursor += dirlen - i - direction; /* fix cursor */
1921 if (i + direction == 0)
1922 {
1923 ptrdiff_t position, start, end;
1924
1925 cursor -= direction;
1926
1927 position = pos_byte + cursor - p2 + ((direction > 0)
1928 ? 1 - len_byte : 0);
1929 set_search_regs (position, len_byte);
1930
1931 if (NILP (Vinhibit_changing_match_data))
1932 {
1933 start = search_regs.start[0];
1934 end = search_regs.end[0];
1935 }
1936 else
1937 /* If Vinhibit_changing_match_data is non-nil,
1938 search_regs will not be changed. So let's
1939 compute start and end here. */
1940 {
1941 start = BYTE_TO_CHAR (position);
1942 end = BYTE_TO_CHAR (position + len_byte);
1943 }
1944
1945 if ((n -= direction) != 0)
1946 cursor += dirlen; /* to resume search */
1947 else
1948 return direction > 0 ? end : start;
1949 }
1950 else
1951 cursor += stride_for_teases; /* <sigh> we lose - */
1952 }
1953 pos_byte += cursor - p2;
1954 }
1955 else
1956 /* Now we'll pick up a clump that has to be done the hard
1957 way because it covers a discontinuity. */
1958 {
1959 limit = ((direction > 0)
1960 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1961 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1962 limit = ((direction > 0)
1963 ? min (limit + len_byte, lim_byte - 1)
1964 : max (limit - len_byte, lim_byte));
1965 /* LIMIT is now the last value POS_BYTE can have
1966 and still be valid for a possible match. */
1967 while (1)
1968 {
1969 /* This loop can be coded for space rather than
1970 speed because it will usually run only once.
1971 (the reach is at most len + 21, and typically
1972 does not exceed len). */
1973 while ((limit - pos_byte) * direction >= 0)
1974 {
1975 int ch = FETCH_BYTE (pos_byte);
1976 if (BM_tab[ch] == 0)
1977 goto hit2;
1978 pos_byte += BM_tab[ch];
1979 }
1980 break; /* ran off the end */
1981
1982 hit2:
1983 /* Found what might be a match. */
1984 i = dirlen - direction;
1985 while ((i -= direction) + direction != 0)
1986 {
1987 int ch;
1988 unsigned char *ptr;
1989 pos_byte -= direction;
1990 ptr = BYTE_POS_ADDR (pos_byte);
1991 /* Translate only the last byte of a character. */
1992 if (! multibyte
1993 || ((ptr == tail_end_ptr
1994 || CHAR_HEAD_P (ptr[1]))
1995 && (CHAR_HEAD_P (ptr[0])
1996 /* Check if this is the last byte of a
1997 translatable character. */
1998 || (translate_prev_byte1 == ptr[-1]
1999 && (CHAR_HEAD_P (translate_prev_byte1)
2000 || (translate_prev_byte2 == ptr[-2]
2001 && (CHAR_HEAD_P (translate_prev_byte2)
2002 || translate_prev_byte3 == ptr[-3])))))))
2003 ch = simple_translate[*ptr];
2004 else
2005 ch = *ptr;
2006 if (pat[i] != ch)
2007 break;
2008 }
2009 /* Above loop has moved POS_BYTE part or all the way
2010 back to the first pos (last pos if reverse).
2011 Set it once again at the last (first if reverse) char. */
2012 pos_byte += dirlen - i - direction;
2013 if (i + direction == 0)
2014 {
2015 ptrdiff_t position, start, end;
2016 pos_byte -= direction;
2017
2018 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2019 set_search_regs (position, len_byte);
2020
2021 if (NILP (Vinhibit_changing_match_data))
2022 {
2023 start = search_regs.start[0];
2024 end = search_regs.end[0];
2025 }
2026 else
2027 /* If Vinhibit_changing_match_data is non-nil,
2028 search_regs will not be changed. So let's
2029 compute start and end here. */
2030 {
2031 start = BYTE_TO_CHAR (position);
2032 end = BYTE_TO_CHAR (position + len_byte);
2033 }
2034
2035 if ((n -= direction) != 0)
2036 pos_byte += dirlen; /* to resume search */
2037 else
2038 return direction > 0 ? end : start;
2039 }
2040 else
2041 pos_byte += stride_for_teases;
2042 }
2043 }
2044 /* We have done one clump. Can we continue? */
2045 if ((lim_byte - pos_byte) * direction < 0)
2046 return ((0 - n) * direction);
2047 }
2048 return BYTE_TO_CHAR (pos_byte);
2049 }
2050
2051 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2052 for the overall match just found in the current buffer.
