Use const char* instead of char*.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 2005, 2006, 2007, 2008, 2009, 2010
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8 Copyright (C) 2003
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
11
12 This file is part of GNU Emacs.
13
14 GNU Emacs is free software: you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 GNU Emacs is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26
27 /*** TABLE OF CONTENTS ***
28
29 0. General comments
30 1. Preamble
31 2. Emacs' internal format (emacs-utf-8) handlers
32 3. UTF-8 handlers
33 4. UTF-16 handlers
34 5. Charset-base coding systems handlers
35 6. emacs-mule (old Emacs' internal format) handlers
36 7. ISO2022 handlers
37 8. Shift-JIS and BIG5 handlers
38 9. CCL handlers
39 10. C library functions
40 11. Emacs Lisp library functions
41 12. Postamble
42
43 */
44
45 /*** 0. General comments ***
46
47
48 CODING SYSTEM
49
50 A coding system is an object for an encoding mechanism that contains
51 information about how to convert byte sequences to character
52 sequences and vice versa. When we say "decode", it means converting
53 a byte sequence of a specific coding system into a character
54 sequence that is represented by Emacs' internal coding system
55 `emacs-utf-8', and when we say "encode", it means converting a
56 character sequence of emacs-utf-8 to a byte sequence of a specific
57 coding system.
58
59 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
60 C level, a coding system is represented by a vector of attributes
61 stored in the hash table Vcharset_hash_table. The conversion from
62 coding system symbol to attributes vector is done by looking up
63 Vcharset_hash_table by the symbol.
64
65 Coding systems are classified into the following types depending on
66 the encoding mechanism. Here's a brief description of the types.
67
68 o UTF-8
69
70 o UTF-16
71
72 o Charset-base coding system
73
74 A coding system defined by one or more (coded) character sets.
75 Decoding and encoding are done by a code converter defined for each
76 character set.
77
78 o Old Emacs internal format (emacs-mule)
79
80 The coding system adopted by old versions of Emacs (20 and 21).
81
82 o ISO2022-base coding system
83
84 The most famous coding system for multiple character sets. X's
85 Compound Text, various EUCs (Extended Unix Code), and coding systems
86 used in the Internet communication such as ISO-2022-JP are all
87 variants of ISO2022.
88
89 o SJIS (or Shift-JIS or MS-Kanji-Code)
90
91 A coding system to encode character sets: ASCII, JISX0201, and
92 JISX0208. Widely used for PC's in Japan. Details are described in
93 section 8.
94
95 o BIG5
96
97 A coding system to encode character sets: ASCII and Big5. Widely
98 used for Chinese (mainly in Taiwan and Hong Kong). Details are
99 described in section 8. In this file, when we write "big5" (all
100 lowercase), we mean the coding system, and when we write "Big5"
101 (capitalized), we mean the character set.
102
103 o CCL
104
105 If a user wants to decode/encode text encoded in a coding system
106 not listed above, he can supply a decoder and an encoder for it in
107 CCL (Code Conversion Language) programs. Emacs executes the CCL
108 program while decoding/encoding.
109
110 o Raw-text
111
112 A coding system for text containing raw eight-bit data. Emacs
113 treats each byte of source text as a character (except for
114 end-of-line conversion).
115
116 o No-conversion
117
118 Like raw text, but don't do end-of-line conversion.
119
120
121 END-OF-LINE FORMAT
122
123 How text end-of-line is encoded depends on operating system. For
124 instance, Unix's format is just one byte of LF (line-feed) code,
125 whereas DOS's format is two-byte sequence of `carriage-return' and
126 `line-feed' codes. MacOS's format is usually one byte of
127 `carriage-return'.
128
129 Since text character encoding and end-of-line encoding are
130 independent, any coding system described above can take any format
131 of end-of-line (except for no-conversion).
132
133 STRUCT CODING_SYSTEM
134
135 Before using a coding system for code conversion (i.e. decoding and
136 encoding), we setup a structure of type `struct coding_system'.
137 This structure keeps various information about a specific code
138 conversion (e.g. the location of source and destination data).
139
140 */
141
142 /* COMMON MACROS */
143
144
145 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
146
147 These functions check if a byte sequence specified as a source in
148 CODING conforms to the format of XXX, and update the members of
149 DETECT_INFO.
150
151 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
152
153 Below is the template of these functions. */
154
155 #if 0
156 static int
157 detect_coding_XXX (struct coding_system *coding,
158 struct coding_detection_info *detect_info)
159 {
160 const unsigned char *src = coding->source;
161 const unsigned char *src_end = coding->source + coding->src_bytes;
162 int multibytep = coding->src_multibyte;
163 int consumed_chars = 0;
164 int found = 0;
165 ...;
166
167 while (1)
168 {
169 /* Get one byte from the source. If the souce is exausted, jump
170 to no_more_source:. */
171 ONE_MORE_BYTE (c);
172
173 if (! __C_conforms_to_XXX___ (c))
174 break;
175 if (! __C_strongly_suggests_XXX__ (c))
176 found = CATEGORY_MASK_XXX;
177 }
178 /* The byte sequence is invalid for XXX. */
179 detect_info->rejected |= CATEGORY_MASK_XXX;
180 return 0;
181
182 no_more_source:
183 /* The source exausted successfully. */
184 detect_info->found |= found;
185 return 1;
186 }
187 #endif
188
189 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
190
191 These functions decode a byte sequence specified as a source by
192 CODING. The resulting multibyte text goes to a place pointed to by
193 CODING->charbuf, the length of which should not exceed
194 CODING->charbuf_size;
195
196 These functions set the information of original and decoded texts in
197 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
198 They also set CODING->result to one of CODING_RESULT_XXX indicating
199 how the decoding is finished.
200
201 Below is the template of these functions. */
202
203 #if 0
204 static void
205 decode_coding_XXXX (struct coding_system *coding)
206 {
207 const unsigned char *src = coding->source + coding->consumed;
208 const unsigned char *src_end = coding->source + coding->src_bytes;
209 /* SRC_BASE remembers the start position in source in each loop.
210 The loop will be exited when there's not enough source code, or
211 when there's no room in CHARBUF for a decoded character. */
212 const unsigned char *src_base;
213 /* A buffer to produce decoded characters. */
214 int *charbuf = coding->charbuf + coding->charbuf_used;
215 int *charbuf_end = coding->charbuf + coding->charbuf_size;
216 int multibytep = coding->src_multibyte;
217
218 while (1)
219 {
220 src_base = src;
221 if (charbuf < charbuf_end)
222 /* No more room to produce a decoded character. */
223 break;
224 ONE_MORE_BYTE (c);
225 /* Decode it. */
226 }
227
228 no_more_source:
229 if (src_base < src_end
230 && coding->mode & CODING_MODE_LAST_BLOCK)
231 /* If the source ends by partial bytes to construct a character,
232 treat them as eight-bit raw data. */
233 while (src_base < src_end && charbuf < charbuf_end)
234 *charbuf++ = *src_base++;
235 /* Remember how many bytes and characters we consumed. If the
236 source is multibyte, the bytes and chars are not identical. */
237 coding->consumed = coding->consumed_char = src_base - coding->source;
238 /* Remember how many characters we produced. */
239 coding->charbuf_used = charbuf - coding->charbuf;
240 }
241 #endif
242
243 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
244
245 These functions encode SRC_BYTES length text at SOURCE of Emacs'
246 internal multibyte format by CODING. The resulting byte sequence
247 goes to a place pointed to by DESTINATION, the length of which
248 should not exceed DST_BYTES.
249
250 These functions set the information of original and encoded texts in
251 the members produced, produced_char, consumed, and consumed_char of
252 the structure *CODING. They also set the member result to one of
253 CODING_RESULT_XXX indicating how the encoding finished.
254
255 DST_BYTES zero means that source area and destination area are
256 overlapped, which means that we can produce a encoded text until it
257 reaches at the head of not-yet-encoded source text.
258
259 Below is a template of these functions. */
260 #if 0
261 static void
262 encode_coding_XXX (struct coding_system *coding)
263 {
264 int multibytep = coding->dst_multibyte;
265 int *charbuf = coding->charbuf;
266 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
267 unsigned char *dst = coding->destination + coding->produced;
268 unsigned char *dst_end = coding->destination + coding->dst_bytes;
269 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
270 int produced_chars = 0;
271
272 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
273 {
274 int c = *charbuf;
275 /* Encode C into DST, and increment DST. */
276 }
277 label_no_more_destination:
278 /* How many chars and bytes we produced. */
279 coding->produced_char += produced_chars;
280 coding->produced = dst - coding->destination;
281 }
282 #endif
283
284 \f
285 /*** 1. Preamble ***/
286
287 #include <config.h>
288 #include <stdio.h>
289 #include <setjmp.h>
290
291 #include "lisp.h"
292 #include "buffer.h"
293 #include "character.h"
294 #include "charset.h"
295 #include "ccl.h"
296 #include "composite.h"
297 #include "coding.h"
298 #include "window.h"
299 #include "frame.h"
300 #include "termhooks.h"
301
302 Lisp_Object Vcoding_system_hash_table;
303
304 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
305 Lisp_Object Qunix, Qdos;
306 Lisp_Object Qbuffer_file_coding_system;
307 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
308 Lisp_Object Qdefault_char;
309 Lisp_Object Qno_conversion, Qundecided;
310 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
311 Lisp_Object Qbig, Qlittle;
312 Lisp_Object Qcoding_system_history;
313 Lisp_Object Qvalid_codes;
314 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
315 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
316 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
317 Lisp_Object QCascii_compatible_p;
318
319 Lisp_Object Qcall_process, Qcall_process_region;
320 Lisp_Object Qstart_process, Qopen_network_stream;
321 Lisp_Object Qtarget_idx;
322
323 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
324 Lisp_Object Qinterrupted, Qinsufficient_memory;
325
326 /* If a symbol has this property, evaluate the value to define the
327 symbol as a coding system. */
328 static Lisp_Object Qcoding_system_define_form;
329
330 int coding_system_require_warning;
331
332 Lisp_Object Vselect_safe_coding_system_function;
333
334 /* Mnemonic string for each format of end-of-line. */
335 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
336 /* Mnemonic string to indicate format of end-of-line is not yet
337 decided. */
338 Lisp_Object eol_mnemonic_undecided;
339
340 /* Format of end-of-line decided by system. This is Qunix on
341 Unix and Mac, Qdos on DOS/Windows.
342 This has an effect only for external encoding (i.e. for output to
343 file and process), not for in-buffer or Lisp string encoding. */
344 static Lisp_Object system_eol_type;
345
346 #ifdef emacs
347
348 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
349
350 Lisp_Object Qcoding_system_p, Qcoding_system_error;
351
352 /* Coding system emacs-mule and raw-text are for converting only
353 end-of-line format. */
354 Lisp_Object Qemacs_mule, Qraw_text;
355 Lisp_Object Qutf_8_emacs;
356
357 /* Coding-systems are handed between Emacs Lisp programs and C internal
358 routines by the following three variables. */
359 /* Coding-system for reading files and receiving data from process. */
360 Lisp_Object Vcoding_system_for_read;
361 /* Coding-system for writing files and sending data to process. */
362 Lisp_Object Vcoding_system_for_write;
363 /* Coding-system actually used in the latest I/O. */
364 Lisp_Object Vlast_coding_system_used;
365 /* Set to non-nil when an error is detected while code conversion. */
366 Lisp_Object Vlast_code_conversion_error;
367 /* A vector of length 256 which contains information about special
368 Latin codes (especially for dealing with Microsoft codes). */
369 Lisp_Object Vlatin_extra_code_table;
370
371 /* Flag to inhibit code conversion of end-of-line format. */
372 int inhibit_eol_conversion;
373
374 /* Flag to inhibit ISO2022 escape sequence detection. */
375 int inhibit_iso_escape_detection;
376
377 /* Flag to inhibit detection of binary files through null bytes. */
378 int inhibit_null_byte_detection;
379
380 /* Flag to make buffer-file-coding-system inherit from process-coding. */
381 int inherit_process_coding_system;
382
383 /* Coding system to be used to encode text for terminal display when
384 terminal coding system is nil. */
385 struct coding_system safe_terminal_coding;
386
387 Lisp_Object Vfile_coding_system_alist;
388 Lisp_Object Vprocess_coding_system_alist;
389 Lisp_Object Vnetwork_coding_system_alist;
390
391 Lisp_Object Vlocale_coding_system;
392
393 #endif /* emacs */
394
395 /* Flag to tell if we look up translation table on character code
396 conversion. */
397 Lisp_Object Venable_character_translation;
398 /* Standard translation table to look up on decoding (reading). */
399 Lisp_Object Vstandard_translation_table_for_decode;
400 /* Standard translation table to look up on encoding (writing). */
401 Lisp_Object Vstandard_translation_table_for_encode;
402
403 Lisp_Object Qtranslation_table;
404 Lisp_Object Qtranslation_table_id;
405 Lisp_Object Qtranslation_table_for_decode;
406 Lisp_Object Qtranslation_table_for_encode;
407
408 /* Alist of charsets vs revision number. */
409 static Lisp_Object Vcharset_revision_table;
410
411 /* Default coding systems used for process I/O. */
412 Lisp_Object Vdefault_process_coding_system;
413
414 /* Char table for translating Quail and self-inserting input. */
415 Lisp_Object Vtranslation_table_for_input;
416
417 /* Two special coding systems. */
418 Lisp_Object Vsjis_coding_system;
419 Lisp_Object Vbig5_coding_system;
420
421 /* ISO2022 section */
422
423 #define CODING_ISO_INITIAL(coding, reg) \
424 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
425 coding_attr_iso_initial), \
426 reg)))
427
428
429 #define CODING_ISO_REQUEST(coding, charset_id) \
430 (((charset_id) <= (coding)->max_charset_id \
431 ? ((coding)->safe_charsets[charset_id] != 255 \
432 ? (coding)->safe_charsets[charset_id] \
433 : -1) \
434 : -1))
435
436
437 #define CODING_ISO_FLAGS(coding) \
438 ((coding)->spec.iso_2022.flags)
439 #define CODING_ISO_DESIGNATION(coding, reg) \
440 ((coding)->spec.iso_2022.current_designation[reg])
441 #define CODING_ISO_INVOCATION(coding, plane) \
442 ((coding)->spec.iso_2022.current_invocation[plane])
443 #define CODING_ISO_SINGLE_SHIFTING(coding) \
444 ((coding)->spec.iso_2022.single_shifting)
445 #define CODING_ISO_BOL(coding) \
446 ((coding)->spec.iso_2022.bol)
447 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
448 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
449 #define CODING_ISO_CMP_STATUS(coding) \
450 (&(coding)->spec.iso_2022.cmp_status)
451 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
452 ((coding)->spec.iso_2022.ctext_extended_segment_len)
453 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
454 ((coding)->spec.iso_2022.embedded_utf_8)
455
456 /* Control characters of ISO2022. */
457 /* code */ /* function */
458 #define ISO_CODE_LF 0x0A /* line-feed */
459 #define ISO_CODE_CR 0x0D /* carriage-return */
460 #define ISO_CODE_SO 0x0E /* shift-out */
461 #define ISO_CODE_SI 0x0F /* shift-in */
462 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
463 #define ISO_CODE_ESC 0x1B /* escape */
464 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
465 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
466 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
467
468 /* All code (1-byte) of ISO2022 is classified into one of the
469 followings. */
470 enum iso_code_class_type
471 {
472 ISO_control_0, /* Control codes in the range
473 0x00..0x1F and 0x7F, except for the
474 following 5 codes. */
475 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
476 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
477 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
478 ISO_escape, /* ISO_CODE_SO (0x1B) */
479 ISO_control_1, /* Control codes in the range
480 0x80..0x9F, except for the
481 following 3 codes. */
482 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
483 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
484 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
485 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
486 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
487 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
488 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
489 };
490
491 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
492 `iso-flags' attribute of an iso2022 coding system. */
493
494 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
495 instead of the correct short-form sequence (e.g. ESC $ A). */
496 #define CODING_ISO_FLAG_LONG_FORM 0x0001
497
498 /* If set, reset graphic planes and registers at end-of-line to the
499 initial state. */
500 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
501
502 /* If set, reset graphic planes and registers before any control
503 characters to the initial state. */
504 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
505
506 /* If set, encode by 7-bit environment. */
507 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
508
509 /* If set, use locking-shift function. */
510 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
511
512 /* If set, use single-shift function. Overwrite
513 CODING_ISO_FLAG_LOCKING_SHIFT. */
514 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
515
516 /* If set, use designation escape sequence. */
517 #define CODING_ISO_FLAG_DESIGNATION 0x0040
518
519 /* If set, produce revision number sequence. */
520 #define CODING_ISO_FLAG_REVISION 0x0080
521
522 /* If set, produce ISO6429's direction specifying sequence. */
523 #define CODING_ISO_FLAG_DIRECTION 0x0100
524
525 /* If set, assume designation states are reset at beginning of line on
526 output. */
527 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
528
529 /* If set, designation sequence should be placed at beginning of line
530 on output. */
531 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
532
533 /* If set, do not encode unsafe charactes on output. */
534 #define CODING_ISO_FLAG_SAFE 0x0800
535
536 /* If set, extra latin codes (128..159) are accepted as a valid code
537 on input. */
538 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
539
540 #define CODING_ISO_FLAG_COMPOSITION 0x2000
541
542 #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000
543
544 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
545
546 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
547
548 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
549
550 /* A character to be produced on output if encoding of the original
551 character is prohibited by CODING_ISO_FLAG_SAFE. */
552 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
553
554 /* UTF-8 section */
555 #define CODING_UTF_8_BOM(coding) \
556 ((coding)->spec.utf_8_bom)
557
558 /* UTF-16 section */
559 #define CODING_UTF_16_BOM(coding) \
560 ((coding)->spec.utf_16.bom)
561
562 #define CODING_UTF_16_ENDIAN(coding) \
563 ((coding)->spec.utf_16.endian)
564
565 #define CODING_UTF_16_SURROGATE(coding) \
566 ((coding)->spec.utf_16.surrogate)
567
568
569 /* CCL section */
570 #define CODING_CCL_DECODER(coding) \
571 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
572 #define CODING_CCL_ENCODER(coding) \
573 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
574 #define CODING_CCL_VALIDS(coding) \
575 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
576
577 /* Index for each coding category in `coding_categories' */
578
579 enum coding_category
580 {
581 coding_category_iso_7,
582 coding_category_iso_7_tight,
583 coding_category_iso_8_1,
584 coding_category_iso_8_2,
585 coding_category_iso_7_else,
586 coding_category_iso_8_else,
587 coding_category_utf_8_auto,
588 coding_category_utf_8_nosig,
589 coding_category_utf_8_sig,
