(Fmake_string): Doc fix.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 #ifndef USE_LSB_TAG
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
616 #endif
617
618 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
619 if (val && type != MEM_TYPE_NON_LISP)
620 mem_insert (val, (char *) val + nbytes, type);
621 #endif
622
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
626 return val;
627 }
628
629 /* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
632 static void
633 lisp_free (block)
634 POINTER_TYPE *block;
635 {
636 BLOCK_INPUT;
637 free (block);
638 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
639 mem_delete (mem_find (block));
640 #endif
641 UNBLOCK_INPUT;
642 }
643
644 /* Allocation of aligned blocks of memory to store Lisp data. */
645 /* The entry point is lisp_align_malloc which returns blocks of at most */
646 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649 /* BLOCK_ALIGN has to be a power of 2. */
650 #define BLOCK_ALIGN (1 << 10)
651
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661 #define BLOCK_PADDING 0
662 #define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665 /* Internal data structures and constants. */
666
667 #define ABLOCKS_SIZE 16
668
669 /* An aligned block of memory. */
670 struct ablock
671 {
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
689 #if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
691 #endif
692 };
693
694 /* A bunch of consecutive aligned blocks. */
695 struct ablocks
696 {
697 struct ablock blocks[ABLOCKS_SIZE];
698 };
699
700 /* Size of the block requested from malloc or memalign. */
701 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
702
703 #define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708 /* Virtual `busy' field. */
709 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711 /* Pointer to the (not necessarily aligned) malloc block. */
712 #ifdef HAVE_POSIX_MEMALIGN
713 #define ABLOCKS_BASE(abase) (abase)
714 #else
715 #define ABLOCKS_BASE(abase) \
716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 #endif
718
719 /* The list of free ablock. */
720 static struct ablock *free_ablock;
721
722 /* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725 static POINTER_TYPE *
726 lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729 {
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737 #ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739 #endif
740
741 if (!free_ablock)
742 {
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
745
746 #ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751 #endif
752
753 #ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758 #else
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
766 #endif
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772 #ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775 #endif
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
794 #endif
795
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
805
806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821 #endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829 }
830
831 static void
832 lisp_align_free (block)
833 POINTER_TYPE *block;
834 {
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
847
848 if (2 > (long) ABLOCKS_BUSY (abase))
849 { /* All the blocks are free. */
850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869 }
870
871 /* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874 struct buffer *
875 allocate_buffer ()
876 {
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881 }
882
883 \f
884 /* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
893
894 #ifndef SYSTEM_MALLOC
895 #ifndef DOUG_LEA_MALLOC
896 extern void * (*__malloc_hook) P_ ((size_t));
897 extern void * (*__realloc_hook) P_ ((void *, size_t));
898 extern void (*__free_hook) P_ ((void *));
899 /* Else declared in malloc.h, perhaps with an extra arg. */
900 #endif /* DOUG_LEA_MALLOC */
901 static void * (*old_malloc_hook) ();
902 static void * (*old_realloc_hook) ();
903 static void (*old_free_hook) ();
904
905 /* This function is used as the hook for free to call. */
906
907 static void
908 emacs_blocked_free (ptr)
909 void *ptr;
910 {
911 BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 if (ptr)
915 {
916 struct mem_node *m;
917
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
931 #endif /* GC_MALLOC_CHECK */
932
933 __free_hook = old_free_hook;
934 free (ptr);
935
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
947
948 __free_hook = emacs_blocked_free;
949 UNBLOCK_INPUT;
950 }
951
952
953 /* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959 void
960 refill_memory_reserve ()
961 {
962 if (spare_memory == 0)
963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
964 }
965
966
967 /* This function is the malloc hook that Emacs uses. */
968
969 static void *
970 emacs_blocked_malloc (size)
971 size_t size;
972 {
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
977 #ifdef DOUG_LEA_MALLOC
978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
979 #else
980 __malloc_extra_blocks = malloc_hysteresis;
981 #endif
982
983 value = (void *) malloc (size);
984
985 #ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004 #endif /* GC_MALLOC_CHECK */
1005
1006 __malloc_hook = emacs_blocked_malloc;
1007 UNBLOCK_INPUT;
1008
1009 /* fprintf (stderr, "%p malloc\n", value); */
1010 return value;
1011 }
1012
1013
1014 /* This function is the realloc hook that Emacs uses. */
1015
1016 static void *
1017 emacs_blocked_realloc (ptr, size)
1018 void *ptr;
1019 size_t size;
1020 {
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
1040
1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1042
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045 #endif /* GC_MALLOC_CHECK */
1046
1047 value = (void *) realloc (ptr, size);
1048
1049 #ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
1063
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065 #endif /* GC_MALLOC_CHECK */
1066
1067 __realloc_hook = emacs_blocked_realloc;
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071 }
1072
1073
1074 /* Called from main to set up malloc to use our hooks. */
1075
1076 void
1077 uninterrupt_malloc ()
1078 {
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
1081 __free_hook = emacs_blocked_free;
1082
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
1085 __malloc_hook = emacs_blocked_malloc;
1086
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
1089 __realloc_hook = emacs_blocked_realloc;
1090 }
1091
1092 #endif /* not SYSTEM_MALLOC */
1093
1094
1095 \f
1096 /***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1099
1100 /* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
1103 #define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
1106 /* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
1109 struct interval_block
1110 {
1111 /* Place `intervals' first, to preserve alignment. */
1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
1113 struct interval_block *next;
1114 };
1115
1116 /* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
1119 struct interval_block *interval_block;
1120
1121 /* Index in interval_block above of the next unused interval
1122 structure. */
1123
1124 static int interval_block_index;
1125
1126 /* Number of free and live intervals. */
1127
1128 static int total_free_intervals, total_intervals;
1129
1130 /* List of free intervals. */
1131
1132 INTERVAL interval_free_list;
1133
1134 /* Total number of interval blocks now in use. */
1135
1136 int n_interval_blocks;
1137
1138
1139 /* Initialize interval allocation. */
1140
1141 static void
1142 init_intervals ()
1143 {
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
1146 interval_free_list = 0;
1147 n_interval_blocks = 0;
1148 }
1149
1150
1151 /* Return a new interval. */
1152
1153 INTERVAL
1154 make_interval ()
1155 {
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
1167 register struct interval_block *newi;
1168
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
1171
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
1175 n_interval_blocks++;
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
1180 intervals_consed++;
1181 RESET_INTERVAL (val);
1182 val->gcmarkbit = 0;
1183 return val;
1184 }
1185
1186
1187 /* Mark Lisp objects in interval I. */
1188
1189 static void
1190 mark_interval (i, dummy)
1191 register INTERVAL i;
1192 Lisp_Object dummy;
1193 {
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
1196 mark_object (i->plist);
1197 }
1198
1199
1200 /* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
1203 static void
1204 mark_interval_tree (tree)
1205 register INTERVAL tree;
1206 {
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
1212 }
1213
1214
1215 /* Mark the interval tree rooted in I. */
1216
1217 #define MARK_INTERVAL_TREE(i) \
1218 do { \
1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1220 mark_interval_tree (i); \
1221 } while (0)
1222
1223
1224 #define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
1227 (i) = balance_intervals (i); \
1228 } while (0)
1229
1230 \f
1231 /* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233 #ifndef make_number
1234 Lisp_Object
1235 make_number (n)
1236 int n;
1237 {
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242 }
1243 #endif
1244 \f
1245 /***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1248
1249 /* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
1251 added to a free-list string_free_list. When a new Lisp_String is
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
1255
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1259
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
1264
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
1271
1272 /* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
1274
1275 #define SBLOCK_SIZE 8188
1276
1277 /* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
1279
1280 #define LARGE_STRING_BYTES 1024
1281
1282 /* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285 struct sdata
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 #ifdef GC_CHECK_STRING_BYTES
1296
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
1299
1300 #define SDATA_NBYTES(S) (S)->nbytes
1301 #define SDATA_DATA(S) (S)->data
1302
1303 #else /* not GC_CHECK_STRING_BYTES */
1304
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
1313
1314
1315 #define SDATA_NBYTES(S) (S)->u.nbytes
1316 #define SDATA_DATA(S) (S)->u.data
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures, and how many there are. */
1367
1368 static struct string_block *string_blocks;
1369 static int n_string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static int total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static int total_string_size;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400 #else /* not GC_CHECK_STRING_BYTES */
1401
1402 #define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
1405 #endif /* not GC_CHECK_STRING_BYTES */
1406
1407 /* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
1411 #ifdef GC_CHECK_STRING_BYTES
1412
1413 #define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
1416 + sizeof (EMACS_INT) \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428 #endif /* not GC_CHECK_STRING_BYTES */
1429
1430 /* Initialize string allocation. Called from init_alloc_once. */
1431
1432 void
1433 init_strings ()
1434 {
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
1440 }
1441
1442
1443 #ifdef GC_CHECK_STRING_BYTES
1444
1445 static int check_string_bytes_count;
1446
1447 void check_string_bytes P_ ((int));
1448 void check_sblock P_ ((struct sblock *));
1449
1450 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453 /* Like GC_STRING_BYTES, but with debugging check. */
1454
1455 int
1456 string_bytes (s)
1457 struct Lisp_String *s;
1458 {
1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465 }
1466
1467 /* Check validity of Lisp strings' string_bytes member in B. */
1468
1469 void
1470 check_sblock (b)
1471 struct sblock *b;
1472 {
1473 struct sdata *from, *end, *from_end;
1474
1475 end = b->next_free;
1476
1477 for (from = &b->first_data; from < end; from = from_end)
1478 {
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
1482
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
1487
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
1492
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496 }
1497
1498
1499 /* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503 void
1504 check_string_bytes (all_p)
1505 int all_p;
1506 {
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
1516 }
1517
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
1520 }
1521 else
1522 check_sblock (current_sblock);
1523 }
1524
1525 #endif /* GC_CHECK_STRING_BYTES */
1526
1527
1528 /* Return a new Lisp_String. */
1529
1530 static struct Lisp_String *
1531 allocate_string ()
1532 {
1533 struct Lisp_String *s;
1534
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
1538 {
1539 struct string_block *b;
1540 int i;
1541
1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1549 {
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
1553 }
1554
1555 total_free_strings += STRING_BLOCK_SIZE;
1556 }
1557
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
1561
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
1564
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
1569
1570 #ifdef GC_CHECK_STRING_BYTES
1571 if (!noninteractive
1572 #ifdef MAC_OS8
1573 && current_sblock
1574 #endif
1575 )
1576 {
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
1584 }
1585 #endif /* GC_CHECK_STRING_BYTES */
1586
1587 return s;
1588 }
1589
1590
1591 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
1596
1597 void
1598 allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
1601 {
1602 struct sdata *data, *old_data;
1603 struct sblock *b;
1604 int needed, old_nbytes;
1605
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
1609
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1613
1614 #ifdef DOUG_LEA_MALLOC
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
1624 mallopt (M_MMAP_MAX, 0);
1625 #endif
1626
1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1628
1629 #ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632 #endif
1633
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
1661
1662 data = b->next_free;
1663 data->string = s;
1664 s->data = SDATA_DATA (data);
1665 #ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667 #endif
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
1672
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
1675 in it. */
1676 if (old_data)
1677 {
1678 SDATA_NBYTES (old_data) = old_nbytes;
1679 old_data->string = NULL;
1680 }
1681
1682 consing_since_gc += needed;
1683 }
1684
1685
1686 /* Sweep and compact strings. */
1687
1688 static void
1689 sweep_strings ()
1690 {
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
1693
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
1717
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
1732 #ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735 #else
1736 data->u.nbytes = GC_STRING_BYTES (s);
1737 #endif
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
1759 /* Free blocks that contain free Lisp_Strings only, except
1760 the first two of them. */
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779 }
1780
1781
1782 /* Free dead large strings. */
1783
1784 static void
1785 free_large_strings ()
1786 {
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
1789
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804 }
1805
1806
1807 /* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810 static void
1811 compact_small_strings ()
1812 {
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1830
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843 #endif /* GC_CHECK_STRING_BYTES */
1844
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
1848 nbytes = SDATA_NBYTES (from);
1849
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
1852
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
1866
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
1872 to->string->data = SDATA_DATA (to);
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892 }
1893
1894
1895 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1896 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1897 LENGTH must be an integer.