2053 Also clear out the match data for registers 1 and up. */
2054
2055 static void
2056 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2057 {
2058 ptrdiff_t i;
2059
2060 if (!NILP (Vinhibit_changing_match_data))
2061 return;
2062
2063 /* Make sure we have registers in which to store
2064 the match position. */
2065 if (search_regs.num_regs == 0)
2066 {
2067 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2068 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2069 search_regs.num_regs = 2;
2070 }
2071
2072 /* Clear out the other registers. */
2073 for (i = 1; i < search_regs.num_regs; i++)
2074 {
2075 search_regs.start[i] = -1;
2076 search_regs.end[i] = -1;
2077 }
2078
2079 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2080 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2081 XSETBUFFER (last_thing_searched, current_buffer);
2082 }
2083 \f
2084 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2085 "MSearch backward: ",
2086 doc: /* Search backward from point for STRING.
2087 Set point to the beginning of the occurrence found, and return point.
2088 An optional second argument bounds the search; it is a buffer position.
2089 The match found must not extend before that position.
2090 Optional third argument, if t, means if fail just return nil (no error).
2091 If not nil and not t, position at limit of search and return nil.
2092 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2093 successive occurrences. If COUNT is negative, search forward,
2094 instead of backward, for -COUNT occurrences.
2095
2096 Search case-sensitivity is determined by the value of the variable
2097 `case-fold-search', which see.
2098
2099 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2100 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2101 {
2102 return search_command (string, bound, noerror, count, -1, 0, 0);
2103 }
2104
2105 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2106 doc: /* Search forward from point for STRING.
2107 Set point to the end of the occurrence found, and return point.
2108 An optional second argument bounds the search; it is a buffer position.
2109 The match found must not extend after that position. A value of nil is
2110 equivalent to (point-max).
2111 Optional third argument, if t, means if fail just return nil (no error).
2112 If not nil and not t, move to limit of search and return nil.
2113 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2114 successive occurrences. If COUNT is negative, search backward,
2115 instead of forward, for -COUNT occurrences.
2116
2117 Search case-sensitivity is determined by the value of the variable
2118 `case-fold-search', which see.
2119
2120 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2121 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2122 {
2123 return search_command (string, bound, noerror, count, 1, 0, 0);
2124 }
2125
2126 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2127 "sRE search backward: ",
2128 doc: /* Search backward from point for match for regular expression REGEXP.
2129 Set point to the beginning of the match, and return point.
2130 The match found is the one starting last in the buffer
2131 and yet ending before the origin of the search.
2132 An optional second argument bounds the search; it is a buffer position.
2133 The match found must start at or after that position.
2134 Optional third argument, if t, means if fail just return nil (no error).
2135 If not nil and not t, move to limit of search and return nil.
2136 Optional fourth argument is repeat count--search for successive occurrences.
2137
2138 Search case-sensitivity is determined by the value of the variable
2139 `case-fold-search', which see.
2140
2141 See also the functions `match-beginning', `match-end', `match-string',
2142 and `replace-match'. */)
2143 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2144 {
2145 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2146 }
2147
2148 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2149 "sRE search: ",
2150 doc: /* Search forward from point for regular expression REGEXP.
2151 Set point to the end of the occurrence found, and return point.
2152 An optional second argument bounds the search; it is a buffer position.
2153 The match found must not extend after that position.
2154 Optional third argument, if t, means if fail just return nil (no error).
2155 If not nil and not t, move to limit of search and return nil.
2156 Optional fourth argument is repeat count--search for successive occurrences.
2157
2158 Search case-sensitivity is determined by the value of the variable
2159 `case-fold-search', which see.
2160
2161 See also the functions `match-beginning', `match-end', `match-string',
2162 and `replace-match'. */)
2163 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2164 {
2165 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2166 }
2167
2168 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2169 "sPosix search backward: ",
2170 doc: /* Search backward from point for match for regular expression REGEXP.
2171 Find the longest match in accord with Posix regular expression rules.
2172 Set point to the beginning of the match, and return point.
2173 The match found is the one starting last in the buffer
2174 and yet ending before the origin of the search.
2175 An optional second argument bounds the search; it is a buffer position.
2176 The match found must start at or after that position.
2177 Optional third argument, if t, means if fail just return nil (no error).
2178 If not nil and not t, move to limit of search and return nil.
2179 Optional fourth argument is repeat count--search for successive occurrences.
2180
2181 Search case-sensitivity is determined by the value of the variable
2182 `case-fold-search', which see.
2183
2184 See also the functions `match-beginning', `match-end', `match-string',
2185 and `replace-match'. */)
2186 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2187 {
2188 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2189 }
2190
2191 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2192 "sPosix search: ",
2193 doc: /* Search forward from point for regular expression REGEXP.
2194 Find the longest match in accord with Posix regular expression rules.
2195 Set point to the end of the occurrence found, and return point.
2196 An optional second argument bounds the search; it is a buffer position.
2197 The match found must not extend after that position.
2198 Optional third argument, if t, means if fail just return nil (no error).
2199 If not nil and not t, move to limit of search and return nil.
2200 Optional fourth argument is repeat count--search for successive occurrences.
2201
2202 Search case-sensitivity is determined by the value of the variable
2203 `case-fold-search', which see.
