Fix doc-string of pop-to-buffer-same-window. (Bug#15492)
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 #if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
53
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static bool valgrind_p;
58 #endif
59
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
65
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
69
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
74
75 #include <unistd.h>
76 #include <fcntl.h>
77
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
93 #define MMAP_MAX_AREAS 100000000
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
103
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
107
108 /* Default value of gc_cons_threshold (see below). */
109
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
111
112 /* Global variables. */
113 struct emacs_globals globals;
114
115 /* Number of bytes of consing done since the last gc. */
116
117 EMACS_INT consing_since_gc;
118
119 /* Similar minimum, computed from Vgc_cons_percentage. */
120
121 EMACS_INT gc_relative_threshold;
122
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
126 EMACS_INT memory_full_cons_threshold;
127
128 /* True during GC. */
129
130 bool gc_in_progress;
131
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
136 bool abort_on_gc;
137
138 /* Number of live and free conses etc. */
139
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
143
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
147
148 static char *spare_memory[7];
149
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
152
153 #define SPARE_MEMORY (1 << 14)
154
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
160
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
163
164 /* Pointer to the pure area, and its size. */
165
166 static char *purebeg;
167 static ptrdiff_t pure_size;
168
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
172 static ptrdiff_t pure_bytes_used_before_overflow;
173
174 /* True if P points into pure space. */
175
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
178
179 /* Index in pure at which next pure Lisp object will be allocated.. */
180
181 static ptrdiff_t pure_bytes_used_lisp;
182
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
184
185 static ptrdiff_t pure_bytes_used_non_lisp;
186
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
190 const char *pending_malloc_warning;
191
192 /* Maximum amount of C stack to save when a GC happens. */
193
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
197
198 /* Buffer in which we save a copy of the C stack at each GC. */
199
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
204
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
217
218 /* Hook run after GC has finished. */
219
220 static Lisp_Object Qpost_gc_hook;
221
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
226
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
233
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
237
238 enum mem_type
239 {
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
258
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
264
265 #ifdef GC_MALLOC_CHECK
266
267 enum mem_type allocated_mem_type;
268
269 #endif /* GC_MALLOC_CHECK */
270
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295 struct mem_node
296 {
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
309
310 /* Memory type. */
311 enum mem_type type;
312 };
313
314 /* Base address of stack. Set in main. */
315
316 Lisp_Object *stack_base;
317
318 /* Root of the tree describing allocated Lisp memory. */
319
320 static struct mem_node *mem_root;
321
322 /* Lowest and highest known address in the heap. */
323
324 static void *min_heap_address, *max_heap_address;
325
326 /* Sentinel node of the tree. */
327
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
330
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
338
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
340
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
344
345 /* Recording what needs to be marked for gc. */
346
347 struct gcpro *gcprolist;
348
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
351
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
354
355 /* Index of next unused slot in staticvec. */
356
357 static int staticidx;
358
359 static void *pure_alloc (size_t, int);
360
361
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
368
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
371 {
372 XFLOAT (f)->u.data = n;
373 }
374
375 \f
376 /************************************************************************
377 Malloc
378 ************************************************************************/
379
380 /* Function malloc calls this if it finds we are near exhausting storage. */
381
382 void
383 malloc_warning (const char *str)
384 {
385 pending_malloc_warning = str;
386 }
387
388
389 /* Display an already-pending malloc warning. */
390
391 void
392 display_malloc_warning (void)
393 {
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
399 }
400 \f
401 /* Called if we can't allocate relocatable space for a buffer. */
402
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
405 {
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
412
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
420 }
421
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
427
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
431
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
434
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
439
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
443
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
453
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
465
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
471
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
477
478 /* Insert and extract the block size in the header. */
479
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
482 {
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
485 {
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
488 }
489 }
490
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
493 {
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503 }
504
505
506 /* Like malloc, but wraps allocated block with header and trailer. */
507
508 static void *
509 overrun_check_malloc (size_t size)
510 {
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
514
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
517 {
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
523 }
524 return val;
525 }
526
527
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
531 static void *
532 overrun_check_realloc (void *block, size_t size)
533 {
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
537
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
542 {
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
550 }
551
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
553
554 if (val)
555 {
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
561 }
562 return val;
563 }
564
565 /* Like free, but checks block for overrun. */
566
567 static void
568 overrun_check_free (void *block)
569 {
570 unsigned char *val = (unsigned char *) block;
571
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
576 {
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
589 }
590
591 free (val);
592 }
593
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
601
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
614 {
615 if (block_input_in_memory_allocators)
616 block_input ();
617 }
618 static void
619 malloc_unblock_input (void)
620 {
621 if (block_input_in_memory_allocators)
622 unblock_input ();
623 }
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
630
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
638 /* Like malloc but check for no memory and block interrupt input.. */
639
640 void *
641 xmalloc (size_t size)
642 {
643 void *val;
644
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
648
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
653 }
654
655 /* Like the above, but zeroes out the memory just allocated. */
656
657 void *
658 xzalloc (size_t size)
659 {
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
671 }
672
673 /* Like realloc but check for no memory and block interrupt input.. */
674
675 void *
676 xrealloc (void *block, size_t size)
677 {
678 void *val;
679
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695
696 /* Like free but block interrupt input. */
697
698 void
699 xfree (void *block)
700 {
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
708 }
709
710
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
715
716
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722 {
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727 }
728
729
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735 {
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740 }
741
742
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
765
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769 {
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799 }
800
801
802 /* Like strdup, but uses xmalloc. */
803
804 char *
805 xstrdup (const char *s)
806 {
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
811 }
812
813 /* Like above, but duplicates Lisp string to C string. */
814
815 char *
816 xlispstrdup (Lisp_Object string)
817 {
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820 }
821
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825 void
826 xputenv (char const *string)
827 {
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830 }
831
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
836 {
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
840 }
841
842
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
846
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
850
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = malloc (nbytes);
863
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (void *block)
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
995 {
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
1001 MALLOC_BLOCK_INPUT;
1002
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1006
1007 if (!free_ablock)
1008 {
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1011
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1018
1019 #ifdef USE_POSIX_MEMALIGN
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1025 }
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1030
1031 if (base == 0)
1032 {
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1035 }
1036
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void **) abase)[-1] = base;
1040
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1045
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1061 }
1062 }
1063 #endif
1064
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1074
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094
1095 MALLOC_PROBE (nbytes);
1096
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (void *block)
1103 {
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 \f
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1148
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1157
1158 struct interval_block
1159 {
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1163 };
1164
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
1168 static struct interval_block *interval_block;
1169
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1172
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1174
1175 /* Number of free and live intervals. */
1176
1177 static EMACS_INT total_free_intervals, total_intervals;
1178
1179 /* List of free intervals. */
1180
1181 static INTERVAL interval_free_list;
1182
1183 /* Return a new interval. */
1184
1185 INTERVAL
1186 make_interval (void)
1187 {
1188 INTERVAL val;
1189
1190 MALLOC_BLOCK_INPUT;
1191
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1203
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
1211
1212 MALLOC_UNBLOCK_INPUT;
1213
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1220 }
1221
1222
1223 /* Mark Lisp objects in interval I. */
1224
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1227 {
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1233 }
1234
1235 /* Mark the interval tree rooted in I. */
1236
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1242
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1246
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1253
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1257
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1262
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1269
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1272
1273 #define SBLOCK_SIZE 8188
1274
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1277
1278 #define LARGE_STRING_BYTES 1024
1279
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284
1285 typedef struct
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1298
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1302
1303 #else
1304
1305 typedef union
1306 {
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1315
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1323
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1327
1328 #endif /* not GC_CHECK_STRING_BYTES */
1329
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1346
1347 /* Start of data. */
1348 sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 int c;
1977 EMACS_INT nbytes;
1978
1979 CHECK_NATNUM (length);
1980 CHECK_CHARACTER (init);
1981
1982 c = XFASTINT (init);
1983 if (ASCII_CHAR_P (c))
1984 {
1985 nbytes = XINT (length);
1986 val = make_uninit_string (nbytes);
1987 memset (SDATA (val), c, nbytes);
1988 SDATA (val)[nbytes] = 0;
1989 }
1990 else
1991 {
1992 unsigned char str[MAX_MULTIBYTE_LENGTH];
1993 ptrdiff_t len = CHAR_STRING (c, str);
1994 EMACS_INT string_len = XINT (length);
1995 unsigned char *p, *beg, *end;
1996
1997 if (string_len > STRING_BYTES_MAX / len)
1998 string_overflow ();
1999 nbytes = len * string_len;
2000 val = make_uninit_multibyte_string (string_len, nbytes);
2001 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2002 {
2003 /* First time we just copy `str' to the data of `val'. */
2004 if (p == beg)
2005 memcpy (p, str, len);
2006 else
2007 {
2008 /* Next time we copy largest possible chunk from
2009 initialized to uninitialized part of `val'. */
2010 len = min (p - beg, end - p);
2011 memcpy (p, beg, len);
2012 }
2013 }
2014 *p = 0;
2015 }
2016
2017 return val;
2018 }
2019
2020 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_BITS_WORD);
2021 verify ((BITS_PER_BITS_WORD & (BITS_PER_BITS_WORD - 1)) == 0);
2022
2023 static ptrdiff_t
2024 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2025 ptrdiff_t *exact_needed_bytes_out)
2026 {
2027 ptrdiff_t exact_needed_bytes;
2028 ptrdiff_t needed_bytes;
2029
2030 eassert (nr_bits >= 0);
2031
2032 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2033 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_BITS_WORD) / CHAR_BIT;
2034
2035 if (needed_bytes == 0)
2036 {
2037 /* Always allocate at least one machine word of payload so that
2038 bool-vector operations in data.c don't need a special case
2039 for empty vectors. */
2040 needed_bytes = sizeof (bits_word);
2041 }
2042
2043 if (exact_needed_bytes_out != NULL)
2044 *exact_needed_bytes_out = exact_needed_bytes;
2045
2046 return needed_bytes;
2047 }
2048
2049 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2050 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2051 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2052 (Lisp_Object length, Lisp_Object init)
2053 {
2054 register Lisp_Object val;
2055 struct Lisp_Bool_Vector *p;
2056 ptrdiff_t exact_payload_bytes;
2057 ptrdiff_t total_payload_bytes;
2058 ptrdiff_t needed_elements;
2059
2060 CHECK_NATNUM (length);
2061 if (PTRDIFF_MAX < XFASTINT (length))
2062 memory_full (SIZE_MAX);
2063
2064 total_payload_bytes = bool_vector_payload_bytes
2065 (XFASTINT (length), &exact_payload_bytes);
2066
2067 eassert (exact_payload_bytes <= total_payload_bytes);
2068 eassert (0 <= exact_payload_bytes);
2069
2070 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2071 + total_payload_bytes),
2072 word_size) / word_size;
2073
2074 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2075 XSETVECTOR (val, p);
2076 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2077
2078 p->size = XFASTINT (length);
2079 if (exact_payload_bytes)
2080 {
2081 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2082
2083 /* Clear any extraneous bits in the last byte. */
2084 p->data[exact_payload_bytes - 1]
2085 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2086 }
2087
2088 /* Clear padding at the end. */
2089 memset (p->data + exact_payload_bytes,
2090 0,
2091 total_payload_bytes - exact_payload_bytes);
2092
2093 return val;
2094 }
2095
2096
2097 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2098 of characters from the contents. This string may be unibyte or
2099 multibyte, depending on the contents. */
2100
2101 Lisp_Object
2102 make_string (const char *contents, ptrdiff_t nbytes)
2103 {
2104 register Lisp_Object val;
2105 ptrdiff_t nchars, multibyte_nbytes;
2106
2107 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2108 &nchars, &multibyte_nbytes);
2109 if (nbytes == nchars || nbytes != multibyte_nbytes)
2110 /* CONTENTS contains no multibyte sequences or contains an invalid
2111 multibyte sequence. We must make unibyte string. */
2112 val = make_unibyte_string (contents, nbytes);
2113 else
2114 val = make_multibyte_string (contents, nchars, nbytes);
2115 return val;
2116 }
2117
2118
2119 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2120
2121 Lisp_Object
2122 make_unibyte_string (const char *contents, ptrdiff_t length)
2123 {
2124 register Lisp_Object val;
2125 val = make_uninit_string (length);
2126 memcpy (SDATA (val), contents, length);
2127 return val;
2128 }
2129
2130
2131 /* Make a multibyte string from NCHARS characters occupying NBYTES
2132 bytes at CONTENTS. */
2133
2134 Lisp_Object
2135 make_multibyte_string (const char *contents,
2136 ptrdiff_t nchars, ptrdiff_t nbytes)
2137 {
2138 register Lisp_Object val;
2139 val = make_uninit_multibyte_string (nchars, nbytes);
2140 memcpy (SDATA (val), contents, nbytes);
2141 return val;
2142 }
2143
2144
2145 /* Make a string from NCHARS characters occupying NBYTES bytes at
2146 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2147
2148 Lisp_Object
2149 make_string_from_bytes (const char *contents,
2150 ptrdiff_t nchars, ptrdiff_t nbytes)
2151 {
2152 register Lisp_Object val;
2153 val = make_uninit_multibyte_string (nchars, nbytes);
2154 memcpy (SDATA (val), contents, nbytes);
2155 if (SBYTES (val) == SCHARS (val))
2156 STRING_SET_UNIBYTE (val);
2157 return val;
2158 }
2159
2160
2161 /* Make a string from NCHARS characters occupying NBYTES bytes at
2162 CONTENTS. The argument MULTIBYTE controls whether to label the
2163 string as multibyte. If NCHARS is negative, it counts the number of
2164 characters by itself. */
2165
2166 Lisp_Object
2167 make_specified_string (const char *contents,
2168 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2169 {
2170 Lisp_Object val;
2171
2172 if (nchars < 0)
2173 {
2174 if (multibyte)
2175 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2176 nbytes);
2177 else
2178 nchars = nbytes;
2179 }
2180 val = make_uninit_multibyte_string (nchars, nbytes);
2181 memcpy (SDATA (val), contents, nbytes);
2182 if (!multibyte)
2183 STRING_SET_UNIBYTE (val);
2184 return val;
2185 }
2186
2187
2188 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2189 occupying LENGTH bytes. */
2190
2191 Lisp_Object
2192 make_uninit_string (EMACS_INT length)
2193 {
2194 Lisp_Object val;
2195
2196 if (!length)
2197 return empty_unibyte_string;
2198 val = make_uninit_multibyte_string (length, length);
2199 STRING_SET_UNIBYTE (val);
2200 return val;
2201 }
2202
2203
2204 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2205 which occupy NBYTES bytes. */
2206
2207 Lisp_Object
2208 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2209 {
2210 Lisp_Object string;
2211 struct Lisp_String *s;
2212
2213 if (nchars < 0)
2214 emacs_abort ();
2215 if (!nbytes)
2216 return empty_multibyte_string;
2217
2218 s = allocate_string ();
2219 s->intervals = NULL;
2220 allocate_string_data (s, nchars, nbytes);
2221 XSETSTRING (string, s);
2222 string_chars_consed += nbytes;
2223 return string;
2224 }
2225
2226 /* Print arguments to BUF according to a FORMAT, then return
2227 a Lisp_String initialized with the data from BUF. */
2228
2229 Lisp_Object
2230 make_formatted_string (char *buf, const char *format, ...)