1898 INIT must be an integer that represents a character. */)
1899 (length, init)
1900 Lisp_Object length, init;
1901 {
1902 register Lisp_Object val;
1903 register unsigned char *p, *end;
1904 int c, nbytes;
1905
1906 CHECK_NATNUM (length);
1907 CHECK_NUMBER (init);
1908
1909 c = XINT (init);
1910 if (SINGLE_BYTE_CHAR_P (c))
1911 {
1912 nbytes = XINT (length);
1913 val = make_uninit_string (nbytes);
1914 p = SDATA (val);
1915 end = p + SCHARS (val);
1916 while (p != end)
1917 *p++ = c;
1918 }
1919 else
1920 {
1921 unsigned char str[MAX_MULTIBYTE_LENGTH];
1922 int len = CHAR_STRING (c, str);
1923
1924 nbytes = len * XINT (length);
1925 val = make_uninit_multibyte_string (XINT (length), nbytes);
1926 p = SDATA (val);
1927 end = p + nbytes;
1928 while (p != end)
1929 {
1930 bcopy (str, p, len);
1931 p += len;
1932 }
1933 }
1934
1935 *p = 0;
1936 return val;
1937 }
1938
1939
1940 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1941 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1942 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1943 (length, init)
1944 Lisp_Object length, init;
1945 {
1946 register Lisp_Object val;
1947 struct Lisp_Bool_Vector *p;
1948 int real_init, i;
1949 int length_in_chars, length_in_elts, bits_per_value;
1950
1951 CHECK_NATNUM (length);
1952
1953 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1954
1955 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1956 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1957 / BOOL_VECTOR_BITS_PER_CHAR);
1958
1959 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1960 slot `size' of the struct Lisp_Bool_Vector. */
1961 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1962 p = XBOOL_VECTOR (val);
1963
1964 /* Get rid of any bits that would cause confusion. */
1965 p->vector_size = 0;
1966 XSETBOOL_VECTOR (val, p);
1967 p->size = XFASTINT (length);
1968
1969 real_init = (NILP (init) ? 0 : -1);
1970 for (i = 0; i < length_in_chars ; i++)
1971 p->data[i] = real_init;
1972
1973 /* Clear the extraneous bits in the last byte. */
1974 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1975 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1976 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1977
1978 return val;
1979 }
1980
1981
1982 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1983 of characters from the contents. This string may be unibyte or
1984 multibyte, depending on the contents. */
1985
1986 Lisp_Object
1987 make_string (contents, nbytes)
1988 const char *contents;
1989 int nbytes;
1990 {
1991 register Lisp_Object val;
1992 int nchars, multibyte_nbytes;
1993
1994 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1995 if (nbytes == nchars || nbytes != multibyte_nbytes)
1996 /* CONTENTS contains no multibyte sequences or contains an invalid
1997 multibyte sequence. We must make unibyte string. */
1998 val = make_unibyte_string (contents, nbytes);
1999 else
2000 val = make_multibyte_string (contents, nchars, nbytes);
2001 return val;
2002 }
2003
2004
2005 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2006
2007 Lisp_Object
2008 make_unibyte_string (contents, length)
2009 const char *contents;
2010 int length;
2011 {
2012 register Lisp_Object val;
2013 val = make_uninit_string (length);
2014 bcopy (contents, SDATA (val), length);
2015 STRING_SET_UNIBYTE (val);
2016 return val;
2017 }
2018
2019
2020 /* Make a multibyte string from NCHARS characters occupying NBYTES
2021 bytes at CONTENTS. */
2022
2023 Lisp_Object
2024 make_multibyte_string (contents, nchars, nbytes)
2025 const char *contents;
2026 int nchars, nbytes;
2027 {
2028 register Lisp_Object val;
2029 val = make_uninit_multibyte_string (nchars, nbytes);
2030 bcopy (contents, SDATA (val), nbytes);
2031 return val;
2032 }
2033
2034
2035 /* Make a string from NCHARS characters occupying NBYTES bytes at
2036 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2037
2038 Lisp_Object
2039 make_string_from_bytes (contents, nchars, nbytes)
2040 const char *contents;
2041 int nchars, nbytes;
2042 {
2043 register Lisp_Object val;
2044 val = make_uninit_multibyte_string (nchars, nbytes);
2045 bcopy (contents, SDATA (val), nbytes);
2046 if (SBYTES (val) == SCHARS (val))
2047 STRING_SET_UNIBYTE (val);
2048 return val;
2049 }
2050
2051
2052 /* Make a string from NCHARS characters occupying NBYTES bytes at
2053 CONTENTS. The argument MULTIBYTE controls whether to label the
2054 string as multibyte. If NCHARS is negative, it counts the number of
2055 characters by itself. */
2056
2057 Lisp_Object
2058 make_specified_string (contents, nchars, nbytes, multibyte)
2059 const char *contents;
2060 int nchars, nbytes;
2061 int multibyte;
2062 {
2063 register Lisp_Object val;
2064
2065 if (nchars < 0)
2066 {
2067 if (multibyte)
2068 nchars = multibyte_chars_in_text (contents, nbytes);
2069 else
2070 nchars = nbytes;
2071 }
2072 val = make_uninit_multibyte_string (nchars, nbytes);
2073 bcopy (contents, SDATA (val), nbytes);
2074 if (!multibyte)
2075 STRING_SET_UNIBYTE (val);
2076 return val;
2077 }
2078
2079
2080 /* Make a string from the data at STR, treating it as multibyte if the
2081 data warrants. */
2082
2083 Lisp_Object
2084 build_string (str)
2085 const char *str;
2086 {
2087 return make_string (str, strlen (str));
2088 }
2089
2090
2091 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2092 occupying LENGTH bytes. */
2093
2094 Lisp_Object
2095 make_uninit_string (length)
2096 int length;
2097 {
2098 Lisp_Object val;
2099 val = make_uninit_multibyte_string (length, length);
2100 STRING_SET_UNIBYTE (val);
2101 return val;
2102 }
2103
2104
2105 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2106 which occupy NBYTES bytes. */
2107
2108 Lisp_Object
2109 make_uninit_multibyte_string (nchars, nbytes)
2110 int nchars, nbytes;
2111 {
2112 Lisp_Object string;
2113 struct Lisp_String *s;
2114
2115 if (nchars < 0)
2116 abort ();
2117
2118 s = allocate_string ();
2119 allocate_string_data (s, nchars, nbytes);
2120 XSETSTRING (string, s);
2121 string_chars_consed += nbytes;
2122 return string;
2123 }
2124
2125
2126 \f
2127 /***********************************************************************
2128 Float Allocation
2129 ***********************************************************************/
2130
2131 /* We store float cells inside of float_blocks, allocating a new
2132 float_block with malloc whenever necessary. Float cells reclaimed
2133 by GC are put on a free list to be reallocated before allocating
2134 any new float cells from the latest float_block. */
2135
2136 #define FLOAT_BLOCK_SIZE \
2137 (((BLOCK_BYTES - sizeof (struct float_block *) \
2138 /* The compiler might add padding at the end. */ \
2139 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2140 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2141
2142 #define GETMARKBIT(block,n) \
2143 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2144 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2145 & 1)
2146
2147 #define SETMARKBIT(block,n) \
2148 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2149 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2150
2151 #define UNSETMARKBIT(block,n) \
2152 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2153 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2154
2155 #define FLOAT_BLOCK(fptr) \
2156 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2157
2158 #define FLOAT_INDEX(fptr) \
2159 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2160
2161 struct float_block
2162 {
2163 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2164 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2165 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2166 struct float_block *next;
2167 };
2168
2169 #define FLOAT_MARKED_P(fptr) \
2170 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2171
2172 #define FLOAT_MARK(fptr) \
2173 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2174
2175 #define FLOAT_UNMARK(fptr) \
2176 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2177
2178 /* Current float_block. */
2179
2180 struct float_block *float_block;
2181
2182 /* Index of first unused Lisp_Float in the current float_block. */
2183
2184 int float_block_index;
2185
2186 /* Total number of float blocks now in use. */
2187
2188 int n_float_blocks;
2189
2190 /* Free-list of Lisp_Floats. */
2191
2192 struct Lisp_Float *float_free_list;
2193
2194
2195 /* Initialize float allocation. */
2196
2197 void
2198 init_float ()
2199 {
2200 float_block = NULL;
2201 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2202 float_free_list = 0;
2203 n_float_blocks = 0;
2204 }
2205
2206
2207 /* Explicitly free a float cell by putting it on the free-list. */
2208
2209 void
2210 free_float (ptr)
2211 struct Lisp_Float *ptr;
2212 {
2213 *(struct Lisp_Float **)&ptr->data = float_free_list;
2214 float_free_list = ptr;
2215 }
2216
2217
2218 /* Return a new float object with value FLOAT_VALUE. */
2219
2220 Lisp_Object
2221 make_float (float_value)
2222 double float_value;
2223 {
2224 register Lisp_Object val;
2225
2226 if (float_free_list)
2227 {
2228 /* We use the data field for chaining the free list
2229 so that we won't use the same field that has the mark bit. */
2230 XSETFLOAT (val, float_free_list);
2231 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2232 }
2233 else
2234 {
2235 if (float_block_index == FLOAT_BLOCK_SIZE)
2236 {
2237 register struct float_block *new;
2238
2239 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2240 MEM_TYPE_FLOAT);
2241 new->next = float_block;
2242 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2243 float_block = new;
2244 float_block_index = 0;
2245 n_float_blocks++;
2246 }
2247 XSETFLOAT (val, &float_block->floats[float_block_index]);
2248 float_block_index++;
2249 }
2250
2251 XFLOAT_DATA (val) = float_value;
2252 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2253 consing_since_gc += sizeof (struct Lisp_Float);
2254 floats_consed++;
2255 return val;
2256 }
2257
2258
2259 \f
2260 /***********************************************************************
2261 Cons Allocation
2262 ***********************************************************************/
2263
2264 /* We store cons cells inside of cons_blocks, allocating a new
2265 cons_block with malloc whenever necessary. Cons cells reclaimed by
2266 GC are put on a free list to be reallocated before allocating
2267 any new cons cells from the latest cons_block. */
2268
2269 #define CONS_BLOCK_SIZE \
2270 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2271 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2272
2273 #define CONS_BLOCK(fptr) \
2274 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276 #define CONS_INDEX(fptr) \
2277 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2278
2279 struct cons_block
2280 {
2281 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2282 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2283 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2284 struct cons_block *next;
2285 };
2286
2287 #define CONS_MARKED_P(fptr) \
2288 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2289
2290 #define CONS_MARK(fptr) \
2291 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2292
2293 #define CONS_UNMARK(fptr) \
2294 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2295
2296 /* Current cons_block. */
2297
2298 struct cons_block *cons_block;
2299
2300 /* Index of first unused Lisp_Cons in the current block. */
2301
2302 int cons_block_index;
2303
2304 /* Free-list of Lisp_Cons structures. */
2305
2306 struct Lisp_Cons *cons_free_list;
2307
2308 /* Total number of cons blocks now in use. */
2309
2310 int n_cons_blocks;
2311
2312
2313 /* Initialize cons allocation. */
2314
2315 void
2316 init_cons ()
2317 {
2318 cons_block = NULL;
2319 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2320 cons_free_list = 0;
2321 n_cons_blocks = 0;
2322 }
2323
2324
2325 /* Explicitly free a cons cell by putting it on the free-list. */
2326
2327 void
2328 free_cons (ptr)
2329 struct Lisp_Cons *ptr;
2330 {
2331 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2332 #if GC_MARK_STACK
2333 ptr->car = Vdead;
2334 #endif
2335 cons_free_list = ptr;
2336 }
2337
2338 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2339 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2340 (car, cdr)
2341 Lisp_Object car, cdr;
2342 {
2343 register Lisp_Object val;
2344
2345 if (cons_free_list)
2346 {
2347 /* We use the cdr for chaining the free list
2348 so that we won't use the same field that has the mark bit. */
2349 XSETCONS (val, cons_free_list);
2350 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2351 }
2352 else
2353 {
2354 if (cons_block_index == CONS_BLOCK_SIZE)
2355 {
2356 register struct cons_block *new;
2357 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2358 MEM_TYPE_CONS);
2359 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2360 new->next = cons_block;
2361 cons_block = new;
2362 cons_block_index = 0;
2363 n_cons_blocks++;
2364 }
2365 XSETCONS (val, &cons_block->conses[cons_block_index]);
2366 cons_block_index++;
2367 }
2368
2369 XSETCAR (val, car);
2370 XSETCDR (val, cdr);
2371 eassert (!CONS_MARKED_P (XCONS (val)));
2372 consing_since_gc += sizeof (struct Lisp_Cons);
2373 cons_cells_consed++;
2374 return val;
2375 }
2376
2377
2378 /* Make a list of 2, 3, 4 or 5 specified objects. */
2379
2380 Lisp_Object
2381 list2 (arg1, arg2)
2382 Lisp_Object arg1, arg2;
2383 {
2384 return Fcons (arg1, Fcons (arg2, Qnil));
2385 }
2386
2387
2388 Lisp_Object
2389 list3 (arg1, arg2, arg3)
2390 Lisp_Object arg1, arg2, arg3;
2391 {
2392 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2393 }
2394
2395
2396 Lisp_Object
2397 list4 (arg1, arg2, arg3, arg4)
2398 Lisp_Object arg1, arg2, arg3, arg4;
2399 {
2400 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2401 }
2402
2403
2404 Lisp_Object
2405 list5 (arg1, arg2, arg3, arg4, arg5)
2406 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2407 {
2408 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2409 Fcons (arg5, Qnil)))));
2410 }
2411
2412
2413 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2414 doc: /* Return a newly created list with specified arguments as elements.
2415 Any number of arguments, even zero arguments, are allowed.
2416 usage: (list &rest OBJECTS) */)
2417 (nargs, args)
2418 int nargs;
2419 register Lisp_Object *args;
2420 {
2421 register Lisp_Object val;
2422 val = Qnil;
2423
2424 while (nargs > 0)
2425 {
2426 nargs--;
2427 val = Fcons (args[nargs], val);
2428 }
2429 return val;
2430 }
2431
2432
2433 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2434 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2435 (length, init)
2436 register Lisp_Object length, init;
2437 {
2438 register Lisp_Object val;
2439 register int size;
2440
2441 CHECK_NATNUM (length);
2442 size = XFASTINT (length);
2443
2444 val = Qnil;
2445 while (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
2454
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
2459
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469 }
2470 }
2471 }
2472 }
2473
2474 QUIT;
2475 }
2476
2477 return val;
2478 }
2479
2480
2481 \f
2482 /***********************************************************************
2483 Vector Allocation
2484 ***********************************************************************/
2485
2486 /* Singly-linked list of all vectors. */
2487
2488 struct Lisp_Vector *all_vectors;
2489
2490 /* Total number of vector-like objects now in use. */
2491
2492 int n_vectors;
2493
2494
2495 /* Value is a pointer to a newly allocated Lisp_Vector structure
2496 with room for LEN Lisp_Objects. */
2497
2498 static struct Lisp_Vector *
2499 allocate_vectorlike (len, type)
2500 EMACS_INT len;
2501 enum mem_type type;
2502 {
2503 struct Lisp_Vector *p;
2504 size_t nbytes;
2505
2506 #ifdef DOUG_LEA_MALLOC
2507 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2508 because mapped region contents are not preserved in
2509 a dumped Emacs. */
2510 BLOCK_INPUT;
2511 mallopt (M_MMAP_MAX, 0);
2512 UNBLOCK_INPUT;
2513 #endif
2514
2515 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2516 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2517
2518 #ifdef DOUG_LEA_MALLOC
2519 /* Back to a reasonable maximum of mmap'ed areas. */
2520 BLOCK_INPUT;
2521 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2522 UNBLOCK_INPUT;
2523 #endif
2524
2525 consing_since_gc += nbytes;
2526 vector_cells_consed += len;
2527
2528 p->next = all_vectors;
2529 all_vectors = p;
2530 ++n_vectors;
2531 return p;
2532 }
2533
2534
2535 /* Allocate a vector with NSLOTS slots. */
2536
2537 struct Lisp_Vector *
2538 allocate_vector (nslots)
2539 EMACS_INT nslots;
2540 {
2541 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2542 v->size = nslots;
2543 return v;
2544 }
2545
2546
2547 /* Allocate other vector-like structures. */
2548
2549 struct Lisp_Hash_Table *
2550 allocate_hash_table ()
2551 {
2552 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2553 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2554 EMACS_INT i;
2555
2556 v->size = len;
2557 for (i = 0; i < len; ++i)
2558 v->contents[i] = Qnil;
2559
2560 return (struct Lisp_Hash_Table *) v;
2561 }
2562
2563
2564 struct window *
2565 allocate_window ()
2566 {
2567 EMACS_INT len = VECSIZE (struct window);
2568 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2569 EMACS_INT i;
2570
2571 for (i = 0; i < len; ++i)
2572 v->contents[i] = Qnil;
2573 v->size = len;
2574
2575 return (struct window *) v;
2576 }
2577
2578
2579 struct frame *
2580 allocate_frame ()
2581 {
2582 EMACS_INT len = VECSIZE (struct frame);
2583 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2584 EMACS_INT i;
2585
2586 for (i = 0; i < len; ++i)
2587 v->contents[i] = make_number (0);
2588 v->size = len;
2589 return (struct frame *) v;
2590 }
2591
2592
2593 struct Lisp_Process *
2594 allocate_process ()
2595 {
2596 EMACS_INT len = VECSIZE (struct Lisp_Process);
2597 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2598 EMACS_INT i;
2599
2600 for (i = 0; i < len; ++i)
2601 v->contents[i] = Qnil;
2602 v->size = len;
2603
2604 return (struct Lisp_Process *) v;
2605 }
2606
2607
2608 struct Lisp_Vector *
2609 allocate_other_vector (len)
2610 EMACS_INT len;
2611 {
2612 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2613 EMACS_INT i;
2614
2615 for (i = 0; i < len; ++i)
2616 v->contents[i] = Qnil;
2617 v->size = len;
2618
2619 return v;
2620 }
2621
2622
2623 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2624 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2625 See also the function `vector'. */)
2626 (length, init)
2627 register Lisp_Object length, init;
2628 {
2629 Lisp_Object vector;
2630 register EMACS_INT sizei;
2631 register int index;
2632 register struct Lisp_Vector *p;
2633
2634 CHECK_NATNUM (length);
2635 sizei = XFASTINT (length);
2636
2637 p = allocate_vector (sizei);
2638 for (index = 0; index < sizei; index++)
2639 p->contents[index] = init;
2640
2641 XSETVECTOR (vector, p);
2642 return vector;
2643 }
2644
2645
2646 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2647 doc: /* Return a newly created char-table, with purpose PURPOSE.
