Avoid some more compiler warnings.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24
25 /* Note that this declares bzero on OSF/1. How dumb. */
26
27 #include <signal.h>
28
29 /* This file is part of the core Lisp implementation, and thus must
30 deal with the real data structures. If the Lisp implementation is
31 replaced, this file likely will not be used. */
32
33 #undef HIDE_LISP_IMPLEMENTATION
34 #include "lisp.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "buffer.h"
38 #include "window.h"
39 #include "keyboard.h"
40 #include "frame.h"
41 #include "blockinput.h"
42 #include "charset.h"
43 #include "syssignal.h"
44 #include <setjmp.h>
45
46 #ifdef HAVE_UNISTD_H
47 #include <unistd.h>
48 #else
49 extern POINTER_TYPE *sbrk ();
50 #endif
51
52 #ifdef DOUG_LEA_MALLOC
53
54 #include <malloc.h>
55 #define __malloc_size_t int
56
57 /* Specify maximum number of areas to mmap. It would be nice to use a
58 value that explicitly means "no limit". */
59
60 #define MMAP_MAX_AREAS 100000000
61
62 #else /* not DOUG_LEA_MALLOC */
63
64 /* The following come from gmalloc.c. */
65
66 #if defined (STDC_HEADERS)
67 #include <stddef.h>
68 #define __malloc_size_t size_t
69 #else
70 #define __malloc_size_t unsigned int
71 #endif
72 extern __malloc_size_t _bytes_used;
73 extern int __malloc_extra_blocks;
74
75 #endif /* not DOUG_LEA_MALLOC */
76
77 #define max(A,B) ((A) > (B) ? (A) : (B))
78 #define min(A,B) ((A) < (B) ? (A) : (B))
79
80 /* Macro to verify that storage intended for Lisp objects is not
81 out of range to fit in the space for a pointer.
82 ADDRESS is the start of the block, and SIZE
83 is the amount of space within which objects can start. */
84
85 #define VALIDATE_LISP_STORAGE(address, size) \
86 do \
87 { \
88 Lisp_Object val; \
89 XSETCONS (val, (char *) address + size); \
90 if ((char *) XCONS (val) != (char *) address + size) \
91 { \
92 xfree (address); \
93 memory_full (); \
94 } \
95 } while (0)
96
97 /* Value of _bytes_used, when spare_memory was freed. */
98
99 static __malloc_size_t bytes_used_when_full;
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= MARKBIT)
105 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
106 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
107
108 /* Value is the number of bytes/chars of S, a pointer to a struct
109 Lisp_String. This must be used instead of STRING_BYTES (S) or
110 S->size during GC, because S->size contains the mark bit for
111 strings. */
112
113 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
114 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
115
116 /* Number of bytes of consing done since the last gc. */
117
118 int consing_since_gc;
119
120 /* Count the amount of consing of various sorts of space. */
121
122 int cons_cells_consed;
123 int floats_consed;
124 int vector_cells_consed;
125 int symbols_consed;
126 int string_chars_consed;
127 int misc_objects_consed;
128 int intervals_consed;
129 int strings_consed;
130
131 /* Number of bytes of consing since GC before another GC should be done. */
132
133 int gc_cons_threshold;
134
135 /* Nonzero during GC. */
136
137 int gc_in_progress;
138
139 /* Nonzero means display messages at beginning and end of GC. */
140
141 int garbage_collection_messages;
142
143 #ifndef VIRT_ADDR_VARIES
144 extern
145 #endif /* VIRT_ADDR_VARIES */
146 int malloc_sbrk_used;
147
148 #ifndef VIRT_ADDR_VARIES
149 extern
150 #endif /* VIRT_ADDR_VARIES */
151 int malloc_sbrk_unused;
152
153 /* Two limits controlling how much undo information to keep. */
154
155 int undo_limit;
156 int undo_strong_limit;
157
158 /* Number of live and free conses etc. */
159
160 static int total_conses, total_markers, total_symbols, total_vector_size;
161 static int total_free_conses, total_free_markers, total_free_symbols;
162 static int total_free_floats, total_floats;
163
164 /* Points to memory space allocated as "spare", to be freed if we run
165 out of memory. */
166
167 static char *spare_memory;
168
169 /* Amount of spare memory to keep in reserve. */
170
171 #define SPARE_MEMORY (1 << 14)
172
173 /* Number of extra blocks malloc should get when it needs more core. */
174
175 static int malloc_hysteresis;
176
177 /* Non-nil means defun should do purecopy on the function definition. */
178
179 Lisp_Object Vpurify_flag;
180
181 #ifndef HAVE_SHM
182
183 /* Force it into data space! */
184
185 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
186 #define PUREBEG (char *) pure
187
188 #else /* not HAVE_SHM */
189
190 #define pure PURE_SEG_BITS /* Use shared memory segment */
191 #define PUREBEG (char *)PURE_SEG_BITS
192
193 /* This variable is used only by the XPNTR macro when HAVE_SHM is
194 defined. If we used the PURESIZE macro directly there, that would
195 make most of Emacs dependent on puresize.h, which we don't want -
196 you should be able to change that without too much recompilation.
197 So map_in_data initializes pure_size, and the dependencies work
198 out. */
199
200 EMACS_INT pure_size;
201
202 #endif /* not HAVE_SHM */
203
204 /* Value is non-zero if P points into pure space. */
205
206 #define PURE_POINTER_P(P) \
207 (((PNTR_COMPARISON_TYPE) (P) \
208 < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)) \
209 && ((PNTR_COMPARISON_TYPE) (P) \
210 >= (PNTR_COMPARISON_TYPE) pure))
211
212 /* Index in pure at which next pure object will be allocated.. */
213
214 int pureptr;
215
216 /* If nonzero, this is a warning delivered by malloc and not yet
217 displayed. */
218
219 char *pending_malloc_warning;
220
221 /* Pre-computed signal argument for use when memory is exhausted. */
222
223 Lisp_Object memory_signal_data;
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 char *stack_copy;
234 int stack_copy_size;
235
236 /* Non-zero means ignore malloc warnings. Set during initialization.
237 Currently not used. */
238
239 int ignore_warnings;
240
241 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
242
243 static void mark_buffer P_ ((Lisp_Object));
244 static void mark_kboards P_ ((void));
245 static void gc_sweep P_ ((void));
246 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
247 static void mark_face_cache P_ ((struct face_cache *));
248
249 #ifdef HAVE_WINDOW_SYSTEM
250 static void mark_image P_ ((struct image *));
251 static void mark_image_cache P_ ((struct frame *));
252 #endif /* HAVE_WINDOW_SYSTEM */
253
254 static struct Lisp_String *allocate_string P_ ((void));
255 static void compact_small_strings P_ ((void));
256 static void free_large_strings P_ ((void));
257 static void sweep_strings P_ ((void));
258
259 extern int message_enable_multibyte;
260
261 /* When scanning the C stack for live Lisp objects, Emacs keeps track
262 of what memory allocated via lisp_malloc is intended for what
263 purpose. This enumeration specifies the type of memory. */
264
265 enum mem_type
266 {
267 MEM_TYPE_NON_LISP,
268 MEM_TYPE_BUFFER,
269 MEM_TYPE_CONS,
270 MEM_TYPE_STRING,
271 MEM_TYPE_MISC,
272 MEM_TYPE_SYMBOL,
273 MEM_TYPE_FLOAT,
274 MEM_TYPE_VECTOR
275 };
276
277 #if GC_MARK_STACK
278
279 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
280 #include <stdio.h> /* For fprintf. */
281 #endif
282
283 /* A unique object in pure space used to make some Lisp objects
284 on free lists recognizable in O(1). */
285
286 Lisp_Object Vdead;
287
288 struct mem_node;
289 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
290 static void lisp_free P_ ((POINTER_TYPE *));
291 static void mark_stack P_ ((void));
292 static void init_stack P_ ((Lisp_Object *));
293 static int live_vector_p P_ ((struct mem_node *, void *));
294 static int live_buffer_p P_ ((struct mem_node *, void *));
295 static int live_string_p P_ ((struct mem_node *, void *));
296 static int live_cons_p P_ ((struct mem_node *, void *));
297 static int live_symbol_p P_ ((struct mem_node *, void *));
298 static int live_float_p P_ ((struct mem_node *, void *));
299 static int live_misc_p P_ ((struct mem_node *, void *));
300 static void mark_maybe_object P_ ((Lisp_Object));
301 static void mark_memory P_ ((void *, void *));
302 static void mem_init P_ ((void));
303 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
304 static void mem_insert_fixup P_ ((struct mem_node *));
305 static void mem_rotate_left P_ ((struct mem_node *));
306 static void mem_rotate_right P_ ((struct mem_node *));
307 static void mem_delete P_ ((struct mem_node *));
308 static void mem_delete_fixup P_ ((struct mem_node *));
309 static INLINE struct mem_node *mem_find P_ ((void *));
310
311 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
312 static void check_gcpros P_ ((void));
313 #endif
314
315 #endif /* GC_MARK_STACK != 0 */
316
317 \f
318 /************************************************************************
319 Malloc
320 ************************************************************************/
321
322 /* Write STR to Vstandard_output plus some advice on how to free some
323 memory. Called when memory gets low. */
324
325 Lisp_Object
326 malloc_warning_1 (str)
327 Lisp_Object str;
328 {
329 Fprinc (str, Vstandard_output);
330 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
331 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
332 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
333 return Qnil;
334 }
335
336
337 /* Function malloc calls this if it finds we are near exhausting
338 storage. */
339
340 void
341 malloc_warning (str)
342 char *str;
343 {
344 pending_malloc_warning = str;
345 }
346
347
348 /* Display a malloc warning in buffer *Danger*. */
349
350 void
351 display_malloc_warning ()
352 {
353 register Lisp_Object val;
354
355 val = build_string (pending_malloc_warning);
356 pending_malloc_warning = 0;
357 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
358 }
359
360
361 #ifdef DOUG_LEA_MALLOC
362 # define BYTES_USED (mallinfo ().arena)
363 #else
364 # define BYTES_USED _bytes_used
365 #endif
366
367
368 /* Called if malloc returns zero. */
369
370 void
371 memory_full ()
372 {
373 #ifndef SYSTEM_MALLOC
374 bytes_used_when_full = BYTES_USED;
375 #endif
376
377 /* The first time we get here, free the spare memory. */
378 if (spare_memory)
379 {
380 free (spare_memory);
381 spare_memory = 0;
382 }
383
384 /* This used to call error, but if we've run out of memory, we could
385 get infinite recursion trying to build the string. */
386 while (1)
387 Fsignal (Qnil, memory_signal_data);
388 }
389
390
391 /* Called if we can't allocate relocatable space for a buffer. */
392
393 void
394 buffer_memory_full ()
395 {
396 /* If buffers use the relocating allocator, no need to free
397 spare_memory, because we may have plenty of malloc space left
398 that we could get, and if we don't, the malloc that fails will
399 itself cause spare_memory to be freed. If buffers don't use the
400 relocating allocator, treat this like any other failing
401 malloc. */
402
403 #ifndef REL_ALLOC
404 memory_full ();
405 #endif
406
407 /* This used to call error, but if we've run out of memory, we could
408 get infinite recursion trying to build the string. */
409 while (1)
410 Fsignal (Qerror, memory_signal_data);
411 }
412
413
414 /* Like malloc but check for no memory and block interrupt input.. */
415
416 POINTER_TYPE *
417 xmalloc (size)
418 size_t size;
419 {
420 register POINTER_TYPE *val;
421
422 BLOCK_INPUT;
423 val = (POINTER_TYPE *) malloc (size);
424 UNBLOCK_INPUT;
425
426 if (!val && size)
427 memory_full ();
428 return val;
429 }
430
431
432 /* Like realloc but check for no memory and block interrupt input.. */
433
434 POINTER_TYPE *
435 xrealloc (block, size)
436 POINTER_TYPE *block;
437 size_t size;
438 {
439 register POINTER_TYPE *val;
440
441 BLOCK_INPUT;
442 /* We must call malloc explicitly when BLOCK is 0, since some
443 reallocs don't do this. */
444 if (! block)
445 val = (POINTER_TYPE *) malloc (size);
446 else
447 val = (POINTER_TYPE *) realloc (block, size);
448 UNBLOCK_INPUT;
449
450 if (!val && size) memory_full ();
451 return val;
452 }
453
454
455 /* Like free but block interrupt input.. */
456
457 void
458 xfree (block)
459 POINTER_TYPE *block;
460 {
461 BLOCK_INPUT;
462 free (block);
463 UNBLOCK_INPUT;
464 }
465
466
467 /* Like strdup, but uses xmalloc. */
468
469 char *
470 xstrdup (s)
471 char *s;
472 {
473 size_t len = strlen (s) + 1;
474 char *p = (char *) xmalloc (len);
475 bcopy (s, p, len);
476 return p;
477 }
478
479
480 /* Like malloc but used for allocating Lisp data. NBYTES is the
481 number of bytes to allocate, TYPE describes the intended use of the
482 allcated memory block (for strings, for conses, ...). */
483
484 static POINTER_TYPE *
485 lisp_malloc (nbytes, type)
486 size_t nbytes;
487 enum mem_type type;
488 {
489 register void *val;
490
491 BLOCK_INPUT;
492 val = (void *) malloc (nbytes);
493
494 #if GC_MARK_STACK
495 if (val && type != MEM_TYPE_NON_LISP)
496 mem_insert (val, (char *) val + nbytes, type);
497 #endif
498
499 UNBLOCK_INPUT;
500 if (!val && nbytes)
501 memory_full ();
502 return val;
503 }
504
505
506 /* Return a new buffer structure allocated from the heap with
507 a call to lisp_malloc. */
508
509 struct buffer *
510 allocate_buffer ()
511 {
512 return (struct buffer *) lisp_malloc (sizeof (struct buffer),
513 MEM_TYPE_BUFFER);
514 }
515
516
517 /* Free BLOCK. This must be called to free memory allocated with a
518 call to lisp_malloc. */
519
520 static void
521 lisp_free (block)
522 POINTER_TYPE *block;
523 {
524 BLOCK_INPUT;
525 free (block);
526 #if GC_MARK_STACK
527 mem_delete (mem_find (block));
528 #endif
529 UNBLOCK_INPUT;
530 }
531
532 \f
533 /* Arranging to disable input signals while we're in malloc.
534
535 This only works with GNU malloc. To help out systems which can't
536 use GNU malloc, all the calls to malloc, realloc, and free
537 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
538 pairs; unfortunately, we have no idea what C library functions
539 might call malloc, so we can't really protect them unless you're
540 using GNU malloc. Fortunately, most of the major operating can use
541 GNU malloc. */
542
543 #ifndef SYSTEM_MALLOC
544 #ifndef DOUG_LEA_MALLOC
545 extern void * (*__malloc_hook) P_ ((size_t));
546 extern void * (*__realloc_hook) P_ ((void *, size_t));
547 extern void (*__free_hook) P_ ((void *));
548 /* Else declared in malloc.h, perhaps with an extra arg. */
549 #endif /* DOUG_LEA_MALLOC */
550 static void * (*old_malloc_hook) ();
551 static void * (*old_realloc_hook) ();
552 static void (*old_free_hook) ();
553
554 /* This function is used as the hook for free to call. */
555
556 static void
557 emacs_blocked_free (ptr)
558 void *ptr;
559 {
560 BLOCK_INPUT;
561 __free_hook = old_free_hook;
562 free (ptr);
563 /* If we released our reserve (due to running out of memory),
564 and we have a fair amount free once again,
565 try to set aside another reserve in case we run out once more. */
566 if (spare_memory == 0
567 /* Verify there is enough space that even with the malloc
568 hysteresis this call won't run out again.
569 The code here is correct as long as SPARE_MEMORY
570 is substantially larger than the block size malloc uses. */
571 && (bytes_used_when_full
572 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
573 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
574
575 __free_hook = emacs_blocked_free;
576 UNBLOCK_INPUT;
577 }
578
579
580 /* If we released our reserve (due to running out of memory),
581 and we have a fair amount free once again,
582 try to set aside another reserve in case we run out once more.
583
584 This is called when a relocatable block is freed in ralloc.c. */
585
586 void
587 refill_memory_reserve ()
588 {
589 if (spare_memory == 0)
590 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
591 }
592
593
594 /* This function is the malloc hook that Emacs uses. */
595
596 static void *
597 emacs_blocked_malloc (size)
598 size_t size;
599 {
600 void *value;
601
602 BLOCK_INPUT;
603 __malloc_hook = old_malloc_hook;
604 #ifdef DOUG_LEA_MALLOC
605 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
606 #else
607 __malloc_extra_blocks = malloc_hysteresis;
608 #endif
609 value = (void *) malloc (size);
610 __malloc_hook = emacs_blocked_malloc;
611 UNBLOCK_INPUT;
612
613 return value;
614 }
615
616
617 /* This function is the realloc hook that Emacs uses. */
618
619 static void *
620 emacs_blocked_realloc (ptr, size)
621 void *ptr;
622 size_t size;
623 {
624 void *value;
625
626 BLOCK_INPUT;
627 __realloc_hook = old_realloc_hook;
628 value = (void *) realloc (ptr, size);
629 __realloc_hook = emacs_blocked_realloc;
630 UNBLOCK_INPUT;
631
632 return value;
633 }
634
635
636 /* Called from main to set up malloc to use our hooks. */
637
638 void
639 uninterrupt_malloc ()
640 {
641 if (__free_hook != emacs_blocked_free)
642 old_free_hook = __free_hook;
643 __free_hook = emacs_blocked_free;
644
645 if (__malloc_hook != emacs_blocked_malloc)
646 old_malloc_hook = __malloc_hook;
647 __malloc_hook = emacs_blocked_malloc;
648
649 if (__realloc_hook != emacs_blocked_realloc)
650 old_realloc_hook = __realloc_hook;
651 __realloc_hook = emacs_blocked_realloc;
652 }
653
654 #endif /* not SYSTEM_MALLOC */
655
656
657 \f
658 /***********************************************************************
659 Interval Allocation
660 ***********************************************************************/
661
662 /* Number of intervals allocated in an interval_block structure.