2231 {
2232 va_list ap;
2233 int length;
2234
2235 va_start (ap, format);
2236 length = vsprintf (buf, format, ap);
2237 va_end (ap);
2238 return make_string (buf, length);
2239 }
2240
2241 \f
2242 /***********************************************************************
2243 Float Allocation
2244 ***********************************************************************/
2245
2246 /* We store float cells inside of float_blocks, allocating a new
2247 float_block with malloc whenever necessary. Float cells reclaimed
2248 by GC are put on a free list to be reallocated before allocating
2249 any new float cells from the latest float_block. */
2250
2251 #define FLOAT_BLOCK_SIZE \
2252 (((BLOCK_BYTES - sizeof (struct float_block *) \
2253 /* The compiler might add padding at the end. */ \
2254 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2255 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2256
2257 #define GETMARKBIT(block,n) \
2258 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2259 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2260 & 1)
2261
2262 #define SETMARKBIT(block,n) \
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2265
2266 #define UNSETMARKBIT(block,n) \
2267 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2268 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2269
2270 #define FLOAT_BLOCK(fptr) \
2271 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2272
2273 #define FLOAT_INDEX(fptr) \
2274 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2275
2276 struct float_block
2277 {
2278 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2279 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2280 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2281 struct float_block *next;
2282 };
2283
2284 #define FLOAT_MARKED_P(fptr) \
2285 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2286
2287 #define FLOAT_MARK(fptr) \
2288 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2289
2290 #define FLOAT_UNMARK(fptr) \
2291 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2292
2293 /* Current float_block. */
2294
2295 static struct float_block *float_block;
2296
2297 /* Index of first unused Lisp_Float in the current float_block. */
2298
2299 static int float_block_index = FLOAT_BLOCK_SIZE;
2300
2301 /* Free-list of Lisp_Floats. */
2302
2303 static struct Lisp_Float *float_free_list;
2304
2305 /* Return a new float object with value FLOAT_VALUE. */
2306
2307 Lisp_Object
2308 make_float (double float_value)
2309 {
2310 register Lisp_Object val;
2311
2312 MALLOC_BLOCK_INPUT;
2313
2314 if (float_free_list)
2315 {
2316 /* We use the data field for chaining the free list
2317 so that we won't use the same field that has the mark bit. */
2318 XSETFLOAT (val, float_free_list);
2319 float_free_list = float_free_list->u.chain;
2320 }
2321 else
2322 {
2323 if (float_block_index == FLOAT_BLOCK_SIZE)
2324 {
2325 struct float_block *new
2326 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2327 new->next = float_block;
2328 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2329 float_block = new;
2330 float_block_index = 0;
2331 total_free_floats += FLOAT_BLOCK_SIZE;
2332 }
2333 XSETFLOAT (val, &float_block->floats[float_block_index]);
2334 float_block_index++;
2335 }
2336
2337 MALLOC_UNBLOCK_INPUT;
2338
2339 XFLOAT_INIT (val, float_value);
2340 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2341 consing_since_gc += sizeof (struct Lisp_Float);
2342 floats_consed++;
2343 total_free_floats--;
2344 return val;
2345 }
2346
2347
2348 \f
2349 /***********************************************************************
2350 Cons Allocation
2351 ***********************************************************************/
2352
2353 /* We store cons cells inside of cons_blocks, allocating a new
2354 cons_block with malloc whenever necessary. Cons cells reclaimed by
2355 GC are put on a free list to be reallocated before allocating
2356 any new cons cells from the latest cons_block. */
2357
2358 #define CONS_BLOCK_SIZE \
2359 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2360 /* The compiler might add padding at the end. */ \
2361 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2362 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2363
2364 #define CONS_BLOCK(fptr) \
2365 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2366
2367 #define CONS_INDEX(fptr) \
2368 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2369
2370 struct cons_block
2371 {
2372 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2373 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2374 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2375 struct cons_block *next;
2376 };
2377
2378 #define CONS_MARKED_P(fptr) \
2379 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2380
2381 #define CONS_MARK(fptr) \
2382 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2383
2384 #define CONS_UNMARK(fptr) \
2385 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2386
2387 /* Current cons_block. */
2388
2389 static struct cons_block *cons_block;
2390
2391 /* Index of first unused Lisp_Cons in the current block. */
2392
2393 static int cons_block_index = CONS_BLOCK_SIZE;
2394
2395 /* Free-list of Lisp_Cons structures. */
2396
2397 static struct Lisp_Cons *cons_free_list;
2398
2399 /* Explicitly free a cons cell by putting it on the free-list. */
2400
2401 void
2402 free_cons (struct Lisp_Cons *ptr)
2403 {
2404 ptr->u.chain = cons_free_list;
2405 #if GC_MARK_STACK
2406 ptr->car = Vdead;
2407 #endif
2408 cons_free_list = ptr;
2409 consing_since_gc -= sizeof *ptr;
2410 total_free_conses++;
2411 }
2412
2413 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2414 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2415 (Lisp_Object car, Lisp_Object cdr)
2416 {
2417 register Lisp_Object val;
2418
2419 MALLOC_BLOCK_INPUT;
2420
2421 if (cons_free_list)
2422 {
2423 /* We use the cdr for chaining the free list
2424 so that we won't use the same field that has the mark bit. */
2425 XSETCONS (val, cons_free_list);
2426 cons_free_list = cons_free_list->u.chain;
2427 }
2428 else
2429 {
2430 if (cons_block_index == CONS_BLOCK_SIZE)
2431 {
2432 struct cons_block *new
2433 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2434 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2435 new->next = cons_block;
2436 cons_block = new;
2437 cons_block_index = 0;
2438 total_free_conses += CONS_BLOCK_SIZE;
2439 }
2440 XSETCONS (val, &cons_block->conses[cons_block_index]);
2441 cons_block_index++;
2442 }
2443
2444 MALLOC_UNBLOCK_INPUT;
2445
2446 XSETCAR (val, car);
2447 XSETCDR (val, cdr);
2448 eassert (!CONS_MARKED_P (XCONS (val)));
2449 consing_since_gc += sizeof (struct Lisp_Cons);
2450 total_free_conses--;
2451 cons_cells_consed++;
2452 return val;
2453 }
2454
2455 #ifdef GC_CHECK_CONS_LIST
2456 /* Get an error now if there's any junk in the cons free list. */
2457 void
2458 check_cons_list (void)
2459 {
2460 struct Lisp_Cons *tail = cons_free_list;
2461
2462 while (tail)
2463 tail = tail->u.chain;
2464 }
2465 #endif
2466
2467 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2468
2469 Lisp_Object
2470 list1 (Lisp_Object arg1)
2471 {
2472 return Fcons (arg1, Qnil);
2473 }
2474
2475 Lisp_Object
2476 list2 (Lisp_Object arg1, Lisp_Object arg2)
2477 {
2478 return Fcons (arg1, Fcons (arg2, Qnil));
2479 }
2480
2481
2482 Lisp_Object
2483 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2484 {
2485 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2486 }
2487
2488
2489 Lisp_Object
2490 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2491 {
2492 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2493 }
2494
2495
2496 Lisp_Object
2497 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2498 {
2499 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2500 Fcons (arg5, Qnil)))));
2501 }
2502
2503 /* Make a list of COUNT Lisp_Objects, where ARG is the
2504 first one. Allocate conses from pure space if TYPE
2505 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2506
2507 Lisp_Object
2508 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2509 {
2510 va_list ap;
2511 ptrdiff_t i;
2512 Lisp_Object val, *objp;
2513
2514 /* Change to SAFE_ALLOCA if you hit this eassert. */
2515 eassert (count <= MAX_ALLOCA / word_size);
2516
2517 objp = alloca (count * word_size);
2518 objp[0] = arg;
2519 va_start (ap, arg);
2520 for (i = 1; i < count; i++)
2521 objp[i] = va_arg (ap, Lisp_Object);
2522 va_end (ap);
2523
2524 for (val = Qnil, i = count - 1; i >= 0; i--)
2525 {
2526 if (type == CONSTYPE_PURE)
2527 val = pure_cons (objp[i], val);
2528 else if (type == CONSTYPE_HEAP)
2529 val = Fcons (objp[i], val);
2530 else
2531 emacs_abort ();
2532 }
2533 return val;
2534 }
2535
2536 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2537 doc: /* Return a newly created list with specified arguments as elements.
2538 Any number of arguments, even zero arguments, are allowed.
2539 usage: (list &rest OBJECTS) */)
2540 (ptrdiff_t nargs, Lisp_Object *args)
2541 {
2542 register Lisp_Object val;
2543 val = Qnil;
2544
2545 while (nargs > 0)
2546 {
2547 nargs--;
2548 val = Fcons (args[nargs], val);
2549 }
2550 return val;
2551 }
2552
2553
2554 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2555 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2556 (register Lisp_Object length, Lisp_Object init)
2557 {
2558 register Lisp_Object val;
2559 register EMACS_INT size;
2560
2561 CHECK_NATNUM (length);
2562 size = XFASTINT (length);
2563
2564 val = Qnil;
2565 while (size > 0)
2566 {
2567 val = Fcons (init, val);
2568 --size;
2569
2570 if (size > 0)
2571 {
2572 val = Fcons (init, val);
2573 --size;
2574
2575 if (size > 0)
2576 {
2577 val = Fcons (init, val);
2578 --size;
2579
2580 if (size > 0)
2581 {
2582 val = Fcons (init, val);
2583 --size;
2584
2585 if (size > 0)
2586 {
2587 val = Fcons (init, val);
2588 --size;
2589 }
2590 }
2591 }
2592 }
2593
2594 QUIT;
2595 }
2596
2597 return val;
2598 }
2599
2600
2601 \f
2602 /***********************************************************************
2603 Vector Allocation
2604 ***********************************************************************/
2605
2606 /* This value is balanced well enough to avoid too much internal overhead
2607 for the most common cases; it's not required to be a power of two, but
2608 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2609
2610 #define VECTOR_BLOCK_SIZE 4096
2611
2612 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2613 enum
2614 {
2615 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2616 };
2617
2618 /* Verify assumptions described above. */
2619 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2620 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2621
2622 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2623 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2624 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2625 #define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
2626
2627 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2628
2629 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2630
2631 /* Size of the minimal vector allocated from block. */
2632
2633 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2634
2635 /* Size of the largest vector allocated from block. */
2636
2637 #define VBLOCK_BYTES_MAX \
2638 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2639
2640 /* We maintain one free list for each possible block-allocated
2641 vector size, and this is the number of free lists we have. */
2642
2643 #define VECTOR_MAX_FREE_LIST_INDEX \
2644 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2645
2646 /* Common shortcut to advance vector pointer over a block data. */
2647
2648 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2649
2650 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2651
2652 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2653
2654 /* Common shortcut to setup vector on a free list. */
2655
2656 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2657 do { \
2658 (tmp) = ((nbytes - header_size) / word_size); \
2659 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2660 eassert ((nbytes) % roundup_size == 0); \
2661 (tmp) = VINDEX (nbytes); \
2662 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2663 v->u.next = vector_free_lists[tmp]; \
2664 vector_free_lists[tmp] = (v); \
2665 total_free_vector_slots += (nbytes) / word_size; \
2666 } while (0)
2667
2668 /* This internal type is used to maintain the list of large vectors
2669 which are allocated at their own, e.g. outside of vector blocks. */
2670
2671 struct large_vector
2672 {
2673 union {
2674 struct large_vector *vector;
2675 #if USE_LSB_TAG
2676 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2677 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2678 #endif
2679 } next;
2680 struct Lisp_Vector v;
2681 };
2682
2683 /* This internal type is used to maintain an underlying storage
2684 for small vectors. */
2685
2686 struct vector_block
2687 {
2688 char data[VECTOR_BLOCK_BYTES];
2689 struct vector_block *next;
2690 };
2691
2692 /* Chain of vector blocks. */
2693
2694 static struct vector_block *vector_blocks;
2695
2696 /* Vector free lists, where NTH item points to a chain of free
2697 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2698
2699 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2700
2701 /* Singly-linked list of large vectors. */
2702
2703 static struct large_vector *large_vectors;
2704
2705 /* The only vector with 0 slots, allocated from pure space. */
2706
2707 Lisp_Object zero_vector;
2708
2709 /* Number of live vectors. */
2710
2711 static EMACS_INT total_vectors;
2712
2713 /* Total size of live and free vectors, in Lisp_Object units. */
2714
2715 static EMACS_INT total_vector_slots, total_free_vector_slots;
2716
2717 /* Get a new vector block. */
2718
2719 static struct vector_block *
2720 allocate_vector_block (void)
2721 {
2722 struct vector_block *block = xmalloc (sizeof *block);
2723
2724 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2725 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2726 MEM_TYPE_VECTOR_BLOCK);
2727 #endif
2728
2729 block->next = vector_blocks;
2730 vector_blocks = block;
2731 return block;
2732 }
2733
2734 /* Called once to initialize vector allocation. */
2735
2736 static void
2737 init_vectors (void)
2738 {
2739 zero_vector = make_pure_vector (0);
2740 }
2741
2742 /* Allocate vector from a vector block. */
2743
2744 static struct Lisp_Vector *
2745 allocate_vector_from_block (size_t nbytes)
2746 {
2747 struct Lisp_Vector *vector;
2748 struct vector_block *block;
2749 size_t index, restbytes;
2750
2751 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2752 eassert (nbytes % roundup_size == 0);
2753
2754 /* First, try to allocate from a free list
2755 containing vectors of the requested size. */
2756 index = VINDEX (nbytes);
2757 if (vector_free_lists[index])
2758 {
2759 vector = vector_free_lists[index];
2760 vector_free_lists[index] = vector->u.next;
2761 total_free_vector_slots -= nbytes / word_size;
2762 return vector;
2763 }
2764
2765 /* Next, check free lists containing larger vectors. Since
2766 we will split the result, we should have remaining space
2767 large enough to use for one-slot vector at least. */
2768 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2769 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2770 if (vector_free_lists[index])
2771 {
2772 /* This vector is larger than requested. */
2773 vector = vector_free_lists[index];
2774 vector_free_lists[index] = vector->u.next;
2775 total_free_vector_slots -= nbytes / word_size;
2776
2777 /* Excess bytes are used for the smaller vector,
2778 which should be set on an appropriate free list. */
2779 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2780 eassert (restbytes % roundup_size == 0);
2781 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2782 return vector;
2783 }
2784
2785 /* Finally, need a new vector block. */
2786 block = allocate_vector_block ();
2787
2788 /* New vector will be at the beginning of this block. */
2789 vector = (struct Lisp_Vector *) block->data;
2790
2791 /* If the rest of space from this block is large enough
2792 for one-slot vector at least, set up it on a free list. */
2793 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2794 if (restbytes >= VBLOCK_BYTES_MIN)
2795 {
2796 eassert (restbytes % roundup_size == 0);
2797 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2798 }
2799 return vector;
2800 }
2801
2802 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2803
2804 #define VECTOR_IN_BLOCK(vector, block) \
2805 ((char *) (vector) <= (block)->data \
2806 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2807
2808 /* Return the memory footprint of V in bytes. */
2809
2810 static ptrdiff_t
2811 vector_nbytes (struct Lisp_Vector *v)
2812 {
2813 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2814
2815 if (size & PSEUDOVECTOR_FLAG)
2816 {
2817 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2818 {
2819 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2820 ptrdiff_t payload_bytes =
2821 bool_vector_payload_bytes (bv->size, NULL);
2822
2823 eassert (payload_bytes >= 0);
2824 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2825 }
2826 else
2827 size = (header_size
2828 + ((size & PSEUDOVECTOR_SIZE_MASK)
2829 + ((size & PSEUDOVECTOR_REST_MASK)
2830 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2831 }
2832 else
2833 size = header_size + size * word_size;
2834 return vroundup (size);
2835 }
2836
2837 /* Reclaim space used by unmarked vectors. */
2838
2839 static void
2840 sweep_vectors (void)
2841 {
2842 struct vector_block *block, **bprev = &vector_blocks;
2843 struct large_vector *lv, **lvprev = &large_vectors;
2844 struct Lisp_Vector *vector, *next;
2845
2846 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2847 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2848
2849 /* Looking through vector blocks. */
2850
2851 for (block = vector_blocks; block; block = *bprev)
2852 {
2853 bool free_this_block = 0;
2854 ptrdiff_t nbytes;
2855
2856 for (vector = (struct Lisp_Vector *) block->data;
2857 VECTOR_IN_BLOCK (vector, block); vector = next)
2858 {
2859 if (VECTOR_MARKED_P (vector))
2860 {
2861 VECTOR_UNMARK (vector);
2862 total_vectors++;
2863 nbytes = vector_nbytes (vector);
2864 total_vector_slots += nbytes / word_size;
2865 next = ADVANCE (vector, nbytes);
2866 }
2867 else
2868 {
2869 ptrdiff_t total_bytes;
2870
2871 nbytes = vector_nbytes (vector);
2872 total_bytes = nbytes;
2873 next = ADVANCE (vector, nbytes);
2874
2875 /* While NEXT is not marked, try to coalesce with VECTOR,
2876 thus making VECTOR of the largest possible size. */
2877
2878 while (VECTOR_IN_BLOCK (next, block))
2879 {
2880 if (VECTOR_MARKED_P (next))
2881 break;
2882 nbytes = vector_nbytes (next);
2883 total_bytes += nbytes;
2884 next = ADVANCE (next, nbytes);
2885 }
2886
2887 eassert (total_bytes % roundup_size == 0);
2888
2889 if (vector == (struct Lisp_Vector *) block->data
2890 && !VECTOR_IN_BLOCK (next, block))
2891 /* This block should be freed because all of it's
2892 space was coalesced into the only free vector. */
2893 free_this_block = 1;
2894 else
2895 {
2896 size_t tmp;
2897 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2898 }
2899 }
2900 }
2901
2902 if (free_this_block)
2903 {
2904 *bprev = block->next;
2905 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2906 mem_delete (mem_find (block->data));
2907 #endif
2908 xfree (block);
2909 }
2910 else
2911 bprev = &block->next;
2912 }
2913
2914 /* Sweep large vectors. */
2915
2916 for (lv = large_vectors; lv; lv = *lvprev)
2917 {
2918 vector = &lv->v;
2919 if (VECTOR_MARKED_P (vector))
2920 {
2921 VECTOR_UNMARK (vector);
2922 total_vectors++;
2923 if (vector->header.size & PSEUDOVECTOR_FLAG)
2924 {
2925 /* All non-bool pseudovectors are small enough to be allocated
2926 from vector blocks. This code should be redesigned if some
2927 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2928 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2929 total_vector_slots += vector_nbytes (vector) / word_size;
2930 }
2931 else
2932 total_vector_slots
2933 += header_size / word_size + vector->header.size;
2934 lvprev = &lv->next.vector;
2935 }
2936 else
2937 {
2938 *lvprev = lv->next.vector;
2939 lisp_free (lv);
2940 }
2941 }
2942 }
2943
2944 /* Value is a pointer to a newly allocated Lisp_Vector structure
2945 with room for LEN Lisp_Objects. */
2946
2947 static struct Lisp_Vector *
2948 allocate_vectorlike (ptrdiff_t len)
2949 {
2950 struct Lisp_Vector *p;
2951
2952 MALLOC_BLOCK_INPUT;
2953
2954 if (len == 0)
2955 p = XVECTOR (zero_vector);
2956 else
2957 {
2958 size_t nbytes = header_size + len * word_size;
2959
2960 #ifdef DOUG_LEA_MALLOC
2961 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2962 because mapped region contents are not preserved in
2963 a dumped Emacs. */
2964 mallopt (M_MMAP_MAX, 0);
2965 #endif
2966
2967 if (nbytes <= VBLOCK_BYTES_MAX)
2968 p = allocate_vector_from_block (vroundup (nbytes));
2969 else
2970 {
2971 struct large_vector *lv
2972 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2973 + len * word_size),
2974 MEM_TYPE_VECTORLIKE);
2975 lv->next.vector = large_vectors;
2976 large_vectors = lv;
2977 p = &lv->v;
2978 }
2979
2980 #ifdef DOUG_LEA_MALLOC
2981 /* Back to a reasonable maximum of mmap'ed areas. */
2982 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2983 #endif
2984
2985 consing_since_gc += nbytes;
2986 vector_cells_consed += len;
2987 }
2988
2989 MALLOC_UNBLOCK_INPUT;
2990
2991 return p;
2992 }
2993
2994
2995 /* Allocate a vector with LEN slots. */
2996
2997 struct Lisp_Vector *
2998 allocate_vector (EMACS_INT len)
2999 {
3000 struct Lisp_Vector *v;
3001 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3002
3003 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3004 memory_full (SIZE_MAX);
3005 v = allocate_vectorlike (len);
3006 v->header.size = len;
3007 return v;
3008 }
3009
3010
3011 /* Allocate other vector-like structures. */
3012
3013 struct Lisp_Vector *
3014 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3015 {
3016 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3017 int i;
3018
3019 /* Catch bogus values. */
3020 eassert (tag <= PVEC_FONT);
3021 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3022 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3023
3024 /* Only the first lisplen slots will be traced normally by the GC. */
3025 for (i = 0; i < lisplen; ++i)
3026 v->u.contents[i] = Qnil;
3027
3028 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3029 return v;
3030 }
3031
3032 struct buffer *
3033 allocate_buffer (void)
3034 {
3035 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3036
3037 BUFFER_PVEC_INIT (b);
3038 /* Put B on the chain of all buffers including killed ones. */
3039 b->next = all_buffers;
3040 all_buffers = b;
3041 /* Note that the rest fields of B are not initialized. */
3042 return b;
3043 }
3044
3045 struct Lisp_Hash_Table *
3046 allocate_hash_table (void)
3047 {
3048 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3049 }
3050
3051 struct window *
3052 allocate_window (void)
3053 {
3054 struct window *w;
3055
3056 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3057 /* Users assumes that non-Lisp data is zeroed. */
3058 memset (&w->current_matrix, 0,
3059 sizeof (*w) - offsetof (struct window, current_matrix));
3060 return w;
3061 }
3062
3063 struct terminal *
3064 allocate_terminal (void)
3065 {
3066 struct terminal *t;
3067
3068 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3069 /* Users assumes that non-Lisp data is zeroed. */
3070 memset (&t->next_terminal, 0,
3071 sizeof (*t) - offsetof (struct terminal, next_terminal));
3072 return t;
3073 }
3074
3075 struct frame *
3076 allocate_frame (void)
3077 {
3078 struct frame *f;
3079
3080 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3081 /* Users assumes that non-Lisp data is zeroed. */
3082 memset (&f->face_cache, 0,
3083 sizeof (*f) - offsetof (struct frame, face_cache));
3084 return f;
3085 }
3086
3087 struct Lisp_Process *
3088 allocate_process (void)
3089 {
3090 struct Lisp_Process *p;
3091
3092 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3093 /* Users assumes that non-Lisp data is zeroed. */
3094 memset (&p->pid, 0,
3095 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3096 return p;
3097 }
3098
3099 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3100 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3101 See also the function `vector'. */)
3102 (register Lisp_Object length, Lisp_Object init)
3103 {
3104 Lisp_Object vector;
3105 register ptrdiff_t sizei;
3106 register ptrdiff_t i;
3107 register struct Lisp_Vector *p;
3108
3109 CHECK_NATNUM (length);
3110
3111 p = allocate_vector (XFASTINT (length));
3112 sizei = XFASTINT (length);
3113 for (i = 0; i < sizei; i++)
3114 p->u.contents[i] = init;
3115
3116 XSETVECTOR (vector, p);
3117 return vector;
3118 }
3119
3120
3121 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3122 doc: /* Return a newly created vector with specified arguments as elements.