2648 Each element is initialized to INIT, which defaults to nil.
2649 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2650 The property's value should be an integer between 0 and 10. */)
2651 (purpose, init)
2652 register Lisp_Object purpose, init;
2653 {
2654 Lisp_Object vector;
2655 Lisp_Object n;
2656 CHECK_SYMBOL (purpose);
2657 n = Fget (purpose, Qchar_table_extra_slots);
2658 CHECK_NUMBER (n);
2659 if (XINT (n) < 0 || XINT (n) > 10)
2660 args_out_of_range (n, Qnil);
2661 /* Add 2 to the size for the defalt and parent slots. */
2662 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2663 init);
2664 XCHAR_TABLE (vector)->top = Qt;
2665 XCHAR_TABLE (vector)->parent = Qnil;
2666 XCHAR_TABLE (vector)->purpose = purpose;
2667 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2668 return vector;
2669 }
2670
2671
2672 /* Return a newly created sub char table with default value DEFALT.
2673 Since a sub char table does not appear as a top level Emacs Lisp
2674 object, we don't need a Lisp interface to make it. */
2675
2676 Lisp_Object
2677 make_sub_char_table (defalt)
2678 Lisp_Object defalt;
2679 {
2680 Lisp_Object vector
2681 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2682 XCHAR_TABLE (vector)->top = Qnil;
2683 XCHAR_TABLE (vector)->defalt = defalt;
2684 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2685 return vector;
2686 }
2687
2688
2689 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2690 doc: /* Return a newly created vector with specified arguments as elements.
2691 Any number of arguments, even zero arguments, are allowed.
2692 usage: (vector &rest OBJECTS) */)
2693 (nargs, args)
2694 register int nargs;
2695 Lisp_Object *args;
2696 {
2697 register Lisp_Object len, val;
2698 register int index;
2699 register struct Lisp_Vector *p;
2700
2701 XSETFASTINT (len, nargs);
2702 val = Fmake_vector (len, Qnil);
2703 p = XVECTOR (val);
2704 for (index = 0; index < nargs; index++)
2705 p->contents[index] = args[index];
2706 return val;
2707 }
2708
2709
2710 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2711 doc: /* Create a byte-code object with specified arguments as elements.
2712 The arguments should be the arglist, bytecode-string, constant vector,
2713 stack size, (optional) doc string, and (optional) interactive spec.
2714 The first four arguments are required; at most six have any
2715 significance.
2716 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2717 (nargs, args)
2718 register int nargs;
2719 Lisp_Object *args;
2720 {
2721 register Lisp_Object len, val;
2722 register int index;
2723 register struct Lisp_Vector *p;
2724
2725 XSETFASTINT (len, nargs);
2726 if (!NILP (Vpurify_flag))
2727 val = make_pure_vector ((EMACS_INT) nargs);
2728 else
2729 val = Fmake_vector (len, Qnil);
2730
2731 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2732 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2733 earlier because they produced a raw 8-bit string for byte-code
2734 and now such a byte-code string is loaded as multibyte while
2735 raw 8-bit characters converted to multibyte form. Thus, now we
2736 must convert them back to the original unibyte form. */
2737 args[1] = Fstring_as_unibyte (args[1]);
2738
2739 p = XVECTOR (val);
2740 for (index = 0; index < nargs; index++)
2741 {
2742 if (!NILP (Vpurify_flag))
2743 args[index] = Fpurecopy (args[index]);
2744 p->contents[index] = args[index];
2745 }
2746 XSETCOMPILED (val, p);
2747 return val;
2748 }
2749
2750
2751 \f
2752 /***********************************************************************
2753 Symbol Allocation
2754 ***********************************************************************/
2755
2756 /* Each symbol_block is just under 1020 bytes long, since malloc
2757 really allocates in units of powers of two and uses 4 bytes for its
2758 own overhead. */
2759
2760 #define SYMBOL_BLOCK_SIZE \
2761 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2762
2763 struct symbol_block
2764 {
2765 /* Place `symbols' first, to preserve alignment. */
2766 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2767 struct symbol_block *next;
2768 };
2769
2770 /* Current symbol block and index of first unused Lisp_Symbol
2771 structure in it. */
2772
2773 struct symbol_block *symbol_block;
2774 int symbol_block_index;
2775
2776 /* List of free symbols. */
2777
2778 struct Lisp_Symbol *symbol_free_list;
2779
2780 /* Total number of symbol blocks now in use. */
2781
2782 int n_symbol_blocks;
2783
2784
2785 /* Initialize symbol allocation. */
2786
2787 void
2788 init_symbol ()
2789 {
2790 symbol_block = NULL;
2791 symbol_block_index = SYMBOL_BLOCK_SIZE;
2792 symbol_free_list = 0;
2793 n_symbol_blocks = 0;
2794 }
2795
2796
2797 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2798 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2799 Its value and function definition are void, and its property list is nil. */)
2800 (name)
2801 Lisp_Object name;
2802 {
2803 register Lisp_Object val;
2804 register struct Lisp_Symbol *p;
2805
2806 CHECK_STRING (name);
2807
2808 if (symbol_free_list)
2809 {
2810 XSETSYMBOL (val, symbol_free_list);
2811 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2812 }
2813 else
2814 {
2815 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2816 {
2817 struct symbol_block *new;
2818 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2819 MEM_TYPE_SYMBOL);
2820 new->next = symbol_block;
2821 symbol_block = new;
2822 symbol_block_index = 0;
2823 n_symbol_blocks++;
2824 }
2825 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2826 symbol_block_index++;
2827 }
2828
2829 p = XSYMBOL (val);
2830 p->xname = name;
2831 p->plist = Qnil;
2832 p->value = Qunbound;
2833 p->function = Qunbound;
2834 p->next = NULL;
2835 p->gcmarkbit = 0;
2836 p->interned = SYMBOL_UNINTERNED;
2837 p->constant = 0;
2838 p->indirect_variable = 0;
2839 consing_since_gc += sizeof (struct Lisp_Symbol);
2840 symbols_consed++;
2841 return val;
2842 }
2843
2844
2845 \f
2846 /***********************************************************************
2847 Marker (Misc) Allocation
2848 ***********************************************************************/
2849
2850 /* Allocation of markers and other objects that share that structure.
2851 Works like allocation of conses. */
2852
2853 #define MARKER_BLOCK_SIZE \
2854 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2855
2856 struct marker_block
2857 {
2858 /* Place `markers' first, to preserve alignment. */
2859 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2860 struct marker_block *next;
2861 };
2862
2863 struct marker_block *marker_block;
2864 int marker_block_index;
2865
2866 union Lisp_Misc *marker_free_list;
2867
2868 /* Total number of marker blocks now in use. */
2869
2870 int n_marker_blocks;
2871
2872 void
2873 init_marker ()
2874 {
2875 marker_block = NULL;
2876 marker_block_index = MARKER_BLOCK_SIZE;
2877 marker_free_list = 0;
2878 n_marker_blocks = 0;
2879 }
2880
2881 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2882
2883 Lisp_Object
2884 allocate_misc ()
2885 {
2886 Lisp_Object val;
2887
2888 if (marker_free_list)
2889 {
2890 XSETMISC (val, marker_free_list);
2891 marker_free_list = marker_free_list->u_free.chain;
2892 }
2893 else
2894 {
2895 if (marker_block_index == MARKER_BLOCK_SIZE)
2896 {
2897 struct marker_block *new;
2898 new = (struct marker_block *) lisp_malloc (sizeof *new,
2899 MEM_TYPE_MISC);
2900 new->next = marker_block;
2901 marker_block = new;
2902 marker_block_index = 0;
2903 n_marker_blocks++;
2904 }
2905 XSETMISC (val, &marker_block->markers[marker_block_index]);
2906 marker_block_index++;
2907 }
2908
2909 consing_since_gc += sizeof (union Lisp_Misc);
2910 misc_objects_consed++;
2911 XMARKER (val)->gcmarkbit = 0;
2912 return val;
2913 }
2914
2915 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2916 INTEGER. This is used to package C values to call record_unwind_protect.
2917 The unwind function can get the C values back using XSAVE_VALUE. */
2918
2919 Lisp_Object
2920 make_save_value (pointer, integer)
2921 void *pointer;
2922 int integer;
2923 {
2924 register Lisp_Object val;
2925 register struct Lisp_Save_Value *p;
2926
2927 val = allocate_misc ();
2928 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2929 p = XSAVE_VALUE (val);
2930 p->pointer = pointer;
2931 p->integer = integer;
2932 return val;
2933 }
2934
2935 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2936 doc: /* Return a newly allocated marker which does not point at any place. */)
2937 ()
2938 {
2939 register Lisp_Object val;
2940 register struct Lisp_Marker *p;
2941
2942 val = allocate_misc ();
2943 XMISCTYPE (val) = Lisp_Misc_Marker;
2944 p = XMARKER (val);
2945 p->buffer = 0;
2946 p->bytepos = 0;
2947 p->charpos = 0;
2948 p->next = NULL;
2949 p->insertion_type = 0;
2950 return val;
2951 }
2952
2953 /* Put MARKER back on the free list after using it temporarily. */
2954
2955 void
2956 free_marker (marker)
2957 Lisp_Object marker;
2958 {
2959 unchain_marker (XMARKER (marker));
2960
2961 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2962 XMISC (marker)->u_free.chain = marker_free_list;
2963 marker_free_list = XMISC (marker);
2964
2965 total_free_markers++;
2966 }
2967
2968 \f
2969 /* Return a newly created vector or string with specified arguments as
2970 elements. If all the arguments are characters that can fit
2971 in a string of events, make a string; otherwise, make a vector.
2972
2973 Any number of arguments, even zero arguments, are allowed. */
2974
2975 Lisp_Object
2976 make_event_array (nargs, args)
2977 register int nargs;
2978 Lisp_Object *args;
2979 {
2980 int i;
2981
2982 for (i = 0; i < nargs; i++)
2983 /* The things that fit in a string
2984 are characters that are in 0...127,
2985 after discarding the meta bit and all the bits above it. */
2986 if (!INTEGERP (args[i])
2987 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2988 return Fvector (nargs, args);
2989
2990 /* Since the loop exited, we know that all the things in it are
2991 characters, so we can make a string. */
2992 {
2993 Lisp_Object result;
2994
2995 result = Fmake_string (make_number (nargs), make_number (0));
2996 for (i = 0; i < nargs; i++)
2997 {
2998 SSET (result, i, XINT (args[i]));
2999 /* Move the meta bit to the right place for a string char. */
3000 if (XINT (args[i]) & CHAR_META)
3001 SSET (result, i, SREF (result, i) | 0x80);
3002 }
3003
3004 return result;
3005 }
3006 }
3007
3008
3009 \f
3010 /************************************************************************
3011 C Stack Marking
3012 ************************************************************************/
3013
3014 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3015
3016 /* Conservative C stack marking requires a method to identify possibly
3017 live Lisp objects given a pointer value. We do this by keeping
3018 track of blocks of Lisp data that are allocated in a red-black tree
3019 (see also the comment of mem_node which is the type of nodes in
3020 that tree). Function lisp_malloc adds information for an allocated
3021 block to the red-black tree with calls to mem_insert, and function
3022 lisp_free removes it with mem_delete. Functions live_string_p etc
3023 call mem_find to lookup information about a given pointer in the
3024 tree, and use that to determine if the pointer points to a Lisp
3025 object or not. */
3026
3027 /* Initialize this part of alloc.c. */
3028
3029 static void
3030 mem_init ()
3031 {
3032 mem_z.left = mem_z.right = MEM_NIL;
3033 mem_z.parent = NULL;
3034 mem_z.color = MEM_BLACK;
3035 mem_z.start = mem_z.end = NULL;
3036 mem_root = MEM_NIL;
3037 }
3038
3039
3040 /* Value is a pointer to the mem_node containing START. Value is
3041 MEM_NIL if there is no node in the tree containing START. */
3042
3043 static INLINE struct mem_node *
3044 mem_find (start)
3045 void *start;
3046 {
3047 struct mem_node *p;
3048
3049 if (start < min_heap_address || start > max_heap_address)
3050 return MEM_NIL;
3051
3052 /* Make the search always successful to speed up the loop below. */
3053 mem_z.start = start;
3054 mem_z.end = (char *) start + 1;
3055
3056 p = mem_root;
3057 while (start < p->start || start >= p->end)
3058 p = start < p->start ? p->left : p->right;
3059 return p;
3060 }
3061
3062
3063 /* Insert a new node into the tree for a block of memory with start
3064 address START, end address END, and type TYPE. Value is a
3065 pointer to the node that was inserted. */
3066
3067 static struct mem_node *
3068 mem_insert (start, end, type)
3069 void *start, *end;
3070 enum mem_type type;
3071 {
3072 struct mem_node *c, *parent, *x;
3073
3074 if (start < min_heap_address)
3075 min_heap_address = start;
3076 if (end > max_heap_address)
3077 max_heap_address = end;
3078
3079 /* See where in the tree a node for START belongs. In this
3080 particular application, it shouldn't happen that a node is already
3081 present. For debugging purposes, let's check that. */
3082 c = mem_root;
3083 parent = NULL;
3084
3085 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3086
3087 while (c != MEM_NIL)
3088 {
3089 if (start >= c->start && start < c->end)
3090 abort ();
3091 parent = c;
3092 c = start < c->start ? c->left : c->right;
3093 }
3094
3095 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3096
3097 while (c != MEM_NIL)
3098 {
3099 parent = c;
3100 c = start < c->start ? c->left : c->right;
3101 }
3102
3103 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3104
3105 /* Create a new node. */
3106 #ifdef GC_MALLOC_CHECK
3107 x = (struct mem_node *) _malloc_internal (sizeof *x);
3108 if (x == NULL)
3109 abort ();
3110 #else
3111 x = (struct mem_node *) xmalloc (sizeof *x);
3112 #endif
3113 x->start = start;
3114 x->end = end;
3115 x->type = type;
3116 x->parent = parent;
3117 x->left = x->right = MEM_NIL;
3118 x->color = MEM_RED;
3119
3120 /* Insert it as child of PARENT or install it as root. */
3121 if (parent)
3122 {
3123 if (start < parent->start)
3124 parent->left = x;
3125 else
3126 parent->right = x;
3127 }
3128 else
3129 mem_root = x;
3130
3131 /* Re-establish red-black tree properties. */
3132 mem_insert_fixup (x);
3133
3134 return x;
3135 }
3136
3137
3138 /* Re-establish the red-black properties of the tree, and thereby
3139 balance the tree, after node X has been inserted; X is always red. */
3140
3141 static void
3142 mem_insert_fixup (x)
3143 struct mem_node *x;
3144 {
3145 while (x != mem_root && x->parent->color == MEM_RED)
3146 {
3147 /* X is red and its parent is red. This is a violation of
3148 red-black tree property #3. */
3149
3150 if (x->parent == x->parent->parent->left)
3151 {
3152 /* We're on the left side of our grandparent, and Y is our
3153 "uncle". */
3154 struct mem_node *y = x->parent->parent->right;
3155
3156 if (y->color == MEM_RED)
3157 {
3158 /* Uncle and parent are red but should be black because
3159 X is red. Change the colors accordingly and proceed
3160 with the grandparent. */
3161 x->parent->color = MEM_BLACK;
3162 y->color = MEM_BLACK;
3163 x->parent->parent->color = MEM_RED;
3164 x = x->parent->parent;
3165 }
3166 else
3167 {
3168 /* Parent and uncle have different colors; parent is
3169 red, uncle is black. */
3170 if (x == x->parent->right)