663 The 1020 is 1024 minus malloc overhead. */
664
665 #define INTERVAL_BLOCK_SIZE \
666 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
667
668 /* Intervals are allocated in chunks in form of an interval_block
669 structure. */
670
671 struct interval_block
672 {
673 struct interval_block *next;
674 struct interval intervals[INTERVAL_BLOCK_SIZE];
675 };
676
677 /* Current interval block. Its `next' pointer points to older
678 blocks. */
679
680 struct interval_block *interval_block;
681
682 /* Index in interval_block above of the next unused interval
683 structure. */
684
685 static int interval_block_index;
686
687 /* Number of free and live intervals. */
688
689 static int total_free_intervals, total_intervals;
690
691 /* List of free intervals. */
692
693 INTERVAL interval_free_list;
694
695 /* Total number of interval blocks now in use. */
696
697 int n_interval_blocks;
698
699
700 /* Initialize interval allocation. */
701
702 static void
703 init_intervals ()
704 {
705 interval_block
706 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
707 MEM_TYPE_NON_LISP);
708 interval_block->next = 0;
709 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
710 interval_block_index = 0;
711 interval_free_list = 0;
712 n_interval_blocks = 1;
713 }
714
715
716 /* Return a new interval. */
717
718 INTERVAL
719 make_interval ()
720 {
721 INTERVAL val;
722
723 if (interval_free_list)
724 {
725 val = interval_free_list;
726 interval_free_list = INTERVAL_PARENT (interval_free_list);
727 }
728 else
729 {
730 if (interval_block_index == INTERVAL_BLOCK_SIZE)
731 {
732 register struct interval_block *newi;
733
734 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
735 MEM_TYPE_NON_LISP);
736
737 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
738 newi->next = interval_block;
739 interval_block = newi;
740 interval_block_index = 0;
741 n_interval_blocks++;
742 }
743 val = &interval_block->intervals[interval_block_index++];
744 }
745 consing_since_gc += sizeof (struct interval);
746 intervals_consed++;
747 RESET_INTERVAL (val);
748 return val;
749 }
750
751
752 /* Mark Lisp objects in interval I. */
753
754 static void
755 mark_interval (i, dummy)
756 register INTERVAL i;
757 Lisp_Object dummy;
758 {
759 if (XMARKBIT (i->plist))
760 abort ();
761 mark_object (&i->plist);
762 XMARK (i->plist);
763 }
764
765
766 /* Mark the interval tree rooted in TREE. Don't call this directly;
767 use the macro MARK_INTERVAL_TREE instead. */
768
769 static void
770 mark_interval_tree (tree)
771 register INTERVAL tree;
772 {
773 /* No need to test if this tree has been marked already; this
774 function is always called through the MARK_INTERVAL_TREE macro,
775 which takes care of that. */
776
777 /* XMARK expands to an assignment; the LHS of an assignment can't be
778 a cast. */
779 XMARK (tree->up.obj);
780
781 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
782 }
783
784
785 /* Mark the interval tree rooted in I. */
786
787 #define MARK_INTERVAL_TREE(i) \
788 do { \
789 if (!NULL_INTERVAL_P (i) \
790 && ! XMARKBIT (i->up.obj)) \
791 mark_interval_tree (i); \
792 } while (0)
793
794
795 /* The oddity in the call to XUNMARK is necessary because XUNMARK
796 expands to an assignment to its argument, and most C compilers
797 don't support casts on the left operand of `='. */
798
799 #define UNMARK_BALANCE_INTERVALS(i) \
800 do { \
801 if (! NULL_INTERVAL_P (i)) \
802 { \
803 XUNMARK ((i)->up.obj); \
804 (i) = balance_intervals (i); \
805 } \
806 } while (0)
807
808 \f
809 /* Number support. If NO_UNION_TYPE isn't in effect, we
810 can't create number objects in macros. */
811 #ifndef make_number
812 Lisp_Object
813 make_number (n)
814 int n;
815 {
816 Lisp_Object obj;
817 obj.s.val = n;
818 obj.s.type = Lisp_Int;
819 return obj;
820 }
821 #endif
822 \f
823 /***********************************************************************
824 String Allocation
825 ***********************************************************************/
826
827 /* Lisp_Strings are allocated in string_block structures. When a new
828 string_block is allocated, all the Lisp_Strings it contains are
829 added to a free-list stiing_free_list. When a new Lisp_String is
830 needed, it is taken from that list. During the sweep phase of GC,
831 string_blocks that are entirely free are freed, except two which
832 we keep.
833
834 String data is allocated from sblock structures. Strings larger
835 than LARGE_STRING_BYTES, get their own sblock, data for smaller
836 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
837
838 Sblocks consist internally of sdata structures, one for each
839 Lisp_String. The sdata structure points to the Lisp_String it
840 belongs to. The Lisp_String points back to the `u.data' member of
841 its sdata structure.
842
843 When a Lisp_String is freed during GC, it is put back on
844 string_free_list, and its `data' member and its sdata's `string'
845 pointer is set to null. The size of the string is recorded in the
846 `u.nbytes' member of the sdata. So, sdata structures that are no
847 longer used, can be easily recognized, and it's easy to compact the
848 sblocks of small strings which we do in compact_small_strings. */
849
850 /* Size in bytes of an sblock structure used for small strings. This
851 is 8192 minus malloc overhead. */
852
853 #define SBLOCK_SIZE 8188
854
855 /* Strings larger than this are considered large strings. String data
856 for large strings is allocated from individual sblocks. */
857
858 #define LARGE_STRING_BYTES 1024
859
860 /* Structure describing string memory sub-allocated from an sblock.
861 This is where the contents of Lisp strings are stored. */
862
863 struct sdata
864 {
865 /* Back-pointer to the string this sdata belongs to. If null, this
866 structure is free, and the NBYTES member of the union below
867 contains the string's byte size (the same value that STRING_BYTES
868 would return if STRING were non-null). If non-null, STRING_BYTES
869 (STRING) is the size of the data, and DATA contains the string's
870 contents. */
871 struct Lisp_String *string;
872
873 union
874 {
875 /* When STRING in non-null. */
876 unsigned char data[1];
877
878 /* When STRING is null. */
879 EMACS_INT nbytes;
880 } u;
881 };
882
883 /* Structure describing a block of memory which is sub-allocated to
884 obtain string data memory for strings. Blocks for small strings
885 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
886 as large as needed. */
887
888 struct sblock
889 {
890 /* Next in list. */
891 struct sblock *next;
892
893 /* Pointer to the next free sdata block. This points past the end
894 of the sblock if there isn't any space left in this block. */
895 struct sdata *next_free;
896
897 /* Start of data. */
898 struct sdata first_data;
899 };
900
901 /* Number of Lisp strings in a string_block structure. The 1020 is
902 1024 minus malloc overhead. */
903
904 #define STRINGS_IN_STRING_BLOCK \
905 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
906
907 /* Structure describing a block from which Lisp_String structures
908 are allocated. */
909
910 struct string_block
911 {
912 struct string_block *next;
913 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
914 };
915
916 /* Head and tail of the list of sblock structures holding Lisp string
917 data. We always allocate from current_sblock. The NEXT pointers
918 in the sblock structures go from oldest_sblock to current_sblock. */
919
920 static struct sblock *oldest_sblock, *current_sblock;
921
922 /* List of sblocks for large strings. */
923
924 static struct sblock *large_sblocks;
925
926 /* List of string_block structures, and how many there are. */
927
928 static struct string_block *string_blocks;
929 static int n_string_blocks;
930
931 /* Free-list of Lisp_Strings. */
932
933 static struct Lisp_String *string_free_list;
934
935 /* Number of live and free Lisp_Strings. */
936
937 static int total_strings, total_free_strings;
938
939 /* Number of bytes used by live strings. */
940
941 static int total_string_size;
942
943 /* Given a pointer to a Lisp_String S which is on the free-list
944 string_free_list, return a pointer to its successor in the
945 free-list. */
946
947 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
948
949 /* Return a pointer to the sdata structure belonging to Lisp string S.
950 S must be live, i.e. S->data must not be null. S->data is actually
951 a pointer to the `u.data' member of its sdata structure; the
952 structure starts at a constant offset in front of that. */
953
954 #define SDATA_OF_STRING(S) \
955 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
956
957 /* Value is the size of an sdata structure large enough to hold NBYTES
958 bytes of string data. The value returned includes a terminating
959 NUL byte, the size of the sdata structure, and padding. */
960
961 #define SDATA_SIZE(NBYTES) \
962 ((sizeof (struct Lisp_String *) \
963 + (NBYTES) + 1 \
964 + sizeof (EMACS_INT) - 1) \
965 & ~(sizeof (EMACS_INT) - 1))
966
967
968 /* Initialize string allocation. Called from init_alloc_once. */
969
970 void
971 init_strings ()
972 {
973 total_strings = total_free_strings = total_string_size = 0;
974 oldest_sblock = current_sblock = large_sblocks = NULL;
975 string_blocks = NULL;
976 n_string_blocks = 0;
977 string_free_list = NULL;
978 }
979
980
981 /* Return a new Lisp_String. */
982
983 static struct Lisp_String *
984 allocate_string ()
985 {
986 struct Lisp_String *s;
987
988 /* If the free-list is empty, allocate a new string_block, and
989 add all the Lisp_Strings in it to the free-list. */
990 if (string_free_list == NULL)
991 {
992 struct string_block *b;
993 int i;
994
995 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
996 VALIDATE_LISP_STORAGE (b, sizeof *b);
997 bzero (b, sizeof *b);
998 b->next = string_blocks;
999 string_blocks = b;
1000 ++n_string_blocks;
1001
1002 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1003 {
1004 s = b->strings + i;
1005 NEXT_FREE_LISP_STRING (s) = string_free_list;
1006 string_free_list = s;
1007 }
1008
1009 total_free_strings += STRINGS_IN_STRING_BLOCK;
1010 }
1011
1012 /* Pop a Lisp_String off the free-list. */
1013 s = string_free_list;
1014 string_free_list = NEXT_FREE_LISP_STRING (s);
1015
1016 /* Probably not strictly necessary, but play it safe. */
1017 bzero (s, sizeof *s);
1018
1019 --total_free_strings;
1020 ++total_strings;
1021 ++strings_consed;
1022 consing_since_gc += sizeof *s;
1023
1024 return s;
1025 }
1026
1027
1028 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1029 plus a NUL byte at the end. Allocate an sdata structure for S, and
1030 set S->data to its `u.data' member. Store a NUL byte at the end of
1031 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1032 S->data if it was initially non-null. */
1033
1034 void
1035 allocate_string_data (s, nchars, nbytes)
1036 struct Lisp_String *s;
1037 int nchars, nbytes;
1038 {
1039 struct sdata *data, *old_data;
1040 struct sblock *b;
1041 int needed, old_nbytes;
1042
1043 /* Determine the number of bytes needed to store NBYTES bytes
1044 of string data. */
1045 needed = SDATA_SIZE (nbytes);
1046
1047 if (nbytes > LARGE_STRING_BYTES)
1048 {
1049 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1050
1051 #ifdef DOUG_LEA_MALLOC
1052 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1053 because mapped region contents are not preserved in
1054 a dumped Emacs. */
1055 mallopt (M_MMAP_MAX, 0);
1056 #endif
1057
1058 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Back to a reasonable maximum of mmap'ed areas. */
1062 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1063 #endif
1064
1065 b->next_free = &b->first_data;
1066 b->first_data.string = NULL;
1067 b->next = large_sblocks;
1068 large_sblocks = b;
1069 }
1070 else if (current_sblock == NULL
1071 || (((char *) current_sblock + SBLOCK_SIZE
1072 - (char *) current_sblock->next_free)
1073 < needed))
1074 {
1075 /* Not enough room in the current sblock. */
1076 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1077 b->next_free = &b->first_data;
1078 b->first_data.string = NULL;
1079 b->next = NULL;
1080
1081 if (current_sblock)
1082 current_sblock->next = b;
1083 else
1084 oldest_sblock = b;
1085 current_sblock = b;
1086 }
1087 else
1088 b = current_sblock;
1089
1090 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1091 old_nbytes = GC_STRING_BYTES (s);
1092
1093 data = b->next_free;
1094 data->string = s;
1095 s->data = data->u.data;
1096 s->size = nchars;
1097 s->size_byte = nbytes;
1098 s->data[nbytes] = '\0';
1099 b->next_free = (struct sdata *) ((char *) data + needed);
1100
1101 /* If S had already data assigned, mark that as free by setting its
1102 string back-pointer to null, and recording the size of the data
1103 in it. */
1104 if (old_data)
1105 {
1106 old_data->u.nbytes = old_nbytes;
1107 old_data->string = NULL;
1108 }
1109
1110 consing_since_gc += needed;
1111 }
1112
1113
1114 /* Sweep and compact strings. */
1115
1116 static void
1117 sweep_strings ()
1118 {
1119 struct string_block *b, *next;
1120 struct string_block *live_blocks = NULL;
1121
1122 string_free_list = NULL;
1123 total_strings = total_free_strings = 0;
1124 total_string_size = 0;
1125
1126 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1127 for (b = string_blocks; b; b = next)
1128 {
1129 int i, nfree = 0;
1130 struct Lisp_String *free_list_before = string_free_list;
1131
1132 next = b->next;
1133
1134 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1135 {
1136 struct Lisp_String *s = b->strings + i;
1137
1138 if (s->data)
1139 {
1140 /* String was not on free-list before. */
1141 if (STRING_MARKED_P (s))
1142 {
1143 /* String is live; unmark it and its intervals. */
1144 UNMARK_STRING (s);
1145
1146 if (!NULL_INTERVAL_P (s->intervals))
1147 UNMARK_BALANCE_INTERVALS (s->intervals);
1148
1149 ++total_strings;
1150 total_string_size += STRING_BYTES (s);
1151 }
1152 else
1153 {
1154 /* String is dead. Put it on the free-list. */
1155 struct sdata *data = SDATA_OF_STRING (s);
1156
1157 /* Save the size of S in its sdata so that we know
1158 how large that is. Reset the sdata's string
1159 back-pointer so that we know it's free. */
1160 data->u.nbytes = GC_STRING_BYTES (s);
1161 data->string = NULL;
1162
1163 /* Reset the strings's `data' member so that we
1164 know it's free. */
1165 s->data = NULL;
1166
1167 /* Put the string on the free-list. */
1168 NEXT_FREE_LISP_STRING (s) = string_free_list;
1169 string_free_list = s;
1170 ++nfree;
1171 }
1172 }
1173 else
1174 {
1175 /* S was on the free-list before. Put it there again. */
1176 NEXT_FREE_LISP_STRING (s) = string_free_list;
1177 string_free_list = s;
1178 ++nfree;
1179 }
1180 }
1181
1182 /* Free blocks that contain free Lisp_Strings only, except
1183 the first two of them. */
1184 if (nfree == STRINGS_IN_STRING_BLOCK
1185 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1186 {
1187 lisp_free (b);
1188 --n_string_blocks;
1189 string_free_list = free_list_before;
1190 }
1191 else
1192 {
1193 total_free_strings += nfree;
1194 b->next = live_blocks;
1195 live_blocks = b;
1196 }
1197 }
1198
1199 string_blocks = live_blocks;
1200 free_large_strings ();
1201 compact_small_strings ();
1202 }
1203
1204
1205 /* Free dead large strings. */
1206
1207 static void
1208 free_large_strings ()
1209 {
1210 struct sblock *b, *next;
1211 struct sblock *live_blocks = NULL;
1212
1213 for (b = large_sblocks; b; b = next)
1214 {
1215 next = b->next;
1216
1217 if (b->first_data.string == NULL)
1218 lisp_free (b);
1219 else
1220 {
1221 b->next = live_blocks;
1222 live_blocks = b;
1223 }
1224 }
1225
1226 large_sblocks = live_blocks;
1227 }
1228
1229
1230 /* Compact data of small strings. Free sblocks that don't contain
1231 data of live strings after compaction. */
1232
1233 static void
1234 compact_small_strings ()
1235 {
1236 struct sblock *b, *tb, *next;
1237 struct sdata *from, *to, *end, *tb_end;
1238 struct sdata *to_end, *from_end;
1239
1240 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1241 to, and TB_END is the end of TB. */
1242 tb = oldest_sblock;
1243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1244 to = &tb->first_data;
1245
1246 /* Step through the blocks from the oldest to the youngest. We
1247 expect that old blocks will stabilize over time, so that less
1248 copying will happen this way. */
1249 for (b = oldest_sblock; b; b = b->next)
1250 {
1251 end = b->next_free;
1252 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1253
1254 for (from = &b->first_data; from < end; from = from_end)
1255 {
1256 /* Compute the next FROM here because copying below may
1257 overwrite data we need to compute it. */
1258 int nbytes;
1259
1260 if (from->string)
1261 nbytes = GC_STRING_BYTES (from->string);
1262 else
1263 nbytes = from->u.nbytes;
1264
1265 nbytes = SDATA_SIZE (nbytes);
1266 from_end = (struct sdata *) ((char *) from + nbytes);
1267
1268 /* FROM->string non-null means it's alive. Copy its data. */
1269 if (from->string)
1270 {
1271 /* If TB is full, proceed with the next sblock. */
1272 to_end = (struct sdata *) ((char *) to + nbytes);
1273 if (to_end > tb_end)
1274 {
1275 tb->next_free = to;
1276 tb = tb->next;
1277 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1278 to = &tb->first_data;
1279 to_end = (struct sdata *) ((char *) to + nbytes);
1280 }
1281
1282 /* Copy, and update the string's `data' pointer. */
1283 if (from != to)
1284 {
1285 xassert (tb != b || to <= from);
1286 safe_bcopy ((char *) from, (char *) to, nbytes);
1287 to->string->data = to->u.data;
1288 }
1289
1290 /* Advance past the sdata we copied to. */
1291 to = to_end;
1292 }
1293 }
1294 }
1295
1296 /* The rest of the sblocks following TB don't contain live data, so
1297 we can free them. */
1298 for (b = tb->next; b; b = next)
1299 {
1300 next = b->next;
1301 lisp_free (b);
1302 }
1303
1304 tb->next_free = to;
1305 tb->next = NULL;
1306 current_sblock = tb;
1307 }
1308
1309
1310 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1311 "Return a newly created string of length LENGTH, with each element being INIT.\n\