3123 Any number of arguments, even zero arguments, are allowed.
3124 usage: (vector &rest OBJECTS) */)
3125 (ptrdiff_t nargs, Lisp_Object *args)
3126 {
3127 ptrdiff_t i;
3128 register Lisp_Object val = make_uninit_vector (nargs);
3129 register struct Lisp_Vector *p = XVECTOR (val);
3130
3131 for (i = 0; i < nargs; i++)
3132 p->u.contents[i] = args[i];
3133 return val;
3134 }
3135
3136 void
3137 make_byte_code (struct Lisp_Vector *v)
3138 {
3139 /* Don't allow the global zero_vector to become a byte code object. */
3140 eassert(0 < v->header.size);
3141 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3142 && STRING_MULTIBYTE (v->u.contents[1]))
3143 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3144 earlier because they produced a raw 8-bit string for byte-code
3145 and now such a byte-code string is loaded as multibyte while
3146 raw 8-bit characters converted to multibyte form. Thus, now we
3147 must convert them back to the original unibyte form. */
3148 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3149 XSETPVECTYPE (v, PVEC_COMPILED);
3150 }
3151
3152 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3153 doc: /* Create a byte-code object with specified arguments as elements.
3154 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3155 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3156 and (optional) INTERACTIVE-SPEC.
3157 The first four arguments are required; at most six have any
3158 significance.
3159 The ARGLIST can be either like the one of `lambda', in which case the arguments
3160 will be dynamically bound before executing the byte code, or it can be an
3161 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3162 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3163 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3164 argument to catch the left-over arguments. If such an integer is used, the
3165 arguments will not be dynamically bound but will be instead pushed on the
3166 stack before executing the byte-code.
3167 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3168 (ptrdiff_t nargs, Lisp_Object *args)
3169 {
3170 ptrdiff_t i;
3171 register Lisp_Object val = make_uninit_vector (nargs);
3172 register struct Lisp_Vector *p = XVECTOR (val);
3173
3174 /* We used to purecopy everything here, if purify-flag was set. This worked
3175 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3176 dangerous, since make-byte-code is used during execution to build
3177 closures, so any closure built during the preload phase would end up
3178 copied into pure space, including its free variables, which is sometimes
3179 just wasteful and other times plainly wrong (e.g. those free vars may want
3180 to be setcar'd). */
3181
3182 for (i = 0; i < nargs; i++)
3183 p->u.contents[i] = args[i];
3184 make_byte_code (p);
3185 XSETCOMPILED (val, p);
3186 return val;
3187 }
3188
3189
3190 \f
3191 /***********************************************************************
3192 Symbol Allocation
3193 ***********************************************************************/
3194
3195 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3196 of the required alignment if LSB tags are used. */
3197
3198 union aligned_Lisp_Symbol
3199 {
3200 struct Lisp_Symbol s;
3201 #if USE_LSB_TAG
3202 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3203 & -GCALIGNMENT];
3204 #endif
3205 };
3206
3207 /* Each symbol_block is just under 1020 bytes long, since malloc
3208 really allocates in units of powers of two and uses 4 bytes for its
3209 own overhead. */
3210
3211 #define SYMBOL_BLOCK_SIZE \
3212 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3213
3214 struct symbol_block
3215 {
3216 /* Place `symbols' first, to preserve alignment. */
3217 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3218 struct symbol_block *next;
3219 };
3220
3221 /* Current symbol block and index of first unused Lisp_Symbol
3222 structure in it. */
3223
3224 static struct symbol_block *symbol_block;
3225 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3226
3227 /* List of free symbols. */
3228
3229 static struct Lisp_Symbol *symbol_free_list;
3230
3231 static void
3232 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3233 {
3234 XSYMBOL (sym)->name = name;
3235 }
3236
3237 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3238 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3239 Its value is void, and its function definition and property list are nil. */)
3240 (Lisp_Object name)
3241 {
3242 register Lisp_Object val;
3243 register struct Lisp_Symbol *p;
3244
3245 CHECK_STRING (name);
3246
3247 MALLOC_BLOCK_INPUT;
3248
3249 if (symbol_free_list)
3250 {
3251 XSETSYMBOL (val, symbol_free_list);
3252 symbol_free_list = symbol_free_list->next;
3253 }
3254 else
3255 {
3256 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3257 {
3258 struct symbol_block *new
3259 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3260 new->next = symbol_block;
3261 symbol_block = new;
3262 symbol_block_index = 0;
3263 total_free_symbols += SYMBOL_BLOCK_SIZE;
3264 }
3265 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3266 symbol_block_index++;
3267 }
3268
3269 MALLOC_UNBLOCK_INPUT;
3270
3271 p = XSYMBOL (val);
3272 set_symbol_name (val, name);
3273 set_symbol_plist (val, Qnil);
3274 p->redirect = SYMBOL_PLAINVAL;
3275 SET_SYMBOL_VAL (p, Qunbound);
3276 set_symbol_function (val, Qnil);
3277 set_symbol_next (val, NULL);
3278 p->gcmarkbit = 0;
3279 p->interned = SYMBOL_UNINTERNED;
3280 p->constant = 0;
3281 p->declared_special = 0;
3282 consing_since_gc += sizeof (struct Lisp_Symbol);
3283 symbols_consed++;
3284 total_free_symbols--;
3285 return val;
3286 }
3287
3288
3289 \f
3290 /***********************************************************************
3291 Marker (Misc) Allocation
3292 ***********************************************************************/
3293
3294 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3295 the required alignment when LSB tags are used. */
3296
3297 union aligned_Lisp_Misc
3298 {
3299 union Lisp_Misc m;
3300 #if USE_LSB_TAG
3301 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3302 & -GCALIGNMENT];
3303 #endif
3304 };
3305
3306 /* Allocation of markers and other objects that share that structure.
3307 Works like allocation of conses. */
3308
3309 #define MARKER_BLOCK_SIZE \
3310 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3311
3312 struct marker_block
3313 {
3314 /* Place `markers' first, to preserve alignment. */
3315 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3316 struct marker_block *next;
3317 };
3318
3319 static struct marker_block *marker_block;
3320 static int marker_block_index = MARKER_BLOCK_SIZE;
3321
3322 static union Lisp_Misc *marker_free_list;
3323
3324 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3325
3326 static Lisp_Object
3327 allocate_misc (enum Lisp_Misc_Type type)
3328 {
3329 Lisp_Object val;
3330
3331 MALLOC_BLOCK_INPUT;
3332
3333 if (marker_free_list)
3334 {
3335 XSETMISC (val, marker_free_list);
3336 marker_free_list = marker_free_list->u_free.chain;
3337 }
3338 else
3339 {
3340 if (marker_block_index == MARKER_BLOCK_SIZE)
3341 {
3342 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3343 new->next = marker_block;
3344 marker_block = new;
3345 marker_block_index = 0;
3346 total_free_markers += MARKER_BLOCK_SIZE;
3347 }
3348 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3349 marker_block_index++;
3350 }
3351
3352 MALLOC_UNBLOCK_INPUT;
3353
3354 --total_free_markers;
3355 consing_since_gc += sizeof (union Lisp_Misc);
3356 misc_objects_consed++;
3357 XMISCANY (val)->type = type;
3358 XMISCANY (val)->gcmarkbit = 0;
3359 return val;
3360 }
3361
3362 /* Free a Lisp_Misc object. */
3363
3364 void
3365 free_misc (Lisp_Object misc)
3366 {
3367 XMISCANY (misc)->type = Lisp_Misc_Free;
3368 XMISC (misc)->u_free.chain = marker_free_list;
3369 marker_free_list = XMISC (misc);
3370 consing_since_gc -= sizeof (union Lisp_Misc);
3371 total_free_markers++;
3372 }
3373
3374 /* Verify properties of Lisp_Save_Value's representation
3375 that are assumed here and elsewhere. */
3376
3377 verify (SAVE_UNUSED == 0);
3378 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3379 >> SAVE_SLOT_BITS)
3380 == 0);
3381
3382 /* Return Lisp_Save_Value objects for the various combinations
3383 that callers need. */
3384
3385 Lisp_Object
3386 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3387 {
3388 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3389 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3390 p->save_type = SAVE_TYPE_INT_INT_INT;
3391 p->data[0].integer = a;
3392 p->data[1].integer = b;
3393 p->data[2].integer = c;
3394 return val;
3395 }
3396
3397 Lisp_Object
3398 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3399 Lisp_Object d)
3400 {
3401 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3402 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3403 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3404 p->data[0].object = a;
3405 p->data[1].object = b;
3406 p->data[2].object = c;
3407 p->data[3].object = d;
3408 return val;
3409 }
3410
3411 Lisp_Object
3412 make_save_ptr (void *a)
3413 {
3414 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3415 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3416 p->save_type = SAVE_POINTER;
3417 p->data[0].pointer = a;
3418 return val;
3419 }
3420
3421 Lisp_Object
3422 make_save_ptr_int (void *a, ptrdiff_t b)
3423 {
3424 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3425 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3426 p->save_type = SAVE_TYPE_PTR_INT;
3427 p->data[0].pointer = a;
3428 p->data[1].integer = b;
3429 return val;
3430 }
3431
3432 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3433 Lisp_Object
3434 make_save_ptr_ptr (void *a, void *b)
3435 {
3436 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3437 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3438 p->save_type = SAVE_TYPE_PTR_PTR;
3439 p->data[0].pointer = a;
3440 p->data[1].pointer = b;
3441 return val;
3442 }
3443 #endif
3444
3445 Lisp_Object
3446 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3447 {
3448 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3449 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3450 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3451 p->data[0].funcpointer = a;
3452 p->data[1].pointer = b;
3453 p->data[2].object = c;
3454 return val;
3455 }
3456
3457 /* Return a Lisp_Save_Value object that represents an array A
3458 of N Lisp objects. */
3459
3460 Lisp_Object
3461 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3462 {
3463 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3464 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3465 p->save_type = SAVE_TYPE_MEMORY;
3466 p->data[0].pointer = a;
3467 p->data[1].integer = n;
3468 return val;
3469 }
3470
3471 /* Free a Lisp_Save_Value object. Do not use this function
3472 if SAVE contains pointer other than returned by xmalloc. */
3473
3474 void
3475 free_save_value (Lisp_Object save)
3476 {
3477 xfree (XSAVE_POINTER (save, 0));
3478 free_misc (save);
3479 }
3480
3481 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3482
3483 Lisp_Object
3484 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3485 {
3486 register Lisp_Object overlay;
3487
3488 overlay = allocate_misc (Lisp_Misc_Overlay);
3489 OVERLAY_START (overlay) = start;
3490 OVERLAY_END (overlay) = end;
3491 set_overlay_plist (overlay, plist);
3492 XOVERLAY (overlay)->next = NULL;
3493 return overlay;
3494 }
3495
3496 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3497 doc: /* Return a newly allocated marker which does not point at any place. */)
3498 (void)
3499 {
3500 register Lisp_Object val;
3501 register struct Lisp_Marker *p;
3502
3503 val = allocate_misc (Lisp_Misc_Marker);
3504 p = XMARKER (val);
3505 p->buffer = 0;
3506 p->bytepos = 0;
3507 p->charpos = 0;
3508 p->next = NULL;
3509 p->insertion_type = 0;
3510 p->need_adjustment = 0;
3511 return val;
3512 }
3513
3514 /* Return a newly allocated marker which points into BUF
3515 at character position CHARPOS and byte position BYTEPOS. */
3516
3517 Lisp_Object
3518 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3519 {
3520 Lisp_Object obj;
3521 struct Lisp_Marker *m;
3522
3523 /* No dead buffers here. */
3524 eassert (BUFFER_LIVE_P (buf));
3525
3526 /* Every character is at least one byte. */
3527 eassert (charpos <= bytepos);
3528
3529 obj = allocate_misc (Lisp_Misc_Marker);
3530 m = XMARKER (obj);
3531 m->buffer = buf;
3532 m->charpos = charpos;
3533 m->bytepos = bytepos;
3534 m->insertion_type = 0;
3535 m->need_adjustment = 0;
3536 m->next = BUF_MARKERS (buf);
3537 BUF_MARKERS (buf) = m;
3538 return obj;
3539 }
3540
3541 /* Put MARKER back on the free list after using it temporarily. */
3542
3543 void
3544 free_marker (Lisp_Object marker)
3545 {
3546 unchain_marker (XMARKER (marker));
3547 free_misc (marker);
3548 }
3549
3550 \f
3551 /* Return a newly created vector or string with specified arguments as
3552 elements. If all the arguments are characters that can fit
3553 in a string of events, make a string; otherwise, make a vector.
3554
3555 Any number of arguments, even zero arguments, are allowed. */
3556
3557 Lisp_Object
3558 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3559 {
3560 ptrdiff_t i;
3561
3562 for (i = 0; i < nargs; i++)
3563 /* The things that fit in a string
3564 are characters that are in 0...127,
3565 after discarding the meta bit and all the bits above it. */
3566 if (!INTEGERP (args[i])
3567 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3568 return Fvector (nargs, args);
3569
3570 /* Since the loop exited, we know that all the things in it are
3571 characters, so we can make a string. */
3572 {
3573 Lisp_Object result;
3574
3575 result = Fmake_string (make_number (nargs), make_number (0));
3576 for (i = 0; i < nargs; i++)
3577 {
3578 SSET (result, i, XINT (args[i]));
3579 /* Move the meta bit to the right place for a string char. */
3580 if (XINT (args[i]) & CHAR_META)
3581 SSET (result, i, SREF (result, i) | 0x80);
3582 }
3583
3584 return result;
3585 }
3586 }
3587
3588
3589 \f
3590 /************************************************************************
3591 Memory Full Handling
3592 ************************************************************************/
3593
3594
3595 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3596 there may have been size_t overflow so that malloc was never
3597 called, or perhaps malloc was invoked successfully but the
3598 resulting pointer had problems fitting into a tagged EMACS_INT. In
3599 either case this counts as memory being full even though malloc did
3600 not fail. */
3601
3602 void
3603 memory_full (size_t nbytes)
3604 {
3605 /* Do not go into hysterics merely because a large request failed. */
3606 bool enough_free_memory = 0;
3607 if (SPARE_MEMORY < nbytes)
3608 {
3609 void *p;
3610
3611 MALLOC_BLOCK_INPUT;
3612 p = malloc (SPARE_MEMORY);
3613 if (p)
3614 {
3615 free (p);
3616 enough_free_memory = 1;
3617 }
3618 MALLOC_UNBLOCK_INPUT;
3619 }
3620
3621 if (! enough_free_memory)
3622 {
3623 int i;
3624
3625 Vmemory_full = Qt;
3626
3627 memory_full_cons_threshold = sizeof (struct cons_block);
3628
3629 /* The first time we get here, free the spare memory. */
3630 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3631 if (spare_memory[i])
3632 {
3633 if (i == 0)
3634 free (spare_memory[i]);
3635 else if (i >= 1 && i <= 4)
3636 lisp_align_free (spare_memory[i]);
3637 else
3638 lisp_free (spare_memory[i]);
3639 spare_memory[i] = 0;
3640 }
3641 }
3642
3643 /* This used to call error, but if we've run out of memory, we could
3644 get infinite recursion trying to build the string. */
3645 xsignal (Qnil, Vmemory_signal_data);
3646 }
3647
3648 /* If we released our reserve (due to running out of memory),
3649 and we have a fair amount free once again,
3650 try to set aside another reserve in case we run out once more.