590 coding_category_utf_16_auto,
591 coding_category_utf_16_be,
592 coding_category_utf_16_le,
593 coding_category_utf_16_be_nosig,
594 coding_category_utf_16_le_nosig,
595 coding_category_charset,
596 coding_category_sjis,
597 coding_category_big5,
598 coding_category_ccl,
599 coding_category_emacs_mule,
600 /* All above are targets of code detection. */
601 coding_category_raw_text,
602 coding_category_undecided,
603 coding_category_max
604 };
605
606 /* Definitions of flag bits used in detect_coding_XXXX. */
607 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
608 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
609 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
610 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
611 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
612 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
613 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
614 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
615 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
616 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
617 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
618 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
619 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
620 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
621 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
622 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
623 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
624 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
625 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
626 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
627
628 /* This value is returned if detect_coding_mask () find nothing other
629 than ASCII characters. */
630 #define CATEGORY_MASK_ANY \
631 (CATEGORY_MASK_ISO_7 \
632 | CATEGORY_MASK_ISO_7_TIGHT \
633 | CATEGORY_MASK_ISO_8_1 \
634 | CATEGORY_MASK_ISO_8_2 \
635 | CATEGORY_MASK_ISO_7_ELSE \
636 | CATEGORY_MASK_ISO_8_ELSE \
637 | CATEGORY_MASK_UTF_8_AUTO \
638 | CATEGORY_MASK_UTF_8_NOSIG \
639 | CATEGORY_MASK_UTF_8_SIG \
640 | CATEGORY_MASK_UTF_16_AUTO \
641 | CATEGORY_MASK_UTF_16_BE \
642 | CATEGORY_MASK_UTF_16_LE \
643 | CATEGORY_MASK_UTF_16_BE_NOSIG \
644 | CATEGORY_MASK_UTF_16_LE_NOSIG \
645 | CATEGORY_MASK_CHARSET \
646 | CATEGORY_MASK_SJIS \
647 | CATEGORY_MASK_BIG5 \
648 | CATEGORY_MASK_CCL \
649 | CATEGORY_MASK_EMACS_MULE)
650
651
652 #define CATEGORY_MASK_ISO_7BIT \
653 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
654
655 #define CATEGORY_MASK_ISO_8BIT \
656 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
657
658 #define CATEGORY_MASK_ISO_ELSE \
659 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
660
661 #define CATEGORY_MASK_ISO_ESCAPE \
662 (CATEGORY_MASK_ISO_7 \
663 | CATEGORY_MASK_ISO_7_TIGHT \
664 | CATEGORY_MASK_ISO_7_ELSE \
665 | CATEGORY_MASK_ISO_8_ELSE)
666
667 #define CATEGORY_MASK_ISO \
668 ( CATEGORY_MASK_ISO_7BIT \
669 | CATEGORY_MASK_ISO_8BIT \
670 | CATEGORY_MASK_ISO_ELSE)
671
672 #define CATEGORY_MASK_UTF_16 \
673 (CATEGORY_MASK_UTF_16_AUTO \
674 | CATEGORY_MASK_UTF_16_BE \
675 | CATEGORY_MASK_UTF_16_LE \
676 | CATEGORY_MASK_UTF_16_BE_NOSIG \
677 | CATEGORY_MASK_UTF_16_LE_NOSIG)
678
679 #define CATEGORY_MASK_UTF_8 \
680 (CATEGORY_MASK_UTF_8_AUTO \
681 | CATEGORY_MASK_UTF_8_NOSIG \
682 | CATEGORY_MASK_UTF_8_SIG)
683
684 /* List of symbols `coding-category-xxx' ordered by priority. This
685 variable is exposed to Emacs Lisp. */
686 static Lisp_Object Vcoding_category_list;
687
688 /* Table of coding categories (Lisp symbols). This variable is for
689 internal use oly. */
690 static Lisp_Object Vcoding_category_table;
691
692 /* Table of coding-categories ordered by priority. */
693 static enum coding_category coding_priorities[coding_category_max];
694
695 /* Nth element is a coding context for the coding system bound to the
696 Nth coding category. */
697 static struct coding_system coding_categories[coding_category_max];
698
699 /*** Commonly used macros and functions ***/
700
701 #ifndef min
702 #define min(a, b) ((a) < (b) ? (a) : (b))
703 #endif
704 #ifndef max
705 #define max(a, b) ((a) > (b) ? (a) : (b))
706 #endif
707
708 #define CODING_GET_INFO(coding, attrs, charset_list) \
709 do { \
710 (attrs) = CODING_ID_ATTRS ((coding)->id); \
711 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
712 } while (0)
713
714
715 /* Safely get one byte from the source text pointed by SRC which ends
716 at SRC_END, and set C to that byte. If there are not enough bytes
717 in the source, it jumps to `no_more_source'. If multibytep is
718 nonzero, and a multibyte character is found at SRC, set C to the
719 negative value of the character code. The caller should declare
720 and set these variables appropriately in advance:
721 src, src_end, multibytep */
722
723 #define ONE_MORE_BYTE(c) \
724 do { \
725 if (src == src_end) \
726 { \
727 if (src_base < src) \
728 record_conversion_result \
729 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
730 goto no_more_source; \
731 } \
732 c = *src++; \
733 if (multibytep && (c & 0x80)) \
734 { \
735 if ((c & 0xFE) == 0xC0) \
736 c = ((c & 1) << 6) | *src++; \
737 else \
738 { \
739 src--; \
740 c = - string_char (src, &src, NULL); \
741 record_conversion_result \
742 (coding, CODING_RESULT_INVALID_SRC); \
743 } \
744 } \
745 consumed_chars++; \
746 } while (0)
747
748 /* Safely get two bytes from the source text pointed by SRC which ends
749 at SRC_END, and set C1 and C2 to those bytes while skipping the
750 heading multibyte characters. If there are not enough bytes in the
751 source, it jumps to `no_more_source'. If multibytep is nonzero and
752 a multibyte character is found for C2, set C2 to the negative value
753 of the character code. The caller should declare and set these
754 variables appropriately in advance:
755 src, src_end, multibytep
756 It is intended that this macro is used in detect_coding_utf_16. */
757
758 #define TWO_MORE_BYTES(c1, c2) \
759 do { \
760 do { \
761 if (src == src_end) \
762 goto no_more_source; \
763 c1 = *src++; \
764 if (multibytep && (c1 & 0x80)) \
765 { \
766 if ((c1 & 0xFE) == 0xC0) \
767 c1 = ((c1 & 1) << 6) | *src++; \
768 else \
769 { \
770 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
771 c1 = -1; \
772 } \
773 } \
774 } while (c1 < 0); \
775 if (src == src_end) \
776 goto no_more_source; \
777 c2 = *src++; \
778 if (multibytep && (c2 & 0x80)) \
779 { \
780 if ((c2 & 0xFE) == 0xC0) \
781 c2 = ((c2 & 1) << 6) | *src++; \
782 else \
783 c2 = -1; \
784 } \
785 } while (0)
786
787
788 #define ONE_MORE_BYTE_NO_CHECK(c) \
789 do { \
790 c = *src++; \
791 if (multibytep && (c & 0x80)) \
792 { \
793 if ((c & 0xFE) == 0xC0) \
794 c = ((c & 1) << 6) | *src++; \
795 else \
796 { \
797 src--; \
798 c = - string_char (src, &src, NULL); \
799 record_conversion_result \
800 (coding, CODING_RESULT_INVALID_SRC); \
801 } \
802 } \
803 consumed_chars++; \
804 } while (0)
805
806
807 /* Store a byte C in the place pointed by DST and increment DST to the
808 next free point, and increment PRODUCED_CHARS. The caller should
809 assure that C is 0..127, and declare and set the variable `dst'
810 appropriately in advance.
811 */
812
813
814 #define EMIT_ONE_ASCII_BYTE(c) \
815 do { \
816 produced_chars++; \
817 *dst++ = (c); \
818 } while (0)
819
820
821 /* Like EMIT_ONE_ASCII_BYTE byt store two bytes; C1 and C2. */
822
823 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
824 do { \
825 produced_chars += 2; \
826 *dst++ = (c1), *dst++ = (c2); \
827 } while (0)
828
829
830 /* Store a byte C in the place pointed by DST and increment DST to the
831 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
832 nonzero, store in an appropriate multibyte from. The caller should
833 declare and set the variables `dst' and `multibytep' appropriately
834 in advance. */
835
836 #define EMIT_ONE_BYTE(c) \
837 do { \
838 produced_chars++; \
839 if (multibytep) \
840 { \
841 int ch = (c); \
842 if (ch >= 0x80) \
843 ch = BYTE8_TO_CHAR (ch); \
844 CHAR_STRING_ADVANCE (ch, dst); \
845 } \
846 else \
847 *dst++ = (c); \
848 } while (0)
849
850
851 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
852
853 #define EMIT_TWO_BYTES(c1, c2) \
854 do { \
855 produced_chars += 2; \
856 if (multibytep) \
857 { \
858 int ch; \
859 \
860 ch = (c1); \
861 if (ch >= 0x80) \
862 ch = BYTE8_TO_CHAR (ch); \
863 CHAR_STRING_ADVANCE (ch, dst); \
864 ch = (c2); \
865 if (ch >= 0x80) \
866 ch = BYTE8_TO_CHAR (ch); \
867 CHAR_STRING_ADVANCE (ch, dst); \
868 } \
869 else \
870 { \
871 *dst++ = (c1); \
872 *dst++ = (c2); \
873 } \
874 } while (0)
875
876
877 #define EMIT_THREE_BYTES(c1, c2, c3) \
878 do { \
879 EMIT_ONE_BYTE (c1); \
880 EMIT_TWO_BYTES (c2, c3); \
881 } while (0)
882
883
884 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
885 do { \
886 EMIT_TWO_BYTES (c1, c2); \
887 EMIT_TWO_BYTES (c3, c4); \
888 } while (0)
889
890
891 /* Prototypes for static functions. */
892 static void record_conversion_result (struct coding_system *coding,
893 enum coding_result_code result);
894 static int detect_coding_utf_8 (struct coding_system *,
895 struct coding_detection_info *info);
896 static void decode_coding_utf_8 (struct coding_system *);
897 static int encode_coding_utf_8 (struct coding_system *);
898
899 static int detect_coding_utf_16 (struct coding_system *,
900 struct coding_detection_info *info);
901 static void decode_coding_utf_16 (struct coding_system *);
902 static int encode_coding_utf_16 (struct coding_system *);
903
904 static int detect_coding_iso_2022 (struct coding_system *,
905 struct coding_detection_info *info);
906 static void decode_coding_iso_2022 (struct coding_system *);
907 static int encode_coding_iso_2022 (struct coding_system *);
908
909 static int detect_coding_emacs_mule (struct coding_system *,
910 struct coding_detection_info *info);
911 static void decode_coding_emacs_mule (struct coding_system *);
912 static int encode_coding_emacs_mule (struct coding_system *);
913
914 static int detect_coding_sjis (struct coding_system *,
915 struct coding_detection_info *info);
916 static void decode_coding_sjis (struct coding_system *);
917 static int encode_coding_sjis (struct coding_system *);
918
919 static int detect_coding_big5 (struct coding_system *,
920 struct coding_detection_info *info);
921 static void decode_coding_big5 (struct coding_system *);
922 static int encode_coding_big5 (struct coding_system *);
923
924 static int detect_coding_ccl (struct coding_system *,
925 struct coding_detection_info *info);
926 static void decode_coding_ccl (struct coding_system *);
927 static int encode_coding_ccl (struct coding_system *);
928
929 static void decode_coding_raw_text (struct coding_system *);
930 static int encode_coding_raw_text (struct coding_system *);
931
932 static void coding_set_source (struct coding_system *);
933 static void coding_set_destination (struct coding_system *);
934 static void coding_alloc_by_realloc (struct coding_system *, EMACS_INT);
935 static void coding_alloc_by_making_gap (struct coding_system *,
936 EMACS_INT, EMACS_INT);
937 static unsigned char *alloc_destination (struct coding_system *,
938 EMACS_INT, unsigned char *);
939 static void setup_iso_safe_charsets (Lisp_Object);
940 static unsigned char *encode_designation_at_bol (struct coding_system *,
941 int *, int *,
942 unsigned char *);
943 static int detect_eol (const unsigned char *,
944 EMACS_INT, enum coding_category);
945 static Lisp_Object adjust_coding_eol_type (struct coding_system *, int);
946 static void decode_eol (struct coding_system *);
947 static Lisp_Object get_translation_table (Lisp_Object, int, int *);
948 static Lisp_Object get_translation (Lisp_Object, int *, int *);
949 static int produce_chars (struct coding_system *, Lisp_Object, int);
950 static INLINE void produce_charset (struct coding_system *, int *,
951 EMACS_INT);
952 static void produce_annotation (struct coding_system *, EMACS_INT);
953 static int decode_coding (struct coding_system *);
954 static INLINE int *handle_composition_annotation (EMACS_INT, EMACS_INT,
955 struct coding_system *,
956 int *, EMACS_INT *);
957 static INLINE int *handle_charset_annotation (EMACS_INT, EMACS_INT,
958 struct coding_system *,
959 int *, EMACS_INT *);
960 static void consume_chars (struct coding_system *, Lisp_Object, int);
961 static int encode_coding (struct coding_system *);
962 static Lisp_Object make_conversion_work_buffer (int);
963 static Lisp_Object code_conversion_restore (Lisp_Object);
964 static INLINE int char_encodable_p (int, Lisp_Object);
965 static Lisp_Object make_subsidiaries (Lisp_Object);
966
967 static void
968 record_conversion_result (struct coding_system *coding,
969 enum coding_result_code result)
970 {
971 coding->result = result;
972 switch (result)
973 {
974 case CODING_RESULT_INSUFFICIENT_SRC:
975 Vlast_code_conversion_error = Qinsufficient_source;
976 break;
977 case CODING_RESULT_INCONSISTENT_EOL:
978 Vlast_code_conversion_error = Qinconsistent_eol;
979 break;
980 case CODING_RESULT_INVALID_SRC:
981 Vlast_code_conversion_error = Qinvalid_source;
982 break;
983 case CODING_RESULT_INTERRUPT:
984 Vlast_code_conversion_error = Qinterrupted;
985 break;
986 case CODING_RESULT_INSUFFICIENT_MEM:
987 Vlast_code_conversion_error = Qinsufficient_memory;
988 break;
989 case CODING_RESULT_INSUFFICIENT_DST:
990 /* Don't record this error in Vlast_code_conversion_error
991 because it happens just temporarily and is resolved when the
992 whole conversion is finished. */
993 break;
994 case CODING_RESULT_SUCCESS:
995 break;
996 default:
997 Vlast_code_conversion_error = intern ("Unknown error");
998 }
999 }
1000
1001 /* This wrapper macro is used to preserve validity of pointers into
1002 buffer text across calls to decode_char, which could cause
1003 relocation of buffers if it loads a charset map, because loading a
1004 charset map allocates large structures. */
1005 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
1006 do { \
1007 charset_map_loaded = 0; \
1008 c = DECODE_CHAR (charset, code); \
1009 if (charset_map_loaded) \
1010 { \
1011 const unsigned char *orig = coding->source; \
1012 EMACS_INT offset; \
1013 \
1014 coding_set_source (coding); \
1015 offset = coding->source - orig; \
1016 src += offset; \
1017 src_base += offset; \
1018 src_end += offset; \
1019 } \
1020 } while (0)
1021
1022
1023 /* If there are at least BYTES length of room at dst, allocate memory
1024 for coding->destination and update dst and dst_end. We don't have
1025 to take care of coding->source which will be relocated. It is
1026 handled by calling coding_set_source in encode_coding. */
1027
1028 #define ASSURE_DESTINATION(bytes) \
1029 do { \
1030 if (dst + (bytes) >= dst_end) \
1031 { \
1032 int more_bytes = charbuf_end - charbuf + (bytes); \
1033 \
1034 dst = alloc_destination (coding, more_bytes, dst); \
1035 dst_end = coding->destination + coding->dst_bytes; \
1036 } \
1037 } while (0)
1038
1039
1040 /* Store multibyte form of the character C in P, and advance P to the
1041 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1042 never calls MAYBE_UNIFY_CHAR. */
1043
1044 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1045 do { \
1046 if ((c) <= MAX_1_BYTE_CHAR) \
1047 *(p)++ = (c); \
1048 else if ((c) <= MAX_2_BYTE_CHAR) \
1049 *(p)++ = (0xC0 | ((c) >> 6)), \
1050 *(p)++ = (0x80 | ((c) & 0x3F)); \
1051 else if ((c) <= MAX_3_BYTE_CHAR) \
1052 *(p)++ = (0xE0 | ((c) >> 12)), \
1053 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1054 *(p)++ = (0x80 | ((c) & 0x3F)); \
1055 else if ((c) <= MAX_4_BYTE_CHAR) \
1056 *(p)++ = (0xF0 | (c >> 18)), \
1057 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1058 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1059 *(p)++ = (0x80 | (c & 0x3F)); \
1060 else if ((c) <= MAX_5_BYTE_CHAR) \
1061 *(p)++ = 0xF8, \
1062 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1063 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1064 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1065 *(p)++ = (0x80 | (c & 0x3F)); \
1066 else \
1067 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1068 } while (0)
1069
1070
1071 /* Return the character code of character whose multibyte form is at
1072 P, and advance P to the end of the multibyte form. This is like
1073 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1074
1075 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1076 (!((p)[0] & 0x80) \
1077 ? *(p)++ \
1078 : ! ((p)[0] & 0x20) \
1079 ? ((p) += 2, \
1080 ((((p)[-2] & 0x1F) << 6) \
1081 | ((p)[-1] & 0x3F) \
1082 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1083 : ! ((p)[0] & 0x10) \
1084 ? ((p) += 3, \
1085 ((((p)[-3] & 0x0F) << 12) \
1086 | (((p)[-2] & 0x3F) << 6) \
1087 | ((p)[-1] & 0x3F))) \
1088 : ! ((p)[0] & 0x08) \
1089 ? ((p) += 4, \
1090 ((((p)[-4] & 0xF) << 18) \
1091 | (((p)[-3] & 0x3F) << 12) \
1092 | (((p)[-2] & 0x3F) << 6) \
1093 | ((p)[-1] & 0x3F))) \
1094 : ((p) += 5, \
1095 ((((p)[-4] & 0x3F) << 18) \
1096 | (((p)[-3] & 0x3F) << 12) \
1097 | (((p)[-2] & 0x3F) << 6) \
1098 | ((p)[-1] & 0x3F))))
1099
1100
1101 static void
1102 coding_set_source (struct coding_system *coding)
1103 {
1104 if (BUFFERP (coding->src_object))
1105 {
1106 struct buffer *buf = XBUFFER (coding->src_object);
1107
1108 if (coding->src_pos < 0)
1109 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1110 else
1111 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1112 }
1113 else if (STRINGP (coding->src_object))
1114 {
1115 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1116 }
1117 else
1118 /* Otherwise, the source is C string and is never relocated
1119 automatically. Thus we don't have to update anything. */
1120 ;
1121 }
1122
1123 static void
1124 coding_set_destination (struct coding_system *coding)
1125 {
1126 if (BUFFERP (coding->dst_object))
1127 {
1128 if (coding->src_pos < 0)
1129 {
1130 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1131 coding->dst_bytes = (GAP_END_ADDR
1132 - (coding->src_bytes - coding->consumed)
1133 - coding->destination);
1134 }
1135 else
1136 {
1137 /* We are sure that coding->dst_pos_byte is before the gap
1138 of the buffer. */
1139 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1140 + coding->dst_pos_byte - BEG_BYTE);
1141 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1142 - coding->destination);
1143 }
1144 }
1145 else
1146 /* Otherwise, the destination is C string and is never relocated
1147 automatically. Thus we don't have to update anything. */
1148 ;
1149 }
1150
1151
1152 static void
1153 coding_alloc_by_realloc (struct coding_system *coding, EMACS_INT bytes)
1154 {
1155 coding->destination = (unsigned char *) xrealloc (coding->destination,
1156 coding->dst_bytes + bytes);
1157 coding->dst_bytes += bytes;
1158 }
1159
1160 static void
1161 coding_alloc_by_making_gap (struct coding_system *coding,
1162 EMACS_INT gap_head_used, EMACS_INT bytes)
1163 {
1164 if (EQ (coding->src_object, coding->dst_object))
1165 {
1166 /* The gap may contain the produced data at the head and not-yet
1167 consumed data at the tail. To preserve those data, we at
1168 first make the gap size to zero, then increase the gap
1169 size. */
1170 EMACS_INT add = GAP_SIZE;
1171
1172 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1173 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1174 make_gap (bytes);
1175 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1176 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1177 }
1178 else
1179 {
1180 Lisp_Object this_buffer;
1181
1182 this_buffer = Fcurrent_buffer ();
1183 set_buffer_internal (XBUFFER (coding->dst_object));
1184 make_gap (bytes);
1185 set_buffer_internal (XBUFFER (this_buffer));
1186 }
1187 }
1188
1189
1190 static unsigned char *
1191 alloc_destination (struct coding_system *coding, EMACS_INT nbytes,
1192 unsigned char *dst)
1193 {
1194 EMACS_INT offset = dst - coding->destination;
1195
1196 if (BUFFERP (coding->dst_object))
1197 {
1198 struct buffer *buf = XBUFFER (coding->dst_object);
1199
1200 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1201 }
1202 else
1203 coding_alloc_by_realloc (coding, nbytes);
1204 coding_set_destination (coding);
1205 dst = coding->destination + offset;
1206 return dst;
1207 }
1208
1209 /** Macros for annotations. */
1210
1211 /* An annotation data is stored in the array coding->charbuf in this
1212 format:
1213 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1214 LENGTH is the number of elements in the annotation.
