* src/fileio.c (write-region-inhibit-fsync): Doc tweak.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
56
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
62
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
68
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
77
78 #include <unistd.h>
79 #include <fcntl.h>
80
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
88
89 #ifdef DOUG_LEA_MALLOC
90
91 #include <malloc.h>
92
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96 #define MMAP_MAX_AREAS 100000000
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111 /* Default value of gc_cons_threshold (see below). */
112
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115 /* Global variables. */
116 struct emacs_globals globals;
117
118 /* Number of bytes of consing done since the last gc. */
119
120 EMACS_INT consing_since_gc;
121
122 /* Similar minimum, computed from Vgc_cons_percentage. */
123
124 EMACS_INT gc_relative_threshold;
125
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129 EMACS_INT memory_full_cons_threshold;
130
131 /* True during GC. */
132
133 bool gc_in_progress;
134
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139 bool abort_on_gc;
140
141 /* Number of live and free conses etc. */
142
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
146
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151 static char *spare_memory[7];
152
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156 #define SPARE_MEMORY (1 << 14)
157
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
166
167 /* Pointer to the pure area, and its size. */
168
169 static char *purebeg;
170 static ptrdiff_t pure_size;
171
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175 static ptrdiff_t pure_bytes_used_before_overflow;
176
177 /* True if P points into pure space. */
178
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182 /* Index in pure at which next pure Lisp object will be allocated.. */
183
184 static ptrdiff_t pure_bytes_used_lisp;
185
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188 static ptrdiff_t pure_bytes_used_non_lisp;
189
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193 const char *pending_malloc_warning;
194
195 /* Maximum amount of C stack to save when a GC happens. */
196
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
200
201 /* Buffer in which we save a copy of the C stack at each GC. */
202
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206
207 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
209
210 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211 no_sanitize_memcpy (void *dest, void const *src, size_t size)
212 {
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
216 {
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
223 }
224 }
225
226 #endif /* MAX_SAVE_STACK > 0 */
227
228 static Lisp_Object Qconses;
229 static Lisp_Object Qsymbols;
230 static Lisp_Object Qmiscs;
231 static Lisp_Object Qstrings;
232 static Lisp_Object Qvectors;
233 static Lisp_Object Qfloats;
234 static Lisp_Object Qintervals;
235 static Lisp_Object Qbuffers;
236 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
237 static Lisp_Object Qgc_cons_threshold;
238 Lisp_Object Qautomatic_gc;
239 Lisp_Object Qchar_table_extra_slots;
240
241 /* Hook run after GC has finished. */
242
243 static Lisp_Object Qpost_gc_hook;
244
245 static void mark_terminals (void);
246 static void gc_sweep (void);
247 static Lisp_Object make_pure_vector (ptrdiff_t);
248 static void mark_buffer (struct buffer *);
249
250 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
251 static void refill_memory_reserve (void);
252 #endif
253 static void compact_small_strings (void);
254 static void free_large_strings (void);
255 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
256
257 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
260
261 enum mem_type
262 {
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
278 };
279
280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
281
282 /* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
284
285 static Lisp_Object Vdead;
286 #define DEADP(x) EQ (x, Vdead)
287
288 #ifdef GC_MALLOC_CHECK
289
290 enum mem_type allocated_mem_type;
291
292 #endif /* GC_MALLOC_CHECK */
293
294 /* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
298
299 A red-black tree is a balanced binary tree with the following
300 properties:
301
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
308
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
311
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
317
318 struct mem_node
319 {
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
323
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
326
327 /* Start and end of allocated region. */
328 void *start, *end;
329
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
332
333 /* Memory type. */
334 enum mem_type type;
335 };
336
337 /* Base address of stack. Set in main. */
338
339 Lisp_Object *stack_base;
340
341 /* Root of the tree describing allocated Lisp memory. */
342
343 static struct mem_node *mem_root;
344
345 /* Lowest and highest known address in the heap. */
346
347 static void *min_heap_address, *max_heap_address;
348
349 /* Sentinel node of the tree. */
350
351 static struct mem_node mem_z;
352 #define MEM_NIL &mem_z
353
354 static struct mem_node *mem_insert (void *, void *, enum mem_type);
355 static void mem_insert_fixup (struct mem_node *);
356 static void mem_rotate_left (struct mem_node *);
357 static void mem_rotate_right (struct mem_node *);
358 static void mem_delete (struct mem_node *);
359 static void mem_delete_fixup (struct mem_node *);
360 static struct mem_node *mem_find (void *);
361
362 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
363
364 #ifndef DEADP
365 # define DEADP(x) 0
366 #endif
367
368 /* Recording what needs to be marked for gc. */
369
370 struct gcpro *gcprolist;
371
372 /* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
374
375 enum { NSTATICS = 2048 };
376 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
377
378 /* Index of next unused slot in staticvec. */
379
380 static int staticidx;
381
382 static void *pure_alloc (size_t, int);
383
384 /* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
387
388 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
391
392 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
393
394 static void *
395 ALIGN (void *ptr, int alignment)
396 {
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
398 }
399
400 static void
401 XFLOAT_INIT (Lisp_Object f, double n)
402 {
403 XFLOAT (f)->u.data = n;
404 }
405
406 \f
407 /************************************************************************
408 Malloc
409 ************************************************************************/
410
411 /* Function malloc calls this if it finds we are near exhausting storage. */
412
413 void
414 malloc_warning (const char *str)
415 {
416 pending_malloc_warning = str;
417 }
418
419
420 /* Display an already-pending malloc warning. */
421
422 void
423 display_malloc_warning (void)
424 {
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
429 pending_malloc_warning = 0;
430 }
431 \f
432 /* Called if we can't allocate relocatable space for a buffer. */
433
434 void
435 buffer_memory_full (ptrdiff_t nbytes)
436 {
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
443
444 #ifndef REL_ALLOC
445 memory_full (nbytes);
446 #else
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
449 xsignal (Qnil, Vmemory_signal_data);
450 #endif
451 }
452
453 /* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456 #define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
458
459 #ifndef XMALLOC_OVERRUN_CHECK
460 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
461 #else
462
463 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
465
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
470
471 The header is used to detect whether this block has been allocated
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
474
475 #define XMALLOC_OVERRUN_CHECK_SIZE 16
476 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
478
479 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482 #define XMALLOC_BASE_ALIGNMENT \
483 alignof (union { long double d; intmax_t i; void *p; })
484
485 #if USE_LSB_TAG
486 # define XMALLOC_HEADER_ALIGNMENT \
487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
488 #else
489 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490 #endif
491 #define XMALLOC_OVERRUN_SIZE_SIZE \
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
496
497 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
502
503 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
508
509 /* Insert and extract the block size in the header. */
510
511 static void
512 xmalloc_put_size (unsigned char *ptr, size_t size)
513 {
514 int i;
515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
516 {
517 *--ptr = size & ((1 << CHAR_BIT) - 1);
518 size >>= CHAR_BIT;
519 }
520 }
521
522 static size_t
523 xmalloc_get_size (unsigned char *ptr)
524 {
525 size_t size = 0;
526 int i;
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
529 {
530 size <<= CHAR_BIT;
531 size += *ptr++;
532 }
533 return size;
534 }
535
536
537 /* Like malloc, but wraps allocated block with header and trailer. */
538
539 static void *
540 overrun_check_malloc (size_t size)
541 {
542 register unsigned char *val;
543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
544 emacs_abort ();
545
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
548 {
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
554 }
555 return val;
556 }
557
558
559 /* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
561
562 static void *
563 overrun_check_realloc (void *block, size_t size)
564 {
565 register unsigned char *val = (unsigned char *) block;
566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
567 emacs_abort ();
568
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
573 {
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
581 }
582
583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584
585 if (val)
586 {
587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
589 xmalloc_put_size (val, size);
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
592 }
593 return val;
594 }
595
596 /* Like free, but checks block for overrun. */
597
598 static void
599 overrun_check_free (void *block)
600 {
601 unsigned char *val = (unsigned char *) block;
602
603 if (val
604 && memcmp (xmalloc_overrun_check_header,
605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
607 {
608 size_t osize = xmalloc_get_size (val);
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
611 emacs_abort ();
612 #ifdef XMALLOC_CLEAR_FREE_MEMORY
613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
615 #else
616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
619 #endif
620 }
621
622 free (val);
623 }
624
625 #undef malloc
626 #undef realloc
627 #undef free
628 #define malloc overrun_check_malloc
629 #define realloc overrun_check_realloc
630 #define free overrun_check_free
631 #endif
632
633 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641 #ifdef XMALLOC_BLOCK_INPUT_CHECK
642 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643 static void
644 malloc_block_input (void)
645 {
646 if (block_input_in_memory_allocators)
647 block_input ();
648 }
649 static void
650 malloc_unblock_input (void)
651 {
652 if (block_input_in_memory_allocators)
653 unblock_input ();
654 }
655 # define MALLOC_BLOCK_INPUT malloc_block_input ()
656 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
657 #else
658 # define MALLOC_BLOCK_INPUT ((void) 0)
659 # define MALLOC_UNBLOCK_INPUT ((void) 0)
660 #endif
661
662 #define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
667
668
669 /* Like malloc but check for no memory and block interrupt input.. */
670
671 void *
672 xmalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 MALLOC_PROBE (size);
683 return val;
684 }
685
686 /* Like the above, but zeroes out the memory just allocated. */
687
688 void *
689 xzalloc (size_t size)
690 {
691 void *val;
692
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
696
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
700 MALLOC_PROBE (size);
701 return val;
702 }
703
704 /* Like realloc but check for no memory and block interrupt input.. */
705
706 void *
707 xrealloc (void *block, size_t size)
708 {
709 void *val;
710
711 MALLOC_BLOCK_INPUT;
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
715 val = malloc (size);
716 else
717 val = realloc (block, size);
718 MALLOC_UNBLOCK_INPUT;
719
720 if (!val && size)
721 memory_full (size);
722 MALLOC_PROBE (size);
723 return val;
724 }
725
726
727 /* Like free but block interrupt input. */
728
729 void
730 xfree (void *block)
731 {
732 if (!block)
733 return;
734 MALLOC_BLOCK_INPUT;
735 free (block);
736 MALLOC_UNBLOCK_INPUT;
737 /* We don't call refill_memory_reserve here
738 because in practice the call in r_alloc_free seems to suffice. */
739 }
740
741
742 /* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745 verify (INT_MAX <= PTRDIFF_MAX);
746
747
748 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
750
751 void *
752 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
753 {
754 eassert (0 <= nitems && 0 < item_size);
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
758 }
759
760
761 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
763
764 void *
765 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
766 {
767 eassert (0 <= nitems && 0 < item_size);
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
771 }
772
773
774 /* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
779
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
783
784 If PA is null, then allocate a new array instead of reallocating
785 the old one.
786
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
789 return).
790
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
796
797 void *
798 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
800 {
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
805
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
812
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
820
821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
830 }
831
832
833 /* Like strdup, but uses xmalloc. */
834
835 char *
836 xstrdup (const char *s)
837 {
838 ptrdiff_t size;
839 eassert (s);
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
842 }
843
844 /* Like above, but duplicates Lisp string to C string. */
845
846 char *
847 xlispstrdup (Lisp_Object string)
848 {
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
851 }
852
853 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
854 pointed to. If STRING is null, assign it without copying anything.
855 Allocate before freeing, to avoid a dangling pointer if allocation
856 fails. */
857
858 void
859 dupstring (char **ptr, char const *string)
860 {
861 char *old = *ptr;
862 *ptr = string ? xstrdup (string) : 0;
863 xfree (old);
864 }
865
866
867 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
868 argument is a const pointer. */
869
870 void
871 xputenv (char const *string)
872 {
873 if (putenv ((char *) string) != 0)
874 memory_full (0);
875 }
876
877 /* Return a newly allocated memory block of SIZE bytes, remembering
878 to free it when unwinding. */
879 void *
880 record_xmalloc (size_t size)
881 {
882 void *p = xmalloc (size);
883 record_unwind_protect_ptr (xfree, p);
884 return p;
885 }
886
887
888 /* Like malloc but used for allocating Lisp data. NBYTES is the
889 number of bytes to allocate, TYPE describes the intended use of the
890 allocated memory block (for strings, for conses, ...). */
891
892 #if ! USE_LSB_TAG
893 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
894 #endif
895
896 static void *
897 lisp_malloc (size_t nbytes, enum mem_type type)
898 {
899 register void *val;
900
901 MALLOC_BLOCK_INPUT;
902
903 #ifdef GC_MALLOC_CHECK
904 allocated_mem_type = type;
905 #endif
906
907 val = malloc (nbytes);
908
909 #if ! USE_LSB_TAG
910 /* If the memory just allocated cannot be addressed thru a Lisp
911 object's pointer, and it needs to be,
912 that's equivalent to running out of memory. */
913 if (val && type != MEM_TYPE_NON_LISP)
914 {
915 Lisp_Object tem;
916 XSETCONS (tem, (char *) val + nbytes - 1);
917 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
918 {
919 lisp_malloc_loser = val;
920 free (val);
921 val = 0;
922 }
923 }
924 #endif
925
926 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
927 if (val && type != MEM_TYPE_NON_LISP)
928 mem_insert (val, (char *) val + nbytes, type);
929 #endif
930
931 MALLOC_UNBLOCK_INPUT;
932 if (!val && nbytes)
933 memory_full (nbytes);
934 MALLOC_PROBE (nbytes);
935 return val;
936 }
937
938 /* Free BLOCK. This must be called to free memory allocated with a
939 call to lisp_malloc. */
940
941 static void
942 lisp_free (void *block)
943 {
944 MALLOC_BLOCK_INPUT;
945 free (block);
946 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
947 mem_delete (mem_find (block));
948 #endif
949 MALLOC_UNBLOCK_INPUT;
950 }
951
952 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
953
954 /* The entry point is lisp_align_malloc which returns blocks of at most
955 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
956
957 /* Use aligned_alloc if it or a simple substitute is available.
958 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
959 clang 3.3 anyway. */
960
961 #if ! ADDRESS_SANITIZER
962 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
963 # define USE_ALIGNED_ALLOC 1
964 /* Defined in gmalloc.c. */
965 void *aligned_alloc (size_t, size_t);
966 # elif defined HAVE_ALIGNED_ALLOC
967 # define USE_ALIGNED_ALLOC 1
968 # elif defined HAVE_POSIX_MEMALIGN
969 # define USE_ALIGNED_ALLOC 1
970 static void *
971 aligned_alloc (size_t alignment, size_t size)
972 {
973 void *p;
974 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
975 }
976 # endif
977 #endif
978
979 /* BLOCK_ALIGN has to be a power of 2. */
980 #define BLOCK_ALIGN (1 << 10)
981
982 /* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
986 aligned_alloc on the other hand would ideally prefer a value of 4
987 because otherwise, there's 1020 bytes wasted between each ablocks.
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
992 #define BLOCK_PADDING 0
993 #define BLOCK_BYTES \
994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
995
996 /* Internal data structures and constants. */
997
998 #define ABLOCKS_SIZE 16
999
1000 /* An aligned block of memory. */
1001 struct ablock
1002 {
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
1020 #if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
1022 #endif
1023 };
1024
1025 /* A bunch of consecutive aligned blocks. */
1026 struct ablocks
1027 {
1028 struct ablock blocks[ABLOCKS_SIZE];
1029 };
1030
1031 /* Size of the block requested from malloc or aligned_alloc. */
1032 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1033
1034 #define ABLOCK_ABASE(block) \
1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039 /* Virtual `busy' field. */
1040 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042 /* Pointer to the (not necessarily aligned) malloc block. */
1043 #ifdef USE_ALIGNED_ALLOC
1044 #define ABLOCKS_BASE(abase) (abase)
1045 #else
1046 #define ABLOCKS_BASE(abase) \
1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1048 #endif
1049
1050 /* The list of free ablock. */
1051 static struct ablock *free_ablock;
1052
1053 /* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
1056 static void *
1057 lisp_align_malloc (size_t nbytes, enum mem_type type)
1058 {
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
1064 MALLOC_BLOCK_INPUT;
1065
1066 #ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068 #endif
1069
1070 if (!free_ablock)
1071 {
1072 int i;
1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1074
1075 #ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080 #endif
1081
1082 #ifdef USE_ALIGNED_ALLOC
1083 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1084 #else
1085 base = malloc (ABLOCKS_BYTES);
1086 abase = ALIGN (base, BLOCK_ALIGN);
1087 #endif
1088
1089 if (base == 0)
1090 {
1091 MALLOC_UNBLOCK_INPUT;
1092 memory_full (ABLOCKS_BYTES);
1093 }
1094
1095 aligned = (base == abase);
1096 if (!aligned)
1097 ((void **) abase)[-1] = base;
1098
1099 #ifdef DOUG_LEA_MALLOC
1100 /* Back to a reasonable maximum of mmap'ed areas. */
1101 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1102 #endif
1103
1104 #if ! USE_LSB_TAG
1105 /* If the memory just allocated cannot be addressed thru a Lisp
1106 object's pointer, and it needs to be, that's equivalent to
1107 running out of memory. */
1108 if (type != MEM_TYPE_NON_LISP)
1109 {
1110 Lisp_Object tem;
1111 char *end = (char *) base + ABLOCKS_BYTES - 1;
1112 XSETCONS (tem, end);
1113 if ((char *) XCONS (tem) != end)
1114 {
1115 lisp_malloc_loser = base;
1116 free (base);
1117 MALLOC_UNBLOCK_INPUT;
1118 memory_full (SIZE_MAX);
1119 }
1120 }
1121 #endif
1122
1123 /* Initialize the blocks and put them on the free list.
1124 If `base' was not properly aligned, we can't use the last block. */
1125 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1126 {
1127 abase->blocks[i].abase = abase;
1128 abase->blocks[i].x.next_free = free_ablock;
1129 free_ablock = &abase->blocks[i];
1130 }
1131 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1132
1133 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1134 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1135 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1136 eassert (ABLOCKS_BASE (abase) == base);
1137 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1138 }
1139
1140 abase = ABLOCK_ABASE (free_ablock);
1141 ABLOCKS_BUSY (abase)
1142 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1143 val = free_ablock;
1144 free_ablock = free_ablock->x.next_free;
1145
1146 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1147 if (type != MEM_TYPE_NON_LISP)
1148 mem_insert (val, (char *) val + nbytes, type);
1149 #endif
1150
1151 MALLOC_UNBLOCK_INPUT;
1152
1153 MALLOC_PROBE (nbytes);
1154
1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1156 return val;
1157 }
1158
1159 static void
1160 lisp_align_free (void *block)
1161 {
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1164
1165 MALLOC_BLOCK_INPUT;
1166 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168 #endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1175
1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1177 { /* All the blocks are free. */
1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1181
1182 while (*tem)
1183 {
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1185 {
1186 i++;
1187 *tem = (*tem)->x.next_free;
1188 }
1189 else
1190 tem = &(*tem)->x.next_free;
1191 }
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1194 #ifdef USE_POSIX_MEMALIGN
1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1196 #endif
1197 free (ABLOCKS_BASE (abase));
1198 }
1199 MALLOC_UNBLOCK_INPUT;
1200 }
1201
1202 \f
1203 /***********************************************************************
1204 Interval Allocation
1205 ***********************************************************************/
1206
1207 /* Number of intervals allocated in an interval_block structure.
1208 The 1020 is 1024 minus malloc overhead. */
1209
1210 #define INTERVAL_BLOCK_SIZE \
1211 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1212
1213 /* Intervals are allocated in chunks in the form of an interval_block
1214 structure. */
1215
1216 struct interval_block
1217 {
1218 /* Place `intervals' first, to preserve alignment. */
1219 struct interval intervals[INTERVAL_BLOCK_SIZE];
1220 struct interval_block *next;
1221 };
1222
1223 /* Current interval block. Its `next' pointer points to older
1224 blocks. */
1225
1226 static struct interval_block *interval_block;
1227
1228 /* Index in interval_block above of the next unused interval
1229 structure. */
1230
1231 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1232
1233 /* Number of free and live intervals. */
1234
1235 static EMACS_INT total_free_intervals, total_intervals;
1236
1237 /* List of free intervals. */
1238
1239 static INTERVAL interval_free_list;
1240
1241 /* Return a new interval. */
1242
1243 INTERVAL
1244 make_interval (void)
1245 {
1246 INTERVAL val;
1247
1248 MALLOC_BLOCK_INPUT;
1249
1250 if (interval_free_list)
1251 {
1252 val = interval_free_list;
1253 interval_free_list = INTERVAL_PARENT (interval_free_list);
1254 }
1255 else
1256 {
1257 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1258 {
1259 struct interval_block *newi
1260 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1261
1262 newi->next = interval_block;
1263 interval_block = newi;
1264 interval_block_index = 0;
1265 total_free_intervals += INTERVAL_BLOCK_SIZE;
1266 }
1267 val = &interval_block->intervals[interval_block_index++];
1268 }
1269
1270 MALLOC_UNBLOCK_INPUT;
1271
1272 consing_since_gc += sizeof (struct interval);
1273 intervals_consed++;
1274 total_free_intervals--;
1275 RESET_INTERVAL (val);
1276 val->gcmarkbit = 0;
1277 return val;
1278 }
1279
1280
1281 /* Mark Lisp objects in interval I. */
1282
1283 static void
1284 mark_interval (register INTERVAL i, Lisp_Object dummy)
1285 {
1286 /* Intervals should never be shared. So, if extra internal checking is
1287 enabled, GC aborts if it seems to have visited an interval twice. */
1288 eassert (!i->gcmarkbit);
1289 i->gcmarkbit = 1;
1290 mark_object (i->plist);
1291 }
1292
1293 /* Mark the interval tree rooted in I. */
1294
1295 #define MARK_INTERVAL_TREE(i) \
1296 do { \
1297 if (i && !i->gcmarkbit) \
1298 traverse_intervals_noorder (i, mark_interval, Qnil); \
1299 } while (0)
1300
1301 /***********************************************************************
1302 String Allocation
1303 ***********************************************************************/
1304
1305 /* Lisp_Strings are allocated in string_block structures. When a new
1306 string_block is allocated, all the Lisp_Strings it contains are
1307 added to a free-list string_free_list. When a new Lisp_String is
1308 needed, it is taken from that list. During the sweep phase of GC,
1309 string_blocks that are entirely free are freed, except two which
1310 we keep.
1311
1312 String data is allocated from sblock structures. Strings larger
1313 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1314 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1315
1316 Sblocks consist internally of sdata structures, one for each
1317 Lisp_String. The sdata structure points to the Lisp_String it
1318 belongs to. The Lisp_String points back to the `u.data' member of
1319 its sdata structure.