1312 Both LENGTH and INIT must be numbers.")
1313 (length, init)
1314 Lisp_Object length, init;
1315 {
1316 register Lisp_Object val;
1317 register unsigned char *p, *end;
1318 int c, nbytes;
1319
1320 CHECK_NATNUM (length, 0);
1321 CHECK_NUMBER (init, 1);
1322
1323 c = XINT (init);
1324 if (SINGLE_BYTE_CHAR_P (c))
1325 {
1326 nbytes = XINT (length);
1327 val = make_uninit_string (nbytes);
1328 p = XSTRING (val)->data;
1329 end = p + XSTRING (val)->size;
1330 while (p != end)
1331 *p++ = c;
1332 }
1333 else
1334 {
1335 unsigned char str[4];
1336 int len = CHAR_STRING (c, str);
1337
1338 nbytes = len * XINT (length);
1339 val = make_uninit_multibyte_string (XINT (length), nbytes);
1340 p = XSTRING (val)->data;
1341 end = p + nbytes;
1342 while (p != end)
1343 {
1344 bcopy (str, p, len);
1345 p += len;
1346 }
1347 }
1348
1349 *p = 0;
1350 return val;
1351 }
1352
1353
1354 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1355 "Return a new bool-vector of length LENGTH, using INIT for as each element.\n\
1356 LENGTH must be a number. INIT matters only in whether it is t or nil.")
1357 (length, init)
1358 Lisp_Object length, init;
1359 {
1360 register Lisp_Object val;
1361 struct Lisp_Bool_Vector *p;
1362 int real_init, i;
1363 int length_in_chars, length_in_elts, bits_per_value;
1364
1365 CHECK_NATNUM (length, 0);
1366
1367 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1368
1369 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1370 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1371
1372 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1373 slot `size' of the struct Lisp_Bool_Vector. */
1374 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1375 p = XBOOL_VECTOR (val);
1376
1377 /* Get rid of any bits that would cause confusion. */
1378 p->vector_size = 0;
1379 XSETBOOL_VECTOR (val, p);
1380 p->size = XFASTINT (length);
1381
1382 real_init = (NILP (init) ? 0 : -1);
1383 for (i = 0; i < length_in_chars ; i++)
1384 p->data[i] = real_init;
1385
1386 /* Clear the extraneous bits in the last byte. */
1387 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1388 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1389 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1390
1391 return val;
1392 }
1393
1394
1395 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1396 of characters from the contents. This string may be unibyte or
1397 multibyte, depending on the contents. */
1398
1399 Lisp_Object
1400 make_string (contents, nbytes)
1401 char *contents;
1402 int nbytes;
1403 {
1404 register Lisp_Object val;
1405 int nchars, multibyte_nbytes;
1406
1407 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1408 val = make_uninit_multibyte_string (nchars, nbytes);
1409 bcopy (contents, XSTRING (val)->data, nbytes);
1410 if (nbytes == nchars || nbytes != multibyte_nbytes)
1411 /* CONTENTS contains no multibyte sequences or contains an invalid
1412 multibyte sequence. We must make unibyte string. */
1413 SET_STRING_BYTES (XSTRING (val), -1);
1414 return val;
1415 }
1416
1417
1418 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1419
1420 Lisp_Object
1421 make_unibyte_string (contents, length)
1422 char *contents;
1423 int length;
1424 {
1425 register Lisp_Object val;
1426 val = make_uninit_string (length);
1427 bcopy (contents, XSTRING (val)->data, length);
1428 SET_STRING_BYTES (XSTRING (val), -1);
1429 return val;
1430 }
1431
1432
1433 /* Make a multibyte string from NCHARS characters occupying NBYTES
1434 bytes at CONTENTS. */
1435
1436 Lisp_Object
1437 make_multibyte_string (contents, nchars, nbytes)
1438 char *contents;
1439 int nchars, nbytes;
1440 {
1441 register Lisp_Object val;
1442 val = make_uninit_multibyte_string (nchars, nbytes);
1443 bcopy (contents, XSTRING (val)->data, nbytes);
1444 return val;
1445 }
1446
1447
1448 /* Make a string from NCHARS characters occupying NBYTES bytes at
1449 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1450
1451 Lisp_Object
1452 make_string_from_bytes (contents, nchars, nbytes)
1453 char *contents;
1454 int nchars, nbytes;
1455 {
1456 register Lisp_Object val;
1457 val = make_uninit_multibyte_string (nchars, nbytes);
1458 bcopy (contents, XSTRING (val)->data, nbytes);
1459 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1460 SET_STRING_BYTES (XSTRING (val), -1);
1461 return val;
1462 }
1463
1464
1465 /* Make a string from NCHARS characters occupying NBYTES bytes at
1466 CONTENTS. The argument MULTIBYTE controls whether to label the
1467 string as multibyte. */
1468
1469 Lisp_Object
1470 make_specified_string (contents, nchars, nbytes, multibyte)
1471 char *contents;
1472 int nchars, nbytes;
1473 int multibyte;
1474 {
1475 register Lisp_Object val;
1476 val = make_uninit_multibyte_string (nchars, nbytes);
1477 bcopy (contents, XSTRING (val)->data, nbytes);
1478 if (!multibyte)
1479 SET_STRING_BYTES (XSTRING (val), -1);
1480 return val;
1481 }
1482
1483
1484 /* Make a string from the data at STR, treating it as multibyte if the
1485 data warrants. */
1486
1487 Lisp_Object
1488 build_string (str)
1489 char *str;
1490 {
1491 return make_string (str, strlen (str));
1492 }
1493
1494
1495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1496 occupying LENGTH bytes. */
1497
1498 Lisp_Object
1499 make_uninit_string (length)
1500 int length;
1501 {
1502 Lisp_Object val;
1503 val = make_uninit_multibyte_string (length, length);
1504 SET_STRING_BYTES (XSTRING (val), -1);
1505 return val;
1506 }
1507
1508
1509 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1510 which occupy NBYTES bytes. */
1511
1512 Lisp_Object
1513 make_uninit_multibyte_string (nchars, nbytes)
1514 int nchars, nbytes;
1515 {
1516 Lisp_Object string;
1517 struct Lisp_String *s;
1518
1519 if (nchars < 0)
1520 abort ();
1521
1522 s = allocate_string ();
1523 allocate_string_data (s, nchars, nbytes);
1524 XSETSTRING (string, s);
1525 string_chars_consed += nbytes;
1526 return string;
1527 }
1528
1529
1530 \f
1531 /***********************************************************************
1532 Float Allocation
1533 ***********************************************************************/
1534
1535 /* We store float cells inside of float_blocks, allocating a new
1536 float_block with malloc whenever necessary. Float cells reclaimed
1537 by GC are put on a free list to be reallocated before allocating
1538 any new float cells from the latest float_block.
1539
1540 Each float_block is just under 1020 bytes long, since malloc really
1541 allocates in units of powers of two and uses 4 bytes for its own
1542 overhead. */
1543
1544 #define FLOAT_BLOCK_SIZE \
1545 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1546
1547 struct float_block
1548 {
1549 struct float_block *next;
1550 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1551 };
1552
1553 /* Current float_block. */
1554
1555 struct float_block *float_block;
1556
1557 /* Index of first unused Lisp_Float in the current float_block. */
1558
1559 int float_block_index;
1560
1561 /* Total number of float blocks now in use. */
1562
1563 int n_float_blocks;
1564
1565 /* Free-list of Lisp_Floats. */
1566
1567 struct Lisp_Float *float_free_list;
1568
1569
1570 /* Initialze float allocation. */
1571
1572 void
1573 init_float ()
1574 {
1575 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1576 MEM_TYPE_FLOAT);
1577 float_block->next = 0;
1578 bzero ((char *) float_block->floats, sizeof float_block->floats);
1579 float_block_index = 0;
1580 float_free_list = 0;
1581 n_float_blocks = 1;
1582 }
1583
1584
1585 /* Explicitly free a float cell by putting it on the free-list. */
1586
1587 void
1588 free_float (ptr)
1589 struct Lisp_Float *ptr;
1590 {
1591 *(struct Lisp_Float **)&ptr->data = float_free_list;
1592 #if GC_MARK_STACK
1593 ptr->type = Vdead;
1594 #endif
1595 float_free_list = ptr;
1596 }
1597
1598
1599 /* Return a new float object with value FLOAT_VALUE. */
1600
1601 Lisp_Object
1602 make_float (float_value)
1603 double float_value;
1604 {
1605 register Lisp_Object val;
1606
1607 if (float_free_list)
1608 {
1609 /* We use the data field for chaining the free list
1610 so that we won't use the same field that has the mark bit. */
1611 XSETFLOAT (val, float_free_list);
1612 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1613 }
1614 else
1615 {
1616 if (float_block_index == FLOAT_BLOCK_SIZE)
1617 {
1618 register struct float_block *new;
1619
1620 new = (struct float_block *) lisp_malloc (sizeof *new,
1621 MEM_TYPE_FLOAT);
1622 VALIDATE_LISP_STORAGE (new, sizeof *new);
1623 new->next = float_block;
1624 float_block = new;
1625 float_block_index = 0;
1626 n_float_blocks++;
1627 }
1628 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1629 }
1630
1631 XFLOAT_DATA (val) = float_value;
1632 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1633 consing_since_gc += sizeof (struct Lisp_Float);
1634 floats_consed++;
1635 return val;
1636 }
1637
1638
1639 \f
1640 /***********************************************************************
1641 Cons Allocation
1642 ***********************************************************************/
1643
1644 /* We store cons cells inside of cons_blocks, allocating a new
1645 cons_block with malloc whenever necessary. Cons cells reclaimed by
1646 GC are put on a free list to be reallocated before allocating
1647 any new cons cells from the latest cons_block.
1648
1649 Each cons_block is just under 1020 bytes long,
1650 since malloc really allocates in units of powers of two
1651 and uses 4 bytes for its own overhead. */
1652
1653 #define CONS_BLOCK_SIZE \
1654 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
1655
1656 struct cons_block
1657 {
1658 struct cons_block *next;
1659 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
1660 };
1661
1662 /* Current cons_block. */
1663
1664 struct cons_block *cons_block;
1665
1666 /* Index of first unused Lisp_Cons in the current block. */
1667
1668 int cons_block_index;
1669
1670 /* Free-list of Lisp_Cons structures. */
1671
1672 struct Lisp_Cons *cons_free_list;
1673
1674 /* Total number of cons blocks now in use. */
1675
1676 int n_cons_blocks;
1677
1678
1679 /* Initialize cons allocation. */
1680
1681 void
1682 init_cons ()
1683 {
1684 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
1685 MEM_TYPE_CONS);
1686 cons_block->next = 0;
1687 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
1688 cons_block_index = 0;
1689 cons_free_list = 0;
1690 n_cons_blocks = 1;
1691 }
1692
1693
1694 /* Explicitly free a cons cell by putting it on the free-list. */
1695
1696 void
1697 free_cons (ptr)
1698 struct Lisp_Cons *ptr;
1699 {
1700 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
1701 #if GC_MARK_STACK
1702 ptr->car = Vdead;
1703 #endif
1704 cons_free_list = ptr;
1705 }
1706
1707
1708 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
1709 "Create a new cons, give it CAR and CDR as components, and return it.")
1710 (car, cdr)
1711 Lisp_Object car, cdr;
1712 {
1713 register Lisp_Object val;
1714
1715 if (cons_free_list)
1716 {
1717 /* We use the cdr for chaining the free list
1718 so that we won't use the same field that has the mark bit. */
1719 XSETCONS (val, cons_free_list);
1720 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
1721 }
1722 else
1723 {
1724 if (cons_block_index == CONS_BLOCK_SIZE)
1725 {
1726 register struct cons_block *new;
1727 new = (struct cons_block *) lisp_malloc (sizeof *new,
1728 MEM_TYPE_CONS);
1729 VALIDATE_LISP_STORAGE (new, sizeof *new);
1730 new->next = cons_block;
1731 cons_block = new;
1732 cons_block_index = 0;
1733 n_cons_blocks++;
1734 }
1735 XSETCONS (val, &cons_block->conses[cons_block_index++]);
1736 }
1737
1738 XCAR (val) = car;
1739 XCDR (val) = cdr;
1740 consing_since_gc += sizeof (struct Lisp_Cons);
1741 cons_cells_consed++;
1742 return val;
1743 }
1744
1745
1746 /* Make a list of 2, 3, 4 or 5 specified objects. */
1747
1748 Lisp_Object
1749 list2 (arg1, arg2)
1750 Lisp_Object arg1, arg2;
1751 {
1752 return Fcons (arg1, Fcons (arg2, Qnil));
1753 }
1754
1755
1756 Lisp_Object
1757 list3 (arg1, arg2, arg3)
1758 Lisp_Object arg1, arg2, arg3;
1759 {
1760 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
1761 }
1762
1763
1764 Lisp_Object
1765 list4 (arg1, arg2, arg3, arg4)
1766 Lisp_Object arg1, arg2, arg3, arg4;
1767 {
1768 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
1769 }
1770
1771
1772 Lisp_Object
1773 list5 (arg1, arg2, arg3, arg4, arg5)
1774 Lisp_Object arg1, arg2, arg3, arg4, arg5;
1775 {
1776 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
1777 Fcons (arg5, Qnil)))));
1778 }
1779
1780
1781 DEFUN ("list", Flist, Slist, 0, MANY, 0,
1782 "Return a newly created list with specified arguments as elements.\n\
1783 Any number of arguments, even zero arguments, are allowed.")
1784 (nargs, args)
1785 int nargs;
1786 register Lisp_Object *args;
1787 {
1788 register Lisp_Object val;
1789 val = Qnil;
1790
1791 while (nargs > 0)
1792 {
1793 nargs--;
1794 val = Fcons (args[nargs], val);
1795 }
1796 return val;
1797 }
1798
1799
1800 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
1801 "Return a newly created list of length LENGTH, with each element being INIT.")
1802 (length, init)
1803 register Lisp_Object length, init;
1804 {
1805 register Lisp_Object val;
1806 register int size;
1807
1808 CHECK_NATNUM (length, 0);
1809 size = XFASTINT (length);
1810
1811 val = Qnil;
1812 while (size-- > 0)
1813 val = Fcons (init, val);
1814 return val;
1815 }
1816
1817
1818 \f
1819 /***********************************************************************
1820 Vector Allocation
1821 ***********************************************************************/
1822
1823 /* Singly-linked list of all vectors. */
1824
1825 struct Lisp_Vector *all_vectors;
1826
1827 /* Total number of vector-like objects now in use. */
1828
1829 int n_vectors;
1830
1831
1832 /* Value is a pointer to a newly allocated Lisp_Vector structure
1833 with room for LEN Lisp_Objects. */
1834
1835 struct Lisp_Vector *
1836 allocate_vectorlike (len)
1837 EMACS_INT len;
1838 {
1839 struct Lisp_Vector *p;
1840 size_t nbytes;
1841
1842 #ifdef DOUG_LEA_MALLOC
1843 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1844 because mapped region contents are not preserved in
1845 a dumped Emacs. */
1846 mallopt (M_MMAP_MAX, 0);
1847 #endif
1848
1849 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
1850 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTOR);
1851
1852 #ifdef DOUG_LEA_MALLOC
1853 /* Back to a reasonable maximum of mmap'ed areas. */
1854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1855 #endif
1856
1857 VALIDATE_LISP_STORAGE (p, 0);
1858 consing_since_gc += nbytes;
1859 vector_cells_consed += len;
1860
1861 p->next = all_vectors;
1862 all_vectors = p;
1863 ++n_vectors;
1864 return p;
1865 }
1866
1867
1868 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
1869 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
1870 See also the function `vector'.")
1871 (length, init)
1872 register Lisp_Object length, init;
1873 {
1874 Lisp_Object vector;
1875 register EMACS_INT sizei;
1876 register int index;
1877 register struct Lisp_Vector *p;
1878
1879 CHECK_NATNUM (length, 0);
1880 sizei = XFASTINT (length);
1881
1882 p = allocate_vectorlike (sizei);
1883 p->size = sizei;
1884 for (index = 0; index < sizei; index++)
1885 p->contents[index] = init;
1886
1887 XSETVECTOR (vector, p);
1888 return vector;
1889 }
1890
1891
1892 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
1893 "Return a newly created char-table, with purpose PURPOSE.\n\
1894 Each element is initialized to INIT, which defaults to nil.\n\
1895 PURPOSE should be a symbol which has a `char-table-extra-slots' property.\n\
1896 The property's value should be an integer between 0 and 10.")
1897 (purpose, init)
1898 register Lisp_Object purpose, init;
1899 {
1900 Lisp_Object vector;
1901 Lisp_Object n;
1902 CHECK_SYMBOL (purpose, 1);
1903 n = Fget (purpose, Qchar_table_extra_slots);
1904 CHECK_NUMBER (n, 0);
1905 if (XINT (n) < 0 || XINT (n) > 10)
1906 args_out_of_range (n, Qnil);
1907 /* Add 2 to the size for the defalt and parent slots. */
1908 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
1909 init);
1910 XCHAR_TABLE (vector)->top = Qt;
1911 XCHAR_TABLE (vector)->parent = Qnil;
1912 XCHAR_TABLE (vector)->purpose = purpose;
1913 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1914 return vector;
1915 }
1916
1917
1918 /* Return a newly created sub char table with default value DEFALT.