1215 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1216 NCHARS is the number of characters in the text annotated.
1217
1218 The format of the following elements depend on ANNOTATION_MASK.
1219
1220 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1221 follows:
1222 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1223
1224 NBYTES is the number of bytes specified in the header part of
1225 old-style emacs-mule encoding, or 0 for the other kind of
1226 composition.
1227
1228 METHOD is one of enum composition_method.
1229
1230 Optionnal COMPOSITION-COMPONENTS are characters and composition
1231 rules.
1232
1233 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1234 follows.
1235
1236 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1237 recover from an invalid annotation, and should be skipped by
1238 produce_annotation. */
1239
1240 /* Maximum length of the header of annotation data. */
1241 #define MAX_ANNOTATION_LENGTH 5
1242
1243 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1244 do { \
1245 *(buf)++ = -(len); \
1246 *(buf)++ = (mask); \
1247 *(buf)++ = (nchars); \
1248 coding->annotated = 1; \
1249 } while (0);
1250
1251 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1252 do { \
1253 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1254 *buf++ = nbytes; \
1255 *buf++ = method; \
1256 } while (0)
1257
1258
1259 #define ADD_CHARSET_DATA(buf, nchars, id) \
1260 do { \
1261 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1262 *buf++ = id; \
1263 } while (0)
1264
1265 \f
1266 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1267
1268
1269
1270 \f
1271 /*** 3. UTF-8 ***/
1272
1273 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1274 Check if a text is encoded in UTF-8. If it is, return 1, else
1275 return 0. */
1276
1277 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1278 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1279 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1280 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1281 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1282 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1283
1284 #define UTF_BOM 0xFEFF
1285 #define UTF_8_BOM_1 0xEF
1286 #define UTF_8_BOM_2 0xBB
1287 #define UTF_8_BOM_3 0xBF
1288
1289 static int
1290 detect_coding_utf_8 (struct coding_system *coding,
1291 struct coding_detection_info *detect_info)
1292 {
1293 const unsigned char *src = coding->source, *src_base;
1294 const unsigned char *src_end = coding->source + coding->src_bytes;
1295 int multibytep = coding->src_multibyte;
1296 int consumed_chars = 0;
1297 int bom_found = 0;
1298 int found = 0;
1299
1300 detect_info->checked |= CATEGORY_MASK_UTF_8;
1301 /* A coding system of this category is always ASCII compatible. */
1302 src += coding->head_ascii;
1303
1304 while (1)
1305 {
1306 int c, c1, c2, c3, c4;
1307
1308 src_base = src;
1309 ONE_MORE_BYTE (c);
1310 if (c < 0 || UTF_8_1_OCTET_P (c))
1311 continue;
1312 ONE_MORE_BYTE (c1);
1313 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1314 break;
1315 if (UTF_8_2_OCTET_LEADING_P (c))
1316 {
1317 found = 1;
1318 continue;
1319 }
1320 ONE_MORE_BYTE (c2);
1321 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1322 break;
1323 if (UTF_8_3_OCTET_LEADING_P (c))
1324 {
1325 found = 1;
1326 if (src_base == coding->source
1327 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1328 bom_found = 1;
1329 continue;
1330 }
1331 ONE_MORE_BYTE (c3);
1332 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1333 break;
1334 if (UTF_8_4_OCTET_LEADING_P (c))
1335 {
1336 found = 1;
1337 continue;
1338 }
1339 ONE_MORE_BYTE (c4);
1340 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1341 break;
1342 if (UTF_8_5_OCTET_LEADING_P (c))
1343 {
1344 found = 1;
1345 continue;
1346 }
1347 break;
1348 }
1349 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1350 return 0;
1351
1352 no_more_source:
1353 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1354 {
1355 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1356 return 0;
1357 }
1358 if (bom_found)
1359 {
1360 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1361 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1362 }
1363 else
1364 {
1365 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1366 if (found)
1367 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1368 }
1369 return 1;
1370 }
1371
1372
1373 static void
1374 decode_coding_utf_8 (struct coding_system *coding)
1375 {
1376 const unsigned char *src = coding->source + coding->consumed;
1377 const unsigned char *src_end = coding->source + coding->src_bytes;
1378 const unsigned char *src_base;
1379 int *charbuf = coding->charbuf + coding->charbuf_used;
1380 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1381 int consumed_chars = 0, consumed_chars_base = 0;
1382 int multibytep = coding->src_multibyte;
1383 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1384 Lisp_Object attr, charset_list;
1385 int eol_crlf =
1386 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1387 int byte_after_cr = -1;
1388
1389 CODING_GET_INFO (coding, attr, charset_list);
1390
1391 if (bom != utf_without_bom)
1392 {
1393 int c1, c2, c3;
1394
1395 src_base = src;
1396 ONE_MORE_BYTE (c1);
1397 if (! UTF_8_3_OCTET_LEADING_P (c1))
1398 src = src_base;
1399 else
1400 {
1401 ONE_MORE_BYTE (c2);
1402 if (! UTF_8_EXTRA_OCTET_P (c2))
1403 src = src_base;
1404 else
1405 {
1406 ONE_MORE_BYTE (c3);
1407 if (! UTF_8_EXTRA_OCTET_P (c3))
1408 src = src_base;
1409 else
1410 {
1411 if ((c1 != UTF_8_BOM_1)
1412 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1413 src = src_base;
1414 else
1415 CODING_UTF_8_BOM (coding) = utf_without_bom;
1416 }
1417 }
1418 }
1419 }
1420 CODING_UTF_8_BOM (coding) = utf_without_bom;
1421
1422 while (1)
1423 {
1424 int c, c1, c2, c3, c4, c5;
1425
1426 src_base = src;
1427 consumed_chars_base = consumed_chars;
1428
1429 if (charbuf >= charbuf_end)
1430 {
1431 if (byte_after_cr >= 0)
1432 src_base--;
1433 break;
1434 }
1435
1436 if (byte_after_cr >= 0)
1437 c1 = byte_after_cr, byte_after_cr = -1;
1438 else
1439 ONE_MORE_BYTE (c1);
1440 if (c1 < 0)
1441 {
1442 c = - c1;
1443 }
1444 else if (UTF_8_1_OCTET_P (c1))
1445 {
1446 if (eol_crlf && c1 == '\r')
1447 ONE_MORE_BYTE (byte_after_cr);
1448 c = c1;
1449 }
1450 else
1451 {
1452 ONE_MORE_BYTE (c2);
1453 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1454 goto invalid_code;
1455 if (UTF_8_2_OCTET_LEADING_P (c1))
1456 {
1457 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1458 /* Reject overlong sequences here and below. Encoders
1459 producing them are incorrect, they can be misleading,
1460 and they mess up read/write invariance. */
1461 if (c < 128)
1462 goto invalid_code;
1463 }
1464 else
1465 {
1466 ONE_MORE_BYTE (c3);
1467 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1468 goto invalid_code;
1469 if (UTF_8_3_OCTET_LEADING_P (c1))
1470 {
1471 c = (((c1 & 0xF) << 12)
1472 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1473 if (c < 0x800
1474 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1475 goto invalid_code;
1476 }
1477 else
1478 {
1479 ONE_MORE_BYTE (c4);
1480 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1481 goto invalid_code;
1482 if (UTF_8_4_OCTET_LEADING_P (c1))
1483 {
1484 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1485 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1486 if (c < 0x10000)
1487 goto invalid_code;
1488 }
1489 else
1490 {
1491 ONE_MORE_BYTE (c5);
1492 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1493 goto invalid_code;
1494 if (UTF_8_5_OCTET_LEADING_P (c1))
1495 {
1496 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1497 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1498 | (c5 & 0x3F));
1499 if ((c > MAX_CHAR) || (c < 0x200000))
1500 goto invalid_code;
1501 }
1502 else
1503 goto invalid_code;
1504 }
1505 }
1506 }
1507 }
1508
1509 *charbuf++ = c;
1510 continue;
1511
1512 invalid_code:
1513 src = src_base;
1514 consumed_chars = consumed_chars_base;
1515 ONE_MORE_BYTE (c);
1516 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1517 coding->errors++;
1518 }
1519
1520 no_more_source:
1521 coding->consumed_char += consumed_chars_base;
1522 coding->consumed = src_base - coding->source;
1523 coding->charbuf_used = charbuf - coding->charbuf;
1524 }
1525
1526
1527 static int
1528 encode_coding_utf_8 (struct coding_system *coding)
1529 {
1530 int multibytep = coding->dst_multibyte;
1531 int *charbuf = coding->charbuf;
1532 int *charbuf_end = charbuf + coding->charbuf_used;
1533 unsigned char *dst = coding->destination + coding->produced;
1534 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1535 int produced_chars = 0;
1536 int c;
1537
1538 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1539 {
1540 ASSURE_DESTINATION (3);
1541 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1542 CODING_UTF_8_BOM (coding) = utf_without_bom;
1543 }
1544
1545 if (multibytep)
1546 {
1547 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1548
1549 while (charbuf < charbuf_end)
1550 {
1551 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1552
1553 ASSURE_DESTINATION (safe_room);
1554 c = *charbuf++;
1555 if (CHAR_BYTE8_P (c))
1556 {
1557 c = CHAR_TO_BYTE8 (c);
1558 EMIT_ONE_BYTE (c);
1559 }
1560 else
1561 {
1562 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1563 for (p = str; p < pend; p++)
1564 EMIT_ONE_BYTE (*p);
1565 }
1566 }
1567 }
1568 else
1569 {
1570 int safe_room = MAX_MULTIBYTE_LENGTH;
1571
1572 while (charbuf < charbuf_end)
1573 {
1574 ASSURE_DESTINATION (safe_room);
1575 c = *charbuf++;
1576 if (CHAR_BYTE8_P (c))
1577 *dst++ = CHAR_TO_BYTE8 (c);
1578 else
1579 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1580 produced_chars++;
1581 }
1582 }
1583 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1584 coding->produced_char += produced_chars;
1585 coding->produced = dst - coding->destination;
1586 return 0;
1587 }
1588
1589
1590 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1591 Check if a text is encoded in one of UTF-16 based coding systems.
1592 If it is, return 1, else return 0. */
1593
1594 #define UTF_16_HIGH_SURROGATE_P(val) \
1595 (((val) & 0xFC00) == 0xD800)
1596
1597 #define UTF_16_LOW_SURROGATE_P(val) \
1598 (((val) & 0xFC00) == 0xDC00)
1599
1600 #define UTF_16_INVALID_P(val) \
1601 (((val) == 0xFFFE) \
1602 || ((val) == 0xFFFF) \
1603 || UTF_16_LOW_SURROGATE_P (val))
1604
1605
1606 static int
1607 detect_coding_utf_16 (struct coding_system *coding,
1608 struct coding_detection_info *detect_info)
1609 {
1610 const unsigned char *src = coding->source, *src_base = src;
1611 const unsigned char *src_end = coding->source + coding->src_bytes;
1612 int multibytep = coding->src_multibyte;
1613 int consumed_chars = 0;
1614 int c1, c2;
1615
1616 detect_info->checked |= CATEGORY_MASK_UTF_16;
1617 if (coding->mode & CODING_MODE_LAST_BLOCK
1618 && (coding->src_chars & 1))
1619 {
1620 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1621 return 0;
1622 }
1623
1624 TWO_MORE_BYTES (c1, c2);
1625 if ((c1 == 0xFF) && (c2 == 0xFE))
1626 {
1627 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1628 | CATEGORY_MASK_UTF_16_AUTO);
1629 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1630 | CATEGORY_MASK_UTF_16_BE_NOSIG
1631 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1632 }
1633 else if ((c1 == 0xFE) && (c2 == 0xFF))
1634 {
1635 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1636 | CATEGORY_MASK_UTF_16_AUTO);
1637 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1638 | CATEGORY_MASK_UTF_16_BE_NOSIG
1639 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1640 }
1641 else if (c2 < 0)
1642 {
1643 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1644 return 0;
1645 }
1646 else
1647 {
1648 /* We check the dispersion of Eth and Oth bytes where E is even and
1649 O is odd. If both are high, we assume binary data.*/
1650 unsigned char e[256], o[256];
1651 unsigned e_num = 1, o_num = 1;
1652
1653 memset (e, 0, 256);
1654 memset (o, 0, 256);
1655 e[c1] = 1;
1656 o[c2] = 1;
1657
1658 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1659 |CATEGORY_MASK_UTF_16_BE
1660 | CATEGORY_MASK_UTF_16_LE);
1661
1662 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1663 != CATEGORY_MASK_UTF_16)
1664 {
1665 TWO_MORE_BYTES (c1, c2);
1666 if (c2 < 0)
1667 break;
1668 if (! e[c1])
1669 {
1670 e[c1] = 1;
1671 e_num++;
1672 if (e_num >= 128)
1673 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1674 }
1675 if (! o[c2])
1676 {
1677 o[c2] = 1;
1678 o_num++;
1679 if (o_num >= 128)
1680 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1681 }
1682 }
1683 return 0;
1684 }
1685
1686 no_more_source:
1687 return 1;
1688 }
1689
1690 static void
1691 decode_coding_utf_16 (struct coding_system *coding)
1692 {
1693 const unsigned char *src = coding->source + coding->consumed;
1694 const unsigned char *src_end = coding->source + coding->src_bytes;
1695 const unsigned char *src_base;
1696 int *charbuf = coding->charbuf + coding->charbuf_used;
1697 /* We may produces at most 3 chars in one loop. */
1698 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1699 int consumed_chars = 0, consumed_chars_base = 0;
1700 int multibytep = coding->src_multibyte;
1701 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1702 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1703 int surrogate = CODING_UTF_16_SURROGATE (coding);
1704 Lisp_Object attr, charset_list;
1705 int eol_crlf =
1706 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1707 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1708
1709 CODING_GET_INFO (coding, attr, charset_list);
1710
1711 if (bom == utf_with_bom)
1712 {
1713 int c, c1, c2;
1714
1715 src_base = src;
1716 ONE_MORE_BYTE (c1);
1717 ONE_MORE_BYTE (c2);
1718 c = (c1 << 8) | c2;
1719
1720 if (endian == utf_16_big_endian
1721 ? c != 0xFEFF : c != 0xFFFE)
1722 {
1723 /* The first two bytes are not BOM. Treat them as bytes
1724 for a normal character. */
1725 src = src_base;
1726 coding->errors++;
1727 }
1728 CODING_UTF_16_BOM (coding) = utf_without_bom;
1729 }
1730 else if (bom == utf_detect_bom)
1731 {
1732 /* We have already tried to detect BOM and failed in
1733 detect_coding. */
1734 CODING_UTF_16_BOM (coding) = utf_without_bom;
1735 }
1736
1737 while (1)
1738 {
1739 int c, c1, c2;
1740
1741 src_base = src;
1742 consumed_chars_base = consumed_chars;
1743
1744 if (charbuf >= charbuf_end)
1745 {
1746 if (byte_after_cr1 >= 0)
1747 src_base -= 2;
1748 break;
1749 }
1750
1751 if (byte_after_cr1 >= 0)
1752 c1 = byte_after_cr1, byte_after_cr1 = -1;
1753 else
1754 ONE_MORE_BYTE (c1);
1755 if (c1 < 0)
1756 {
1757 *charbuf++ = -c1;
1758 continue;
1759 }
1760 if (byte_after_cr2 >= 0)
1761 c2 = byte_after_cr2, byte_after_cr2 = -1;
1762 else
1763 ONE_MORE_BYTE (c2);
1764 if (c2 < 0)
1765 {
1766 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1767 *charbuf++ = -c2;
1768 continue;
1769 }
1770 c = (endian == utf_16_big_endian
1771 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1772
1773 if (surrogate)
1774 {
1775 if (! UTF_16_LOW_SURROGATE_P (c))
1776 {
1777 if (endian == utf_16_big_endian)
1778 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1779 else
1780 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1781 *charbuf++ = c1;
1782 *charbuf++ = c2;
1783 coding->errors++;
1784 if (UTF_16_HIGH_SURROGATE_P (c))
1785 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1786 else
1787 *charbuf++ = c;
1788 }
1789 else
1790 {
1791 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1792 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1793 *charbuf++ = 0x10000 + c;
1794 }
1795 }
1796 else
1797 {
1798 if (UTF_16_HIGH_SURROGATE_P (c))
1799 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1800 else
1801 {
1802 if (eol_crlf && c == '\r')
1803 {
1804 ONE_MORE_BYTE (byte_after_cr1);
1805 ONE_MORE_BYTE (byte_after_cr2);
1806 }
1807 *charbuf++ = c;
1808 }
1809 }
1810 }
1811
1812 no_more_source:
1813 coding->consumed_char += consumed_chars_base;
1814 coding->consumed = src_base - coding->source;
1815 coding->charbuf_used = charbuf - coding->charbuf;
1816 }
1817
1818 static int
1819 encode_coding_utf_16 (struct coding_system *coding)
1820 {
1821 int multibytep = coding->dst_multibyte;
1822 int *charbuf = coding->charbuf;
1823 int *charbuf_end = charbuf + coding->charbuf_used;
1824 unsigned char *dst = coding->destination + coding->produced;
1825 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1826 int safe_room = 8;
1827 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1828 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1829 int produced_chars = 0;
1830 Lisp_Object attrs, charset_list;
1831 int c;
1832
1833 CODING_GET_INFO (coding, attrs, charset_list);
1834
1835 if (bom != utf_without_bom)
1836 {
1837 ASSURE_DESTINATION (safe_room);
1838 if (big_endian)
1839 EMIT_TWO_BYTES (0xFE, 0xFF);
1840 else
1841 EMIT_TWO_BYTES (0xFF, 0xFE);
1842 CODING_UTF_16_BOM (coding) = utf_without_bom;
1843 }
1844
1845 while (charbuf < charbuf_end)
1846 {
1847 ASSURE_DESTINATION (safe_room);
1848 c = *charbuf++;
1849 if (c > MAX_UNICODE_CHAR)
1850 c = coding->default_char;
1851
1852 if (c < 0x10000)
1853 {
1854 if (big_endian)
1855 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1856 else
1857 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1858 }
1859 else
1860 {
1861 int c1, c2;
1862
1863 c -= 0x10000;
1864 c1 = (c >> 10) + 0xD800;
1865 c2 = (c & 0x3FF) + 0xDC00;
1866 if (big_endian)
1867 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1868 else
1869 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1870 }
1871 }
1872 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1873 coding->produced = dst - coding->destination;
1874 coding->produced_char += produced_chars;
1875 return 0;
1876 }
1877
1878 \f
1879 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1880
1881 /* Emacs' internal format for representation of multiple character
1882 sets is a kind of multi-byte encoding, i.e. characters are
1883 represented by variable-length sequences of one-byte codes.
1884
1885 ASCII characters and control characters (e.g. `tab', `newline') are
1886 represented by one-byte sequences which are their ASCII codes, in
1887 the range 0x00 through 0x7F.
1888
1889 8-bit characters of the range 0x80..0x9F are represented by
1890 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1891 code + 0x20).
1892
1893 8-bit characters of the range 0xA0..0xFF are represented by
1894 one-byte sequences which are their 8-bit code.
1895
1896 The other characters are represented by a sequence of `base
1897 leading-code', optional `extended leading-code', and one or two
1898 `position-code's. The length of the sequence is determined by the
1899 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1900 whereas extended leading-code and position-code take the range 0xA0
1901 through 0xFF. See `charset.h' for more details about leading-code
1902 and position-code.
1903
1904 --- CODE RANGE of Emacs' internal format ---
1905 character set range
1906 ------------- -----
1907 ascii 0x00..0x7F
1908 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1909 eight-bit-graphic 0xA0..0xBF
1910 ELSE 0x81..0x9D + [0xA0..0xFF]+
1911 ---------------------------------------------
1912
1913 As this is the internal character representation, the format is
1914 usually not used externally (i.e. in a file or in a data sent to a
1915 process). But, it is possible to have a text externally in this
1916 format (i.e. by encoding by the coding system `emacs-mule').