1320
1321 When a Lisp_String is freed during GC, it is put back on
1322 string_free_list, and its `data' member and its sdata's `string'
1323 pointer is set to null. The size of the string is recorded in the
1324 `n.nbytes' member of the sdata. So, sdata structures that are no
1325 longer used, can be easily recognized, and it's easy to compact the
1326 sblocks of small strings which we do in compact_small_strings. */
1327
1328 /* Size in bytes of an sblock structure used for small strings. This
1329 is 8192 minus malloc overhead. */
1330
1331 #define SBLOCK_SIZE 8188
1332
1333 /* Strings larger than this are considered large strings. String data
1334 for large strings is allocated from individual sblocks. */
1335
1336 #define LARGE_STRING_BYTES 1024
1337
1338 /* The SDATA typedef is a struct or union describing string memory
1339 sub-allocated from an sblock. This is where the contents of Lisp
1340 strings are stored. */
1341
1342 struct sdata
1343 {
1344 /* Back-pointer to the string this sdata belongs to. If null, this
1345 structure is free, and NBYTES (in this structure or in the union below)
1346 contains the string's byte size (the same value that STRING_BYTES
1347 would return if STRING were non-null). If non-null, STRING_BYTES
1348 (STRING) is the size of the data, and DATA contains the string's
1349 contents. */
1350 struct Lisp_String *string;
1351
1352 #ifdef GC_CHECK_STRING_BYTES
1353 ptrdiff_t nbytes;
1354 #endif
1355
1356 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1357 };
1358
1359 #ifdef GC_CHECK_STRING_BYTES
1360
1361 typedef struct sdata sdata;
1362 #define SDATA_NBYTES(S) (S)->nbytes
1363 #define SDATA_DATA(S) (S)->data
1364
1365 #else
1366
1367 typedef union
1368 {
1369 struct Lisp_String *string;
1370
1371 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1372 which has a flexible array member. However, if implemented by
1373 giving this union a member of type 'struct sdata', the union
1374 could not be the last (flexible) member of 'struct sblock',
1375 because C99 prohibits a flexible array member from having a type
1376 that is itself a flexible array. So, comment this member out here,
1377 but remember that the option's there when using this union. */
1378 #if 0
1379 struct sdata u;
1380 #endif
1381
1382 /* When STRING is null. */
1383 struct
1384 {
1385 struct Lisp_String *string;
1386 ptrdiff_t nbytes;
1387 } n;
1388 } sdata;
1389
1390 #define SDATA_NBYTES(S) (S)->n.nbytes
1391 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1392
1393 #endif /* not GC_CHECK_STRING_BYTES */
1394
1395 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1396
1397 /* Structure describing a block of memory which is sub-allocated to
1398 obtain string data memory for strings. Blocks for small strings
1399 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1400 as large as needed. */
1401
1402 struct sblock
1403 {
1404 /* Next in list. */
1405 struct sblock *next;
1406
1407 /* Pointer to the next free sdata block. This points past the end
1408 of the sblock if there isn't any space left in this block. */
1409 sdata *next_free;
1410
1411 /* String data. */
1412 sdata data[FLEXIBLE_ARRAY_MEMBER];
1413 };
1414
1415 /* Number of Lisp strings in a string_block structure. The 1020 is
1416 1024 minus malloc overhead. */
1417
1418 #define STRING_BLOCK_SIZE \
1419 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1420
1421 /* Structure describing a block from which Lisp_String structures
1422 are allocated. */
1423
1424 struct string_block
1425 {
1426 /* Place `strings' first, to preserve alignment. */
1427 struct Lisp_String strings[STRING_BLOCK_SIZE];
1428 struct string_block *next;
1429 };
1430
1431 /* Head and tail of the list of sblock structures holding Lisp string
1432 data. We always allocate from current_sblock. The NEXT pointers
1433 in the sblock structures go from oldest_sblock to current_sblock. */
1434
1435 static struct sblock *oldest_sblock, *current_sblock;
1436
1437 /* List of sblocks for large strings. */
1438
1439 static struct sblock *large_sblocks;
1440
1441 /* List of string_block structures. */
1442
1443 static struct string_block *string_blocks;
1444
1445 /* Free-list of Lisp_Strings. */
1446
1447 static struct Lisp_String *string_free_list;
1448
1449 /* Number of live and free Lisp_Strings. */
1450
1451 static EMACS_INT total_strings, total_free_strings;
1452
1453 /* Number of bytes used by live strings. */
1454
1455 static EMACS_INT total_string_bytes;
1456
1457 /* Given a pointer to a Lisp_String S which is on the free-list
1458 string_free_list, return a pointer to its successor in the
1459 free-list. */
1460
1461 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1462
1463 /* Return a pointer to the sdata structure belonging to Lisp string S.
1464 S must be live, i.e. S->data must not be null. S->data is actually
1465 a pointer to the `u.data' member of its sdata structure; the
1466 structure starts at a constant offset in front of that. */
1467
1468 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1469
1470
1471 #ifdef GC_CHECK_STRING_OVERRUN
1472
1473 /* We check for overrun in string data blocks by appending a small
1474 "cookie" after each allocated string data block, and check for the
1475 presence of this cookie during GC. */
1476
1477 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1478 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1479 { '\xde', '\xad', '\xbe', '\xef' };
1480
1481 #else
1482 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1483 #endif
1484
1485 /* Value is the size of an sdata structure large enough to hold NBYTES
1486 bytes of string data. The value returned includes a terminating
1487 NUL byte, the size of the sdata structure, and padding. */
1488
1489 #ifdef GC_CHECK_STRING_BYTES
1490
1491 #define SDATA_SIZE(NBYTES) \
1492 ((SDATA_DATA_OFFSET \
1493 + (NBYTES) + 1 \
1494 + sizeof (ptrdiff_t) - 1) \
1495 & ~(sizeof (ptrdiff_t) - 1))
1496
1497 #else /* not GC_CHECK_STRING_BYTES */
1498
1499 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1500 less than the size of that member. The 'max' is not needed when
1501 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1502 alignment code reserves enough space. */
1503
1504 #define SDATA_SIZE(NBYTES) \
1505 ((SDATA_DATA_OFFSET \
1506 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1507 ? NBYTES \
1508 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1509 + 1 \
1510 + sizeof (ptrdiff_t) - 1) \
1511 & ~(sizeof (ptrdiff_t) - 1))
1512
1513 #endif /* not GC_CHECK_STRING_BYTES */
1514
1515 /* Extra bytes to allocate for each string. */
1516
1517 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1518
1519 /* Exact bound on the number of bytes in a string, not counting the
1520 terminating null. A string cannot contain more bytes than
1521 STRING_BYTES_BOUND, nor can it be so long that the size_t
1522 arithmetic in allocate_string_data would overflow while it is
1523 calculating a value to be passed to malloc. */
1524 static ptrdiff_t const STRING_BYTES_MAX =
1525 min (STRING_BYTES_BOUND,
1526 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1527 - GC_STRING_EXTRA
1528 - offsetof (struct sblock, data)
1529 - SDATA_DATA_OFFSET)
1530 & ~(sizeof (EMACS_INT) - 1)));
1531
1532 /* Initialize string allocation. Called from init_alloc_once. */
1533
1534 static void
1535 init_strings (void)
1536 {
1537 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1538 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1539 }
1540
1541
1542 #ifdef GC_CHECK_STRING_BYTES
1543
1544 static int check_string_bytes_count;
1545
1546 /* Like STRING_BYTES, but with debugging check. Can be
1547 called during GC, so pay attention to the mark bit. */
1548
1549 ptrdiff_t
1550 string_bytes (struct Lisp_String *s)
1551 {
1552 ptrdiff_t nbytes =
1553 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1554
1555 if (!PURE_POINTER_P (s)
1556 && s->data
1557 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1558 emacs_abort ();
1559 return nbytes;
1560 }
1561
1562 /* Check validity of Lisp strings' string_bytes member in B. */
1563
1564 static void
1565 check_sblock (struct sblock *b)
1566 {
1567 sdata *from, *end, *from_end;
1568
1569 end = b->next_free;
1570
1571 for (from = b->data; from < end; from = from_end)
1572 {
1573 /* Compute the next FROM here because copying below may
1574 overwrite data we need to compute it. */
1575 ptrdiff_t nbytes;
1576
1577 /* Check that the string size recorded in the string is the
1578 same as the one recorded in the sdata structure. */
1579 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1580 : SDATA_NBYTES (from));
1581 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1582 }
1583 }
1584
1585
1586 /* Check validity of Lisp strings' string_bytes member. ALL_P
1587 means check all strings, otherwise check only most
1588 recently allocated strings. Used for hunting a bug. */
1589
1590 static void
1591 check_string_bytes (bool all_p)
1592 {
1593 if (all_p)
1594 {
1595 struct sblock *b;
1596
1597 for (b = large_sblocks; b; b = b->next)
1598 {
1599 struct Lisp_String *s = b->data[0].string;
1600 if (s)
1601 string_bytes (s);
1602 }
1603
1604 for (b = oldest_sblock; b; b = b->next)
1605 check_sblock (b);
1606 }
1607 else if (current_sblock)
1608 check_sblock (current_sblock);
1609 }
1610
1611 #else /* not GC_CHECK_STRING_BYTES */
1612
1613 #define check_string_bytes(all) ((void) 0)
1614
1615 #endif /* GC_CHECK_STRING_BYTES */
1616
1617 #ifdef GC_CHECK_STRING_FREE_LIST
1618
1619 /* Walk through the string free list looking for bogus next pointers.
1620 This may catch buffer overrun from a previous string. */
1621
1622 static void
1623 check_string_free_list (void)
1624 {
1625 struct Lisp_String *s;
1626
1627 /* Pop a Lisp_String off the free-list. */
1628 s = string_free_list;
1629 while (s != NULL)
1630 {
1631 if ((uintptr_t) s < 1024)
1632 emacs_abort ();
1633 s = NEXT_FREE_LISP_STRING (s);
1634 }
1635 }
1636 #else
1637 #define check_string_free_list()
1638 #endif
1639
1640 /* Return a new Lisp_String. */
1641
1642 static struct Lisp_String *
1643 allocate_string (void)
1644 {
1645 struct Lisp_String *s;
1646
1647 MALLOC_BLOCK_INPUT;
1648
1649 /* If the free-list is empty, allocate a new string_block, and
1650 add all the Lisp_Strings in it to the free-list. */
1651 if (string_free_list == NULL)
1652 {
1653 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1654 int i;
1655
1656 b->next = string_blocks;
1657 string_blocks = b;
1658
1659 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1660 {
1661 s = b->strings + i;
1662 /* Every string on a free list should have NULL data pointer. */
1663 s->data = NULL;
1664 NEXT_FREE_LISP_STRING (s) = string_free_list;
1665 string_free_list = s;
1666 }
1667
1668 total_free_strings += STRING_BLOCK_SIZE;
1669 }
1670
1671 check_string_free_list ();
1672
1673 /* Pop a Lisp_String off the free-list. */
1674 s = string_free_list;
1675 string_free_list = NEXT_FREE_LISP_STRING (s);
1676
1677 MALLOC_UNBLOCK_INPUT;
1678
1679 --total_free_strings;
1680 ++total_strings;
1681 ++strings_consed;
1682 consing_since_gc += sizeof *s;
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685 if (!noninteractive)
1686 {
1687 if (++check_string_bytes_count == 200)
1688 {
1689 check_string_bytes_count = 0;
1690 check_string_bytes (1);
1691 }
1692 else
1693 check_string_bytes (0);
1694 }
1695 #endif /* GC_CHECK_STRING_BYTES */
1696
1697 return s;
1698 }
1699
1700
1701 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1702 plus a NUL byte at the end. Allocate an sdata structure for S, and
1703 set S->data to its `u.data' member. Store a NUL byte at the end of
1704 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1705 S->data if it was initially non-null. */
1706
1707 void
1708 allocate_string_data (struct Lisp_String *s,
1709 EMACS_INT nchars, EMACS_INT nbytes)
1710 {
1711 sdata *data, *old_data;
1712 struct sblock *b;
1713 ptrdiff_t needed, old_nbytes;
1714
1715 if (STRING_BYTES_MAX < nbytes)
1716 string_overflow ();
1717
1718 /* Determine the number of bytes needed to store NBYTES bytes
1719 of string data. */
1720 needed = SDATA_SIZE (nbytes);
1721 if (s->data)
1722 {
1723 old_data = SDATA_OF_STRING (s);
1724 old_nbytes = STRING_BYTES (s);
1725 }
1726 else
1727 old_data = NULL;
1728
1729 MALLOC_BLOCK_INPUT;
1730
1731 if (nbytes > LARGE_STRING_BYTES)
1732 {
1733 size_t size = offsetof (struct sblock, data) + needed;
1734
1735 #ifdef DOUG_LEA_MALLOC
1736 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1737 because mapped region contents are not preserved in
1738 a dumped Emacs.
1739
1740 In case you think of allowing it in a dumped Emacs at the
1741 cost of not being able to re-dump, there's another reason:
1742 mmap'ed data typically have an address towards the top of the
1743 address space, which won't fit into an EMACS_INT (at least on
1744 32-bit systems with the current tagging scheme). --fx */
1745 mallopt (M_MMAP_MAX, 0);
1746 #endif
1747
1748 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1749
1750 #ifdef DOUG_LEA_MALLOC
1751 /* Back to a reasonable maximum of mmap'ed areas. */
1752 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1753 #endif
1754
1755 b->next_free = b->data;
1756 b->data[0].string = NULL;
1757 b->next = large_sblocks;
1758 large_sblocks = b;
1759 }
1760 else if (current_sblock == NULL
1761 || (((char *) current_sblock + SBLOCK_SIZE
1762 - (char *) current_sblock->next_free)
1763 < (needed + GC_STRING_EXTRA)))
1764 {
1765 /* Not enough room in the current sblock. */
1766 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1767 b->next_free = b->data;
1768 b->data[0].string = NULL;
1769 b->next = NULL;
1770
1771 if (current_sblock)
1772 current_sblock->next = b;
1773 else
1774 oldest_sblock = b;
1775 current_sblock = b;
1776 }
1777 else
1778 b = current_sblock;
1779
1780 data = b->next_free;
1781 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1782
1783 MALLOC_UNBLOCK_INPUT;
1784
1785 data->string = s;
1786 s->data = SDATA_DATA (data);
1787 #ifdef GC_CHECK_STRING_BYTES
1788 SDATA_NBYTES (data) = nbytes;
1789 #endif
1790 s->size = nchars;
1791 s->size_byte = nbytes;
1792 s->data[nbytes] = '\0';
1793 #ifdef GC_CHECK_STRING_OVERRUN
1794 memcpy ((char *) data + needed, string_overrun_cookie,
1795 GC_STRING_OVERRUN_COOKIE_SIZE);
1796 #endif
1797
1798 /* Note that Faset may call to this function when S has already data
1799 assigned. In this case, mark data as free by setting it's string
1800 back-pointer to null, and record the size of the data in it. */
1801 if (old_data)
1802 {
1803 SDATA_NBYTES (old_data) = old_nbytes;
1804 old_data->string = NULL;
1805 }
1806
1807 consing_since_gc += needed;
1808 }
1809
1810
1811 /* Sweep and compact strings. */
1812
1813 static void
1814 sweep_strings (void)
1815 {
1816 struct string_block *b, *next;
1817 struct string_block *live_blocks = NULL;
1818
1819 string_free_list = NULL;
1820 total_strings = total_free_strings = 0;
1821 total_string_bytes = 0;
1822
1823 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1824 for (b = string_blocks; b; b = next)
1825 {
1826 int i, nfree = 0;
1827 struct Lisp_String *free_list_before = string_free_list;
1828
1829 next = b->next;
1830
1831 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1832 {
1833 struct Lisp_String *s = b->strings + i;
1834
1835 if (s->data)
1836 {
1837 /* String was not on free-list before. */
1838 if (STRING_MARKED_P (s))
1839 {
1840 /* String is live; unmark it and its intervals. */
1841 UNMARK_STRING (s);
1842
1843 /* Do not use string_(set|get)_intervals here. */
1844 s->intervals = balance_intervals (s->intervals);
1845
1846 ++total_strings;
1847 total_string_bytes += STRING_BYTES (s);
1848 }
1849 else
1850 {
1851 /* String is dead. Put it on the free-list. */
1852 sdata *data = SDATA_OF_STRING (s);
1853
1854 /* Save the size of S in its sdata so that we know
1855 how large that is. Reset the sdata's string
1856 back-pointer so that we know it's free. */
1857 #ifdef GC_CHECK_STRING_BYTES
1858 if (string_bytes (s) != SDATA_NBYTES (data))
1859 emacs_abort ();
1860 #else
1861 data->n.nbytes = STRING_BYTES (s);
1862 #endif
1863 data->string = NULL;
1864
1865 /* Reset the strings's `data' member so that we
1866 know it's free. */
1867 s->data = NULL;
1868
1869 /* Put the string on the free-list. */
1870 NEXT_FREE_LISP_STRING (s) = string_free_list;
1871 string_free_list = s;
1872 ++nfree;
1873 }
1874 }
1875 else
1876 {
1877 /* S was on the free-list before. Put it there again. */
1878 NEXT_FREE_LISP_STRING (s) = string_free_list;
1879 string_free_list = s;
1880 ++nfree;
1881 }
1882 }
1883
1884 /* Free blocks that contain free Lisp_Strings only, except
1885 the first two of them. */
1886 if (nfree == STRING_BLOCK_SIZE
1887 && total_free_strings > STRING_BLOCK_SIZE)
1888 {
1889 lisp_free (b);
1890 string_free_list = free_list_before;
1891 }
1892 else
1893 {
1894 total_free_strings += nfree;
1895 b->next = live_blocks;
1896 live_blocks = b;
1897 }
1898 }
1899
1900 check_string_free_list ();
1901
1902 string_blocks = live_blocks;
1903 free_large_strings ();
1904 compact_small_strings ();
1905
1906 check_string_free_list ();
1907 }
1908
1909
1910 /* Free dead large strings. */
1911
1912 static void
1913 free_large_strings (void)
1914 {
1915 struct sblock *b, *next;
1916 struct sblock *live_blocks = NULL;
1917
1918 for (b = large_sblocks; b; b = next)
1919 {
1920 next = b->next;
1921
1922 if (b->data[0].string == NULL)
1923 lisp_free (b);
1924 else
1925 {
1926 b->next = live_blocks;
1927 live_blocks = b;
1928 }
1929 }
1930
1931 large_sblocks = live_blocks;
1932 }
1933
1934
1935 /* Compact data of small strings. Free sblocks that don't contain
1936 data of live strings after compaction. */
1937
1938 static void
1939 compact_small_strings (void)
1940 {
1941 struct sblock *b, *tb, *next;
1942 sdata *from, *to, *end, *tb_end;
1943 sdata *to_end, *from_end;
1944
1945 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1946 to, and TB_END is the end of TB. */
1947 tb = oldest_sblock;
1948 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1949 to = tb->data;
1950
1951 /* Step through the blocks from the oldest to the youngest. We
1952 expect that old blocks will stabilize over time, so that less
1953 copying will happen this way. */
1954 for (b = oldest_sblock; b; b = b->next)
1955 {
1956 end = b->next_free;
1957 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1958
1959 for (from = b->data; from < end; from = from_end)
1960 {
1961 /* Compute the next FROM here because copying below may
1962 overwrite data we need to compute it. */
1963 ptrdiff_t nbytes;
1964 struct Lisp_String *s = from->string;
1965
1966 #ifdef GC_CHECK_STRING_BYTES
1967 /* Check that the string size recorded in the string is the
1968 same as the one recorded in the sdata structure. */
1969 if (s && string_bytes (s) != SDATA_NBYTES (from))
1970 emacs_abort ();
1971 #endif /* GC_CHECK_STRING_BYTES */
1972
1973 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1974 eassert (nbytes <= LARGE_STRING_BYTES);
1975
1976 nbytes = SDATA_SIZE (nbytes);
1977 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1978
1979 #ifdef GC_CHECK_STRING_OVERRUN
1980 if (memcmp (string_overrun_cookie,
1981 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1982 GC_STRING_OVERRUN_COOKIE_SIZE))
1983 emacs_abort ();
1984 #endif
1985
1986 /* Non-NULL S means it's alive. Copy its data. */
1987 if (s)
1988 {
1989 /* If TB is full, proceed with the next sblock. */
1990 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1991 if (to_end > tb_end)
1992 {
1993 tb->next_free = to;
1994 tb = tb->next;
1995 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1996 to = tb->data;
1997 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1998 }
1999
2000 /* Copy, and update the string's `data' pointer. */
2001 if (from != to)
2002 {
2003 eassert (tb != b || to < from);
2004 memmove (to, from, nbytes + GC_STRING_EXTRA);
2005 to->string->data = SDATA_DATA (to);
2006 }
2007
2008 /* Advance past the sdata we copied to. */
2009 to = to_end;
2010 }
2011 }
2012 }
2013
2014 /* The rest of the sblocks following TB don't contain live data, so
2015 we can free them. */
2016 for (b = tb->next; b; b = next)
2017 {
2018 next = b->next;
2019 lisp_free (b);
2020 }
2021
2022 tb->next_free = to;
2023 tb->next = NULL;
2024 current_sblock = tb;
2025 }
2026
2027 void
2028 string_overflow (void)
2029 {
2030 error ("Maximum string size exceeded");
2031 }
2032
2033 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2034 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2035 LENGTH must be an integer.