1919 Since a sub char table does not appear as a top level Emacs Lisp
1920 object, we don't need a Lisp interface to make it. */
1921
1922 Lisp_Object
1923 make_sub_char_table (defalt)
1924 Lisp_Object defalt;
1925 {
1926 Lisp_Object vector
1927 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
1928 XCHAR_TABLE (vector)->top = Qnil;
1929 XCHAR_TABLE (vector)->defalt = defalt;
1930 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1931 return vector;
1932 }
1933
1934
1935 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
1936 "Return a newly created vector with specified arguments as elements.\n\
1937 Any number of arguments, even zero arguments, are allowed.")
1938 (nargs, args)
1939 register int nargs;
1940 Lisp_Object *args;
1941 {
1942 register Lisp_Object len, val;
1943 register int index;
1944 register struct Lisp_Vector *p;
1945
1946 XSETFASTINT (len, nargs);
1947 val = Fmake_vector (len, Qnil);
1948 p = XVECTOR (val);
1949 for (index = 0; index < nargs; index++)
1950 p->contents[index] = args[index];
1951 return val;
1952 }
1953
1954
1955 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
1956 "Create a byte-code object with specified arguments as elements.\n\
1957 The arguments should be the arglist, bytecode-string, constant vector,\n\
1958 stack size, (optional) doc string, and (optional) interactive spec.\n\
1959 The first four arguments are required; at most six have any\n\
1960 significance.")
1961 (nargs, args)
1962 register int nargs;
1963 Lisp_Object *args;
1964 {
1965 register Lisp_Object len, val;
1966 register int index;
1967 register struct Lisp_Vector *p;
1968
1969 XSETFASTINT (len, nargs);
1970 if (!NILP (Vpurify_flag))
1971 val = make_pure_vector ((EMACS_INT) nargs);
1972 else
1973 val = Fmake_vector (len, Qnil);
1974
1975 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
1976 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
1977 earlier because they produced a raw 8-bit string for byte-code
1978 and now such a byte-code string is loaded as multibyte while
1979 raw 8-bit characters converted to multibyte form. Thus, now we
1980 must convert them back to the original unibyte form. */
1981 args[1] = Fstring_as_unibyte (args[1]);
1982
1983 p = XVECTOR (val);
1984 for (index = 0; index < nargs; index++)
1985 {
1986 if (!NILP (Vpurify_flag))
1987 args[index] = Fpurecopy (args[index]);
1988 p->contents[index] = args[index];
1989 }
1990 XSETCOMPILED (val, p);
1991 return val;
1992 }
1993
1994
1995 \f
1996 /***********************************************************************
1997 Symbol Allocation
1998 ***********************************************************************/
1999
2000 /* Each symbol_block is just under 1020 bytes long, since malloc
2001 really allocates in units of powers of two and uses 4 bytes for its
2002 own overhead. */
2003
2004 #define SYMBOL_BLOCK_SIZE \
2005 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2006
2007 struct symbol_block
2008 {
2009 struct symbol_block *next;
2010 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2011 };
2012
2013 /* Current symbol block and index of first unused Lisp_Symbol
2014 structure in it. */
2015
2016 struct symbol_block *symbol_block;
2017 int symbol_block_index;
2018
2019 /* List of free symbols. */
2020
2021 struct Lisp_Symbol *symbol_free_list;
2022
2023 /* Total number of symbol blocks now in use. */
2024
2025 int n_symbol_blocks;
2026
2027
2028 /* Initialize symbol allocation. */
2029
2030 void
2031 init_symbol ()
2032 {
2033 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2034 MEM_TYPE_SYMBOL);
2035 symbol_block->next = 0;
2036 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2037 symbol_block_index = 0;
2038 symbol_free_list = 0;
2039 n_symbol_blocks = 1;
2040 }
2041
2042
2043 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2044 "Return a newly allocated uninterned symbol whose name is NAME.\n\
2045 Its value and function definition are void, and its property list is nil.")
2046 (name)
2047 Lisp_Object name;
2048 {
2049 register Lisp_Object val;
2050 register struct Lisp_Symbol *p;
2051
2052 CHECK_STRING (name, 0);
2053
2054 if (symbol_free_list)
2055 {
2056 XSETSYMBOL (val, symbol_free_list);
2057 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2058 }
2059 else
2060 {
2061 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2062 {
2063 struct symbol_block *new;
2064 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2065 MEM_TYPE_SYMBOL);
2066 VALIDATE_LISP_STORAGE (new, sizeof *new);
2067 new->next = symbol_block;
2068 symbol_block = new;
2069 symbol_block_index = 0;
2070 n_symbol_blocks++;
2071 }
2072 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2073 }
2074
2075 p = XSYMBOL (val);
2076 p->name = XSTRING (name);
2077 p->obarray = Qnil;
2078 p->plist = Qnil;
2079 p->value = Qunbound;
2080 p->function = Qunbound;
2081 p->next = 0;
2082 consing_since_gc += sizeof (struct Lisp_Symbol);
2083 symbols_consed++;
2084 return val;
2085 }
2086
2087
2088 \f
2089 /***********************************************************************
2090 Marker (Misc) Allocation
2091 ***********************************************************************/
2092
2093 /* Allocation of markers and other objects that share that structure.
2094 Works like allocation of conses. */
2095
2096 #define MARKER_BLOCK_SIZE \
2097 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2098
2099 struct marker_block
2100 {
2101 struct marker_block *next;
2102 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2103 };
2104
2105 struct marker_block *marker_block;
2106 int marker_block_index;
2107
2108 union Lisp_Misc *marker_free_list;
2109
2110 /* Total number of marker blocks now in use. */
2111
2112 int n_marker_blocks;
2113
2114 void
2115 init_marker ()
2116 {
2117 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2118 MEM_TYPE_MISC);
2119 marker_block->next = 0;
2120 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2121 marker_block_index = 0;
2122 marker_free_list = 0;
2123 n_marker_blocks = 1;
2124 }
2125
2126 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2127
2128 Lisp_Object
2129 allocate_misc ()
2130 {
2131 Lisp_Object val;
2132
2133 if (marker_free_list)
2134 {
2135 XSETMISC (val, marker_free_list);
2136 marker_free_list = marker_free_list->u_free.chain;
2137 }
2138 else
2139 {
2140 if (marker_block_index == MARKER_BLOCK_SIZE)
2141 {
2142 struct marker_block *new;
2143 new = (struct marker_block *) lisp_malloc (sizeof *new,
2144 MEM_TYPE_MISC);
2145 VALIDATE_LISP_STORAGE (new, sizeof *new);
2146 new->next = marker_block;
2147 marker_block = new;
2148 marker_block_index = 0;
2149 n_marker_blocks++;
2150 }
2151 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2152 }
2153
2154 consing_since_gc += sizeof (union Lisp_Misc);
2155 misc_objects_consed++;
2156 return val;
2157 }
2158
2159 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2160 "Return a newly allocated marker which does not point at any place.")
2161 ()
2162 {
2163 register Lisp_Object val;
2164 register struct Lisp_Marker *p;
2165
2166 val = allocate_misc ();
2167 XMISCTYPE (val) = Lisp_Misc_Marker;
2168 p = XMARKER (val);
2169 p->buffer = 0;
2170 p->bytepos = 0;
2171 p->charpos = 0;
2172 p->chain = Qnil;
2173 p->insertion_type = 0;
2174 return val;
2175 }
2176
2177 /* Put MARKER back on the free list after using it temporarily. */
2178
2179 void
2180 free_marker (marker)
2181 Lisp_Object marker;
2182 {
2183 unchain_marker (marker);
2184
2185 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2186 XMISC (marker)->u_free.chain = marker_free_list;
2187 marker_free_list = XMISC (marker);
2188
2189 total_free_markers++;
2190 }
2191
2192 \f
2193 /* Return a newly created vector or string with specified arguments as
2194 elements. If all the arguments are characters that can fit
2195 in a string of events, make a string; otherwise, make a vector.
2196
2197 Any number of arguments, even zero arguments, are allowed. */
2198
2199 Lisp_Object
2200 make_event_array (nargs, args)
2201 register int nargs;
2202 Lisp_Object *args;
2203 {
2204 int i;
2205
2206 for (i = 0; i < nargs; i++)
2207 /* The things that fit in a string
2208 are characters that are in 0...127,
2209 after discarding the meta bit and all the bits above it. */
2210 if (!INTEGERP (args[i])
2211 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2212 return Fvector (nargs, args);
2213
2214 /* Since the loop exited, we know that all the things in it are
2215 characters, so we can make a string. */
2216 {
2217 Lisp_Object result;
2218
2219 result = Fmake_string (make_number (nargs), make_number (0));
2220 for (i = 0; i < nargs; i++)
2221 {
2222 XSTRING (result)->data[i] = XINT (args[i]);
2223 /* Move the meta bit to the right place for a string char. */
2224 if (XINT (args[i]) & CHAR_META)
2225 XSTRING (result)->data[i] |= 0x80;
2226 }
2227
2228 return result;
2229 }
2230 }
2231
2232
2233 \f
2234 /************************************************************************
2235 C Stack Marking
2236 ************************************************************************/
2237
2238 #if GC_MARK_STACK
2239
2240
2241 /* Base address of stack. Set in main. */
2242
2243 Lisp_Object *stack_base;
2244
2245 /* A node in the red-black tree describing allocated memory containing
2246 Lisp data. Each such block is recorded with its start and end
2247 address when it is allocated, and removed from the tree when it
2248 is freed.
2249
2250 A red-black tree is a balanced binary tree with the following
2251 properties:
2252
2253 1. Every node is either red or black.
2254 2. Every leaf is black.
2255 3. If a node is red, then both of its children are black.
2256 4. Every simple path from a node to a descendant leaf contains
2257 the same number of black nodes.
2258 5. The root is always black.
2259
2260 When nodes are inserted into the tree, or deleted from the tree,
2261 the tree is "fixed" so that these properties are always true.
2262
2263 A red-black tree with N internal nodes has height at most 2
2264 log(N+1). Searches, insertions and deletions are done in O(log N).
2265 Please see a text book about data structures for a detailed
2266 description of red-black trees. Any book worth its salt should
2267 describe them. */
2268
2269 struct mem_node
2270 {
2271 struct mem_node *left, *right, *parent;
2272
2273 /* Start and end of allocated region. */
2274 void *start, *end;
2275
2276 /* Node color. */
2277 enum {MEM_BLACK, MEM_RED} color;
2278
2279 /* Memory type. */
2280 enum mem_type type;
2281 };
2282
2283 /* Root of the tree describing allocated Lisp memory. */
2284
2285 static struct mem_node *mem_root;
2286
2287 /* Sentinel node of the tree. */
2288
2289 static struct mem_node mem_z;
2290 #define MEM_NIL &mem_z
2291
2292
2293 /* Initialize this part of alloc.c. */
2294
2295 static void
2296 mem_init ()
2297 {
2298 mem_z.left = mem_z.right = MEM_NIL;
2299 mem_z.parent = NULL;
2300 mem_z.color = MEM_BLACK;
2301 mem_z.start = mem_z.end = NULL;
2302 mem_root = MEM_NIL;
2303 }
2304
2305
2306 /* Value is a pointer to the mem_node containing START. Value is
2307 MEM_NIL if there is no node in the tree containing START. */
2308
2309 static INLINE struct mem_node *
2310 mem_find (start)
2311 void *start;
2312 {
2313 struct mem_node *p;
2314
2315 /* Make the search always successful to speed up the loop below. */
2316 mem_z.start = start;
2317 mem_z.end = (char *) start + 1;
2318
2319 p = mem_root;
2320 while (start < p->start || start >= p->end)
2321 p = start < p->start ? p->left : p->right;
2322 return p;
2323 }
2324
2325
2326 /* Insert a new node into the tree for a block of memory with start
2327 address START, end address END, and type TYPE. Value is a
2328 pointer to the node that was inserted. */
2329
2330 static struct mem_node *
2331 mem_insert (start, end, type)
2332 void *start, *end;
2333 enum mem_type type;
2334 {
2335 struct mem_node *c, *parent, *x;
2336
2337 /* See where in the tree a node for START belongs. In this
2338 particular application, it shouldn't happen that a node is already
2339 present. For debugging purposes, let's check that. */
2340 c = mem_root;
2341 parent = NULL;
2342
2343 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2344
2345 while (c != MEM_NIL)
2346 {
2347 if (start >= c->start && start < c->end)
2348 abort ();
2349 parent = c;
2350 c = start < c->start ? c->left : c->right;
2351 }
2352
2353 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2354
2355 while (c != MEM_NIL)
2356 {
2357 parent = c;
2358 c = start < c->start ? c->left : c->right;
2359 }
2360
2361 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2362
2363 /* Create a new node. */
2364 x = (struct mem_node *) xmalloc (sizeof *x);
2365 x->start = start;
2366 x->end = end;
2367 x->type = type;
2368 x->parent = parent;
2369 x->left = x->right = MEM_NIL;
2370 x->color = MEM_RED;
2371
2372 /* Insert it as child of PARENT or install it as root. */
2373 if (parent)
2374 {
2375 if (start < parent->start)
2376 parent->left = x;
2377 else
2378 parent->right = x;
2379 }
2380 else
2381 mem_root = x;
2382
2383 /* Re-establish red-black tree properties. */
2384 mem_insert_fixup (x);
2385 return x;
2386 }
2387
2388
2389 /* Re-establish the red-black properties of the tree, and thereby
2390 balance the tree, after node X has been inserted; X is always red. */
2391
2392 static void
2393 mem_insert_fixup (x)
2394 struct mem_node *x;
2395 {
2396 while (x != mem_root && x->parent->color == MEM_RED)
2397 {
2398 /* X is red and its parent is red. This is a violation of
2399 red-black tree property #3. */
2400
2401 if (x->parent == x->parent->parent->left)
2402 {
2403 /* We're on the left side of our grandparent, and Y is our
2404 "uncle". */
2405 struct mem_node *y = x->parent->parent->right;
2406
2407 if (y->color == MEM_RED)
2408 {
2409 /* Uncle and parent are red but should be black because
2410 X is red. Change the colors accordingly and proceed
2411 with the grandparent. */
2412 x->parent->color = MEM_BLACK;
2413 y->color = MEM_BLACK;
2414 x->parent->parent->color = MEM_RED;
2415 x = x->parent->parent;
2416 }
2417 else
2418 {
2419 /* Parent and uncle have different colors; parent is
2420 red, uncle is black. */
2421 if (x == x->parent->right)
2422 {
2423 x = x->parent;
2424 mem_rotate_left (x);
2425 }
2426
2427 x->parent->color = MEM_BLACK;
2428 x->parent->parent->color = MEM_RED;
2429 mem_rotate_right (x->parent->parent);
2430 }
2431 }
2432 else
2433 {
2434 /* This is the symmetrical case of above. */
2435 struct mem_node *y = x->parent->parent->left;
2436
2437 if (y->color == MEM_RED)
2438 {
2439 x->parent->color = MEM_BLACK;
2440 y->color = MEM_BLACK;
2441 x->parent->parent->color = MEM_RED;
2442 x = x->parent->parent;
2443 }
2444 else
2445 {
2446 if (x == x->parent->left)
2447 {
2448 x = x->parent;
2449 mem_rotate_right (x);
2450 }
2451
2452 x->parent->color = MEM_BLACK;
2453 x->parent->parent->color = MEM_RED;
2454 mem_rotate_left (x->parent->parent);
2455 }
2456 }
2457 }
2458
2459 /* The root may have been changed to red due to the algorithm. Set
2460 it to black so that property #5 is satisfied. */
2461 mem_root->color = MEM_BLACK;
2462 }
2463
2464
2465 /* (x) (y)
2466 / \ / \
2467 a (y) ===> (x) c
2468 / \ / \
2469 b c a b */
2470
2471 static void
2472 mem_rotate_left (x)
2473 struct mem_node *x;
2474 {
2475 struct mem_node *y;
2476
2477 /* Turn y's left sub-tree into x's right sub-tree. */
2478 y = x->right;
2479 x->right = y->left;
2480 if (y->left != MEM_NIL)
2481 y->left->parent = x;
2482
2483 /* Y's parent was x's parent. */
2484 if (y != MEM_NIL)
2485 y->parent = x->parent;
2486
2487 /* Get the parent to point to y instead of x. */
2488 if (x->parent)
2489 {
2490 if (x == x->parent->left)
2491 x->parent->left = y;
2492 else
2493 x->parent->right = y;
2494 }
2495 else
2496 mem_root = y;
2497
2498 /* Put x on y's left. */
2499 y->left = x;
2500 if (x != MEM_NIL)
2501 x->parent = y;
2502 }
2503
2504
2505 /* (x) (Y)
2506 / \ / \
2507 (y) c ===> a (x)
2508 / \ / \
2509 a b b c */
2510
2511 static void
2512 mem_rotate_right (x)
2513 struct mem_node *x;
2514 {
2515 struct mem_node *y = x->left;
2516
2517 x->left = y->right;
2518 if (y->right != MEM_NIL)
2519 y->right->parent = x;
2520
2521 if (y != MEM_NIL)
2522 y->parent = x->parent;
2523 if (x->parent)
2524 {
2525 if (x == x->parent->right)
2526 x->parent->right = y;
2527 else
2528 x->parent->left = y;
2529 }
2530 else
2531 mem_root = y;
2532
2533 y->right = x;
2534 if (x != MEM_NIL)
2535 x->parent = y;
2536 }
2537
2538
2539 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2540
2541 static void
2542 mem_delete (z)
2543 struct mem_node *z;
2544 {
2545 struct mem_node *x, *y;
2546
2547 if (!z || z == MEM_NIL)
2548 return;
2549
2550 if (z->left == MEM_NIL || z->right == MEM_NIL)
2551 y = z;
2552 else
2553 {
2554 y = z->right;
2555 while (y->left != MEM_NIL)
2556 y = y->left;
2557 }
2558
2559 if (y->left != MEM_NIL)
2560 x = y->left;
2561 else
2562 x = y->right;
2563
2564 x->parent = y->parent;
2565 if (y->parent)
2566 {
2567 if (y == y->parent->left)
2568 y->parent->left = x;
2569 else
2570 y->parent->right = x;
2571 }
2572 else
2573 mem_root = x;
2574
2575 if (y != z)
2576 {
2577 z->start = y->start;
2578 z->end = y->end;
2579 z->type = y->type;
2580 }
2581
2582 if (y->color == MEM_BLACK)
2583 mem_delete_fixup (x);
2584 xfree (y);
2585 }
2586