1917
1918 In that case, a sequence of one-byte codes has a slightly different
1919 form.
1920
1921 At first, all characters in eight-bit-control are represented by
1922 one-byte sequences which are their 8-bit code.
1923
1924 Next, character composition data are represented by the byte
1925 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1926 where,
1927 METHOD is 0xF2 plus one of composition method (enum
1928 composition_method),
1929
1930 BYTES is 0xA0 plus a byte length of this composition data,
1931
1932 CHARS is 0xA0 plus a number of characters composed by this
1933 data,
1934
1935 COMPONENTs are characters of multibye form or composition
1936 rules encoded by two-byte of ASCII codes.
1937
1938 In addition, for backward compatibility, the following formats are
1939 also recognized as composition data on decoding.
1940
1941 0x80 MSEQ ...
1942 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1943
1944 Here,
1945 MSEQ is a multibyte form but in these special format:
1946 ASCII: 0xA0 ASCII_CODE+0x80,
1947 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1948 RULE is a one byte code of the range 0xA0..0xF0 that
1949 represents a composition rule.
1950 */
1951
1952 char emacs_mule_bytes[256];
1953
1954
1955 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1956 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1957 else return 0. */
1958
1959 static int
1960 detect_coding_emacs_mule (struct coding_system *coding,
1961 struct coding_detection_info *detect_info)
1962 {
1963 const unsigned char *src = coding->source, *src_base;
1964 const unsigned char *src_end = coding->source + coding->src_bytes;
1965 int multibytep = coding->src_multibyte;
1966 int consumed_chars = 0;
1967 int c;
1968 int found = 0;
1969
1970 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1971 /* A coding system of this category is always ASCII compatible. */
1972 src += coding->head_ascii;
1973
1974 while (1)
1975 {
1976 src_base = src;
1977 ONE_MORE_BYTE (c);
1978 if (c < 0)
1979 continue;
1980 if (c == 0x80)
1981 {
1982 /* Perhaps the start of composite character. We simply skip
1983 it because analyzing it is too heavy for detecting. But,
1984 at least, we check that the composite character
1985 constitutes of more than 4 bytes. */
1986 const unsigned char *src_base;
1987
1988 repeat:
1989 src_base = src;
1990 do
1991 {
1992 ONE_MORE_BYTE (c);
1993 }
1994 while (c >= 0xA0);
1995
1996 if (src - src_base <= 4)
1997 break;
1998 found = CATEGORY_MASK_EMACS_MULE;
1999 if (c == 0x80)
2000 goto repeat;
2001 }
2002
2003 if (c < 0x80)
2004 {
2005 if (c < 0x20
2006 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2007 break;
2008 }
2009 else
2010 {
2011 int more_bytes = emacs_mule_bytes[*src_base] - 1;
2012
2013 while (more_bytes > 0)
2014 {
2015 ONE_MORE_BYTE (c);
2016 if (c < 0xA0)
2017 {
2018 src--; /* Unread the last byte. */
2019 break;
2020 }
2021 more_bytes--;
2022 }
2023 if (more_bytes != 0)
2024 break;
2025 found = CATEGORY_MASK_EMACS_MULE;
2026 }
2027 }
2028 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2029 return 0;
2030
2031 no_more_source:
2032 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
2033 {
2034 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2035 return 0;
2036 }
2037 detect_info->found |= found;
2038 return 1;
2039 }
2040
2041
2042 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2043 character. If CMP_STATUS indicates that we must expect MSEQ or
2044 RULE described above, decode it and return the negative value of
2045 the decoded character or rule. If an invalid byte is found, return
2046 -1. If SRC is too short, return -2. */
2047
2048 int
2049 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
2050 int *nbytes, int *nchars, int *id,
2051 struct composition_status *cmp_status)
2052 {
2053 const unsigned char *src_end = coding->source + coding->src_bytes;
2054 const unsigned char *src_base = src;
2055 int multibytep = coding->src_multibyte;
2056 struct charset *charset;
2057 unsigned code;
2058 int c;
2059 int consumed_chars = 0;
2060 int mseq_found = 0;
2061
2062 ONE_MORE_BYTE (c);
2063 if (c < 0)
2064 {
2065 c = -c;
2066 charset = emacs_mule_charset[0];
2067 }
2068 else
2069 {
2070 if (c >= 0xA0)
2071 {
2072 if (cmp_status->state != COMPOSING_NO
2073 && cmp_status->old_form)
2074 {
2075 if (cmp_status->state == COMPOSING_CHAR)
2076 {
2077 if (c == 0xA0)
2078 {
2079 ONE_MORE_BYTE (c);
2080 c -= 0x80;
2081 if (c < 0)
2082 goto invalid_code;
2083 }
2084 else
2085 c -= 0x20;
2086 mseq_found = 1;
2087 }
2088 else
2089 {
2090 *nbytes = src - src_base;
2091 *nchars = consumed_chars;
2092 return -c;
2093 }
2094 }
2095 else
2096 goto invalid_code;
2097 }
2098
2099 switch (emacs_mule_bytes[c])
2100 {
2101 case 2:
2102 if (! (charset = emacs_mule_charset[c]))
2103 goto invalid_code;
2104 ONE_MORE_BYTE (c);
2105 if (c < 0xA0)
2106 goto invalid_code;
2107 code = c & 0x7F;
2108 break;
2109
2110 case 3:
2111 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2112 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2113 {
2114 ONE_MORE_BYTE (c);
2115 if (c < 0xA0 || ! (charset = emacs_mule_charset[c]))
2116 goto invalid_code;
2117 ONE_MORE_BYTE (c);
2118 if (c < 0xA0)
2119 goto invalid_code;
2120 code = c & 0x7F;
2121 }
2122 else
2123 {
2124 if (! (charset = emacs_mule_charset[c]))
2125 goto invalid_code;
2126 ONE_MORE_BYTE (c);
2127 if (c < 0xA0)
2128 goto invalid_code;
2129 code = (c & 0x7F) << 8;
2130 ONE_MORE_BYTE (c);
2131 if (c < 0xA0)
2132 goto invalid_code;
2133 code |= c & 0x7F;
2134 }
2135 break;
2136
2137 case 4:
2138 ONE_MORE_BYTE (c);
2139 if (c < 0 || ! (charset = emacs_mule_charset[c]))
2140 goto invalid_code;
2141 ONE_MORE_BYTE (c);
2142 if (c < 0xA0)
2143 goto invalid_code;
2144 code = (c & 0x7F) << 8;
2145 ONE_MORE_BYTE (c);
2146 if (c < 0xA0)
2147 goto invalid_code;
2148 code |= c & 0x7F;
2149 break;
2150
2151 case 1:
2152 code = c;
2153 charset = CHARSET_FROM_ID (ASCII_BYTE_P (code)
2154 ? charset_ascii : charset_eight_bit);
2155 break;
2156
2157 default:
2158 abort ();
2159 }
2160 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, code, c);
2161 if (c < 0)
2162 goto invalid_code;
2163 }
2164 *nbytes = src - src_base;
2165 *nchars = consumed_chars;
2166 if (id)
2167 *id = charset->id;
2168 return (mseq_found ? -c : c);
2169
2170 no_more_source:
2171 return -2;
2172
2173 invalid_code:
2174 return -1;
2175 }
2176
2177
2178 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2179
2180 /* Handle these composition sequence ('|': the end of header elements,
2181 BYTES and CHARS >= 0xA0):
2182
2183 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2184 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2185 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2186
2187 and these old form:
2188
2189 (4) relative composition: 0x80 | MSEQ ... MSEQ
2190 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2191
2192 When the starter 0x80 and the following header elements are found,
2193 this annotation header is produced.
2194
2195 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2196
2197 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2198 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2199
2200 Then, upon reading the following elements, these codes are produced
2201 until the composition end is found:
2202
2203 (1) CHAR ... CHAR
2204 (2) ALT ... ALT CHAR ... CHAR
2205 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2206 (4) CHAR ... CHAR
2207 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2208
2209 When the composition end is found, LENGTH and NCHARS in the
2210 annotation header is updated as below:
2211
2212 (1) LENGTH: unchanged, NCHARS: unchanged
2213 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2214 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2215 (4) LENGTH: unchanged, NCHARS: number of CHARs
2216 (5) LENGTH: unchanged, NCHARS: number of CHARs
2217
2218 If an error is found while composing, the annotation header is
2219 changed to the original composition header (plus filler -1s) as
2220 below:
2221
2222 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2223 (5) [ 0x80 0xFF -1 -1- -1 ]
2224
2225 and the sequence [ -2 DECODED-RULE ] is changed to the original
2226 byte sequence as below:
2227 o the original byte sequence is B: [ B -1 ]
2228 o the original byte sequence is B1 B2: [ B1 B2 ]
2229
2230 Most of the routines are implemented by macros because many
2231 variables and labels in the caller decode_coding_emacs_mule must be
2232 accessible, and they are usually called just once (thus doesn't
2233 increase the size of compiled object). */
2234
2235 /* Decode a composition rule represented by C as a component of
2236 composition sequence of Emacs 20 style. Set RULE to the decoded
2237 rule. */
2238
2239 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2240 do { \
2241 int gref, nref; \
2242 \
2243 c -= 0xA0; \
2244 if (c < 0 || c >= 81) \
2245 goto invalid_code; \
2246 gref = c / 9, nref = c % 9; \
2247 if (gref == 4) gref = 10; \
2248 if (nref == 4) nref = 10; \
2249 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2250 } while (0)
2251
2252
2253 /* Decode a composition rule represented by C and the following byte
2254 at SRC as a component of composition sequence of Emacs 21 style.
2255 Set RULE to the decoded rule. */
2256
2257 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2258 do { \
2259 int gref, nref; \
2260 \
2261 gref = c - 0x20; \
2262 if (gref < 0 || gref >= 81) \
2263 goto invalid_code; \
2264 ONE_MORE_BYTE (c); \
2265 nref = c - 0x20; \
2266 if (nref < 0 || nref >= 81) \
2267 goto invalid_code; \
2268 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2269 } while (0)
2270
2271
2272 /* Start of Emacs 21 style format. The first three bytes at SRC are
2273 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2274 byte length of this composition information, CHARS is the number of
2275 characters composed by this composition. */
2276
2277 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2278 do { \
2279 enum composition_method method = c - 0xF2; \
2280 int *charbuf_base = charbuf; \
2281 int nbytes, nchars; \
2282 \
2283 ONE_MORE_BYTE (c); \
2284 if (c < 0) \
2285 goto invalid_code; \
2286 nbytes = c - 0xA0; \
2287 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2288 goto invalid_code; \
2289 ONE_MORE_BYTE (c); \
2290 nchars = c - 0xA0; \
2291 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2292 goto invalid_code; \
2293 cmp_status->old_form = 0; \
2294 cmp_status->method = method; \
2295 if (method == COMPOSITION_RELATIVE) \
2296 cmp_status->state = COMPOSING_CHAR; \
2297 else \
2298 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2299 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2300 cmp_status->nchars = nchars; \
2301 cmp_status->ncomps = nbytes - 4; \
2302 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2303 } while (0)
2304
2305
2306 /* Start of Emacs 20 style format for relative composition. */
2307
2308 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2309 do { \
2310 cmp_status->old_form = 1; \
2311 cmp_status->method = COMPOSITION_RELATIVE; \
2312 cmp_status->state = COMPOSING_CHAR; \
2313 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2314 cmp_status->nchars = cmp_status->ncomps = 0; \
2315 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2316 } while (0)
2317
2318
2319 /* Start of Emacs 20 style format for rule-base composition. */
2320
2321 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2322 do { \
2323 cmp_status->old_form = 1; \
2324 cmp_status->method = COMPOSITION_WITH_RULE; \
2325 cmp_status->state = COMPOSING_CHAR; \
2326 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2327 cmp_status->nchars = cmp_status->ncomps = 0; \
2328 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2329 } while (0)
2330
2331
2332 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2333 do { \
2334 const unsigned char *current_src = src; \
2335 \
2336 ONE_MORE_BYTE (c); \
2337 if (c < 0) \
2338 goto invalid_code; \
2339 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2340 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2341 DECODE_EMACS_MULE_21_COMPOSITION (); \
2342 else if (c < 0xA0) \
2343 goto invalid_code; \
2344 else if (c < 0xC0) \
2345 { \
2346 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2347 /* Re-read C as a composition component. */ \
2348 src = current_src; \
2349 } \
2350 else if (c == 0xFF) \
2351 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2352 else \
2353 goto invalid_code; \
2354 } while (0)
2355
2356 #define EMACS_MULE_COMPOSITION_END() \
2357 do { \
2358 int idx = - cmp_status->length; \
2359 \
2360 if (cmp_status->old_form) \
2361 charbuf[idx + 2] = cmp_status->nchars; \
2362 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2363 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2364 cmp_status->state = COMPOSING_NO; \
2365 } while (0)
2366
2367
2368 static int
2369 emacs_mule_finish_composition (int *charbuf,
2370 struct composition_status *cmp_status)
2371 {
2372 int idx = - cmp_status->length;
2373 int new_chars;
2374
2375 if (cmp_status->old_form && cmp_status->nchars > 0)
2376 {
2377 charbuf[idx + 2] = cmp_status->nchars;
2378 new_chars = 0;
2379 if (cmp_status->method == COMPOSITION_WITH_RULE
2380 && cmp_status->state == COMPOSING_CHAR)
2381 {
2382 /* The last rule was invalid. */
2383 int rule = charbuf[-1] + 0xA0;
2384
2385 charbuf[-2] = BYTE8_TO_CHAR (rule);
2386 charbuf[-1] = -1;
2387 new_chars = 1;
2388 }
2389 }
2390 else
2391 {
2392 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2393
2394 if (cmp_status->method == COMPOSITION_WITH_RULE)
2395 {
2396 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2397 charbuf[idx++] = -3;
2398 charbuf[idx++] = 0;
2399 new_chars = 1;
2400 }
2401 else
2402 {
2403 int nchars = charbuf[idx + 1] + 0xA0;
2404 int nbytes = charbuf[idx + 2] + 0xA0;
2405
2406 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2407 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2408 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2409 charbuf[idx++] = -1;
2410 new_chars = 4;
2411 }
2412 }
2413 cmp_status->state = COMPOSING_NO;
2414 return new_chars;
2415 }
2416
2417 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2418 do { \
2419 if (cmp_status->state != COMPOSING_NO) \
2420 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2421 } while (0)
2422
2423
2424 static void
2425 decode_coding_emacs_mule (struct coding_system *coding)
2426 {
2427 const unsigned char *src = coding->source + coding->consumed;
2428 const unsigned char *src_end = coding->source + coding->src_bytes;
2429 const unsigned char *src_base;
2430 int *charbuf = coding->charbuf + coding->charbuf_used;
2431 /* We may produce two annocations (charset and composition) in one
2432 loop and one more charset annocation at the end. */
2433 int *charbuf_end
2434 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2435 int consumed_chars = 0, consumed_chars_base;
2436 int multibytep = coding->src_multibyte;
2437 Lisp_Object attrs, charset_list;
2438 int char_offset = coding->produced_char;
2439 int last_offset = char_offset;
2440 int last_id = charset_ascii;
2441 int eol_crlf =
2442 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2443 int byte_after_cr = -1;
2444 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2445
2446 CODING_GET_INFO (coding, attrs, charset_list);
2447
2448 if (cmp_status->state != COMPOSING_NO)
2449 {
2450 int i;
2451
2452 for (i = 0; i < cmp_status->length; i++)
2453 *charbuf++ = cmp_status->carryover[i];
2454 coding->annotated = 1;
2455 }
2456
2457 while (1)
2458 {
2459 int c, id;
2460
2461 src_base = src;
2462 consumed_chars_base = consumed_chars;
2463
2464 if (charbuf >= charbuf_end)
2465 {
2466 if (byte_after_cr >= 0)
2467 src_base--;
2468 break;
2469 }
2470
2471 if (byte_after_cr >= 0)
2472 c = byte_after_cr, byte_after_cr = -1;
2473 else
2474 ONE_MORE_BYTE (c);
2475
2476 if (c < 0 || c == 0x80)
2477 {
2478 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2479 if (c < 0)
2480 {
2481 *charbuf++ = -c;
2482 char_offset++;
2483 }
2484 else
2485 DECODE_EMACS_MULE_COMPOSITION_START ();
2486 continue;
2487 }
2488
2489 if (c < 0x80)
2490 {
2491 if (eol_crlf && c == '\r')
2492 ONE_MORE_BYTE (byte_after_cr);
2493 id = charset_ascii;
2494 if (cmp_status->state != COMPOSING_NO)
2495 {
2496 if (cmp_status->old_form)
2497 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2498 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2499 cmp_status->ncomps--;
2500 }
2501 }
2502 else
2503 {
2504 int nchars, nbytes;
2505 /* emacs_mule_char can load a charset map from a file, which
2506 allocates a large structure and might cause buffer text
2507 to be relocated as result. Thus, we need to remember the
2508 original pointer to buffer text, and fixup all related
2509 pointers after the call. */
2510 const unsigned char *orig = coding->source;
2511 EMACS_INT offset;
2512
2513 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2514 cmp_status);
2515 offset = coding->source - orig;
2516 if (offset)
2517 {
2518 src += offset;
2519 src_base += offset;
2520 src_end += offset;
2521 }
2522 if (c < 0)
2523 {
2524 if (c == -1)
2525 goto invalid_code;
2526 if (c == -2)
2527 break;
2528 }
2529 src = src_base + nbytes;
2530 consumed_chars = consumed_chars_base + nchars;
2531 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2532 cmp_status->ncomps -= nchars;
2533 }
2534
2535 /* Now if C >= 0, we found a normally encoded characer, if C <
2536 0, we found an old-style composition component character or
2537 rule. */
2538
2539 if (cmp_status->state == COMPOSING_NO)
2540 {
2541 if (last_id != id)
2542 {
2543 if (last_id != charset_ascii)
2544 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2545 last_id);
2546 last_id = id;
2547 last_offset = char_offset;
2548 }
2549 *charbuf++ = c;
2550 char_offset++;
2551 }
2552 else if (cmp_status->state == COMPOSING_CHAR)
2553 {
2554 if (cmp_status->old_form)
2555 {
2556 if (c >= 0)
2557 {
2558 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2559 *charbuf++ = c;
2560 char_offset++;
2561 }
2562 else
2563 {
2564 *charbuf++ = -c;
2565 cmp_status->nchars++;
2566 cmp_status->length++;
2567 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2568 EMACS_MULE_COMPOSITION_END ();
2569 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2570 cmp_status->state = COMPOSING_RULE;
2571 }
2572 }
2573 else
2574 {
2575 *charbuf++ = c;
2576 cmp_status->length++;
2577 cmp_status->nchars--;
2578 if (cmp_status->nchars == 0)
2579 EMACS_MULE_COMPOSITION_END ();
2580 }
2581 }
2582 else if (cmp_status->state == COMPOSING_RULE)
2583 {
2584 int rule;
2585
2586 if (c >= 0)
2587 {
2588 EMACS_MULE_COMPOSITION_END ();
2589 *charbuf++ = c;
2590 char_offset++;
2591 }
2592 else
2593 {
2594 c = -c;
2595 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2596 if (rule < 0)
2597 goto invalid_code;
2598 *charbuf++ = -2;
2599 *charbuf++ = rule;
2600 cmp_status->length += 2;
2601 cmp_status->state = COMPOSING_CHAR;
2602 }
2603 }
2604 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2605 {
2606 *charbuf++ = c;
2607 cmp_status->length++;
2608 if (cmp_status->ncomps == 0)
2609 cmp_status->state = COMPOSING_CHAR;
2610 else if (cmp_status->ncomps > 0)
2611 {
2612 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2613 cmp_status->state = COMPOSING_COMPONENT_RULE;
2614 }
2615 else
2616 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2617 }
2618 else /* COMPOSING_COMPONENT_RULE */
2619 {
2620 int rule;
2621
2622 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2623 if (rule < 0)
2624 goto invalid_code;
2625 *charbuf++ = -2;
2626 *charbuf++ = rule;
2627 cmp_status->length += 2;
2628 cmp_status->ncomps--;
2629 if (cmp_status->ncomps > 0)
2630 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2631 else
2632 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2633 }
2634 continue;
2635
2636 retry:
2637 src = src_base;
2638 consumed_chars = consumed_chars_base;
2639 continue;
2640
2641 invalid_code:
2642 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2643 src = src_base;
2644 consumed_chars = consumed_chars_base;
2645 ONE_MORE_BYTE (c);
2646 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2647 char_offset++;
2648 coding->errors++;
2649 }
2650
2651 no_more_source:
2652 if (cmp_status->state != COMPOSING_NO)
2653 {
2654 if (coding->mode & CODING_MODE_LAST_BLOCK)
2655 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2656 else
2657 {
2658 int i;
2659
2660 charbuf -= cmp_status->length;
2661 for (i = 0; i < cmp_status->length; i++)
2662 cmp_status->carryover[i] = charbuf[i];
2663 }
2664 }
2665 if (last_id != charset_ascii)
2666 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2667 coding->consumed_char += consumed_chars_base;
2668 coding->consumed = src_base - coding->source;
2669 coding->charbuf_used = charbuf - coding->charbuf;
2670 }
2671
2672
2673 #define EMACS_MULE_LEADING_CODES(id, codes) \
2674 do { \
2675 if (id < 0xA0) \
2676 codes[0] = id, codes[1] = 0; \
2677 else if (id < 0xE0) \
2678 codes[0] = 0x9A, codes[1] = id; \
2679 else if (id < 0xF0) \
2680 codes[0] = 0x9B, codes[1] = id; \
2681 else if (id < 0xF5) \
2682 codes[0] = 0x9C, codes[1] = id; \
2683 else \
2684 codes[0] = 0x9D, codes[1] = id; \
2685 } while (0);
2686
2687
2688 static int
2689 encode_coding_emacs_mule (struct coding_system *coding)
2690 {
2691 int multibytep = coding->dst_multibyte;
2692 int *charbuf = coding->charbuf;
2693 int *charbuf_end = charbuf + coding->charbuf_used;
2694 unsigned char *dst = coding->destination + coding->produced;
2695 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2696 int safe_room = 8;
2697 int produced_chars = 0;
2698 Lisp_Object attrs, charset_list;
2699 int c;
2700 int preferred_charset_id = -1;
2701
2702 CODING_GET_INFO (coding, attrs, charset_list);
2703 if (! EQ (charset_list, Vemacs_mule_charset_list))
2704 {
2705 CODING_ATTR_CHARSET_LIST (attrs)
2706 = charset_list = Vemacs_mule_charset_list;
2707 }
2708
2709 while (charbuf < charbuf_end)
2710 {
2711 ASSURE_DESTINATION (safe_room);
2712 c = *charbuf++;
2713
2714 if (c < 0)
2715 {
2716 /* Handle an annotation. */
2717 switch (*charbuf)
2718 {
2719 case CODING_ANNOTATE_COMPOSITION_MASK:
2720 /* Not yet implemented. */
2721 break;
2722 case CODING_ANNOTATE_CHARSET_MASK:
2723 preferred_charset_id = charbuf[3];
2724 if (preferred_charset_id >= 0
2725 && NILP (Fmemq (make_number (preferred_charset_id),
2726 charset_list)))
2727 preferred_charset_id = -1;
2728 break;
2729 default:
2730 abort ();
2731 }
2732 charbuf += -c - 1;
2733 continue;
2734 }
2735
2736 if (ASCII_CHAR_P (c))
2737 EMIT_ONE_ASCII_BYTE (c);
2738 else if (CHAR_BYTE8_P (c))
2739 {
2740 c = CHAR_TO_BYTE8 (c);
2741 EMIT_ONE_BYTE (c);
2742 }
2743 else
2744 {
2745 struct charset *charset;
2746 unsigned code;
2747 int dimension;
2748 int emacs_mule_id;
2749 unsigned char leading_codes[2];
2750
2751 if (preferred_charset_id >= 0)
2752 {
2753 charset = CHARSET_FROM_ID (preferred_charset_id);
2754 if (CHAR_CHARSET_P (c, charset))
2755 code = ENCODE_CHAR (charset, c);
2756 else
2757 charset = char_charset (c, charset_list, &code);
2758 }
2759 else
2760 charset = char_charset (c, charset_list, &code);
2761 if (! charset)
2762 {
2763 c = coding->default_char;
2764 if (ASCII_CHAR_P (c))
2765 {
2766 EMIT_ONE_ASCII_BYTE (c);
2767 continue;
2768 }
2769 charset = char_charset (c, charset_list, &code);
2770 }
2771 dimension = CHARSET_DIMENSION (charset);
2772 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2773 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2774 EMIT_ONE_BYTE (leading_codes[0]);
2775 if (leading_codes[1])
2776 EMIT_ONE_BYTE (leading_codes[1]);
2777 if (dimension == 1)
2778 EMIT_ONE_BYTE (code | 0x80);
2779 else
2780 {
2781 code |= 0x8080;
2782 EMIT_ONE_BYTE (code >> 8);
2783 EMIT_ONE_BYTE (code & 0xFF);
2784 }
2785 }
2786 }
2787 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2788 coding->produced_char += produced_chars;
2789 coding->produced = dst - coding->destination;
2790 return 0;
2791 }
2792
2793 \f
2794 /*** 7. ISO2022 handlers ***/
2795
2796 /* The following note describes the coding system ISO2022 briefly.