2204
2205 See also the functions `match-beginning', `match-end', `match-string',
2206 and `replace-match'. */)
2207 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2208 {
2209 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2210 }
2211 \f
2212 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2213 doc: /* Replace text matched by last search with NEWTEXT.
2214 Leave point at the end of the replacement text.
2215
2216 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2217 Otherwise maybe capitalize the whole text, or maybe just word initials,
2218 based on the replaced text.
2219 If the replaced text has only capital letters
2220 and has at least one multiletter word, convert NEWTEXT to all caps.
2221 Otherwise if all words are capitalized in the replaced text,
2222 capitalize each word in NEWTEXT.
2223
2224 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2225 Otherwise treat `\\' as special:
2226 `\\&' in NEWTEXT means substitute original matched text.
2227 `\\N' means substitute what matched the Nth `\\(...\\)'.
2228 If Nth parens didn't match, substitute nothing.
2229 `\\\\' means insert one `\\'.
2230 Case conversion does not apply to these substitutions.
2231
2232 FIXEDCASE and LITERAL are optional arguments.
2233
2234 The optional fourth argument STRING can be a string to modify.
2235 This is meaningful when the previous match was done against STRING,
2236 using `string-match'. When used this way, `replace-match'
2237 creates and returns a new string made by copying STRING and replacing
2238 the part of STRING that was matched.
2239
2240 The optional fifth argument SUBEXP specifies a subexpression;
2241 it says to replace just that subexpression with NEWTEXT,
2242 rather than replacing the entire matched text.
2243 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2244 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2245 NEWTEXT in place of subexp N.
2246 This is useful only after a regular expression search or match,
2247 since only regular expressions have distinguished subexpressions. */)
2248 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2249 {
2250 enum { nochange, all_caps, cap_initial } case_action;
2251 register ptrdiff_t pos, pos_byte;
2252 int some_multiletter_word;
2253 int some_lowercase;
2254 int some_uppercase;
2255 int some_nonuppercase_initial;
2256 register int c, prevc;
2257 ptrdiff_t sub;
2258 ptrdiff_t opoint, newpoint;
2259
2260 CHECK_STRING (newtext);
2261
2262 if (! NILP (string))
2263 CHECK_STRING (string);
2264
2265 case_action = nochange; /* We tried an initialization */
2266 /* but some C compilers blew it */
2267
2268 if (search_regs.num_regs <= 0)
2269 error ("`replace-match' called before any match found");
2270
2271 if (NILP (subexp))
2272 sub = 0;
2273 else
2274 {
2275 CHECK_NUMBER (subexp);
2276 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2277 args_out_of_range (subexp, make_number (search_regs.num_regs));
2278 sub = XINT (subexp);
2279 }
2280
2281 if (NILP (string))
2282 {
2283 if (search_regs.start[sub] < BEGV
2284 || search_regs.start[sub] > search_regs.end[sub]
2285 || search_regs.end[sub] > ZV)
2286 args_out_of_range (make_number (search_regs.start[sub]),
2287 make_number (search_regs.end[sub]));
2288 }
2289 else
2290 {
2291 if (search_regs.start[sub] < 0
2292 || search_regs.start[sub] > search_regs.end[sub]
2293 || search_regs.end[sub] > SCHARS (string))
2294 args_out_of_range (make_number (search_regs.start[sub]),
2295 make_number (search_regs.end[sub]));
2296 }
2297
2298 if (NILP (fixedcase))
2299 {
2300 /* Decide how to casify by examining the matched text. */
2301 ptrdiff_t last;
2302
2303 pos = search_regs.start[sub];
2304 last = search_regs.end[sub];
2305
2306 if (NILP (string))
2307 pos_byte = CHAR_TO_BYTE (pos);
2308 else
2309 pos_byte = string_char_to_byte (string, pos);
2310
2311 prevc = '\n';
2312 case_action = all_caps;
2313
2314 /* some_multiletter_word is set nonzero if any original word
2315 is more than one letter long. */
2316 some_multiletter_word = 0;
2317 some_lowercase = 0;
2318 some_nonuppercase_initial = 0;
2319 some_uppercase = 0;
2320
2321 while (pos < last)
2322 {
2323 if (NILP (string))
2324 {
2325 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2326 INC_BOTH (pos, pos_byte);
2327 }
2328 else
2329 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2330
2331 if (lowercasep (c))
2332 {
2333 /* Cannot be all caps if any original char is lower case */
2334
2335 some_lowercase = 1;
2336 if (SYNTAX (prevc) != Sword)
2337 some_nonuppercase_initial = 1;
2338 else
2339 some_multiletter_word = 1;
2340 }
2341 else if (uppercasep (c))
2342 {
2343 some_uppercase = 1;
2344 if (SYNTAX (prevc) != Sword)
2345 ;
2346 else
2347 some_multiletter_word = 1;
2348 }
2349 else
2350 {
2351 /* If the initial is a caseless word constituent,
2352 treat that like a lowercase initial. */
2353 if (SYNTAX (prevc) != Sword)
2354 some_nonuppercase_initial = 1;
2355 }
2356
2357 prevc = c;
2358 }
2359
2360 /* Convert to all caps if the old text is all caps
2361 and has at least one multiletter word. */
2362 if (! some_lowercase && some_multiletter_word)
2363 case_action = all_caps;
2364 /* Capitalize each word, if the old text has all capitalized words. */
2365 else if (!some_nonuppercase_initial && some_multiletter_word)
2366 case_action = cap_initial;
2367 else if (!some_nonuppercase_initial && some_uppercase)
2368 /* Should x -> yz, operating on X, give Yz or YZ?