3651
3652 This is called when a relocatable block is freed in ralloc.c,
3653 and also directly from this file, in case we're not using ralloc.c. */
3654
3655 void
3656 refill_memory_reserve (void)
3657 {
3658 #ifndef SYSTEM_MALLOC
3659 if (spare_memory[0] == 0)
3660 spare_memory[0] = malloc (SPARE_MEMORY);
3661 if (spare_memory[1] == 0)
3662 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3663 MEM_TYPE_SPARE);
3664 if (spare_memory[2] == 0)
3665 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3666 MEM_TYPE_SPARE);
3667 if (spare_memory[3] == 0)
3668 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3669 MEM_TYPE_SPARE);
3670 if (spare_memory[4] == 0)
3671 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3672 MEM_TYPE_SPARE);
3673 if (spare_memory[5] == 0)
3674 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3675 MEM_TYPE_SPARE);
3676 if (spare_memory[6] == 0)
3677 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3678 MEM_TYPE_SPARE);
3679 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3680 Vmemory_full = Qnil;
3681 #endif
3682 }
3683 \f
3684 /************************************************************************
3685 C Stack Marking
3686 ************************************************************************/
3687
3688 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3689
3690 /* Conservative C stack marking requires a method to identify possibly
3691 live Lisp objects given a pointer value. We do this by keeping
3692 track of blocks of Lisp data that are allocated in a red-black tree
3693 (see also the comment of mem_node which is the type of nodes in
3694 that tree). Function lisp_malloc adds information for an allocated
3695 block to the red-black tree with calls to mem_insert, and function
3696 lisp_free removes it with mem_delete. Functions live_string_p etc
3697 call mem_find to lookup information about a given pointer in the
3698 tree, and use that to determine if the pointer points to a Lisp
3699 object or not. */
3700
3701 /* Initialize this part of alloc.c. */
3702
3703 static void
3704 mem_init (void)
3705 {
3706 mem_z.left = mem_z.right = MEM_NIL;
3707 mem_z.parent = NULL;
3708 mem_z.color = MEM_BLACK;
3709 mem_z.start = mem_z.end = NULL;
3710 mem_root = MEM_NIL;
3711 }
3712
3713
3714 /* Value is a pointer to the mem_node containing START. Value is
3715 MEM_NIL if there is no node in the tree containing START. */
3716
3717 static struct mem_node *
3718 mem_find (void *start)
3719 {
3720 struct mem_node *p;
3721
3722 if (start < min_heap_address || start > max_heap_address)
3723 return MEM_NIL;
3724
3725 /* Make the search always successful to speed up the loop below. */
3726 mem_z.start = start;
3727 mem_z.end = (char *) start + 1;
3728
3729 p = mem_root;
3730 while (start < p->start || start >= p->end)
3731 p = start < p->start ? p->left : p->right;
3732 return p;
3733 }
3734
3735
3736 /* Insert a new node into the tree for a block of memory with start
3737 address START, end address END, and type TYPE. Value is a
3738 pointer to the node that was inserted. */
3739
3740 static struct mem_node *
3741 mem_insert (void *start, void *end, enum mem_type type)
3742 {
3743 struct mem_node *c, *parent, *x;
3744
3745 if (min_heap_address == NULL || start < min_heap_address)
3746 min_heap_address = start;
3747 if (max_heap_address == NULL || end > max_heap_address)
3748 max_heap_address = end;
3749
3750 /* See where in the tree a node for START belongs. In this
3751 particular application, it shouldn't happen that a node is already
3752 present. For debugging purposes, let's check that. */
3753 c = mem_root;
3754 parent = NULL;
3755
3756 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3757
3758 while (c != MEM_NIL)
3759 {
3760 if (start >= c->start && start < c->end)
3761 emacs_abort ();
3762 parent = c;
3763 c = start < c->start ? c->left : c->right;
3764 }
3765
3766 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3767
3768 while (c != MEM_NIL)
3769 {
3770 parent = c;
3771 c = start < c->start ? c->left : c->right;
3772 }
3773
3774 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3775
3776 /* Create a new node. */
3777 #ifdef GC_MALLOC_CHECK
3778 x = malloc (sizeof *x);
3779 if (x == NULL)
3780 emacs_abort ();
3781 #else
3782 x = xmalloc (sizeof *x);
3783 #endif
3784 x->start = start;
3785 x->end = end;
3786 x->type = type;
3787 x->parent = parent;
3788 x->left = x->right = MEM_NIL;
3789 x->color = MEM_RED;
3790
3791 /* Insert it as child of PARENT or install it as root. */
3792 if (parent)
3793 {
3794 if (start < parent->start)
3795 parent->left = x;
3796 else
3797 parent->right = x;
3798 }
3799 else
3800 mem_root = x;
3801
3802 /* Re-establish red-black tree properties. */
3803 mem_insert_fixup (x);
3804
3805 return x;
3806 }
3807
3808
3809 /* Re-establish the red-black properties of the tree, and thereby
3810 balance the tree, after node X has been inserted; X is always red. */
3811
3812 static void
3813 mem_insert_fixup (struct mem_node *x)
3814 {
3815 while (x != mem_root && x->parent->color == MEM_RED)
3816 {
3817 /* X is red and its parent is red. This is a violation of
3818 red-black tree property #3. */
3819
3820 if (x->parent == x->parent->parent->left)
3821 {
3822 /* We're on the left side of our grandparent, and Y is our
3823 "uncle". */
3824 struct mem_node *y = x->parent->parent->right;
3825
3826 if (y->color == MEM_RED)
3827 {
3828 /* Uncle and parent are red but should be black because
3829 X is red. Change the colors accordingly and proceed
3830 with the grandparent. */
3831 x->parent->color = MEM_BLACK;
3832 y->color = MEM_BLACK;
3833 x->parent->parent->color = MEM_RED;
3834 x = x->parent->parent;
3835 }
3836 else
3837 {
3838 /* Parent and uncle have different colors; parent is
3839 red, uncle is black. */
3840 if (x == x->parent->right)
3841 {
3842 x = x->parent;
3843 mem_rotate_left (x);
3844 }
3845
3846 x->parent->color = MEM_BLACK;
3847 x->parent->parent->color = MEM_RED;
3848 mem_rotate_right (x->parent->parent);
3849 }
3850 }
3851 else
3852 {
3853 /* This is the symmetrical case of above. */
3854 struct mem_node *y = x->parent->parent->left;
3855
3856 if (y->color == MEM_RED)
3857 {
3858 x->parent->color = MEM_BLACK;
3859 y->color = MEM_BLACK;
3860 x->parent->parent->color = MEM_RED;
3861 x = x->parent->parent;
3862 }
3863 else
3864 {
3865 if (x == x->parent->left)
3866 {
3867 x = x->parent;
3868 mem_rotate_right (x);
3869 }
3870
3871 x->parent->color = MEM_BLACK;
3872 x->parent->parent->color = MEM_RED;
3873 mem_rotate_left (x->parent->parent);
3874 }
3875 }
3876 }
3877
3878 /* The root may have been changed to red due to the algorithm. Set
3879 it to black so that property #5 is satisfied. */
3880 mem_root->color = MEM_BLACK;
3881 }
3882
3883
3884 /* (x) (y)
3885 / \ / \
3886 a (y) ===> (x) c
3887 / \ / \
3888 b c a b */
3889
3890 static void
3891 mem_rotate_left (struct mem_node *x)
3892 {
3893 struct mem_node *y;
3894
3895 /* Turn y's left sub-tree into x's right sub-tree. */
3896 y = x->right;
3897 x->right = y->left;
3898 if (y->left != MEM_NIL)
3899 y->left->parent = x;
3900
3901 /* Y's parent was x's parent. */
3902 if (y != MEM_NIL)
3903 y->parent = x->parent;
3904
3905 /* Get the parent to point to y instead of x. */
3906 if (x->parent)
3907 {
3908 if (x == x->parent->left)
3909 x->parent->left = y;
3910 else
3911 x->parent->right = y;
3912 }
3913 else
3914 mem_root = y;
3915
3916 /* Put x on y's left. */
3917 y->left = x;
3918 if (x != MEM_NIL)
3919 x->parent = y;
3920 }
3921
3922
3923 /* (x) (Y)
3924 / \ / \
3925 (y) c ===> a (x)
3926 / \ / \
3927 a b b c */
3928
3929 static void
3930 mem_rotate_right (struct mem_node *x)
3931 {
3932 struct mem_node *y = x->left;
3933
3934 x->left = y->right;
3935 if (y->right != MEM_NIL)
3936 y->right->parent = x;
3937
3938 if (y != MEM_NIL)
3939 y->parent = x->parent;
3940 if (x->parent)
3941 {
3942 if (x == x->parent->right)
3943 x->parent->right = y;
3944 else
3945 x->parent->left = y;
3946 }
3947 else
3948 mem_root = y;
3949
3950 y->right = x;
3951 if (x != MEM_NIL)
3952 x->parent = y;
3953 }
3954
3955
3956 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3957
3958 static void
3959 mem_delete (struct mem_node *z)
3960 {
3961 struct mem_node *x, *y;
3962
3963 if (!z || z == MEM_NIL)
3964 return;
3965
3966 if (z->left == MEM_NIL || z->right == MEM_NIL)
3967 y = z;
3968 else
3969 {
3970 y = z->right;
3971 while (y->left != MEM_NIL)
3972 y = y->left;
3973 }
3974
3975 if (y->left != MEM_NIL)
3976 x = y->left;
3977 else
3978 x = y->right;
3979
3980 x->parent = y->parent;
3981 if (y->parent)
3982 {
3983 if (y == y->parent->left)
3984 y->parent->left = x;
3985 else
3986 y->parent->right = x;
3987 }
3988 else
3989 mem_root = x;
3990
3991 if (y != z)
3992 {
3993 z->start = y->start;
3994 z->end = y->end;
3995 z->type = y->type;
3996 }
3997
3998 if (y->color == MEM_BLACK)
3999 mem_delete_fixup (x);
4000
4001 #ifdef GC_MALLOC_CHECK
4002 free (y);
4003 #else
4004 xfree (y);
4005 #endif
4006 }
4007
4008
4009 /* Re-establish the red-black properties of the tree, after a
4010 deletion. */
4011
4012 static void
4013 mem_delete_fixup (struct mem_node *x)
4014 {
4015 while (x != mem_root && x->color == MEM_BLACK)
4016 {
4017 if (x == x->parent->left)
4018 {
4019 struct mem_node *w = x->parent->right;
4020
4021 if (w->color == MEM_RED)
4022 {
4023 w->color = MEM_BLACK;
4024 x->parent->color = MEM_RED;
4025 mem_rotate_left (x->parent);
4026 w = x->parent->right;
4027 }
4028
4029 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4030 {
4031 w->color = MEM_RED;
4032 x = x->parent;
4033 }
4034 else
4035 {
4036 if (w->right->color == MEM_BLACK)
4037 {
4038 w->left->color = MEM_BLACK;
4039 w->color = MEM_RED;
4040 mem_rotate_right (w);
4041 w = x->parent->right;
4042 }
4043 w->color = x->parent->color;
4044 x->parent->color = MEM_BLACK;
4045 w->right->color = MEM_BLACK;
4046 mem_rotate_left (x->parent);
4047 x = mem_root;
4048 }
4049 }
4050 else
4051 {
4052 struct mem_node *w = x->parent->left;
4053
4054 if (w->color == MEM_RED)
4055 {
4056 w->color = MEM_BLACK;
4057 x->parent->color = MEM_RED;
4058 mem_rotate_right (x->parent);
4059 w = x->parent->left;
4060 }
4061
4062 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4063 {
4064 w->color = MEM_RED;
4065 x = x->parent;
4066 }
4067 else
4068 {
4069 if (w->left->color == MEM_BLACK)
4070 {
4071 w->right->color = MEM_BLACK;
4072 w->color = MEM_RED;
4073 mem_rotate_left (w);
4074 w = x->parent->left;
4075 }
4076
4077 w->color = x->parent->color;
4078 x->parent->color = MEM_BLACK;
4079 w->left->color = MEM_BLACK;
4080 mem_rotate_right (x->parent);
4081 x = mem_root;
4082 }
4083 }
4084 }
4085
4086 x->color = MEM_BLACK;
4087 }
4088
4089
4090 /* Value is non-zero if P is a pointer to a live Lisp string on
4091 the heap. M is a pointer to the mem_block for P. */
4092
4093 static bool
4094 live_string_p (struct mem_node *m, void *p)
4095 {
4096 if (m->type == MEM_TYPE_STRING)
4097 {
4098 struct string_block *b = m->start;
4099 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4100
4101 /* P must point to the start of a Lisp_String structure, and it
4102 must not be on the free-list. */
4103 return (offset >= 0
4104 && offset % sizeof b->strings[0] == 0
4105 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4106 && ((struct Lisp_String *) p)->data != NULL);
4107 }
4108 else
4109 return 0;
4110 }
4111
4112
4113 /* Value is non-zero if P is a pointer to a live Lisp cons on
4114 the heap. M is a pointer to the mem_block for P. */
4115
4116 static bool
4117 live_cons_p (struct mem_node *m, void *p)
4118 {
4119 if (m->type == MEM_TYPE_CONS)
4120 {
4121 struct cons_block *b = m->start;
4122 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4123
4124 /* P must point to the start of a Lisp_Cons, not be
4125 one of the unused cells in the current cons block,
4126 and not be on the free-list. */
4127 return (offset >= 0
4128 && offset % sizeof b->conses[0] == 0
4129 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4130 && (b != cons_block
4131 || offset / sizeof b->conses[0] < cons_block_index)
4132 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4133 }
4134 else
4135 return 0;
4136 }
4137
4138
4139 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4140 the heap. M is a pointer to the mem_block for P. */
4141
4142 static bool
4143 live_symbol_p (struct mem_node *m, void *p)
4144 {
4145 if (m->type == MEM_TYPE_SYMBOL)
4146 {
4147 struct symbol_block *b = m->start;
4148 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4149
4150 /* P must point to the start of a Lisp_Symbol, not be
4151 one of the unused cells in the current symbol block,
4152 and not be on the free-list. */
4153 return (offset >= 0
4154 && offset % sizeof b->symbols[0] == 0
4155 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4156 && (b != symbol_block
4157 || offset / sizeof b->symbols[0] < symbol_block_index)
4158 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4159 }
4160 else
4161 return 0;
4162 }
4163
4164
4165 /* Value is non-zero if P is a pointer to a live Lisp float on
4166 the heap. M is a pointer to the mem_block for P. */
4167
4168 static bool
4169 live_float_p (struct mem_node *m, void *p)
4170 {
4171 if (m->type == MEM_TYPE_FLOAT)
4172 {
4173 struct float_block *b = m->start;
4174 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4175
4176 /* P must point to the start of a Lisp_Float and not be
4177 one of the unused cells in the current float block. */
4178 return (offset >= 0
4179 && offset % sizeof b->floats[0] == 0
4180 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4181 && (b != float_block
4182 || offset / sizeof b->floats[0] < float_block_index));
4183 }
4184 else
4185 return 0;
4186 }
4187
4188
4189 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4190 the heap. M is a pointer to the mem_block for P. */
4191
4192 static bool
4193 live_misc_p (struct mem_node *m, void *p)
4194 {
4195 if (m->type == MEM_TYPE_MISC)
4196 {
4197 struct marker_block *b = m->start;
4198 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4199
4200 /* P must point to the start of a Lisp_Misc, not be
4201 one of the unused cells in the current misc block,
4202 and not be on the free-list. */
4203 return (offset >= 0
4204 && offset % sizeof b->markers[0] == 0
4205 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4206 && (b != marker_block
4207 || offset / sizeof b->markers[0] < marker_block_index)
4208 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4209 }
4210 else
4211 return 0;
4212 }
4213
4214
4215 /* Value is non-zero if P is a pointer to a live vector-like object.
4216 M is a pointer to the mem_block for P. */
4217
4218 static bool
4219 live_vector_p (struct mem_node *m, void *p)
4220 {
4221 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4222 {
4223 /* This memory node corresponds to a vector block. */
4224 struct vector_block *block = m->start;
4225 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4226
4227 /* P is in the block's allocation range. Scan the block
4228 up to P and see whether P points to the start of some
4229 vector which is not on a free list. FIXME: check whether
4230 some allocation patterns (probably a lot of short vectors)
4231 may cause a substantial overhead of this loop. */
4232 while (VECTOR_IN_BLOCK (vector, block)
4233 && vector <= (struct Lisp_Vector *) p)
4234 {
4235 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4236 return 1;
4237 else
4238 vector = ADVANCE (vector, vector_nbytes (vector));
4239 }
4240 }
4241 else if (m->type == MEM_TYPE_VECTORLIKE
4242 && (char *) p == ((char *) m->start
4243 + offsetof (struct large_vector, v)))
4244 /* This memory node corresponds to a large vector. */
4245 return 1;
4246 return 0;
4247 }
4248
4249
4250 /* Value is non-zero if P is a pointer to a live buffer. M is a
4251 pointer to the mem_block for P. */
4252
4253 static bool
4254 live_buffer_p (struct mem_node *m, void *p)
4255 {
4256 /* P must point to the start of the block, and the buffer
4257 must not have been killed. */
4258 return (m->type == MEM_TYPE_BUFFER
4259 && p == m->start
4260 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4261 }
4262
4263 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4264
4265 #if GC_MARK_STACK
4266
4267 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4268
4269 /* Currently not used, but may be called from gdb. */
4270
4271 void dump_zombies (void) EXTERNALLY_VISIBLE;
4272
4273 /* Array of objects that are kept alive because the C stack contains
4274 a pattern that looks like a reference to them . */
4275
4276 #define MAX_ZOMBIES 10
4277 static Lisp_Object zombies[MAX_ZOMBIES];
4278
4279 /* Number of zombie objects. */
4280
4281 static EMACS_INT nzombies;
4282
4283 /* Number of garbage collections. */
4284
4285 static EMACS_INT ngcs;
4286
4287 /* Average percentage of zombies per collection. */
4288
4289 static double avg_zombies;
4290
4291 /* Max. number of live and zombie objects. */
4292
4293 static EMACS_INT max_live, max_zombies;
4294
4295 /* Average number of live objects per GC. */
4296
4297 static double avg_live;
4298
4299 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4300 doc: /* Show information about live and zombie objects. */)
4301 (void)
4302 {
4303 Lisp_Object args[8], zombie_list = Qnil;
4304 EMACS_INT i;
4305 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4306 zombie_list = Fcons (zombies[i], zombie_list);
4307 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4308 args[1] = make_number (ngcs);
4309 args[2] = make_float (avg_live);
4310 args[3] = make_float (avg_zombies);
4311 args[4] = make_float (avg_zombies / avg_live / 100);
4312 args[5] = make_number (max_live);
4313 args[6] = make_number (max_zombies);
4314 args[7] = zombie_list;
4315 return Fmessage (8, args);
4316 }
4317
4318 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4319
4320
4321 /* Mark OBJ if we can prove it's a Lisp_Object. */
4322
4323 static void
4324 mark_maybe_object (Lisp_Object obj)
4325 {
4326 void *po;
4327 struct mem_node *m;
4328
4329 #if USE_VALGRIND
4330 if (valgrind_p)
4331 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4332 #endif
4333
4334 if (INTEGERP (obj))
4335 return;
4336
4337 po = (void *) XPNTR (obj);
4338 m = mem_find (po);
4339
4340 if (m != MEM_NIL)
4341 {
4342 bool mark_p = 0;
4343
4344 switch (XTYPE (obj))
4345 {
4346 case Lisp_String:
4347 mark_p = (live_string_p (m, po)
4348 && !STRING_MARKED_P ((struct Lisp_String *) po));
4349 break;
4350
4351 case Lisp_Cons:
4352 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4353 break;
4354
4355 case Lisp_Symbol:
4356 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4357 break;
4358
4359 case Lisp_Float:
4360 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4361 break;
4362
4363 case Lisp_Vectorlike:
4364 /* Note: can't check BUFFERP before we know it's a
4365 buffer because checking that dereferences the pointer
4366 PO which might point anywhere. */
4367 if (live_vector_p (m, po))
4368 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4369 else if (live_buffer_p (m, po))
4370 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4371 break;
4372
4373 case Lisp_Misc:
4374 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4375 break;
4376
4377 default:
4378 break;
4379 }
4380
4381 if (mark_p)
4382 {
4383 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4384 if (nzombies < MAX_ZOMBIES)
4385 zombies[nzombies] = obj;
4386 ++nzombies;
4387 #endif
4388 mark_object (obj);
4389 }
4390 }
4391 }
4392
4393
4394 /* If P points to Lisp data, mark that as live if it isn't already
4395 marked. */
4396
4397 static void
4398 mark_maybe_pointer (void *p)
4399 {
4400 struct mem_node *m;
4401
4402 #if USE_VALGRIND
4403 if (valgrind_p)
4404 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4405 #endif
4406
4407 /* Quickly rule out some values which can't point to Lisp data.