2797 Since the intention of this note is to help understand the
2798 functions in this file, some parts are NOT ACCURATE or are OVERLY
2799 SIMPLIFIED. For thorough understanding, please refer to the
2800 original document of ISO2022. This is equivalent to the standard
2801 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2802
2803 ISO2022 provides many mechanisms to encode several character sets
2804 in 7-bit and 8-bit environments. For 7-bit environments, all text
2805 is encoded using bytes less than 128. This may make the encoded
2806 text a little bit longer, but the text passes more easily through
2807 several types of gateway, some of which strip off the MSB (Most
2808 Significant Bit).
2809
2810 There are two kinds of character sets: control character sets and
2811 graphic character sets. The former contain control characters such
2812 as `newline' and `escape' to provide control functions (control
2813 functions are also provided by escape sequences). The latter
2814 contain graphic characters such as 'A' and '-'. Emacs recognizes
2815 two control character sets and many graphic character sets.
2816
2817 Graphic character sets are classified into one of the following
2818 four classes, according to the number of bytes (DIMENSION) and
2819 number of characters in one dimension (CHARS) of the set:
2820 - DIMENSION1_CHARS94
2821 - DIMENSION1_CHARS96
2822 - DIMENSION2_CHARS94
2823 - DIMENSION2_CHARS96
2824
2825 In addition, each character set is assigned an identification tag,
2826 unique for each set, called the "final character" (denoted as <F>
2827 hereafter). The <F> of each character set is decided by ECMA(*)
2828 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2829 (0x30..0x3F are for private use only).
2830
2831 Note (*): ECMA = European Computer Manufacturers Association
2832
2833 Here are examples of graphic character sets [NAME(<F>)]:
2834 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2835 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2836 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2837 o DIMENSION2_CHARS96 -- none for the moment
2838
2839 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2840 C0 [0x00..0x1F] -- control character plane 0
2841 GL [0x20..0x7F] -- graphic character plane 0
2842 C1 [0x80..0x9F] -- control character plane 1
2843 GR [0xA0..0xFF] -- graphic character plane 1
2844
2845 A control character set is directly designated and invoked to C0 or
2846 C1 by an escape sequence. The most common case is that:
2847 - ISO646's control character set is designated/invoked to C0, and
2848 - ISO6429's control character set is designated/invoked to C1,
2849 and usually these designations/invocations are omitted in encoded
2850 text. In a 7-bit environment, only C0 can be used, and a control
2851 character for C1 is encoded by an appropriate escape sequence to
2852 fit into the environment. All control characters for C1 are
2853 defined to have corresponding escape sequences.
2854
2855 A graphic character set is at first designated to one of four
2856 graphic registers (G0 through G3), then these graphic registers are
2857 invoked to GL or GR. These designations and invocations can be
2858 done independently. The most common case is that G0 is invoked to
2859 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2860 these invocations and designations are omitted in encoded text.
2861 In a 7-bit environment, only GL can be used.
2862
2863 When a graphic character set of CHARS94 is invoked to GL, codes
2864 0x20 and 0x7F of the GL area work as control characters SPACE and
2865 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2866 be used.
2867
2868 There are two ways of invocation: locking-shift and single-shift.
2869 With locking-shift, the invocation lasts until the next different
2870 invocation, whereas with single-shift, the invocation affects the
2871 following character only and doesn't affect the locking-shift
2872 state. Invocations are done by the following control characters or
2873 escape sequences:
2874
2875 ----------------------------------------------------------------------
2876 abbrev function cntrl escape seq description
2877 ----------------------------------------------------------------------
2878 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2879 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2880 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2881 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2882 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2883 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2884 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2885 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2886 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2887 ----------------------------------------------------------------------
2888 (*) These are not used by any known coding system.
2889
2890 Control characters for these functions are defined by macros
2891 ISO_CODE_XXX in `coding.h'.
2892
2893 Designations are done by the following escape sequences:
2894 ----------------------------------------------------------------------
2895 escape sequence description
2896 ----------------------------------------------------------------------
2897 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2898 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2899 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2900 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2901 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2902 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2903 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2904 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2905 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2906 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2907 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2908 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2909 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2910 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2911 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2912 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2913 ----------------------------------------------------------------------
2914
2915 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2916 of dimension 1, chars 94, and final character <F>, etc...
2917
2918 Note (*): Although these designations are not allowed in ISO2022,
2919 Emacs accepts them on decoding, and produces them on encoding
2920 CHARS96 character sets in a coding system which is characterized as
2921 7-bit environment, non-locking-shift, and non-single-shift.
2922
2923 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2924 '(' must be omitted. We refer to this as "short-form" hereafter.
2925
2926 Now you may notice that there are a lot of ways of encoding the
2927 same multilingual text in ISO2022. Actually, there exist many
2928 coding systems such as Compound Text (used in X11's inter client
2929 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2930 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2931 localized platforms), and all of these are variants of ISO2022.
2932
2933 In addition to the above, Emacs handles two more kinds of escape
2934 sequences: ISO6429's direction specification and Emacs' private
2935 sequence for specifying character composition.
2936
2937 ISO6429's direction specification takes the following form:
2938 o CSI ']' -- end of the current direction
2939 o CSI '0' ']' -- end of the current direction
2940 o CSI '1' ']' -- start of left-to-right text
2941 o CSI '2' ']' -- start of right-to-left text
2942 The control character CSI (0x9B: control sequence introducer) is
2943 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2944
2945 Character composition specification takes the following form:
2946 o ESC '0' -- start relative composition
2947 o ESC '1' -- end composition
2948 o ESC '2' -- start rule-base composition (*)
2949 o ESC '3' -- start relative composition with alternate chars (**)
2950 o ESC '4' -- start rule-base composition with alternate chars (**)
2951 Since these are not standard escape sequences of any ISO standard,
2952 the use of them with these meanings is restricted to Emacs only.
2953
2954 (*) This form is used only in Emacs 20.7 and older versions,
2955 but newer versions can safely decode it.
2956 (**) This form is used only in Emacs 21.1 and newer versions,
2957 and older versions can't decode it.
2958
2959 Here's a list of example usages of these composition escape
2960 sequences (categorized by `enum composition_method').
2961
2962 COMPOSITION_RELATIVE:
2963 ESC 0 CHAR [ CHAR ] ESC 1
2964 COMPOSITION_WITH_RULE:
2965 ESC 2 CHAR [ RULE CHAR ] ESC 1
2966 COMPOSITION_WITH_ALTCHARS:
2967 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2968 COMPOSITION_WITH_RULE_ALTCHARS:
2969 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2970
2971 enum iso_code_class_type iso_code_class[256];
2972
2973 #define SAFE_CHARSET_P(coding, id) \
2974 ((id) <= (coding)->max_charset_id \
2975 && (coding)->safe_charsets[id] != 255)
2976
2977
2978 #define SHIFT_OUT_OK(category) \
2979 (CODING_ISO_INITIAL (&coding_categories[category], 1) >= 0)
2980
2981 static void
2982 setup_iso_safe_charsets (Lisp_Object attrs)
2983 {
2984 Lisp_Object charset_list, safe_charsets;
2985 Lisp_Object request;
2986 Lisp_Object reg_usage;
2987 Lisp_Object tail;
2988 int reg94, reg96;
2989 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2990 int max_charset_id;
2991
2992 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2993 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2994 && ! EQ (charset_list, Viso_2022_charset_list))
2995 {
2996 CODING_ATTR_CHARSET_LIST (attrs)
2997 = charset_list = Viso_2022_charset_list;
2998 ASET (attrs, coding_attr_safe_charsets, Qnil);
2999 }
3000
3001 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
3002 return;
3003
3004 max_charset_id = 0;
3005 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3006 {
3007 int id = XINT (XCAR (tail));
3008 if (max_charset_id < id)
3009 max_charset_id = id;
3010 }
3011
3012 safe_charsets = make_uninit_string (max_charset_id + 1);
3013 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
3014 request = AREF (attrs, coding_attr_iso_request);
3015 reg_usage = AREF (attrs, coding_attr_iso_usage);
3016 reg94 = XINT (XCAR (reg_usage));
3017 reg96 = XINT (XCDR (reg_usage));
3018
3019 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3020 {
3021 Lisp_Object id;
3022 Lisp_Object reg;
3023 struct charset *charset;
3024
3025 id = XCAR (tail);
3026 charset = CHARSET_FROM_ID (XINT (id));
3027 reg = Fcdr (Fassq (id, request));
3028 if (! NILP (reg))
3029 SSET (safe_charsets, XINT (id), XINT (reg));
3030 else if (charset->iso_chars_96)
3031 {
3032 if (reg96 < 4)
3033 SSET (safe_charsets, XINT (id), reg96);
3034 }
3035 else
3036 {
3037 if (reg94 < 4)
3038 SSET (safe_charsets, XINT (id), reg94);
3039 }
3040 }
3041 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
3042 }
3043
3044
3045 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3046 Check if a text is encoded in one of ISO-2022 based codig systems.
3047 If it is, return 1, else return 0. */
3048
3049 static int
3050 detect_coding_iso_2022 (struct coding_system *coding,
3051 struct coding_detection_info *detect_info)
3052 {
3053 const unsigned char *src = coding->source, *src_base = src;
3054 const unsigned char *src_end = coding->source + coding->src_bytes;
3055 int multibytep = coding->src_multibyte;
3056 int single_shifting = 0;
3057 int id;
3058 int c, c1;
3059 int consumed_chars = 0;
3060 int i;
3061 int rejected = 0;
3062 int found = 0;
3063 int composition_count = -1;
3064
3065 detect_info->checked |= CATEGORY_MASK_ISO;
3066
3067 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3068 {
3069 struct coding_system *this = &(coding_categories[i]);
3070 Lisp_Object attrs, val;
3071
3072 if (this->id < 0)
3073 continue;
3074 attrs = CODING_ID_ATTRS (this->id);
3075 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3076 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3077 setup_iso_safe_charsets (attrs);
3078 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3079 this->max_charset_id = SCHARS (val) - 1;
3080 this->safe_charsets = SDATA (val);
3081 }
3082
3083 /* A coding system of this category is always ASCII compatible. */
3084 src += coding->head_ascii;
3085
3086 while (rejected != CATEGORY_MASK_ISO)
3087 {
3088 src_base = src;
3089 ONE_MORE_BYTE (c);
3090 switch (c)
3091 {
3092 case ISO_CODE_ESC:
3093 if (inhibit_iso_escape_detection)
3094 break;
3095 single_shifting = 0;
3096 ONE_MORE_BYTE (c);
3097 if (c >= '(' && c <= '/')
3098 {
3099 /* Designation sequence for a charset of dimension 1. */
3100 ONE_MORE_BYTE (c1);
3101 if (c1 < ' ' || c1 >= 0x80
3102 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3103 /* Invalid designation sequence. Just ignore. */
3104 break;
3105 }
3106 else if (c == '$')
3107 {
3108 /* Designation sequence for a charset of dimension 2. */
3109 ONE_MORE_BYTE (c);
3110 if (c >= '@' && c <= 'B')
3111 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3112 id = iso_charset_table[1][0][c];
3113 else if (c >= '(' && c <= '/')
3114 {
3115 ONE_MORE_BYTE (c1);
3116 if (c1 < ' ' || c1 >= 0x80
3117 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3118 /* Invalid designation sequence. Just ignore. */
3119 break;
3120 }
3121 else
3122 /* Invalid designation sequence. Just ignore it. */
3123 break;
3124 }
3125 else if (c == 'N' || c == 'O')
3126 {
3127 /* ESC <Fe> for SS2 or SS3. */
3128 single_shifting = 1;
3129 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3130 break;
3131 }
3132 else if (c == '1')
3133 {
3134 /* End of composition. */
3135 if (composition_count < 0
3136 || composition_count > MAX_COMPOSITION_COMPONENTS)
3137 /* Invalid */
3138 break;
3139 composition_count = -1;
3140 found |= CATEGORY_MASK_ISO;
3141 }
3142 else if (c >= '0' && c <= '4')
3143 {
3144 /* ESC <Fp> for start/end composition. */
3145 composition_count = 0;
3146 break;
3147 }
3148 else
3149 {
3150 /* Invalid escape sequence. Just ignore it. */
3151 break;
3152 }
3153
3154 /* We found a valid designation sequence for CHARSET. */
3155 rejected |= CATEGORY_MASK_ISO_8BIT;
3156 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3157 id))
3158 found |= CATEGORY_MASK_ISO_7;
3159 else
3160 rejected |= CATEGORY_MASK_ISO_7;
3161 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3162 id))
3163 found |= CATEGORY_MASK_ISO_7_TIGHT;
3164 else
3165 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3166 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3167 id))
3168 found |= CATEGORY_MASK_ISO_7_ELSE;
3169 else
3170 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3171 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3172 id))
3173 found |= CATEGORY_MASK_ISO_8_ELSE;
3174 else
3175 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3176 break;
3177
3178 case ISO_CODE_SO:
3179 case ISO_CODE_SI:
3180 /* Locking shift out/in. */
3181 if (inhibit_iso_escape_detection)
3182 break;
3183 single_shifting = 0;
3184 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3185 break;
3186
3187 case ISO_CODE_CSI:
3188 /* Control sequence introducer. */
3189 single_shifting = 0;
3190 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3191 found |= CATEGORY_MASK_ISO_8_ELSE;
3192 goto check_extra_latin;
3193
3194 case ISO_CODE_SS2:
3195 case ISO_CODE_SS3:
3196 /* Single shift. */
3197 if (inhibit_iso_escape_detection)
3198 break;
3199 single_shifting = 0;
3200 rejected |= CATEGORY_MASK_ISO_7BIT;
3201 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3202 & CODING_ISO_FLAG_SINGLE_SHIFT)
3203 found |= CATEGORY_MASK_ISO_8_1, single_shifting = 1;
3204 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3205 & CODING_ISO_FLAG_SINGLE_SHIFT)
3206 found |= CATEGORY_MASK_ISO_8_2, single_shifting = 1;
3207 if (single_shifting)
3208 break;
3209 goto check_extra_latin;
3210
3211 default:
3212 if (c < 0)
3213 continue;
3214 if (c < 0x80)
3215 {
3216 if (composition_count >= 0)
3217 composition_count++;
3218 single_shifting = 0;
3219 break;
3220 }
3221 if (c >= 0xA0)
3222 {
3223 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3224 found |= CATEGORY_MASK_ISO_8_1;
3225 /* Check the length of succeeding codes of the range
3226 0xA0..0FF. If the byte length is even, we include
3227 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3228 only when we are not single shifting. */
3229 if (! single_shifting
3230 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3231 {
3232 int i = 1;
3233 while (src < src_end)
3234 {
3235 src_base = src;
3236 ONE_MORE_BYTE (c);
3237 if (c < 0xA0)
3238 {
3239 src = src_base;
3240 break;
3241 }
3242 i++;
3243 }
3244
3245 if (i & 1 && src < src_end)
3246 {
3247 rejected |= CATEGORY_MASK_ISO_8_2;
3248 if (composition_count >= 0)
3249 composition_count += i;
3250 }
3251 else
3252 {
3253 found |= CATEGORY_MASK_ISO_8_2;
3254 if (composition_count >= 0)
3255 composition_count += i / 2;
3256 }
3257 }
3258 break;
3259 }
3260 check_extra_latin:
3261 single_shifting = 0;
3262 if (! VECTORP (Vlatin_extra_code_table)
3263 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3264 {
3265 rejected = CATEGORY_MASK_ISO;
3266 break;
3267 }
3268 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3269 & CODING_ISO_FLAG_LATIN_EXTRA)
3270 found |= CATEGORY_MASK_ISO_8_1;
3271 else
3272 rejected |= CATEGORY_MASK_ISO_8_1;
3273 rejected |= CATEGORY_MASK_ISO_8_2;
3274 }
3275 }
3276 detect_info->rejected |= CATEGORY_MASK_ISO;
3277 return 0;
3278
3279 no_more_source:
3280 detect_info->rejected |= rejected;
3281 detect_info->found |= (found & ~rejected);
3282 return 1;
3283 }
3284
3285
3286 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3287 escape sequence should be kept. */
3288 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3289 do { \
3290 int id, prev; \
3291 \
3292 if (final < '0' || final >= 128 \
3293 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3294 || !SAFE_CHARSET_P (coding, id)) \
3295 { \
3296 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3297 chars_96 = -1; \
3298 break; \
3299 } \
3300 prev = CODING_ISO_DESIGNATION (coding, reg); \
3301 if (id == charset_jisx0201_roman) \
3302 { \
3303 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3304 id = charset_ascii; \
3305 } \
3306 else if (id == charset_jisx0208_1978) \
3307 { \
3308 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3309 id = charset_jisx0208; \
3310 } \
3311 CODING_ISO_DESIGNATION (coding, reg) = id; \
3312 /* If there was an invalid designation to REG previously, and this \
3313 designation is ASCII to REG, we should keep this designation \
3314 sequence. */ \
3315 if (prev == -2 && id == charset_ascii) \
3316 chars_96 = -1; \
3317 } while (0)
3318
3319
3320 /* Handle these composition sequence (ALT: alternate char):
3321
3322 (1) relative composition: ESC 0 CHAR ... ESC 1
3323 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3324 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3325 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3326
3327 When the start sequence (ESC 0/2/3/4) is found, this annotation
3328 header is produced.