2369 We'll assume the latter. */
2370 case_action = all_caps;
2371 else
2372 case_action = nochange;
2373 }
2374
2375 /* Do replacement in a string. */
2376 if (!NILP (string))
2377 {
2378 Lisp_Object before, after;
2379
2380 before = Fsubstring (string, make_number (0),
2381 make_number (search_regs.start[sub]));
2382 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2383
2384 /* Substitute parts of the match into NEWTEXT
2385 if desired. */
2386 if (NILP (literal))
2387 {
2388 ptrdiff_t lastpos = 0;
2389 ptrdiff_t lastpos_byte = 0;
2390 /* We build up the substituted string in ACCUM. */
2391 Lisp_Object accum;
2392 Lisp_Object middle;
2393 ptrdiff_t length = SBYTES (newtext);
2394
2395 accum = Qnil;
2396
2397 for (pos_byte = 0, pos = 0; pos_byte < length;)
2398 {
2399 ptrdiff_t substart = -1;
2400 ptrdiff_t subend = 0;
2401 int delbackslash = 0;
2402
2403 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2404
2405 if (c == '\\')
2406 {
2407 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2408
2409 if (c == '&')
2410 {
2411 substart = search_regs.start[sub];
2412 subend = search_regs.end[sub];
2413 }
2414 else if (c >= '1' && c <= '9')
2415 {
2416 if (c - '0' < search_regs.num_regs
2417 && 0 <= search_regs.start[c - '0'])
2418 {
2419 substart = search_regs.start[c - '0'];
2420 subend = search_regs.end[c - '0'];
2421 }
2422 else
2423 {
2424 /* If that subexp did not match,
2425 replace \\N with nothing. */
2426 substart = 0;
2427 subend = 0;
2428 }
2429 }
2430 else if (c == '\\')
2431 delbackslash = 1;
2432 else
2433 error ("Invalid use of `\\' in replacement text");
2434 }
2435 if (substart >= 0)
2436 {
2437 if (pos - 2 != lastpos)
2438 middle = substring_both (newtext, lastpos,
2439 lastpos_byte,
2440 pos - 2, pos_byte - 2);
2441 else
2442 middle = Qnil;
2443 accum = concat3 (accum, middle,
2444 Fsubstring (string,
2445 make_number (substart),
2446 make_number (subend)));
2447 lastpos = pos;
2448 lastpos_byte = pos_byte;
2449 }
2450 else if (delbackslash)
2451 {
2452 middle = substring_both (newtext, lastpos,
2453 lastpos_byte,
2454 pos - 1, pos_byte - 1);
2455
2456 accum = concat2 (accum, middle);
2457 lastpos = pos;
2458 lastpos_byte = pos_byte;
2459 }
2460 }
2461
2462 if (pos != lastpos)
2463 middle = substring_both (newtext, lastpos,
2464 lastpos_byte,
2465 pos, pos_byte);
2466 else
2467 middle = Qnil;
2468
2469 newtext = concat2 (accum, middle);
2470 }
2471
2472 /* Do case substitution in NEWTEXT if desired. */
2473 if (case_action == all_caps)
2474 newtext = Fupcase (newtext);
2475 else if (case_action == cap_initial)
2476 newtext = Fupcase_initials (newtext);
2477
2478 return concat3 (before, newtext, after);
2479 }
2480
2481 /* Record point, then move (quietly) to the start of the match. */
2482 if (PT >= search_regs.end[sub])
2483 opoint = PT - ZV;
2484 else if (PT > search_regs.start[sub])
2485 opoint = search_regs.end[sub] - ZV;
2486 else
2487 opoint = PT;
2488
2489 /* If we want non-literal replacement,
2490 perform substitution on the replacement string. */
2491 if (NILP (literal))
2492 {
2493 ptrdiff_t length = SBYTES (newtext);
2494 unsigned char *substed;
2495 ptrdiff_t substed_alloc_size, substed_len;
2496 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2497 int str_multibyte = STRING_MULTIBYTE (newtext);
2498 int really_changed = 0;
2499
2500 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2501 ? STRING_BYTES_BOUND
2502 : length * 2 + 100);
2503 substed = xmalloc (substed_alloc_size);
2504 substed_len = 0;
2505
2506 /* Go thru NEWTEXT, producing the actual text to insert in
2507 SUBSTED while adjusting multibyteness to that of the current
2508 buffer. */
2509
2510 for (pos_byte = 0, pos = 0; pos_byte < length;)
2511 {
2512 unsigned char str[MAX_MULTIBYTE_LENGTH];
2513 const unsigned char *add_stuff = NULL;
2514 ptrdiff_t add_len = 0;
2515 ptrdiff_t idx = -1;
2516
2517 if (str_multibyte)
2518 {
2519 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2520 if (!buf_multibyte)
2521 c = multibyte_char_to_unibyte (c);
2522 }
2523 else
2524 {
2525 /* Note that we don't have to increment POS. */
2526 c = SREF (newtext, pos_byte++);
2527 if (buf_multibyte)
2528 MAKE_CHAR_MULTIBYTE (c);
2529 }
2530