2587
2588 /* Re-establish the red-black properties of the tree, after a
2589 deletion. */
2590
2591 static void
2592 mem_delete_fixup (x)
2593 struct mem_node *x;
2594 {
2595 while (x != mem_root && x->color == MEM_BLACK)
2596 {
2597 if (x == x->parent->left)
2598 {
2599 struct mem_node *w = x->parent->right;
2600
2601 if (w->color == MEM_RED)
2602 {
2603 w->color = MEM_BLACK;
2604 x->parent->color = MEM_RED;
2605 mem_rotate_left (x->parent);
2606 w = x->parent->right;
2607 }
2608
2609 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
2610 {
2611 w->color = MEM_RED;
2612 x = x->parent;
2613 }
2614 else
2615 {
2616 if (w->right->color == MEM_BLACK)
2617 {
2618 w->left->color = MEM_BLACK;
2619 w->color = MEM_RED;
2620 mem_rotate_right (w);
2621 w = x->parent->right;
2622 }
2623 w->color = x->parent->color;
2624 x->parent->color = MEM_BLACK;
2625 w->right->color = MEM_BLACK;
2626 mem_rotate_left (x->parent);
2627 x = mem_root;
2628 }
2629 }
2630 else
2631 {
2632 struct mem_node *w = x->parent->left;
2633
2634 if (w->color == MEM_RED)
2635 {
2636 w->color = MEM_BLACK;
2637 x->parent->color = MEM_RED;
2638 mem_rotate_right (x->parent);
2639 w = x->parent->left;
2640 }
2641
2642 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
2643 {
2644 w->color = MEM_RED;
2645 x = x->parent;
2646 }
2647 else
2648 {
2649 if (w->left->color == MEM_BLACK)
2650 {
2651 w->right->color = MEM_BLACK;
2652 w->color = MEM_RED;
2653 mem_rotate_left (w);
2654 w = x->parent->left;
2655 }
2656
2657 w->color = x->parent->color;
2658 x->parent->color = MEM_BLACK;
2659 w->left->color = MEM_BLACK;
2660 mem_rotate_right (x->parent);
2661 x = mem_root;
2662 }
2663 }
2664 }
2665
2666 x->color = MEM_BLACK;
2667 }
2668
2669
2670 /* Value is non-zero if P is a pointer to a live Lisp string on
2671 the heap. M is a pointer to the mem_block for P. */
2672
2673 static INLINE int
2674 live_string_p (m, p)
2675 struct mem_node *m;
2676 void *p;
2677 {
2678 if (m->type == MEM_TYPE_STRING)
2679 {
2680 struct string_block *b = (struct string_block *) m->start;
2681 int offset = (char *) p - (char *) &b->strings[0];
2682
2683 /* P must point to the start of a Lisp_String structure, and it
2684 must not be on the free-list. */
2685 return (offset % sizeof b->strings[0] == 0
2686 && ((struct Lisp_String *) p)->data != NULL);
2687 }
2688 else
2689 return 0;
2690 }
2691
2692
2693 /* Value is non-zero if P is a pointer to a live Lisp cons on
2694 the heap. M is a pointer to the mem_block for P. */
2695
2696 static INLINE int
2697 live_cons_p (m, p)
2698 struct mem_node *m;
2699 void *p;
2700 {
2701 if (m->type == MEM_TYPE_CONS)
2702 {
2703 struct cons_block *b = (struct cons_block *) m->start;
2704 int offset = (char *) p - (char *) &b->conses[0];
2705
2706 /* P must point to the start of a Lisp_Cons, not be
2707 one of the unused cells in the current cons block,
2708 and not be on the free-list. */
2709 return (offset % sizeof b->conses[0] == 0
2710 && (b != cons_block
2711 || offset / sizeof b->conses[0] < cons_block_index)
2712 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
2713 }
2714 else
2715 return 0;
2716 }
2717
2718
2719 /* Value is non-zero if P is a pointer to a live Lisp symbol on
2720 the heap. M is a pointer to the mem_block for P. */
2721
2722 static INLINE int
2723 live_symbol_p (m, p)
2724 struct mem_node *m;
2725 void *p;
2726 {
2727 if (m->type == MEM_TYPE_SYMBOL)
2728 {
2729 struct symbol_block *b = (struct symbol_block *) m->start;
2730 int offset = (char *) p - (char *) &b->symbols[0];
2731
2732 /* P must point to the start of a Lisp_Symbol, not be
2733 one of the unused cells in the current symbol block,
2734 and not be on the free-list. */
2735 return (offset % sizeof b->symbols[0] == 0
2736 && (b != symbol_block
2737 || offset / sizeof b->symbols[0] < symbol_block_index)
2738 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
2739 }
2740 else
2741 return 0;
2742 }
2743
2744
2745 /* Value is non-zero if P is a pointer to a live Lisp float on
2746 the heap. M is a pointer to the mem_block for P. */
2747
2748 static INLINE int
2749 live_float_p (m, p)
2750 struct mem_node *m;
2751 void *p;
2752 {
2753 if (m->type == MEM_TYPE_FLOAT)
2754 {
2755 struct float_block *b = (struct float_block *) m->start;
2756 int offset = (char *) p - (char *) &b->floats[0];
2757
2758 /* P must point to the start of a Lisp_Float, not be
2759 one of the unused cells in the current float block,
2760 and not be on the free-list. */
2761 return (offset % sizeof b->floats[0] == 0
2762 && (b != float_block
2763 || offset / sizeof b->floats[0] < float_block_index)
2764 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
2765 }
2766 else
2767 return 0;
2768 }
2769
2770
2771 /* Value is non-zero if P is a pointer to a live Lisp Misc on
2772 the heap. M is a pointer to the mem_block for P. */
2773
2774 static INLINE int
2775 live_misc_p (m, p)
2776 struct mem_node *m;
2777 void *p;
2778 {
2779 if (m->type == MEM_TYPE_MISC)
2780 {
2781 struct marker_block *b = (struct marker_block *) m->start;
2782 int offset = (char *) p - (char *) &b->markers[0];
2783
2784 /* P must point to the start of a Lisp_Misc, not be
2785 one of the unused cells in the current misc block,
2786 and not be on the free-list. */
2787 return (offset % sizeof b->markers[0] == 0
2788 && (b != marker_block
2789 || offset / sizeof b->markers[0] < marker_block_index)
2790 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
2791 }
2792 else
2793 return 0;
2794 }
2795
2796
2797 /* Value is non-zero if P is a pointer to a live vector-like object.
2798 M is a pointer to the mem_block for P. */
2799
2800 static INLINE int
2801 live_vector_p (m, p)
2802 struct mem_node *m;
2803 void *p;
2804 {
2805 return m->type == MEM_TYPE_VECTOR && p == m->start;
2806 }
2807
2808
2809 /* Value is non-zero of P is a pointer to a live buffer. M is a
2810 pointer to the mem_block for P. */
2811
2812 static INLINE int
2813 live_buffer_p (m, p)
2814 struct mem_node *m;
2815 void *p;
2816 {
2817 /* P must point to the start of the block, and the buffer
2818 must not have been killed. */
2819 return (m->type == MEM_TYPE_BUFFER
2820 && p == m->start
2821 && !NILP (((struct buffer *) p)->name));
2822 }
2823
2824
2825 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2826
2827 /* Array of objects that are kept alive because the C stack contains
2828 a pattern that looks like a reference to them . */
2829
2830 #define MAX_ZOMBIES 10
2831 static Lisp_Object zombies[MAX_ZOMBIES];
2832
2833 /* Number of zombie objects. */
2834
2835 static int nzombies;
2836
2837 /* Number of garbage collections. */
2838
2839 static int ngcs;
2840
2841 /* Average percentage of zombies per collection. */
2842
2843 static double avg_zombies;
2844
2845 /* Max. number of live and zombie objects. */
2846
2847 static int max_live, max_zombies;
2848
2849 /* Average number of live objects per GC. */
2850
2851 static double avg_live;
2852
2853 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
2854 "Show information about live and zombie objects.")
2855 ()
2856 {
2857 Lisp_Object args[7];
2858 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
2859 args[1] = make_number (ngcs);
2860 args[2] = make_float (avg_live);
2861 args[3] = make_float (avg_zombies);
2862 args[4] = make_float (avg_zombies / avg_live / 100);
2863 args[5] = make_number (max_live);
2864 args[6] = make_number (max_zombies);
2865 return Fmessage (7, args);
2866 }
2867
2868 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
2869
2870
2871 /* Mark OBJ if we can prove it's a Lisp_Object. */
2872
2873 static INLINE void
2874 mark_maybe_object (obj)
2875 Lisp_Object obj;
2876 {
2877 void *po = (void *) XPNTR (obj);
2878 struct mem_node *m = mem_find (po);
2879
2880 if (m != MEM_NIL)
2881 {
2882 int mark_p = 0;
2883
2884 switch (XGCTYPE (obj))
2885 {
2886 case Lisp_String:
2887 mark_p = (live_string_p (m, po)
2888 && !STRING_MARKED_P ((struct Lisp_String *) po));
2889 break;
2890
2891 case Lisp_Cons:
2892 mark_p = (live_cons_p (m, po)
2893 && !XMARKBIT (XCONS (obj)->car));
2894 break;
2895
2896 case Lisp_Symbol:
2897 mark_p = (live_symbol_p (m, po)
2898 && !XMARKBIT (XSYMBOL (obj)->plist));
2899 break;
2900
2901 case Lisp_Float:
2902 mark_p = (live_float_p (m, po)
2903 && !XMARKBIT (XFLOAT (obj)->type));
2904 break;
2905
2906 case Lisp_Vectorlike:
2907 /* Note: can't check GC_BUFFERP before we know it's a
2908 buffer because checking that dereferences the pointer
2909 PO which might point anywhere. */
2910 if (live_vector_p (m, po))
2911 mark_p = (!GC_SUBRP (obj)
2912 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
2913 else if (live_buffer_p (m, po))
2914 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
2915 break;
2916
2917 case Lisp_Misc:
2918 if (live_misc_p (m, po))
2919 {
2920 switch (XMISCTYPE (obj))
2921 {
2922 case Lisp_Misc_Marker:
2923 mark_p = !XMARKBIT (XMARKER (obj)->chain);
2924 break;
2925
2926 case Lisp_Misc_Buffer_Local_Value:
2927 case Lisp_Misc_Some_Buffer_Local_Value:
2928 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
2929 break;
2930
2931 case Lisp_Misc_Overlay:
2932 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
2933 break;
2934 }
2935 }
2936 break;
2937
2938 case Lisp_Int:
2939 break;
2940 }
2941
2942 if (mark_p)
2943 {
2944 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2945 if (nzombies < MAX_ZOMBIES)
2946 zombies[nzombies] = *p;
2947 ++nzombies;
2948 #endif
2949 mark_object (&obj);
2950 }
2951 }
2952 }
2953
2954 /* Mark Lisp objects in the address range START..END. */
2955
2956 static void
2957 mark_memory (start, end)
2958 void *start, *end;
2959 {
2960 Lisp_Object *p;
2961
2962 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2963 nzombies = 0;
2964 #endif
2965
2966 /* Make START the pointer to the start of the memory region,
2967 if it isn't already. */
2968 if (end < start)
2969 {
2970 void *tem = start;
2971 start = end;
2972 end = tem;
2973 }
2974
2975 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
2976 mark_maybe_object (*p);
2977 }
2978
2979
2980 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
2981
2982 static int setjmp_tested_p, longjmps_done;
2983
2984 #define SETJMP_WILL_LIKELY_WORK "\
2985 \n\
2986 Emacs garbage collector has been changed to use conservative stack\n\
2987 marking. Emacs has determined that the method it uses to do the\n\
2988 marking will likely work on your system, but this isn't sure.\n\
2989 \n\
2990 If you are a system-programmer, or can get the help of a local wizard\n\
2991 who is, please take a look at the function mark_stack in alloc.c, and\n\
2992 verify that the methods used are appropriate for your system.\n\
2993 \n\
2994 Please mail the result to <gerd@gnu.org>.\n\
2995 "
2996
2997 #define SETJMP_WILL_NOT_WORK "\
2998 \n\
2999 Emacs garbage collector has been changed to use conservative stack\n\
3000 marking. Emacs has determined that the default method it uses to do the\n\
3001 marking will not work on your system. We will need a system-dependent\n\
3002 solution for your system.\n\
3003 \n\
3004 Please take a look at the function mark_stack in alloc.c, and\n\
3005 try to find a way to make it work on your system.\n\
3006 Please mail the result to <gerd@gnu.org>.\n\
3007 "
3008
3009
3010 /* Perform a quick check if it looks like setjmp saves registers in a
3011 jmp_buf. Print a message to stderr saying so. When this test
3012 succeeds, this is _not_ a proof that setjmp is sufficient for
3013 conservative stack marking. Only the sources or a disassembly
3014 can prove that. */
3015
3016 static void
3017 test_setjmp ()
3018 {
3019 char buf[10];
3020 register int x;
3021 jmp_buf jbuf;
3022 int result = 0;
3023
3024 /* Arrange for X to be put in a register. */
3025 sprintf (buf, "1");
3026 x = strlen (buf);
3027 x = 2 * x - 1;
3028
3029 setjmp (jbuf);
3030 if (longjmps_done == 1)
3031 {
3032 /* Came here after the longjmp at the end of the function.
3033
3034 If x == 1, the longjmp has restored the register to its
3035 value before the setjmp, and we can hope that setjmp
3036 saves all such registers in the jmp_buf, although that
3037 isn't sure.
3038
3039 For other values of X, either something really strange is
3040 taking place, or the setjmp just didn't save the register. */
3041
3042 if (x == 1)
3043 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3044 else
3045 {
3046 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3047 exit (1);
3048 }
3049 }
3050
3051 ++longjmps_done;
3052 x = 2;
3053 if (longjmps_done == 1)
3054 longjmp (jbuf, 1);
3055 }
3056
3057 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3058
3059
3060 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3061
3062 /* Abort if anything GCPRO'd doesn't survive the GC. */
3063
3064 static void
3065 check_gcpros ()
3066 {
3067 struct gcpro *p;
3068 int i;
3069
3070 for (p = gcprolist; p; p = p->next)
3071 for (i = 0; i < p->nvars; ++i)
3072 if (!survives_gc_p (p->var[i]))
3073 abort ();
3074 }
3075
3076 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3077
3078 static void
3079 dump_zombies ()
3080 {
3081 int i;
3082
3083 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3084 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3085 {
3086 fprintf (stderr, " %d = ", i);
3087 debug_print (zombies[i]);
3088 }
3089 }
3090
3091 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3092
3093
3094 /* Mark live Lisp objects on the C stack.
3095
3096 There are several system-dependent problems to consider when
3097 porting this to new architectures:
3098
3099 Processor Registers
3100
3101 We have to mark Lisp objects in CPU registers that can hold local
3102 variables or are used to pass parameters.
3103
3104 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3105 something that either saves relevant registers on the stack, or
3106 calls mark_maybe_object passing it each register's contents.
3107
3108 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3109 implementation assumes that calling setjmp saves registers we need
3110 to see in a jmp_buf which itself lies on the stack. This doesn't
3111 have to be true! It must be verified for each system, possibly
3112 by taking a look at the source code of setjmp.
3113
3114 Stack Layout
3115
3116 Architectures differ in the way their processor stack is organized.
3117 For example, the stack might look like this
3118
3119 +----------------+
3120 | Lisp_Object | size = 4
3121 +----------------+
3122 | something else | size = 2
3123 +----------------+
3124 | Lisp_Object | size = 4
3125 +----------------+
3126 | ... |
3127
3128 In such a case, not every Lisp_Object will be aligned equally. To
3129 find all Lisp_Object on the stack it won't be sufficient to walk
3130 the stack in steps of 4 bytes. Instead, two passes will be
3131 necessary, one starting at the start of the stack, and a second
3132 pass starting at the start of the stack + 2. Likewise, if the
3133 minimal alignment of Lisp_Objects on the stack is 1, four passes
3134 would be necessary, each one starting with one byte more offset
3135 from the stack start.
3136
3137 The current code assumes by default that Lisp_Objects are aligned
3138 equally on the stack. */
3139
3140 static void
3141 mark_stack ()
3142 {
3143 jmp_buf j;
3144 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3145 void *end;
3146
3147 /* This trick flushes the register windows so that all the state of
3148 the process is contained in the stack. */
3149 #ifdef sparc
3150 asm ("ta 3");
3151 #endif
3152
3153 /* Save registers that we need to see on the stack. We need to see
3154 registers used to hold register variables and registers used to
3155 pass parameters. */
3156 #ifdef GC_SAVE_REGISTERS_ON_STACK
3157 GC_SAVE_REGISTERS_ON_STACK (end);
3158 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3159
3160 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3161 setjmp will definitely work, test it
3162 and print a message with the result
3163 of the test. */
3164 if (!setjmp_tested_p)
3165 {
3166 setjmp_tested_p = 1;
3167 test_setjmp ();
3168 }
3169 #endif /* GC_SETJMP_WORKS */
3170
3171 setjmp (j);
3172 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3173 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3174
3175 /* This assumes that the stack is a contiguous region in memory. If
3176 that's not the case, something has to be done here to iterate
3177 over the stack segments. */
3178 #if GC_LISP_OBJECT_ALIGNMENT == 1
3179 mark_memory (stack_base, end);
3180 mark_memory ((char *) stack_base + 1, end);
3181 mark_memory ((char *) stack_base + 2, end);
3182 mark_memory ((char *) stack_base + 3, end);
3183 #elif GC_LISP_OBJECT_ALIGNMENT == 2
3184 mark_memory (stack_base, end);
3185 mark_memory ((char *) stack_base + 2, end);
3186 #else
3187 mark_memory (stack_base, end);
3188 #endif
3189
3190 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3191 check_gcpros ();
3192 #endif
3193 }
3194
3195
3196 #endif /* GC_MARK_STACK != 0 */
3197
3198
3199 \f
3200 /***********************************************************************
3201 Pure Storage Management
3202 ***********************************************************************/
3203
3204 /* Return a string allocated in pure space. DATA is a buffer holding
3205 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3206 non-zero means make the result string multibyte.