3329
3330 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3331
3332 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3333 produced until the end sequence (ESC 1) is found:
3334
3335 (1) CHAR ... CHAR
3336 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3337 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3338 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3339
3340 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3341 annotation header is updated as below:
3342
3343 (1) LENGTH: unchanged, NCHARS: number of CHARs
3344 (2) LENGTH: unchanged, NCHARS: number of CHARs
3345 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3346 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3347
3348 If an error is found while composing, the annotation header is
3349 changed to:
3350
3351 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3352
3353 and the sequence [ -2 DECODED-RULE ] is changed to the original
3354 byte sequence as below:
3355 o the original byte sequence is B: [ B -1 ]
3356 o the original byte sequence is B1 B2: [ B1 B2 ]
3357 and the sequence [ -1 -1 ] is changed to the original byte
3358 sequence:
3359 [ ESC '0' ]
3360 */
3361
3362 /* Decode a composition rule C1 and maybe one more byte from the
3363 source, and set RULE to the encoded composition rule, NBYTES to the
3364 length of the composition rule. If the rule is invalid, set RULE
3365 to some negative value. */
3366
3367 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3368 do { \
3369 rule = c1 - 32; \
3370 if (rule < 0) \
3371 break; \
3372 if (rule < 81) /* old format (before ver.21) */ \
3373 { \
3374 int gref = (rule) / 9; \
3375 int nref = (rule) % 9; \
3376 if (gref == 4) gref = 10; \
3377 if (nref == 4) nref = 10; \
3378 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3379 nbytes = 1; \
3380 } \
3381 else /* new format (after ver.21) */ \
3382 { \
3383 int c; \
3384 \
3385 ONE_MORE_BYTE (c); \
3386 rule = COMPOSITION_ENCODE_RULE (rule - 81, c - 32); \
3387 if (rule >= 0) \
3388 rule += 0x100; /* to destinguish it from the old format */ \
3389 nbytes = 2; \
3390 } \
3391 } while (0)
3392
3393 #define ENCODE_COMPOSITION_RULE(rule) \
3394 do { \
3395 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3396 \
3397 if (rule < 0x100) /* old format */ \
3398 { \
3399 if (gref == 10) gref = 4; \
3400 if (nref == 10) nref = 4; \
3401 charbuf[idx] = 32 + gref * 9 + nref; \
3402 charbuf[idx + 1] = -1; \
3403 new_chars++; \
3404 } \
3405 else /* new format */ \
3406 { \
3407 charbuf[idx] = 32 + 81 + gref; \
3408 charbuf[idx + 1] = 32 + nref; \
3409 new_chars += 2; \
3410 } \
3411 } while (0)
3412
3413 /* Finish the current composition as invalid. */
3414
3415 static int finish_composition (int *, struct composition_status *);
3416
3417 static int
3418 finish_composition (int *charbuf, struct composition_status *cmp_status)
3419 {
3420 int idx = - cmp_status->length;
3421 int new_chars;
3422
3423 /* Recover the original ESC sequence */
3424 charbuf[idx++] = ISO_CODE_ESC;
3425 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3426 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3427 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3428 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3429 : '4');
3430 charbuf[idx++] = -2;
3431 charbuf[idx++] = 0;
3432 charbuf[idx++] = -1;
3433 new_chars = cmp_status->nchars;
3434 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3435 for (; idx < 0; idx++)
3436 {
3437 int elt = charbuf[idx];
3438
3439 if (elt == -2)
3440 {
3441 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3442 idx++;
3443 }
3444 else if (elt == -1)
3445 {
3446 charbuf[idx++] = ISO_CODE_ESC;
3447 charbuf[idx] = '0';
3448 new_chars += 2;
3449 }
3450 }
3451 cmp_status->state = COMPOSING_NO;
3452 return new_chars;
3453 }
3454
3455 /* If characers are under composition, finish the composition. */
3456 #define MAYBE_FINISH_COMPOSITION() \
3457 do { \
3458 if (cmp_status->state != COMPOSING_NO) \
3459 char_offset += finish_composition (charbuf, cmp_status); \
3460 } while (0)
3461
3462 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3463
3464 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3465 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3466 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3467 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3468
3469 Produce this annotation sequence now:
3470
3471 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3472 */
3473
3474 #define DECODE_COMPOSITION_START(c1) \
3475 do { \
3476 if (c1 == '0' \
3477 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3478 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3479 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3480 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3481 { \
3482 *charbuf++ = -1; \
3483 *charbuf++= -1; \
3484 cmp_status->state = COMPOSING_CHAR; \
3485 cmp_status->length += 2; \
3486 } \
3487 else \
3488 { \
3489 MAYBE_FINISH_COMPOSITION (); \
3490 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3491 : c1 == '2' ? COMPOSITION_WITH_RULE \
3492 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3493 : COMPOSITION_WITH_RULE_ALTCHARS); \
3494 cmp_status->state \
3495 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3496 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3497 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3498 cmp_status->nchars = cmp_status->ncomps = 0; \
3499 coding->annotated = 1; \
3500 } \
3501 } while (0)
3502
3503
3504 /* Handle composition end sequence ESC 1. */
3505
3506 #define DECODE_COMPOSITION_END() \
3507 do { \
3508 if (cmp_status->nchars == 0 \
3509 || ((cmp_status->state == COMPOSING_CHAR) \
3510 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3511 { \
3512 MAYBE_FINISH_COMPOSITION (); \
3513 goto invalid_code; \
3514 } \
3515 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3516 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3517 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3518 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3519 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3520 char_offset += cmp_status->nchars; \
3521 cmp_status->state = COMPOSING_NO; \
3522 } while (0)
3523
3524 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3525
3526 #define STORE_COMPOSITION_RULE(rule) \
3527 do { \
3528 *charbuf++ = -2; \
3529 *charbuf++ = rule; \
3530 cmp_status->length += 2; \
3531 cmp_status->state--; \
3532 } while (0)
3533
3534 /* Store a composed char or a component char C in charbuf, and update
3535 cmp_status. */
3536
3537 #define STORE_COMPOSITION_CHAR(c) \
3538 do { \
3539 *charbuf++ = (c); \
3540 cmp_status->length++; \
3541 if (cmp_status->state == COMPOSING_CHAR) \
3542 cmp_status->nchars++; \
3543 else \
3544 cmp_status->ncomps++; \
3545 if (cmp_status->method == COMPOSITION_WITH_RULE \
3546 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3547 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3548 cmp_status->state++; \
3549 } while (0)
3550
3551
3552 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3553
3554 static void
3555 decode_coding_iso_2022 (struct coding_system *coding)
3556 {
3557 const unsigned char *src = coding->source + coding->consumed;
3558 const unsigned char *src_end = coding->source + coding->src_bytes;
3559 const unsigned char *src_base;
3560 int *charbuf = coding->charbuf + coding->charbuf_used;
3561 /* We may produce two annocations (charset and composition) in one
3562 loop and one more charset annocation at the end. */
3563 int *charbuf_end
3564 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3565 int consumed_chars = 0, consumed_chars_base;
3566 int multibytep = coding->src_multibyte;
3567 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3568 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3569 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3570 int charset_id_2, charset_id_3;
3571 struct charset *charset;
3572 int c;
3573 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3574 Lisp_Object attrs, charset_list;
3575 int char_offset = coding->produced_char;
3576 int last_offset = char_offset;
3577 int last_id = charset_ascii;
3578 int eol_crlf =
3579 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3580 int byte_after_cr = -1;
3581 int i;
3582
3583 CODING_GET_INFO (coding, attrs, charset_list);
3584 setup_iso_safe_charsets (attrs);
3585 /* Charset list may have been changed. */
3586 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3587 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3588
3589 if (cmp_status->state != COMPOSING_NO)
3590 {
3591 for (i = 0; i < cmp_status->length; i++)
3592 *charbuf++ = cmp_status->carryover[i];
3593 coding->annotated = 1;
3594 }
3595
3596 while (1)
3597 {
3598 int c1, c2, c3;
3599
3600 src_base = src;
3601 consumed_chars_base = consumed_chars;
3602
3603 if (charbuf >= charbuf_end)
3604 {
3605 if (byte_after_cr >= 0)
3606 src_base--;
3607 break;
3608 }
3609
3610 if (byte_after_cr >= 0)
3611 c1 = byte_after_cr, byte_after_cr = -1;
3612 else
3613 ONE_MORE_BYTE (c1);
3614 if (c1 < 0)
3615 goto invalid_code;
3616
3617 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3618 {
3619 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3620 char_offset++;
3621 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3622 continue;
3623 }
3624
3625 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3626 {
3627 if (c1 == ISO_CODE_ESC)
3628 {
3629 if (src + 1 >= src_end)
3630 goto no_more_source;
3631 *charbuf++ = ISO_CODE_ESC;
3632 char_offset++;
3633 if (src[0] == '%' && src[1] == '@')
3634 {
3635 src += 2;
3636 consumed_chars += 2;
3637 char_offset += 2;
3638 /* We are sure charbuf can contain two more chars. */
3639 *charbuf++ = '%';
3640 *charbuf++ = '@';
3641 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3642 }
3643 }
3644 else
3645 {
3646 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3647 char_offset++;
3648 }
3649 continue;
3650 }
3651
3652 if ((cmp_status->state == COMPOSING_RULE
3653 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3654 && c1 != ISO_CODE_ESC)
3655 {
3656 int rule, nbytes;
3657
3658 DECODE_COMPOSITION_RULE (rule, nbytes);
3659 if (rule < 0)
3660 goto invalid_code;
3661 STORE_COMPOSITION_RULE (rule);
3662 continue;
3663 }
3664
3665 /* We produce at most one character. */
3666 switch (iso_code_class [c1])
3667 {
3668 case ISO_0x20_or_0x7F:
3669 if (charset_id_0 < 0
3670 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3671 /* This is SPACE or DEL. */
3672 charset = CHARSET_FROM_ID (charset_ascii);
3673 else
3674 charset = CHARSET_FROM_ID (charset_id_0);
3675 break;
3676
3677 case ISO_graphic_plane_0:
3678 if (charset_id_0 < 0)
3679 charset = CHARSET_FROM_ID (charset_ascii);
3680 else
3681 charset = CHARSET_FROM_ID (charset_id_0);
3682 break;
3683
3684 case ISO_0xA0_or_0xFF:
3685 if (charset_id_1 < 0
3686 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3687 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3688 goto invalid_code;
3689 /* This is a graphic character, we fall down ... */
3690
3691 case ISO_graphic_plane_1:
3692 if (charset_id_1 < 0)
3693 goto invalid_code;
3694 charset = CHARSET_FROM_ID (charset_id_1);
3695 break;
3696
3697 case ISO_control_0:
3698 if (eol_crlf && c1 == '\r')
3699 ONE_MORE_BYTE (byte_after_cr);
3700 MAYBE_FINISH_COMPOSITION ();
3701 charset = CHARSET_FROM_ID (charset_ascii);
3702 break;
3703
3704 case ISO_control_1:
3705 goto invalid_code;
3706
3707 case ISO_shift_out:
3708 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3709 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3710 goto invalid_code;
3711 CODING_ISO_INVOCATION (coding, 0) = 1;
3712 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3713 continue;
3714
3715 case ISO_shift_in:
3716 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3717 goto invalid_code;
3718 CODING_ISO_INVOCATION (coding, 0) = 0;
3719 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3720 continue;
3721
3722 case ISO_single_shift_2_7:
3723 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3724 goto invalid_code;
3725 case ISO_single_shift_2:
3726 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3727 goto invalid_code;
3728 /* SS2 is handled as an escape sequence of ESC 'N' */
3729 c1 = 'N';
3730 goto label_escape_sequence;
3731
3732 case ISO_single_shift_3:
3733 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3734 goto invalid_code;
3735 /* SS2 is handled as an escape sequence of ESC 'O' */
3736 c1 = 'O';
3737 goto label_escape_sequence;
3738
3739 case ISO_control_sequence_introducer:
3740 /* CSI is handled as an escape sequence of ESC '[' ... */
3741 c1 = '[';
3742 goto label_escape_sequence;
3743
3744 case ISO_escape:
3745 ONE_MORE_BYTE (c1);
3746 label_escape_sequence:
3747 /* Escape sequences handled here are invocation,
3748 designation, direction specification, and character
3749 composition specification. */
3750 switch (c1)
3751 {
3752 case '&': /* revision of following character set */
3753 ONE_MORE_BYTE (c1);
3754 if (!(c1 >= '@' && c1 <= '~'))
3755 goto invalid_code;
3756 ONE_MORE_BYTE (c1);
3757 if (c1 != ISO_CODE_ESC)
3758 goto invalid_code;
3759 ONE_MORE_BYTE (c1);
3760 goto label_escape_sequence;
3761
3762 case '$': /* designation of 2-byte character set */
3763 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3764 goto invalid_code;
3765 {
3766 int reg, chars96;
3767
3768 ONE_MORE_BYTE (c1);
3769 if (c1 >= '@' && c1 <= 'B')
3770 { /* designation of JISX0208.1978, GB2312.1980,
3771 or JISX0208.1980 */
3772 reg = 0, chars96 = 0;
3773 }
3774 else if (c1 >= 0x28 && c1 <= 0x2B)
3775 { /* designation of DIMENSION2_CHARS94 character set */
3776 reg = c1 - 0x28, chars96 = 0;
3777 ONE_MORE_BYTE (c1);
3778 }
3779 else if (c1 >= 0x2C && c1 <= 0x2F)
3780 { /* designation of DIMENSION2_CHARS96 character set */
3781 reg = c1 - 0x2C, chars96 = 1;
3782 ONE_MORE_BYTE (c1);
3783 }
3784 else
3785 goto invalid_code;
3786 DECODE_DESIGNATION (reg, 2, chars96, c1);
3787 /* We must update these variables now. */
3788 if (reg == 0)
3789 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3790 else if (reg == 1)
3791 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3792 if (chars96 < 0)
3793 goto invalid_code;
3794 }
3795 continue;
3796
3797 case 'n': /* invocation of locking-shift-2 */
3798 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3799 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3800 goto invalid_code;
3801 CODING_ISO_INVOCATION (coding, 0) = 2;
3802 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3803 continue;
3804
3805 case 'o': /* invocation of locking-shift-3 */
3806 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3807 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3808 goto invalid_code;
3809 CODING_ISO_INVOCATION (coding, 0) = 3;
3810 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3811 continue;
3812
3813 case 'N': /* invocation of single-shift-2 */
3814 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3815 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3816 goto invalid_code;
3817 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3818 if (charset_id_2 < 0)
3819 charset = CHARSET_FROM_ID (charset_ascii);
3820 else
3821 charset = CHARSET_FROM_ID (charset_id_2);
3822 ONE_MORE_BYTE (c1);
3823 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3824 goto invalid_code;
3825 break;
3826
3827 case 'O': /* invocation of single-shift-3 */
3828 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3829 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3830 goto invalid_code;
3831 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3832 if (charset_id_3 < 0)
3833 charset = CHARSET_FROM_ID (charset_ascii);
3834 else
3835 charset = CHARSET_FROM_ID (charset_id_3);
3836 ONE_MORE_BYTE (c1);
3837 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3838 goto invalid_code;
3839 break;
3840
3841 case '0': case '2': case '3': case '4': /* start composition */
3842 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3843 goto invalid_code;
3844 if (last_id != charset_ascii)
3845 {
3846 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3847 last_id = charset_ascii;
3848 last_offset = char_offset;
3849 }
3850 DECODE_COMPOSITION_START (c1);
3851 continue;
3852
3853 case '1': /* end composition */
3854 if (cmp_status->state == COMPOSING_NO)
3855 goto invalid_code;
3856 DECODE_COMPOSITION_END ();
3857 continue;
3858
3859 case '[': /* specification of direction */
3860 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3861 goto invalid_code;
3862 /* For the moment, nested direction is not supported.
3863 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3864 left-to-right, and nozero means right-to-left. */
3865 ONE_MORE_BYTE (c1);
3866 switch (c1)
3867 {
3868 case ']': /* end of the current direction */
3869 coding->mode &= ~CODING_MODE_DIRECTION;
3870
3871 case '0': /* end of the current direction */
3872 case '1': /* start of left-to-right direction */
3873 ONE_MORE_BYTE (c1);
3874 if (c1 == ']')
3875 coding->mode &= ~CODING_MODE_DIRECTION;
3876 else
3877 goto invalid_code;
3878 break;
3879
3880 case '2': /* start of right-to-left direction */
3881 ONE_MORE_BYTE (c1);
3882 if (c1 == ']')
3883 coding->mode |= CODING_MODE_DIRECTION;
3884 else
3885 goto invalid_code;
3886 break;
3887
3888 default:
3889 goto invalid_code;
3890 }
3891 continue;
3892
3893 case '%':
3894 ONE_MORE_BYTE (c1);
3895 if (c1 == '/')
3896 {
3897 /* CTEXT extended segment:
3898 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3899 We keep these bytes as is for the moment.