2036 INIT must be an integer that represents a character. */)
2037 (Lisp_Object length, Lisp_Object init)
2038 {
2039 register Lisp_Object val;
2040 int c;
2041 EMACS_INT nbytes;
2042
2043 CHECK_NATNUM (length);
2044 CHECK_CHARACTER (init);
2045
2046 c = XFASTINT (init);
2047 if (ASCII_CHAR_P (c))
2048 {
2049 nbytes = XINT (length);
2050 val = make_uninit_string (nbytes);
2051 memset (SDATA (val), c, nbytes);
2052 SDATA (val)[nbytes] = 0;
2053 }
2054 else
2055 {
2056 unsigned char str[MAX_MULTIBYTE_LENGTH];
2057 ptrdiff_t len = CHAR_STRING (c, str);
2058 EMACS_INT string_len = XINT (length);
2059 unsigned char *p, *beg, *end;
2060
2061 if (string_len > STRING_BYTES_MAX / len)
2062 string_overflow ();
2063 nbytes = len * string_len;
2064 val = make_uninit_multibyte_string (string_len, nbytes);
2065 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2066 {
2067 /* First time we just copy `str' to the data of `val'. */
2068 if (p == beg)
2069 memcpy (p, str, len);
2070 else
2071 {
2072 /* Next time we copy largest possible chunk from
2073 initialized to uninitialized part of `val'. */
2074 len = min (p - beg, end - p);
2075 memcpy (p, beg, len);
2076 }
2077 }
2078 *p = 0;
2079 }
2080
2081 return val;
2082 }
2083
2084 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2085 Return A. */
2086
2087 Lisp_Object
2088 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2089 {
2090 EMACS_INT nbits = bool_vector_size (a);
2091 if (0 < nbits)
2092 {
2093 unsigned char *data = bool_vector_uchar_data (a);
2094 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2095 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2096 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2097 memset (data, pattern, nbytes - 1);
2098 data[nbytes - 1] = pattern & last_mask;
2099 }
2100 return a;
2101 }
2102
2103 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2104
2105 Lisp_Object
2106 make_uninit_bool_vector (EMACS_INT nbits)
2107 {
2108 Lisp_Object val;
2109 EMACS_INT words = bool_vector_words (nbits);
2110 EMACS_INT word_bytes = words * sizeof (bits_word);
2111 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2112 + word_size - 1)
2113 / word_size);
2114 struct Lisp_Bool_Vector *p
2115 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2116 XSETVECTOR (val, p);
2117 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2118 p->size = nbits;
2119
2120 /* Clear padding at the end. */
2121 if (words)
2122 p->data[words - 1] = 0;
2123
2124 return val;
2125 }
2126
2127 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2128 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2129 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2130 (Lisp_Object length, Lisp_Object init)
2131 {
2132 Lisp_Object val;
2133
2134 CHECK_NATNUM (length);
2135 val = make_uninit_bool_vector (XFASTINT (length));
2136 return bool_vector_fill (val, init);
2137 }
2138
2139
2140 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2141 of characters from the contents. This string may be unibyte or
2142 multibyte, depending on the contents. */
2143
2144 Lisp_Object
2145 make_string (const char *contents, ptrdiff_t nbytes)
2146 {
2147 register Lisp_Object val;
2148 ptrdiff_t nchars, multibyte_nbytes;
2149
2150 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2151 &nchars, &multibyte_nbytes);
2152 if (nbytes == nchars || nbytes != multibyte_nbytes)
2153 /* CONTENTS contains no multibyte sequences or contains an invalid
2154 multibyte sequence. We must make unibyte string. */
2155 val = make_unibyte_string (contents, nbytes);
2156 else
2157 val = make_multibyte_string (contents, nchars, nbytes);
2158 return val;
2159 }
2160
2161
2162 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2163
2164 Lisp_Object
2165 make_unibyte_string (const char *contents, ptrdiff_t length)
2166 {
2167 register Lisp_Object val;
2168 val = make_uninit_string (length);
2169 memcpy (SDATA (val), contents, length);
2170 return val;
2171 }
2172
2173
2174 /* Make a multibyte string from NCHARS characters occupying NBYTES
2175 bytes at CONTENTS. */
2176
2177 Lisp_Object
2178 make_multibyte_string (const char *contents,
2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2180 {
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
2183 memcpy (SDATA (val), contents, nbytes);
2184 return val;
2185 }
2186
2187
2188 /* Make a string from NCHARS characters occupying NBYTES bytes at
2189 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2190
2191 Lisp_Object
2192 make_string_from_bytes (const char *contents,
2193 ptrdiff_t nchars, ptrdiff_t nbytes)
2194 {
2195 register Lisp_Object val;
2196 val = make_uninit_multibyte_string (nchars, nbytes);
2197 memcpy (SDATA (val), contents, nbytes);
2198 if (SBYTES (val) == SCHARS (val))
2199 STRING_SET_UNIBYTE (val);
2200 return val;
2201 }
2202
2203
2204 /* Make a string from NCHARS characters occupying NBYTES bytes at
2205 CONTENTS. The argument MULTIBYTE controls whether to label the
2206 string as multibyte. If NCHARS is negative, it counts the number of
2207 characters by itself. */
2208
2209 Lisp_Object
2210 make_specified_string (const char *contents,
2211 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2212 {
2213 Lisp_Object val;
2214
2215 if (nchars < 0)
2216 {
2217 if (multibyte)
2218 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2219 nbytes);
2220 else
2221 nchars = nbytes;
2222 }
2223 val = make_uninit_multibyte_string (nchars, nbytes);
2224 memcpy (SDATA (val), contents, nbytes);
2225 if (!multibyte)
2226 STRING_SET_UNIBYTE (val);
2227 return val;
2228 }
2229
2230
2231 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2232 occupying LENGTH bytes. */
2233
2234 Lisp_Object
2235 make_uninit_string (EMACS_INT length)
2236 {
2237 Lisp_Object val;
2238
2239 if (!length)
2240 return empty_unibyte_string;
2241 val = make_uninit_multibyte_string (length, length);
2242 STRING_SET_UNIBYTE (val);
2243 return val;
2244 }
2245
2246
2247 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2248 which occupy NBYTES bytes. */
2249
2250 Lisp_Object
2251 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2252 {
2253 Lisp_Object string;
2254 struct Lisp_String *s;
2255
2256 if (nchars < 0)
2257 emacs_abort ();
2258 if (!nbytes)
2259 return empty_multibyte_string;
2260
2261 s = allocate_string ();
2262 s->intervals = NULL;
2263 allocate_string_data (s, nchars, nbytes);
2264 XSETSTRING (string, s);
2265 string_chars_consed += nbytes;
2266 return string;
2267 }
2268
2269 /* Print arguments to BUF according to a FORMAT, then return
2270 a Lisp_String initialized with the data from BUF. */
2271
2272 Lisp_Object
2273 make_formatted_string (char *buf, const char *format, ...)
2274 {
2275 va_list ap;
2276 int length;
2277
2278 va_start (ap, format);
2279 length = vsprintf (buf, format, ap);
2280 va_end (ap);
2281 return make_string (buf, length);
2282 }
2283
2284 \f
2285 /***********************************************************************
2286 Float Allocation
2287 ***********************************************************************/
2288
2289 /* We store float cells inside of float_blocks, allocating a new
2290 float_block with malloc whenever necessary. Float cells reclaimed
2291 by GC are put on a free list to be reallocated before allocating
2292 any new float cells from the latest float_block. */
2293
2294 #define FLOAT_BLOCK_SIZE \
2295 (((BLOCK_BYTES - sizeof (struct float_block *) \
2296 /* The compiler might add padding at the end. */ \
2297 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2298 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2299
2300 #define GETMARKBIT(block,n) \
2301 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2302 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2303 & 1)
2304
2305 #define SETMARKBIT(block,n) \
2306 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2307 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2308
2309 #define UNSETMARKBIT(block,n) \
2310 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2311 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2312
2313 #define FLOAT_BLOCK(fptr) \
2314 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2315
2316 #define FLOAT_INDEX(fptr) \
2317 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2318
2319 struct float_block
2320 {
2321 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2322 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2323 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2324 struct float_block *next;
2325 };
2326
2327 #define FLOAT_MARKED_P(fptr) \
2328 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2329
2330 #define FLOAT_MARK(fptr) \
2331 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2332
2333 #define FLOAT_UNMARK(fptr) \
2334 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2335
2336 /* Current float_block. */
2337
2338 static struct float_block *float_block;
2339
2340 /* Index of first unused Lisp_Float in the current float_block. */
2341
2342 static int float_block_index = FLOAT_BLOCK_SIZE;
2343
2344 /* Free-list of Lisp_Floats. */
2345
2346 static struct Lisp_Float *float_free_list;
2347
2348 /* Return a new float object with value FLOAT_VALUE. */
2349
2350 Lisp_Object
2351 make_float (double float_value)
2352 {
2353 register Lisp_Object val;
2354
2355 MALLOC_BLOCK_INPUT;
2356
2357 if (float_free_list)
2358 {
2359 /* We use the data field for chaining the free list
2360 so that we won't use the same field that has the mark bit. */
2361 XSETFLOAT (val, float_free_list);
2362 float_free_list = float_free_list->u.chain;
2363 }
2364 else
2365 {
2366 if (float_block_index == FLOAT_BLOCK_SIZE)
2367 {
2368 struct float_block *new
2369 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2370 new->next = float_block;
2371 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2372 float_block = new;
2373 float_block_index = 0;
2374 total_free_floats += FLOAT_BLOCK_SIZE;
2375 }
2376 XSETFLOAT (val, &float_block->floats[float_block_index]);
2377 float_block_index++;
2378 }
2379
2380 MALLOC_UNBLOCK_INPUT;
2381
2382 XFLOAT_INIT (val, float_value);
2383 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2384 consing_since_gc += sizeof (struct Lisp_Float);
2385 floats_consed++;
2386 total_free_floats--;
2387 return val;
2388 }
2389
2390
2391 \f
2392 /***********************************************************************
2393 Cons Allocation
2394 ***********************************************************************/
2395
2396 /* We store cons cells inside of cons_blocks, allocating a new
2397 cons_block with malloc whenever necessary. Cons cells reclaimed by
2398 GC are put on a free list to be reallocated before allocating
2399 any new cons cells from the latest cons_block. */
2400
2401 #define CONS_BLOCK_SIZE \
2402 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2403 /* The compiler might add padding at the end. */ \
2404 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2405 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2406
2407 #define CONS_BLOCK(fptr) \
2408 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2409
2410 #define CONS_INDEX(fptr) \
2411 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2412
2413 struct cons_block
2414 {
2415 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2416 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2417 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2418 struct cons_block *next;
2419 };
2420
2421 #define CONS_MARKED_P(fptr) \
2422 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2423
2424 #define CONS_MARK(fptr) \
2425 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2426
2427 #define CONS_UNMARK(fptr) \
2428 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2429
2430 /* Current cons_block. */
2431
2432 static struct cons_block *cons_block;
2433
2434 /* Index of first unused Lisp_Cons in the current block. */
2435
2436 static int cons_block_index = CONS_BLOCK_SIZE;
2437
2438 /* Free-list of Lisp_Cons structures. */
2439
2440 static struct Lisp_Cons *cons_free_list;
2441
2442 /* Explicitly free a cons cell by putting it on the free-list. */
2443
2444 void
2445 free_cons (struct Lisp_Cons *ptr)
2446 {
2447 ptr->u.chain = cons_free_list;
2448 #if GC_MARK_STACK
2449 ptr->car = Vdead;
2450 #endif
2451 cons_free_list = ptr;
2452 consing_since_gc -= sizeof *ptr;
2453 total_free_conses++;
2454 }
2455
2456 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2457 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2458 (Lisp_Object car, Lisp_Object cdr)
2459 {
2460 register Lisp_Object val;
2461
2462 MALLOC_BLOCK_INPUT;
2463
2464 if (cons_free_list)
2465 {
2466 /* We use the cdr for chaining the free list
2467 so that we won't use the same field that has the mark bit. */
2468 XSETCONS (val, cons_free_list);
2469 cons_free_list = cons_free_list->u.chain;
2470 }
2471 else
2472 {
2473 if (cons_block_index == CONS_BLOCK_SIZE)
2474 {
2475 struct cons_block *new
2476 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2477 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2478 new->next = cons_block;
2479 cons_block = new;
2480 cons_block_index = 0;
2481 total_free_conses += CONS_BLOCK_SIZE;
2482 }
2483 XSETCONS (val, &cons_block->conses[cons_block_index]);
2484 cons_block_index++;
2485 }
2486
2487 MALLOC_UNBLOCK_INPUT;
2488
2489 XSETCAR (val, car);
2490 XSETCDR (val, cdr);
2491 eassert (!CONS_MARKED_P (XCONS (val)));
2492 consing_since_gc += sizeof (struct Lisp_Cons);
2493 total_free_conses--;
2494 cons_cells_consed++;
2495 return val;
2496 }
2497
2498 #ifdef GC_CHECK_CONS_LIST
2499 /* Get an error now if there's any junk in the cons free list. */
2500 void
2501 check_cons_list (void)
2502 {
2503 struct Lisp_Cons *tail = cons_free_list;
2504
2505 while (tail)
2506 tail = tail->u.chain;
2507 }
2508 #endif
2509
2510 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2511
2512 Lisp_Object
2513 list1 (Lisp_Object arg1)
2514 {
2515 return Fcons (arg1, Qnil);
2516 }
2517
2518 Lisp_Object
2519 list2 (Lisp_Object arg1, Lisp_Object arg2)
2520 {
2521 return Fcons (arg1, Fcons (arg2, Qnil));
2522 }
2523
2524
2525 Lisp_Object
2526 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2527 {
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2529 }
2530
2531
2532 Lisp_Object
2533 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2534 {
2535 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2536 }
2537
2538
2539 Lisp_Object
2540 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2541 {
2542 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2543 Fcons (arg5, Qnil)))));
2544 }
2545
2546 /* Make a list of COUNT Lisp_Objects, where ARG is the
2547 first one. Allocate conses from pure space if TYPE
2548 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2549
2550 Lisp_Object
2551 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2552 {
2553 va_list ap;
2554 ptrdiff_t i;
2555 Lisp_Object val, *objp;
2556
2557 /* Change to SAFE_ALLOCA if you hit this eassert. */
2558 eassert (count <= MAX_ALLOCA / word_size);
2559
2560 objp = alloca (count * word_size);
2561 objp[0] = arg;
2562 va_start (ap, arg);
2563 for (i = 1; i < count; i++)
2564 objp[i] = va_arg (ap, Lisp_Object);
2565 va_end (ap);
2566
2567 for (val = Qnil, i = count - 1; i >= 0; i--)
2568 {
2569 if (type == CONSTYPE_PURE)
2570 val = pure_cons (objp[i], val);
2571 else if (type == CONSTYPE_HEAP)
2572 val = Fcons (objp[i], val);
2573 else
2574 emacs_abort ();
2575 }
2576 return val;
2577 }
2578
2579 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2580 doc: /* Return a newly created list with specified arguments as elements.
2581 Any number of arguments, even zero arguments, are allowed.
2582 usage: (list &rest OBJECTS) */)
2583 (ptrdiff_t nargs, Lisp_Object *args)
2584 {
2585 register Lisp_Object val;
2586 val = Qnil;
2587
2588 while (nargs > 0)
2589 {
2590 nargs--;
2591 val = Fcons (args[nargs], val);
2592 }
2593 return val;
2594 }
2595
2596
2597 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2598 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2599 (register Lisp_Object length, Lisp_Object init)
2600 {
2601 register Lisp_Object val;
2602 register EMACS_INT size;
2603
2604 CHECK_NATNUM (length);
2605 size = XFASTINT (length);
2606
2607 val = Qnil;
2608 while (size > 0)
2609 {
2610 val = Fcons (init, val);
2611 --size;
2612
2613 if (size > 0)
2614 {
2615 val = Fcons (init, val);
2616 --size;
2617
2618 if (size > 0)
2619 {
2620 val = Fcons (init, val);
2621 --size;
2622
2623 if (size > 0)
2624 {
2625 val = Fcons (init, val);
2626 --size;
2627
2628 if (size > 0)
2629 {
2630 val = Fcons (init, val);
2631 --size;
2632 }
2633 }
2634 }
2635 }
2636
2637 QUIT;
2638 }
2639
2640 return val;
2641 }
2642
2643
2644 \f
2645 /***********************************************************************
2646 Vector Allocation
2647 ***********************************************************************/
2648
2649 /* Sometimes a vector's contents are merely a pointer internally used
2650 in vector allocation code. On the rare platforms where a null
2651 pointer cannot be tagged, represent it with a Lisp 0.
2652 Usually you don't want to touch this. */
2653
2654 enum { TAGGABLE_NULL = (DATA_SEG_BITS & ~VALMASK) == 0 };
2655
2656 static struct Lisp_Vector *
2657 next_vector (struct Lisp_Vector *v)
2658 {
2659 if (! TAGGABLE_NULL && EQ (v->contents[0], make_number (0)))
2660 return 0;
2661 return XUNTAG (v->contents[0], 0);
2662 }
2663
2664 static void
2665 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2666 {
2667 v->contents[0] = TAGGABLE_NULL || p ? make_lisp_ptr (p, 0) : make_number (0);
2668 }
2669
2670 /* This value is balanced well enough to avoid too much internal overhead
2671 for the most common cases; it's not required to be a power of two, but
2672 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2673
2674 #define VECTOR_BLOCK_SIZE 4096
2675
2676 enum
2677 {
2678 /* Alignment of struct Lisp_Vector objects. */
2679 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2680 USE_LSB_TAG ? GCALIGNMENT : 1),
2681
2682 /* Vector size requests are a multiple of this. */
2683 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2684 };
2685
2686 /* Verify assumptions described above. */
2687 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2688 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2689
2690 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2691 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2692 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2693 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2694
2695 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2696
2697 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2698
2699 /* Size of the minimal vector allocated from block. */
2700
2701 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2702
2703 /* Size of the largest vector allocated from block. */
2704
2705 #define VBLOCK_BYTES_MAX \
2706 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2707
2708 /* We maintain one free list for each possible block-allocated
2709 vector size, and this is the number of free lists we have. */
2710
2711 #define VECTOR_MAX_FREE_LIST_INDEX \
2712 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2713
2714 /* Common shortcut to advance vector pointer over a block data. */
2715
2716 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2717
2718 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2719
2720 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2721
2722 /* Common shortcut to setup vector on a free list. */
2723
2724 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2725 do { \
2726 (tmp) = ((nbytes - header_size) / word_size); \
2727 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2728 eassert ((nbytes) % roundup_size == 0); \
2729 (tmp) = VINDEX (nbytes); \
2730 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2731 set_next_vector (v, vector_free_lists[tmp]); \
2732 vector_free_lists[tmp] = (v); \
2733 total_free_vector_slots += (nbytes) / word_size; \
2734 } while (0)
2735
2736 /* This internal type is used to maintain the list of large vectors
2737 which are allocated at their own, e.g. outside of vector blocks.
2738
2739 struct large_vector itself cannot contain a struct Lisp_Vector, as
2740 the latter contains a flexible array member and C99 does not allow
2741 such structs to be nested. Instead, each struct large_vector
2742 object LV is followed by a struct Lisp_Vector, which is at offset
2743 large_vector_offset from LV, and whose address is therefore
2744 large_vector_vec (&LV). */
2745
2746 struct large_vector
2747 {
2748 struct large_vector *next;
2749 };
2750
2751 enum
2752 {
2753 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2754 };
2755
2756 static struct Lisp_Vector *
2757 large_vector_vec (struct large_vector *p)
2758 {
2759 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2760 }
2761
2762 /* This internal type is used to maintain an underlying storage
2763 for small vectors. */
2764
2765 struct vector_block
2766 {
2767 char data[VECTOR_BLOCK_BYTES];
2768 struct vector_block *next;
2769 };
2770
2771 /* Chain of vector blocks. */
2772
2773 static struct vector_block *vector_blocks;
2774
2775 /* Vector free lists, where NTH item points to a chain of free
2776 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2777
2778 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2779
2780 /* Singly-linked list of large vectors. */
2781
2782 static struct large_vector *large_vectors;
2783
2784 /* The only vector with 0 slots, allocated from pure space. */
2785
2786 Lisp_Object zero_vector;
2787
2788 /* Number of live vectors. */
2789
2790 static EMACS_INT total_vectors;
2791
2792 /* Total size of live and free vectors, in Lisp_Object units. */
2793
2794 static EMACS_INT total_vector_slots, total_free_vector_slots;
2795
2796 /* Get a new vector block. */
2797
2798 static struct vector_block *
2799 allocate_vector_block (void)
2800 {
2801 struct vector_block *block = xmalloc (sizeof *block);
2802
2803 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2804 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2805 MEM_TYPE_VECTOR_BLOCK);
2806 #endif
2807
2808 block->next = vector_blocks;
2809 vector_blocks = block;
2810 return block;
2811 }
2812
2813 /* Called once to initialize vector allocation. */
2814
2815 static void
2816 init_vectors (void)
2817 {
2818 zero_vector = make_pure_vector (0);
2819 }
2820
2821 /* Allocate vector from a vector block. */
2822
2823 static struct Lisp_Vector *
2824 allocate_vector_from_block (size_t nbytes)
2825 {
2826 struct Lisp_Vector *vector;
2827 struct vector_block *block;
2828 size_t index, restbytes;
2829
2830 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2831 eassert (nbytes % roundup_size == 0);
2832
2833 /* First, try to allocate from a free list
2834 containing vectors of the requested size. */
2835 index = VINDEX (nbytes);
2836 if (vector_free_lists[index])
2837 {
2838 vector = vector_free_lists[index];
2839 vector_free_lists[index] = next_vector (vector);
2840 total_free_vector_slots -= nbytes / word_size;
2841 return vector;
2842 }
2843
2844 /* Next, check free lists containing larger vectors. Since
2845 we will split the result, we should have remaining space
2846 large enough to use for one-slot vector at least. */
2847 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2848 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2849 if (vector_free_lists[index])
2850 {
2851 /* This vector is larger than requested. */
2852 vector = vector_free_lists[index];
2853 vector_free_lists[index] = next_vector (vector);
2854 total_free_vector_slots -= nbytes / word_size;
2855
2856 /* Excess bytes are used for the smaller vector,
2857 which should be set on an appropriate free list. */
2858 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2859 eassert (restbytes % roundup_size == 0);
2860 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2861 return vector;
2862 }
2863
2864 /* Finally, need a new vector block. */
2865 block = allocate_vector_block ();
2866
2867 /* New vector will be at the beginning of this block. */
2868 vector = (struct Lisp_Vector *) block->data;
2869
2870 /* If the rest of space from this block is large enough
2871 for one-slot vector at least, set up it on a free list. */
2872 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2873 if (restbytes >= VBLOCK_BYTES_MIN)
2874 {
2875 eassert (restbytes % roundup_size == 0);
2876 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2877 }
2878 return vector;
2879 }
2880
2881 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2882
2883 #define VECTOR_IN_BLOCK(vector, block) \
2884 ((char *) (vector) <= (block)->data \
2885 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2886
2887 /* Return the memory footprint of V in bytes. */
2888
2889 static ptrdiff_t
2890 vector_nbytes (struct Lisp_Vector *v)
2891 {
2892 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2893 ptrdiff_t nwords;
2894
2895 if (size & PSEUDOVECTOR_FLAG)
2896 {
2897 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2898 {
2899 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2900 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2901 * sizeof (bits_word));
2902 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2903 verify (header_size <= bool_header_size);
2904 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2905 }
2906 else
2907 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2908 + ((size & PSEUDOVECTOR_REST_MASK)
2909 >> PSEUDOVECTOR_SIZE_BITS));
2910 }
2911 else
2912 nwords = size;
2913 return vroundup (header_size + word_size * nwords);
2914 }
2915
2916 /* Release extra resources still in use by VECTOR, which may be any
2917 vector-like object. For now, this is used just to free data in
2918 font objects. */
2919
2920 static void
2921 cleanup_vector (struct Lisp_Vector *vector)
2922 {
2923 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2924 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2925 == FONT_OBJECT_MAX))
2926 {
2927 /* Attempt to catch subtle bugs like Bug#16140. */
2928 eassert (valid_font_driver (((struct font *) vector)->driver));
2929 ((struct font *) vector)->driver->close ((struct font *) vector);
2930 }
2931 }
2932
2933 /* Reclaim space used by unmarked vectors. */
2934
2935 static void
2936 sweep_vectors (void)
2937 {
2938 struct vector_block *block, **bprev = &vector_blocks;
2939 struct large_vector *lv, **lvprev = &large_vectors;
2940 struct Lisp_Vector *vector, *next;
2941
2942 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2943 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2944
2945 /* Looking through vector blocks. */
2946
2947 for (block = vector_blocks; block; block = *bprev)
2948 {
2949 bool free_this_block = 0;
2950 ptrdiff_t nbytes;
2951
2952 for (vector = (struct Lisp_Vector *) block->data;
2953 VECTOR_IN_BLOCK (vector, block); vector = next)
2954 {
2955 if (VECTOR_MARKED_P (vector))
2956 {
2957 VECTOR_UNMARK (vector);
2958 total_vectors++;
2959 nbytes = vector_nbytes (vector);
2960 total_vector_slots += nbytes / word_size;
2961 next = ADVANCE (vector, nbytes);
2962 }
2963 else
2964 {
2965 ptrdiff_t total_bytes;
2966
2967 cleanup_vector (vector);
2968 nbytes = vector_nbytes (vector);
2969 total_bytes = nbytes;
2970 next = ADVANCE (vector, nbytes);
2971
2972 /* While NEXT is not marked, try to coalesce with VECTOR,
2973 thus making VECTOR of the largest possible size. */
2974
2975 while (VECTOR_IN_BLOCK (next, block))
2976 {
2977 if (VECTOR_MARKED_P (next))
2978 break;
2979 cleanup_vector (next);
2980 nbytes = vector_nbytes (next);
2981 total_bytes += nbytes;
2982 next = ADVANCE (next, nbytes);
2983 }
2984
2985 eassert (total_bytes % roundup_size == 0);
2986
2987 if (vector == (struct Lisp_Vector *) block->data
2988 && !VECTOR_IN_BLOCK (next, block))
2989 /* This block should be freed because all of it's
2990 space was coalesced into the only free vector. */
2991 free_this_block = 1;
2992 else
2993 {
2994 size_t tmp;
2995 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2996 }
2997 }
2998 }
2999
3000 if (free_this_block)
3001 {
3002 *bprev = block->next;
3003 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3004 mem_delete (mem_find (block->data));
3005 #endif
3006 xfree (block);
3007 }
3008 else
3009 bprev = &block->next;
3010 }
3011
3012 /* Sweep large vectors. */
3013
3014 for (lv = large_vectors; lv; lv = *lvprev)
3015 {
3016 vector = large_vector_vec (lv);
3017 if (VECTOR_MARKED_P (vector))
3018 {
3019 VECTOR_UNMARK (vector);
3020 total_vectors++;
3021 if (vector->header.size & PSEUDOVECTOR_FLAG)
3022 {
3023 /* All non-bool pseudovectors are small enough to be allocated
3024 from vector blocks. This code should be redesigned if some
3025 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3026 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3027 total_vector_slots += vector_nbytes (vector) / word_size;
3028 }
3029 else
3030 total_vector_slots
3031 += header_size / word_size + vector->header.size;
3032 lvprev = &lv->next;
3033 }
3034 else
3035 {
3036 *lvprev = lv->next;
3037 lisp_free (lv);
3038 }
3039 }
3040 }
3041
3042 /* Value is a pointer to a newly allocated Lisp_Vector structure
3043 with room for LEN Lisp_Objects. */
3044
3045 static struct Lisp_Vector *
3046 allocate_vectorlike (ptrdiff_t len)
3047 {
3048 struct Lisp_Vector *p;
3049
3050 MALLOC_BLOCK_INPUT;
3051
3052 if (len == 0)
3053 p = XVECTOR (zero_vector);
3054 else
3055 {
3056 size_t nbytes = header_size + len * word_size;
3057
3058 #ifdef DOUG_LEA_MALLOC
3059 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3060 because mapped region contents are not preserved in
3061 a dumped Emacs. */
3062 mallopt (M_MMAP_MAX, 0);
3063 #endif
3064
3065 if (nbytes <= VBLOCK_BYTES_MAX)
3066 p = allocate_vector_from_block (vroundup (nbytes));
3067 else
3068 {
3069 struct large_vector *lv
3070 = lisp_malloc ((large_vector_offset + header_size
3071 + len * word_size),
3072 MEM_TYPE_VECTORLIKE);
3073 lv->next = large_vectors;
3074 large_vectors = lv;
3075 p = large_vector_vec (lv);
3076 }
3077
3078 #ifdef DOUG_LEA_MALLOC
3079 /* Back to a reasonable maximum of mmap'ed areas. */
3080 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3081 #endif
3082
3083 consing_since_gc += nbytes;
3084 vector_cells_consed += len;
3085 }
3086
3087 MALLOC_UNBLOCK_INPUT;
3088
3089 return p;
3090 }
3091
3092
3093 /* Allocate a vector with LEN slots. */
3094
3095 struct Lisp_Vector *
3096 allocate_vector (EMACS_INT len)
3097 {
3098 struct Lisp_Vector *v;
3099 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3100
3101 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3102 memory_full (SIZE_MAX);
3103 v = allocate_vectorlike (len);
3104 v->header.size = len;
3105 return v;
3106 }
3107
3108
3109 /* Allocate other vector-like structures. */
3110
3111 struct Lisp_Vector *
3112 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3113 {
3114 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3115 int i;
3116
3117 /* Catch bogus values. */
3118 eassert (tag <= PVEC_FONT);
3119 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3120 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3121
3122 /* Only the first lisplen slots will be traced normally by the GC. */
3123 for (i = 0; i < lisplen; ++i)
3124 v->contents[i] = Qnil;
3125
3126 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3127 return v;
3128 }
3129
3130 struct buffer *
3131 allocate_buffer (void)
3132 {
3133 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3134
3135 BUFFER_PVEC_INIT (b);
3136 /* Put B on the chain of all buffers including killed ones. */
3137 b->next = all_buffers;
3138 all_buffers = b;
3139 /* Note that the rest fields of B are not initialized. */
3140 return b;
3141 }
3142
3143 struct Lisp_Hash_Table *
3144 allocate_hash_table (void)
3145 {
3146 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3147 }
3148
3149 struct window *
3150 allocate_window (void)
3151 {
3152 struct window *w;
3153
3154 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3155 /* Users assumes that non-Lisp data is zeroed. */
3156 memset (&w->current_matrix, 0,
3157 sizeof (*w) - offsetof (struct window, current_matrix));
3158 return w;
3159 }
3160
3161 struct terminal *
3162 allocate_terminal (void)
3163 {
3164 struct terminal *t;
3165
3166 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3167 /* Users assumes that non-Lisp data is zeroed. */
3168 memset (&t->next_terminal, 0,
3169 sizeof (*t) - offsetof (struct terminal, next_terminal));
3170 return t;
3171 }
3172
3173 struct frame *
3174 allocate_frame (void)
3175 {
3176 struct frame *f;
3177
3178 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3179 /* Users assumes that non-Lisp data is zeroed. */
3180 memset (&f->face_cache, 0,
3181 sizeof (*f) - offsetof (struct frame, face_cache));
3182 return f;
3183 }
3184
3185 struct Lisp_Process *
3186 allocate_process (void)
3187 {
3188 struct Lisp_Process *p;
3189
3190 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3191 /* Users assumes that non-Lisp data is zeroed. */
3192 memset (&p->pid, 0,
3193 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3194 return p;
3195 }
3196
3197 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3198 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3199 See also the function `vector'. */)
3200 (register Lisp_Object length, Lisp_Object init)
3201 {
3202 Lisp_Object vector;
3203 register ptrdiff_t sizei;
3204 register ptrdiff_t i;
3205 register struct Lisp_Vector *p;
3206
3207 CHECK_NATNUM (length);
3208
3209 p = allocate_vector (XFASTINT (length));
3210 sizei = XFASTINT (length);
3211 for (i = 0; i < sizei; i++)
3212 p->contents[i] = init;
3213
3214 XSETVECTOR (vector, p);
3215 return vector;
3216 }
3217
3218
3219 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3220 doc: /* Return a newly created vector with specified arguments as elements.