4408 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4409 Otherwise, assume that Lisp data is aligned on even addresses. */
4410 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4411 return;
4412
4413 m = mem_find (p);
4414 if (m != MEM_NIL)
4415 {
4416 Lisp_Object obj = Qnil;
4417
4418 switch (m->type)
4419 {
4420 case MEM_TYPE_NON_LISP:
4421 case MEM_TYPE_SPARE:
4422 /* Nothing to do; not a pointer to Lisp memory. */
4423 break;
4424
4425 case MEM_TYPE_BUFFER:
4426 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4427 XSETVECTOR (obj, p);
4428 break;
4429
4430 case MEM_TYPE_CONS:
4431 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4432 XSETCONS (obj, p);
4433 break;
4434
4435 case MEM_TYPE_STRING:
4436 if (live_string_p (m, p)
4437 && !STRING_MARKED_P ((struct Lisp_String *) p))
4438 XSETSTRING (obj, p);
4439 break;
4440
4441 case MEM_TYPE_MISC:
4442 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4443 XSETMISC (obj, p);
4444 break;
4445
4446 case MEM_TYPE_SYMBOL:
4447 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4448 XSETSYMBOL (obj, p);
4449 break;
4450
4451 case MEM_TYPE_FLOAT:
4452 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4453 XSETFLOAT (obj, p);
4454 break;
4455
4456 case MEM_TYPE_VECTORLIKE:
4457 case MEM_TYPE_VECTOR_BLOCK:
4458 if (live_vector_p (m, p))
4459 {
4460 Lisp_Object tem;
4461 XSETVECTOR (tem, p);
4462 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4463 obj = tem;
4464 }
4465 break;
4466
4467 default:
4468 emacs_abort ();
4469 }
4470
4471 if (!NILP (obj))
4472 mark_object (obj);
4473 }
4474 }
4475
4476
4477 /* Alignment of pointer values. Use alignof, as it sometimes returns
4478 a smaller alignment than GCC's __alignof__ and mark_memory might
4479 miss objects if __alignof__ were used. */
4480 #define GC_POINTER_ALIGNMENT alignof (void *)
4481
4482 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4483 not suffice, which is the typical case. A host where a Lisp_Object is
4484 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4485 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4486 suffice to widen it to to a Lisp_Object and check it that way. */
4487 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4488 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4489 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4490 nor mark_maybe_object can follow the pointers. This should not occur on
4491 any practical porting target. */
4492 # error "MSB type bits straddle pointer-word boundaries"
4493 # endif
4494 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4495 pointer words that hold pointers ORed with type bits. */
4496 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4497 #else
4498 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4499 words that hold unmodified pointers. */
4500 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4501 #endif
4502
4503 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4504 or END+OFFSET..START. */
4505
4506 static void
4507 mark_memory (void *start, void *end)
4508 #if defined (__clang__) && defined (__has_feature)
4509 #if __has_feature(address_sanitizer)
4510 /* Do not allow -faddress-sanitizer to check this function, since it
4511 crosses the function stack boundary, and thus would yield many
4512 false positives. */
4513 __attribute__((no_address_safety_analysis))
4514 #endif
4515 #endif
4516 {
4517 void **pp;
4518 int i;
4519
4520 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4521 nzombies = 0;
4522 #endif
4523
4524 /* Make START the pointer to the start of the memory region,
4525 if it isn't already. */
4526 if (end < start)
4527 {
4528 void *tem = start;
4529 start = end;
4530 end = tem;
4531 }
4532
4533 /* Mark Lisp data pointed to. This is necessary because, in some
4534 situations, the C compiler optimizes Lisp objects away, so that
4535 only a pointer to them remains. Example:
4536
4537 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4538 ()
4539 {
4540 Lisp_Object obj = build_string ("test");
4541 struct Lisp_String *s = XSTRING (obj);
4542 Fgarbage_collect ();
4543 fprintf (stderr, "test `%s'\n", s->data);
4544 return Qnil;
4545 }
4546
4547 Here, `obj' isn't really used, and the compiler optimizes it
4548 away. The only reference to the life string is through the
4549 pointer `s'. */
4550
4551 for (pp = start; (void *) pp < end; pp++)
4552 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4553 {
4554 void *p = *(void **) ((char *) pp + i);
4555 mark_maybe_pointer (p);
4556 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4557 mark_maybe_object (XIL ((intptr_t) p));
4558 }
4559 }
4560
4561 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4562
4563 static bool setjmp_tested_p;
4564 static int longjmps_done;
4565
4566 #define SETJMP_WILL_LIKELY_WORK "\
4567 \n\
4568 Emacs garbage collector has been changed to use conservative stack\n\
4569 marking. Emacs has determined that the method it uses to do the\n\
4570 marking will likely work on your system, but this isn't sure.\n\
4571 \n\
4572 If you are a system-programmer, or can get the help of a local wizard\n\
4573 who is, please take a look at the function mark_stack in alloc.c, and\n\
4574 verify that the methods used are appropriate for your system.\n\
4575 \n\
4576 Please mail the result to <emacs-devel@gnu.org>.\n\
4577 "
4578
4579 #define SETJMP_WILL_NOT_WORK "\
4580 \n\
4581 Emacs garbage collector has been changed to use conservative stack\n\
4582 marking. Emacs has determined that the default method it uses to do the\n\
4583 marking will not work on your system. We will need a system-dependent\n\
4584 solution for your system.\n\
4585 \n\
4586 Please take a look at the function mark_stack in alloc.c, and\n\
4587 try to find a way to make it work on your system.\n\
4588 \n\
4589 Note that you may get false negatives, depending on the compiler.\n\
4590 In particular, you need to use -O with GCC for this test.\n\
4591 \n\
4592 Please mail the result to <emacs-devel@gnu.org>.\n\
4593 "
4594
4595
4596 /* Perform a quick check if it looks like setjmp saves registers in a
4597 jmp_buf. Print a message to stderr saying so. When this test
4598 succeeds, this is _not_ a proof that setjmp is sufficient for
4599 conservative stack marking. Only the sources or a disassembly
4600 can prove that. */
4601
4602 static void
4603 test_setjmp (void)
4604 {
4605 char buf[10];
4606 register int x;
4607 sys_jmp_buf jbuf;
4608
4609 /* Arrange for X to be put in a register. */
4610 sprintf (buf, "1");
4611 x = strlen (buf);
4612 x = 2 * x - 1;
4613
4614 sys_setjmp (jbuf);
4615 if (longjmps_done == 1)
4616 {
4617 /* Came here after the longjmp at the end of the function.
4618
4619 If x == 1, the longjmp has restored the register to its
4620 value before the setjmp, and we can hope that setjmp
4621 saves all such registers in the jmp_buf, although that
4622 isn't sure.
4623
4624 For other values of X, either something really strange is
4625 taking place, or the setjmp just didn't save the register. */
4626
4627 if (x == 1)
4628 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4629 else
4630 {
4631 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4632 exit (1);
4633 }
4634 }
4635
4636 ++longjmps_done;
4637 x = 2;
4638 if (longjmps_done == 1)
4639 sys_longjmp (jbuf, 1);
4640 }
4641
4642 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4643
4644
4645 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4646
4647 /* Abort if anything GCPRO'd doesn't survive the GC. */
4648
4649 static void
4650 check_gcpros (void)
4651 {
4652 struct gcpro *p;
4653 ptrdiff_t i;
4654
4655 for (p = gcprolist; p; p = p->next)
4656 for (i = 0; i < p->nvars; ++i)
4657 if (!survives_gc_p (p->var[i]))
4658 /* FIXME: It's not necessarily a bug. It might just be that the
4659 GCPRO is unnecessary or should release the object sooner. */
4660 emacs_abort ();
4661 }
4662
4663 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4664
4665 void
4666 dump_zombies (void)
4667 {
4668 int i;
4669
4670 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4671 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4672 {
4673 fprintf (stderr, " %d = ", i);
4674 debug_print (zombies[i]);
4675 }
4676 }
4677
4678 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4679
4680
4681 /* Mark live Lisp objects on the C stack.
4682
4683 There are several system-dependent problems to consider when
4684 porting this to new architectures:
4685
4686 Processor Registers
4687
4688 We have to mark Lisp objects in CPU registers that can hold local
4689 variables or are used to pass parameters.
4690
4691 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4692 something that either saves relevant registers on the stack, or
4693 calls mark_maybe_object passing it each register's contents.
4694
4695 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4696 implementation assumes that calling setjmp saves registers we need
4697 to see in a jmp_buf which itself lies on the stack. This doesn't
4698 have to be true! It must be verified for each system, possibly
4699 by taking a look at the source code of setjmp.
4700
4701 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4702 can use it as a machine independent method to store all registers
4703 to the stack. In this case the macros described in the previous
4704 two paragraphs are not used.
4705
4706 Stack Layout
4707
4708 Architectures differ in the way their processor stack is organized.
4709 For example, the stack might look like this
4710
4711 +----------------+
4712 | Lisp_Object | size = 4
4713 +----------------+
4714 | something else | size = 2
4715 +----------------+
4716 | Lisp_Object | size = 4
4717 +----------------+
4718 | ... |
4719
4720 In such a case, not every Lisp_Object will be aligned equally. To
4721 find all Lisp_Object on the stack it won't be sufficient to walk
4722 the stack in steps of 4 bytes. Instead, two passes will be
4723 necessary, one starting at the start of the stack, and a second
4724 pass starting at the start of the stack + 2. Likewise, if the
4725 minimal alignment of Lisp_Objects on the stack is 1, four passes
4726 would be necessary, each one starting with one byte more offset
4727 from the stack start. */
4728
4729 static void
4730 mark_stack (void)
4731 {
4732 void *end;
4733
4734 #ifdef HAVE___BUILTIN_UNWIND_INIT
4735 /* Force callee-saved registers and register windows onto the stack.
4736 This is the preferred method if available, obviating the need for
4737 machine dependent methods. */
4738 __builtin_unwind_init ();
4739 end = &end;
4740 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4741 #ifndef GC_SAVE_REGISTERS_ON_STACK
4742 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4743 union aligned_jmpbuf {
4744 Lisp_Object o;
4745 sys_jmp_buf j;
4746 } j;
4747 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4748 #endif
4749 /* This trick flushes the register windows so that all the state of
4750 the process is contained in the stack. */
4751 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4752 needed on ia64 too. See mach_dep.c, where it also says inline
4753 assembler doesn't work with relevant proprietary compilers. */
4754 #ifdef __sparc__
4755 #if defined (__sparc64__) && defined (__FreeBSD__)
4756 /* FreeBSD does not have a ta 3 handler. */
4757 asm ("flushw");
4758 #else
4759 asm ("ta 3");
4760 #endif
4761 #endif
4762
4763 /* Save registers that we need to see on the stack. We need to see
4764 registers used to hold register variables and registers used to
4765 pass parameters. */
4766 #ifdef GC_SAVE_REGISTERS_ON_STACK
4767 GC_SAVE_REGISTERS_ON_STACK (end);
4768 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4769
4770 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4771 setjmp will definitely work, test it
4772 and print a message with the result
4773 of the test. */
4774 if (!setjmp_tested_p)
4775 {
4776 setjmp_tested_p = 1;
4777 test_setjmp ();
4778 }
4779 #endif /* GC_SETJMP_WORKS */
4780
4781 sys_setjmp (j.j);
4782 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4783 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4784 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4785
4786 /* This assumes that the stack is a contiguous region in memory. If
4787 that's not the case, something has to be done here to iterate
4788 over the stack segments. */
4789 mark_memory (stack_base, end);
4790
4791 /* Allow for marking a secondary stack, like the register stack on the
4792 ia64. */
4793 #ifdef GC_MARK_SECONDARY_STACK
4794 GC_MARK_SECONDARY_STACK ();
4795 #endif
4796
4797 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4798 check_gcpros ();
4799 #endif
4800 }
4801
4802 #else /* GC_MARK_STACK == 0 */
4803
4804 #define mark_maybe_object(obj) emacs_abort ()
4805
4806 #endif /* GC_MARK_STACK != 0 */
4807
4808
4809 /* Determine whether it is safe to access memory at address P. */
4810 static int
4811 valid_pointer_p (void *p)
4812 {
4813 #ifdef WINDOWSNT
4814 return w32_valid_pointer_p (p, 16);
4815 #else
4816 int fd[2];
4817
4818 /* Obviously, we cannot just access it (we would SEGV trying), so we
4819 trick the o/s to tell us whether p is a valid pointer.
4820 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4821 not validate p in that case. */
4822
4823 if (emacs_pipe (fd) == 0)
4824 {
4825 bool valid = emacs_write (fd[1], p, 16) == 16;
4826 emacs_close (fd[1]);
4827 emacs_close (fd[0]);
4828 return valid;
4829 }
4830
4831 return -1;
4832 #endif
4833 }
4834
4835 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4836 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4837 cannot validate OBJ. This function can be quite slow, so its primary
4838 use is the manual debugging. The only exception is print_object, where
4839 we use it to check whether the memory referenced by the pointer of
4840 Lisp_Save_Value object contains valid objects. */
4841
4842 int
4843 valid_lisp_object_p (Lisp_Object obj)
4844 {
4845 void *p;
4846 #if GC_MARK_STACK
4847 struct mem_node *m;
4848 #endif
4849
4850 if (INTEGERP (obj))
4851 return 1;
4852
4853 p = (void *) XPNTR (obj);
4854 if (PURE_POINTER_P (p))
4855 return 1;
4856
4857 if (p == &buffer_defaults || p == &buffer_local_symbols)
4858 return 2;
4859
4860 #if !GC_MARK_STACK
4861 return valid_pointer_p (p);
4862 #else
4863
4864 m = mem_find (p);
4865
4866 if (m == MEM_NIL)
4867 {
4868 int valid = valid_pointer_p (p);
4869 if (valid <= 0)
4870 return valid;
4871
4872 if (SUBRP (obj))
4873 return 1;
4874
4875 return 0;
4876 }
4877
4878 switch (m->type)
4879 {
4880 case MEM_TYPE_NON_LISP:
4881 case MEM_TYPE_SPARE:
4882 return 0;
4883
4884 case MEM_TYPE_BUFFER:
4885 return live_buffer_p (m, p) ? 1 : 2;
4886
4887 case MEM_TYPE_CONS:
4888 return live_cons_p (m, p);
4889
4890 case MEM_TYPE_STRING:
4891 return live_string_p (m, p);
4892
4893 case MEM_TYPE_MISC:
4894 return live_misc_p (m, p);
4895
4896 case MEM_TYPE_SYMBOL:
4897 return live_symbol_p (m, p);
4898
4899 case MEM_TYPE_FLOAT:
4900 return live_float_p (m, p);
4901
4902 case MEM_TYPE_VECTORLIKE:
4903 case MEM_TYPE_VECTOR_BLOCK:
4904 return live_vector_p (m, p);
4905
4906 default:
4907 break;
4908 }
4909
4910 return 0;
4911 #endif
4912 }
4913
4914
4915
4916 \f
4917 /***********************************************************************
4918 Pure Storage Management
4919 ***********************************************************************/
4920
4921 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4922 pointer to it. TYPE is the Lisp type for which the memory is
4923 allocated. TYPE < 0 means it's not used for a Lisp object. */
4924
4925 static void *
4926 pure_alloc (size_t size, int type)
4927 {
4928 void *result;
4929 #if USE_LSB_TAG
4930 size_t alignment = GCALIGNMENT;
4931 #else
4932 size_t alignment = alignof (EMACS_INT);
4933
4934 /* Give Lisp_Floats an extra alignment. */
4935 if (type == Lisp_Float)
4936 alignment = alignof (struct Lisp_Float);
4937 #endif
4938
4939 again:
4940 if (type >= 0)
4941 {
4942 /* Allocate space for a Lisp object from the beginning of the free
4943 space with taking account of alignment. */
4944 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4945 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4946 }
4947 else
4948 {
4949 /* Allocate space for a non-Lisp object from the end of the free
4950 space. */
4951 pure_bytes_used_non_lisp += size;
4952 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4953 }
4954 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4955
4956 if (pure_bytes_used <= pure_size)
4957 return result;
4958
4959 /* Don't allocate a large amount here,
4960 because it might get mmap'd and then its address
4961 might not be usable. */
4962 purebeg = xmalloc (10000);
4963 pure_size = 10000;
4964 pure_bytes_used_before_overflow += pure_bytes_used - size;
4965 pure_bytes_used = 0;
4966 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4967 goto again;
4968 }
4969
4970
4971 /* Print a warning if PURESIZE is too small. */
4972
4973 void
4974 check_pure_size (void)
4975 {
4976 if (pure_bytes_used_before_overflow)
4977 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4978 " bytes needed)"),
4979 pure_bytes_used + pure_bytes_used_before_overflow);
4980 }
4981
4982
4983 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4984 the non-Lisp data pool of the pure storage, and return its start
4985 address. Return NULL if not found. */
4986
4987 static char *
4988 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4989 {
4990 int i;
4991 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4992 const unsigned char *p;
4993 char *non_lisp_beg;
4994
4995 if (pure_bytes_used_non_lisp <= nbytes)
4996 return NULL;
4997
4998 /* Set up the Boyer-Moore table. */
4999 skip = nbytes + 1;
5000 for (i = 0; i < 256; i++)
5001 bm_skip[i] = skip;
5002
5003 p = (const unsigned char *) data;
5004 while (--skip > 0)
5005 bm_skip[*p++] = skip;
5006
5007 last_char_skip = bm_skip['\0'];
5008
5009 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5010 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5011
5012 /* See the comments in the function `boyer_moore' (search.c) for the
5013 use of `infinity'. */
5014 infinity = pure_bytes_used_non_lisp + 1;
5015 bm_skip['\0'] = infinity;
5016
5017 p = (const unsigned char *) non_lisp_beg + nbytes;
5018 start = 0;
5019 do
5020 {
5021 /* Check the last character (== '\0'). */
5022 do
5023 {
5024 start += bm_skip[*(p + start)];
5025 }
5026 while (start <= start_max);
5027
5028 if (start < infinity)
5029 /* Couldn't find the last character. */
5030 return NULL;
5031
5032 /* No less than `infinity' means we could find the last
5033 character at `p[start - infinity]'. */
5034 start -= infinity;
5035
5036 /* Check the remaining characters. */
5037 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5038 /* Found. */
5039 return non_lisp_beg + start;
5040
5041 start += last_char_skip;
5042 }
5043 while (start <= start_max);
5044
5045 return NULL;
5046 }
5047
5048
5049 /* Return a string allocated in pure space. DATA is a buffer holding
5050 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5051 means make the result string multibyte.