3900 They may be decoded by post-read-conversion. */
3901 int dim, M, L;
3902 int size;
3903
3904 ONE_MORE_BYTE (dim);
3905 if (dim < 0 || dim > 4)
3906 goto invalid_code;
3907 ONE_MORE_BYTE (M);
3908 if (M < 128)
3909 goto invalid_code;
3910 ONE_MORE_BYTE (L);
3911 if (L < 128)
3912 goto invalid_code;
3913 size = ((M - 128) * 128) + (L - 128);
3914 if (charbuf + 6 > charbuf_end)
3915 goto break_loop;
3916 *charbuf++ = ISO_CODE_ESC;
3917 *charbuf++ = '%';
3918 *charbuf++ = '/';
3919 *charbuf++ = dim;
3920 *charbuf++ = BYTE8_TO_CHAR (M);
3921 *charbuf++ = BYTE8_TO_CHAR (L);
3922 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3923 }
3924 else if (c1 == 'G')
3925 {
3926 /* XFree86 extension for embedding UTF-8 in CTEXT:
3927 ESC % G --UTF-8-BYTES-- ESC % @
3928 We keep these bytes as is for the moment.
3929 They may be decoded by post-read-conversion. */
3930 if (charbuf + 3 > charbuf_end)
3931 goto break_loop;
3932 *charbuf++ = ISO_CODE_ESC;
3933 *charbuf++ = '%';
3934 *charbuf++ = 'G';
3935 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3936 }
3937 else
3938 goto invalid_code;
3939 continue;
3940 break;
3941
3942 default:
3943 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3944 goto invalid_code;
3945 {
3946 int reg, chars96;
3947
3948 if (c1 >= 0x28 && c1 <= 0x2B)
3949 { /* designation of DIMENSION1_CHARS94 character set */
3950 reg = c1 - 0x28, chars96 = 0;
3951 ONE_MORE_BYTE (c1);
3952 }
3953 else if (c1 >= 0x2C && c1 <= 0x2F)
3954 { /* designation of DIMENSION1_CHARS96 character set */
3955 reg = c1 - 0x2C, chars96 = 1;
3956 ONE_MORE_BYTE (c1);
3957 }
3958 else
3959 goto invalid_code;
3960 DECODE_DESIGNATION (reg, 1, chars96, c1);
3961 /* We must update these variables now. */
3962 if (reg == 0)
3963 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3964 else if (reg == 1)
3965 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3966 if (chars96 < 0)
3967 goto invalid_code;
3968 }
3969 continue;
3970 }
3971 }
3972
3973 if (cmp_status->state == COMPOSING_NO
3974 && charset->id != charset_ascii
3975 && last_id != charset->id)
3976 {
3977 if (last_id != charset_ascii)
3978 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3979 last_id = charset->id;
3980 last_offset = char_offset;
3981 }
3982
3983 /* Now we know CHARSET and 1st position code C1 of a character.
3984 Produce a decoded character while getting 2nd and 3rd
3985 position codes C2, C3 if necessary. */
3986 if (CHARSET_DIMENSION (charset) > 1)
3987 {
3988 ONE_MORE_BYTE (c2);
3989 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3990 || ((c1 & 0x80) != (c2 & 0x80)))
3991 /* C2 is not in a valid range. */
3992 goto invalid_code;
3993 if (CHARSET_DIMENSION (charset) == 2)
3994 c1 = (c1 << 8) | c2;
3995 else
3996 {
3997 ONE_MORE_BYTE (c3);
3998 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3999 || ((c1 & 0x80) != (c3 & 0x80)))
4000 /* C3 is not in a valid range. */
4001 goto invalid_code;
4002 c1 = (c1 << 16) | (c2 << 8) | c2;
4003 }
4004 }
4005 c1 &= 0x7F7F7F;
4006 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
4007 if (c < 0)
4008 {
4009 MAYBE_FINISH_COMPOSITION ();
4010 for (; src_base < src; src_base++, char_offset++)
4011 {
4012 if (ASCII_BYTE_P (*src_base))
4013 *charbuf++ = *src_base;
4014 else
4015 *charbuf++ = BYTE8_TO_CHAR (*src_base);
4016 }
4017 }
4018 else if (cmp_status->state == COMPOSING_NO)
4019 {
4020 *charbuf++ = c;
4021 char_offset++;
4022 }
4023 else if ((cmp_status->state == COMPOSING_CHAR
4024 ? cmp_status->nchars
4025 : cmp_status->ncomps)
4026 >= MAX_COMPOSITION_COMPONENTS)
4027 {
4028 /* Too long composition. */
4029 MAYBE_FINISH_COMPOSITION ();
4030 *charbuf++ = c;
4031 char_offset++;
4032 }
4033 else
4034 STORE_COMPOSITION_CHAR (c);
4035 continue;
4036
4037 invalid_code:
4038 MAYBE_FINISH_COMPOSITION ();
4039 src = src_base;
4040 consumed_chars = consumed_chars_base;
4041 ONE_MORE_BYTE (c);
4042 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4043 char_offset++;
4044 coding->errors++;
4045 continue;
4046
4047 break_loop:
4048 break;
4049 }
4050
4051 no_more_source:
4052 if (cmp_status->state != COMPOSING_NO)
4053 {
4054 if (coding->mode & CODING_MODE_LAST_BLOCK)
4055 MAYBE_FINISH_COMPOSITION ();
4056 else
4057 {
4058 charbuf -= cmp_status->length;
4059 for (i = 0; i < cmp_status->length; i++)
4060 cmp_status->carryover[i] = charbuf[i];
4061 }
4062 }
4063 else if (last_id != charset_ascii)
4064 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4065 coding->consumed_char += consumed_chars_base;
4066 coding->consumed = src_base - coding->source;
4067 coding->charbuf_used = charbuf - coding->charbuf;
4068 }
4069
4070
4071 /* ISO2022 encoding stuff. */
4072
4073 /*
4074 It is not enough to say just "ISO2022" on encoding, we have to
4075 specify more details. In Emacs, each coding system of ISO2022
4076 variant has the following specifications:
4077 1. Initial designation to G0 thru G3.
4078 2. Allows short-form designation?
4079 3. ASCII should be designated to G0 before control characters?
4080 4. ASCII should be designated to G0 at end of line?
4081 5. 7-bit environment or 8-bit environment?
4082 6. Use locking-shift?
4083 7. Use Single-shift?
4084 And the following two are only for Japanese:
4085 8. Use ASCII in place of JIS0201-1976-Roman?
4086 9. Use JISX0208-1983 in place of JISX0208-1978?
4087 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4088 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4089 details.
4090 */
4091
4092 /* Produce codes (escape sequence) for designating CHARSET to graphic
4093 register REG at DST, and increment DST. If <final-char> of CHARSET is
4094 '@', 'A', or 'B' and the coding system CODING allows, produce
4095 designation sequence of short-form. */
4096
4097 #define ENCODE_DESIGNATION(charset, reg, coding) \
4098 do { \
4099 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4100 const char *intermediate_char_94 = "()*+"; \
4101 const char *intermediate_char_96 = ",-./"; \
4102 int revision = -1; \
4103 int c; \
4104 \
4105 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4106 revision = CHARSET_ISO_REVISION (charset); \
4107 \
4108 if (revision >= 0) \
4109 { \
4110 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4111 EMIT_ONE_BYTE ('@' + revision); \
4112 } \
4113 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4114 if (CHARSET_DIMENSION (charset) == 1) \
4115 { \
4116 if (! CHARSET_ISO_CHARS_96 (charset)) \
4117 c = intermediate_char_94[reg]; \
4118 else \
4119 c = intermediate_char_96[reg]; \
4120 EMIT_ONE_ASCII_BYTE (c); \
4121 } \
4122 else \
4123 { \
4124 EMIT_ONE_ASCII_BYTE ('$'); \
4125 if (! CHARSET_ISO_CHARS_96 (charset)) \
4126 { \
4127 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4128 || reg != 0 \
4129 || final_char < '@' || final_char > 'B') \
4130 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4131 } \
4132 else \
4133 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4134 } \
4135 EMIT_ONE_ASCII_BYTE (final_char); \
4136 \
4137 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4138 } while (0)
4139
4140
4141 /* The following two macros produce codes (control character or escape
4142 sequence) for ISO2022 single-shift functions (single-shift-2 and
4143 single-shift-3). */
4144
4145 #define ENCODE_SINGLE_SHIFT_2 \
4146 do { \
4147 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4148 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4149 else \
4150 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4151 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4152 } while (0)
4153
4154
4155 #define ENCODE_SINGLE_SHIFT_3 \
4156 do { \
4157 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4158 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4159 else \
4160 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4161 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4162 } while (0)
4163
4164
4165 /* The following four macros produce codes (control character or
4166 escape sequence) for ISO2022 locking-shift functions (shift-in,
4167 shift-out, locking-shift-2, and locking-shift-3). */
4168
4169 #define ENCODE_SHIFT_IN \
4170 do { \
4171 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4172 CODING_ISO_INVOCATION (coding, 0) = 0; \
4173 } while (0)
4174
4175
4176 #define ENCODE_SHIFT_OUT \
4177 do { \
4178 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4179 CODING_ISO_INVOCATION (coding, 0) = 1; \
4180 } while (0)
4181
4182
4183 #define ENCODE_LOCKING_SHIFT_2 \
4184 do { \
4185 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4186 CODING_ISO_INVOCATION (coding, 0) = 2; \
4187 } while (0)
4188
4189
4190 #define ENCODE_LOCKING_SHIFT_3 \
4191 do { \
4192 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4193 CODING_ISO_INVOCATION (coding, 0) = 3; \
4194 } while (0)
4195
4196
4197 /* Produce codes for a DIMENSION1 character whose character set is
4198 CHARSET and whose position-code is C1. Designation and invocation
4199 sequences are also produced in advance if necessary. */
4200
4201 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4202 do { \
4203 int id = CHARSET_ID (charset); \
4204 \
4205 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4206 && id == charset_ascii) \
4207 { \
4208 id = charset_jisx0201_roman; \
4209 charset = CHARSET_FROM_ID (id); \
4210 } \
4211 \
4212 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4213 { \
4214 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4215 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4216 else \
4217 EMIT_ONE_BYTE (c1 | 0x80); \
4218 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4219 break; \
4220 } \
4221 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4222 { \
4223 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4224 break; \
4225 } \
4226 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4227 { \
4228 EMIT_ONE_BYTE (c1 | 0x80); \
4229 break; \
4230 } \
4231 else \
4232 /* Since CHARSET is not yet invoked to any graphic planes, we \
4233 must invoke it, or, at first, designate it to some graphic \
4234 register. Then repeat the loop to actually produce the \
4235 character. */ \
4236 dst = encode_invocation_designation (charset, coding, dst, \
4237 &produced_chars); \
4238 } while (1)
4239
4240
4241 /* Produce codes for a DIMENSION2 character whose character set is
4242 CHARSET and whose position-codes are C1 and C2. Designation and
4243 invocation codes are also produced in advance if necessary. */
4244
4245 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4246 do { \
4247 int id = CHARSET_ID (charset); \
4248 \
4249 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4250 && id == charset_jisx0208) \
4251 { \
4252 id = charset_jisx0208_1978; \
4253 charset = CHARSET_FROM_ID (id); \
4254 } \
4255 \
4256 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4257 { \
4258 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4259 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4260 else \
4261 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4262 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4263 break; \
4264 } \
4265 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4266 { \
4267 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4268 break; \
4269 } \
4270 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4271 { \
4272 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4273 break; \
4274 } \
4275 else \
4276 /* Since CHARSET is not yet invoked to any graphic planes, we \
4277 must invoke it, or, at first, designate it to some graphic \
4278 register. Then repeat the loop to actually produce the \
4279 character. */ \
4280 dst = encode_invocation_designation (charset, coding, dst, \
4281 &produced_chars); \
4282 } while (1)
4283
4284
4285 #define ENCODE_ISO_CHARACTER(charset, c) \
4286 do { \
4287 int code = ENCODE_CHAR ((charset), (c)); \
4288 \
4289 if (CHARSET_DIMENSION (charset) == 1) \
4290 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4291 else \
4292 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4293 } while (0)
4294
4295
4296 /* Produce designation and invocation codes at a place pointed by DST
4297 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4298 Return new DST. */
4299
4300 unsigned char *
4301 encode_invocation_designation (struct charset *charset,
4302 struct coding_system *coding,
4303 unsigned char *dst, int *p_nchars)
4304 {
4305 int multibytep = coding->dst_multibyte;
4306 int produced_chars = *p_nchars;
4307 int reg; /* graphic register number */
4308 int id = CHARSET_ID (charset);
4309
4310 /* At first, check designations. */
4311 for (reg = 0; reg < 4; reg++)
4312 if (id == CODING_ISO_DESIGNATION (coding, reg))
4313 break;
4314
4315 if (reg >= 4)
4316 {
4317 /* CHARSET is not yet designated to any graphic registers. */
4318 /* At first check the requested designation. */
4319 reg = CODING_ISO_REQUEST (coding, id);
4320 if (reg < 0)
4321 /* Since CHARSET requests no special designation, designate it
4322 to graphic register 0. */
4323 reg = 0;
4324
4325 ENCODE_DESIGNATION (charset, reg, coding);
4326 }
4327
4328 if (CODING_ISO_INVOCATION (coding, 0) != reg
4329 && CODING_ISO_INVOCATION (coding, 1) != reg)
4330 {
4331 /* Since the graphic register REG is not invoked to any graphic
4332 planes, invoke it to graphic plane 0. */
4333 switch (reg)
4334 {
4335 case 0: /* graphic register 0 */
4336 ENCODE_SHIFT_IN;
4337 break;
4338
4339 case 1: /* graphic register 1 */
4340 ENCODE_SHIFT_OUT;
4341 break;
4342
4343 case 2: /* graphic register 2 */
4344 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4345 ENCODE_SINGLE_SHIFT_2;
4346 else
4347 ENCODE_LOCKING_SHIFT_2;
4348 break;
4349
4350 case 3: /* graphic register 3 */
4351 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4352 ENCODE_SINGLE_SHIFT_3;
4353 else
4354 ENCODE_LOCKING_SHIFT_3;
4355 break;
4356 }
4357 }
4358
4359 *p_nchars = produced_chars;
4360 return dst;
4361 }
4362
4363 /* The following three macros produce codes for indicating direction
4364 of text. */
4365 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
4366 do { \
4367 if (CODING_ISO_FLAGS (coding) == CODING_ISO_FLAG_SEVEN_BITS) \
4368 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '['); \
4369 else \
4370 EMIT_ONE_BYTE (ISO_CODE_CSI); \
4371 } while (0)
4372
4373
4374 #define ENCODE_DIRECTION_R2L() \
4375 do { \
4376 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4377 EMIT_TWO_ASCII_BYTES ('2', ']'); \
4378 } while (0)
4379
4380
4381 #define ENCODE_DIRECTION_L2R() \
4382 do { \
4383 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4384 EMIT_TWO_ASCII_BYTES ('0', ']'); \
4385 } while (0)
4386
4387
4388 /* Produce codes for designation and invocation to reset the graphic
4389 planes and registers to initial state. */
4390 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4391 do { \
4392 int reg; \
4393 struct charset *charset; \
4394 \
4395 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4396 ENCODE_SHIFT_IN; \
4397 for (reg = 0; reg < 4; reg++) \
4398 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4399 && (CODING_ISO_DESIGNATION (coding, reg) \
4400 != CODING_ISO_INITIAL (coding, reg))) \
4401 { \
4402 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4403 ENCODE_DESIGNATION (charset, reg, coding); \
4404 } \
4405 } while (0)
4406
4407
4408 /* Produce designation sequences of charsets in the line started from
4409 SRC to a place pointed by DST, and return updated DST.
4410
4411 If the current block ends before any end-of-line, we may fail to
4412 find all the necessary designations. */
4413
4414 static unsigned char *
4415 encode_designation_at_bol (struct coding_system *coding, int *charbuf,
4416 int *charbuf_end, unsigned char *dst)
4417 {
4418 struct charset *charset;
4419 /* Table of charsets to be designated to each graphic register. */
4420 int r[4];
4421 int c, found = 0, reg;
4422 int produced_chars = 0;
4423 int multibytep = coding->dst_multibyte;
4424 Lisp_Object attrs;
4425 Lisp_Object charset_list;
4426
4427 attrs = CODING_ID_ATTRS (coding->id);
4428 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4429 if (EQ (charset_list, Qiso_2022))
4430 charset_list = Viso_2022_charset_list;
4431
4432 for (reg = 0; reg < 4; reg++)
4433 r[reg] = -1;
4434
4435 while (found < 4)
4436 {
4437 int id;
4438
4439 c = *charbuf++;
4440 if (c == '\n')
4441 break;
4442 charset = char_charset (c, charset_list, NULL);
4443 id = CHARSET_ID (charset);
4444 reg = CODING_ISO_REQUEST (coding, id);
4445 if (reg >= 0 && r[reg] < 0)
4446 {
4447 found++;
4448 r[reg] = id;
4449 }
4450 }
4451
4452 if (found)
4453 {
4454 for (reg = 0; reg < 4; reg++)
4455 if (r[reg] >= 0
4456 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4457 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4458 }
4459
4460 return dst;
4461 }
4462
4463 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4464
4465 static int
4466 encode_coding_iso_2022 (struct coding_system *coding)
4467 {
4468 int multibytep = coding->dst_multibyte;
4469 int *charbuf = coding->charbuf;
4470 int *charbuf_end = charbuf + coding->charbuf_used;
4471 unsigned char *dst = coding->destination + coding->produced;
4472 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4473 int safe_room = 16;
4474 int bol_designation
4475 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4476 && CODING_ISO_BOL (coding));
4477 int produced_chars = 0;
4478 Lisp_Object attrs, eol_type, charset_list;
4479 int ascii_compatible;
4480 int c;
4481 int preferred_charset_id = -1;
4482
4483 CODING_GET_INFO (coding, attrs, charset_list);
4484 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4485 if (VECTORP (eol_type))
4486 eol_type = Qunix;
4487
4488 setup_iso_safe_charsets (attrs);
4489 /* Charset list may have been changed. */
4490 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4491 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4492
4493 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4494
4495 while (charbuf < charbuf_end)
4496 {
4497 ASSURE_DESTINATION (safe_room);
4498
4499 if (bol_designation)
4500 {
4501 unsigned char *dst_prev = dst;
4502
4503 /* We have to produce designation sequences if any now. */
4504 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4505 bol_designation = 0;
4506 /* We are sure that designation sequences are all ASCII bytes. */
4507 produced_chars += dst - dst_prev;
4508 }
4509
4510 c = *charbuf++;
4511
4512 if (c < 0)
4513 {
4514 /* Handle an annotation. */
4515 switch (*charbuf)
4516 {
4517 case CODING_ANNOTATE_COMPOSITION_MASK:
4518 /* Not yet implemented. */
4519 break;
4520 case CODING_ANNOTATE_CHARSET_MASK:
4521 preferred_charset_id = charbuf[2];
4522 if (preferred_charset_id >= 0
4523 && NILP (Fmemq (make_number (preferred_charset_id),
4524 charset_list)))
4525 preferred_charset_id = -1;
4526 break;
4527 default:
4528 abort ();
4529 }
4530 charbuf += -c - 1;
4531 continue;
4532 }
4533
4534 /* Now encode the character C. */
4535 if (c < 0x20 || c == 0x7F)
4536 {
4537 if (c == '\n'
4538 || (c == '\r' && EQ (eol_type, Qmac)))
4539 {
4540 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4541 ENCODE_RESET_PLANE_AND_REGISTER ();
4542 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4543 {
4544 int i;
4545
4546 for (i = 0; i < 4; i++)
4547 CODING_ISO_DESIGNATION (coding, i)
4548 = CODING_ISO_INITIAL (coding, i);
4549 }
4550 bol_designation
4551 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4552 }
4553 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4554 ENCODE_RESET_PLANE_AND_REGISTER ();
4555 EMIT_ONE_ASCII_BYTE (c);
4556 }
4557 else if (ASCII_CHAR_P (c))
4558 {
4559 if (ascii_compatible)
4560 EMIT_ONE_ASCII_BYTE (c);
4561 else
4562 {
4563 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4564 ENCODE_ISO_CHARACTER (charset, c);
4565 }
4566 }
4567 else if (CHAR_BYTE8_P (c))
4568 {
4569 c = CHAR_TO_BYTE8 (c);
4570 EMIT_ONE_BYTE (c);
4571 }
4572 else
4573 {
4574 struct charset *charset;
4575
4576 if (preferred_charset_id >= 0)
4577 {
4578 charset = CHARSET_FROM_ID (preferred_charset_id);
4579 if (! CHAR_CHARSET_P (c, charset))
4580 charset = char_charset (c, charset_list, NULL);
4581 }
4582 else
4583 charset = char_charset (c, charset_list, NULL);
4584 if (!charset)
4585 {
4586 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4587 {
4588 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4589 charset = CHARSET_FROM_ID (charset_ascii);
4590 }
4591 else
4592 {
4593 c = coding->default_char;
4594 charset = char_charset (c, charset_list, NULL);
4595 }
4596 }
4597 ENCODE_ISO_CHARACTER (charset, c);
4598 }
4599 }
4600
4601 if (coding->mode & CODING_MODE_LAST_BLOCK
4602 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4603 {
4604 ASSURE_DESTINATION (safe_room);
4605 ENCODE_RESET_PLANE_AND_REGISTER ();
4606 }
4607 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4608 CODING_ISO_BOL (coding) = bol_designation;
4609 coding->produced_char += produced_chars;
4610 coding->produced = dst - coding->destination;
4611 return 0;
4612 }
4613
4614 \f
4615 /*** 8,9. SJIS and BIG5 handlers ***/
4616
4617 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4618 quite widely. So, for the moment, Emacs supports them in the bare
4619 C code. But, in the future, they may be supported only by CCL. */
4620
4621 /* SJIS is a coding system encoding three character sets: ASCII, right
4622 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4623 as is. A character of charset katakana-jisx0201 is encoded by
4624 "position-code + 0x80". A character of charset japanese-jisx0208
4625 is encoded in 2-byte but two position-codes are divided and shifted
4626 so that it fit in the range below.