3207
3208 Must get an error if pure storage is full, since if it cannot hold
3209 a large string it may be able to hold conses that point to that
3210 string; then the string is not protected from gc. */
3211
3212 Lisp_Object
3213 make_pure_string (data, nchars, nbytes, multibyte)
3214 char *data;
3215 int nchars, nbytes;
3216 int multibyte;
3217 {
3218 Lisp_Object string;
3219 struct Lisp_String *s;
3220 int string_size, data_size;
3221
3222 #define PAD(SZ) (((SZ) + sizeof (EMACS_INT) - 1) & ~(sizeof (EMACS_INT) - 1))
3223
3224 string_size = PAD (sizeof (struct Lisp_String));
3225 data_size = PAD (nbytes + 1);
3226
3227 #undef PAD
3228
3229 if (pureptr + string_size + data_size > PURESIZE)
3230 error ("Pure Lisp storage exhausted");
3231
3232 s = (struct Lisp_String *) (PUREBEG + pureptr);
3233 pureptr += string_size;
3234 s->data = (unsigned char *) (PUREBEG + pureptr);
3235 pureptr += data_size;
3236
3237 s->size = nchars;
3238 s->size_byte = multibyte ? nbytes : -1;
3239 bcopy (data, s->data, nbytes);
3240 s->data[nbytes] = '\0';
3241 s->intervals = NULL_INTERVAL;
3242
3243 XSETSTRING (string, s);
3244 return string;
3245 }
3246
3247
3248 /* Return a cons allocated from pure space. Give it pure copies
3249 of CAR as car and CDR as cdr. */
3250
3251 Lisp_Object
3252 pure_cons (car, cdr)
3253 Lisp_Object car, cdr;
3254 {
3255 register Lisp_Object new;
3256
3257 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
3258 error ("Pure Lisp storage exhausted");
3259 XSETCONS (new, PUREBEG + pureptr);
3260 pureptr += sizeof (struct Lisp_Cons);
3261 XCAR (new) = Fpurecopy (car);
3262 XCDR (new) = Fpurecopy (cdr);
3263 return new;
3264 }
3265
3266
3267 /* Value is a float object with value NUM allocated from pure space. */
3268
3269 Lisp_Object
3270 make_pure_float (num)
3271 double num;
3272 {
3273 register Lisp_Object new;
3274
3275 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
3276 (double) boundary. Some architectures (like the sparc) require
3277 this, and I suspect that floats are rare enough that it's no
3278 tragedy for those that do. */
3279 {
3280 size_t alignment;
3281 char *p = PUREBEG + pureptr;
3282
3283 #ifdef __GNUC__
3284 #if __GNUC__ >= 2
3285 alignment = __alignof (struct Lisp_Float);
3286 #else
3287 alignment = sizeof (struct Lisp_Float);
3288 #endif
3289 #else
3290 alignment = sizeof (struct Lisp_Float);
3291 #endif
3292 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
3293 pureptr = p - PUREBEG;
3294 }
3295
3296 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
3297 error ("Pure Lisp storage exhausted");
3298 XSETFLOAT (new, PUREBEG + pureptr);
3299 pureptr += sizeof (struct Lisp_Float);
3300 XFLOAT_DATA (new) = num;
3301 XSETFASTINT (XFLOAT (new)->type, 0); /* bug chasing -wsr */
3302 return new;
3303 }
3304
3305
3306 /* Return a vector with room for LEN Lisp_Objects allocated from
3307 pure space. */
3308
3309 Lisp_Object
3310 make_pure_vector (len)
3311 EMACS_INT len;
3312 {
3313 register Lisp_Object new;
3314 register EMACS_INT size = (sizeof (struct Lisp_Vector)
3315 + (len - 1) * sizeof (Lisp_Object));
3316
3317 if (pureptr + size > PURESIZE)
3318 error ("Pure Lisp storage exhausted");
3319
3320 XSETVECTOR (new, PUREBEG + pureptr);
3321 pureptr += size;
3322 XVECTOR (new)->size = len;
3323 return new;
3324 }
3325
3326
3327 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3328 "Make a copy of OBJECT in pure storage.\n\
3329 Recursively copies contents of vectors and cons cells.\n\
3330 Does not copy symbols. Copies strings without text properties.")
3331 (obj)
3332 register Lisp_Object obj;
3333 {
3334 if (NILP (Vpurify_flag))
3335 return obj;
3336
3337 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
3338 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
3339 return obj;
3340
3341 if (CONSP (obj))
3342 return pure_cons (XCAR (obj), XCDR (obj));
3343 else if (FLOATP (obj))
3344 return make_pure_float (XFLOAT_DATA (obj));
3345 else if (STRINGP (obj))
3346 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
3347 STRING_BYTES (XSTRING (obj)),
3348 STRING_MULTIBYTE (obj));
3349 else if (COMPILEDP (obj) || VECTORP (obj))
3350 {
3351 register struct Lisp_Vector *vec;
3352 register int i, size;
3353
3354 size = XVECTOR (obj)->size;
3355 if (size & PSEUDOVECTOR_FLAG)
3356 size &= PSEUDOVECTOR_SIZE_MASK;
3357 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3358 for (i = 0; i < size; i++)
3359 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3360 if (COMPILEDP (obj))
3361 XSETCOMPILED (obj, vec);
3362 else
3363 XSETVECTOR (obj, vec);
3364 return obj;
3365 }
3366 else if (MARKERP (obj))
3367 error ("Attempt to copy a marker to pure storage");
3368
3369 return obj;
3370 }
3371
3372
3373 \f
3374 /***********************************************************************
3375 Protection from GC
3376 ***********************************************************************/
3377
3378 /* Recording what needs to be marked for gc. */
3379
3380 struct gcpro *gcprolist;
3381
3382 /* Addresses of staticpro'd variables. */
3383
3384 #define NSTATICS 1024
3385 Lisp_Object *staticvec[NSTATICS] = {0};
3386
3387 /* Index of next unused slot in staticvec. */
3388
3389 int staticidx = 0;
3390
3391
3392 /* Put an entry in staticvec, pointing at the variable with address
3393 VARADDRESS. */
3394
3395 void
3396 staticpro (varaddress)
3397 Lisp_Object *varaddress;
3398 {
3399 staticvec[staticidx++] = varaddress;
3400 if (staticidx >= NSTATICS)
3401 abort ();
3402 }
3403
3404 struct catchtag
3405 {
3406 Lisp_Object tag;
3407 Lisp_Object val;
3408 struct catchtag *next;
3409 };
3410
3411 struct backtrace
3412 {
3413 struct backtrace *next;
3414 Lisp_Object *function;
3415 Lisp_Object *args; /* Points to vector of args. */
3416 int nargs; /* Length of vector. */
3417 /* If nargs is UNEVALLED, args points to slot holding list of
3418 unevalled args. */
3419 char evalargs;
3420 };
3421
3422
3423 \f
3424 /***********************************************************************
3425 Protection from GC
3426 ***********************************************************************/
3427
3428 /* Temporarily prevent garbage collection. */
3429
3430 int
3431 inhibit_garbage_collection ()
3432 {
3433 int count = specpdl_ptr - specpdl;
3434 Lisp_Object number;
3435 int nbits = min (VALBITS, BITS_PER_INT);
3436
3437 XSETINT (number, ((EMACS_INT) 1 << (nbits - 1)) - 1);
3438
3439 specbind (Qgc_cons_threshold, number);
3440
3441 return count;
3442 }
3443
3444
3445 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
3446 "Reclaim storage for Lisp objects no longer needed.\n\
3447 Returns info on amount of space in use:\n\
3448 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
3449 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
3450 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS\n\
3451 (USED-STRINGS . FREE-STRINGS))\n\
3452 Garbage collection happens automatically if you cons more than\n\
3453 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
3454 ()
3455 {
3456 register struct gcpro *tail;
3457 register struct specbinding *bind;
3458 struct catchtag *catch;
3459 struct handler *handler;
3460 register struct backtrace *backlist;
3461 char stack_top_variable;
3462 register int i;
3463 int message_p;
3464 Lisp_Object total[7];
3465
3466 /* In case user calls debug_print during GC,
3467 don't let that cause a recursive GC. */
3468 consing_since_gc = 0;
3469
3470 /* Save what's currently displayed in the echo area. */
3471 message_p = push_message ();
3472
3473 /* Save a copy of the contents of the stack, for debugging. */
3474 #if MAX_SAVE_STACK > 0
3475 if (NILP (Vpurify_flag))
3476 {
3477 i = &stack_top_variable - stack_bottom;
3478 if (i < 0) i = -i;
3479 if (i < MAX_SAVE_STACK)
3480 {
3481 if (stack_copy == 0)
3482 stack_copy = (char *) xmalloc (stack_copy_size = i);
3483 else if (stack_copy_size < i)
3484 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
3485 if (stack_copy)
3486 {
3487 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
3488 bcopy (stack_bottom, stack_copy, i);
3489 else
3490 bcopy (&stack_top_variable, stack_copy, i);
3491 }
3492 }
3493 }
3494 #endif /* MAX_SAVE_STACK > 0 */
3495
3496 if (garbage_collection_messages)
3497 message1_nolog ("Garbage collecting...");
3498
3499 BLOCK_INPUT;
3500
3501 shrink_regexp_cache ();
3502
3503 /* Don't keep undo information around forever. */
3504 {
3505 register struct buffer *nextb = all_buffers;
3506
3507 while (nextb)
3508 {
3509 /* If a buffer's undo list is Qt, that means that undo is
3510 turned off in that buffer. Calling truncate_undo_list on
3511 Qt tends to return NULL, which effectively turns undo back on.
3512 So don't call truncate_undo_list if undo_list is Qt. */
3513 if (! EQ (nextb->undo_list, Qt))
3514 nextb->undo_list
3515 = truncate_undo_list (nextb->undo_list, undo_limit,
3516 undo_strong_limit);
3517 nextb = nextb->next;
3518 }
3519 }
3520
3521 gc_in_progress = 1;
3522
3523 /* clear_marks (); */
3524
3525 /* Mark all the special slots that serve as the roots of accessibility.
3526
3527 Usually the special slots to mark are contained in particular structures.
3528 Then we know no slot is marked twice because the structures don't overlap.
3529 In some cases, the structures point to the slots to be marked.
3530 For these, we use MARKBIT to avoid double marking of the slot. */
3531
3532 for (i = 0; i < staticidx; i++)
3533 mark_object (staticvec[i]);
3534
3535 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3536 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3537 mark_stack ();
3538 #else
3539 for (tail = gcprolist; tail; tail = tail->next)
3540 for (i = 0; i < tail->nvars; i++)
3541 if (!XMARKBIT (tail->var[i]))
3542 {
3543 mark_object (&tail->var[i]);
3544 XMARK (tail->var[i]);
3545 }
3546 #endif
3547
3548 mark_byte_stack ();
3549 for (bind = specpdl; bind != specpdl_ptr; bind++)
3550 {
3551 mark_object (&bind->symbol);
3552 mark_object (&bind->old_value);
3553 }
3554 for (catch = catchlist; catch; catch = catch->next)
3555 {
3556 mark_object (&catch->tag);
3557 mark_object (&catch->val);
3558 }
3559 for (handler = handlerlist; handler; handler = handler->next)
3560 {
3561 mark_object (&handler->handler);
3562 mark_object (&handler->var);
3563 }
3564 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3565 {
3566 if (!XMARKBIT (*backlist->function))
3567 {
3568 mark_object (backlist->function);
3569 XMARK (*backlist->function);
3570 }
3571 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3572 i = 0;
3573 else
3574 i = backlist->nargs - 1;
3575 for (; i >= 0; i--)
3576 if (!XMARKBIT (backlist->args[i]))
3577 {
3578 mark_object (&backlist->args[i]);
3579 XMARK (backlist->args[i]);
3580 }
3581 }
3582 mark_kboards ();
3583
3584 /* Look thru every buffer's undo list
3585 for elements that update markers that were not marked,
3586 and delete them. */
3587 {
3588 register struct buffer *nextb = all_buffers;
3589
3590 while (nextb)
3591 {
3592 /* If a buffer's undo list is Qt, that means that undo is
3593 turned off in that buffer. Calling truncate_undo_list on
3594 Qt tends to return NULL, which effectively turns undo back on.
3595 So don't call truncate_undo_list if undo_list is Qt. */
3596 if (! EQ (nextb->undo_list, Qt))
3597 {
3598 Lisp_Object tail, prev;
3599 tail = nextb->undo_list;
3600 prev = Qnil;
3601 while (CONSP (tail))
3602 {
3603 if (GC_CONSP (XCAR (tail))
3604 && GC_MARKERP (XCAR (XCAR (tail)))
3605 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
3606 {
3607 if (NILP (prev))
3608 nextb->undo_list = tail = XCDR (tail);
3609 else
3610 tail = XCDR (prev) = XCDR (tail);
3611 }
3612 else
3613 {
3614 prev = tail;
3615 tail = XCDR (tail);
3616 }
3617 }
3618 }
3619
3620 nextb = nextb->next;
3621 }
3622 }
3623
3624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3625 mark_stack ();
3626 #endif
3627
3628 gc_sweep ();
3629
3630 /* Clear the mark bits that we set in certain root slots. */
3631
3632 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
3633 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
3634 for (tail = gcprolist; tail; tail = tail->next)
3635 for (i = 0; i < tail->nvars; i++)
3636 XUNMARK (tail->var[i]);
3637 #endif
3638
3639 unmark_byte_stack ();
3640 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3641 {
3642 XUNMARK (*backlist->function);
3643 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3644 i = 0;
3645 else
3646 i = backlist->nargs - 1;
3647 for (; i >= 0; i--)
3648 XUNMARK (backlist->args[i]);
3649 }
3650 XUNMARK (buffer_defaults.name);
3651 XUNMARK (buffer_local_symbols.name);
3652
3653 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
3654 dump_zombies ();
3655 #endif
3656
3657 UNBLOCK_INPUT;
3658
3659 /* clear_marks (); */
3660 gc_in_progress = 0;
3661
3662 consing_since_gc = 0;
3663 if (gc_cons_threshold < 10000)
3664 gc_cons_threshold = 10000;
3665
3666 if (garbage_collection_messages)
3667 {
3668 if (message_p || minibuf_level > 0)
3669 restore_message ();
3670 else
3671 message1_nolog ("Garbage collecting...done");
3672 }
3673
3674 pop_message ();
3675
3676 total[0] = Fcons (make_number (total_conses),
3677 make_number (total_free_conses));
3678 total[1] = Fcons (make_number (total_symbols),
3679 make_number (total_free_symbols));
3680 total[2] = Fcons (make_number (total_markers),
3681 make_number (total_free_markers));
3682 total[3] = Fcons (make_number (total_string_size),
3683 make_number (total_vector_size));
3684 total[4] = Fcons (make_number (total_floats),
3685 make_number (total_free_floats));
3686 total[5] = Fcons (make_number (total_intervals),
3687 make_number (total_free_intervals));
3688 total[6] = Fcons (make_number (total_strings),
3689 make_number (total_free_strings));
3690
3691 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3692 {
3693 /* Compute average percentage of zombies. */
3694 double nlive = 0;
3695
3696 for (i = 0; i < 7; ++i)
3697 nlive += XFASTINT (XCAR (total[i]));
3698
3699 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
3700 max_live = max (nlive, max_live);
3701 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
3702 max_zombies = max (nzombies, max_zombies);
3703 ++ngcs;
3704 }
3705 #endif
3706
3707 return Flist (7, total);
3708 }
3709
3710
3711 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
3712 only interesting objects referenced from glyphs are strings. */
3713
3714 static void
3715 mark_glyph_matrix (matrix)
3716 struct glyph_matrix *matrix;
3717 {
3718 struct glyph_row *row = matrix->rows;
3719 struct glyph_row *end = row + matrix->nrows;
3720
3721 for (; row < end; ++row)
3722 if (row->enabled_p)
3723 {
3724 int area;
3725 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3726 {
3727 struct glyph *glyph = row->glyphs[area];
3728 struct glyph *end_glyph = glyph + row->used[area];
3729
3730 for (; glyph < end_glyph; ++glyph)
3731 if (GC_STRINGP (glyph->object)
3732 && !STRING_MARKED_P (XSTRING (glyph->object)))
3733 mark_object (&glyph->object);
3734 }
3735 }
3736 }
3737
3738
3739 /* Mark Lisp faces in the face cache C. */
3740
3741 static void
3742 mark_face_cache (c)
3743 struct face_cache *c;
3744 {
3745 if (c)
3746 {
3747 int i, j;
3748 for (i = 0; i < c->used; ++i)
3749 {
3750 struct face *face = FACE_FROM_ID (c->f, i);
3751
3752 if (face)
3753 {
3754 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
3755 mark_object (&face->lface[j]);
3756 }
3757 }
3758 }
3759 }
3760
3761
3762 #ifdef HAVE_WINDOW_SYSTEM
3763
3764 /* Mark Lisp objects in image IMG. */
3765
3766 static void
3767 mark_image (img)
3768 struct image *img;
3769 {
3770 mark_object (&img->spec);
3771
3772 if (!NILP (img->data.lisp_val))
3773 mark_object (&img->data.lisp_val);
3774 }
3775
3776
3777 /* Mark Lisp objects in image cache of frame F. It's done this way so
3778 that we don't have to include xterm.h here. */
3779
3780 static void
3781 mark_image_cache (f)
3782 struct frame *f;
3783 {
3784 forall_images_in_image_cache (f, mark_image);
3785 }
3786
3787 #endif /* HAVE_X_WINDOWS */
3788
3789
3790 \f
3791 /* Mark reference to a Lisp_Object.