2531 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2532 or set IDX to a match index, which means put that part
2533 of the buffer text into SUBSTED. */
2534
2535 if (c == '\\')
2536 {
2537 really_changed = 1;
2538
2539 if (str_multibyte)
2540 {
2541 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2542 pos, pos_byte);
2543 if (!buf_multibyte && !ASCII_CHAR_P (c))
2544 c = multibyte_char_to_unibyte (c);
2545 }
2546 else
2547 {
2548 c = SREF (newtext, pos_byte++);
2549 if (buf_multibyte)
2550 MAKE_CHAR_MULTIBYTE (c);
2551 }
2552
2553 if (c == '&')
2554 idx = sub;
2555 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2556 {
2557 if (search_regs.start[c - '0'] >= 1)
2558 idx = c - '0';
2559 }
2560 else if (c == '\\')
2561 add_len = 1, add_stuff = (unsigned char *) "\\";
2562 else
2563 {
2564 xfree (substed);
2565 error ("Invalid use of `\\' in replacement text");
2566 }
2567 }
2568 else
2569 {
2570 add_len = CHAR_STRING (c, str);
2571 add_stuff = str;
2572 }
2573
2574 /* If we want to copy part of a previous match,
2575 set up ADD_STUFF and ADD_LEN to point to it. */
2576 if (idx >= 0)
2577 {
2578 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2579 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2580 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2581 move_gap (search_regs.start[idx]);
2582 add_stuff = BYTE_POS_ADDR (begbyte);
2583 }
2584
2585 /* Now the stuff we want to add to SUBSTED
2586 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2587
2588 /* Make sure SUBSTED is big enough. */
2589 if (substed_alloc_size - substed_len < add_len)
2590 substed =
2591 xpalloc (substed, &substed_alloc_size,
2592 add_len - (substed_alloc_size - substed_len),
2593 STRING_BYTES_BOUND, 1);
2594
2595 /* Now add to the end of SUBSTED. */
2596 if (add_stuff)
2597 {
2598 memcpy (substed + substed_len, add_stuff, add_len);
2599 substed_len += add_len;
2600 }
2601 }
2602
2603 if (really_changed)
2604 {
2605 if (buf_multibyte)
2606 {
2607 ptrdiff_t nchars =
2608 multibyte_chars_in_text (substed, substed_len);
2609
2610 newtext = make_multibyte_string ((char *) substed, nchars,
2611 substed_len);
2612 }
2613 else
2614 newtext = make_unibyte_string ((char *) substed, substed_len);
2615 }
2616 xfree (substed);
2617 }
2618
2619 /* Replace the old text with the new in the cleanest possible way. */
2620 replace_range (search_regs.start[sub], search_regs.end[sub],
2621 newtext, 1, 0, 1);
2622 newpoint = search_regs.start[sub] + SCHARS (newtext);
2623
2624 if (case_action == all_caps)
2625 Fupcase_region (make_number (search_regs.start[sub]),
2626 make_number (newpoint));
2627 else if (case_action == cap_initial)
2628 Fupcase_initials_region (make_number (search_regs.start[sub]),
2629 make_number (newpoint));
2630
2631 /* Adjust search data for this change. */
2632 {
2633 ptrdiff_t oldend = search_regs.end[sub];
2634 ptrdiff_t oldstart = search_regs.start[sub];
2635 ptrdiff_t change = newpoint - search_regs.end[sub];
2636 ptrdiff_t i;
2637
2638 for (i = 0; i < search_regs.num_regs; i++)
2639 {
2640 if (search_regs.start[i] >= oldend)
2641 search_regs.start[i] += change;
2642 else if (search_regs.start[i] > oldstart)
2643 search_regs.start[i] = oldstart;
2644 if (search_regs.end[i] >= oldend)
2645 search_regs.end[i] += change;
2646 else if (search_regs.end[i] > oldstart)
2647 search_regs.end[i] = oldstart;
2648 }
2649 }
2650
2651 /* Put point back where it was in the text. */
2652 if (opoint <= 0)
2653 TEMP_SET_PT (opoint + ZV);
2654 else
2655 TEMP_SET_PT (opoint);
2656
2657 /* Now move point "officially" to the start of the inserted replacement. */
2658 move_if_not_intangible (newpoint);
2659
2660 return Qnil;
2661 }
2662 \f
2663 static Lisp_Object
2664 match_limit (Lisp_Object num, int beginningp)
2665 {
2666 EMACS_INT n;
2667
2668 CHECK_NUMBER (num);
2669 n = XINT (num);
2670 if (n < 0)
2671 args_out_of_range (num, make_number (0));
2672 if (search_regs.num_regs <= 0)
2673 error ("No match data, because no search succeeded");
2674 if (n >= search_regs.num_regs
2675 || search_regs.start[n] < 0)
2676 return Qnil;
2677 return (make_number ((beginningp) ? search_regs.start[n]
2678 : search_regs.end[n]));
2679 }
2680
2681 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2682 doc: /* Return position of start of text matched by last search.