3221 Any number of arguments, even zero arguments, are allowed.
3222 usage: (vector &rest OBJECTS) */)
3223 (ptrdiff_t nargs, Lisp_Object *args)
3224 {
3225 ptrdiff_t i;
3226 register Lisp_Object val = make_uninit_vector (nargs);
3227 register struct Lisp_Vector *p = XVECTOR (val);
3228
3229 for (i = 0; i < nargs; i++)
3230 p->contents[i] = args[i];
3231 return val;
3232 }
3233
3234 void
3235 make_byte_code (struct Lisp_Vector *v)
3236 {
3237 /* Don't allow the global zero_vector to become a byte code object. */
3238 eassert (0 < v->header.size);
3239
3240 if (v->header.size > 1 && STRINGP (v->contents[1])
3241 && STRING_MULTIBYTE (v->contents[1]))
3242 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3243 earlier because they produced a raw 8-bit string for byte-code
3244 and now such a byte-code string is loaded as multibyte while
3245 raw 8-bit characters converted to multibyte form. Thus, now we
3246 must convert them back to the original unibyte form. */
3247 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3248 XSETPVECTYPE (v, PVEC_COMPILED);
3249 }
3250
3251 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3252 doc: /* Create a byte-code object with specified arguments as elements.
3253 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3254 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3255 and (optional) INTERACTIVE-SPEC.
3256 The first four arguments are required; at most six have any
3257 significance.
3258 The ARGLIST can be either like the one of `lambda', in which case the arguments
3259 will be dynamically bound before executing the byte code, or it can be an
3260 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3261 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3262 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3263 argument to catch the left-over arguments. If such an integer is used, the
3264 arguments will not be dynamically bound but will be instead pushed on the
3265 stack before executing the byte-code.
3266 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3267 (ptrdiff_t nargs, Lisp_Object *args)
3268 {
3269 ptrdiff_t i;
3270 register Lisp_Object val = make_uninit_vector (nargs);
3271 register struct Lisp_Vector *p = XVECTOR (val);
3272
3273 /* We used to purecopy everything here, if purify-flag was set. This worked
3274 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3275 dangerous, since make-byte-code is used during execution to build
3276 closures, so any closure built during the preload phase would end up
3277 copied into pure space, including its free variables, which is sometimes
3278 just wasteful and other times plainly wrong (e.g. those free vars may want
3279 to be setcar'd). */
3280
3281 for (i = 0; i < nargs; i++)
3282 p->contents[i] = args[i];
3283 make_byte_code (p);
3284 XSETCOMPILED (val, p);
3285 return val;
3286 }
3287
3288
3289 \f
3290 /***********************************************************************
3291 Symbol Allocation
3292 ***********************************************************************/
3293
3294 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3295 of the required alignment if LSB tags are used. */
3296
3297 union aligned_Lisp_Symbol
3298 {
3299 struct Lisp_Symbol s;
3300 #if USE_LSB_TAG
3301 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3302 & -GCALIGNMENT];
3303 #endif
3304 };
3305
3306 /* Each symbol_block is just under 1020 bytes long, since malloc
3307 really allocates in units of powers of two and uses 4 bytes for its
3308 own overhead. */
3309
3310 #define SYMBOL_BLOCK_SIZE \
3311 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3312
3313 struct symbol_block
3314 {
3315 /* Place `symbols' first, to preserve alignment. */
3316 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3317 struct symbol_block *next;
3318 };
3319
3320 /* Current symbol block and index of first unused Lisp_Symbol
3321 structure in it. */
3322
3323 static struct symbol_block *symbol_block;
3324 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3325 /* Pointer to the first symbol_block that contains pinned symbols.
3326 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3327 10K of which are pinned (and all but 250 of them are interned in obarray),
3328 whereas a "typical session" has in the order of 30K symbols.
3329 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3330 than 30K to find the 10K symbols we need to mark. */
3331 static struct symbol_block *symbol_block_pinned;
3332
3333 /* List of free symbols. */
3334
3335 static struct Lisp_Symbol *symbol_free_list;
3336
3337 static void
3338 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3339 {
3340 XSYMBOL (sym)->name = name;
3341 }
3342
3343 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3344 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3345 Its value is void, and its function definition and property list are nil. */)
3346 (Lisp_Object name)
3347 {
3348 register Lisp_Object val;
3349 register struct Lisp_Symbol *p;
3350
3351 CHECK_STRING (name);
3352
3353 MALLOC_BLOCK_INPUT;
3354
3355 if (symbol_free_list)
3356 {
3357 XSETSYMBOL (val, symbol_free_list);
3358 symbol_free_list = symbol_free_list->next;
3359 }
3360 else
3361 {
3362 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3363 {
3364 struct symbol_block *new
3365 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3366 new->next = symbol_block;
3367 symbol_block = new;
3368 symbol_block_index = 0;
3369 total_free_symbols += SYMBOL_BLOCK_SIZE;
3370 }
3371 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3372 symbol_block_index++;
3373 }
3374
3375 MALLOC_UNBLOCK_INPUT;
3376
3377 p = XSYMBOL (val);
3378 set_symbol_name (val, name);
3379 set_symbol_plist (val, Qnil);
3380 p->redirect = SYMBOL_PLAINVAL;
3381 SET_SYMBOL_VAL (p, Qunbound);
3382 set_symbol_function (val, Qnil);
3383 set_symbol_next (val, NULL);
3384 p->gcmarkbit = false;
3385 p->interned = SYMBOL_UNINTERNED;
3386 p->constant = 0;
3387 p->declared_special = false;
3388 p->pinned = false;
3389 consing_since_gc += sizeof (struct Lisp_Symbol);
3390 symbols_consed++;
3391 total_free_symbols--;
3392 return val;
3393 }
3394
3395
3396 \f
3397 /***********************************************************************
3398 Marker (Misc) Allocation
3399 ***********************************************************************/
3400
3401 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3402 the required alignment when LSB tags are used. */
3403
3404 union aligned_Lisp_Misc
3405 {
3406 union Lisp_Misc m;
3407 #if USE_LSB_TAG
3408 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3409 & -GCALIGNMENT];
3410 #endif
3411 };
3412
3413 /* Allocation of markers and other objects that share that structure.
3414 Works like allocation of conses. */
3415
3416 #define MARKER_BLOCK_SIZE \
3417 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3418
3419 struct marker_block
3420 {
3421 /* Place `markers' first, to preserve alignment. */
3422 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3423 struct marker_block *next;
3424 };
3425
3426 static struct marker_block *marker_block;
3427 static int marker_block_index = MARKER_BLOCK_SIZE;
3428
3429 static union Lisp_Misc *marker_free_list;
3430
3431 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3432
3433 static Lisp_Object
3434 allocate_misc (enum Lisp_Misc_Type type)
3435 {
3436 Lisp_Object val;
3437
3438 MALLOC_BLOCK_INPUT;
3439
3440 if (marker_free_list)
3441 {
3442 XSETMISC (val, marker_free_list);
3443 marker_free_list = marker_free_list->u_free.chain;
3444 }
3445 else
3446 {
3447 if (marker_block_index == MARKER_BLOCK_SIZE)
3448 {
3449 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3450 new->next = marker_block;
3451 marker_block = new;
3452 marker_block_index = 0;
3453 total_free_markers += MARKER_BLOCK_SIZE;
3454 }
3455 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3456 marker_block_index++;
3457 }
3458
3459 MALLOC_UNBLOCK_INPUT;
3460
3461 --total_free_markers;
3462 consing_since_gc += sizeof (union Lisp_Misc);
3463 misc_objects_consed++;
3464 XMISCANY (val)->type = type;
3465 XMISCANY (val)->gcmarkbit = 0;
3466 return val;
3467 }
3468
3469 /* Free a Lisp_Misc object. */
3470
3471 void
3472 free_misc (Lisp_Object misc)
3473 {
3474 XMISCANY (misc)->type = Lisp_Misc_Free;
3475 XMISC (misc)->u_free.chain = marker_free_list;
3476 marker_free_list = XMISC (misc);
3477 consing_since_gc -= sizeof (union Lisp_Misc);
3478 total_free_markers++;
3479 }
3480
3481 /* Verify properties of Lisp_Save_Value's representation
3482 that are assumed here and elsewhere. */
3483
3484 verify (SAVE_UNUSED == 0);
3485 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3486 >> SAVE_SLOT_BITS)
3487 == 0);
3488
3489 /* Return Lisp_Save_Value objects for the various combinations
3490 that callers need. */
3491
3492 Lisp_Object
3493 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3494 {
3495 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3496 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3497 p->save_type = SAVE_TYPE_INT_INT_INT;
3498 p->data[0].integer = a;
3499 p->data[1].integer = b;
3500 p->data[2].integer = c;
3501 return val;
3502 }
3503
3504 Lisp_Object
3505 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3506 Lisp_Object d)
3507 {
3508 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3509 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3510 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3511 p->data[0].object = a;
3512 p->data[1].object = b;
3513 p->data[2].object = c;
3514 p->data[3].object = d;
3515 return val;
3516 }
3517
3518 Lisp_Object
3519 make_save_ptr (void *a)
3520 {
3521 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3522 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3523 p->save_type = SAVE_POINTER;
3524 p->data[0].pointer = a;
3525 return val;
3526 }
3527
3528 Lisp_Object
3529 make_save_ptr_int (void *a, ptrdiff_t b)
3530 {
3531 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3532 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3533 p->save_type = SAVE_TYPE_PTR_INT;
3534 p->data[0].pointer = a;
3535 p->data[1].integer = b;
3536 return val;
3537 }
3538
3539 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3540 Lisp_Object
3541 make_save_ptr_ptr (void *a, void *b)
3542 {
3543 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3544 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3545 p->save_type = SAVE_TYPE_PTR_PTR;
3546 p->data[0].pointer = a;
3547 p->data[1].pointer = b;
3548 return val;
3549 }
3550 #endif
3551
3552 Lisp_Object
3553 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3554 {
3555 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3556 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3557 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3558 p->data[0].funcpointer = a;
3559 p->data[1].pointer = b;
3560 p->data[2].object = c;
3561 return val;
3562 }
3563
3564 /* Return a Lisp_Save_Value object that represents an array A
3565 of N Lisp objects. */
3566
3567 Lisp_Object
3568 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3569 {
3570 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3571 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3572 p->save_type = SAVE_TYPE_MEMORY;
3573 p->data[0].pointer = a;
3574 p->data[1].integer = n;
3575 return val;
3576 }
3577
3578 /* Free a Lisp_Save_Value object. Do not use this function
3579 if SAVE contains pointer other than returned by xmalloc. */
3580
3581 void
3582 free_save_value (Lisp_Object save)
3583 {
3584 xfree (XSAVE_POINTER (save, 0));
3585 free_misc (save);
3586 }
3587
3588 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3589
3590 Lisp_Object
3591 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3592 {
3593 register Lisp_Object overlay;
3594
3595 overlay = allocate_misc (Lisp_Misc_Overlay);
3596 OVERLAY_START (overlay) = start;
3597 OVERLAY_END (overlay) = end;
3598 set_overlay_plist (overlay, plist);
3599 XOVERLAY (overlay)->next = NULL;
3600 return overlay;
3601 }
3602
3603 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3604 doc: /* Return a newly allocated marker which does not point at any place. */)
3605 (void)
3606 {
3607 register Lisp_Object val;
3608 register struct Lisp_Marker *p;
3609
3610 val = allocate_misc (Lisp_Misc_Marker);
3611 p = XMARKER (val);
3612 p->buffer = 0;
3613 p->bytepos = 0;
3614 p->charpos = 0;
3615 p->next = NULL;
3616 p->insertion_type = 0;
3617 p->need_adjustment = 0;
3618 return val;
3619 }
3620
3621 /* Return a newly allocated marker which points into BUF
3622 at character position CHARPOS and byte position BYTEPOS. */
3623
3624 Lisp_Object
3625 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3626 {
3627 Lisp_Object obj;
3628 struct Lisp_Marker *m;
3629
3630 /* No dead buffers here. */
3631 eassert (BUFFER_LIVE_P (buf));
3632
3633 /* Every character is at least one byte. */
3634 eassert (charpos <= bytepos);
3635
3636 obj = allocate_misc (Lisp_Misc_Marker);
3637 m = XMARKER (obj);
3638 m->buffer = buf;
3639 m->charpos = charpos;
3640 m->bytepos = bytepos;
3641 m->insertion_type = 0;
3642 m->need_adjustment = 0;
3643 m->next = BUF_MARKERS (buf);
3644 BUF_MARKERS (buf) = m;
3645 return obj;
3646 }
3647
3648 /* Put MARKER back on the free list after using it temporarily. */
3649
3650 void
3651 free_marker (Lisp_Object marker)
3652 {
3653 unchain_marker (XMARKER (marker));
3654 free_misc (marker);
3655 }
3656
3657 \f
3658 /* Return a newly created vector or string with specified arguments as
3659 elements. If all the arguments are characters that can fit
3660 in a string of events, make a string; otherwise, make a vector.
3661
3662 Any number of arguments, even zero arguments, are allowed. */
3663
3664 Lisp_Object
3665 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3666 {
3667 ptrdiff_t i;
3668
3669 for (i = 0; i < nargs; i++)
3670 /* The things that fit in a string
3671 are characters that are in 0...127,
3672 after discarding the meta bit and all the bits above it. */
3673 if (!INTEGERP (args[i])
3674 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3675 return Fvector (nargs, args);
3676
3677 /* Since the loop exited, we know that all the things in it are
3678 characters, so we can make a string. */
3679 {
3680 Lisp_Object result;
3681
3682 result = Fmake_string (make_number (nargs), make_number (0));
3683 for (i = 0; i < nargs; i++)
3684 {
3685 SSET (result, i, XINT (args[i]));
3686 /* Move the meta bit to the right place for a string char. */
3687 if (XINT (args[i]) & CHAR_META)
3688 SSET (result, i, SREF (result, i) | 0x80);
3689 }
3690
3691 return result;
3692 }
3693 }
3694
3695
3696 \f
3697 /************************************************************************
3698 Memory Full Handling
3699 ************************************************************************/
3700
3701
3702 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3703 there may have been size_t overflow so that malloc was never
3704 called, or perhaps malloc was invoked successfully but the
3705 resulting pointer had problems fitting into a tagged EMACS_INT. In
3706 either case this counts as memory being full even though malloc did
3707 not fail. */
3708
3709 void
3710 memory_full (size_t nbytes)
3711 {
3712 /* Do not go into hysterics merely because a large request failed. */
3713 bool enough_free_memory = 0;
3714 if (SPARE_MEMORY < nbytes)
3715 {
3716 void *p;
3717
3718 MALLOC_BLOCK_INPUT;
3719 p = malloc (SPARE_MEMORY);
3720 if (p)
3721 {
3722 free (p);
3723 enough_free_memory = 1;
3724 }
3725 MALLOC_UNBLOCK_INPUT;
3726 }
3727
3728 if (! enough_free_memory)
3729 {
3730 int i;
3731
3732 Vmemory_full = Qt;
3733
3734 memory_full_cons_threshold = sizeof (struct cons_block);
3735
3736 /* The first time we get here, free the spare memory. */
3737 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3738 if (spare_memory[i])
3739 {
3740 if (i == 0)
3741 free (spare_memory[i]);
3742 else if (i >= 1 && i <= 4)
3743 lisp_align_free (spare_memory[i]);
3744 else
3745 lisp_free (spare_memory[i]);
3746 spare_memory[i] = 0;
3747 }
3748 }
3749
3750 /* This used to call error, but if we've run out of memory, we could
3751 get infinite recursion trying to build the string. */
3752 xsignal (Qnil, Vmemory_signal_data);
3753 }
3754
3755 /* If we released our reserve (due to running out of memory),
3756 and we have a fair amount free once again,
3757 try to set aside another reserve in case we run out once more.