3171 {
3172 x = x->parent;
3173 mem_rotate_left (x);
3174 }
3175
3176 x->parent->color = MEM_BLACK;
3177 x->parent->parent->color = MEM_RED;
3178 mem_rotate_right (x->parent->parent);
3179 }
3180 }
3181 else
3182 {
3183 /* This is the symmetrical case of above. */
3184 struct mem_node *y = x->parent->parent->left;
3185
3186 if (y->color == MEM_RED)
3187 {
3188 x->parent->color = MEM_BLACK;
3189 y->color = MEM_BLACK;
3190 x->parent->parent->color = MEM_RED;
3191 x = x->parent->parent;
3192 }
3193 else
3194 {
3195 if (x == x->parent->left)
3196 {
3197 x = x->parent;
3198 mem_rotate_right (x);
3199 }
3200
3201 x->parent->color = MEM_BLACK;
3202 x->parent->parent->color = MEM_RED;
3203 mem_rotate_left (x->parent->parent);
3204 }
3205 }
3206 }
3207
3208 /* The root may have been changed to red due to the algorithm. Set
3209 it to black so that property #5 is satisfied. */
3210 mem_root->color = MEM_BLACK;
3211 }
3212
3213
3214 /* (x) (y)
3215 / \ / \
3216 a (y) ===> (x) c
3217 / \ / \
3218 b c a b */
3219
3220 static void
3221 mem_rotate_left (x)
3222 struct mem_node *x;
3223 {
3224 struct mem_node *y;
3225
3226 /* Turn y's left sub-tree into x's right sub-tree. */
3227 y = x->right;
3228 x->right = y->left;
3229 if (y->left != MEM_NIL)
3230 y->left->parent = x;
3231
3232 /* Y's parent was x's parent. */
3233 if (y != MEM_NIL)
3234 y->parent = x->parent;
3235
3236 /* Get the parent to point to y instead of x. */
3237 if (x->parent)
3238 {
3239 if (x == x->parent->left)
3240 x->parent->left = y;
3241 else
3242 x->parent->right = y;
3243 }
3244 else
3245 mem_root = y;
3246
3247 /* Put x on y's left. */
3248 y->left = x;
3249 if (x != MEM_NIL)
3250 x->parent = y;
3251 }
3252
3253
3254 /* (x) (Y)
3255 / \ / \
3256 (y) c ===> a (x)
3257 / \ / \
3258 a b b c */
3259
3260 static void
3261 mem_rotate_right (x)
3262 struct mem_node *x;
3263 {
3264 struct mem_node *y = x->left;
3265
3266 x->left = y->right;
3267 if (y->right != MEM_NIL)
3268 y->right->parent = x;
3269
3270 if (y != MEM_NIL)
3271 y->parent = x->parent;
3272 if (x->parent)
3273 {
3274 if (x == x->parent->right)
3275 x->parent->right = y;
3276 else
3277 x->parent->left = y;
3278 }
3279 else
3280 mem_root = y;
3281
3282 y->right = x;
3283 if (x != MEM_NIL)
3284 x->parent = y;
3285 }
3286
3287
3288 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3289
3290 static void
3291 mem_delete (z)
3292 struct mem_node *z;
3293 {
3294 struct mem_node *x, *y;
3295
3296 if (!z || z == MEM_NIL)
3297 return;
3298
3299 if (z->left == MEM_NIL || z->right == MEM_NIL)
3300 y = z;
3301 else
3302 {
3303 y = z->right;
3304 while (y->left != MEM_NIL)
3305 y = y->left;
3306 }
3307
3308 if (y->left != MEM_NIL)
3309 x = y->left;
3310 else
3311 x = y->right;
3312
3313 x->parent = y->parent;
3314 if (y->parent)
3315 {
3316 if (y == y->parent->left)
3317 y->parent->left = x;
3318 else
3319 y->parent->right = x;
3320 }
3321 else
3322 mem_root = x;
3323
3324 if (y != z)
3325 {
3326 z->start = y->start;
3327 z->end = y->end;
3328 z->type = y->type;
3329 }
3330
3331 if (y->color == MEM_BLACK)
3332 mem_delete_fixup (x);
3333
3334 #ifdef GC_MALLOC_CHECK
3335 _free_internal (y);
3336 #else
3337 xfree (y);
3338 #endif
3339 }
3340
3341
3342 /* Re-establish the red-black properties of the tree, after a
3343 deletion. */
3344
3345 static void
3346 mem_delete_fixup (x)
3347 struct mem_node *x;
3348 {
3349 while (x != mem_root && x->color == MEM_BLACK)
3350 {
3351 if (x == x->parent->left)
3352 {
3353 struct mem_node *w = x->parent->right;
3354
3355 if (w->color == MEM_RED)
3356 {
3357 w->color = MEM_BLACK;
3358 x->parent->color = MEM_RED;
3359 mem_rotate_left (x->parent);
3360 w = x->parent->right;
3361 }
3362
3363 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3364 {
3365 w->color = MEM_RED;
3366 x = x->parent;
3367 }
3368 else
3369 {
3370 if (w->right->color == MEM_BLACK)
3371 {
3372 w->left->color = MEM_BLACK;
3373 w->color = MEM_RED;
3374 mem_rotate_right (w);
3375 w = x->parent->right;
3376 }
3377 w->color = x->parent->color;
3378 x->parent->color = MEM_BLACK;
3379 w->right->color = MEM_BLACK;
3380 mem_rotate_left (x->parent);
3381 x = mem_root;
3382 }
3383 }
3384 else
3385 {
3386 struct mem_node *w = x->parent->left;
3387
3388 if (w->color == MEM_RED)
3389 {
3390 w->color = MEM_BLACK;
3391 x->parent->color = MEM_RED;
3392 mem_rotate_right (x->parent);
3393 w = x->parent->left;
3394 }
3395
3396 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3397 {
3398 w->color = MEM_RED;
3399 x = x->parent;
3400 }
3401 else
3402 {
3403 if (w->left->color == MEM_BLACK)
3404 {
3405 w->right->color = MEM_BLACK;
3406 w->color = MEM_RED;
3407 mem_rotate_left (w);
3408 w = x->parent->left;
3409 }
3410
3411 w->color = x->parent->color;
3412 x->parent->color = MEM_BLACK;
3413 w->left->color = MEM_BLACK;
3414 mem_rotate_right (x->parent);
3415 x = mem_root;
3416 }
3417 }
3418 }
3419
3420 x->color = MEM_BLACK;
3421 }
3422
3423
3424 /* Value is non-zero if P is a pointer to a live Lisp string on
3425 the heap. M is a pointer to the mem_block for P. */
3426
3427 static INLINE int
3428 live_string_p (m, p)
3429 struct mem_node *m;
3430 void *p;
3431 {
3432 if (m->type == MEM_TYPE_STRING)
3433 {
3434 struct string_block *b = (struct string_block *) m->start;
3435 int offset = (char *) p - (char *) &b->strings[0];
3436
3437 /* P must point to the start of a Lisp_String structure, and it
3438 must not be on the free-list. */
3439 return (offset >= 0
3440 && offset % sizeof b->strings[0] == 0
3441 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3442 && ((struct Lisp_String *) p)->data != NULL);
3443 }
3444 else
3445 return 0;
3446 }
3447
3448
3449 /* Value is non-zero if P is a pointer to a live Lisp cons on
3450 the heap. M is a pointer to the mem_block for P. */
3451
3452 static INLINE int
3453 live_cons_p (m, p)
3454 struct mem_node *m;
3455 void *p;
3456 {
3457 if (m->type == MEM_TYPE_CONS)
3458 {
3459 struct cons_block *b = (struct cons_block *) m->start;
3460 int offset = (char *) p - (char *) &b->conses[0];
3461
3462 /* P must point to the start of a Lisp_Cons, not be
3463 one of the unused cells in the current cons block,
3464 and not be on the free-list. */
3465 return (offset >= 0
3466 && offset % sizeof b->conses[0] == 0
3467 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3468 && (b != cons_block
3469 || offset / sizeof b->conses[0] < cons_block_index)
3470 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3471 }
3472 else
3473 return 0;
3474 }
3475
3476
3477 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3478 the heap. M is a pointer to the mem_block for P. */
3479
3480 static INLINE int
3481 live_symbol_p (m, p)
3482 struct mem_node *m;
3483 void *p;
3484 {
3485 if (m->type == MEM_TYPE_SYMBOL)
3486 {
3487 struct symbol_block *b = (struct symbol_block *) m->start;
3488 int offset = (char *) p - (char *) &b->symbols[0];
3489
3490 /* P must point to the start of a Lisp_Symbol, not be
3491 one of the unused cells in the current symbol block,
3492 and not be on the free-list. */
3493 return (offset >= 0
3494 && offset % sizeof b->symbols[0] == 0
3495 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3496 && (b != symbol_block
3497 || offset / sizeof b->symbols[0] < symbol_block_index)
3498 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3499 }
3500 else
3501 return 0;
3502 }
3503
3504
3505 /* Value is non-zero if P is a pointer to a live Lisp float on
3506 the heap. M is a pointer to the mem_block for P. */
3507
3508 static INLINE int
3509 live_float_p (m, p)
3510 struct mem_node *m;
3511 void *p;
3512 {
3513 if (m->type == MEM_TYPE_FLOAT)
3514 {
3515 struct float_block *b = (struct float_block *) m->start;
3516 int offset = (char *) p - (char *) &b->floats[0];
3517
3518 /* P must point to the start of a Lisp_Float and not be
3519 one of the unused cells in the current float block. */
3520 return (offset >= 0
3521 && offset % sizeof b->floats[0] == 0
3522 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3523 && (b != float_block
3524 || offset / sizeof b->floats[0] < float_block_index));
3525 }
3526 else
3527 return 0;
3528 }
3529
3530
3531 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3532 the heap. M is a pointer to the mem_block for P. */
3533
3534 static INLINE int
3535 live_misc_p (m, p)
3536 struct mem_node *m;
3537 void *p;
3538 {
3539 if (m->type == MEM_TYPE_MISC)
3540 {
3541 struct marker_block *b = (struct marker_block *) m->start;
3542 int offset = (char *) p - (char *) &b->markers[0];
3543
3544 /* P must point to the start of a Lisp_Misc, not be
3545 one of the unused cells in the current misc block,
3546 and not be on the free-list. */
3547 return (offset >= 0
3548 && offset % sizeof b->markers[0] == 0
3549 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3550 && (b != marker_block
3551 || offset / sizeof b->markers[0] < marker_block_index)
3552 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3553 }
3554 else
3555 return 0;
3556 }
3557
3558
3559 /* Value is non-zero if P is a pointer to a live vector-like object.
3560 M is a pointer to the mem_block for P. */
3561
3562 static INLINE int
3563 live_vector_p (m, p)
3564 struct mem_node *m;
3565 void *p;
3566 {
3567 return (p == m->start
3568 && m->type >= MEM_TYPE_VECTOR
3569 && m->type <= MEM_TYPE_WINDOW);
3570 }
3571
3572
3573 /* Value is non-zero if P is a pointer to a live buffer. M is a
3574 pointer to the mem_block for P. */
3575
3576 static INLINE int
3577 live_buffer_p (m, p)
3578 struct mem_node *m;
3579 void *p;
3580 {
3581 /* P must point to the start of the block, and the buffer
3582 must not have been killed. */
3583 return (m->type == MEM_TYPE_BUFFER
3584 && p == m->start
3585 && !NILP (((struct buffer *) p)->name));
3586 }
3587
3588 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3589
3590 #if GC_MARK_STACK
3591
3592 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3593
3594 /* Array of objects that are kept alive because the C stack contains
3595 a pattern that looks like a reference to them . */
3596
3597 #define MAX_ZOMBIES 10
3598 static Lisp_Object zombies[MAX_ZOMBIES];
3599
3600 /* Number of zombie objects. */
3601
3602 static int nzombies;
3603
3604 /* Number of garbage collections. */
3605
3606 static int ngcs;
3607
3608 /* Average percentage of zombies per collection. */
3609
3610 static double avg_zombies;
3611
3612 /* Max. number of live and zombie objects. */
3613
3614 static int max_live, max_zombies;
3615
3616 /* Average number of live objects per GC. */
3617
3618 static double avg_live;
3619
3620 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3621 doc: /* Show information about live and zombie objects. */)
3622 ()
3623 {
3624 Lisp_Object args[8], zombie_list = Qnil;
3625 int i;
3626 for (i = 0; i < nzombies; i++)
3627 zombie_list = Fcons (zombies[i], zombie_list);
3628 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3629 args[1] = make_number (ngcs);
3630 args[2] = make_float (avg_live);
3631 args[3] = make_float (avg_zombies);
3632 args[4] = make_float (avg_zombies / avg_live / 100);
3633 args[5] = make_number (max_live);
3634 args[6] = make_number (max_zombies);
3635 args[7] = zombie_list;
3636 return Fmessage (8, args);
3637 }
3638
3639 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3640
3641
3642 /* Mark OBJ if we can prove it's a Lisp_Object. */
3643
3644 static INLINE void
3645 mark_maybe_object (obj)
3646 Lisp_Object obj;
3647 {
3648 void *po = (void *) XPNTR (obj);
3649 struct mem_node *m = mem_find (po);
3650
3651 if (m != MEM_NIL)
3652 {
3653 int mark_p = 0;
3654
3655 switch (XGCTYPE (obj))
3656 {
3657 case Lisp_String:
3658 mark_p = (live_string_p (m, po)
3659 && !STRING_MARKED_P ((struct Lisp_String *) po));
3660 break;
3661
3662 case Lisp_Cons:
3663 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3664 break;
3665
3666 case Lisp_Symbol:
3667 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3668 break;
3669
3670 case Lisp_Float:
3671 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3672 break;
3673
3674 case Lisp_Vectorlike:
3675 /* Note: can't check GC_BUFFERP before we know it's a
3676 buffer because checking that dereferences the pointer
3677 PO which might point anywhere. */
3678 if (live_vector_p (m, po))
3679 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3680 else if (live_buffer_p (m, po))
3681 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3682 break;
3683
3684 case Lisp_Misc:
3685 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3686 break;
3687
3688 case Lisp_Int:
3689 case Lisp_Type_Limit:
3690 break;
3691 }
3692
3693 if (mark_p)
3694 {
3695 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3696 if (nzombies < MAX_ZOMBIES)
3697 zombies[nzombies] = obj;
3698 ++nzombies;
3699 #endif
3700 mark_object (obj);
3701 }
3702 }
3703 }
3704
3705
3706 /* If P points to Lisp data, mark that as live if it isn't already
3707 marked. */
3708
3709 static INLINE void
3710 mark_maybe_pointer (p)
3711 void *p;
3712 {
3713 struct mem_node *m;
3714
3715 /* Quickly rule out some values which can't point to Lisp data. We
3716 assume that Lisp data is aligned on even addresses. */
3717 if ((EMACS_INT) p & 1)
3718 return;
3719
3720 m = mem_find (p);
3721 if (m != MEM_NIL)
3722 {
3723 Lisp_Object obj = Qnil;
3724
3725 switch (m->type)
3726 {
3727 case MEM_TYPE_NON_LISP:
3728 /* Nothing to do; not a pointer to Lisp memory. */
3729 break;
3730
3731 case MEM_TYPE_BUFFER:
3732 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3733 XSETVECTOR (obj, p);
3734 break;
3735
3736 case MEM_TYPE_CONS:
3737 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3738 XSETCONS (obj, p);
3739 break;
3740
3741 case MEM_TYPE_STRING:
3742 if (live_string_p (m, p)
3743 && !STRING_MARKED_P ((struct Lisp_String *) p))
3744 XSETSTRING (obj, p);
3745 break;
3746
3747 case MEM_TYPE_MISC:
3748 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3749 XSETMISC (obj, p);
3750 break;
3751
3752 case MEM_TYPE_SYMBOL:
3753 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3754 XSETSYMBOL (obj, p);
3755 break;
3756
3757 case MEM_TYPE_FLOAT:
3758 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3759 XSETFLOAT (obj, p);
3760 break;
3761
3762 case MEM_TYPE_VECTOR:
3763 case MEM_TYPE_PROCESS:
3764 case MEM_TYPE_HASH_TABLE:
3765 case MEM_TYPE_FRAME:
3766 case MEM_TYPE_WINDOW:
3767 if (live_vector_p (m, p))
3768 {
3769 Lisp_Object tem;
3770 XSETVECTOR (tem, p);
3771 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3772 obj = tem;
3773 }
3774 break;
3775
3776 default:
3777 abort ();
3778 }
3779
3780 if (!GC_NILP (obj))
3781 mark_object (obj);
3782 }
3783 }
3784
3785
3786 /* Mark Lisp objects referenced from the address range START..END. */
3787
3788 static void
3789 mark_memory (start, end)
3790 void *start, *end;
3791 {
3792 Lisp_Object *p;
3793 void **pp;
3794
3795 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3796 nzombies = 0;
3797 #endif
3798
3799 /* Make START the pointer to the start of the memory region,
3800 if it isn't already. */
3801 if (end < start)
3802 {
3803 void *tem = start;
3804 start = end;
3805 end = tem;
3806 }
3807
3808 /* Mark Lisp_Objects. */
3809 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3810 mark_maybe_object (*p);