3792 If the object referred to has not been seen yet, recursively mark
3793 all the references contained in it. */
3794
3795 #define LAST_MARKED_SIZE 500
3796 Lisp_Object *last_marked[LAST_MARKED_SIZE];
3797 int last_marked_index;
3798
3799 void
3800 mark_object (argptr)
3801 Lisp_Object *argptr;
3802 {
3803 Lisp_Object *objptr = argptr;
3804 register Lisp_Object obj;
3805 #ifdef GC_CHECK_MARKED_OBJECTS
3806 void *po;
3807 struct mem_node *m;
3808 #endif
3809
3810 loop:
3811 obj = *objptr;
3812 loop2:
3813 XUNMARK (obj);
3814
3815 if (PURE_POINTER_P ((PNTR_COMPARISON_TYPE) XPNTR (obj)))
3816 return;
3817
3818 last_marked[last_marked_index++] = objptr;
3819 if (last_marked_index == LAST_MARKED_SIZE)
3820 last_marked_index = 0;
3821
3822 /* Perform some sanity checks on the objects marked here. Abort if
3823 we encounter an object we know is bogus. This increases GC time
3824 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
3825 #ifdef GC_CHECK_MARKED_OBJECTS
3826
3827 po = (void *) XPNTR (obj);
3828
3829 /* Check that the object pointed to by PO is known to be a Lisp
3830 structure allocated from the heap. */
3831 #define CHECK_ALLOCATED() \
3832 do { \
3833 m = mem_find (po); \
3834 if (m == MEM_NIL) \
3835 abort (); \
3836 } while (0)
3837
3838 /* Check that the object pointed to by PO is live, using predicate
3839 function LIVEP. */
3840 #define CHECK_LIVE(LIVEP) \
3841 do { \
3842 if (!LIVEP (m, po)) \
3843 abort (); \
3844 } while (0)
3845
3846 /* Check both of the above conditions. */
3847 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
3848 do { \
3849 CHECK_ALLOCATED (); \
3850 CHECK_LIVE (LIVEP); \
3851 } while (0) \
3852
3853 #else /* not GC_CHECK_MARKED_OBJECTS */
3854
3855 #define CHECK_ALLOCATED() (void) 0
3856 #define CHECK_LIVE(LIVEP) (void) 0
3857 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
3858
3859 #endif /* not GC_CHECK_MARKED_OBJECTS */
3860
3861 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
3862 {
3863 case Lisp_String:
3864 {
3865 register struct Lisp_String *ptr = XSTRING (obj);
3866 CHECK_ALLOCATED_AND_LIVE (live_string_p);
3867 MARK_INTERVAL_TREE (ptr->intervals);
3868 MARK_STRING (ptr);
3869 }
3870 break;
3871
3872 case Lisp_Vectorlike:
3873 #ifdef GC_CHECK_MARKED_OBJECTS
3874 m = mem_find (po);
3875 if (m == MEM_NIL && !GC_SUBRP (obj)
3876 && po != &buffer_defaults
3877 && po != &buffer_local_symbols)
3878 abort ();
3879 #endif /* GC_CHECK_MARKED_OBJECTS */
3880
3881 if (GC_BUFFERP (obj))
3882 {
3883 if (!XMARKBIT (XBUFFER (obj)->name))
3884 {
3885 #ifdef GC_CHECK_MARKED_OBJECTS
3886 if (po != &buffer_defaults && po != &buffer_local_symbols)
3887 {
3888 struct buffer *b;
3889 for (b = all_buffers; b && b != po; b = b->next)
3890 ;
3891 if (b == NULL)
3892 abort ();
3893 }
3894 #endif /* GC_CHECK_MARKED_OBJECTS */
3895 mark_buffer (obj);
3896 }
3897 }
3898 else if (GC_SUBRP (obj))
3899 break;
3900 else if (GC_COMPILEDP (obj))
3901 /* We could treat this just like a vector, but it is better to
3902 save the COMPILED_CONSTANTS element for last and avoid
3903 recursion there. */
3904 {
3905 register struct Lisp_Vector *ptr = XVECTOR (obj);
3906 register EMACS_INT size = ptr->size;
3907 /* See comment above under Lisp_Vector. */
3908 struct Lisp_Vector *volatile ptr1 = ptr;
3909 register int i;
3910
3911 if (size & ARRAY_MARK_FLAG)
3912 break; /* Already marked */
3913
3914 CHECK_LIVE (live_vector_p);
3915 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3916 size &= PSEUDOVECTOR_SIZE_MASK;
3917 for (i = 0; i < size; i++) /* and then mark its elements */
3918 {
3919 if (i != COMPILED_CONSTANTS)
3920 mark_object (&ptr1->contents[i]);
3921 }
3922 /* This cast should be unnecessary, but some Mips compiler complains
3923 (MIPS-ABI + SysVR4, DC/OSx, etc). */
3924 objptr = (Lisp_Object *) &ptr1->contents[COMPILED_CONSTANTS];
3925 goto loop;
3926 }
3927 else if (GC_FRAMEP (obj))
3928 {
3929 /* See comment above under Lisp_Vector for why this is volatile. */
3930 register struct frame *volatile ptr = XFRAME (obj);
3931 register EMACS_INT size = ptr->size;
3932
3933 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
3934 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3935
3936 CHECK_LIVE (live_vector_p);
3937 mark_object (&ptr->name);
3938 mark_object (&ptr->icon_name);
3939 mark_object (&ptr->title);
3940 mark_object (&ptr->focus_frame);
3941 mark_object (&ptr->selected_window);
3942 mark_object (&ptr->minibuffer_window);
3943 mark_object (&ptr->param_alist);
3944 mark_object (&ptr->scroll_bars);
3945 mark_object (&ptr->condemned_scroll_bars);
3946 mark_object (&ptr->menu_bar_items);
3947 mark_object (&ptr->face_alist);
3948 mark_object (&ptr->menu_bar_vector);
3949 mark_object (&ptr->buffer_predicate);
3950 mark_object (&ptr->buffer_list);
3951 mark_object (&ptr->menu_bar_window);
3952 mark_object (&ptr->tool_bar_window);
3953 mark_face_cache (ptr->face_cache);
3954 #ifdef HAVE_WINDOW_SYSTEM
3955 mark_image_cache (ptr);
3956 mark_object (&ptr->desired_tool_bar_items);
3957 mark_object (&ptr->current_tool_bar_items);
3958 mark_object (&ptr->desired_tool_bar_string);
3959 mark_object (&ptr->current_tool_bar_string);
3960 #endif /* HAVE_WINDOW_SYSTEM */
3961 }
3962 else if (GC_BOOL_VECTOR_P (obj))
3963 {
3964 register struct Lisp_Vector *ptr = XVECTOR (obj);
3965
3966 if (ptr->size & ARRAY_MARK_FLAG)
3967 break; /* Already marked */
3968 CHECK_LIVE (live_vector_p);
3969 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3970 }
3971 else if (GC_WINDOWP (obj))
3972 {
3973 register struct Lisp_Vector *ptr = XVECTOR (obj);
3974 struct window *w = XWINDOW (obj);
3975 register EMACS_INT size = ptr->size;
3976 /* The reason we use ptr1 is to avoid an apparent hardware bug
3977 that happens occasionally on the FSF's HP 300s.
3978 The bug is that a2 gets clobbered by recursive calls to mark_object.
3979 The clobberage seems to happen during function entry,
3980 perhaps in the moveml instruction.
3981 Yes, this is a crock, but we have to do it. */
3982 struct Lisp_Vector *volatile ptr1 = ptr;
3983 register int i;
3984
3985 /* Stop if already marked. */
3986 if (size & ARRAY_MARK_FLAG)
3987 break;
3988
3989 /* Mark it. */
3990 CHECK_LIVE (live_vector_p);
3991 ptr->size |= ARRAY_MARK_FLAG;
3992
3993 /* There is no Lisp data above The member CURRENT_MATRIX in
3994 struct WINDOW. Stop marking when that slot is reached. */
3995 for (i = 0;
3996 (char *) &ptr1->contents[i] < (char *) &w->current_matrix;
3997 i++)
3998 mark_object (&ptr1->contents[i]);
3999
4000 /* Mark glyphs for leaf windows. Marking window matrices is
4001 sufficient because frame matrices use the same glyph
4002 memory. */
4003 if (NILP (w->hchild)
4004 && NILP (w->vchild)
4005 && w->current_matrix)
4006 {
4007 mark_glyph_matrix (w->current_matrix);
4008 mark_glyph_matrix (w->desired_matrix);
4009 }
4010 }
4011 else if (GC_HASH_TABLE_P (obj))
4012 {
4013 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4014 EMACS_INT size = h->size;
4015
4016 /* Stop if already marked. */
4017 if (size & ARRAY_MARK_FLAG)
4018 break;
4019
4020 /* Mark it. */
4021 CHECK_LIVE (live_vector_p);
4022 h->size |= ARRAY_MARK_FLAG;
4023
4024 /* Mark contents. */
4025 mark_object (&h->test);
4026 mark_object (&h->weak);
4027 mark_object (&h->rehash_size);
4028 mark_object (&h->rehash_threshold);
4029 mark_object (&h->hash);
4030 mark_object (&h->next);
4031 mark_object (&h->index);
4032 mark_object (&h->user_hash_function);
4033 mark_object (&h->user_cmp_function);
4034
4035 /* If hash table is not weak, mark all keys and values.
4036 For weak tables, mark only the vector. */
4037 if (GC_NILP (h->weak))
4038 mark_object (&h->key_and_value);
4039 else
4040 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4041
4042 }
4043 else
4044 {
4045 register struct Lisp_Vector *ptr = XVECTOR (obj);
4046 register EMACS_INT size = ptr->size;
4047 /* The reason we use ptr1 is to avoid an apparent hardware bug
4048 that happens occasionally on the FSF's HP 300s.
4049 The bug is that a2 gets clobbered by recursive calls to mark_object.
4050 The clobberage seems to happen during function entry,
4051 perhaps in the moveml instruction.
4052 Yes, this is a crock, but we have to do it. */
4053 struct Lisp_Vector *volatile ptr1 = ptr;
4054 register int i;
4055
4056 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4057 CHECK_LIVE (live_vector_p);
4058 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4059 if (size & PSEUDOVECTOR_FLAG)
4060 size &= PSEUDOVECTOR_SIZE_MASK;
4061
4062 for (i = 0; i < size; i++) /* and then mark its elements */
4063 mark_object (&ptr1->contents[i]);
4064 }
4065 break;
4066
4067 case Lisp_Symbol:
4068 {
4069 /* See comment above under Lisp_Vector for why this is volatile. */
4070 register struct Lisp_Symbol *volatile ptr = XSYMBOL (obj);
4071 struct Lisp_Symbol *ptrx;
4072
4073 if (XMARKBIT (ptr->plist)) break;
4074 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4075 XMARK (ptr->plist);
4076 mark_object ((Lisp_Object *) &ptr->value);
4077 mark_object (&ptr->function);
4078 mark_object (&ptr->plist);
4079
4080 if (!PURE_POINTER_P (ptr->name))
4081 MARK_STRING (ptr->name);
4082 MARK_INTERVAL_TREE (ptr->name->intervals);
4083
4084 /* Note that we do not mark the obarray of the symbol.
4085 It is safe not to do so because nothing accesses that
4086 slot except to check whether it is nil. */
4087 ptr = ptr->next;
4088 if (ptr)
4089 {
4090 /* For the benefit of the last_marked log. */
4091 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4092 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4093 XSETSYMBOL (obj, ptrx);
4094 /* We can't goto loop here because *objptr doesn't contain an
4095 actual Lisp_Object with valid datatype field. */
4096 goto loop2;
4097 }
4098 }
4099 break;
4100
4101 case Lisp_Misc:
4102 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4103 switch (XMISCTYPE (obj))
4104 {
4105 case Lisp_Misc_Marker:
4106 XMARK (XMARKER (obj)->chain);
4107 /* DO NOT mark thru the marker's chain.
4108 The buffer's markers chain does not preserve markers from gc;
4109 instead, markers are removed from the chain when freed by gc. */
4110 break;
4111
4112 case Lisp_Misc_Buffer_Local_Value:
4113 case Lisp_Misc_Some_Buffer_Local_Value:
4114 {
4115 register struct Lisp_Buffer_Local_Value *ptr
4116 = XBUFFER_LOCAL_VALUE (obj);
4117 if (XMARKBIT (ptr->realvalue)) break;
4118 XMARK (ptr->realvalue);
4119 /* If the cdr is nil, avoid recursion for the car. */
4120 if (EQ (ptr->cdr, Qnil))
4121 {
4122 objptr = &ptr->realvalue;
4123 goto loop;
4124 }
4125 mark_object (&ptr->realvalue);
4126 mark_object (&ptr->buffer);
4127 mark_object (&ptr->frame);
4128 /* See comment above under Lisp_Vector for why not use ptr here. */
4129 objptr = &XBUFFER_LOCAL_VALUE (obj)->cdr;
4130 goto loop;
4131 }
4132
4133 case Lisp_Misc_Intfwd:
4134 case Lisp_Misc_Boolfwd:
4135 case Lisp_Misc_Objfwd:
4136 case Lisp_Misc_Buffer_Objfwd:
4137 case Lisp_Misc_Kboard_Objfwd:
4138 /* Don't bother with Lisp_Buffer_Objfwd,
4139 since all markable slots in current buffer marked anyway. */
4140 /* Don't need to do Lisp_Objfwd, since the places they point
4141 are protected with staticpro. */
4142 break;
4143
4144 case Lisp_Misc_Overlay:
4145 {
4146 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4147 if (!XMARKBIT (ptr->plist))
4148 {
4149 XMARK (ptr->plist);
4150 mark_object (&ptr->start);
4151 mark_object (&ptr->end);
4152 objptr = &ptr->plist;
4153 goto loop;
4154 }
4155 }
4156 break;
4157
4158 default:
4159 abort ();
4160 }
4161 break;
4162
4163 case Lisp_Cons:
4164 {
4165 register struct Lisp_Cons *ptr = XCONS (obj);
4166 if (XMARKBIT (ptr->car)) break;
4167 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4168 XMARK (ptr->car);
4169 /* If the cdr is nil, avoid recursion for the car. */
4170 if (EQ (ptr->cdr, Qnil))
4171 {
4172 objptr = &ptr->car;
4173 goto loop;
4174 }
4175 mark_object (&ptr->car);
4176 /* See comment above under Lisp_Vector for why not use ptr here. */
4177 objptr = &XCDR (obj);
4178 goto loop;
4179 }
4180
4181 case Lisp_Float:
4182 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4183 XMARK (XFLOAT (obj)->type);
4184 break;
4185
4186 case Lisp_Int:
4187 break;
4188
4189 default:
4190 abort ();
4191 }
4192
4193 #undef CHECK_LIVE
4194 #undef CHECK_ALLOCATED
4195 #undef CHECK_ALLOCATED_AND_LIVE
4196 }
4197
4198 /* Mark the pointers in a buffer structure. */
4199
4200 static void
4201 mark_buffer (buf)
4202 Lisp_Object buf;
4203 {
4204 register struct buffer *buffer = XBUFFER (buf);
4205 register Lisp_Object *ptr;
4206 Lisp_Object base_buffer;
4207
4208 /* This is the buffer's markbit */
4209 mark_object (&buffer->name);
4210 XMARK (buffer->name);
4211
4212 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4213
4214 if (CONSP (buffer->undo_list))
4215 {
4216 Lisp_Object tail;
4217 tail = buffer->undo_list;
4218
4219 while (CONSP (tail))
4220 {
4221 register struct Lisp_Cons *ptr = XCONS (tail);
4222
4223 if (XMARKBIT (ptr->car))
4224 break;
4225 XMARK (ptr->car);
4226 if (GC_CONSP (ptr->car)
4227 && ! XMARKBIT (XCAR (ptr->car))
4228 && GC_MARKERP (XCAR (ptr->car)))
4229 {
4230 XMARK (XCAR (ptr->car));
4231 mark_object (&XCDR (ptr->car));
4232 }
4233 else
4234 mark_object (&ptr->car);
4235
4236 if (CONSP (ptr->cdr))
4237 tail = ptr->cdr;
4238 else
4239 break;
4240 }
4241
4242 mark_object (&XCDR (tail));
4243 }
4244 else
4245 mark_object (&buffer->undo_list);
4246
4247 for (ptr = &buffer->name + 1;
4248 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4249 ptr++)
4250 mark_object (ptr);
4251
4252 /* If this is an indirect buffer, mark its base buffer. */
4253 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4254 {
4255 XSETBUFFER (base_buffer, buffer->base_buffer);
4256 mark_buffer (base_buffer);
4257 }
4258 }
4259
4260
4261 /* Mark the pointers in the kboard objects. */
4262
4263 static void
4264 mark_kboards ()
4265 {
4266 KBOARD *kb;
4267 Lisp_Object *p;
4268 for (kb = all_kboards; kb; kb = kb->next_kboard)
4269 {
4270 if (kb->kbd_macro_buffer)
4271 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4272 mark_object (p);
4273 mark_object (&kb->Voverriding_terminal_local_map);
4274 mark_object (&kb->Vlast_command);
4275 mark_object (&kb->Vreal_last_command);
4276 mark_object (&kb->Vprefix_arg);
4277 mark_object (&kb->Vlast_prefix_arg);
4278 mark_object (&kb->kbd_queue);
4279 mark_object (&kb->defining_kbd_macro);
4280 mark_object (&kb->Vlast_kbd_macro);
4281 mark_object (&kb->Vsystem_key_alist);
4282 mark_object (&kb->system_key_syms);
4283 mark_object (&kb->Vdefault_minibuffer_frame);
4284 }
4285 }
4286
4287
4288 /* Value is non-zero if OBJ will survive the current GC because it's
4289 either marked or does not need to be marked to survive. */
4290
4291 int
4292 survives_gc_p (obj)
4293 Lisp_Object obj;
4294 {
4295 int survives_p;
4296
4297 switch (XGCTYPE (obj))
4298 {
4299 case Lisp_Int:
4300 survives_p = 1;
4301 break;
4302
4303 case Lisp_Symbol:
4304 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4305 break;
4306
4307 case Lisp_Misc:
4308 switch (XMISCTYPE (obj))
4309 {
4310 case Lisp_Misc_Marker:
4311 survives_p = XMARKBIT (obj);
4312 break;
4313
4314 case Lisp_Misc_Buffer_Local_Value:
4315 case Lisp_Misc_Some_Buffer_Local_Value:
4316 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4317 break;
4318
4319 case Lisp_Misc_Intfwd:
4320 case Lisp_Misc_Boolfwd:
4321 case Lisp_Misc_Objfwd:
4322 case Lisp_Misc_Buffer_Objfwd:
4323 case Lisp_Misc_Kboard_Objfwd:
4324 survives_p = 1;
4325 break;
4326
4327 case Lisp_Misc_Overlay:
4328 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4329 break;
4330
4331 default:
4332 abort ();
4333 }
4334 break;
4335
4336 case Lisp_String:
4337 {
4338 struct Lisp_String *s = XSTRING (obj);
4339 survives_p = STRING_MARKED_P (s);
4340 }
4341 break;
4342
4343 case Lisp_Vectorlike:
4344 if (GC_BUFFERP (obj))
4345 survives_p = XMARKBIT (XBUFFER (obj)->name);
4346 else if (GC_SUBRP (obj))
4347 survives_p = 1;
4348 else
4349 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4350 break;
4351
4352 case Lisp_Cons:
4353 survives_p = XMARKBIT (XCAR (obj));
4354 break;
4355
4356 case Lisp_Float:
4357 survives_p = XMARKBIT (XFLOAT (obj)->type);
4358 break;
4359
4360 default:
4361 abort ();
4362 }
4363
4364 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
4365 }
4366
4367
4368 \f
4369 /* Sweep: find all structures not marked, and free them. */
4370
4371 static void
4372 gc_sweep ()
4373 {
4374 /* Remove or mark entries in weak hash tables.