3758
3759 This is called when a relocatable block is freed in ralloc.c,
3760 and also directly from this file, in case we're not using ralloc.c. */
3761
3762 void
3763 refill_memory_reserve (void)
3764 {
3765 #ifndef SYSTEM_MALLOC
3766 if (spare_memory[0] == 0)
3767 spare_memory[0] = malloc (SPARE_MEMORY);
3768 if (spare_memory[1] == 0)
3769 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3770 MEM_TYPE_SPARE);
3771 if (spare_memory[2] == 0)
3772 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3773 MEM_TYPE_SPARE);
3774 if (spare_memory[3] == 0)
3775 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3776 MEM_TYPE_SPARE);
3777 if (spare_memory[4] == 0)
3778 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3779 MEM_TYPE_SPARE);
3780 if (spare_memory[5] == 0)
3781 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3782 MEM_TYPE_SPARE);
3783 if (spare_memory[6] == 0)
3784 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3785 MEM_TYPE_SPARE);
3786 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3787 Vmemory_full = Qnil;
3788 #endif
3789 }
3790 \f
3791 /************************************************************************
3792 C Stack Marking
3793 ************************************************************************/
3794
3795 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3796
3797 /* Conservative C stack marking requires a method to identify possibly
3798 live Lisp objects given a pointer value. We do this by keeping
3799 track of blocks of Lisp data that are allocated in a red-black tree
3800 (see also the comment of mem_node which is the type of nodes in
3801 that tree). Function lisp_malloc adds information for an allocated
3802 block to the red-black tree with calls to mem_insert, and function
3803 lisp_free removes it with mem_delete. Functions live_string_p etc
3804 call mem_find to lookup information about a given pointer in the
3805 tree, and use that to determine if the pointer points to a Lisp
3806 object or not. */
3807
3808 /* Initialize this part of alloc.c. */
3809
3810 static void
3811 mem_init (void)
3812 {
3813 mem_z.left = mem_z.right = MEM_NIL;
3814 mem_z.parent = NULL;
3815 mem_z.color = MEM_BLACK;
3816 mem_z.start = mem_z.end = NULL;
3817 mem_root = MEM_NIL;
3818 }
3819
3820
3821 /* Value is a pointer to the mem_node containing START. Value is
3822 MEM_NIL if there is no node in the tree containing START. */
3823
3824 static struct mem_node *
3825 mem_find (void *start)
3826 {
3827 struct mem_node *p;
3828
3829 if (start < min_heap_address || start > max_heap_address)
3830 return MEM_NIL;
3831
3832 /* Make the search always successful to speed up the loop below. */
3833 mem_z.start = start;
3834 mem_z.end = (char *) start + 1;
3835
3836 p = mem_root;
3837 while (start < p->start || start >= p->end)
3838 p = start < p->start ? p->left : p->right;
3839 return p;
3840 }
3841
3842
3843 /* Insert a new node into the tree for a block of memory with start
3844 address START, end address END, and type TYPE. Value is a
3845 pointer to the node that was inserted. */
3846
3847 static struct mem_node *
3848 mem_insert (void *start, void *end, enum mem_type type)
3849 {
3850 struct mem_node *c, *parent, *x;
3851
3852 if (min_heap_address == NULL || start < min_heap_address)
3853 min_heap_address = start;
3854 if (max_heap_address == NULL || end > max_heap_address)
3855 max_heap_address = end;
3856
3857 /* See where in the tree a node for START belongs. In this
3858 particular application, it shouldn't happen that a node is already
3859 present. For debugging purposes, let's check that. */
3860 c = mem_root;
3861 parent = NULL;
3862
3863 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3864
3865 while (c != MEM_NIL)
3866 {
3867 if (start >= c->start && start < c->end)
3868 emacs_abort ();
3869 parent = c;
3870 c = start < c->start ? c->left : c->right;
3871 }
3872
3873 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3874
3875 while (c != MEM_NIL)
3876 {
3877 parent = c;
3878 c = start < c->start ? c->left : c->right;
3879 }
3880
3881 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3882
3883 /* Create a new node. */
3884 #ifdef GC_MALLOC_CHECK
3885 x = malloc (sizeof *x);
3886 if (x == NULL)
3887 emacs_abort ();
3888 #else
3889 x = xmalloc (sizeof *x);
3890 #endif
3891 x->start = start;
3892 x->end = end;
3893 x->type = type;
3894 x->parent = parent;
3895 x->left = x->right = MEM_NIL;
3896 x->color = MEM_RED;
3897
3898 /* Insert it as child of PARENT or install it as root. */
3899 if (parent)
3900 {
3901 if (start < parent->start)
3902 parent->left = x;
3903 else
3904 parent->right = x;
3905 }
3906 else
3907 mem_root = x;
3908
3909 /* Re-establish red-black tree properties. */
3910 mem_insert_fixup (x);
3911
3912 return x;
3913 }
3914
3915
3916 /* Re-establish the red-black properties of the tree, and thereby
3917 balance the tree, after node X has been inserted; X is always red. */
3918
3919 static void
3920 mem_insert_fixup (struct mem_node *x)
3921 {
3922 while (x != mem_root && x->parent->color == MEM_RED)
3923 {
3924 /* X is red and its parent is red. This is a violation of
3925 red-black tree property #3. */
3926
3927 if (x->parent == x->parent->parent->left)
3928 {
3929 /* We're on the left side of our grandparent, and Y is our
3930 "uncle". */
3931 struct mem_node *y = x->parent->parent->right;
3932
3933 if (y->color == MEM_RED)
3934 {
3935 /* Uncle and parent are red but should be black because
3936 X is red. Change the colors accordingly and proceed
3937 with the grandparent. */
3938 x->parent->color = MEM_BLACK;
3939 y->color = MEM_BLACK;
3940 x->parent->parent->color = MEM_RED;
3941 x = x->parent->parent;
3942 }
3943 else
3944 {
3945 /* Parent and uncle have different colors; parent is
3946 red, uncle is black. */
3947 if (x == x->parent->right)
3948 {
3949 x = x->parent;
3950 mem_rotate_left (x);
3951 }
3952
3953 x->parent->color = MEM_BLACK;
3954 x->parent->parent->color = MEM_RED;
3955 mem_rotate_right (x->parent->parent);
3956 }
3957 }
3958 else
3959 {
3960 /* This is the symmetrical case of above. */
3961 struct mem_node *y = x->parent->parent->left;
3962
3963 if (y->color == MEM_RED)
3964 {
3965 x->parent->color = MEM_BLACK;
3966 y->color = MEM_BLACK;
3967 x->parent->parent->color = MEM_RED;
3968 x = x->parent->parent;
3969 }
3970 else
3971 {
3972 if (x == x->parent->left)
3973 {
3974 x = x->parent;
3975 mem_rotate_right (x);
3976 }
3977
3978 x->parent->color = MEM_BLACK;
3979 x->parent->parent->color = MEM_RED;
3980 mem_rotate_left (x->parent->parent);
3981 }
3982 }
3983 }
3984
3985 /* The root may have been changed to red due to the algorithm. Set
3986 it to black so that property #5 is satisfied. */
3987 mem_root->color = MEM_BLACK;
3988 }
3989
3990
3991 /* (x) (y)
3992 / \ / \
3993 a (y) ===> (x) c
3994 / \ / \
3995 b c a b */
3996
3997 static void
3998 mem_rotate_left (struct mem_node *x)
3999 {
4000 struct mem_node *y;
4001
4002 /* Turn y's left sub-tree into x's right sub-tree. */
4003 y = x->right;
4004 x->right = y->left;
4005 if (y->left != MEM_NIL)
4006 y->left->parent = x;
4007
4008 /* Y's parent was x's parent. */
4009 if (y != MEM_NIL)
4010 y->parent = x->parent;
4011
4012 /* Get the parent to point to y instead of x. */
4013 if (x->parent)
4014 {
4015 if (x == x->parent->left)
4016 x->parent->left = y;
4017 else
4018 x->parent->right = y;
4019 }
4020 else
4021 mem_root = y;
4022
4023 /* Put x on y's left. */
4024 y->left = x;
4025 if (x != MEM_NIL)
4026 x->parent = y;
4027 }
4028
4029
4030 /* (x) (Y)
4031 / \ / \
4032 (y) c ===> a (x)
4033 / \ / \
4034 a b b c */
4035
4036 static void
4037 mem_rotate_right (struct mem_node *x)
4038 {
4039 struct mem_node *y = x->left;
4040
4041 x->left = y->right;
4042 if (y->right != MEM_NIL)
4043 y->right->parent = x;
4044
4045 if (y != MEM_NIL)
4046 y->parent = x->parent;
4047 if (x->parent)
4048 {
4049 if (x == x->parent->right)
4050 x->parent->right = y;
4051 else
4052 x->parent->left = y;
4053 }
4054 else
4055 mem_root = y;
4056
4057 y->right = x;
4058 if (x != MEM_NIL)
4059 x->parent = y;
4060 }
4061
4062
4063 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4064
4065 static void
4066 mem_delete (struct mem_node *z)
4067 {
4068 struct mem_node *x, *y;
4069
4070 if (!z || z == MEM_NIL)
4071 return;
4072
4073 if (z->left == MEM_NIL || z->right == MEM_NIL)
4074 y = z;
4075 else
4076 {
4077 y = z->right;
4078 while (y->left != MEM_NIL)
4079 y = y->left;
4080 }
4081
4082 if (y->left != MEM_NIL)
4083 x = y->left;
4084 else
4085 x = y->right;
4086
4087 x->parent = y->parent;
4088 if (y->parent)
4089 {
4090 if (y == y->parent->left)
4091 y->parent->left = x;
4092 else
4093 y->parent->right = x;
4094 }
4095 else
4096 mem_root = x;
4097
4098 if (y != z)
4099 {
4100 z->start = y->start;
4101 z->end = y->end;
4102 z->type = y->type;
4103 }
4104
4105 if (y->color == MEM_BLACK)
4106 mem_delete_fixup (x);
4107
4108 #ifdef GC_MALLOC_CHECK
4109 free (y);
4110 #else
4111 xfree (y);
4112 #endif
4113 }
4114
4115
4116 /* Re-establish the red-black properties of the tree, after a
4117 deletion. */
4118
4119 static void
4120 mem_delete_fixup (struct mem_node *x)
4121 {
4122 while (x != mem_root && x->color == MEM_BLACK)
4123 {
4124 if (x == x->parent->left)
4125 {
4126 struct mem_node *w = x->parent->right;
4127
4128 if (w->color == MEM_RED)
4129 {
4130 w->color = MEM_BLACK;
4131 x->parent->color = MEM_RED;
4132 mem_rotate_left (x->parent);
4133 w = x->parent->right;
4134 }
4135
4136 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4137 {
4138 w->color = MEM_RED;
4139 x = x->parent;
4140 }
4141 else
4142 {
4143 if (w->right->color == MEM_BLACK)
4144 {
4145 w->left->color = MEM_BLACK;
4146 w->color = MEM_RED;
4147 mem_rotate_right (w);
4148 w = x->parent->right;
4149 }
4150 w->color = x->parent->color;
4151 x->parent->color = MEM_BLACK;
4152 w->right->color = MEM_BLACK;
4153 mem_rotate_left (x->parent);
4154 x = mem_root;
4155 }
4156 }
4157 else
4158 {
4159 struct mem_node *w = x->parent->left;
4160
4161 if (w->color == MEM_RED)
4162 {
4163 w->color = MEM_BLACK;
4164 x->parent->color = MEM_RED;
4165 mem_rotate_right (x->parent);
4166 w = x->parent->left;
4167 }
4168
4169 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4170 {
4171 w->color = MEM_RED;
4172 x = x->parent;
4173 }
4174 else
4175 {
4176 if (w->left->color == MEM_BLACK)
4177 {
4178 w->right->color = MEM_BLACK;
4179 w->color = MEM_RED;
4180 mem_rotate_left (w);
4181 w = x->parent->left;
4182 }
4183
4184 w->color = x->parent->color;
4185 x->parent->color = MEM_BLACK;
4186 w->left->color = MEM_BLACK;
4187 mem_rotate_right (x->parent);
4188 x = mem_root;
4189 }
4190 }
4191 }
4192
4193 x->color = MEM_BLACK;
4194 }
4195
4196
4197 /* Value is non-zero if P is a pointer to a live Lisp string on
4198 the heap. M is a pointer to the mem_block for P. */
4199
4200 static bool
4201 live_string_p (struct mem_node *m, void *p)
4202 {
4203 if (m->type == MEM_TYPE_STRING)
4204 {
4205 struct string_block *b = m->start;
4206 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4207
4208 /* P must point to the start of a Lisp_String structure, and it
4209 must not be on the free-list. */
4210 return (offset >= 0
4211 && offset % sizeof b->strings[0] == 0
4212 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4213 && ((struct Lisp_String *) p)->data != NULL);
4214 }
4215 else
4216 return 0;
4217 }
4218
4219
4220 /* Value is non-zero if P is a pointer to a live Lisp cons on
4221 the heap. M is a pointer to the mem_block for P. */
4222
4223 static bool
4224 live_cons_p (struct mem_node *m, void *p)
4225 {
4226 if (m->type == MEM_TYPE_CONS)
4227 {
4228 struct cons_block *b = m->start;
4229 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4230
4231 /* P must point to the start of a Lisp_Cons, not be
4232 one of the unused cells in the current cons block,
4233 and not be on the free-list. */
4234 return (offset >= 0
4235 && offset % sizeof b->conses[0] == 0
4236 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4237 && (b != cons_block
4238 || offset / sizeof b->conses[0] < cons_block_index)
4239 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4240 }
4241 else
4242 return 0;
4243 }
4244
4245
4246 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4247 the heap. M is a pointer to the mem_block for P. */
4248
4249 static bool
4250 live_symbol_p (struct mem_node *m, void *p)
4251 {
4252 if (m->type == MEM_TYPE_SYMBOL)
4253 {
4254 struct symbol_block *b = m->start;
4255 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4256
4257 /* P must point to the start of a Lisp_Symbol, not be
4258 one of the unused cells in the current symbol block,
4259 and not be on the free-list. */
4260 return (offset >= 0
4261 && offset % sizeof b->symbols[0] == 0
4262 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4263 && (b != symbol_block
4264 || offset / sizeof b->symbols[0] < symbol_block_index)
4265 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4266 }
4267 else
4268 return 0;
4269 }
4270
4271
4272 /* Value is non-zero if P is a pointer to a live Lisp float on
4273 the heap. M is a pointer to the mem_block for P. */
4274
4275 static bool
4276 live_float_p (struct mem_node *m, void *p)
4277 {
4278 if (m->type == MEM_TYPE_FLOAT)
4279 {
4280 struct float_block *b = m->start;
4281 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4282
4283 /* P must point to the start of a Lisp_Float and not be
4284 one of the unused cells in the current float block. */
4285 return (offset >= 0
4286 && offset % sizeof b->floats[0] == 0
4287 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4288 && (b != float_block
4289 || offset / sizeof b->floats[0] < float_block_index));
4290 }
4291 else
4292 return 0;
4293 }
4294
4295
4296 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4297 the heap. M is a pointer to the mem_block for P. */
4298
4299 static bool
4300 live_misc_p (struct mem_node *m, void *p)
4301 {
4302 if (m->type == MEM_TYPE_MISC)
4303 {
4304 struct marker_block *b = m->start;
4305 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4306
4307 /* P must point to the start of a Lisp_Misc, not be
4308 one of the unused cells in the current misc block,
4309 and not be on the free-list. */
4310 return (offset >= 0
4311 && offset % sizeof b->markers[0] == 0
4312 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4313 && (b != marker_block
4314 || offset / sizeof b->markers[0] < marker_block_index)
4315 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4316 }
4317 else
4318 return 0;
4319 }
4320
4321
4322 /* Value is non-zero if P is a pointer to a live vector-like object.
4323 M is a pointer to the mem_block for P. */
4324
4325 static bool
4326 live_vector_p (struct mem_node *m, void *p)
4327 {
4328 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4329 {
4330 /* This memory node corresponds to a vector block. */
4331 struct vector_block *block = m->start;
4332 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4333
4334 /* P is in the block's allocation range. Scan the block
4335 up to P and see whether P points to the start of some
4336 vector which is not on a free list. FIXME: check whether
4337 some allocation patterns (probably a lot of short vectors)
4338 may cause a substantial overhead of this loop. */
4339 while (VECTOR_IN_BLOCK (vector, block)
4340 && vector <= (struct Lisp_Vector *) p)
4341 {
4342 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4343 return 1;
4344 else
4345 vector = ADVANCE (vector, vector_nbytes (vector));
4346 }
4347 }
4348 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4349 /* This memory node corresponds to a large vector. */
4350 return 1;
4351 return 0;
4352 }
4353
4354
4355 /* Value is non-zero if P is a pointer to a live buffer. M is a
4356 pointer to the mem_block for P. */
4357
4358 static bool
4359 live_buffer_p (struct mem_node *m, void *p)
4360 {
4361 /* P must point to the start of the block, and the buffer
4362 must not have been killed. */
4363 return (m->type == MEM_TYPE_BUFFER
4364 && p == m->start
4365 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4366 }
4367
4368 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4369
4370 #if GC_MARK_STACK
4371
4372 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4373
4374 /* Currently not used, but may be called from gdb. */
4375
4376 void dump_zombies (void) EXTERNALLY_VISIBLE;
4377
4378 /* Array of objects that are kept alive because the C stack contains
4379 a pattern that looks like a reference to them. */
4380
4381 #define MAX_ZOMBIES 10
4382 static Lisp_Object zombies[MAX_ZOMBIES];
4383
4384 /* Number of zombie objects. */
4385
4386 static EMACS_INT nzombies;
4387
4388 /* Number of garbage collections. */
4389
4390 static EMACS_INT ngcs;
4391
4392 /* Average percentage of zombies per collection. */
4393
4394 static double avg_zombies;
4395
4396 /* Max. number of live and zombie objects. */
4397
4398 static EMACS_INT max_live, max_zombies;
4399
4400 /* Average number of live objects per GC. */
4401
4402 static double avg_live;
4403
4404 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4405 doc: /* Show information about live and zombie objects. */)
4406 (void)
4407 {
4408 Lisp_Object args[8], zombie_list = Qnil;
4409 EMACS_INT i;
4410 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4411 zombie_list = Fcons (zombies[i], zombie_list);
4412 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4413 args[1] = make_number (ngcs);
4414 args[2] = make_float (avg_live);
4415 args[3] = make_float (avg_zombies);
4416 args[4] = make_float (avg_zombies / avg_live / 100);
4417 args[5] = make_number (max_live);
4418 args[6] = make_number (max_zombies);
4419 args[7] = zombie_list;
4420 return Fmessage (8, args);
4421 }
4422
4423 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4424
4425
4426 /* Mark OBJ if we can prove it's a Lisp_Object. */
4427
4428 static void
4429 mark_maybe_object (Lisp_Object obj)
4430 {
4431 void *po;
4432 struct mem_node *m;
4433
4434 #if USE_VALGRIND
4435 if (valgrind_p)
4436 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4437 #endif
4438
4439 if (INTEGERP (obj))
4440 return;
4441
4442 po = (void *) XPNTR (obj);
4443 m = mem_find (po);
4444
4445 if (m != MEM_NIL)
4446 {
4447 bool mark_p = 0;
4448
4449 switch (XTYPE (obj))
4450 {
4451 case Lisp_String:
4452 mark_p = (live_string_p (m, po)
4453 && !STRING_MARKED_P ((struct Lisp_String *) po));
4454 break;
4455
4456 case Lisp_Cons:
4457 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4458 break;
4459
4460 case Lisp_Symbol:
4461 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4462 break;
4463
4464 case Lisp_Float:
4465 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4466 break;
4467
4468 case Lisp_Vectorlike:
4469 /* Note: can't check BUFFERP before we know it's a
4470 buffer because checking that dereferences the pointer
4471 PO which might point anywhere. */
4472 if (live_vector_p (m, po))
4473 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4474 else if (live_buffer_p (m, po))
4475 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4476 break;
4477
4478 case Lisp_Misc:
4479 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4480 break;
4481
4482 default:
4483 break;
4484 }
4485
4486 if (mark_p)
4487 {
4488 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4489 if (nzombies < MAX_ZOMBIES)
4490 zombies[nzombies] = obj;
4491 ++nzombies;
4492 #endif
4493 mark_object (obj);
4494 }
4495 }
4496 }
4497
4498
4499 /* If P points to Lisp data, mark that as live if it isn't already
4500 marked. */
4501
4502 static void
4503 mark_maybe_pointer (void *p)
4504 {
4505 struct mem_node *m;
4506
4507 #if USE_VALGRIND
4508 if (valgrind_p)
4509 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4510 #endif
4511
4512 /* Quickly rule out some values which can't point to Lisp data.
4513 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4514 Otherwise, assume that Lisp data is aligned on even addresses. */
4515 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4516 return;
4517
4518 m = mem_find (p);
4519 if (m != MEM_NIL)
4520 {
4521 Lisp_Object obj = Qnil;
4522
4523 switch (m->type)
4524 {
4525 case MEM_TYPE_NON_LISP:
4526 case MEM_TYPE_SPARE:
4527 /* Nothing to do; not a pointer to Lisp memory. */
4528 break;
4529
4530 case MEM_TYPE_BUFFER:
4531 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4532 XSETVECTOR (obj, p);
4533 break;
4534
4535 case MEM_TYPE_CONS:
4536 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4537 XSETCONS (obj, p);
4538 break;
4539
4540 case MEM_TYPE_STRING:
4541 if (live_string_p (m, p)
4542 && !STRING_MARKED_P ((struct Lisp_String *) p))
4543 XSETSTRING (obj, p);
4544 break;
4545
4546 case MEM_TYPE_MISC:
4547 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4548 XSETMISC (obj, p);
4549 break;
4550
4551 case MEM_TYPE_SYMBOL:
4552 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4553 XSETSYMBOL (obj, p);
4554 break;
4555
4556 case MEM_TYPE_FLOAT:
4557 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4558 XSETFLOAT (obj, p);
4559 break;
4560
4561 case MEM_TYPE_VECTORLIKE:
4562 case MEM_TYPE_VECTOR_BLOCK:
4563 if (live_vector_p (m, p))
4564 {
4565 Lisp_Object tem;
4566 XSETVECTOR (tem, p);
4567 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4568 obj = tem;
4569 }
4570 break;
4571
4572 default:
4573 emacs_abort ();
4574 }
4575
4576 if (!NILP (obj))
4577 mark_object (obj);
4578 }
4579 }
4580
4581
4582 /* Alignment of pointer values. Use alignof, as it sometimes returns
4583 a smaller alignment than GCC's __alignof__ and mark_memory might
4584 miss objects if __alignof__ were used. */
4585 #define GC_POINTER_ALIGNMENT alignof (void *)
4586
4587 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4588 not suffice, which is the typical case. A host where a Lisp_Object is
4589 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4590 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4591 suffice to widen it to to a Lisp_Object and check it that way. */
4592 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4593 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4594 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4595 nor mark_maybe_object can follow the pointers. This should not occur on
4596 any practical porting target. */
4597 # error "MSB type bits straddle pointer-word boundaries"
4598 # endif
4599 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4600 pointer words that hold pointers ORed with type bits. */
4601 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4602 #else
4603 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4604 words that hold unmodified pointers. */
4605 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4606 #endif
4607
4608 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4609 or END+OFFSET..START. */
4610
4611 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4612 mark_memory (void *start, void *end)
4613 {
4614 void **pp;
4615 int i;
4616
4617 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4618 nzombies = 0;
4619 #endif
4620
4621 /* Make START the pointer to the start of the memory region,
4622 if it isn't already. */
4623 if (end < start)
4624 {
4625 void *tem = start;
4626 start = end;
4627 end = tem;
4628 }
4629
4630 /* Mark Lisp data pointed to. This is necessary because, in some
4631 situations, the C compiler optimizes Lisp objects away, so that
4632 only a pointer to them remains. Example:
4633
4634 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4635 ()
4636 {
4637 Lisp_Object obj = build_string ("test");
4638 struct Lisp_String *s = XSTRING (obj);
4639 Fgarbage_collect ();
4640 fprintf (stderr, "test `%s'\n", s->data);
4641 return Qnil;
4642 }
4643
4644 Here, `obj' isn't really used, and the compiler optimizes it
4645 away. The only reference to the life string is through the
4646 pointer `s'. */
4647
4648 for (pp = start; (void *) pp < end; pp++)
4649 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4650 {
4651 void *p = *(void **) ((char *) pp + i);
4652 mark_maybe_pointer (p);
4653 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4654 mark_maybe_object (XIL ((intptr_t) p));
4655 }
4656 }
4657
4658 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4659
4660 static bool setjmp_tested_p;
4661 static int longjmps_done;
4662
4663 #define SETJMP_WILL_LIKELY_WORK "\
4664 \n\
4665 Emacs garbage collector has been changed to use conservative stack\n\
4666 marking. Emacs has determined that the method it uses to do the\n\
4667 marking will likely work on your system, but this isn't sure.\n\
4668 \n\
4669 If you are a system-programmer, or can get the help of a local wizard\n\
4670 who is, please take a look at the function mark_stack in alloc.c, and\n\
4671 verify that the methods used are appropriate for your system.\n\
4672 \n\
4673 Please mail the result to <emacs-devel@gnu.org>.\n\
4674 "
4675
4676 #define SETJMP_WILL_NOT_WORK "\
4677 \n\
4678 Emacs garbage collector has been changed to use conservative stack\n\
4679 marking. Emacs has determined that the default method it uses to do the\n\
4680 marking will not work on your system. We will need a system-dependent\n\
4681 solution for your system.\n\
4682 \n\
4683 Please take a look at the function mark_stack in alloc.c, and\n\
4684 try to find a way to make it work on your system.\n\
4685 \n\
4686 Note that you may get false negatives, depending on the compiler.\n\
4687 In particular, you need to use -O with GCC for this test.\n\
4688 \n\
4689 Please mail the result to <emacs-devel@gnu.org>.\n\
4690 "
4691
4692
4693 /* Perform a quick check if it looks like setjmp saves registers in a
4694 jmp_buf. Print a message to stderr saying so. When this test
4695 succeeds, this is _not_ a proof that setjmp is sufficient for
4696 conservative stack marking. Only the sources or a disassembly
4697 can prove that. */
4698
4699 static void
4700 test_setjmp (void)
4701 {
4702 char buf[10];
4703 register int x;
4704 sys_jmp_buf jbuf;
4705
4706 /* Arrange for X to be put in a register. */
4707 sprintf (buf, "1");
4708 x = strlen (buf);
4709 x = 2 * x - 1;
4710
4711 sys_setjmp (jbuf);
4712 if (longjmps_done == 1)
4713 {
4714 /* Came here after the longjmp at the end of the function.