3811
3812 /* Mark Lisp data pointed to. This is necessary because, in some
3813 situations, the C compiler optimizes Lisp objects away, so that
3814 only a pointer to them remains. Example:
3815
3816 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3817 ()
3818 {
3819 Lisp_Object obj = build_string ("test");
3820 struct Lisp_String *s = XSTRING (obj);
3821 Fgarbage_collect ();
3822 fprintf (stderr, "test `%s'\n", s->data);
3823 return Qnil;
3824 }
3825
3826 Here, `obj' isn't really used, and the compiler optimizes it
3827 away. The only reference to the life string is through the
3828 pointer `s'. */
3829
3830 for (pp = (void **) start; (void *) pp < end; ++pp)
3831 mark_maybe_pointer (*pp);
3832 }
3833
3834 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3835 the GCC system configuration. In gcc 3.2, the only systems for
3836 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3837 by others?) and ns32k-pc532-min. */
3838
3839 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3840
3841 static int setjmp_tested_p, longjmps_done;
3842
3843 #define SETJMP_WILL_LIKELY_WORK "\
3844 \n\
3845 Emacs garbage collector has been changed to use conservative stack\n\
3846 marking. Emacs has determined that the method it uses to do the\n\
3847 marking will likely work on your system, but this isn't sure.\n\
3848 \n\
3849 If you are a system-programmer, or can get the help of a local wizard\n\
3850 who is, please take a look at the function mark_stack in alloc.c, and\n\
3851 verify that the methods used are appropriate for your system.\n\
3852 \n\
3853 Please mail the result to <emacs-devel@gnu.org>.\n\
3854 "
3855
3856 #define SETJMP_WILL_NOT_WORK "\
3857 \n\
3858 Emacs garbage collector has been changed to use conservative stack\n\
3859 marking. Emacs has determined that the default method it uses to do the\n\
3860 marking will not work on your system. We will need a system-dependent\n\
3861 solution for your system.\n\
3862 \n\
3863 Please take a look at the function mark_stack in alloc.c, and\n\
3864 try to find a way to make it work on your system.\n\
3865 \n\
3866 Note that you may get false negatives, depending on the compiler.\n\
3867 In particular, you need to use -O with GCC for this test.\n\
3868 \n\
3869 Please mail the result to <emacs-devel@gnu.org>.\n\
3870 "
3871
3872
3873 /* Perform a quick check if it looks like setjmp saves registers in a
3874 jmp_buf. Print a message to stderr saying so. When this test
3875 succeeds, this is _not_ a proof that setjmp is sufficient for
3876 conservative stack marking. Only the sources or a disassembly
3877 can prove that. */
3878
3879 static void
3880 test_setjmp ()
3881 {
3882 char buf[10];
3883 register int x;
3884 jmp_buf jbuf;
3885 int result = 0;
3886
3887 /* Arrange for X to be put in a register. */
3888 sprintf (buf, "1");
3889 x = strlen (buf);
3890 x = 2 * x - 1;
3891
3892 setjmp (jbuf);
3893 if (longjmps_done == 1)
3894 {
3895 /* Came here after the longjmp at the end of the function.
3896
3897 If x == 1, the longjmp has restored the register to its
3898 value before the setjmp, and we can hope that setjmp
3899 saves all such registers in the jmp_buf, although that
3900 isn't sure.
3901
3902 For other values of X, either something really strange is
3903 taking place, or the setjmp just didn't save the register. */
3904
3905 if (x == 1)
3906 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3907 else
3908 {
3909 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3910 exit (1);
3911 }
3912 }
3913
3914 ++longjmps_done;
3915 x = 2;
3916 if (longjmps_done == 1)
3917 longjmp (jbuf, 1);
3918 }
3919
3920 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3921
3922
3923 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3924
3925 /* Abort if anything GCPRO'd doesn't survive the GC. */
3926
3927 static void
3928 check_gcpros ()
3929 {
3930 struct gcpro *p;
3931 int i;
3932
3933 for (p = gcprolist; p; p = p->next)
3934 for (i = 0; i < p->nvars; ++i)
3935 if (!survives_gc_p (p->var[i]))
3936 /* FIXME: It's not necessarily a bug. It might just be that the
3937 GCPRO is unnecessary or should release the object sooner. */
3938 abort ();
3939 }
3940
3941 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3942
3943 static void
3944 dump_zombies ()
3945 {
3946 int i;
3947
3948 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3949 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3950 {
3951 fprintf (stderr, " %d = ", i);
3952 debug_print (zombies[i]);
3953 }
3954 }
3955
3956 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3957
3958
3959 /* Mark live Lisp objects on the C stack.
3960
3961 There are several system-dependent problems to consider when
3962 porting this to new architectures:
3963
3964 Processor Registers
3965
3966 We have to mark Lisp objects in CPU registers that can hold local
3967 variables or are used to pass parameters.
3968
3969 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3970 something that either saves relevant registers on the stack, or
3971 calls mark_maybe_object passing it each register's contents.
3972
3973 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3974 implementation assumes that calling setjmp saves registers we need
3975 to see in a jmp_buf which itself lies on the stack. This doesn't
3976 have to be true! It must be verified for each system, possibly
3977 by taking a look at the source code of setjmp.
3978
3979 Stack Layout
3980
3981 Architectures differ in the way their processor stack is organized.
3982 For example, the stack might look like this
3983
3984 +----------------+
3985 | Lisp_Object | size = 4
3986 +----------------+
3987 | something else | size = 2
3988 +----------------+
3989 | Lisp_Object | size = 4
3990 +----------------+
3991 | ... |
3992
3993 In such a case, not every Lisp_Object will be aligned equally. To
3994 find all Lisp_Object on the stack it won't be sufficient to walk
3995 the stack in steps of 4 bytes. Instead, two passes will be
3996 necessary, one starting at the start of the stack, and a second
3997 pass starting at the start of the stack + 2. Likewise, if the
3998 minimal alignment of Lisp_Objects on the stack is 1, four passes
3999 would be necessary, each one starting with one byte more offset
4000 from the stack start.
4001
4002 The current code assumes by default that Lisp_Objects are aligned
4003 equally on the stack. */
4004
4005 static void
4006 mark_stack ()
4007 {
4008 int i;
4009 jmp_buf j;
4010 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4011 void *end;
4012
4013 /* This trick flushes the register windows so that all the state of
4014 the process is contained in the stack. */
4015 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4016 needed on ia64 too. See mach_dep.c, where it also says inline
4017 assembler doesn't work with relevant proprietary compilers. */
4018 #ifdef sparc
4019 asm ("ta 3");
4020 #endif
4021
4022 /* Save registers that we need to see on the stack. We need to see
4023 registers used to hold register variables and registers used to
4024 pass parameters. */
4025 #ifdef GC_SAVE_REGISTERS_ON_STACK
4026 GC_SAVE_REGISTERS_ON_STACK (end);
4027 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4028
4029 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4030 setjmp will definitely work, test it
4031 and print a message with the result
4032 of the test. */
4033 if (!setjmp_tested_p)
4034 {
4035 setjmp_tested_p = 1;
4036 test_setjmp ();
4037 }
4038 #endif /* GC_SETJMP_WORKS */
4039
4040 setjmp (j);
4041 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4042 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4043
4044 /* This assumes that the stack is a contiguous region in memory. If
4045 that's not the case, something has to be done here to iterate
4046 over the stack segments. */
4047 #ifndef GC_LISP_OBJECT_ALIGNMENT
4048 #ifdef __GNUC__
4049 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4050 #else
4051 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4052 #endif
4053 #endif
4054 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4055 mark_memory ((char *) stack_base + i, end);
4056
4057 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4058 check_gcpros ();
4059 #endif
4060 }
4061
4062
4063 #endif /* GC_MARK_STACK != 0 */
4064
4065
4066 \f
4067 /***********************************************************************
4068 Pure Storage Management
4069 ***********************************************************************/
4070
4071 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4072 pointer to it. TYPE is the Lisp type for which the memory is
4073 allocated. TYPE < 0 means it's not used for a Lisp object.
4074
4075 If store_pure_type_info is set and TYPE is >= 0, the type of
4076 the allocated object is recorded in pure_types. */
4077
4078 static POINTER_TYPE *
4079 pure_alloc (size, type)
4080 size_t size;
4081 int type;
4082 {
4083 POINTER_TYPE *result;
4084 #ifdef USE_LSB_TAG
4085 size_t alignment = (1 << GCTYPEBITS);
4086 #else
4087 size_t alignment = sizeof (EMACS_INT);
4088
4089 /* Give Lisp_Floats an extra alignment. */
4090 if (type == Lisp_Float)
4091 {
4092 #if defined __GNUC__ && __GNUC__ >= 2
4093 alignment = __alignof (struct Lisp_Float);
4094 #else
4095 alignment = sizeof (struct Lisp_Float);
4096 #endif
4097 }
4098 #endif
4099
4100 again:
4101 result = ALIGN (purebeg + pure_bytes_used, alignment);
4102 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4103
4104 if (pure_bytes_used <= pure_size)
4105 return result;
4106
4107 /* Don't allocate a large amount here,
4108 because it might get mmap'd and then its address
4109 might not be usable. */
4110 purebeg = (char *) xmalloc (10000);
4111 pure_size = 10000;
4112 pure_bytes_used_before_overflow += pure_bytes_used - size;
4113 pure_bytes_used = 0;
4114 goto again;
4115 }
4116
4117
4118 /* Print a warning if PURESIZE is too small. */
4119
4120 void
4121 check_pure_size ()
4122 {
4123 if (pure_bytes_used_before_overflow)
4124 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4125 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4126 }
4127
4128
4129 /* Return a string allocated in pure space. DATA is a buffer holding
4130 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4131 non-zero means make the result string multibyte.
4132
4133 Must get an error if pure storage is full, since if it cannot hold
4134 a large string it may be able to hold conses that point to that
4135 string; then the string is not protected from gc. */
4136
4137 Lisp_Object
4138 make_pure_string (data, nchars, nbytes, multibyte)
4139 char *data;
4140 int nchars, nbytes;
4141 int multibyte;
4142 {
4143 Lisp_Object string;
4144 struct Lisp_String *s;
4145
4146 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4147 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4148 s->size = nchars;
4149 s->size_byte = multibyte ? nbytes : -1;
4150 bcopy (data, s->data, nbytes);
4151 s->data[nbytes] = '\0';
4152 s->intervals = NULL_INTERVAL;
4153 XSETSTRING (string, s);
4154 return string;
4155 }
4156
4157
4158 /* Return a cons allocated from pure space. Give it pure copies
4159 of CAR as car and CDR as cdr. */
4160
4161 Lisp_Object
4162 pure_cons (car, cdr)
4163 Lisp_Object car, cdr;
4164 {
4165 register Lisp_Object new;
4166 struct Lisp_Cons *p;
4167
4168 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4169 XSETCONS (new, p);
4170 XSETCAR (new, Fpurecopy (car));
4171 XSETCDR (new, Fpurecopy (cdr));
4172 return new;
4173 }
4174
4175
4176 /* Value is a float object with value NUM allocated from pure space. */
4177
4178 Lisp_Object
4179 make_pure_float (num)
4180 double num;
4181 {
4182 register Lisp_Object new;
4183 struct Lisp_Float *p;
4184
4185 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4186 XSETFLOAT (new, p);
4187 XFLOAT_DATA (new) = num;
4188 return new;
4189 }
4190
4191
4192 /* Return a vector with room for LEN Lisp_Objects allocated from
4193 pure space. */
4194
4195 Lisp_Object
4196 make_pure_vector (len)
4197 EMACS_INT len;
4198 {
4199 Lisp_Object new;
4200 struct Lisp_Vector *p;
4201 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4202
4203 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4204 XSETVECTOR (new, p);
4205 XVECTOR (new)->size = len;
4206 return new;
4207 }
4208
4209
4210 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4211 doc: /* Make a copy of OBJECT in pure storage.
4212 Recursively copies contents of vectors and cons cells.
4213 Does not copy symbols. Copies strings without text properties. */)
4214 (obj)
4215 register Lisp_Object obj;
4216 {
4217 if (NILP (Vpurify_flag))
4218 return obj;
4219
4220 if (PURE_POINTER_P (XPNTR (obj)))
4221 return obj;
4222
4223 if (CONSP (obj))
4224 return pure_cons (XCAR (obj), XCDR (obj));
4225 else if (FLOATP (obj))
4226 return make_pure_float (XFLOAT_DATA (obj));
4227 else if (STRINGP (obj))
4228 return make_pure_string (SDATA (obj), SCHARS (obj),
4229 SBYTES (obj),
4230 STRING_MULTIBYTE (obj));
4231 else if (COMPILEDP (obj) || VECTORP (obj))
4232 {
4233 register struct Lisp_Vector *vec;
4234 register int i;
4235 EMACS_INT size;
4236
4237 size = XVECTOR (obj)->size;
4238 if (size & PSEUDOVECTOR_FLAG)
4239 size &= PSEUDOVECTOR_SIZE_MASK;
4240 vec = XVECTOR (make_pure_vector (size));
4241 for (i = 0; i < size; i++)
4242 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4243 if (COMPILEDP (obj))
4244 XSETCOMPILED (obj, vec);
4245 else
4246 XSETVECTOR (obj, vec);
4247 return obj;
4248 }
4249 else if (MARKERP (obj))
4250 error ("Attempt to copy a marker to pure storage");
4251
4252 return obj;
4253 }
4254
4255
4256 \f
4257 /***********************************************************************
4258 Protection from GC
4259 ***********************************************************************/
4260
4261 /* Put an entry in staticvec, pointing at the variable with address
4262 VARADDRESS. */
4263
4264 void
4265 staticpro (varaddress)
4266 Lisp_Object *varaddress;
4267 {
4268 staticvec[staticidx++] = varaddress;
4269 if (staticidx >= NSTATICS)
4270 abort ();
4271 }
4272
4273 struct catchtag
4274 {
4275 Lisp_Object tag;
4276 Lisp_Object val;
4277 struct catchtag *next;
4278 };
4279
4280 struct backtrace
4281 {
4282 struct backtrace *next;
4283 Lisp_Object *function;
4284 Lisp_Object *args; /* Points to vector of args. */
4285 int nargs; /* Length of vector. */
4286 /* If nargs is UNEVALLED, args points to slot holding list of
4287 unevalled args. */
4288 char evalargs;
4289 /* Nonzero means call value of debugger when done with this operation. */
4290 char debug_on_exit;
4291 };
4292
4293
4294 \f
4295 /***********************************************************************
4296 Protection from GC
4297 ***********************************************************************/
4298
4299 /* Temporarily prevent garbage collection. */
4300
4301 int
4302 inhibit_garbage_collection ()
4303 {
4304 int count = SPECPDL_INDEX ();
4305 int nbits = min (VALBITS, BITS_PER_INT);
4306
4307 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4308 return count;
4309 }
4310
4311
4312 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4313 doc: /* Reclaim storage for Lisp objects no longer needed.