5052
5053 Must get an error if pure storage is full, since if it cannot hold
5054 a large string it may be able to hold conses that point to that
5055 string; then the string is not protected from gc. */
5056
5057 Lisp_Object
5058 make_pure_string (const char *data,
5059 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5060 {
5061 Lisp_Object string;
5062 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5063 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5064 if (s->data == NULL)
5065 {
5066 s->data = pure_alloc (nbytes + 1, -1);
5067 memcpy (s->data, data, nbytes);
5068 s->data[nbytes] = '\0';
5069 }
5070 s->size = nchars;
5071 s->size_byte = multibyte ? nbytes : -1;
5072 s->intervals = NULL;
5073 XSETSTRING (string, s);
5074 return string;
5075 }
5076
5077 /* Return a string allocated in pure space. Do not
5078 allocate the string data, just point to DATA. */
5079
5080 Lisp_Object
5081 make_pure_c_string (const char *data, ptrdiff_t nchars)
5082 {
5083 Lisp_Object string;
5084 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5085 s->size = nchars;
5086 s->size_byte = -1;
5087 s->data = (unsigned char *) data;
5088 s->intervals = NULL;
5089 XSETSTRING (string, s);
5090 return string;
5091 }
5092
5093 /* Return a cons allocated from pure space. Give it pure copies
5094 of CAR as car and CDR as cdr. */
5095
5096 Lisp_Object
5097 pure_cons (Lisp_Object car, Lisp_Object cdr)
5098 {
5099 Lisp_Object new;
5100 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5101 XSETCONS (new, p);
5102 XSETCAR (new, Fpurecopy (car));
5103 XSETCDR (new, Fpurecopy (cdr));
5104 return new;
5105 }
5106
5107
5108 /* Value is a float object with value NUM allocated from pure space. */
5109
5110 static Lisp_Object
5111 make_pure_float (double num)
5112 {
5113 Lisp_Object new;
5114 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5115 XSETFLOAT (new, p);
5116 XFLOAT_INIT (new, num);
5117 return new;
5118 }
5119
5120
5121 /* Return a vector with room for LEN Lisp_Objects allocated from
5122 pure space. */
5123
5124 static Lisp_Object
5125 make_pure_vector (ptrdiff_t len)
5126 {
5127 Lisp_Object new;
5128 size_t size = header_size + len * word_size;
5129 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5130 XSETVECTOR (new, p);
5131 XVECTOR (new)->header.size = len;
5132 return new;
5133 }
5134
5135
5136 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5137 doc: /* Make a copy of object OBJ in pure storage.
5138 Recursively copies contents of vectors and cons cells.
5139 Does not copy symbols. Copies strings without text properties. */)
5140 (register Lisp_Object obj)
5141 {
5142 if (NILP (Vpurify_flag))
5143 return obj;
5144
5145 if (PURE_POINTER_P (XPNTR (obj)))
5146 return obj;
5147
5148 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5149 {
5150 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5151 if (!NILP (tmp))
5152 return tmp;
5153 }
5154
5155 if (CONSP (obj))
5156 obj = pure_cons (XCAR (obj), XCDR (obj));
5157 else if (FLOATP (obj))
5158 obj = make_pure_float (XFLOAT_DATA (obj));
5159 else if (STRINGP (obj))
5160 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5161 SBYTES (obj),
5162 STRING_MULTIBYTE (obj));
5163 else if (COMPILEDP (obj) || VECTORP (obj))
5164 {
5165 register struct Lisp_Vector *vec;
5166 register ptrdiff_t i;
5167 ptrdiff_t size;
5168
5169 size = ASIZE (obj);
5170 if (size & PSEUDOVECTOR_FLAG)
5171 size &= PSEUDOVECTOR_SIZE_MASK;
5172 vec = XVECTOR (make_pure_vector (size));
5173 for (i = 0; i < size; i++)
5174 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5175 if (COMPILEDP (obj))
5176 {
5177 XSETPVECTYPE (vec, PVEC_COMPILED);
5178 XSETCOMPILED (obj, vec);
5179 }
5180 else
5181 XSETVECTOR (obj, vec);
5182 }
5183 else if (MARKERP (obj))
5184 error ("Attempt to copy a marker to pure storage");
5185 else
5186 /* Not purified, don't hash-cons. */
5187 return obj;
5188
5189 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5190 Fputhash (obj, obj, Vpurify_flag);
5191
5192 return obj;
5193 }
5194
5195
5196 \f
5197 /***********************************************************************
5198 Protection from GC
5199 ***********************************************************************/
5200
5201 /* Put an entry in staticvec, pointing at the variable with address
5202 VARADDRESS. */
5203
5204 void
5205 staticpro (Lisp_Object *varaddress)
5206 {
5207 if (staticidx >= NSTATICS)
5208 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5209 staticvec[staticidx++] = varaddress;
5210 }
5211
5212 \f
5213 /***********************************************************************
5214 Protection from GC
5215 ***********************************************************************/
5216
5217 /* Temporarily prevent garbage collection. */
5218
5219 ptrdiff_t
5220 inhibit_garbage_collection (void)
5221 {
5222 ptrdiff_t count = SPECPDL_INDEX ();
5223
5224 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5225 return count;
5226 }
5227
5228 /* Used to avoid possible overflows when
5229 converting from C to Lisp integers. */
5230
5231 static Lisp_Object
5232 bounded_number (EMACS_INT number)
5233 {
5234 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5235 }
5236
5237 /* Calculate total bytes of live objects. */
5238
5239 static size_t
5240 total_bytes_of_live_objects (void)
5241 {
5242 size_t tot = 0;
5243 tot += total_conses * sizeof (struct Lisp_Cons);
5244 tot += total_symbols * sizeof (struct Lisp_Symbol);
5245 tot += total_markers * sizeof (union Lisp_Misc);
5246 tot += total_string_bytes;
5247 tot += total_vector_slots * word_size;
5248 tot += total_floats * sizeof (struct Lisp_Float);
5249 tot += total_intervals * sizeof (struct interval);
5250 tot += total_strings * sizeof (struct Lisp_String);
5251 return tot;
5252 }
5253
5254 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5255 doc: /* Reclaim storage for Lisp objects no longer needed.
5256 Garbage collection happens automatically if you cons more than
5257 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5258 `garbage-collect' normally returns a list with info on amount of space in use,
5259 where each entry has the form (NAME SIZE USED FREE), where:
5260 - NAME is a symbol describing the kind of objects this entry represents,
5261 - SIZE is the number of bytes used by each one,
5262 - USED is the number of those objects that were found live in the heap,
5263 - FREE is the number of those objects that are not live but that Emacs
5264 keeps around for future allocations (maybe because it does not know how
5265 to return them to the OS).
5266 However, if there was overflow in pure space, `garbage-collect'
5267 returns nil, because real GC can't be done.
5268 See Info node `(elisp)Garbage Collection'. */)
5269 (void)
5270 {
5271 struct buffer *nextb;
5272 char stack_top_variable;
5273 ptrdiff_t i;
5274 bool message_p;
5275 ptrdiff_t count = SPECPDL_INDEX ();
5276 struct timespec start;
5277 Lisp_Object retval = Qnil;
5278 size_t tot_before = 0;
5279
5280 if (abort_on_gc)
5281 emacs_abort ();
5282
5283 /* Can't GC if pure storage overflowed because we can't determine
5284 if something is a pure object or not. */
5285 if (pure_bytes_used_before_overflow)
5286 return Qnil;
5287
5288 /* Record this function, so it appears on the profiler's backtraces. */
5289 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5290
5291 check_cons_list ();
5292
5293 /* Don't keep undo information around forever.
5294 Do this early on, so it is no problem if the user quits. */
5295 FOR_EACH_BUFFER (nextb)
5296 compact_buffer (nextb);
5297
5298 if (profiler_memory_running)
5299 tot_before = total_bytes_of_live_objects ();
5300
5301 start = current_timespec ();
5302
5303 /* In case user calls debug_print during GC,
5304 don't let that cause a recursive GC. */
5305 consing_since_gc = 0;
5306
5307 /* Save what's currently displayed in the echo area. */
5308 message_p = push_message ();
5309 record_unwind_protect_void (pop_message_unwind);
5310
5311 /* Save a copy of the contents of the stack, for debugging. */
5312 #if MAX_SAVE_STACK > 0
5313 if (NILP (Vpurify_flag))
5314 {
5315 char *stack;
5316 ptrdiff_t stack_size;
5317 if (&stack_top_variable < stack_bottom)
5318 {
5319 stack = &stack_top_variable;
5320 stack_size = stack_bottom - &stack_top_variable;
5321 }
5322 else
5323 {
5324 stack = stack_bottom;
5325 stack_size = &stack_top_variable - stack_bottom;
5326 }
5327 if (stack_size <= MAX_SAVE_STACK)
5328 {
5329 if (stack_copy_size < stack_size)
5330 {
5331 stack_copy = xrealloc (stack_copy, stack_size);
5332 stack_copy_size = stack_size;
5333 }
5334 memcpy (stack_copy, stack, stack_size);
5335 }
5336 }
5337 #endif /* MAX_SAVE_STACK > 0 */
5338
5339 if (garbage_collection_messages)
5340 message1_nolog ("Garbage collecting...");
5341
5342 block_input ();
5343
5344 shrink_regexp_cache ();
5345
5346 gc_in_progress = 1;
5347
5348 /* Mark all the special slots that serve as the roots of accessibility. */
5349
5350 mark_buffer (&buffer_defaults);
5351 mark_buffer (&buffer_local_symbols);
5352
5353 for (i = 0; i < staticidx; i++)
5354 mark_object (*staticvec[i]);
5355
5356 mark_specpdl ();
5357 mark_terminals ();
5358 mark_kboards ();
5359
5360 #ifdef USE_GTK
5361 xg_mark_data ();
5362 #endif
5363
5364 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5365 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5366 mark_stack ();
5367 #else
5368 {
5369 register struct gcpro *tail;
5370 for (tail = gcprolist; tail; tail = tail->next)
5371 for (i = 0; i < tail->nvars; i++)
5372 mark_object (tail->var[i]);
5373 }
5374 mark_byte_stack ();
5375 #endif
5376 {
5377 struct handler *handler;
5378 for (handler = handlerlist; handler; handler = handler->next)
5379 {
5380 mark_object (handler->tag_or_ch);
5381 mark_object (handler->val);
5382 }
5383 }
5384 #ifdef HAVE_WINDOW_SYSTEM
5385 mark_fringe_data ();
5386 #endif
5387
5388 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5389 mark_stack ();
5390 #endif
5391
5392 /* Everything is now marked, except for the things that require special
5393 finalization, i.e. the undo_list.
5394 Look thru every buffer's undo list
5395 for elements that update markers that were not marked,
5396 and delete them. */
5397 FOR_EACH_BUFFER (nextb)
5398 {
5399 /* If a buffer's undo list is Qt, that means that undo is
5400 turned off in that buffer. Calling truncate_undo_list on
5401 Qt tends to return NULL, which effectively turns undo back on.
5402 So don't call truncate_undo_list if undo_list is Qt. */
5403 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5404 {
5405 Lisp_Object tail, prev;
5406 tail = nextb->INTERNAL_FIELD (undo_list);
5407 prev = Qnil;
5408 while (CONSP (tail))
5409 {
5410 if (CONSP (XCAR (tail))
5411 && MARKERP (XCAR (XCAR (tail)))
5412 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5413 {
5414 if (NILP (prev))
5415 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5416 else
5417 {
5418 tail = XCDR (tail);
5419 XSETCDR (prev, tail);
5420 }
5421 }
5422 else
5423 {
5424 prev = tail;
5425 tail = XCDR (tail);
5426 }
5427 }
5428 }
5429 /* Now that we have stripped the elements that need not be in the
5430 undo_list any more, we can finally mark the list. */
5431 mark_object (nextb->INTERNAL_FIELD (undo_list));
5432 }
5433
5434 gc_sweep ();
5435
5436 /* Clear the mark bits that we set in certain root slots. */
5437
5438 unmark_byte_stack ();
5439 VECTOR_UNMARK (&buffer_defaults);
5440 VECTOR_UNMARK (&buffer_local_symbols);
5441
5442 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5443 dump_zombies ();
5444 #endif
5445
5446 check_cons_list ();
5447
5448 gc_in_progress = 0;
5449
5450 unblock_input ();
5451
5452 consing_since_gc = 0;
5453 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5454 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5455
5456 gc_relative_threshold = 0;
5457 if (FLOATP (Vgc_cons_percentage))
5458 { /* Set gc_cons_combined_threshold. */
5459 double tot = total_bytes_of_live_objects ();
5460
5461 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5462 if (0 < tot)
5463 {
5464 if (tot < TYPE_MAXIMUM (EMACS_INT))
5465 gc_relative_threshold = tot;
5466 else
5467 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5468 }
5469 }
5470
5471 if (garbage_collection_messages)
5472 {
5473 if (message_p || minibuf_level > 0)
5474 restore_message ();
5475 else
5476 message1_nolog ("Garbage collecting...done");
5477 }
5478
5479 unbind_to (count, Qnil);
5480 {
5481 Lisp_Object total[11];
5482 int total_size = 10;
5483
5484 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5485 bounded_number (total_conses),
5486 bounded_number (total_free_conses));
5487
5488 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5489 bounded_number (total_symbols),
5490 bounded_number (total_free_symbols));
5491
5492 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5493 bounded_number (total_markers),
5494 bounded_number (total_free_markers));
5495
5496 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5497 bounded_number (total_strings),
5498 bounded_number (total_free_strings));
5499
5500 total[4] = list3 (Qstring_bytes, make_number (1),
5501 bounded_number (total_string_bytes));
5502
5503 total[5] = list3 (Qvectors,
5504 make_number (header_size + sizeof (Lisp_Object)),
5505 bounded_number (total_vectors));
5506
5507 total[6] = list4 (Qvector_slots, make_number (word_size),
5508 bounded_number (total_vector_slots),
5509 bounded_number (total_free_vector_slots));
5510
5511 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5512 bounded_number (total_floats),
5513 bounded_number (total_free_floats));
5514
5515 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5516 bounded_number (total_intervals),
5517 bounded_number (total_free_intervals));
5518
5519 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5520 bounded_number (total_buffers));
5521
5522 #ifdef DOUG_LEA_MALLOC
5523 total_size++;
5524 total[10] = list4 (Qheap, make_number (1024),
5525 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5526 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5527 #endif
5528 retval = Flist (total_size, total);
5529 }
5530
5531 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5532 {
5533 /* Compute average percentage of zombies. */
5534 double nlive
5535 = (total_conses + total_symbols + total_markers + total_strings
5536 + total_vectors + total_floats + total_intervals + total_buffers);
5537
5538 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5539 max_live = max (nlive, max_live);
5540 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5541 max_zombies = max (nzombies, max_zombies);
5542 ++ngcs;
5543 }
5544 #endif
5545
5546 if (!NILP (Vpost_gc_hook))
5547 {
5548 ptrdiff_t gc_count = inhibit_garbage_collection ();
5549 safe_run_hooks (Qpost_gc_hook);
5550 unbind_to (gc_count, Qnil);
5551 }
5552
5553 /* Accumulate statistics. */
5554 if (FLOATP (Vgc_elapsed))
5555 {
5556 struct timespec since_start = timespec_sub (current_timespec (), start);
5557 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5558 + timespectod (since_start));
5559 }
5560
5561 gcs_done++;
5562
5563 /* Collect profiling data. */
5564 if (profiler_memory_running)
5565 {
5566 size_t swept = 0;
5567 size_t tot_after = total_bytes_of_live_objects ();
5568 if (tot_before > tot_after)
5569 swept = tot_before - tot_after;
5570 malloc_probe (swept);
5571 }
5572
5573 return retval;
5574 }
5575
5576
5577 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5578 only interesting objects referenced from glyphs are strings. */
5579
5580 static void
5581 mark_glyph_matrix (struct glyph_matrix *matrix)
5582 {
5583 struct glyph_row *row = matrix->rows;
5584 struct glyph_row *end = row + matrix->nrows;
5585
5586 for (; row < end; ++row)
5587 if (row->enabled_p)
5588 {
5589 int area;
5590 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5591 {
5592 struct glyph *glyph = row->glyphs[area];
5593 struct glyph *end_glyph = glyph + row->used[area];
5594
5595 for (; glyph < end_glyph; ++glyph)
5596 if (STRINGP (glyph->object)
5597 && !STRING_MARKED_P (XSTRING (glyph->object)))
5598 mark_object (glyph->object);
5599 }
5600 }
5601 }
5602
5603
5604 /* Mark Lisp faces in the face cache C. */
5605
5606 static void
5607 mark_face_cache (struct face_cache *c)
5608 {
5609 if (c)
5610 {
5611 int i, j;
5612 for (i = 0; i < c->used; ++i)
5613 {
5614 struct face *face = FACE_FROM_ID (c->f, i);
5615
5616 if (face)
5617 {
5618 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5619 mark_object (face->lface[j]);
5620 }
5621 }
5622 }
5623 }
5624
5625
5626 \f
5627 /* Mark reference to a Lisp_Object.