4715
4716 If x == 1, the longjmp has restored the register to its
4717 value before the setjmp, and we can hope that setjmp
4718 saves all such registers in the jmp_buf, although that
4719 isn't sure.
4720
4721 For other values of X, either something really strange is
4722 taking place, or the setjmp just didn't save the register. */
4723
4724 if (x == 1)
4725 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4726 else
4727 {
4728 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4729 exit (1);
4730 }
4731 }
4732
4733 ++longjmps_done;
4734 x = 2;
4735 if (longjmps_done == 1)
4736 sys_longjmp (jbuf, 1);
4737 }
4738
4739 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4740
4741
4742 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4743
4744 /* Abort if anything GCPRO'd doesn't survive the GC. */
4745
4746 static void
4747 check_gcpros (void)
4748 {
4749 struct gcpro *p;
4750 ptrdiff_t i;
4751
4752 for (p = gcprolist; p; p = p->next)
4753 for (i = 0; i < p->nvars; ++i)
4754 if (!survives_gc_p (p->var[i]))
4755 /* FIXME: It's not necessarily a bug. It might just be that the
4756 GCPRO is unnecessary or should release the object sooner. */
4757 emacs_abort ();
4758 }
4759
4760 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4761
4762 void
4763 dump_zombies (void)
4764 {
4765 int i;
4766
4767 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4768 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4769 {
4770 fprintf (stderr, " %d = ", i);
4771 debug_print (zombies[i]);
4772 }
4773 }
4774
4775 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4776
4777
4778 /* Mark live Lisp objects on the C stack.
4779
4780 There are several system-dependent problems to consider when
4781 porting this to new architectures:
4782
4783 Processor Registers
4784
4785 We have to mark Lisp objects in CPU registers that can hold local
4786 variables or are used to pass parameters.
4787
4788 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4789 something that either saves relevant registers on the stack, or
4790 calls mark_maybe_object passing it each register's contents.
4791
4792 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4793 implementation assumes that calling setjmp saves registers we need
4794 to see in a jmp_buf which itself lies on the stack. This doesn't
4795 have to be true! It must be verified for each system, possibly
4796 by taking a look at the source code of setjmp.
4797
4798 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4799 can use it as a machine independent method to store all registers
4800 to the stack. In this case the macros described in the previous
4801 two paragraphs are not used.
4802
4803 Stack Layout
4804
4805 Architectures differ in the way their processor stack is organized.
4806 For example, the stack might look like this
4807
4808 +----------------+
4809 | Lisp_Object | size = 4
4810 +----------------+
4811 | something else | size = 2
4812 +----------------+
4813 | Lisp_Object | size = 4
4814 +----------------+
4815 | ... |
4816
4817 In such a case, not every Lisp_Object will be aligned equally. To
4818 find all Lisp_Object on the stack it won't be sufficient to walk
4819 the stack in steps of 4 bytes. Instead, two passes will be
4820 necessary, one starting at the start of the stack, and a second
4821 pass starting at the start of the stack + 2. Likewise, if the
4822 minimal alignment of Lisp_Objects on the stack is 1, four passes
4823 would be necessary, each one starting with one byte more offset
4824 from the stack start. */
4825
4826 static void
4827 mark_stack (void)
4828 {
4829 void *end;
4830
4831 #ifdef HAVE___BUILTIN_UNWIND_INIT
4832 /* Force callee-saved registers and register windows onto the stack.
4833 This is the preferred method if available, obviating the need for
4834 machine dependent methods. */
4835 __builtin_unwind_init ();
4836 end = &end;
4837 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4838 #ifndef GC_SAVE_REGISTERS_ON_STACK
4839 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4840 union aligned_jmpbuf {
4841 Lisp_Object o;
4842 sys_jmp_buf j;
4843 } j;
4844 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4845 #endif
4846 /* This trick flushes the register windows so that all the state of
4847 the process is contained in the stack. */
4848 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4849 needed on ia64 too. See mach_dep.c, where it also says inline
4850 assembler doesn't work with relevant proprietary compilers. */
4851 #ifdef __sparc__
4852 #if defined (__sparc64__) && defined (__FreeBSD__)
4853 /* FreeBSD does not have a ta 3 handler. */
4854 asm ("flushw");
4855 #else
4856 asm ("ta 3");
4857 #endif
4858 #endif
4859
4860 /* Save registers that we need to see on the stack. We need to see
4861 registers used to hold register variables and registers used to
4862 pass parameters. */
4863 #ifdef GC_SAVE_REGISTERS_ON_STACK
4864 GC_SAVE_REGISTERS_ON_STACK (end);
4865 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4866
4867 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4868 setjmp will definitely work, test it
4869 and print a message with the result
4870 of the test. */
4871 if (!setjmp_tested_p)
4872 {
4873 setjmp_tested_p = 1;
4874 test_setjmp ();
4875 }
4876 #endif /* GC_SETJMP_WORKS */
4877
4878 sys_setjmp (j.j);
4879 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4880 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4881 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4882
4883 /* This assumes that the stack is a contiguous region in memory. If
4884 that's not the case, something has to be done here to iterate
4885 over the stack segments. */
4886 mark_memory (stack_base, end);
4887
4888 /* Allow for marking a secondary stack, like the register stack on the
4889 ia64. */
4890 #ifdef GC_MARK_SECONDARY_STACK
4891 GC_MARK_SECONDARY_STACK ();
4892 #endif
4893
4894 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4895 check_gcpros ();
4896 #endif
4897 }
4898
4899 #else /* GC_MARK_STACK == 0 */
4900
4901 #define mark_maybe_object(obj) emacs_abort ()
4902
4903 #endif /* GC_MARK_STACK != 0 */
4904
4905
4906 /* Determine whether it is safe to access memory at address P. */
4907 static int
4908 valid_pointer_p (void *p)
4909 {
4910 #ifdef WINDOWSNT
4911 return w32_valid_pointer_p (p, 16);
4912 #else
4913 int fd[2];
4914
4915 /* Obviously, we cannot just access it (we would SEGV trying), so we
4916 trick the o/s to tell us whether p is a valid pointer.
4917 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4918 not validate p in that case. */
4919
4920 if (emacs_pipe (fd) == 0)
4921 {
4922 bool valid = emacs_write (fd[1], p, 16) == 16;
4923 emacs_close (fd[1]);
4924 emacs_close (fd[0]);
4925 return valid;
4926 }
4927
4928 return -1;
4929 #endif
4930 }
4931
4932 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4933 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4934 cannot validate OBJ. This function can be quite slow, so its primary
4935 use is the manual debugging. The only exception is print_object, where
4936 we use it to check whether the memory referenced by the pointer of
4937 Lisp_Save_Value object contains valid objects. */
4938
4939 int
4940 valid_lisp_object_p (Lisp_Object obj)
4941 {
4942 void *p;
4943 #if GC_MARK_STACK
4944 struct mem_node *m;
4945 #endif
4946
4947 if (INTEGERP (obj))
4948 return 1;
4949
4950 p = (void *) XPNTR (obj);
4951 if (PURE_POINTER_P (p))
4952 return 1;
4953
4954 if (p == &buffer_defaults || p == &buffer_local_symbols)
4955 return 2;
4956
4957 #if !GC_MARK_STACK
4958 return valid_pointer_p (p);
4959 #else
4960
4961 m = mem_find (p);
4962
4963 if (m == MEM_NIL)
4964 {
4965 int valid = valid_pointer_p (p);
4966 if (valid <= 0)
4967 return valid;
4968
4969 if (SUBRP (obj))
4970 return 1;
4971
4972 return 0;
4973 }
4974
4975 switch (m->type)
4976 {
4977 case MEM_TYPE_NON_LISP:
4978 case MEM_TYPE_SPARE:
4979 return 0;
4980
4981 case MEM_TYPE_BUFFER:
4982 return live_buffer_p (m, p) ? 1 : 2;
4983
4984 case MEM_TYPE_CONS:
4985 return live_cons_p (m, p);
4986
4987 case MEM_TYPE_STRING:
4988 return live_string_p (m, p);
4989
4990 case MEM_TYPE_MISC:
4991 return live_misc_p (m, p);
4992
4993 case MEM_TYPE_SYMBOL:
4994 return live_symbol_p (m, p);
4995
4996 case MEM_TYPE_FLOAT:
4997 return live_float_p (m, p);
4998
4999 case MEM_TYPE_VECTORLIKE:
5000 case MEM_TYPE_VECTOR_BLOCK:
5001 return live_vector_p (m, p);
5002
5003 default:
5004 break;
5005 }
5006
5007 return 0;
5008 #endif
5009 }
5010
5011
5012
5013 \f
5014 /***********************************************************************
5015 Pure Storage Management
5016 ***********************************************************************/
5017
5018 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5019 pointer to it. TYPE is the Lisp type for which the memory is
5020 allocated. TYPE < 0 means it's not used for a Lisp object. */
5021
5022 static void *
5023 pure_alloc (size_t size, int type)
5024 {
5025 void *result;
5026 #if USE_LSB_TAG
5027 size_t alignment = GCALIGNMENT;
5028 #else
5029 size_t alignment = alignof (EMACS_INT);
5030
5031 /* Give Lisp_Floats an extra alignment. */
5032 if (type == Lisp_Float)
5033 alignment = alignof (struct Lisp_Float);
5034 #endif
5035
5036 again:
5037 if (type >= 0)
5038 {
5039 /* Allocate space for a Lisp object from the beginning of the free
5040 space with taking account of alignment. */
5041 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5042 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5043 }
5044 else
5045 {
5046 /* Allocate space for a non-Lisp object from the end of the free
5047 space. */
5048 pure_bytes_used_non_lisp += size;
5049 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5050 }
5051 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5052
5053 if (pure_bytes_used <= pure_size)
5054 return result;
5055
5056 /* Don't allocate a large amount here,
5057 because it might get mmap'd and then its address
5058 might not be usable. */
5059 purebeg = xmalloc (10000);
5060 pure_size = 10000;
5061 pure_bytes_used_before_overflow += pure_bytes_used - size;
5062 pure_bytes_used = 0;
5063 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5064 goto again;
5065 }
5066
5067
5068 /* Print a warning if PURESIZE is too small. */
5069
5070 void
5071 check_pure_size (void)
5072 {
5073 if (pure_bytes_used_before_overflow)
5074 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5075 " bytes needed)"),
5076 pure_bytes_used + pure_bytes_used_before_overflow);
5077 }
5078
5079
5080 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5081 the non-Lisp data pool of the pure storage, and return its start
5082 address. Return NULL if not found. */
5083
5084 static char *
5085 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5086 {
5087 int i;
5088 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5089 const unsigned char *p;
5090 char *non_lisp_beg;
5091
5092 if (pure_bytes_used_non_lisp <= nbytes)
5093 return NULL;
5094
5095 /* Set up the Boyer-Moore table. */
5096 skip = nbytes + 1;
5097 for (i = 0; i < 256; i++)
5098 bm_skip[i] = skip;
5099
5100 p = (const unsigned char *) data;
5101 while (--skip > 0)
5102 bm_skip[*p++] = skip;
5103
5104 last_char_skip = bm_skip['\0'];
5105
5106 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5107 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5108
5109 /* See the comments in the function `boyer_moore' (search.c) for the
5110 use of `infinity'. */
5111 infinity = pure_bytes_used_non_lisp + 1;
5112 bm_skip['\0'] = infinity;
5113
5114 p = (const unsigned char *) non_lisp_beg + nbytes;
5115 start = 0;
5116 do
5117 {
5118 /* Check the last character (== '\0'). */
5119 do
5120 {
5121 start += bm_skip[*(p + start)];
5122 }
5123 while (start <= start_max);
5124
5125 if (start < infinity)
5126 /* Couldn't find the last character. */
5127 return NULL;
5128
5129 /* No less than `infinity' means we could find the last
5130 character at `p[start - infinity]'. */
5131 start -= infinity;
5132
5133 /* Check the remaining characters. */
5134 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5135 /* Found. */
5136 return non_lisp_beg + start;
5137
5138 start += last_char_skip;
5139 }
5140 while (start <= start_max);
5141
5142 return NULL;
5143 }
5144
5145
5146 /* Return a string allocated in pure space. DATA is a buffer holding
5147 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5148 means make the result string multibyte.
5149
5150 Must get an error if pure storage is full, since if it cannot hold
5151 a large string it may be able to hold conses that point to that
5152 string; then the string is not protected from gc. */
5153
5154 Lisp_Object
5155 make_pure_string (const char *data,
5156 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5157 {
5158 Lisp_Object string;
5159 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5160 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5161 if (s->data == NULL)
5162 {
5163 s->data = pure_alloc (nbytes + 1, -1);
5164 memcpy (s->data, data, nbytes);
5165 s->data[nbytes] = '\0';
5166 }
5167 s->size = nchars;
5168 s->size_byte = multibyte ? nbytes : -1;
5169 s->intervals = NULL;
5170 XSETSTRING (string, s);
5171 return string;
5172 }
5173
5174 /* Return a string allocated in pure space. Do not
5175 allocate the string data, just point to DATA. */
5176
5177 Lisp_Object
5178 make_pure_c_string (const char *data, ptrdiff_t nchars)
5179 {
5180 Lisp_Object string;
5181 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5182 s->size = nchars;
5183 s->size_byte = -1;
5184 s->data = (unsigned char *) data;
5185 s->intervals = NULL;
5186 XSETSTRING (string, s);
5187 return string;
5188 }
5189
5190 static Lisp_Object purecopy (Lisp_Object obj);
5191
5192 /* Return a cons allocated from pure space. Give it pure copies
5193 of CAR as car and CDR as cdr. */
5194
5195 Lisp_Object
5196 pure_cons (Lisp_Object car, Lisp_Object cdr)
5197 {
5198 Lisp_Object new;
5199 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5200 XSETCONS (new, p);
5201 XSETCAR (new, purecopy (car));
5202 XSETCDR (new, purecopy (cdr));
5203 return new;
5204 }
5205
5206
5207 /* Value is a float object with value NUM allocated from pure space. */
5208
5209 static Lisp_Object
5210 make_pure_float (double num)
5211 {
5212 Lisp_Object new;
5213 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5214 XSETFLOAT (new, p);
5215 XFLOAT_INIT (new, num);
5216 return new;
5217 }
5218
5219
5220 /* Return a vector with room for LEN Lisp_Objects allocated from
5221 pure space. */
5222
5223 static Lisp_Object
5224 make_pure_vector (ptrdiff_t len)
5225 {
5226 Lisp_Object new;
5227 size_t size = header_size + len * word_size;
5228 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5229 XSETVECTOR (new, p);
5230 XVECTOR (new)->header.size = len;
5231 return new;
5232 }
5233
5234
5235 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5236 doc: /* Make a copy of object OBJ in pure storage.
5237 Recursively copies contents of vectors and cons cells.
5238 Does not copy symbols. Copies strings without text properties. */)
5239 (register Lisp_Object obj)
5240 {
5241 if (NILP (Vpurify_flag))
5242 return obj;
5243 else if (MARKERP (obj) || OVERLAYP (obj)
5244 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5245 /* Can't purify those. */
5246 return obj;
5247 else
5248 return purecopy (obj);
5249 }
5250
5251 static Lisp_Object
5252 purecopy (Lisp_Object obj)
5253 {
5254 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5255 return obj; /* Already pure. */
5256
5257 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5258 {
5259 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5260 if (!NILP (tmp))
5261 return tmp;
5262 }
5263
5264 if (CONSP (obj))
5265 obj = pure_cons (XCAR (obj), XCDR (obj));
5266 else if (FLOATP (obj))
5267 obj = make_pure_float (XFLOAT_DATA (obj));
5268 else if (STRINGP (obj))
5269 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5270 SBYTES (obj),
5271 STRING_MULTIBYTE (obj));
5272 else if (COMPILEDP (obj) || VECTORP (obj))
5273 {
5274 register struct Lisp_Vector *vec;
5275 register ptrdiff_t i;
5276 ptrdiff_t size;
5277
5278 size = ASIZE (obj);
5279 if (size & PSEUDOVECTOR_FLAG)
5280 size &= PSEUDOVECTOR_SIZE_MASK;
5281 vec = XVECTOR (make_pure_vector (size));
5282 for (i = 0; i < size; i++)
5283 vec->contents[i] = purecopy (AREF (obj, i));
5284 if (COMPILEDP (obj))
5285 {
5286 XSETPVECTYPE (vec, PVEC_COMPILED);
5287 XSETCOMPILED (obj, vec);
5288 }
5289 else
5290 XSETVECTOR (obj, vec);
5291 }
5292 else if (SYMBOLP (obj))
5293 {
5294 if (!XSYMBOL (obj)->pinned)
5295 { /* We can't purify them, but they appear in many pure objects.
5296 Mark them as `pinned' so we know to mark them at every GC cycle. */
5297 XSYMBOL (obj)->pinned = true;
5298 symbol_block_pinned = symbol_block;
5299 }
5300 return obj;
5301 }
5302 else
5303 {
5304 Lisp_Object args[2];
5305 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5306 args[1] = obj;
5307 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5308 }
5309
5310 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5311 Fputhash (obj, obj, Vpurify_flag);
5312
5313 return obj;
5314 }
5315
5316
5317 \f
5318 /***********************************************************************
5319 Protection from GC
5320 ***********************************************************************/
5321
5322 /* Put an entry in staticvec, pointing at the variable with address
5323 VARADDRESS. */
5324
5325 void
5326 staticpro (Lisp_Object *varaddress)
5327 {
5328 if (staticidx >= NSTATICS)
5329 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5330 staticvec[staticidx++] = varaddress;
5331 }
5332
5333 \f
5334 /***********************************************************************
5335 Protection from GC
5336 ***********************************************************************/
5337
5338 /* Temporarily prevent garbage collection. */
5339
5340 ptrdiff_t
5341 inhibit_garbage_collection (void)
5342 {
5343 ptrdiff_t count = SPECPDL_INDEX ();
5344
5345 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5346 return count;
5347 }
5348
5349 /* Used to avoid possible overflows when
5350 converting from C to Lisp integers. */
5351
5352 static Lisp_Object
5353 bounded_number (EMACS_INT number)
5354 {
5355 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5356 }
5357
5358 /* Calculate total bytes of live objects. */
5359
5360 static size_t
5361 total_bytes_of_live_objects (void)
5362 {
5363 size_t tot = 0;
5364 tot += total_conses * sizeof (struct Lisp_Cons);
5365 tot += total_symbols * sizeof (struct Lisp_Symbol);
5366 tot += total_markers * sizeof (union Lisp_Misc);
5367 tot += total_string_bytes;
5368 tot += total_vector_slots * word_size;
5369 tot += total_floats * sizeof (struct Lisp_Float);
5370 tot += total_intervals * sizeof (struct interval);
5371 tot += total_strings * sizeof (struct Lisp_String);
5372 return tot;
5373 }
5374
5375 #ifdef HAVE_WINDOW_SYSTEM
5376
5377 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5378
5379 #if !defined (HAVE_NTGUI)
5380
5381 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5382 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5383
5384 static Lisp_Object
5385 compact_font_cache_entry (Lisp_Object entry)
5386 {
5387 Lisp_Object tail, *prev = &entry;
5388
5389 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5390 {
5391 bool drop = 0;
5392 Lisp_Object obj = XCAR (tail);
5393
5394 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5395 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5396 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5397 && VECTORP (XCDR (obj)))
5398 {
5399 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5400
5401 /* If font-spec is not marked, most likely all font-entities
5402 are not marked too. But we must be sure that nothing is
5403 marked within OBJ before we really drop it. */
5404 for (i = 0; i < size; i++)
5405 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5406 break;
5407
5408 if (i == size)
5409 drop = 1;
5410 }
5411 if (drop)
5412 *prev = XCDR (tail);
5413 else
5414 prev = xcdr_addr (tail);
5415 }
5416 return entry;
5417 }
5418
5419 #endif /* not HAVE_NTGUI */
5420
5421 /* Compact font caches on all terminals and mark
5422 everything which is still here after compaction. */
5423
5424 static void
5425 compact_font_caches (void)
5426 {
5427 struct terminal *t;
5428
5429 for (t = terminal_list; t; t = t->next_terminal)
5430 {
5431 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5432 #if !defined (HAVE_NTGUI)
5433 if (CONSP (cache))
5434 {
5435 Lisp_Object entry;
5436
5437 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5438 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5439 }
5440 #endif /* not HAVE_NTGUI */
5441 mark_object (cache);
5442 }
5443 }
5444
5445 #else /* not HAVE_WINDOW_SYSTEM */
5446
5447 #define compact_font_caches() (void)(0)
5448
5449 #endif /* HAVE_WINDOW_SYSTEM */
5450
5451 /* Remove (MARKER . DATA) entries with unmarked MARKER
5452 from buffer undo LIST and return changed list. */
5453
5454 static Lisp_Object
5455 compact_undo_list (Lisp_Object list)
5456 {
5457 Lisp_Object tail, *prev = &list;
5458
5459 for (tail = list; CONSP (tail); tail = XCDR (tail))
5460 {
5461 if (CONSP (XCAR (tail))
5462 && MARKERP (XCAR (XCAR (tail)))
5463 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5464 *prev = XCDR (tail);
5465 else
5466 prev = xcdr_addr (tail);
5467 }
5468 return list;
5469 }
5470
5471 static void
5472 mark_pinned_symbols (void)
5473 {
5474 struct symbol_block *sblk;
5475 int lim = (symbol_block_pinned == symbol_block
5476 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5477
5478 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5479 {
5480 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5481 for (; sym < end; ++sym)
5482 if (sym->s.pinned)
5483 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5484
5485 lim = SYMBOL_BLOCK_SIZE;
5486 }
5487 }
5488
5489 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5490 doc: /* Reclaim storage for Lisp objects no longer needed.