4314 Garbage collection happens automatically if you cons more than
4315 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4316 `garbage-collect' normally returns a list with info on amount of space in use:
4317 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4318 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4319 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4320 (USED-STRINGS . FREE-STRINGS))
4321 However, if there was overflow in pure space, `garbage-collect'
4322 returns nil, because real GC can't be done. */)
4323 ()
4324 {
4325 register struct specbinding *bind;
4326 struct catchtag *catch;
4327 struct handler *handler;
4328 register struct backtrace *backlist;
4329 char stack_top_variable;
4330 register int i;
4331 int message_p;
4332 Lisp_Object total[8];
4333 int count = SPECPDL_INDEX ();
4334 EMACS_TIME t1, t2, t3;
4335
4336 if (abort_on_gc)
4337 abort ();
4338
4339 EMACS_GET_TIME (t1);
4340
4341 /* Can't GC if pure storage overflowed because we can't determine
4342 if something is a pure object or not. */
4343 if (pure_bytes_used_before_overflow)
4344 return Qnil;
4345
4346 /* In case user calls debug_print during GC,
4347 don't let that cause a recursive GC. */
4348 consing_since_gc = 0;
4349
4350 /* Save what's currently displayed in the echo area. */
4351 message_p = push_message ();
4352 record_unwind_protect (pop_message_unwind, Qnil);
4353
4354 /* Save a copy of the contents of the stack, for debugging. */
4355 #if MAX_SAVE_STACK > 0
4356 if (NILP (Vpurify_flag))
4357 {
4358 i = &stack_top_variable - stack_bottom;
4359 if (i < 0) i = -i;
4360 if (i < MAX_SAVE_STACK)
4361 {
4362 if (stack_copy == 0)
4363 stack_copy = (char *) xmalloc (stack_copy_size = i);
4364 else if (stack_copy_size < i)
4365 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4366 if (stack_copy)
4367 {
4368 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4369 bcopy (stack_bottom, stack_copy, i);
4370 else
4371 bcopy (&stack_top_variable, stack_copy, i);
4372 }
4373 }
4374 }
4375 #endif /* MAX_SAVE_STACK > 0 */
4376
4377 if (garbage_collection_messages)
4378 message1_nolog ("Garbage collecting...");
4379
4380 BLOCK_INPUT;
4381
4382 shrink_regexp_cache ();
4383
4384 /* Don't keep undo information around forever. */
4385 {
4386 register struct buffer *nextb = all_buffers;
4387
4388 while (nextb)
4389 {
4390 /* If a buffer's undo list is Qt, that means that undo is
4391 turned off in that buffer. Calling truncate_undo_list on
4392 Qt tends to return NULL, which effectively turns undo back on.
4393 So don't call truncate_undo_list if undo_list is Qt. */
4394 if (! EQ (nextb->undo_list, Qt))
4395 nextb->undo_list
4396 = truncate_undo_list (nextb->undo_list, undo_limit,
4397 undo_strong_limit);
4398
4399 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4400 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4401 {
4402 /* If a buffer's gap size is more than 10% of the buffer
4403 size, or larger than 2000 bytes, then shrink it
4404 accordingly. Keep a minimum size of 20 bytes. */
4405 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4406
4407 if (nextb->text->gap_size > size)
4408 {
4409 struct buffer *save_current = current_buffer;
4410 current_buffer = nextb;
4411 make_gap (-(nextb->text->gap_size - size));
4412 current_buffer = save_current;
4413 }
4414 }
4415
4416 nextb = nextb->next;
4417 }
4418 }
4419
4420 gc_in_progress = 1;
4421
4422 /* clear_marks (); */
4423
4424 /* Mark all the special slots that serve as the roots of accessibility. */
4425
4426 for (i = 0; i < staticidx; i++)
4427 mark_object (*staticvec[i]);
4428
4429 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4430 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4431 mark_stack ();
4432 #else
4433 {
4434 register struct gcpro *tail;
4435 for (tail = gcprolist; tail; tail = tail->next)
4436 for (i = 0; i < tail->nvars; i++)
4437 mark_object (tail->var[i]);
4438 }
4439 #endif
4440
4441 mark_byte_stack ();
4442 for (bind = specpdl; bind != specpdl_ptr; bind++)
4443 {
4444 mark_object (bind->symbol);
4445 mark_object (bind->old_value);
4446 }
4447 for (catch = catchlist; catch; catch = catch->next)
4448 {
4449 mark_object (catch->tag);
4450 mark_object (catch->val);
4451 }
4452 for (handler = handlerlist; handler; handler = handler->next)
4453 {
4454 mark_object (handler->handler);
4455 mark_object (handler->var);
4456 }
4457 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4458 {
4459 mark_object (*backlist->function);
4460
4461 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4462 i = 0;
4463 else
4464 i = backlist->nargs - 1;
4465 for (; i >= 0; i--)
4466 mark_object (backlist->args[i]);
4467 }
4468 mark_kboards ();
4469
4470 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4471 mark_stack ();
4472 #endif
4473
4474 #ifdef USE_GTK
4475 {
4476 extern void xg_mark_data ();
4477 xg_mark_data ();
4478 }
4479 #endif
4480
4481 gc_sweep ();
4482
4483 /* Look thru every buffer's undo list for elements that used to
4484 contain update markers that were changed to Lisp_Misc_Free
4485 objects and delete them. This may leave a few cons cells
4486 unchained, but we will get those on the next sweep. */
4487 {
4488 register struct buffer *nextb = all_buffers;
4489
4490 while (nextb)
4491 {
4492 /* If a buffer's undo list is Qt, that means that undo is
4493 turned off in that buffer. */
4494 if (! EQ (nextb->undo_list, Qt))
4495 {
4496 Lisp_Object tail, prev, elt, car;
4497 tail = nextb->undo_list;
4498 prev = Qnil;
4499 while (CONSP (tail))
4500 {
4501 if ((elt = XCAR (tail), GC_CONSP (elt))
4502 && (car = XCAR (elt), GC_MISCP (car))
4503 && XMISCTYPE (car) == Lisp_Misc_Free)
4504 {
4505 Lisp_Object cdr = XCDR (tail);
4506 /* Do not use free_cons here, as we don't know if
4507 anybody else has a pointer to these conses. */
4508 XSETCAR (elt, Qnil);
4509 XSETCDR (elt, Qnil);
4510 XSETCAR (tail, Qnil);
4511 XSETCDR (tail, Qnil);
4512 if (NILP (prev))
4513 nextb->undo_list = tail = cdr;
4514 else
4515 {
4516 tail = cdr;
4517 XSETCDR (prev, tail);
4518 }
4519 }
4520 else
4521 {
4522 prev = tail;
4523 tail = XCDR (tail);
4524 }
4525 }
4526 }
4527
4528 nextb = nextb->next;
4529 }
4530 }
4531
4532 /* Clear the mark bits that we set in certain root slots. */
4533
4534 unmark_byte_stack ();
4535 VECTOR_UNMARK (&buffer_defaults);
4536 VECTOR_UNMARK (&buffer_local_symbols);
4537
4538 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4539 dump_zombies ();
4540 #endif
4541
4542 UNBLOCK_INPUT;
4543
4544 /* clear_marks (); */
4545 gc_in_progress = 0;
4546
4547 consing_since_gc = 0;
4548 if (gc_cons_threshold < 10000)
4549 gc_cons_threshold = 10000;
4550
4551 if (garbage_collection_messages)
4552 {
4553 if (message_p || minibuf_level > 0)
4554 restore_message ();
4555 else
4556 message1_nolog ("Garbage collecting...done");
4557 }
4558
4559 unbind_to (count, Qnil);
4560
4561 total[0] = Fcons (make_number (total_conses),
4562 make_number (total_free_conses));
4563 total[1] = Fcons (make_number (total_symbols),
4564 make_number (total_free_symbols));
4565 total[2] = Fcons (make_number (total_markers),
4566 make_number (total_free_markers));
4567 total[3] = make_number (total_string_size);
4568 total[4] = make_number (total_vector_size);
4569 total[5] = Fcons (make_number (total_floats),
4570 make_number (total_free_floats));
4571 total[6] = Fcons (make_number (total_intervals),
4572 make_number (total_free_intervals));
4573 total[7] = Fcons (make_number (total_strings),
4574 make_number (total_free_strings));
4575
4576 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4577 {
4578 /* Compute average percentage of zombies. */
4579 double nlive = 0;
4580
4581 for (i = 0; i < 7; ++i)
4582 if (CONSP (total[i]))
4583 nlive += XFASTINT (XCAR (total[i]));
4584
4585 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4586 max_live = max (nlive, max_live);
4587 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4588 max_zombies = max (nzombies, max_zombies);
4589 ++ngcs;
4590 }
4591 #endif
4592
4593 if (!NILP (Vpost_gc_hook))
4594 {
4595 int count = inhibit_garbage_collection ();
4596 safe_run_hooks (Qpost_gc_hook);
4597 unbind_to (count, Qnil);
4598 }
4599
4600 /* Accumulate statistics. */
4601 EMACS_GET_TIME (t2);
4602 EMACS_SUB_TIME (t3, t2, t1);
4603 if (FLOATP (Vgc_elapsed))
4604 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4605 EMACS_SECS (t3) +
4606 EMACS_USECS (t3) * 1.0e-6);
4607 gcs_done++;
4608
4609 return Flist (sizeof total / sizeof *total, total);
4610 }
4611
4612
4613 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4614 only interesting objects referenced from glyphs are strings. */
4615
4616 static void
4617 mark_glyph_matrix (matrix)
4618 struct glyph_matrix *matrix;
4619 {
4620 struct glyph_row *row = matrix->rows;
4621 struct glyph_row *end = row + matrix->nrows;
4622
4623 for (; row < end; ++row)
4624 if (row->enabled_p)
4625 {
4626 int area;
4627 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4628 {
4629 struct glyph *glyph = row->glyphs[area];
4630 struct glyph *end_glyph = glyph + row->used[area];
4631
4632 for (; glyph < end_glyph; ++glyph)
4633 if (GC_STRINGP (glyph->object)
4634 && !STRING_MARKED_P (XSTRING (glyph->object)))
4635 mark_object (glyph->object);
4636 }
4637 }
4638 }
4639
4640
4641 /* Mark Lisp faces in the face cache C. */
4642
4643 static void
4644 mark_face_cache (c)
4645 struct face_cache *c;
4646 {
4647 if (c)
4648 {
4649 int i, j;
4650 for (i = 0; i < c->used; ++i)
4651 {
4652 struct face *face = FACE_FROM_ID (c->f, i);
4653
4654 if (face)
4655 {
4656 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4657 mark_object (face->lface[j]);
4658 }
4659 }
4660 }
4661 }
4662
4663
4664 #ifdef HAVE_WINDOW_SYSTEM
4665
4666 /* Mark Lisp objects in image IMG. */
4667
4668 static void
4669 mark_image (img)
4670 struct image *img;
4671 {
4672 mark_object (img->spec);
4673
4674 if (!NILP (img->data.lisp_val))
4675 mark_object (img->data.lisp_val);
4676 }
4677
4678
4679 /* Mark Lisp objects in image cache of frame F. It's done this way so
4680 that we don't have to include xterm.h here. */
4681
4682 static void
4683 mark_image_cache (f)
4684 struct frame *f;
4685 {
4686 forall_images_in_image_cache (f, mark_image);
4687 }
4688
4689 #endif /* HAVE_X_WINDOWS */
4690
4691
4692 \f
4693 /* Mark reference to a Lisp_Object.
4694 If the object referred to has not been seen yet, recursively mark
4695 all the references contained in it. */
4696
4697 #define LAST_MARKED_SIZE 500
4698 Lisp_Object last_marked[LAST_MARKED_SIZE];
4699 int last_marked_index;
4700
4701 /* For debugging--call abort when we cdr down this many
4702 links of a list, in mark_object. In debugging,
4703 the call to abort will hit a breakpoint.