2683 SUBEXP, a number, specifies which parenthesized expression in the last
2684 regexp.
2685 Value is nil if SUBEXPth pair didn't match, or there were less than
2686 SUBEXP pairs.
2687 Zero means the entire text matched by the whole regexp or whole string. */)
2688 (Lisp_Object subexp)
2689 {
2690 return match_limit (subexp, 1);
2691 }
2692
2693 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2694 doc: /* Return position of end of text matched by last search.
2695 SUBEXP, a number, specifies which parenthesized expression in the last
2696 regexp.
2697 Value is nil if SUBEXPth pair didn't match, or there were less than
2698 SUBEXP pairs.
2699 Zero means the entire text matched by the whole regexp or whole string. */)
2700 (Lisp_Object subexp)
2701 {
2702 return match_limit (subexp, 0);
2703 }
2704
2705 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2706 doc: /* Return a list containing all info on what the last search matched.
2707 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2708 All the elements are markers or nil (nil if the Nth pair didn't match)
2709 if the last match was on a buffer; integers or nil if a string was matched.
2710 Use `set-match-data' to reinstate the data in this list.
2711
2712 If INTEGERS (the optional first argument) is non-nil, always use
2713 integers \(rather than markers) to represent buffer positions. In
2714 this case, and if the last match was in a buffer, the buffer will get
2715 stored as one additional element at the end of the list.
2716
2717 If REUSE is a list, reuse it as part of the value. If REUSE is long
2718 enough to hold all the values, and if INTEGERS is non-nil, no consing
2719 is done.
2720
2721 If optional third arg RESEAT is non-nil, any previous markers on the
2722 REUSE list will be modified to point to nowhere.
2723
2724 Return value is undefined if the last search failed. */)
2725 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2726 {
2727 Lisp_Object tail, prev;
2728 Lisp_Object *data;
2729 ptrdiff_t i, len;
2730
2731 if (!NILP (reseat))
2732 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2733 if (MARKERP (XCAR (tail)))
2734 {
2735 unchain_marker (XMARKER (XCAR (tail)));
2736 XSETCAR (tail, Qnil);
2737 }
2738
2739 if (NILP (last_thing_searched))
2740 return Qnil;
2741
2742 prev = Qnil;
2743
2744 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2745 * sizeof (Lisp_Object));
2746
2747 len = 0;
2748 for (i = 0; i < search_regs.num_regs; i++)
2749 {
2750 ptrdiff_t start = search_regs.start[i];
2751 if (start >= 0)
2752 {
2753 if (EQ (last_thing_searched, Qt)
2754 || ! NILP (integers))
2755 {
2756 XSETFASTINT (data[2 * i], start);
2757 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2758 }
2759 else if (BUFFERP (last_thing_searched))
2760 {
2761 data[2 * i] = Fmake_marker ();
2762 Fset_marker (data[2 * i],
2763 make_number (start),
2764 last_thing_searched);
2765 data[2 * i + 1] = Fmake_marker ();
2766 Fset_marker (data[2 * i + 1],
2767 make_number (search_regs.end[i]),
2768 last_thing_searched);
2769 }
2770 else
2771 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2772 abort ();
2773
2774 len = 2 * i + 2;
2775 }
2776 else
2777 data[2 * i] = data[2 * i + 1] = Qnil;
2778 }
2779
2780 if (BUFFERP (last_thing_searched) && !NILP (integers))
2781 {
2782 data[len] = last_thing_searched;
2783 len++;
2784 }
2785
2786 /* If REUSE is not usable, cons up the values and return them. */
2787 if (! CONSP (reuse))
2788 return Flist (len, data);
2789
2790 /* If REUSE is a list, store as many value elements as will fit
2791 into the elements of REUSE. */
2792 for (i = 0, tail = reuse; CONSP (tail);
2793 i++, tail = XCDR (tail))
2794 {
2795 if (i < len)
2796 XSETCAR (tail, data[i]);
2797 else
2798 XSETCAR (tail, Qnil);
2799 prev = tail;
2800 }
2801
2802 /* If we couldn't fit all value elements into REUSE,
2803 cons up the rest of them and add them to the end of REUSE. */
2804 if (i < len)
2805 XSETCDR (prev, Flist (len - i, data + i));
2806
2807 return reuse;
2808 }
2809
2810 /* We used to have an internal use variant of `reseat' described as:
2811
2812 If RESEAT is `evaporate', put the markers back on the free list
2813 immediately. No other references to the markers must exist in this
2814 case, so it is used only internally on the unwind stack and
2815 save-match-data from Lisp.