5628 If the object referred to has not been seen yet, recursively mark
5629 all the references contained in it. */
5630
5631 #define LAST_MARKED_SIZE 500
5632 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5633 static int last_marked_index;
5634
5635 /* For debugging--call abort when we cdr down this many
5636 links of a list, in mark_object. In debugging,
5637 the call to abort will hit a breakpoint.
5638 Normally this is zero and the check never goes off. */
5639 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5640
5641 static void
5642 mark_vectorlike (struct Lisp_Vector *ptr)
5643 {
5644 ptrdiff_t size = ptr->header.size;
5645 ptrdiff_t i;
5646
5647 eassert (!VECTOR_MARKED_P (ptr));
5648 VECTOR_MARK (ptr); /* Else mark it. */
5649 if (size & PSEUDOVECTOR_FLAG)
5650 size &= PSEUDOVECTOR_SIZE_MASK;
5651
5652 /* Note that this size is not the memory-footprint size, but only
5653 the number of Lisp_Object fields that we should trace.
5654 The distinction is used e.g. by Lisp_Process which places extra
5655 non-Lisp_Object fields at the end of the structure... */
5656 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5657 mark_object (ptr->u.contents[i]);
5658 }
5659
5660 /* Like mark_vectorlike but optimized for char-tables (and
5661 sub-char-tables) assuming that the contents are mostly integers or
5662 symbols. */
5663
5664 static void
5665 mark_char_table (struct Lisp_Vector *ptr)
5666 {
5667 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5668 int i;
5669
5670 eassert (!VECTOR_MARKED_P (ptr));
5671 VECTOR_MARK (ptr);
5672 for (i = 0; i < size; i++)
5673 {
5674 Lisp_Object val = ptr->u.contents[i];
5675
5676 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5677 continue;
5678 if (SUB_CHAR_TABLE_P (val))
5679 {
5680 if (! VECTOR_MARKED_P (XVECTOR (val)))
5681 mark_char_table (XVECTOR (val));
5682 }
5683 else
5684 mark_object (val);
5685 }
5686 }
5687
5688 /* Mark the chain of overlays starting at PTR. */
5689
5690 static void
5691 mark_overlay (struct Lisp_Overlay *ptr)
5692 {
5693 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5694 {
5695 ptr->gcmarkbit = 1;
5696 mark_object (ptr->start);
5697 mark_object (ptr->end);
5698 mark_object (ptr->plist);
5699 }
5700 }
5701
5702 /* Mark Lisp_Objects and special pointers in BUFFER. */
5703
5704 static void
5705 mark_buffer (struct buffer *buffer)
5706 {
5707 /* This is handled much like other pseudovectors... */
5708 mark_vectorlike ((struct Lisp_Vector *) buffer);
5709
5710 /* ...but there are some buffer-specific things. */
5711
5712 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5713
5714 /* For now, we just don't mark the undo_list. It's done later in
5715 a special way just before the sweep phase, and after stripping
5716 some of its elements that are not needed any more. */
5717
5718 mark_overlay (buffer->overlays_before);
5719 mark_overlay (buffer->overlays_after);
5720
5721 /* If this is an indirect buffer, mark its base buffer. */
5722 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5723 mark_buffer (buffer->base_buffer);
5724 }
5725
5726 /* Remove killed buffers or items whose car is a killed buffer from
5727 LIST, and mark other items. Return changed LIST, which is marked. */
5728
5729 static Lisp_Object
5730 mark_discard_killed_buffers (Lisp_Object list)
5731 {
5732 Lisp_Object tail, *prev = &list;
5733
5734 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5735 tail = XCDR (tail))
5736 {
5737 Lisp_Object tem = XCAR (tail);
5738 if (CONSP (tem))
5739 tem = XCAR (tem);
5740 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5741 *prev = XCDR (tail);
5742 else
5743 {
5744 CONS_MARK (XCONS (tail));
5745 mark_object (XCAR (tail));
5746 prev = xcdr_addr (tail);
5747 }
5748 }
5749 mark_object (tail);
5750 return list;
5751 }
5752
5753 /* Determine type of generic Lisp_Object and mark it accordingly. */
5754
5755 void
5756 mark_object (Lisp_Object arg)
5757 {
5758 register Lisp_Object obj = arg;
5759 #ifdef GC_CHECK_MARKED_OBJECTS
5760 void *po;
5761 struct mem_node *m;
5762 #endif
5763 ptrdiff_t cdr_count = 0;
5764
5765 loop:
5766
5767 if (PURE_POINTER_P (XPNTR (obj)))
5768 return;
5769
5770 last_marked[last_marked_index++] = obj;
5771 if (last_marked_index == LAST_MARKED_SIZE)
5772 last_marked_index = 0;
5773
5774 /* Perform some sanity checks on the objects marked here. Abort if
5775 we encounter an object we know is bogus. This increases GC time
5776 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5777 #ifdef GC_CHECK_MARKED_OBJECTS
5778
5779 po = (void *) XPNTR (obj);
5780
5781 /* Check that the object pointed to by PO is known to be a Lisp
5782 structure allocated from the heap. */
5783 #define CHECK_ALLOCATED() \
5784 do { \
5785 m = mem_find (po); \
5786 if (m == MEM_NIL) \
5787 emacs_abort (); \
5788 } while (0)
5789
5790 /* Check that the object pointed to by PO is live, using predicate
5791 function LIVEP. */
5792 #define CHECK_LIVE(LIVEP) \
5793 do { \
5794 if (!LIVEP (m, po)) \
5795 emacs_abort (); \
5796 } while (0)
5797
5798 /* Check both of the above conditions. */
5799 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5800 do { \
5801 CHECK_ALLOCATED (); \
5802 CHECK_LIVE (LIVEP); \
5803 } while (0) \
5804
5805 #else /* not GC_CHECK_MARKED_OBJECTS */
5806
5807 #define CHECK_LIVE(LIVEP) (void) 0
5808 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5809
5810 #endif /* not GC_CHECK_MARKED_OBJECTS */
5811
5812 switch (XTYPE (obj))
5813 {
5814 case Lisp_String:
5815 {
5816 register struct Lisp_String *ptr = XSTRING (obj);
5817 if (STRING_MARKED_P (ptr))
5818 break;
5819 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5820 MARK_STRING (ptr);
5821 MARK_INTERVAL_TREE (ptr->intervals);
5822 #ifdef GC_CHECK_STRING_BYTES
5823 /* Check that the string size recorded in the string is the
5824 same as the one recorded in the sdata structure. */
5825 string_bytes (ptr);
5826 #endif /* GC_CHECK_STRING_BYTES */
5827 }
5828 break;
5829
5830 case Lisp_Vectorlike:
5831 {
5832 register struct Lisp_Vector *ptr = XVECTOR (obj);
5833 register ptrdiff_t pvectype;
5834
5835 if (VECTOR_MARKED_P (ptr))
5836 break;
5837
5838 #ifdef GC_CHECK_MARKED_OBJECTS
5839 m = mem_find (po);
5840 if (m == MEM_NIL && !SUBRP (obj))
5841 emacs_abort ();
5842 #endif /* GC_CHECK_MARKED_OBJECTS */
5843
5844 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5845 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5846 >> PSEUDOVECTOR_AREA_BITS);
5847 else
5848 pvectype = PVEC_NORMAL_VECTOR;
5849
5850 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5851 CHECK_LIVE (live_vector_p);
5852
5853 switch (pvectype)
5854 {
5855 case PVEC_BUFFER:
5856 #ifdef GC_CHECK_MARKED_OBJECTS
5857 {
5858 struct buffer *b;
5859 FOR_EACH_BUFFER (b)
5860 if (b == po)
5861 break;
5862 if (b == NULL)
5863 emacs_abort ();
5864 }
5865 #endif /* GC_CHECK_MARKED_OBJECTS */
5866 mark_buffer ((struct buffer *) ptr);
5867 break;
5868
5869 case PVEC_COMPILED:
5870 { /* We could treat this just like a vector, but it is better
5871 to save the COMPILED_CONSTANTS element for last and avoid
5872 recursion there. */
5873 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5874 int i;
5875
5876 VECTOR_MARK (ptr);
5877 for (i = 0; i < size; i++)
5878 if (i != COMPILED_CONSTANTS)
5879 mark_object (ptr->u.contents[i]);
5880 if (size > COMPILED_CONSTANTS)
5881 {
5882 obj = ptr->u.contents[COMPILED_CONSTANTS];
5883 goto loop;
5884 }
5885 }
5886 break;
5887
5888 case PVEC_FRAME:
5889 mark_vectorlike (ptr);
5890 mark_face_cache (((struct frame *) ptr)->face_cache);
5891 break;
5892
5893 case PVEC_WINDOW:
5894 {
5895 struct window *w = (struct window *) ptr;
5896
5897 mark_vectorlike (ptr);
5898
5899 /* Mark glyph matrices, if any. Marking window
5900 matrices is sufficient because frame matrices
5901 use the same glyph memory. */
5902 if (w->current_matrix)
5903 {
5904 mark_glyph_matrix (w->current_matrix);
5905 mark_glyph_matrix (w->desired_matrix);
5906 }
5907
5908 /* Filter out killed buffers from both buffer lists
5909 in attempt to help GC to reclaim killed buffers faster.
5910 We can do it elsewhere for live windows, but this is the
5911 best place to do it for dead windows. */
5912 wset_prev_buffers
5913 (w, mark_discard_killed_buffers (w->prev_buffers));
5914 wset_next_buffers
5915 (w, mark_discard_killed_buffers (w->next_buffers));
5916 }
5917 break;
5918
5919 case PVEC_HASH_TABLE:
5920 {
5921 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5922
5923 mark_vectorlike (ptr);
5924 mark_object (h->test.name);
5925 mark_object (h->test.user_hash_function);
5926 mark_object (h->test.user_cmp_function);
5927 /* If hash table is not weak, mark all keys and values.
5928 For weak tables, mark only the vector. */
5929 if (NILP (h->weak))
5930 mark_object (h->key_and_value);
5931 else
5932 VECTOR_MARK (XVECTOR (h->key_and_value));
5933 }
5934 break;
5935
5936 case PVEC_CHAR_TABLE:
5937 mark_char_table (ptr);
5938 break;
5939
5940 case PVEC_BOOL_VECTOR:
5941 /* No Lisp_Objects to mark in a bool vector. */
5942 VECTOR_MARK (ptr);
5943 break;
5944
5945 case PVEC_SUBR:
5946 break;
5947
5948 case PVEC_FREE:
5949 emacs_abort ();
5950
5951 default:
5952 mark_vectorlike (ptr);
5953 }
5954 }
5955 break;
5956
5957 case Lisp_Symbol:
5958 {
5959 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5960 struct Lisp_Symbol *ptrx;
5961
5962 if (ptr->gcmarkbit)
5963 break;
5964 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5965 ptr->gcmarkbit = 1;
5966 mark_object (ptr->function);
5967 mark_object (ptr->plist);
5968 switch (ptr->redirect)
5969 {
5970 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5971 case SYMBOL_VARALIAS:
5972 {
5973 Lisp_Object tem;
5974 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5975 mark_object (tem);
5976 break;
5977 }
5978 case SYMBOL_LOCALIZED:
5979 {
5980 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5981 Lisp_Object where = blv->where;
5982 /* If the value is set up for a killed buffer or deleted
5983 frame, restore it's global binding. If the value is
5984 forwarded to a C variable, either it's not a Lisp_Object
5985 var, or it's staticpro'd already. */
5986 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5987 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5988 swap_in_global_binding (ptr);
5989 mark_object (blv->where);
5990 mark_object (blv->valcell);
5991 mark_object (blv->defcell);
5992 break;
5993 }
5994 case SYMBOL_FORWARDED:
5995 /* If the value is forwarded to a buffer or keyboard field,
5996 these are marked when we see the corresponding object.
5997 And if it's forwarded to a C variable, either it's not
5998 a Lisp_Object var, or it's staticpro'd already. */
5999 break;
6000 default: emacs_abort ();
6001 }
6002 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6003 MARK_STRING (XSTRING (ptr->name));
6004 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6005
6006 ptr = ptr->next;
6007 if (ptr)
6008 {
6009 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6010 XSETSYMBOL (obj, ptrx);
6011 goto loop;
6012 }
6013 }
6014 break;
6015
6016 case Lisp_Misc:
6017 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6018
6019 if (XMISCANY (obj)->gcmarkbit)
6020 break;
6021
6022 switch (XMISCTYPE (obj))
6023 {
6024 case Lisp_Misc_Marker:
6025 /* DO NOT mark thru the marker's chain.
6026 The buffer's markers chain does not preserve markers from gc;
6027 instead, markers are removed from the chain when freed by gc. */
6028 XMISCANY (obj)->gcmarkbit = 1;
6029 break;
6030
6031 case Lisp_Misc_Save_Value:
6032 XMISCANY (obj)->gcmarkbit = 1;
6033 {
6034 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6035 /* If `save_type' is zero, `data[0].pointer' is the address
6036 of a memory area containing `data[1].integer' potential
6037 Lisp_Objects. */
6038 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6039 {
6040 Lisp_Object *p = ptr->data[0].pointer;
6041 ptrdiff_t nelt;
6042 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6043 mark_maybe_object (*p);
6044 }
6045 else
6046 {
6047 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6048 int i;
6049 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6050 if (save_type (ptr, i) == SAVE_OBJECT)
6051 mark_object (ptr->data[i].object);
6052 }
6053 }
6054 break;
6055
6056 case Lisp_Misc_Overlay:
6057 mark_overlay (XOVERLAY (obj));
6058 break;
6059
6060 default:
6061 emacs_abort ();
6062 }
6063 break;
6064
6065 case Lisp_Cons:
6066 {
6067 register struct Lisp_Cons *ptr = XCONS (obj);
6068 if (CONS_MARKED_P (ptr))
6069 break;
6070 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6071 CONS_MARK (ptr);
6072 /* If the cdr is nil, avoid recursion for the car. */
6073 if (EQ (ptr->u.cdr, Qnil))
6074 {
6075 obj = ptr->car;
6076 cdr_count = 0;
6077 goto loop;
6078 }
6079 mark_object (ptr->car);
6080 obj = ptr->u.cdr;
6081 cdr_count++;
6082 if (cdr_count == mark_object_loop_halt)
6083 emacs_abort ();
6084 goto loop;
6085 }
6086
6087 case Lisp_Float:
6088 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6089 FLOAT_MARK (XFLOAT (obj));
6090 break;
6091
6092 case_Lisp_Int:
6093 break;
6094
6095 default:
6096 emacs_abort ();
6097 }
6098
6099 #undef CHECK_LIVE
6100 #undef CHECK_ALLOCATED
6101 #undef CHECK_ALLOCATED_AND_LIVE
6102 }
6103 /* Mark the Lisp pointers in the terminal objects.
6104 Called by Fgarbage_collect. */
6105
6106 static void
6107 mark_terminals (void)
6108 {
6109 struct terminal *t;
6110 for (t = terminal_list; t; t = t->next_terminal)
6111 {
6112 eassert (t->name != NULL);
6113 #ifdef HAVE_WINDOW_SYSTEM
6114 /* If a terminal object is reachable from a stacpro'ed object,
6115 it might have been marked already. Make sure the image cache
6116 gets marked. */
6117 mark_image_cache (t->image_cache);
6118 #endif /* HAVE_WINDOW_SYSTEM */
6119 if (!VECTOR_MARKED_P (t))
6120 mark_vectorlike ((struct Lisp_Vector *)t);
6121 }
6122 }
6123
6124
6125
6126 /* Value is non-zero if OBJ will survive the current GC because it's
6127 either marked or does not need to be marked to survive. */
6128
6129 bool
6130 survives_gc_p (Lisp_Object obj)
6131 {
6132 bool survives_p;
6133
6134 switch (XTYPE (obj))
6135 {
6136 case_Lisp_Int:
6137 survives_p = 1;
6138 break;
6139
6140 case Lisp_Symbol:
6141 survives_p = XSYMBOL (obj)->gcmarkbit;
6142 break;
6143
6144 case Lisp_Misc:
6145 survives_p = XMISCANY (obj)->gcmarkbit;
6146 break;
6147
6148 case Lisp_String:
6149 survives_p = STRING_MARKED_P (XSTRING (obj));
6150 break;
6151
6152 case Lisp_Vectorlike:
6153 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6154 break;
6155
6156 case Lisp_Cons:
6157 survives_p = CONS_MARKED_P (XCONS (obj));
6158 break;
6159
6160 case Lisp_Float:
6161 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6162 break;
6163
6164 default:
6165 emacs_abort ();
6166 }
6167
6168 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6169 }
6170
6171
6172 \f
6173 /* Sweep: find all structures not marked, and free them. */
6174
6175 static void
6176 gc_sweep (void)
6177 {
6178 /* Remove or mark entries in weak hash tables.