4704 Normally this is zero and the check never goes off. */
4705 int mark_object_loop_halt;
4706
4707 void
4708 mark_object (arg)
4709 Lisp_Object arg;
4710 {
4711 register Lisp_Object obj = arg;
4712 #ifdef GC_CHECK_MARKED_OBJECTS
4713 void *po;
4714 struct mem_node *m;
4715 #endif
4716 int cdr_count = 0;
4717
4718 loop:
4719
4720 if (PURE_POINTER_P (XPNTR (obj)))
4721 return;
4722
4723 last_marked[last_marked_index++] = obj;
4724 if (last_marked_index == LAST_MARKED_SIZE)
4725 last_marked_index = 0;
4726
4727 /* Perform some sanity checks on the objects marked here. Abort if
4728 we encounter an object we know is bogus. This increases GC time
4729 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4730 #ifdef GC_CHECK_MARKED_OBJECTS
4731
4732 po = (void *) XPNTR (obj);
4733
4734 /* Check that the object pointed to by PO is known to be a Lisp
4735 structure allocated from the heap. */
4736 #define CHECK_ALLOCATED() \
4737 do { \
4738 m = mem_find (po); \
4739 if (m == MEM_NIL) \
4740 abort (); \
4741 } while (0)
4742
4743 /* Check that the object pointed to by PO is live, using predicate
4744 function LIVEP. */
4745 #define CHECK_LIVE(LIVEP) \
4746 do { \
4747 if (!LIVEP (m, po)) \
4748 abort (); \
4749 } while (0)
4750
4751 /* Check both of the above conditions. */
4752 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4753 do { \
4754 CHECK_ALLOCATED (); \
4755 CHECK_LIVE (LIVEP); \
4756 } while (0) \
4757
4758 #else /* not GC_CHECK_MARKED_OBJECTS */
4759
4760 #define CHECK_ALLOCATED() (void) 0
4761 #define CHECK_LIVE(LIVEP) (void) 0
4762 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4763
4764 #endif /* not GC_CHECK_MARKED_OBJECTS */
4765
4766 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4767 {
4768 case Lisp_String:
4769 {
4770 register struct Lisp_String *ptr = XSTRING (obj);
4771 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4772 MARK_INTERVAL_TREE (ptr->intervals);
4773 MARK_STRING (ptr);
4774 #ifdef GC_CHECK_STRING_BYTES
4775 /* Check that the string size recorded in the string is the
4776 same as the one recorded in the sdata structure. */
4777 CHECK_STRING_BYTES (ptr);
4778 #endif /* GC_CHECK_STRING_BYTES */
4779 }
4780 break;
4781
4782 case Lisp_Vectorlike:
4783 #ifdef GC_CHECK_MARKED_OBJECTS
4784 m = mem_find (po);
4785 if (m == MEM_NIL && !GC_SUBRP (obj)
4786 && po != &buffer_defaults
4787 && po != &buffer_local_symbols)
4788 abort ();
4789 #endif /* GC_CHECK_MARKED_OBJECTS */
4790
4791 if (GC_BUFFERP (obj))
4792 {
4793 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4794 {
4795 #ifdef GC_CHECK_MARKED_OBJECTS
4796 if (po != &buffer_defaults && po != &buffer_local_symbols)
4797 {
4798 struct buffer *b;
4799 for (b = all_buffers; b && b != po; b = b->next)
4800 ;
4801 if (b == NULL)
4802 abort ();
4803 }
4804 #endif /* GC_CHECK_MARKED_OBJECTS */
4805 mark_buffer (obj);
4806 }
4807 }
4808 else if (GC_SUBRP (obj))
4809 break;
4810 else if (GC_COMPILEDP (obj))
4811 /* We could treat this just like a vector, but it is better to
4812 save the COMPILED_CONSTANTS element for last and avoid
4813 recursion there. */
4814 {
4815 register struct Lisp_Vector *ptr = XVECTOR (obj);
4816 register EMACS_INT size = ptr->size;
4817 register int i;
4818
4819 if (VECTOR_MARKED_P (ptr))
4820 break; /* Already marked */
4821
4822 CHECK_LIVE (live_vector_p);
4823 VECTOR_MARK (ptr); /* Else mark it */
4824 size &= PSEUDOVECTOR_SIZE_MASK;
4825 for (i = 0; i < size; i++) /* and then mark its elements */
4826 {
4827 if (i != COMPILED_CONSTANTS)
4828 mark_object (ptr->contents[i]);
4829 }
4830 obj = ptr->contents[COMPILED_CONSTANTS];
4831 goto loop;
4832 }
4833 else if (GC_FRAMEP (obj))
4834 {
4835 register struct frame *ptr = XFRAME (obj);
4836
4837 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4838 VECTOR_MARK (ptr); /* Else mark it */
4839
4840 CHECK_LIVE (live_vector_p);
4841 mark_object (ptr->name);
4842 mark_object (ptr->icon_name);
4843 mark_object (ptr->title);
4844 mark_object (ptr->focus_frame);
4845 mark_object (ptr->selected_window);
4846 mark_object (ptr->minibuffer_window);
4847 mark_object (ptr->param_alist);
4848 mark_object (ptr->scroll_bars);
4849 mark_object (ptr->condemned_scroll_bars);
4850 mark_object (ptr->menu_bar_items);
4851 mark_object (ptr->face_alist);
4852 mark_object (ptr->menu_bar_vector);
4853 mark_object (ptr->buffer_predicate);
4854 mark_object (ptr->buffer_list);
4855 mark_object (ptr->menu_bar_window);
4856 mark_object (ptr->tool_bar_window);
4857 mark_face_cache (ptr->face_cache);
4858 #ifdef HAVE_WINDOW_SYSTEM
4859 mark_image_cache (ptr);
4860 mark_object (ptr->tool_bar_items);
4861 mark_object (ptr->desired_tool_bar_string);
4862 mark_object (ptr->current_tool_bar_string);
4863 #endif /* HAVE_WINDOW_SYSTEM */
4864 }
4865 else if (GC_BOOL_VECTOR_P (obj))
4866 {
4867 register struct Lisp_Vector *ptr = XVECTOR (obj);
4868
4869 if (VECTOR_MARKED_P (ptr))
4870 break; /* Already marked */
4871 CHECK_LIVE (live_vector_p);
4872 VECTOR_MARK (ptr); /* Else mark it */
4873 }
4874 else if (GC_WINDOWP (obj))
4875 {
4876 register struct Lisp_Vector *ptr = XVECTOR (obj);
4877 struct window *w = XWINDOW (obj);
4878 register int i;
4879
4880 /* Stop if already marked. */
4881 if (VECTOR_MARKED_P (ptr))
4882 break;
4883
4884 /* Mark it. */
4885 CHECK_LIVE (live_vector_p);
4886 VECTOR_MARK (ptr);
4887
4888 /* There is no Lisp data above The member CURRENT_MATRIX in
4889 struct WINDOW. Stop marking when that slot is reached. */
4890 for (i = 0;
4891 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4892 i++)
4893 mark_object (ptr->contents[i]);
4894
4895 /* Mark glyphs for leaf windows. Marking window matrices is
4896 sufficient because frame matrices use the same glyph
4897 memory. */
4898 if (NILP (w->hchild)
4899 && NILP (w->vchild)
4900 && w->current_matrix)
4901 {
4902 mark_glyph_matrix (w->current_matrix);
4903 mark_glyph_matrix (w->desired_matrix);
4904 }
4905 }
4906 else if (GC_HASH_TABLE_P (obj))
4907 {
4908 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4909
4910 /* Stop if already marked. */
4911 if (VECTOR_MARKED_P (h))
4912 break;
4913
4914 /* Mark it. */
4915 CHECK_LIVE (live_vector_p);
4916 VECTOR_MARK (h);
4917
4918 /* Mark contents. */
4919 /* Do not mark next_free or next_weak.
4920 Being in the next_weak chain
4921 should not keep the hash table alive.
4922 No need to mark `count' since it is an integer. */
4923 mark_object (h->test);
4924 mark_object (h->weak);
4925 mark_object (h->rehash_size);
4926 mark_object (h->rehash_threshold);
4927 mark_object (h->hash);
4928 mark_object (h->next);
4929 mark_object (h->index);
4930 mark_object (h->user_hash_function);
4931 mark_object (h->user_cmp_function);
4932
4933 /* If hash table is not weak, mark all keys and values.
4934 For weak tables, mark only the vector. */
4935 if (GC_NILP (h->weak))
4936 mark_object (h->key_and_value);
4937 else
4938 VECTOR_MARK (XVECTOR (h->key_and_value));
4939 }
4940 else
4941 {
4942 register struct Lisp_Vector *ptr = XVECTOR (obj);
4943 register EMACS_INT size = ptr->size;
4944 register int i;
4945
4946 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4947 CHECK_LIVE (live_vector_p);
4948 VECTOR_MARK (ptr); /* Else mark it */
4949 if (size & PSEUDOVECTOR_FLAG)
4950 size &= PSEUDOVECTOR_SIZE_MASK;
4951
4952 for (i = 0; i < size; i++) /* and then mark its elements */
4953 mark_object (ptr->contents[i]);
4954 }
4955 break;
4956
4957 case Lisp_Symbol:
4958 {
4959 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4960 struct Lisp_Symbol *ptrx;
4961
4962 if (ptr->gcmarkbit) break;
4963 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4964 ptr->gcmarkbit = 1;
4965 mark_object (ptr->value);
4966 mark_object (ptr->function);
4967 mark_object (ptr->plist);
4968
4969 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4970 MARK_STRING (XSTRING (ptr->xname));
4971 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4972
4973 /* Note that we do not mark the obarray of the symbol.
4974 It is safe not to do so because nothing accesses that
4975 slot except to check whether it is nil. */
4976 ptr = ptr->next;
4977 if (ptr)
4978 {
4979 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4980 XSETSYMBOL (obj, ptrx);
4981 goto loop;
4982 }
4983 }
4984 break;
4985
4986 case Lisp_Misc:
4987 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4988 if (XMARKER (obj)->gcmarkbit)
4989 break;
4990 XMARKER (obj)->gcmarkbit = 1;
4991 switch (XMISCTYPE (obj))
4992 {
4993 case Lisp_Misc_Buffer_Local_Value:
4994 case Lisp_Misc_Some_Buffer_Local_Value:
4995 {
4996 register struct Lisp_Buffer_Local_Value *ptr
4997 = XBUFFER_LOCAL_VALUE (obj);
4998 /* If the cdr is nil, avoid recursion for the car. */
4999 if (EQ (ptr->cdr, Qnil))
5000 {
5001 obj = ptr->realvalue;
5002 goto loop;
5003 }
5004 mark_object (ptr->realvalue);
5005 mark_object (ptr->buffer);
5006 mark_object (ptr->frame);
5007 obj = ptr->cdr;
5008 goto loop;
5009 }
5010
5011 case Lisp_Misc_Marker:
5012 /* DO NOT mark thru the marker's chain.
5013 The buffer's markers chain does not preserve markers from gc;
5014 instead, markers are removed from the chain when freed by gc. */
5015 case Lisp_Misc_Intfwd:
5016 case Lisp_Misc_Boolfwd:
5017 case Lisp_Misc_Objfwd:
5018 case Lisp_Misc_Buffer_Objfwd:
5019 case Lisp_Misc_Kboard_Objfwd:
5020 /* Don't bother with Lisp_Buffer_Objfwd,
5021 since all markable slots in current buffer marked anyway. */
5022 /* Don't need to do Lisp_Objfwd, since the places they point
5023 are protected with staticpro. */
5024 case Lisp_Misc_Save_Value:
5025 break;
5026
5027 case Lisp_Misc_Overlay:
5028 {
5029 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5030 mark_object (ptr->start);
5031 mark_object (ptr->end);
5032 mark_object (ptr->plist);
5033 if (ptr->next)
5034 {
5035 XSETMISC (obj, ptr->next);
5036 goto loop;
5037 }
5038 }
5039 break;
5040
5041 default:
5042 abort ();
5043 }
5044 break;
5045
5046 case Lisp_Cons:
5047 {
5048 register struct Lisp_Cons *ptr = XCONS (obj);
5049 if (CONS_MARKED_P (ptr)) break;
5050 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5051 CONS_MARK (ptr);
5052 /* If the cdr is nil, avoid recursion for the car. */
5053 if (EQ (ptr->cdr, Qnil))
5054 {
5055 obj = ptr->car;
5056 cdr_count = 0;
5057 goto loop;
5058 }
5059 mark_object (ptr->car);
5060 obj = ptr->cdr;
5061 cdr_count++;
5062 if (cdr_count == mark_object_loop_halt)
5063 abort ();
5064 goto loop;
5065 }
5066
5067 case Lisp_Float:
5068 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5069 FLOAT_MARK (XFLOAT (obj));
5070 break;
5071
5072 case Lisp_Int:
5073 break;
5074
5075 default:
5076 abort ();
5077 }
5078
5079 #undef CHECK_LIVE
5080 #undef CHECK_ALLOCATED
5081 #undef CHECK_ALLOCATED_AND_LIVE
5082 }
5083
5084 /* Mark the pointers in a buffer structure. */
5085
5086 static void
5087 mark_buffer (buf)
5088 Lisp_Object buf;
5089 {
5090 register struct buffer *buffer = XBUFFER (buf);
5091 register Lisp_Object *ptr, tmp;
5092 Lisp_Object base_buffer;
5093
5094 VECTOR_MARK (buffer);
5095
5096 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5097
5098 if (CONSP (buffer->undo_list))
5099 {
5100 Lisp_Object tail;
5101 tail = buffer->undo_list;
5102
5103 /* We mark the undo list specially because
5104 its pointers to markers should be weak. */
5105
5106 while (CONSP (tail))
5107 {
5108 register struct Lisp_Cons *ptr = XCONS (tail);
5109
5110 if (CONS_MARKED_P (ptr))
5111 break;
5112 CONS_MARK (ptr);
5113 if (GC_CONSP (ptr->car)
5114 && !CONS_MARKED_P (XCONS (ptr->car))
5115 && GC_MARKERP (XCAR (ptr->car)))
5116 {
5117 CONS_MARK (XCONS (ptr->car));
5118 mark_object (XCDR (ptr->car));
5119 }
5120 else
5121 mark_object (ptr->car);
5122
5123 if (CONSP (ptr->cdr))
5124 tail = ptr->cdr;
5125 else
5126 break;
5127 }
5128
5129 mark_object (XCDR (tail));
5130 }
5131 else
5132 mark_object (buffer->undo_list);
5133
5134 if (buffer->overlays_before)
5135 {
5136 XSETMISC (tmp, buffer->overlays_before);
5137 mark_object (tmp);
5138 }
5139 if (buffer->overlays_after)
5140 {
5141 XSETMISC (tmp, buffer->overlays_after);
5142 mark_object (tmp);
5143 }
5144
5145 for (ptr = &buffer->name;
5146 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5147 ptr++)
5148 mark_object (*ptr);
5149
5150 /* If this is an indirect buffer, mark its base buffer. */
5151 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5152 {
5153 XSETBUFFER (base_buffer, buffer->base_buffer);
5154 mark_buffer (base_buffer);
5155 }
5156 }
5157
5158
5159 /* Value is non-zero if OBJ will survive the current GC because it's
5160 either marked or does not need to be marked to survive. */
5161
5162 int
5163 survives_gc_p (obj)
5164 Lisp_Object obj;
5165 {
5166 int survives_p;
5167
5168 switch (XGCTYPE (obj))
5169 {
5170 case Lisp_Int:
5171 survives_p = 1;
5172 break;
5173
5174 case Lisp_Symbol:
5175 survives_p = XSYMBOL (obj)->gcmarkbit;
5176 break;
5177
5178 case Lisp_Misc:
5179 survives_p = XMARKER (obj)->gcmarkbit;
5180 break;
5181
5182 case Lisp_String:
5183 survives_p = STRING_MARKED_P (XSTRING (obj));
5184 break;
5185
5186 case Lisp_Vectorlike:
5187 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5188 break;
5189
5190 case Lisp_Cons:
5191 survives_p = CONS_MARKED_P (XCONS (obj));
5192 break;
5193
5194 case Lisp_Float:
5195 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5196 break;
5197
5198 default:
5199 abort ();
5200 }
5201
5202 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5203 }
5204
5205
5206 \f
5207 /* Sweep: find all structures not marked, and free them. */
5208
5209 static void
5210 gc_sweep ()
5211 {
5212 /* Put all unmarked conses on free list */
5213 {
5214 register struct cons_block *cblk;
5215 struct cons_block **cprev = &cons_block;
5216 register int lim = cons_block_index;
5217 register int num_free = 0, num_used = 0;
5218
5219 cons_free_list = 0;
5220
5221 for (cblk = cons_block; cblk; cblk = *cprev)
5222 {
5223 register int i;
5224 int this_free = 0;
5225 for (i = 0; i < lim; i++)
5226 if (!CONS_MARKED_P (&cblk->conses[i]))
5227 {
5228 this_free++;
5229 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5230 cons_free_list = &cblk->conses[i];
5231 #if GC_MARK_STACK
5232 cons_free_list->car = Vdead;
5233 #endif
5234 }
5235 else
5236 {
5237 num_used++;
5238 CONS_UNMARK (&cblk->conses[i]);
5239 }
5240 lim = CONS_BLOCK_SIZE;
5241 /* If this block contains only free conses and we have already
5242 seen more than two blocks worth of free conses then deallocate
5243 this block. */
5244 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5245 {
5246 *cprev = cblk->next;
5247 /* Unhook from the free list. */
5248 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5249 lisp_align_free (cblk);
5250 n_cons_blocks--;
5251 }
5252 else
5253 {
5254 num_free += this_free;
5255 cprev = &cblk->next;
5256 }
5257 }
5258 total_conses = num_used;
5259 total_free_conses = num_free;
5260 }
5261
5262 /* Remove or mark entries in weak hash tables.