2816
2817 But it was ill-conceived: those supposedly-internal markers get exposed via
2818 the undo-list, so freeing them here is unsafe. */
2819
2820 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2821 doc: /* Set internal data on last search match from elements of LIST.
2822 LIST should have been created by calling `match-data' previously.
2823
2824 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2825 (register Lisp_Object list, Lisp_Object reseat)
2826 {
2827 ptrdiff_t i;
2828 register Lisp_Object marker;
2829
2830 if (running_asynch_code)
2831 save_search_regs ();
2832
2833 CHECK_LIST (list);
2834
2835 /* Unless we find a marker with a buffer or an explicit buffer
2836 in LIST, assume that this match data came from a string. */
2837 last_thing_searched = Qt;
2838
2839 /* Allocate registers if they don't already exist. */
2840 {
2841 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2842
2843 if (length > search_regs.num_regs)
2844 {
2845 ptrdiff_t num_regs = search_regs.num_regs;
2846 if (PTRDIFF_MAX < length)
2847 memory_full (SIZE_MAX);
2848 search_regs.start =
2849 xpalloc (search_regs.start, &num_regs, length - num_regs,
2850 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2851 search_regs.end =
2852 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2853
2854 for (i = search_regs.num_regs; i < num_regs; i++)
2855 search_regs.start[i] = -1;
2856
2857 search_regs.num_regs = num_regs;
2858 }
2859
2860 for (i = 0; CONSP (list); i++)
2861 {
2862 marker = XCAR (list);
2863 if (BUFFERP (marker))
2864 {
2865 last_thing_searched = marker;
2866 break;
2867 }
2868 if (i >= length)
2869 break;
2870 if (NILP (marker))
2871 {
2872 search_regs.start[i] = -1;
2873 list = XCDR (list);
2874 }
2875 else
2876 {
2877 Lisp_Object from;
2878 Lisp_Object m;
2879
2880 m = marker;
2881 if (MARKERP (marker))
2882 {
2883 if (XMARKER (marker)->buffer == 0)
2884 XSETFASTINT (marker, 0);
2885 else
2886 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2887 }
2888
2889 CHECK_NUMBER_COERCE_MARKER (marker);
2890 from = marker;
2891
2892 if (!NILP (reseat) && MARKERP (m))
2893 {
2894 unchain_marker (XMARKER (m));
2895 XSETCAR (list, Qnil);
2896 }
2897
2898 if ((list = XCDR (list), !CONSP (list)))
2899 break;
2900
2901 m = marker = XCAR (list);
2902
2903 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2904 XSETFASTINT (marker, 0);
2905
2906 CHECK_NUMBER_COERCE_MARKER (marker);
2907 if ((XINT (from) < 0
2908 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2909 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2910 && (XINT (marker) < 0
2911 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2912 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2913 {
2914 search_regs.start[i] = XINT (from);
2915 search_regs.end[i] = XINT (marker);
2916 }
2917 else
2918 {
2919 search_regs.start[i] = -1;
2920 }
2921
2922 if (!NILP (reseat) && MARKERP (m))
2923 {
2924 unchain_marker (XMARKER (m));
2925 XSETCAR (list, Qnil);
2926 }
2927 }
2928 list = XCDR (list);
2929 }
2930
2931 for (; i < search_regs.num_regs; i++)
2932 search_regs.start[i] = -1;
2933 }
2934
2935 return Qnil;
2936 }
2937
2938 /* If non-zero the match data have been saved in saved_search_regs
2939 during the execution of a sentinel or filter. */
2940 static int search_regs_saved;
2941 static struct re_registers saved_search_regs;
2942 static Lisp_Object saved_last_thing_searched;
2943
2944 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2945 if asynchronous code (filter or sentinel) is running. */
2946 static void
2947 save_search_regs (void)
2948 {
2949 if (!search_regs_saved)
2950 {
2951 saved_search_regs.num_regs = search_regs.num_regs;
2952 saved_search_regs.start = search_regs.start;
2953 saved_search_regs.end = search_regs.end;
2954 saved_last_thing_searched = last_thing_searched;
2955 last_thing_searched = Qnil;
2956 search_regs.num_regs = 0;
2957 search_regs.start = 0;
2958 search_regs.end = 0;
2959
2960 search_regs_saved = 1;
2961 }
2962 }
2963
2964 /* Called upon exit from filters and sentinels. */
2965 void
2966 restore_search_regs (void)
2967 {
2968 if (search_regs_saved)
2969 {
2970 if (search_regs.num_regs > 0)
2971 {
2972 xfree (search_regs.start);
2973 xfree (search_regs.end);
2974 }
2975 search_regs.num_regs = saved_search_regs.num_regs;