5491 Garbage collection happens automatically if you cons more than
5492 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5493 `garbage-collect' normally returns a list with info on amount of space in use,
5494 where each entry has the form (NAME SIZE USED FREE), where:
5495 - NAME is a symbol describing the kind of objects this entry represents,
5496 - SIZE is the number of bytes used by each one,
5497 - USED is the number of those objects that were found live in the heap,
5498 - FREE is the number of those objects that are not live but that Emacs
5499 keeps around for future allocations (maybe because it does not know how
5500 to return them to the OS).
5501 However, if there was overflow in pure space, `garbage-collect'
5502 returns nil, because real GC can't be done.
5503 See Info node `(elisp)Garbage Collection'. */)
5504 (void)
5505 {
5506 struct buffer *nextb;
5507 char stack_top_variable;
5508 ptrdiff_t i;
5509 bool message_p;
5510 ptrdiff_t count = SPECPDL_INDEX ();
5511 struct timespec start;
5512 Lisp_Object retval = Qnil;
5513 size_t tot_before = 0;
5514
5515 if (abort_on_gc)
5516 emacs_abort ();
5517
5518 /* Can't GC if pure storage overflowed because we can't determine
5519 if something is a pure object or not. */
5520 if (pure_bytes_used_before_overflow)
5521 return Qnil;
5522
5523 /* Record this function, so it appears on the profiler's backtraces. */
5524 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5525
5526 check_cons_list ();
5527
5528 /* Don't keep undo information around forever.
5529 Do this early on, so it is no problem if the user quits. */
5530 FOR_EACH_BUFFER (nextb)
5531 compact_buffer (nextb);
5532
5533 if (profiler_memory_running)
5534 tot_before = total_bytes_of_live_objects ();
5535
5536 start = current_timespec ();
5537
5538 /* In case user calls debug_print during GC,
5539 don't let that cause a recursive GC. */
5540 consing_since_gc = 0;
5541
5542 /* Save what's currently displayed in the echo area. */
5543 message_p = push_message ();
5544 record_unwind_protect_void (pop_message_unwind);
5545
5546 /* Save a copy of the contents of the stack, for debugging. */
5547 #if MAX_SAVE_STACK > 0
5548 if (NILP (Vpurify_flag))
5549 {
5550 char *stack;
5551 ptrdiff_t stack_size;
5552 if (&stack_top_variable < stack_bottom)
5553 {
5554 stack = &stack_top_variable;
5555 stack_size = stack_bottom - &stack_top_variable;
5556 }
5557 else
5558 {
5559 stack = stack_bottom;
5560 stack_size = &stack_top_variable - stack_bottom;
5561 }
5562 if (stack_size <= MAX_SAVE_STACK)
5563 {
5564 if (stack_copy_size < stack_size)
5565 {
5566 stack_copy = xrealloc (stack_copy, stack_size);
5567 stack_copy_size = stack_size;
5568 }
5569 no_sanitize_memcpy (stack_copy, stack, stack_size);
5570 }
5571 }
5572 #endif /* MAX_SAVE_STACK > 0 */
5573
5574 if (garbage_collection_messages)
5575 message1_nolog ("Garbage collecting...");
5576
5577 block_input ();
5578
5579 shrink_regexp_cache ();
5580
5581 gc_in_progress = 1;
5582
5583 /* Mark all the special slots that serve as the roots of accessibility. */
5584
5585 mark_buffer (&buffer_defaults);
5586 mark_buffer (&buffer_local_symbols);
5587
5588 for (i = 0; i < staticidx; i++)
5589 mark_object (*staticvec[i]);
5590
5591 mark_pinned_symbols ();
5592 mark_specpdl ();
5593 mark_terminals ();
5594 mark_kboards ();
5595
5596 #ifdef USE_GTK
5597 xg_mark_data ();
5598 #endif
5599
5600 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5601 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5602 mark_stack ();
5603 #else
5604 {
5605 register struct gcpro *tail;
5606 for (tail = gcprolist; tail; tail = tail->next)
5607 for (i = 0; i < tail->nvars; i++)
5608 mark_object (tail->var[i]);
5609 }
5610 mark_byte_stack ();
5611 #endif
5612 {
5613 struct handler *handler;
5614 for (handler = handlerlist; handler; handler = handler->next)
5615 {
5616 mark_object (handler->tag_or_ch);
5617 mark_object (handler->val);
5618 }
5619 }
5620 #ifdef HAVE_WINDOW_SYSTEM
5621 mark_fringe_data ();
5622 #endif
5623
5624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5625 mark_stack ();
5626 #endif
5627
5628 /* Everything is now marked, except for the data in font caches
5629 and undo lists. They're compacted by removing an items which
5630 aren't reachable otherwise. */
5631
5632 compact_font_caches ();
5633
5634 FOR_EACH_BUFFER (nextb)
5635 {
5636 if (!EQ (BVAR (nextb, undo_list), Qt))
5637 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5638 /* Now that we have stripped the elements that need not be
5639 in the undo_list any more, we can finally mark the list. */
5640 mark_object (BVAR (nextb, undo_list));
5641 }
5642
5643 gc_sweep ();
5644
5645 /* Clear the mark bits that we set in certain root slots. */
5646
5647 unmark_byte_stack ();
5648 VECTOR_UNMARK (&buffer_defaults);
5649 VECTOR_UNMARK (&buffer_local_symbols);
5650
5651 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5652 dump_zombies ();
5653 #endif
5654
5655 check_cons_list ();
5656
5657 gc_in_progress = 0;
5658
5659 unblock_input ();
5660
5661 consing_since_gc = 0;
5662 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5663 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5664
5665 gc_relative_threshold = 0;
5666 if (FLOATP (Vgc_cons_percentage))
5667 { /* Set gc_cons_combined_threshold. */
5668 double tot = total_bytes_of_live_objects ();
5669
5670 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5671 if (0 < tot)
5672 {
5673 if (tot < TYPE_MAXIMUM (EMACS_INT))
5674 gc_relative_threshold = tot;
5675 else
5676 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5677 }
5678 }
5679
5680 if (garbage_collection_messages)
5681 {
5682 if (message_p || minibuf_level > 0)
5683 restore_message ();
5684 else
5685 message1_nolog ("Garbage collecting...done");
5686 }
5687
5688 unbind_to (count, Qnil);
5689 {
5690 Lisp_Object total[11];
5691 int total_size = 10;
5692
5693 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5694 bounded_number (total_conses),
5695 bounded_number (total_free_conses));
5696
5697 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5698 bounded_number (total_symbols),
5699 bounded_number (total_free_symbols));
5700
5701 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5702 bounded_number (total_markers),
5703 bounded_number (total_free_markers));
5704
5705 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5706 bounded_number (total_strings),
5707 bounded_number (total_free_strings));
5708
5709 total[4] = list3 (Qstring_bytes, make_number (1),
5710 bounded_number (total_string_bytes));
5711
5712 total[5] = list3 (Qvectors,
5713 make_number (header_size + sizeof (Lisp_Object)),
5714 bounded_number (total_vectors));
5715
5716 total[6] = list4 (Qvector_slots, make_number (word_size),
5717 bounded_number (total_vector_slots),
5718 bounded_number (total_free_vector_slots));
5719
5720 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5721 bounded_number (total_floats),
5722 bounded_number (total_free_floats));
5723
5724 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5725 bounded_number (total_intervals),
5726 bounded_number (total_free_intervals));
5727
5728 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5729 bounded_number (total_buffers));
5730
5731 #ifdef DOUG_LEA_MALLOC
5732 total_size++;
5733 total[10] = list4 (Qheap, make_number (1024),
5734 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5735 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5736 #endif
5737 retval = Flist (total_size, total);
5738 }
5739
5740 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5741 {
5742 /* Compute average percentage of zombies. */
5743 double nlive
5744 = (total_conses + total_symbols + total_markers + total_strings
5745 + total_vectors + total_floats + total_intervals + total_buffers);
5746
5747 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5748 max_live = max (nlive, max_live);
5749 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5750 max_zombies = max (nzombies, max_zombies);
5751 ++ngcs;
5752 }
5753 #endif
5754
5755 if (!NILP (Vpost_gc_hook))
5756 {
5757 ptrdiff_t gc_count = inhibit_garbage_collection ();
5758 safe_run_hooks (Qpost_gc_hook);
5759 unbind_to (gc_count, Qnil);
5760 }
5761
5762 /* Accumulate statistics. */
5763 if (FLOATP (Vgc_elapsed))
5764 {
5765 struct timespec since_start = timespec_sub (current_timespec (), start);
5766 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5767 + timespectod (since_start));
5768 }
5769
5770 gcs_done++;
5771
5772 /* Collect profiling data. */
5773 if (profiler_memory_running)
5774 {
5775 size_t swept = 0;
5776 size_t tot_after = total_bytes_of_live_objects ();
5777 if (tot_before > tot_after)
5778 swept = tot_before - tot_after;
5779 malloc_probe (swept);
5780 }
5781
5782 return retval;
5783 }
5784
5785
5786 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5787 only interesting objects referenced from glyphs are strings. */
5788
5789 static void
5790 mark_glyph_matrix (struct glyph_matrix *matrix)
5791 {
5792 struct glyph_row *row = matrix->rows;
5793 struct glyph_row *end = row + matrix->nrows;
5794
5795 for (; row < end; ++row)
5796 if (row->enabled_p)
5797 {
5798 int area;
5799 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5800 {
5801 struct glyph *glyph = row->glyphs[area];
5802 struct glyph *end_glyph = glyph + row->used[area];
5803
5804 for (; glyph < end_glyph; ++glyph)
5805 if (STRINGP (glyph->object)
5806 && !STRING_MARKED_P (XSTRING (glyph->object)))
5807 mark_object (glyph->object);
5808 }
5809 }
5810 }
5811
5812 /* Mark reference to a Lisp_Object.
5813 If the object referred to has not been seen yet, recursively mark
5814 all the references contained in it. */
5815
5816 #define LAST_MARKED_SIZE 500
5817 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5818 static int last_marked_index;
5819
5820 /* For debugging--call abort when we cdr down this many
5821 links of a list, in mark_object. In debugging,
5822 the call to abort will hit a breakpoint.
5823 Normally this is zero and the check never goes off. */
5824 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5825
5826 static void
5827 mark_vectorlike (struct Lisp_Vector *ptr)
5828 {
5829 ptrdiff_t size = ptr->header.size;
5830 ptrdiff_t i;
5831
5832 eassert (!VECTOR_MARKED_P (ptr));
5833 VECTOR_MARK (ptr); /* Else mark it. */
5834 if (size & PSEUDOVECTOR_FLAG)
5835 size &= PSEUDOVECTOR_SIZE_MASK;
5836
5837 /* Note that this size is not the memory-footprint size, but only
5838 the number of Lisp_Object fields that we should trace.
5839 The distinction is used e.g. by Lisp_Process which places extra
5840 non-Lisp_Object fields at the end of the structure... */
5841 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5842 mark_object (ptr->contents[i]);
5843 }
5844
5845 /* Like mark_vectorlike but optimized for char-tables (and
5846 sub-char-tables) assuming that the contents are mostly integers or
5847 symbols. */
5848
5849 static void
5850 mark_char_table (struct Lisp_Vector *ptr)
5851 {
5852 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5853 int i;
5854
5855 eassert (!VECTOR_MARKED_P (ptr));
5856 VECTOR_MARK (ptr);
5857 for (i = 0; i < size; i++)
5858 {
5859 Lisp_Object val = ptr->contents[i];
5860
5861 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5862 continue;
5863 if (SUB_CHAR_TABLE_P (val))
5864 {
5865 if (! VECTOR_MARKED_P (XVECTOR (val)))
5866 mark_char_table (XVECTOR (val));
5867 }
5868 else
5869 mark_object (val);
5870 }
5871 }
5872
5873 /* Mark the chain of overlays starting at PTR. */
5874
5875 static void
5876 mark_overlay (struct Lisp_Overlay *ptr)
5877 {
5878 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5879 {
5880 ptr->gcmarkbit = 1;
5881 mark_object (ptr->start);
5882 mark_object (ptr->end);
5883 mark_object (ptr->plist);
5884 }
5885 }
5886
5887 /* Mark Lisp_Objects and special pointers in BUFFER. */
5888
5889 static void
5890 mark_buffer (struct buffer *buffer)
5891 {
5892 /* This is handled much like other pseudovectors... */
5893 mark_vectorlike ((struct Lisp_Vector *) buffer);
5894
5895 /* ...but there are some buffer-specific things. */
5896
5897 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5898
5899 /* For now, we just don't mark the undo_list. It's done later in
5900 a special way just before the sweep phase, and after stripping
5901 some of its elements that are not needed any more. */
5902
5903 mark_overlay (buffer->overlays_before);
5904 mark_overlay (buffer->overlays_after);
5905
5906 /* If this is an indirect buffer, mark its base buffer. */
5907 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5908 mark_buffer (buffer->base_buffer);
5909 }
5910
5911 /* Mark Lisp faces in the face cache C. */
5912
5913 static void
5914 mark_face_cache (struct face_cache *c)
5915 {
5916 if (c)
5917 {
5918 int i, j;
5919 for (i = 0; i < c->used; ++i)
5920 {
5921 struct face *face = FACE_FROM_ID (c->f, i);
5922
5923 if (face)
5924 {
5925 if (face->font && !VECTOR_MARKED_P (face->font))
5926 mark_vectorlike ((struct Lisp_Vector *) face->font);
5927
5928 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5929 mark_object (face->lface[j]);
5930 }
5931 }
5932 }
5933 }
5934
5935 /* Remove killed buffers or items whose car is a killed buffer from
5936 LIST, and mark other items. Return changed LIST, which is marked. */
5937
5938 static Lisp_Object
5939 mark_discard_killed_buffers (Lisp_Object list)
5940 {
5941 Lisp_Object tail, *prev = &list;
5942
5943 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5944 tail = XCDR (tail))
5945 {
5946 Lisp_Object tem = XCAR (tail);
5947 if (CONSP (tem))
5948 tem = XCAR (tem);
5949 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5950 *prev = XCDR (tail);
5951 else
5952 {
5953 CONS_MARK (XCONS (tail));
5954 mark_object (XCAR (tail));
5955 prev = xcdr_addr (tail);
5956 }
5957 }
5958 mark_object (tail);
5959 return list;
5960 }
5961
5962 /* Determine type of generic Lisp_Object and mark it accordingly. */
5963
5964 void
5965 mark_object (Lisp_Object arg)
5966 {
5967 register Lisp_Object obj = arg;
5968 #ifdef GC_CHECK_MARKED_OBJECTS
5969 void *po;
5970 struct mem_node *m;
5971 #endif
5972 ptrdiff_t cdr_count = 0;
5973
5974 loop:
5975
5976 if (PURE_POINTER_P (XPNTR (obj)))
5977 return;
5978
5979 last_marked[last_marked_index++] = obj;
5980 if (last_marked_index == LAST_MARKED_SIZE)
5981 last_marked_index = 0;
5982
5983 /* Perform some sanity checks on the objects marked here. Abort if
5984 we encounter an object we know is bogus. This increases GC time
5985 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5986 #ifdef GC_CHECK_MARKED_OBJECTS
5987
5988 po = (void *) XPNTR (obj);
5989
5990 /* Check that the object pointed to by PO is known to be a Lisp
5991 structure allocated from the heap. */
5992 #define CHECK_ALLOCATED() \
5993 do { \
5994 m = mem_find (po); \
5995 if (m == MEM_NIL) \
5996 emacs_abort (); \
5997 } while (0)
5998
5999 /* Check that the object pointed to by PO is live, using predicate
6000 function LIVEP. */
6001 #define CHECK_LIVE(LIVEP) \
6002 do { \
6003 if (!LIVEP (m, po)) \
6004 emacs_abort (); \
6005 } while (0)
6006
6007 /* Check both of the above conditions. */
6008 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6009 do { \
6010 CHECK_ALLOCATED (); \
6011 CHECK_LIVE (LIVEP); \
6012 } while (0) \
6013
6014 #else /* not GC_CHECK_MARKED_OBJECTS */
6015
6016 #define CHECK_LIVE(LIVEP) (void) 0
6017 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6018
6019 #endif /* not GC_CHECK_MARKED_OBJECTS */
6020
6021 switch (XTYPE (obj))
6022 {
6023 case Lisp_String:
6024 {
6025 register struct Lisp_String *ptr = XSTRING (obj);
6026 if (STRING_MARKED_P (ptr))
6027 break;
6028 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6029 MARK_STRING (ptr);
6030 MARK_INTERVAL_TREE (ptr->intervals);
6031 #ifdef GC_CHECK_STRING_BYTES
6032 /* Check that the string size recorded in the string is the
6033 same as the one recorded in the sdata structure. */
6034 string_bytes (ptr);
6035 #endif /* GC_CHECK_STRING_BYTES */
6036 }
6037 break;
6038
6039 case Lisp_Vectorlike:
6040 {
6041 register struct Lisp_Vector *ptr = XVECTOR (obj);
6042 register ptrdiff_t pvectype;
6043
6044 if (VECTOR_MARKED_P (ptr))
6045 break;
6046
6047 #ifdef GC_CHECK_MARKED_OBJECTS
6048 m = mem_find (po);
6049 if (m == MEM_NIL && !SUBRP (obj))
6050 emacs_abort ();
6051 #endif /* GC_CHECK_MARKED_OBJECTS */
6052
6053 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6054 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6055 >> PSEUDOVECTOR_AREA_BITS);
6056 else
6057 pvectype = PVEC_NORMAL_VECTOR;
6058
6059 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6060 CHECK_LIVE (live_vector_p);
6061
6062 switch (pvectype)
6063 {
6064 case PVEC_BUFFER:
6065 #ifdef GC_CHECK_MARKED_OBJECTS
6066 {
6067 struct buffer *b;
6068 FOR_EACH_BUFFER (b)
6069 if (b == po)
6070 break;
6071 if (b == NULL)
6072 emacs_abort ();
6073 }
6074 #endif /* GC_CHECK_MARKED_OBJECTS */
6075 mark_buffer ((struct buffer *) ptr);
6076 break;
6077
6078 case PVEC_COMPILED:
6079 { /* We could treat this just like a vector, but it is better
6080 to save the COMPILED_CONSTANTS element for last and avoid
6081 recursion there. */
6082 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6083 int i;
6084
6085 VECTOR_MARK (ptr);
6086 for (i = 0; i < size; i++)
6087 if (i != COMPILED_CONSTANTS)
6088 mark_object (ptr->contents[i]);
6089 if (size > COMPILED_CONSTANTS)
6090 {
6091 obj = ptr->contents[COMPILED_CONSTANTS];
6092 goto loop;
6093 }
6094 }
6095 break;
6096
6097 case PVEC_FRAME:
6098 {
6099 struct frame *f = (struct frame *) ptr;
6100
6101 mark_vectorlike (ptr);
6102 mark_face_cache (f->face_cache);
6103 #ifdef HAVE_WINDOW_SYSTEM
6104 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6105 {
6106 struct font *font = FRAME_FONT (f);
6107
6108 if (font && !VECTOR_MARKED_P (font))
6109 mark_vectorlike ((struct Lisp_Vector *) font);
6110 }
6111 #endif
6112 }
6113 break;
6114
6115 case PVEC_WINDOW:
6116 {
6117 struct window *w = (struct window *) ptr;
6118
6119 mark_vectorlike (ptr);
6120
6121 /* Mark glyph matrices, if any. Marking window
6122 matrices is sufficient because frame matrices
6123 use the same glyph memory. */
6124 if (w->current_matrix)
6125 {
6126 mark_glyph_matrix (w->current_matrix);
6127 mark_glyph_matrix (w->desired_matrix);
6128 }
6129
6130 /* Filter out killed buffers from both buffer lists
6131 in attempt to help GC to reclaim killed buffers faster.
6132 We can do it elsewhere for live windows, but this is the
6133 best place to do it for dead windows. */
6134 wset_prev_buffers
6135 (w, mark_discard_killed_buffers (w->prev_buffers));
6136 wset_next_buffers
6137 (w, mark_discard_killed_buffers (w->next_buffers));
6138 }
6139 break;
6140
6141 case PVEC_HASH_TABLE:
6142 {
6143 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6144
6145 mark_vectorlike (ptr);
6146 mark_object (h->test.name);
6147 mark_object (h->test.user_hash_function);
6148 mark_object (h->test.user_cmp_function);
6149 /* If hash table is not weak, mark all keys and values.
6150 For weak tables, mark only the vector. */
6151 if (NILP (h->weak))
6152 mark_object (h->key_and_value);
6153 else
6154 VECTOR_MARK (XVECTOR (h->key_and_value));
6155 }
6156 break;
6157
6158 case PVEC_CHAR_TABLE:
6159 mark_char_table (ptr);
6160 break;
6161
6162 case PVEC_BOOL_VECTOR:
6163 /* No Lisp_Objects to mark in a bool vector. */
6164 VECTOR_MARK (ptr);
6165 break;
6166
6167 case PVEC_SUBR:
6168 break;
6169
6170 case PVEC_FREE:
6171 emacs_abort ();
6172
6173 default:
6174 mark_vectorlike (ptr);
6175 }
6176 }
6177 break;
6178
6179 case Lisp_Symbol:
6180 {
6181 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6182 struct Lisp_Symbol *ptrx;
6183
6184 if (ptr->gcmarkbit)
6185 break;
6186 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6187 ptr->gcmarkbit = 1;
6188 mark_object (ptr->function);
6189 mark_object (ptr->plist);
6190 switch (ptr->redirect)
6191 {
6192 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6193 case SYMBOL_VARALIAS:
6194 {
6195 Lisp_Object tem;
6196 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6197 mark_object (tem);
6198 break;
6199 }
6200 case SYMBOL_LOCALIZED:
6201 {
6202 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6203 Lisp_Object where = blv->where;
6204 /* If the value is set up for a killed buffer or deleted
6205 frame, restore it's global binding. If the value is
6206 forwarded to a C variable, either it's not a Lisp_Object
6207 var, or it's staticpro'd already. */
6208 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6209 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6210 swap_in_global_binding (ptr);
6211 mark_object (blv->where);
6212 mark_object (blv->valcell);
6213 mark_object (blv->defcell);
6214 break;
6215 }
6216 case SYMBOL_FORWARDED:
6217 /* If the value is forwarded to a buffer or keyboard field,
6218 these are marked when we see the corresponding object.