5263 This must be done before any object is unmarked. */
5264 sweep_weak_hash_tables ();
5265
5266 sweep_strings ();
5267 #ifdef GC_CHECK_STRING_BYTES
5268 if (!noninteractive)
5269 check_string_bytes (1);
5270 #endif
5271
5272 /* Put all unmarked floats on free list */
5273 {
5274 register struct float_block *fblk;
5275 struct float_block **fprev = &float_block;
5276 register int lim = float_block_index;
5277 register int num_free = 0, num_used = 0;
5278
5279 float_free_list = 0;
5280
5281 for (fblk = float_block; fblk; fblk = *fprev)
5282 {
5283 register int i;
5284 int this_free = 0;
5285 for (i = 0; i < lim; i++)
5286 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5287 {
5288 this_free++;
5289 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5290 float_free_list = &fblk->floats[i];
5291 }
5292 else
5293 {
5294 num_used++;
5295 FLOAT_UNMARK (&fblk->floats[i]);
5296 }
5297 lim = FLOAT_BLOCK_SIZE;
5298 /* If this block contains only free floats and we have already
5299 seen more than two blocks worth of free floats then deallocate
5300 this block. */
5301 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5302 {
5303 *fprev = fblk->next;
5304 /* Unhook from the free list. */
5305 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5306 lisp_align_free (fblk);
5307 n_float_blocks--;
5308 }
5309 else
5310 {
5311 num_free += this_free;
5312 fprev = &fblk->next;
5313 }
5314 }
5315 total_floats = num_used;
5316 total_free_floats = num_free;
5317 }
5318
5319 /* Put all unmarked intervals on free list */
5320 {
5321 register struct interval_block *iblk;
5322 struct interval_block **iprev = &interval_block;
5323 register int lim = interval_block_index;
5324 register int num_free = 0, num_used = 0;
5325
5326 interval_free_list = 0;
5327
5328 for (iblk = interval_block; iblk; iblk = *iprev)
5329 {
5330 register int i;
5331 int this_free = 0;
5332
5333 for (i = 0; i < lim; i++)
5334 {
5335 if (!iblk->intervals[i].gcmarkbit)
5336 {
5337 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5338 interval_free_list = &iblk->intervals[i];
5339 this_free++;
5340 }
5341 else
5342 {
5343 num_used++;
5344 iblk->intervals[i].gcmarkbit = 0;
5345 }
5346 }
5347 lim = INTERVAL_BLOCK_SIZE;
5348 /* If this block contains only free intervals and we have already
5349 seen more than two blocks worth of free intervals then
5350 deallocate this block. */
5351 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5352 {
5353 *iprev = iblk->next;
5354 /* Unhook from the free list. */
5355 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5356 lisp_free (iblk);
5357 n_interval_blocks--;
5358 }
5359 else
5360 {
5361 num_free += this_free;
5362 iprev = &iblk->next;
5363 }
5364 }
5365 total_intervals = num_used;
5366 total_free_intervals = num_free;
5367 }
5368
5369 /* Put all unmarked symbols on free list */
5370 {
5371 register struct symbol_block *sblk;
5372 struct symbol_block **sprev = &symbol_block;
5373 register int lim = symbol_block_index;
5374 register int num_free = 0, num_used = 0;
5375
5376 symbol_free_list = NULL;
5377
5378 for (sblk = symbol_block; sblk; sblk = *sprev)
5379 {
5380 int this_free = 0;
5381 struct Lisp_Symbol *sym = sblk->symbols;
5382 struct Lisp_Symbol *end = sym + lim;
5383
5384 for (; sym < end; ++sym)
5385 {
5386 /* Check if the symbol was created during loadup. In such a case
5387 it might be pointed to by pure bytecode which we don't trace,
5388 so we conservatively assume that it is live. */
5389 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5390
5391 if (!sym->gcmarkbit && !pure_p)
5392 {
5393 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5394 symbol_free_list = sym;
5395 #if GC_MARK_STACK
5396 symbol_free_list->function = Vdead;
5397 #endif
5398 ++this_free;
5399 }
5400 else
5401 {
5402 ++num_used;
5403 if (!pure_p)
5404 UNMARK_STRING (XSTRING (sym->xname));
5405 sym->gcmarkbit = 0;
5406 }
5407 }
5408
5409 lim = SYMBOL_BLOCK_SIZE;
5410 /* If this block contains only free symbols and we have already
5411 seen more than two blocks worth of free symbols then deallocate
5412 this block. */
5413 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5414 {
5415 *sprev = sblk->next;
5416 /* Unhook from the free list. */
5417 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5418 lisp_free (sblk);
5419 n_symbol_blocks--;
5420 }
5421 else
5422 {
5423 num_free += this_free;
5424 sprev = &sblk->next;
5425 }
5426 }
5427 total_symbols = num_used;
5428 total_free_symbols = num_free;
5429 }
5430
5431 /* Put all unmarked misc's on free list.
5432 For a marker, first unchain it from the buffer it points into. */
5433 {
5434 register struct marker_block *mblk;
5435 struct marker_block **mprev = &marker_block;
5436 register int lim = marker_block_index;
5437 register int num_free = 0, num_used = 0;
5438
5439 marker_free_list = 0;
5440
5441 for (mblk = marker_block; mblk; mblk = *mprev)
5442 {
5443 register int i;
5444 int this_free = 0;
5445
5446 for (i = 0; i < lim; i++)
5447 {
5448 if (!mblk->markers[i].u_marker.gcmarkbit)
5449 {
5450 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5451 unchain_marker (&mblk->markers[i].u_marker);
5452 /* Set the type of the freed object to Lisp_Misc_Free.
5453 We could leave the type alone, since nobody checks it,
5454 but this might catch bugs faster. */
5455 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5456 mblk->markers[i].u_free.chain = marker_free_list;
5457 marker_free_list = &mblk->markers[i];
5458 this_free++;
5459 }
5460 else
5461 {
5462 num_used++;
5463 mblk->markers[i].u_marker.gcmarkbit = 0;
5464 }
5465 }
5466 lim = MARKER_BLOCK_SIZE;
5467 /* If this block contains only free markers and we have already
5468 seen more than two blocks worth of free markers then deallocate
5469 this block. */
5470 #if 0
5471 /* There may still be pointers to these markers from a buffer's
5472 undo list, so don't free them. KFS 2004-05-21 /
5473 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5474 {
5475 *mprev = mblk->next;
5476 /* Unhook from the free list. */
5477 marker_free_list = mblk->markers[0].u_free.chain;
5478 lisp_free (mblk);
5479 n_marker_blocks--;
5480 }
5481 else
5482 #endif
5483 {
5484 num_free += this_free;
5485 mprev = &mblk->next;
5486 }
5487 }
5488
5489 total_markers = num_used;
5490 total_free_markers = num_free;
5491 }
5492
5493 /* Free all unmarked buffers */
5494 {
5495 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5496
5497 while (buffer)
5498 if (!VECTOR_MARKED_P (buffer))
5499 {
5500 if (prev)
5501 prev->next = buffer->next;
5502 else
5503 all_buffers = buffer->next;
5504 next = buffer->next;
5505 lisp_free (buffer);
5506 buffer = next;
5507 }
5508 else
5509 {
5510 VECTOR_UNMARK (buffer);
5511 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5512 prev = buffer, buffer = buffer->next;
5513 }
5514 }
5515
5516 /* Free all unmarked vectors */
5517 {
5518 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5519 total_vector_size = 0;
5520
5521 while (vector)
5522 if (!VECTOR_MARKED_P (vector))
5523 {
5524 if (prev)
5525 prev->next = vector->next;
5526 else
5527 all_vectors = vector->next;
5528 next = vector->next;
5529 lisp_free (vector);
5530 n_vectors--;
5531 vector = next;
5532
5533 }
5534 else
5535 {
5536 VECTOR_UNMARK (vector);
5537 if (vector->size & PSEUDOVECTOR_FLAG)
5538 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5539 else
5540 total_vector_size += vector->size;
5541 prev = vector, vector = vector->next;
5542 }
5543 }
5544
5545 #ifdef GC_CHECK_STRING_BYTES
5546 if (!noninteractive)
5547 check_string_bytes (1);
5548 #endif
5549 }
5550
5551
5552
5553 \f
5554 /* Debugging aids. */
5555
5556 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5557 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5558 This may be helpful in debugging Emacs's memory usage.
5559 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5560 ()
5561 {
5562 Lisp_Object end;
5563
5564 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5565
5566 return end;
5567 }
5568
5569 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5570 doc: /* Return a list of counters that measure how much consing there has been.
5571 Each of these counters increments for a certain kind of object.
5572 The counters wrap around from the largest positive integer to zero.
5573 Garbage collection does not decrease them.
5574 The elements of the value are as follows:
5575 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5576 All are in units of 1 = one object consed
5577 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5578 objects consed.
5579 MISCS include overlays, markers, and some internal types.
5580 Frames, windows, buffers, and subprocesses count as vectors
5581 (but the contents of a buffer's text do not count here). */)
5582 ()
5583 {
5584 Lisp_Object consed[8];
5585
5586 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5587 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5588 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5589 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5590 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5591 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5592 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5593 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5594
5595 return Flist (8, consed);
5596 }
5597
5598 int suppress_checking;
5599 void
5600 die (msg, file, line)
5601 const char *msg;
5602 const char *file;
5603 int line;
5604 {
5605 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5606 file, line, msg);
5607 abort ();
5608 }
5609 \f
5610 /* Initialization */
5611
5612 void
5613 init_alloc_once ()
5614 {
5615 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5616 purebeg = PUREBEG;
5617 pure_size = PURESIZE;
5618 pure_bytes_used = 0;
5619 pure_bytes_used_before_overflow = 0;
5620
5621 /* Initialize the list of free aligned blocks. */
5622 free_ablock = NULL;
5623
5624 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5625 mem_init ();
5626 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5627 #endif
5628
5629 all_vectors = 0;
5630 ignore_warnings = 1;
5631 #ifdef DOUG_LEA_MALLOC
5632 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5633 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5634 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5635 #endif
5636 init_strings ();
5637 init_cons ();
5638 init_symbol ();
5639 init_marker ();
5640 init_float ();
5641 init_intervals ();
5642
5643 #ifdef REL_ALLOC
5644 malloc_hysteresis = 32;
5645 #else
5646 malloc_hysteresis = 0;
5647 #endif
5648
5649 spare_memory = (char *) malloc (SPARE_MEMORY);
5650
5651 ignore_warnings = 0;
5652 gcprolist = 0;
5653 byte_stack_list = 0;
5654 staticidx = 0;
5655 consing_since_gc = 0;
5656 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5657 #ifdef VIRT_ADDR_VARIES
5658 malloc_sbrk_unused = 1<<22; /* A large number */
5659 malloc_sbrk_used = 100000; /* as reasonable as any number */
5660 #endif /* VIRT_ADDR_VARIES */
5661 }
5662
5663 void
5664 init_alloc ()
5665 {
5666 gcprolist = 0;
5667 byte_stack_list = 0;
5668 #if GC_MARK_STACK
5669 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5670 setjmp_tested_p = longjmps_done = 0;
5671 #endif
5672 #endif
5673 Vgc_elapsed = make_float (0.0);
5674 gcs_done = 0;
5675 }
5676
5677 void
5678 syms_of_alloc ()
5679 {
5680 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5681 doc: /* *Number of bytes of consing between garbage collections.
5682 Garbage collection can happen automatically once this many bytes have been
5683 allocated since the last garbage collection. All data types count.
5684
5685 Garbage collection happens automatically only when `eval' is called.
5686
5687 By binding this temporarily to a large number, you can effectively
5688 prevent garbage collection during a part of the program. */);
5689
5690 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5691 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5692
5693 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5694 doc: /* Number of cons cells that have been consed so far. */);
5695
5696 DEFVAR_INT ("floats-consed", &floats_consed,
5697 doc: /* Number of floats that have been consed so far. */);
5698
5699 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5700 doc: /* Number of vector cells that have been consed so far. */);
5701
5702 DEFVAR_INT ("symbols-consed", &symbols_consed,
5703 doc: /* Number of symbols that have been consed so far. */);
5704
5705 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5706 doc: /* Number of string characters that have been consed so far. */);
5707
5708 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5709 doc: /* Number of miscellaneous objects that have been consed so far. */);
5710
5711 DEFVAR_INT ("intervals-consed", &intervals_consed,
5712 doc: /* Number of intervals that have been consed so far. */);
5713
5714 DEFVAR_INT ("strings-consed", &strings_consed,
5715 doc: /* Number of strings that have been consed so far. */);
5716
5717 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5718 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5719 This means that certain objects should be allocated in shared (pure) space. */);
5720
5721 DEFVAR_INT ("undo-limit", &undo_limit,
5722 doc: /* Keep no more undo information once it exceeds this size.
5723 This limit is applied when garbage collection happens.
5724 The size is counted as the number of bytes occupied,
5725 which includes both saved text and other data. */);
5726 undo_limit = 20000;
5727
5728 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5729 doc: /* Don't keep more than this much size of undo information.
5730 A command which pushes past this size is itself forgotten.
5731 This limit is applied when garbage collection happens.
5732 The size is counted as the number of bytes occupied,
5733 which includes both saved text and other data. */);
5734 undo_strong_limit = 30000;
5735
5736 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5737 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5738 garbage_collection_messages = 0;
5739
5740 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5741 doc: /* Hook run after garbage collection has finished. */);
5742 Vpost_gc_hook = Qnil;
5743 Qpost_gc_hook = intern ("post-gc-hook");
5744 staticpro (&Qpost_gc_hook);
5745
5746 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5747 doc: /* Precomputed `signal' argument for memory-full error. */);
5748 /* We build this in advance because if we wait until we need it, we might
5749 not be able to allocate the memory to hold it. */
5750 Vmemory_signal_data
5751 = list2 (Qerror,
5752 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5753
5754 DEFVAR_LISP ("memory-full", &Vmemory_full,
5755 doc: /* Non-nil means we are handling a memory-full error. */);
5756 Vmemory_full = Qnil;
5757
5758 staticpro (&Qgc_cons_threshold);
5759 Qgc_cons_threshold = intern ("gc-cons-threshold");
5760
5761 staticpro (&Qchar_table_extra_slots);
5762 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5763
5764 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5765 doc: /* Accumulated time elapsed in garbage collections.
5766 The time is in seconds as a floating point value. */);
5767 DEFVAR_INT ("gcs-done", &gcs_done,
5768 doc: /* Accumulated number of garbage collections done. */);
5769
5770 defsubr (&Scons);
5771 defsubr (&Slist);
5772 defsubr (&Svector);
5773 defsubr (&Smake_byte_code);
5774 defsubr (&Smake_list);
5775 defsubr (&Smake_vector);
5776 defsubr (&Smake_char_table);
5777 defsubr (&Smake_string);
5778 defsubr (&Smake_bool_vector);
5779 defsubr (&Smake_symbol);
5780 defsubr (&Smake_marker);
5781 defsubr (&Spurecopy);
5782 defsubr (&Sgarbage_collect);
5783 defsubr (&Smemory_limit);
5784 defsubr (&Smemory_use_counts);
5785
5786 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5787 defsubr (&Sgc_status);
5788 #endif
5789 }
5790
5791 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5792 (do not change this comment) */