4375 This must be done before any object is unmarked. */
4376 sweep_weak_hash_tables ();
4377
4378 sweep_strings ();
4379
4380 /* Put all unmarked conses on free list */
4381 {
4382 register struct cons_block *cblk;
4383 struct cons_block **cprev = &cons_block;
4384 register int lim = cons_block_index;
4385 register int num_free = 0, num_used = 0;
4386
4387 cons_free_list = 0;
4388
4389 for (cblk = cons_block; cblk; cblk = *cprev)
4390 {
4391 register int i;
4392 int this_free = 0;
4393 for (i = 0; i < lim; i++)
4394 if (!XMARKBIT (cblk->conses[i].car))
4395 {
4396 this_free++;
4397 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
4398 cons_free_list = &cblk->conses[i];
4399 #if GC_MARK_STACK
4400 cons_free_list->car = Vdead;
4401 #endif
4402 }
4403 else
4404 {
4405 num_used++;
4406 XUNMARK (cblk->conses[i].car);
4407 }
4408 lim = CONS_BLOCK_SIZE;
4409 /* If this block contains only free conses and we have already
4410 seen more than two blocks worth of free conses then deallocate
4411 this block. */
4412 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
4413 {
4414 *cprev = cblk->next;
4415 /* Unhook from the free list. */
4416 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
4417 lisp_free (cblk);
4418 n_cons_blocks--;
4419 }
4420 else
4421 {
4422 num_free += this_free;
4423 cprev = &cblk->next;
4424 }
4425 }
4426 total_conses = num_used;
4427 total_free_conses = num_free;
4428 }
4429
4430 /* Put all unmarked floats on free list */
4431 {
4432 register struct float_block *fblk;
4433 struct float_block **fprev = &float_block;
4434 register int lim = float_block_index;
4435 register int num_free = 0, num_used = 0;
4436
4437 float_free_list = 0;
4438
4439 for (fblk = float_block; fblk; fblk = *fprev)
4440 {
4441 register int i;
4442 int this_free = 0;
4443 for (i = 0; i < lim; i++)
4444 if (!XMARKBIT (fblk->floats[i].type))
4445 {
4446 this_free++;
4447 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
4448 float_free_list = &fblk->floats[i];
4449 #if GC_MARK_STACK
4450 float_free_list->type = Vdead;
4451 #endif
4452 }
4453 else
4454 {
4455 num_used++;
4456 XUNMARK (fblk->floats[i].type);
4457 }
4458 lim = FLOAT_BLOCK_SIZE;
4459 /* If this block contains only free floats and we have already
4460 seen more than two blocks worth of free floats then deallocate
4461 this block. */
4462 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
4463 {
4464 *fprev = fblk->next;
4465 /* Unhook from the free list. */
4466 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
4467 lisp_free (fblk);
4468 n_float_blocks--;
4469 }
4470 else
4471 {
4472 num_free += this_free;
4473 fprev = &fblk->next;
4474 }
4475 }
4476 total_floats = num_used;
4477 total_free_floats = num_free;
4478 }
4479
4480 /* Put all unmarked intervals on free list */
4481 {
4482 register struct interval_block *iblk;
4483 struct interval_block **iprev = &interval_block;
4484 register int lim = interval_block_index;
4485 register int num_free = 0, num_used = 0;
4486
4487 interval_free_list = 0;
4488
4489 for (iblk = interval_block; iblk; iblk = *iprev)
4490 {
4491 register int i;
4492 int this_free = 0;
4493
4494 for (i = 0; i < lim; i++)
4495 {
4496 if (! XMARKBIT (iblk->intervals[i].plist))
4497 {
4498 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
4499 interval_free_list = &iblk->intervals[i];
4500 this_free++;
4501 }
4502 else
4503 {
4504 num_used++;
4505 XUNMARK (iblk->intervals[i].plist);
4506 }
4507 }
4508 lim = INTERVAL_BLOCK_SIZE;
4509 /* If this block contains only free intervals and we have already
4510 seen more than two blocks worth of free intervals then
4511 deallocate this block. */
4512 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
4513 {
4514 *iprev = iblk->next;
4515 /* Unhook from the free list. */
4516 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
4517 lisp_free (iblk);
4518 n_interval_blocks--;
4519 }
4520 else
4521 {
4522 num_free += this_free;
4523 iprev = &iblk->next;
4524 }
4525 }
4526 total_intervals = num_used;
4527 total_free_intervals = num_free;
4528 }
4529
4530 /* Put all unmarked symbols on free list */
4531 {
4532 register struct symbol_block *sblk;
4533 struct symbol_block **sprev = &symbol_block;
4534 register int lim = symbol_block_index;
4535 register int num_free = 0, num_used = 0;
4536
4537 symbol_free_list = 0;
4538
4539 for (sblk = symbol_block; sblk; sblk = *sprev)
4540 {
4541 register int i;
4542 int this_free = 0;
4543 for (i = 0; i < lim; i++)
4544 if (!XMARKBIT (sblk->symbols[i].plist))
4545 {
4546 *(struct Lisp_Symbol **)&sblk->symbols[i].value = symbol_free_list;
4547 symbol_free_list = &sblk->symbols[i];
4548 #if GC_MARK_STACK
4549 symbol_free_list->function = Vdead;
4550 #endif
4551 this_free++;
4552 }
4553 else
4554 {
4555 num_used++;
4556 if (!PURE_POINTER_P (sblk->symbols[i].name))
4557 UNMARK_STRING (sblk->symbols[i].name);
4558 XUNMARK (sblk->symbols[i].plist);
4559 }
4560 lim = SYMBOL_BLOCK_SIZE;
4561 /* If this block contains only free symbols and we have already
4562 seen more than two blocks worth of free symbols then deallocate
4563 this block. */
4564 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
4565 {
4566 *sprev = sblk->next;
4567 /* Unhook from the free list. */
4568 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
4569 lisp_free (sblk);
4570 n_symbol_blocks--;
4571 }
4572 else
4573 {
4574 num_free += this_free;
4575 sprev = &sblk->next;
4576 }
4577 }
4578 total_symbols = num_used;
4579 total_free_symbols = num_free;
4580 }
4581
4582 /* Put all unmarked misc's on free list.
4583 For a marker, first unchain it from the buffer it points into. */
4584 {
4585 register struct marker_block *mblk;
4586 struct marker_block **mprev = &marker_block;
4587 register int lim = marker_block_index;
4588 register int num_free = 0, num_used = 0;
4589
4590 marker_free_list = 0;
4591
4592 for (mblk = marker_block; mblk; mblk = *mprev)
4593 {
4594 register int i;
4595 int this_free = 0;
4596 EMACS_INT already_free = -1;
4597
4598 for (i = 0; i < lim; i++)
4599 {
4600 Lisp_Object *markword;
4601 switch (mblk->markers[i].u_marker.type)
4602 {
4603 case Lisp_Misc_Marker:
4604 markword = &mblk->markers[i].u_marker.chain;
4605 break;
4606 case Lisp_Misc_Buffer_Local_Value:
4607 case Lisp_Misc_Some_Buffer_Local_Value:
4608 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
4609 break;
4610 case Lisp_Misc_Overlay:
4611 markword = &mblk->markers[i].u_overlay.plist;
4612 break;
4613 case Lisp_Misc_Free:
4614 /* If the object was already free, keep it
4615 on the free list. */
4616 markword = (Lisp_Object *) &already_free;
4617 break;
4618 default:
4619 markword = 0;
4620 break;
4621 }
4622 if (markword && !XMARKBIT (*markword))
4623 {
4624 Lisp_Object tem;
4625 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
4626 {
4627 /* tem1 avoids Sun compiler bug */
4628 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
4629 XSETMARKER (tem, tem1);
4630 unchain_marker (tem);
4631 }
4632 /* Set the type of the freed object to Lisp_Misc_Free.
4633 We could leave the type alone, since nobody checks it,
4634 but this might catch bugs faster. */
4635 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
4636 mblk->markers[i].u_free.chain = marker_free_list;
4637 marker_free_list = &mblk->markers[i];
4638 this_free++;
4639 }
4640 else
4641 {
4642 num_used++;
4643 if (markword)
4644 XUNMARK (*markword);
4645 }
4646 }
4647 lim = MARKER_BLOCK_SIZE;
4648 /* If this block contains only free markers and we have already
4649 seen more than two blocks worth of free markers then deallocate
4650 this block. */
4651 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
4652 {
4653 *mprev = mblk->next;
4654 /* Unhook from the free list. */
4655 marker_free_list = mblk->markers[0].u_free.chain;
4656 lisp_free (mblk);
4657 n_marker_blocks--;
4658 }
4659 else
4660 {
4661 num_free += this_free;
4662 mprev = &mblk->next;
4663 }
4664 }
4665
4666 total_markers = num_used;
4667 total_free_markers = num_free;
4668 }
4669
4670 /* Free all unmarked buffers */
4671 {
4672 register struct buffer *buffer = all_buffers, *prev = 0, *next;
4673
4674 while (buffer)
4675 if (!XMARKBIT (buffer->name))
4676 {
4677 if (prev)
4678 prev->next = buffer->next;
4679 else
4680 all_buffers = buffer->next;
4681 next = buffer->next;
4682 lisp_free (buffer);
4683 buffer = next;
4684 }
4685 else
4686 {
4687 XUNMARK (buffer->name);
4688 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
4689 prev = buffer, buffer = buffer->next;
4690 }
4691 }
4692
4693 /* Free all unmarked vectors */
4694 {
4695 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
4696 total_vector_size = 0;
4697
4698 while (vector)
4699 if (!(vector->size & ARRAY_MARK_FLAG))
4700 {
4701 if (prev)
4702 prev->next = vector->next;
4703 else
4704 all_vectors = vector->next;
4705 next = vector->next;
4706 lisp_free (vector);
4707 n_vectors--;
4708 vector = next;
4709
4710 }
4711 else
4712 {
4713 vector->size &= ~ARRAY_MARK_FLAG;
4714 if (vector->size & PSEUDOVECTOR_FLAG)
4715 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
4716 else
4717 total_vector_size += vector->size;
4718 prev = vector, vector = vector->next;
4719 }
4720 }
4721 }
4722
4723
4724
4725 \f
4726 /* Debugging aids. */
4727
4728 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
4729 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
4730 This may be helpful in debugging Emacs's memory usage.\n\
4731 We divide the value by 1024 to make sure it fits in a Lisp integer.")
4732 ()
4733 {
4734 Lisp_Object end;
4735
4736 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
4737
4738 return end;
4739 }
4740
4741 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
4742 "Return a list of counters that measure how much consing there has been.\n\
4743 Each of these counters increments for a certain kind of object.\n\
4744 The counters wrap around from the largest positive integer to zero.\n\
4745 Garbage collection does not decrease them.\n\
4746 The elements of the value are as follows:\n\
4747 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)\n\
4748 All are in units of 1 = one object consed\n\
4749 except for VECTOR-CELLS and STRING-CHARS, which count the total length of\n\
4750 objects consed.\n\
4751 MISCS include overlays, markers, and some internal types.\n\
4752 Frames, windows, buffers, and subprocesses count as vectors\n\
4753 (but the contents of a buffer's text do not count here).")
4754 ()
4755 {
4756 Lisp_Object consed[8];
4757
4758 XSETINT (consed[0],
4759 cons_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4760 XSETINT (consed[1],
4761 floats_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4762 XSETINT (consed[2],
4763 vector_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4764 XSETINT (consed[3],
4765 symbols_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4766 XSETINT (consed[4],
4767 string_chars_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4768 XSETINT (consed[5],
4769 misc_objects_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4770 XSETINT (consed[6],
4771 intervals_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4772 XSETINT (consed[7],
4773 strings_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4774
4775 return Flist (8, consed);
4776 }
4777
4778 int suppress_checking;
4779 void
4780 die (msg, file, line)
4781 const char *msg;
4782 const char *file;
4783 int line;
4784 {
4785 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
4786 file, line, msg);
4787 abort ();
4788 }
4789 \f
4790 /* Initialization */
4791
4792 void
4793 init_alloc_once ()
4794 {
4795 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
4796 pureptr = 0;
4797 #if GC_MARK_STACK
4798 mem_init ();
4799 Vdead = make_pure_string ("DEAD", 4, 4, 0);
4800 #endif
4801 #ifdef HAVE_SHM
4802 pure_size = PURESIZE;
4803 #endif
4804 all_vectors = 0;
4805 ignore_warnings = 1;
4806 #ifdef DOUG_LEA_MALLOC
4807 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
4808 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
4809 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
4810 #endif
4811 init_strings ();
4812 init_cons ();
4813 init_symbol ();
4814 init_marker ();
4815 init_float ();
4816 init_intervals ();
4817
4818 #ifdef REL_ALLOC
4819 malloc_hysteresis = 32;
4820 #else
4821 malloc_hysteresis = 0;
4822 #endif
4823
4824 spare_memory = (char *) malloc (SPARE_MEMORY);
4825
4826 ignore_warnings = 0;
4827 gcprolist = 0;
4828 byte_stack_list = 0;
4829 staticidx = 0;
4830 consing_since_gc = 0;
4831 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
4832 #ifdef VIRT_ADDR_VARIES
4833 malloc_sbrk_unused = 1<<22; /* A large number */
4834 malloc_sbrk_used = 100000; /* as reasonable as any number */
4835 #endif /* VIRT_ADDR_VARIES */
4836 }
4837
4838 void
4839 init_alloc ()
4840 {
4841 gcprolist = 0;
4842 byte_stack_list = 0;
4843 #if GC_MARK_STACK
4844 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4845 setjmp_tested_p = longjmps_done = 0;
4846 #endif
4847 #endif
4848 }
4849
4850 void
4851 syms_of_alloc ()
4852 {
4853 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
4854 "*Number of bytes of consing between garbage collections.\n\
4855 Garbage collection can happen automatically once this many bytes have been\n\
4856 allocated since the last garbage collection. All data types count.\n\n\
4857 Garbage collection happens automatically only when `eval' is called.\n\n\
4858 By binding this temporarily to a large number, you can effectively\n\
4859 prevent garbage collection during a part of the program.");
4860
4861 DEFVAR_INT ("pure-bytes-used", &pureptr,
4862 "Number of bytes of sharable Lisp data allocated so far.");
4863
4864 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
4865 "Number of cons cells that have been consed so far.");
4866
4867 DEFVAR_INT ("floats-consed", &floats_consed,
4868 "Number of floats that have been consed so far.");
4869
4870 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
4871 "Number of vector cells that have been consed so far.");
4872
4873 DEFVAR_INT ("symbols-consed", &symbols_consed,
4874 "Number of symbols that have been consed so far.");
4875
4876 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
4877 "Number of string characters that have been consed so far.");
4878
4879 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
4880 "Number of miscellaneous objects that have been consed so far.");
4881
4882 DEFVAR_INT ("intervals-consed", &intervals_consed,
4883 "Number of intervals that have been consed so far.");
4884
4885 DEFVAR_INT ("strings-consed", &strings_consed,
4886 "Number of strings that have been consed so far.");
4887
4888 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
4889 "Non-nil means loading Lisp code in order to dump an executable.\n\
4890 This means that certain objects should be allocated in shared (pure) space.");
4891
4892 DEFVAR_INT ("undo-limit", &undo_limit,
4893 "Keep no more undo information once it exceeds this size.\n\
4894 This limit is applied when garbage collection happens.\n\
4895 The size is counted as the number of bytes occupied,\n\
4896 which includes both saved text and other data.");
4897 undo_limit = 20000;
4898
4899 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
4900 "Don't keep more than this much size of undo information.\n\
4901 A command which pushes past this size is itself forgotten.\n\
4902 This limit is applied when garbage collection happens.\n\
4903 The size is counted as the number of bytes occupied,\n\
4904 which includes both saved text and other data.");
4905 undo_strong_limit = 30000;
4906
4907 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
4908 "Non-nil means display messages at start and end of garbage collection.");
4909 garbage_collection_messages = 0;
4910
4911 /* We build this in advance because if we wait until we need it, we might
4912 not be able to allocate the memory to hold it. */
4913 memory_signal_data
4914 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
4915 staticpro (&memory_signal_data);
4916
4917 staticpro (&Qgc_cons_threshold);
4918 Qgc_cons_threshold = intern ("gc-cons-threshold");
4919
4920 staticpro (&Qchar_table_extra_slots);
4921 Qchar_table_extra_slots = intern ("char-table-extra-slots");
4922
4923 defsubr (&Scons);
4924 defsubr (&Slist);
4925 defsubr (&Svector);
4926 defsubr (&Smake_byte_code);
4927 defsubr (&Smake_list);
4928 defsubr (&Smake_vector);
4929 defsubr (&Smake_char_table);
4930 defsubr (&Smake_string);
4931 defsubr (&Smake_bool_vector);
4932 defsubr (&Smake_symbol);
4933 defsubr (&Smake_marker);
4934 defsubr (&Spurecopy);
4935 defsubr (&Sgarbage_collect);
4936 defsubr (&Smemory_limit);
4937 defsubr (&Smemory_use_counts);
4938
4939 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4940 defsubr (&Sgc_status);
4941 #endif
4942 }