2976 search_regs.start = saved_search_regs.start;
2977 search_regs.end = saved_search_regs.end;
2978 last_thing_searched = saved_last_thing_searched;
2979 saved_last_thing_searched = Qnil;
2980 search_regs_saved = 0;
2981 }
2982 }
2983
2984 static Lisp_Object
2985 unwind_set_match_data (Lisp_Object list)
2986 {
2987 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2988 return Fset_match_data (list, Qt);
2989 }
2990
2991 /* Called to unwind protect the match data. */
2992 void
2993 record_unwind_save_match_data (void)
2994 {
2995 record_unwind_protect (unwind_set_match_data,
2996 Fmatch_data (Qnil, Qnil, Qnil));
2997 }
2998
2999 /* Quote a string to deactivate reg-expr chars */
3000
3001 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3002 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3003 (Lisp_Object string)
3004 {
3005 register char *in, *out, *end;
3006 register char *temp;
3007 int backslashes_added = 0;
3008
3009 CHECK_STRING (string);
3010
3011 temp = (char *) alloca (SBYTES (string) * 2);
3012
3013 /* Now copy the data into the new string, inserting escapes. */
3014
3015 in = SSDATA (string);
3016 end = in + SBYTES (string);
3017 out = temp;
3018
3019 for (; in != end; in++)
3020 {
3021 if (*in == '['
3022 || *in == '*' || *in == '.' || *in == '\\'
3023 || *in == '?' || *in == '+'
3024 || *in == '^' || *in == '$')
3025 *out++ = '\\', backslashes_added++;
3026 *out++ = *in;
3027 }
3028
3029 return make_specified_string (temp,
3030 SCHARS (string) + backslashes_added,
3031 out - temp,
3032 STRING_MULTIBYTE (string));
3033 }
3034 \f
3035 void
3036 syms_of_search (void)
3037 {
3038 register int i;
3039
3040 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3041 {
3042 searchbufs[i].buf.allocated = 100;
3043 searchbufs[i].buf.buffer = xmalloc (100);
3044 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3045 searchbufs[i].regexp = Qnil;
3046 searchbufs[i].whitespace_regexp = Qnil;
3047 searchbufs[i].syntax_table = Qnil;
3048 staticpro (&searchbufs[i].regexp);
3049 staticpro (&searchbufs[i].whitespace_regexp);
3050 staticpro (&searchbufs[i].syntax_table);
3051 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3052 }
3053 searchbuf_head = &searchbufs[0];
3054
3055 DEFSYM (Qsearch_failed, "search-failed");
3056 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3057
3058 Fput (Qsearch_failed, Qerror_conditions,
3059 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3060 Fput (Qsearch_failed, Qerror_message,
3061 make_pure_c_string ("Search failed"));
3062
3063 Fput (Qinvalid_regexp, Qerror_conditions,
3064 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3065 Fput (Qinvalid_regexp, Qerror_message,
3066 make_pure_c_string ("Invalid regexp"));
3067
3068 last_thing_searched = Qnil;
3069 staticpro (&last_thing_searched);
3070
3071 saved_last_thing_searched = Qnil;
3072 staticpro (&saved_last_thing_searched);
3073
3074 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3075 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3076 Some commands use this for user-specified regexps.
3077 Spaces that occur inside character classes or repetition operators
3078 or other such regexp constructs are not replaced with this.
3079 A value of nil (which is the normal value) means treat spaces literally. */);
3080 Vsearch_spaces_regexp = Qnil;
3081
3082 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3083 doc: /* Internal use only.
3084 If non-nil, the primitive searching and matching functions
3085 such as `looking-at', `string-match', `re-search-forward', etc.,
3086 do not set the match data. The proper way to use this variable
3087 is to bind it with `let' around a small expression. */);
3088 Vinhibit_changing_match_data = Qnil;
3089
3090 defsubr (&Slooking_at);
3091 defsubr (&Sposix_looking_at);
3092 defsubr (&Sstring_match);
3093 defsubr (&Sposix_string_match);
3094 defsubr (&Ssearch_forward);
3095 defsubr (&Ssearch_backward);
3096 defsubr (&Sre_search_forward);
3097 defsubr (&Sre_search_backward);
3098 defsubr (&Sposix_search_forward);
3099 defsubr (&Sposix_search_backward);
3100 defsubr (&Sreplace_match);
3101 defsubr (&Smatch_beginning);
3102 defsubr (&Smatch_end);
3103 defsubr (&Smatch_data);
3104 defsubr (&Sset_match_data);
3105 defsubr (&Sregexp_quote);
3106 }