6179 This must be done before any object is unmarked. */
6180 sweep_weak_hash_tables ();
6181
6182 sweep_strings ();
6183 check_string_bytes (!noninteractive);
6184
6185 /* Put all unmarked conses on free list */
6186 {
6187 register struct cons_block *cblk;
6188 struct cons_block **cprev = &cons_block;
6189 register int lim = cons_block_index;
6190 EMACS_INT num_free = 0, num_used = 0;
6191
6192 cons_free_list = 0;
6193
6194 for (cblk = cons_block; cblk; cblk = *cprev)
6195 {
6196 register int i = 0;
6197 int this_free = 0;
6198 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6199
6200 /* Scan the mark bits an int at a time. */
6201 for (i = 0; i < ilim; i++)
6202 {
6203 if (cblk->gcmarkbits[i] == -1)
6204 {
6205 /* Fast path - all cons cells for this int are marked. */
6206 cblk->gcmarkbits[i] = 0;
6207 num_used += BITS_PER_INT;
6208 }
6209 else
6210 {
6211 /* Some cons cells for this int are not marked.
6212 Find which ones, and free them. */
6213 int start, pos, stop;
6214
6215 start = i * BITS_PER_INT;
6216 stop = lim - start;
6217 if (stop > BITS_PER_INT)
6218 stop = BITS_PER_INT;
6219 stop += start;
6220
6221 for (pos = start; pos < stop; pos++)
6222 {
6223 if (!CONS_MARKED_P (&cblk->conses[pos]))
6224 {
6225 this_free++;
6226 cblk->conses[pos].u.chain = cons_free_list;
6227 cons_free_list = &cblk->conses[pos];
6228 #if GC_MARK_STACK
6229 cons_free_list->car = Vdead;
6230 #endif
6231 }
6232 else
6233 {
6234 num_used++;
6235 CONS_UNMARK (&cblk->conses[pos]);
6236 }
6237 }
6238 }
6239 }
6240
6241 lim = CONS_BLOCK_SIZE;
6242 /* If this block contains only free conses and we have already
6243 seen more than two blocks worth of free conses then deallocate
6244 this block. */
6245 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6246 {
6247 *cprev = cblk->next;
6248 /* Unhook from the free list. */
6249 cons_free_list = cblk->conses[0].u.chain;
6250 lisp_align_free (cblk);
6251 }
6252 else
6253 {
6254 num_free += this_free;
6255 cprev = &cblk->next;
6256 }
6257 }
6258 total_conses = num_used;
6259 total_free_conses = num_free;
6260 }
6261
6262 /* Put all unmarked floats on free list */
6263 {
6264 register struct float_block *fblk;
6265 struct float_block **fprev = &float_block;
6266 register int lim = float_block_index;
6267 EMACS_INT num_free = 0, num_used = 0;
6268
6269 float_free_list = 0;
6270
6271 for (fblk = float_block; fblk; fblk = *fprev)
6272 {
6273 register int i;
6274 int this_free = 0;
6275 for (i = 0; i < lim; i++)
6276 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6277 {
6278 this_free++;
6279 fblk->floats[i].u.chain = float_free_list;
6280 float_free_list = &fblk->floats[i];
6281 }
6282 else
6283 {
6284 num_used++;
6285 FLOAT_UNMARK (&fblk->floats[i]);
6286 }
6287 lim = FLOAT_BLOCK_SIZE;
6288 /* If this block contains only free floats and we have already
6289 seen more than two blocks worth of free floats then deallocate
6290 this block. */
6291 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6292 {
6293 *fprev = fblk->next;
6294 /* Unhook from the free list. */
6295 float_free_list = fblk->floats[0].u.chain;
6296 lisp_align_free (fblk);
6297 }
6298 else
6299 {
6300 num_free += this_free;
6301 fprev = &fblk->next;
6302 }
6303 }
6304 total_floats = num_used;
6305 total_free_floats = num_free;
6306 }
6307
6308 /* Put all unmarked intervals on free list */
6309 {
6310 register struct interval_block *iblk;
6311 struct interval_block **iprev = &interval_block;
6312 register int lim = interval_block_index;
6313 EMACS_INT num_free = 0, num_used = 0;
6314
6315 interval_free_list = 0;
6316
6317 for (iblk = interval_block; iblk; iblk = *iprev)
6318 {
6319 register int i;
6320 int this_free = 0;
6321
6322 for (i = 0; i < lim; i++)
6323 {
6324 if (!iblk->intervals[i].gcmarkbit)
6325 {
6326 set_interval_parent (&iblk->intervals[i], interval_free_list);
6327 interval_free_list = &iblk->intervals[i];
6328 this_free++;
6329 }
6330 else
6331 {
6332 num_used++;
6333 iblk->intervals[i].gcmarkbit = 0;
6334 }
6335 }
6336 lim = INTERVAL_BLOCK_SIZE;
6337 /* If this block contains only free intervals and we have already
6338 seen more than two blocks worth of free intervals then
6339 deallocate this block. */
6340 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6341 {
6342 *iprev = iblk->next;
6343 /* Unhook from the free list. */
6344 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6345 lisp_free (iblk);
6346 }
6347 else
6348 {
6349 num_free += this_free;
6350 iprev = &iblk->next;
6351 }
6352 }
6353 total_intervals = num_used;
6354 total_free_intervals = num_free;
6355 }
6356
6357 /* Put all unmarked symbols on free list */
6358 {
6359 register struct symbol_block *sblk;
6360 struct symbol_block **sprev = &symbol_block;
6361 register int lim = symbol_block_index;
6362 EMACS_INT num_free = 0, num_used = 0;
6363
6364 symbol_free_list = NULL;
6365
6366 for (sblk = symbol_block; sblk; sblk = *sprev)
6367 {
6368 int this_free = 0;
6369 union aligned_Lisp_Symbol *sym = sblk->symbols;
6370 union aligned_Lisp_Symbol *end = sym + lim;
6371
6372 for (; sym < end; ++sym)
6373 {
6374 /* Check if the symbol was created during loadup. In such a case
6375 it might be pointed to by pure bytecode which we don't trace,
6376 so we conservatively assume that it is live. */
6377 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6378
6379 if (!sym->s.gcmarkbit && !pure_p)
6380 {
6381 if (sym->s.redirect == SYMBOL_LOCALIZED)
6382 xfree (SYMBOL_BLV (&sym->s));
6383 sym->s.next = symbol_free_list;
6384 symbol_free_list = &sym->s;
6385 #if GC_MARK_STACK
6386 symbol_free_list->function = Vdead;
6387 #endif
6388 ++this_free;
6389 }
6390 else
6391 {
6392 ++num_used;
6393 if (!pure_p)
6394 UNMARK_STRING (XSTRING (sym->s.name));
6395 sym->s.gcmarkbit = 0;
6396 }
6397 }
6398
6399 lim = SYMBOL_BLOCK_SIZE;
6400 /* If this block contains only free symbols and we have already
6401 seen more than two blocks worth of free symbols then deallocate
6402 this block. */
6403 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6404 {
6405 *sprev = sblk->next;
6406 /* Unhook from the free list. */
6407 symbol_free_list = sblk->symbols[0].s.next;
6408 lisp_free (sblk);
6409 }
6410 else
6411 {
6412 num_free += this_free;
6413 sprev = &sblk->next;
6414 }
6415 }
6416 total_symbols = num_used;
6417 total_free_symbols = num_free;
6418 }
6419
6420 /* Put all unmarked misc's on free list.
6421 For a marker, first unchain it from the buffer it points into. */
6422 {
6423 register struct marker_block *mblk;
6424 struct marker_block **mprev = &marker_block;
6425 register int lim = marker_block_index;
6426 EMACS_INT num_free = 0, num_used = 0;
6427
6428 marker_free_list = 0;
6429
6430 for (mblk = marker_block; mblk; mblk = *mprev)
6431 {
6432 register int i;
6433 int this_free = 0;
6434
6435 for (i = 0; i < lim; i++)
6436 {
6437 if (!mblk->markers[i].m.u_any.gcmarkbit)
6438 {
6439 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6440 unchain_marker (&mblk->markers[i].m.u_marker);
6441 /* Set the type of the freed object to Lisp_Misc_Free.
6442 We could leave the type alone, since nobody checks it,
6443 but this might catch bugs faster. */
6444 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6445 mblk->markers[i].m.u_free.chain = marker_free_list;
6446 marker_free_list = &mblk->markers[i].m;
6447 this_free++;
6448 }
6449 else
6450 {
6451 num_used++;
6452 mblk->markers[i].m.u_any.gcmarkbit = 0;
6453 }
6454 }
6455 lim = MARKER_BLOCK_SIZE;
6456 /* If this block contains only free markers and we have already
6457 seen more than two blocks worth of free markers then deallocate
6458 this block. */
6459 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6460 {
6461 *mprev = mblk->next;
6462 /* Unhook from the free list. */
6463 marker_free_list = mblk->markers[0].m.u_free.chain;
6464 lisp_free (mblk);
6465 }
6466 else
6467 {
6468 num_free += this_free;
6469 mprev = &mblk->next;
6470 }
6471 }
6472
6473 total_markers = num_used;
6474 total_free_markers = num_free;
6475 }
6476
6477 /* Free all unmarked buffers */
6478 {
6479 register struct buffer *buffer, **bprev = &all_buffers;
6480
6481 total_buffers = 0;
6482 for (buffer = all_buffers; buffer; buffer = *bprev)
6483 if (!VECTOR_MARKED_P (buffer))
6484 {
6485 *bprev = buffer->next;
6486 lisp_free (buffer);
6487 }
6488 else
6489 {
6490 VECTOR_UNMARK (buffer);
6491 /* Do not use buffer_(set|get)_intervals here. */
6492 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6493 total_buffers++;
6494 bprev = &buffer->next;
6495 }
6496 }
6497
6498 sweep_vectors ();
6499 check_string_bytes (!noninteractive);
6500 }
6501
6502
6503
6504 \f
6505 /* Debugging aids. */
6506
6507 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6508 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6509 This may be helpful in debugging Emacs's memory usage.
6510 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6511 (void)
6512 {
6513 Lisp_Object end;
6514
6515 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6516
6517 return end;
6518 }
6519
6520 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6521 doc: /* Return a list of counters that measure how much consing there has been.
6522 Each of these counters increments for a certain kind of object.
6523 The counters wrap around from the largest positive integer to zero.
6524 Garbage collection does not decrease them.
6525 The elements of the value are as follows:
6526 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6527 All are in units of 1 = one object consed
6528 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6529 objects consed.
6530 MISCS include overlays, markers, and some internal types.
6531 Frames, windows, buffers, and subprocesses count as vectors
6532 (but the contents of a buffer's text do not count here). */)
6533 (void)
6534 {
6535 return listn (CONSTYPE_HEAP, 8,
6536 bounded_number (cons_cells_consed),
6537 bounded_number (floats_consed),
6538 bounded_number (vector_cells_consed),
6539 bounded_number (symbols_consed),
6540 bounded_number (string_chars_consed),
6541 bounded_number (misc_objects_consed),
6542 bounded_number (intervals_consed),
6543 bounded_number (strings_consed));
6544 }
6545
6546 /* Find at most FIND_MAX symbols which have OBJ as their value or
6547 function. This is used in gdbinit's `xwhichsymbols' command. */
6548
6549 Lisp_Object
6550 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6551 {
6552 struct symbol_block *sblk;
6553 ptrdiff_t gc_count = inhibit_garbage_collection ();
6554 Lisp_Object found = Qnil;
6555
6556 if (! DEADP (obj))
6557 {
6558 for (sblk = symbol_block; sblk; sblk = sblk->next)
6559 {
6560 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6561 int bn;
6562
6563 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6564 {
6565 struct Lisp_Symbol *sym = &aligned_sym->s;
6566 Lisp_Object val;
6567 Lisp_Object tem;
6568
6569 if (sblk == symbol_block && bn >= symbol_block_index)
6570 break;
6571
6572 XSETSYMBOL (tem, sym);
6573 val = find_symbol_value (tem);
6574 if (EQ (val, obj)
6575 || EQ (sym->function, obj)
6576 || (!NILP (sym->function)
6577 && COMPILEDP (sym->function)
6578 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6579 || (!NILP (val)
6580 && COMPILEDP (val)
6581 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6582 {
6583 found = Fcons (tem, found);
6584 if (--find_max == 0)
6585 goto out;
6586 }
6587 }
6588 }
6589 }
6590
6591 out:
6592 unbind_to (gc_count, Qnil);
6593 return found;
6594 }
6595
6596 #ifdef ENABLE_CHECKING
6597
6598 bool suppress_checking;
6599
6600 void
6601 die (const char *msg, const char *file, int line)
6602 {
6603 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6604 file, line, msg);
6605 terminate_due_to_signal (SIGABRT, INT_MAX);
6606 }
6607 #endif
6608 \f
6609 /* Initialization. */
6610
6611 void
6612 init_alloc_once (void)
6613 {
6614 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6615 purebeg = PUREBEG;
6616 pure_size = PURESIZE;
6617
6618 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6619 mem_init ();
6620 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6621 #endif
6622
6623 #ifdef DOUG_LEA_MALLOC
6624 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6625 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6626 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6627 #endif
6628 init_strings ();
6629 init_vectors ();
6630
6631 refill_memory_reserve ();
6632 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6633 }
6634
6635 void
6636 init_alloc (void)
6637 {
6638 gcprolist = 0;
6639 byte_stack_list = 0;
6640 #if GC_MARK_STACK
6641 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6642 setjmp_tested_p = longjmps_done = 0;
6643 #endif
6644 #endif
6645 Vgc_elapsed = make_float (0.0);
6646 gcs_done = 0;
6647
6648 #if USE_VALGRIND
6649 valgrind_p = RUNNING_ON_VALGRIND != 0;
6650 #endif
6651 }
6652
6653 void
6654 syms_of_alloc (void)
6655 {
6656 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6657 doc: /* Number of bytes of consing between garbage collections.
6658 Garbage collection can happen automatically once this many bytes have been
6659 allocated since the last garbage collection. All data types count.
6660
6661 Garbage collection happens automatically only when `eval' is called.
6662
6663 By binding this temporarily to a large number, you can effectively
6664 prevent garbage collection during a part of the program.
6665 See also `gc-cons-percentage'. */);
6666
6667 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6668 doc: /* Portion of the heap used for allocation.
6669 Garbage collection can happen automatically once this portion of the heap
6670 has been allocated since the last garbage collection.
6671 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6672 Vgc_cons_percentage = make_float (0.1);
6673
6674 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6675 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6676
6677 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6678 doc: /* Number of cons cells that have been consed so far. */);
6679
6680 DEFVAR_INT ("floats-consed", floats_consed,
6681 doc: /* Number of floats that have been consed so far. */);
6682
6683 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6684 doc: /* Number of vector cells that have been consed so far. */);
6685
6686 DEFVAR_INT ("symbols-consed", symbols_consed,
6687 doc: /* Number of symbols that have been consed so far. */);
6688
6689 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6690 doc: /* Number of string characters that have been consed so far. */);
6691
6692 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6693 doc: /* Number of miscellaneous objects that have been consed so far.
6694 These include markers and overlays, plus certain objects not visible
6695 to users. */);
6696
6697 DEFVAR_INT ("intervals-consed", intervals_consed,
6698 doc: /* Number of intervals that have been consed so far. */);
6699
6700 DEFVAR_INT ("strings-consed", strings_consed,
6701 doc: /* Number of strings that have been consed so far. */);
6702
6703 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6704 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6705 This means that certain objects should be allocated in shared (pure) space.
6706 It can also be set to a hash-table, in which case this table is used to
6707 do hash-consing of the objects allocated to pure space. */);
6708
6709 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6710 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6711 garbage_collection_messages = 0;
6712
6713 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6714 doc: /* Hook run after garbage collection has finished. */);
6715 Vpost_gc_hook = Qnil;
6716 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6717
6718 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6719 doc: /* Precomputed `signal' argument for memory-full error. */);
6720 /* We build this in advance because if we wait until we need it, we might
6721 not be able to allocate the memory to hold it. */
6722 Vmemory_signal_data
6723 = listn (CONSTYPE_PURE, 2, Qerror,
6724 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6725
6726 DEFVAR_LISP ("memory-full", Vmemory_full,
6727 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6728 Vmemory_full = Qnil;
6729
6730 DEFSYM (Qconses, "conses");
6731 DEFSYM (Qsymbols, "symbols");
6732 DEFSYM (Qmiscs, "miscs");
6733 DEFSYM (Qstrings, "strings");
6734 DEFSYM (Qvectors, "vectors");
6735 DEFSYM (Qfloats, "floats");
6736 DEFSYM (Qintervals, "intervals");
6737 DEFSYM (Qbuffers, "buffers");
6738 DEFSYM (Qstring_bytes, "string-bytes");
6739 DEFSYM (Qvector_slots, "vector-slots");
6740 DEFSYM (Qheap, "heap");
6741 DEFSYM (Qautomatic_gc, "Automatic GC");
6742
6743 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6744 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6745
6746 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6747 doc: /* Accumulated time elapsed in garbage collections.
6748 The time is in seconds as a floating point value. */);
6749 DEFVAR_INT ("gcs-done", gcs_done,
6750 doc: /* Accumulated number of garbage collections done. */);
6751
6752 defsubr (&Scons);
6753 defsubr (&Slist);
6754 defsubr (&Svector);
6755 defsubr (&Smake_byte_code);
6756 defsubr (&Smake_list);
6757 defsubr (&Smake_vector);
6758 defsubr (&Smake_string);
6759 defsubr (&Smake_bool_vector);
6760 defsubr (&Smake_symbol);
6761 defsubr (&Smake_marker);
6762 defsubr (&Spurecopy);
6763 defsubr (&Sgarbage_collect);
6764 defsubr (&Smemory_limit);
6765 defsubr (&Smemory_use_counts);
6766
6767 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6768 defsubr (&Sgc_status);
6769 #endif
6770 }
6771
6772 /* When compiled with GCC, GDB might say "No enum type named
6773 pvec_type" if we don't have at least one symbol with that type, and
6774 then xbacktrace could fail. Similarly for the other enums and
6775 their values. Some non-GCC compilers don't like these constructs. */
6776 #ifdef __GNUC__
6777 union
6778 {
6779 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6780 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6781 enum char_bits char_bits;
6782 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6783 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6784 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6785 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6786 enum Lisp_Bits Lisp_Bits;
6787 enum Lisp_Compiled Lisp_Compiled;
6788 enum maxargs maxargs;
6789 enum MAX_ALLOCA MAX_ALLOCA;
6790 enum More_Lisp_Bits More_Lisp_Bits;
6791 enum pvec_type pvec_type;
6792 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6793 #endif /* __GNUC__ */