6219 And if it's forwarded to a C variable, either it's not
6220 a Lisp_Object var, or it's staticpro'd already. */
6221 break;
6222 default: emacs_abort ();
6223 }
6224 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6225 MARK_STRING (XSTRING (ptr->name));
6226 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6227
6228 ptr = ptr->next;
6229 if (ptr)
6230 {
6231 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6232 XSETSYMBOL (obj, ptrx);
6233 goto loop;
6234 }
6235 }
6236 break;
6237
6238 case Lisp_Misc:
6239 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6240
6241 if (XMISCANY (obj)->gcmarkbit)
6242 break;
6243
6244 switch (XMISCTYPE (obj))
6245 {
6246 case Lisp_Misc_Marker:
6247 /* DO NOT mark thru the marker's chain.
6248 The buffer's markers chain does not preserve markers from gc;
6249 instead, markers are removed from the chain when freed by gc. */
6250 XMISCANY (obj)->gcmarkbit = 1;
6251 break;
6252
6253 case Lisp_Misc_Save_Value:
6254 XMISCANY (obj)->gcmarkbit = 1;
6255 {
6256 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6257 /* If `save_type' is zero, `data[0].pointer' is the address
6258 of a memory area containing `data[1].integer' potential
6259 Lisp_Objects. */
6260 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6261 {
6262 Lisp_Object *p = ptr->data[0].pointer;
6263 ptrdiff_t nelt;
6264 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6265 mark_maybe_object (*p);
6266 }
6267 else
6268 {
6269 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6270 int i;
6271 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6272 if (save_type (ptr, i) == SAVE_OBJECT)
6273 mark_object (ptr->data[i].object);
6274 }
6275 }
6276 break;
6277
6278 case Lisp_Misc_Overlay:
6279 mark_overlay (XOVERLAY (obj));
6280 break;
6281
6282 default:
6283 emacs_abort ();
6284 }
6285 break;
6286
6287 case Lisp_Cons:
6288 {
6289 register struct Lisp_Cons *ptr = XCONS (obj);
6290 if (CONS_MARKED_P (ptr))
6291 break;
6292 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6293 CONS_MARK (ptr);
6294 /* If the cdr is nil, avoid recursion for the car. */
6295 if (EQ (ptr->u.cdr, Qnil))
6296 {
6297 obj = ptr->car;
6298 cdr_count = 0;
6299 goto loop;
6300 }
6301 mark_object (ptr->car);
6302 obj = ptr->u.cdr;
6303 cdr_count++;
6304 if (cdr_count == mark_object_loop_halt)
6305 emacs_abort ();
6306 goto loop;
6307 }
6308
6309 case Lisp_Float:
6310 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6311 FLOAT_MARK (XFLOAT (obj));
6312 break;
6313
6314 case_Lisp_Int:
6315 break;
6316
6317 default:
6318 emacs_abort ();
6319 }
6320
6321 #undef CHECK_LIVE
6322 #undef CHECK_ALLOCATED
6323 #undef CHECK_ALLOCATED_AND_LIVE
6324 }
6325 /* Mark the Lisp pointers in the terminal objects.
6326 Called by Fgarbage_collect. */
6327
6328 static void
6329 mark_terminals (void)
6330 {
6331 struct terminal *t;
6332 for (t = terminal_list; t; t = t->next_terminal)
6333 {
6334 eassert (t->name != NULL);
6335 #ifdef HAVE_WINDOW_SYSTEM
6336 /* If a terminal object is reachable from a stacpro'ed object,
6337 it might have been marked already. Make sure the image cache
6338 gets marked. */
6339 mark_image_cache (t->image_cache);
6340 #endif /* HAVE_WINDOW_SYSTEM */
6341 if (!VECTOR_MARKED_P (t))
6342 mark_vectorlike ((struct Lisp_Vector *)t);
6343 }
6344 }
6345
6346
6347
6348 /* Value is non-zero if OBJ will survive the current GC because it's
6349 either marked or does not need to be marked to survive. */
6350
6351 bool
6352 survives_gc_p (Lisp_Object obj)
6353 {
6354 bool survives_p;
6355
6356 switch (XTYPE (obj))
6357 {
6358 case_Lisp_Int:
6359 survives_p = 1;
6360 break;
6361
6362 case Lisp_Symbol:
6363 survives_p = XSYMBOL (obj)->gcmarkbit;
6364 break;
6365
6366 case Lisp_Misc:
6367 survives_p = XMISCANY (obj)->gcmarkbit;
6368 break;
6369
6370 case Lisp_String:
6371 survives_p = STRING_MARKED_P (XSTRING (obj));
6372 break;
6373
6374 case Lisp_Vectorlike:
6375 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6376 break;
6377
6378 case Lisp_Cons:
6379 survives_p = CONS_MARKED_P (XCONS (obj));
6380 break;
6381
6382 case Lisp_Float:
6383 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6384 break;
6385
6386 default:
6387 emacs_abort ();
6388 }
6389
6390 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6391 }
6392
6393
6394 \f
6395 /* Sweep: find all structures not marked, and free them. */
6396
6397 static void
6398 gc_sweep (void)
6399 {
6400 /* Remove or mark entries in weak hash tables.
6401 This must be done before any object is unmarked. */
6402 sweep_weak_hash_tables ();
6403
6404 sweep_strings ();
6405 check_string_bytes (!noninteractive);
6406
6407 /* Put all unmarked conses on free list. */
6408 {
6409 register struct cons_block *cblk;
6410 struct cons_block **cprev = &cons_block;
6411 register int lim = cons_block_index;
6412 EMACS_INT num_free = 0, num_used = 0;
6413
6414 cons_free_list = 0;
6415
6416 for (cblk = cons_block; cblk; cblk = *cprev)
6417 {
6418 register int i = 0;
6419 int this_free = 0;
6420 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6421
6422 /* Scan the mark bits an int at a time. */
6423 for (i = 0; i < ilim; i++)
6424 {
6425 if (cblk->gcmarkbits[i] == -1)
6426 {
6427 /* Fast path - all cons cells for this int are marked. */
6428 cblk->gcmarkbits[i] = 0;
6429 num_used += BITS_PER_INT;
6430 }
6431 else
6432 {
6433 /* Some cons cells for this int are not marked.
6434 Find which ones, and free them. */
6435 int start, pos, stop;
6436
6437 start = i * BITS_PER_INT;
6438 stop = lim - start;
6439 if (stop > BITS_PER_INT)
6440 stop = BITS_PER_INT;
6441 stop += start;
6442
6443 for (pos = start; pos < stop; pos++)
6444 {
6445 if (!CONS_MARKED_P (&cblk->conses[pos]))
6446 {
6447 this_free++;
6448 cblk->conses[pos].u.chain = cons_free_list;
6449 cons_free_list = &cblk->conses[pos];
6450 #if GC_MARK_STACK
6451 cons_free_list->car = Vdead;
6452 #endif
6453 }
6454 else
6455 {
6456 num_used++;
6457 CONS_UNMARK (&cblk->conses[pos]);
6458 }
6459 }
6460 }
6461 }
6462
6463 lim = CONS_BLOCK_SIZE;
6464 /* If this block contains only free conses and we have already
6465 seen more than two blocks worth of free conses then deallocate
6466 this block. */
6467 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6468 {
6469 *cprev = cblk->next;
6470 /* Unhook from the free list. */
6471 cons_free_list = cblk->conses[0].u.chain;
6472 lisp_align_free (cblk);
6473 }
6474 else
6475 {
6476 num_free += this_free;
6477 cprev = &cblk->next;
6478 }
6479 }
6480 total_conses = num_used;
6481 total_free_conses = num_free;
6482 }
6483
6484 /* Put all unmarked floats on free list. */
6485 {
6486 register struct float_block *fblk;
6487 struct float_block **fprev = &float_block;
6488 register int lim = float_block_index;
6489 EMACS_INT num_free = 0, num_used = 0;
6490
6491 float_free_list = 0;
6492
6493 for (fblk = float_block; fblk; fblk = *fprev)
6494 {
6495 register int i;
6496 int this_free = 0;
6497 for (i = 0; i < lim; i++)
6498 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6499 {
6500 this_free++;
6501 fblk->floats[i].u.chain = float_free_list;
6502 float_free_list = &fblk->floats[i];
6503 }
6504 else
6505 {
6506 num_used++;
6507 FLOAT_UNMARK (&fblk->floats[i]);
6508 }
6509 lim = FLOAT_BLOCK_SIZE;
6510 /* If this block contains only free floats and we have already
6511 seen more than two blocks worth of free floats then deallocate
6512 this block. */
6513 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6514 {
6515 *fprev = fblk->next;
6516 /* Unhook from the free list. */
6517 float_free_list = fblk->floats[0].u.chain;
6518 lisp_align_free (fblk);
6519 }
6520 else
6521 {
6522 num_free += this_free;
6523 fprev = &fblk->next;
6524 }
6525 }
6526 total_floats = num_used;
6527 total_free_floats = num_free;
6528 }
6529
6530 /* Put all unmarked intervals on free list. */
6531 {
6532 register struct interval_block *iblk;
6533 struct interval_block **iprev = &interval_block;
6534 register int lim = interval_block_index;
6535 EMACS_INT num_free = 0, num_used = 0;
6536
6537 interval_free_list = 0;
6538
6539 for (iblk = interval_block; iblk; iblk = *iprev)
6540 {
6541 register int i;
6542 int this_free = 0;
6543
6544 for (i = 0; i < lim; i++)
6545 {
6546 if (!iblk->intervals[i].gcmarkbit)
6547 {
6548 set_interval_parent (&iblk->intervals[i], interval_free_list);
6549 interval_free_list = &iblk->intervals[i];
6550 this_free++;
6551 }
6552 else
6553 {
6554 num_used++;
6555 iblk->intervals[i].gcmarkbit = 0;
6556 }
6557 }
6558 lim = INTERVAL_BLOCK_SIZE;
6559 /* If this block contains only free intervals and we have already
6560 seen more than two blocks worth of free intervals then
6561 deallocate this block. */
6562 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6563 {
6564 *iprev = iblk->next;
6565 /* Unhook from the free list. */
6566 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6567 lisp_free (iblk);
6568 }
6569 else
6570 {
6571 num_free += this_free;
6572 iprev = &iblk->next;
6573 }
6574 }
6575 total_intervals = num_used;
6576 total_free_intervals = num_free;
6577 }
6578
6579 /* Put all unmarked symbols on free list. */
6580 {
6581 register struct symbol_block *sblk;
6582 struct symbol_block **sprev = &symbol_block;
6583 register int lim = symbol_block_index;
6584 EMACS_INT num_free = 0, num_used = 0;
6585
6586 symbol_free_list = NULL;
6587
6588 for (sblk = symbol_block; sblk; sblk = *sprev)
6589 {
6590 int this_free = 0;
6591 union aligned_Lisp_Symbol *sym = sblk->symbols;
6592 union aligned_Lisp_Symbol *end = sym + lim;
6593
6594 for (; sym < end; ++sym)
6595 {
6596 if (!sym->s.gcmarkbit)
6597 {
6598 if (sym->s.redirect == SYMBOL_LOCALIZED)
6599 xfree (SYMBOL_BLV (&sym->s));
6600 sym->s.next = symbol_free_list;
6601 symbol_free_list = &sym->s;
6602 #if GC_MARK_STACK
6603 symbol_free_list->function = Vdead;
6604 #endif
6605 ++this_free;
6606 }
6607 else
6608 {
6609 ++num_used;
6610 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6611 sym->s.gcmarkbit = 0;
6612 }
6613 }
6614
6615 lim = SYMBOL_BLOCK_SIZE;
6616 /* If this block contains only free symbols and we have already
6617 seen more than two blocks worth of free symbols then deallocate
6618 this block. */
6619 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6620 {
6621 *sprev = sblk->next;
6622 /* Unhook from the free list. */
6623 symbol_free_list = sblk->symbols[0].s.next;
6624 lisp_free (sblk);
6625 }
6626 else
6627 {
6628 num_free += this_free;
6629 sprev = &sblk->next;
6630 }
6631 }
6632 total_symbols = num_used;
6633 total_free_symbols = num_free;
6634 }
6635
6636 /* Put all unmarked misc's on free list.
6637 For a marker, first unchain it from the buffer it points into. */
6638 {
6639 register struct marker_block *mblk;
6640 struct marker_block **mprev = &marker_block;
6641 register int lim = marker_block_index;
6642 EMACS_INT num_free = 0, num_used = 0;
6643
6644 marker_free_list = 0;
6645
6646 for (mblk = marker_block; mblk; mblk = *mprev)
6647 {
6648 register int i;
6649 int this_free = 0;
6650
6651 for (i = 0; i < lim; i++)
6652 {
6653 if (!mblk->markers[i].m.u_any.gcmarkbit)
6654 {
6655 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6656 unchain_marker (&mblk->markers[i].m.u_marker);
6657 /* Set the type of the freed object to Lisp_Misc_Free.
6658 We could leave the type alone, since nobody checks it,
6659 but this might catch bugs faster. */
6660 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6661 mblk->markers[i].m.u_free.chain = marker_free_list;
6662 marker_free_list = &mblk->markers[i].m;
6663 this_free++;
6664 }
6665 else
6666 {
6667 num_used++;
6668 mblk->markers[i].m.u_any.gcmarkbit = 0;
6669 }
6670 }
6671 lim = MARKER_BLOCK_SIZE;
6672 /* If this block contains only free markers and we have already
6673 seen more than two blocks worth of free markers then deallocate
6674 this block. */
6675 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6676 {
6677 *mprev = mblk->next;
6678 /* Unhook from the free list. */
6679 marker_free_list = mblk->markers[0].m.u_free.chain;
6680 lisp_free (mblk);
6681 }
6682 else
6683 {
6684 num_free += this_free;
6685 mprev = &mblk->next;
6686 }
6687 }
6688
6689 total_markers = num_used;
6690 total_free_markers = num_free;
6691 }
6692
6693 /* Free all unmarked buffers */
6694 {
6695 register struct buffer *buffer, **bprev = &all_buffers;
6696
6697 total_buffers = 0;
6698 for (buffer = all_buffers; buffer; buffer = *bprev)
6699 if (!VECTOR_MARKED_P (buffer))
6700 {
6701 *bprev = buffer->next;
6702 lisp_free (buffer);
6703 }
6704 else
6705 {
6706 VECTOR_UNMARK (buffer);
6707 /* Do not use buffer_(set|get)_intervals here. */
6708 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6709 total_buffers++;
6710 bprev = &buffer->next;
6711 }
6712 }
6713
6714 sweep_vectors ();
6715 check_string_bytes (!noninteractive);
6716 }
6717
6718
6719
6720 \f
6721 /* Debugging aids. */
6722
6723 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6724 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6725 This may be helpful in debugging Emacs's memory usage.
6726 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6727 (void)
6728 {
6729 Lisp_Object end;
6730
6731 #ifdef HAVE_NS
6732 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6733 XSETINT (end, 0);
6734 #else
6735 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6736 #endif
6737
6738 return end;
6739 }
6740
6741 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6742 doc: /* Return a list of counters that measure how much consing there has been.
6743 Each of these counters increments for a certain kind of object.
6744 The counters wrap around from the largest positive integer to zero.
6745 Garbage collection does not decrease them.
6746 The elements of the value are as follows:
6747 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6748 All are in units of 1 = one object consed
6749 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6750 objects consed.
6751 MISCS include overlays, markers, and some internal types.
6752 Frames, windows, buffers, and subprocesses count as vectors
6753 (but the contents of a buffer's text do not count here). */)
6754 (void)
6755 {
6756 return listn (CONSTYPE_HEAP, 8,
6757 bounded_number (cons_cells_consed),
6758 bounded_number (floats_consed),
6759 bounded_number (vector_cells_consed),
6760 bounded_number (symbols_consed),
6761 bounded_number (string_chars_consed),
6762 bounded_number (misc_objects_consed),
6763 bounded_number (intervals_consed),
6764 bounded_number (strings_consed));
6765 }
6766
6767 /* Find at most FIND_MAX symbols which have OBJ as their value or
6768 function. This is used in gdbinit's `xwhichsymbols' command. */
6769
6770 Lisp_Object
6771 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6772 {
6773 struct symbol_block *sblk;
6774 ptrdiff_t gc_count = inhibit_garbage_collection ();
6775 Lisp_Object found = Qnil;
6776
6777 if (! DEADP (obj))
6778 {
6779 for (sblk = symbol_block; sblk; sblk = sblk->next)
6780 {
6781 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6782 int bn;
6783
6784 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6785 {
6786 struct Lisp_Symbol *sym = &aligned_sym->s;
6787 Lisp_Object val;
6788 Lisp_Object tem;
6789
6790 if (sblk == symbol_block && bn >= symbol_block_index)
6791 break;
6792
6793 XSETSYMBOL (tem, sym);
6794 val = find_symbol_value (tem);
6795 if (EQ (val, obj)
6796 || EQ (sym->function, obj)
6797 || (!NILP (sym->function)
6798 && COMPILEDP (sym->function)
6799 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6800 || (!NILP (val)
6801 && COMPILEDP (val)
6802 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6803 {
6804 found = Fcons (tem, found);
6805 if (--find_max == 0)
6806 goto out;
6807 }
6808 }
6809 }
6810 }
6811
6812 out:
6813 unbind_to (gc_count, Qnil);
6814 return found;
6815 }
6816
6817 #ifdef ENABLE_CHECKING
6818
6819 bool suppress_checking;
6820
6821 void
6822 die (const char *msg, const char *file, int line)
6823 {
6824 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6825 file, line, msg);
6826 terminate_due_to_signal (SIGABRT, INT_MAX);
6827 }
6828 #endif
6829 \f
6830 /* Initialization. */
6831
6832 void
6833 init_alloc_once (void)
6834 {
6835 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6836 purebeg = PUREBEG;
6837 pure_size = PURESIZE;
6838
6839 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6840 mem_init ();
6841 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6842 #endif
6843
6844 #ifdef DOUG_LEA_MALLOC
6845 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6846 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6847 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6848 #endif
6849 init_strings ();
6850 init_vectors ();
6851
6852 refill_memory_reserve ();
6853 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6854 }
6855
6856 void
6857 init_alloc (void)
6858 {
6859 gcprolist = 0;
6860 byte_stack_list = 0;
6861 #if GC_MARK_STACK
6862 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6863 setjmp_tested_p = longjmps_done = 0;
6864 #endif
6865 #endif
6866 Vgc_elapsed = make_float (0.0);
6867 gcs_done = 0;
6868
6869 #if USE_VALGRIND
6870 valgrind_p = RUNNING_ON_VALGRIND != 0;
6871 #endif
6872 }
6873
6874 void
6875 syms_of_alloc (void)
6876 {
6877 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6878 doc: /* Number of bytes of consing between garbage collections.
6879 Garbage collection can happen automatically once this many bytes have been
6880 allocated since the last garbage collection. All data types count.
6881
6882 Garbage collection happens automatically only when `eval' is called.
6883
6884 By binding this temporarily to a large number, you can effectively
6885 prevent garbage collection during a part of the program.
6886 See also `gc-cons-percentage'. */);
6887
6888 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6889 doc: /* Portion of the heap used for allocation.
6890 Garbage collection can happen automatically once this portion of the heap
6891 has been allocated since the last garbage collection.
6892 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6893 Vgc_cons_percentage = make_float (0.1);
6894
6895 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6896 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6897
6898 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6899 doc: /* Number of cons cells that have been consed so far. */);
6900
6901 DEFVAR_INT ("floats-consed", floats_consed,
6902 doc: /* Number of floats that have been consed so far. */);
6903
6904 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6905 doc: /* Number of vector cells that have been consed so far. */);
6906
6907 DEFVAR_INT ("symbols-consed", symbols_consed,
6908 doc: /* Number of symbols that have been consed so far. */);
6909
6910 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6911 doc: /* Number of string characters that have been consed so far. */);
6912
6913 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6914 doc: /* Number of miscellaneous objects that have been consed so far.
6915 These include markers and overlays, plus certain objects not visible
6916 to users. */);
6917
6918 DEFVAR_INT ("intervals-consed", intervals_consed,
6919 doc: /* Number of intervals that have been consed so far. */);
6920
6921 DEFVAR_INT ("strings-consed", strings_consed,
6922 doc: /* Number of strings that have been consed so far. */);
6923
6924 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6925 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6926 This means that certain objects should be allocated in shared (pure) space.
6927 It can also be set to a hash-table, in which case this table is used to
6928 do hash-consing of the objects allocated to pure space. */);
6929
6930 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6931 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6932 garbage_collection_messages = 0;
6933
6934 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6935 doc: /* Hook run after garbage collection has finished. */);
6936 Vpost_gc_hook = Qnil;
6937 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6938
6939 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6940 doc: /* Precomputed `signal' argument for memory-full error. */);
6941 /* We build this in advance because if we wait until we need it, we might
6942 not be able to allocate the memory to hold it. */
6943 Vmemory_signal_data
6944 = listn (CONSTYPE_PURE, 2, Qerror,
6945 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6946
6947 DEFVAR_LISP ("memory-full", Vmemory_full,
6948 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6949 Vmemory_full = Qnil;
6950
6951 DEFSYM (Qconses, "conses");
6952 DEFSYM (Qsymbols, "symbols");
6953 DEFSYM (Qmiscs, "miscs");
6954 DEFSYM (Qstrings, "strings");
6955 DEFSYM (Qvectors, "vectors");
6956 DEFSYM (Qfloats, "floats");
6957 DEFSYM (Qintervals, "intervals");
6958 DEFSYM (Qbuffers, "buffers");
6959 DEFSYM (Qstring_bytes, "string-bytes");
6960 DEFSYM (Qvector_slots, "vector-slots");
6961 DEFSYM (Qheap, "heap");
6962 DEFSYM (Qautomatic_gc, "Automatic GC");
6963
6964 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6965 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6966
6967 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6968 doc: /* Accumulated time elapsed in garbage collections.
6969 The time is in seconds as a floating point value. */);
6970 DEFVAR_INT ("gcs-done", gcs_done,
6971 doc: /* Accumulated number of garbage collections done. */);
6972
6973 defsubr (&Scons);
6974 defsubr (&Slist);
6975 defsubr (&Svector);
6976 defsubr (&Smake_byte_code);
6977 defsubr (&Smake_list);
6978 defsubr (&Smake_vector);
6979 defsubr (&Smake_string);
6980 defsubr (&Smake_bool_vector);
6981 defsubr (&Smake_symbol);
6982 defsubr (&Smake_marker);
6983 defsubr (&Spurecopy);
6984 defsubr (&Sgarbage_collect);
6985 defsubr (&Smemory_limit);
6986 defsubr (&Smemory_use_counts);
6987
6988 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6989 defsubr (&Sgc_status);
6990 #endif
6991 }
6992
6993 /* When compiled with GCC, GDB might say "No enum type named
6994 pvec_type" if we don't have at least one symbol with that type, and
6995 then xbacktrace could fail. Similarly for the other enums and
6996 their values. Some non-GCC compilers don't like these constructs. */
6997 #ifdef __GNUC__
6998 union
6999 {
7000 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7001 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7002 enum char_bits char_bits;
7003 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7004 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7005 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
7006 enum Lisp_Bits Lisp_Bits;
7007 enum Lisp_Compiled Lisp_Compiled;
7008 enum maxargs maxargs;
7009 enum MAX_ALLOCA MAX_ALLOCA;
7010 enum More_Lisp_Bits More_Lisp_Bits;
7011 enum pvec_type pvec_type;
7012 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7013 #endif /* __GNUC__ */