4627
4628 --- CODE RANGE of SJIS ---
4629 (character set) (range)
4630 ASCII 0x00 .. 0x7F
4631 KATAKANA-JISX0201 0xA0 .. 0xDF
4632 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4633 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4634 -------------------------------
4635
4636 */
4637
4638 /* BIG5 is a coding system encoding two character sets: ASCII and
4639 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4640 character set and is encoded in two-byte.
4641
4642 --- CODE RANGE of BIG5 ---
4643 (character set) (range)
4644 ASCII 0x00 .. 0x7F
4645 Big5 (1st byte) 0xA1 .. 0xFE
4646 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4647 --------------------------
4648
4649 */
4650
4651 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4652 Check if a text is encoded in SJIS. If it is, return
4653 CATEGORY_MASK_SJIS, else return 0. */
4654
4655 static int
4656 detect_coding_sjis (struct coding_system *coding,
4657 struct coding_detection_info *detect_info)
4658 {
4659 const unsigned char *src = coding->source, *src_base;
4660 const unsigned char *src_end = coding->source + coding->src_bytes;
4661 int multibytep = coding->src_multibyte;
4662 int consumed_chars = 0;
4663 int found = 0;
4664 int c;
4665 Lisp_Object attrs, charset_list;
4666 int max_first_byte_of_2_byte_code;
4667
4668 CODING_GET_INFO (coding, attrs, charset_list);
4669 max_first_byte_of_2_byte_code
4670 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4671
4672 detect_info->checked |= CATEGORY_MASK_SJIS;
4673 /* A coding system of this category is always ASCII compatible. */
4674 src += coding->head_ascii;
4675
4676 while (1)
4677 {
4678 src_base = src;
4679 ONE_MORE_BYTE (c);
4680 if (c < 0x80)
4681 continue;
4682 if ((c >= 0x81 && c <= 0x9F)
4683 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4684 {
4685 ONE_MORE_BYTE (c);
4686 if (c < 0x40 || c == 0x7F || c > 0xFC)
4687 break;
4688 found = CATEGORY_MASK_SJIS;
4689 }
4690 else if (c >= 0xA0 && c < 0xE0)
4691 found = CATEGORY_MASK_SJIS;
4692 else
4693 break;
4694 }
4695 detect_info->rejected |= CATEGORY_MASK_SJIS;
4696 return 0;
4697
4698 no_more_source:
4699 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4700 {
4701 detect_info->rejected |= CATEGORY_MASK_SJIS;
4702 return 0;
4703 }
4704 detect_info->found |= found;
4705 return 1;
4706 }
4707
4708 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4709 Check if a text is encoded in BIG5. If it is, return
4710 CATEGORY_MASK_BIG5, else return 0. */
4711
4712 static int
4713 detect_coding_big5 (struct coding_system *coding,
4714 struct coding_detection_info *detect_info)
4715 {
4716 const unsigned char *src = coding->source, *src_base;
4717 const unsigned char *src_end = coding->source + coding->src_bytes;
4718 int multibytep = coding->src_multibyte;
4719 int consumed_chars = 0;
4720 int found = 0;
4721 int c;
4722
4723 detect_info->checked |= CATEGORY_MASK_BIG5;
4724 /* A coding system of this category is always ASCII compatible. */
4725 src += coding->head_ascii;
4726
4727 while (1)
4728 {
4729 src_base = src;
4730 ONE_MORE_BYTE (c);
4731 if (c < 0x80)
4732 continue;
4733 if (c >= 0xA1)
4734 {
4735 ONE_MORE_BYTE (c);
4736 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4737 return 0;
4738 found = CATEGORY_MASK_BIG5;
4739 }
4740 else
4741 break;
4742 }
4743 detect_info->rejected |= CATEGORY_MASK_BIG5;
4744 return 0;
4745
4746 no_more_source:
4747 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4748 {
4749 detect_info->rejected |= CATEGORY_MASK_BIG5;
4750 return 0;
4751 }
4752 detect_info->found |= found;
4753 return 1;
4754 }
4755
4756 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4757 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4758
4759 static void
4760 decode_coding_sjis (struct coding_system *coding)
4761 {
4762 const unsigned char *src = coding->source + coding->consumed;
4763 const unsigned char *src_end = coding->source + coding->src_bytes;
4764 const unsigned char *src_base;
4765 int *charbuf = coding->charbuf + coding->charbuf_used;
4766 /* We may produce one charset annocation in one loop and one more at
4767 the end. */
4768 int *charbuf_end
4769 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4770 int consumed_chars = 0, consumed_chars_base;
4771 int multibytep = coding->src_multibyte;
4772 struct charset *charset_roman, *charset_kanji, *charset_kana;
4773 struct charset *charset_kanji2;
4774 Lisp_Object attrs, charset_list, val;
4775 int char_offset = coding->produced_char;
4776 int last_offset = char_offset;
4777 int last_id = charset_ascii;
4778 int eol_crlf =
4779 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4780 int byte_after_cr = -1;
4781
4782 CODING_GET_INFO (coding, attrs, charset_list);
4783
4784 val = charset_list;
4785 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4786 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4787 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4788 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4789
4790 while (1)
4791 {
4792 int c, c1;
4793 struct charset *charset;
4794
4795 src_base = src;
4796 consumed_chars_base = consumed_chars;
4797
4798 if (charbuf >= charbuf_end)
4799 {
4800 if (byte_after_cr >= 0)
4801 src_base--;
4802 break;
4803 }
4804
4805 if (byte_after_cr >= 0)
4806 c = byte_after_cr, byte_after_cr = -1;
4807 else
4808 ONE_MORE_BYTE (c);
4809 if (c < 0)
4810 goto invalid_code;
4811 if (c < 0x80)
4812 {
4813 if (eol_crlf && c == '\r')
4814 ONE_MORE_BYTE (byte_after_cr);
4815 charset = charset_roman;
4816 }
4817 else if (c == 0x80 || c == 0xA0)
4818 goto invalid_code;
4819 else if (c >= 0xA1 && c <= 0xDF)
4820 {
4821 /* SJIS -> JISX0201-Kana */
4822 c &= 0x7F;
4823 charset = charset_kana;
4824 }
4825 else if (c <= 0xEF)
4826 {
4827 /* SJIS -> JISX0208 */
4828 ONE_MORE_BYTE (c1);
4829 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4830 goto invalid_code;
4831 c = (c << 8) | c1;
4832 SJIS_TO_JIS (c);
4833 charset = charset_kanji;
4834 }
4835 else if (c <= 0xFC && charset_kanji2)
4836 {
4837 /* SJIS -> JISX0213-2 */
4838 ONE_MORE_BYTE (c1);
4839 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4840 goto invalid_code;
4841 c = (c << 8) | c1;
4842 SJIS_TO_JIS2 (c);
4843 charset = charset_kanji2;
4844 }
4845 else
4846 goto invalid_code;
4847 if (charset->id != charset_ascii
4848 && last_id != charset->id)
4849 {
4850 if (last_id != charset_ascii)
4851 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4852 last_id = charset->id;
4853 last_offset = char_offset;
4854 }
4855 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4856 *charbuf++ = c;
4857 char_offset++;
4858 continue;
4859
4860 invalid_code:
4861 src = src_base;
4862 consumed_chars = consumed_chars_base;
4863 ONE_MORE_BYTE (c);
4864 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4865 char_offset++;
4866 coding->errors++;
4867 }
4868
4869 no_more_source:
4870 if (last_id != charset_ascii)
4871 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4872 coding->consumed_char += consumed_chars_base;
4873 coding->consumed = src_base - coding->source;
4874 coding->charbuf_used = charbuf - coding->charbuf;
4875 }
4876
4877 static void
4878 decode_coding_big5 (struct coding_system *coding)
4879 {
4880 const unsigned char *src = coding->source + coding->consumed;
4881 const unsigned char *src_end = coding->source + coding->src_bytes;
4882 const unsigned char *src_base;
4883 int *charbuf = coding->charbuf + coding->charbuf_used;
4884 /* We may produce one charset annocation in one loop and one more at
4885 the end. */
4886 int *charbuf_end
4887 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4888 int consumed_chars = 0, consumed_chars_base;
4889 int multibytep = coding->src_multibyte;
4890 struct charset *charset_roman, *charset_big5;
4891 Lisp_Object attrs, charset_list, val;
4892 int char_offset = coding->produced_char;
4893 int last_offset = char_offset;
4894 int last_id = charset_ascii;
4895 int eol_crlf =
4896 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4897 int byte_after_cr = -1;
4898
4899 CODING_GET_INFO (coding, attrs, charset_list);
4900 val = charset_list;
4901 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4902 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4903
4904 while (1)
4905 {
4906 int c, c1;
4907 struct charset *charset;
4908
4909 src_base = src;
4910 consumed_chars_base = consumed_chars;
4911
4912 if (charbuf >= charbuf_end)
4913 {
4914 if (byte_after_cr >= 0)
4915 src_base--;
4916 break;
4917 }
4918
4919 if (byte_after_cr >= 0)
4920 c = byte_after_cr, byte_after_cr = -1;
4921 else
4922 ONE_MORE_BYTE (c);
4923
4924 if (c < 0)
4925 goto invalid_code;
4926 if (c < 0x80)
4927 {
4928 if (eol_crlf && c == '\r')
4929 ONE_MORE_BYTE (byte_after_cr);
4930 charset = charset_roman;
4931 }
4932 else
4933 {
4934 /* BIG5 -> Big5 */
4935 if (c < 0xA1 || c > 0xFE)
4936 goto invalid_code;
4937 ONE_MORE_BYTE (c1);
4938 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4939 goto invalid_code;
4940 c = c << 8 | c1;
4941 charset = charset_big5;
4942 }
4943 if (charset->id != charset_ascii
4944 && last_id != charset->id)
4945 {
4946 if (last_id != charset_ascii)
4947 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4948 last_id = charset->id;
4949 last_offset = char_offset;
4950 }
4951 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4952 *charbuf++ = c;
4953 char_offset++;
4954 continue;
4955
4956 invalid_code:
4957 src = src_base;
4958 consumed_chars = consumed_chars_base;
4959 ONE_MORE_BYTE (c);
4960 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4961 char_offset++;
4962 coding->errors++;
4963 }
4964
4965 no_more_source:
4966 if (last_id != charset_ascii)
4967 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4968 coding->consumed_char += consumed_chars_base;
4969 coding->consumed = src_base - coding->source;
4970 coding->charbuf_used = charbuf - coding->charbuf;
4971 }
4972
4973 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4974 This function can encode charsets `ascii', `katakana-jisx0201',
4975 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4976 are sure that all these charsets are registered as official charset
4977 (i.e. do not have extended leading-codes). Characters of other
4978 charsets are produced without any encoding. If SJIS_P is 1, encode
4979 SJIS text, else encode BIG5 text. */
4980
4981 static int
4982 encode_coding_sjis (struct coding_system *coding)
4983 {
4984 int multibytep = coding->dst_multibyte;
4985 int *charbuf = coding->charbuf;
4986 int *charbuf_end = charbuf + coding->charbuf_used;
4987 unsigned char *dst = coding->destination + coding->produced;
4988 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4989 int safe_room = 4;
4990 int produced_chars = 0;
4991 Lisp_Object attrs, charset_list, val;
4992 int ascii_compatible;
4993 struct charset *charset_roman, *charset_kanji, *charset_kana;
4994 struct charset *charset_kanji2;
4995 int c;
4996
4997 CODING_GET_INFO (coding, attrs, charset_list);
4998 val = charset_list;
4999 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5000 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5001 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5002 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
5003
5004 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5005
5006 while (charbuf < charbuf_end)
5007 {
5008 ASSURE_DESTINATION (safe_room);
5009 c = *charbuf++;
5010 /* Now encode the character C. */
5011 if (ASCII_CHAR_P (c) && ascii_compatible)
5012 EMIT_ONE_ASCII_BYTE (c);
5013 else if (CHAR_BYTE8_P (c))
5014 {
5015 c = CHAR_TO_BYTE8 (c);
5016 EMIT_ONE_BYTE (c);
5017 }
5018 else
5019 {
5020 unsigned code;
5021 struct charset *charset = char_charset (c, charset_list, &code);
5022
5023 if (!charset)
5024 {
5025 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5026 {
5027 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5028 charset = CHARSET_FROM_ID (charset_ascii);
5029 }
5030 else
5031 {
5032 c = coding->default_char;
5033 charset = char_charset (c, charset_list, &code);
5034 }
5035 }
5036 if (code == CHARSET_INVALID_CODE (charset))
5037 abort ();
5038 if (charset == charset_kanji)
5039 {
5040 int c1, c2;
5041 JIS_TO_SJIS (code);
5042 c1 = code >> 8, c2 = code & 0xFF;
5043 EMIT_TWO_BYTES (c1, c2);
5044 }
5045 else if (charset == charset_kana)
5046 EMIT_ONE_BYTE (code | 0x80);
5047 else if (charset_kanji2 && charset == charset_kanji2)
5048 {
5049 int c1, c2;
5050
5051 c1 = code >> 8;
5052 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
5053 || c1 == 0x28
5054 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5055 {
5056 JIS_TO_SJIS2 (code);
5057 c1 = code >> 8, c2 = code & 0xFF;
5058 EMIT_TWO_BYTES (c1, c2);
5059 }
5060 else
5061 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5062 }
5063 else
5064 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5065 }
5066 }
5067 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5068 coding->produced_char += produced_chars;
5069 coding->produced = dst - coding->destination;
5070 return 0;
5071 }
5072
5073 static int
5074 encode_coding_big5 (struct coding_system *coding)
5075 {
5076 int multibytep = coding->dst_multibyte;
5077 int *charbuf = coding->charbuf;
5078 int *charbuf_end = charbuf + coding->charbuf_used;
5079 unsigned char *dst = coding->destination + coding->produced;
5080 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5081 int safe_room = 4;
5082 int produced_chars = 0;
5083 Lisp_Object attrs, charset_list, val;
5084 int ascii_compatible;
5085 struct charset *charset_roman, *charset_big5;
5086 int c;
5087
5088 CODING_GET_INFO (coding, attrs, charset_list);
5089 val = charset_list;
5090 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5091 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5092 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5093
5094 while (charbuf < charbuf_end)
5095 {
5096 ASSURE_DESTINATION (safe_room);
5097 c = *charbuf++;
5098 /* Now encode the character C. */
5099 if (ASCII_CHAR_P (c) && ascii_compatible)
5100 EMIT_ONE_ASCII_BYTE (c);
5101 else if (CHAR_BYTE8_P (c))
5102 {
5103 c = CHAR_TO_BYTE8 (c);
5104 EMIT_ONE_BYTE (c);
5105 }
5106 else
5107 {
5108 unsigned code;
5109 struct charset *charset = char_charset (c, charset_list, &code);
5110
5111 if (! charset)
5112 {
5113 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5114 {
5115 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5116 charset = CHARSET_FROM_ID (charset_ascii);
5117 }
5118 else
5119 {
5120 c = coding->default_char;
5121 charset = char_charset (c, charset_list, &code);
5122 }
5123 }
5124 if (code == CHARSET_INVALID_CODE (charset))
5125 abort ();
5126 if (charset == charset_big5)
5127 {
5128 int c1, c2;
5129
5130 c1 = code >> 8, c2 = code & 0xFF;
5131 EMIT_TWO_BYTES (c1, c2);
5132 }
5133 else
5134 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5135 }
5136 }
5137 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5138 coding->produced_char += produced_chars;
5139 coding->produced = dst - coding->destination;
5140 return 0;
5141 }
5142
5143 \f
5144 /*** 10. CCL handlers ***/
5145
5146 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5147 Check if a text is encoded in a coding system of which
5148 encoder/decoder are written in CCL program. If it is, return
5149 CATEGORY_MASK_CCL, else return 0. */
5150
5151 static int
5152 detect_coding_ccl (struct coding_system *coding,
5153 struct coding_detection_info *detect_info)
5154 {
5155 const unsigned char *src = coding->source, *src_base;
5156 const unsigned char *src_end = coding->source + coding->src_bytes;
5157 int multibytep = coding->src_multibyte;
5158 int consumed_chars = 0;
5159 int found = 0;
5160 unsigned char *valids;
5161 int head_ascii = coding->head_ascii;
5162 Lisp_Object attrs;
5163
5164 detect_info->checked |= CATEGORY_MASK_CCL;
5165
5166 coding = &coding_categories[coding_category_ccl];
5167 valids = CODING_CCL_VALIDS (coding);
5168 attrs = CODING_ID_ATTRS (coding->id);
5169 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5170 src += head_ascii;
5171
5172 while (1)
5173 {
5174 int c;
5175
5176 src_base = src;
5177 ONE_MORE_BYTE (c);
5178 if (c < 0 || ! valids[c])
5179 break;
5180 if ((valids[c] > 1))
5181 found = CATEGORY_MASK_CCL;
5182 }
5183 detect_info->rejected |= CATEGORY_MASK_CCL;
5184 return 0;
5185
5186 no_more_source:
5187 detect_info->found |= found;
5188 return 1;
5189 }
5190
5191 static void
5192 decode_coding_ccl (struct coding_system *coding)
5193 {
5194 const unsigned char *src = coding->source + coding->consumed;
5195 const unsigned char *src_end = coding->source + coding->src_bytes;
5196 int *charbuf = coding->charbuf + coding->charbuf_used;
5197 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5198 int consumed_chars = 0;
5199 int multibytep = coding->src_multibyte;
5200 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5201 int source_charbuf[1024];
5202 int source_byteidx[1025];
5203 Lisp_Object attrs, charset_list;
5204
5205 CODING_GET_INFO (coding, attrs, charset_list);
5206
5207 while (1)
5208 {
5209 const unsigned char *p = src;
5210 int i = 0;
5211
5212 if (multibytep)
5213 {
5214 while (i < 1024 && p < src_end)
5215 {
5216 source_byteidx[i] = p - src;
5217 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5218 }
5219 source_byteidx[i] = p - src;
5220 }
5221 else
5222 while (i < 1024 && p < src_end)
5223 source_charbuf[i++] = *p++;
5224
5225 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5226 ccl->last_block = 1;
5227 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5228 charset_list);
5229 charbuf += ccl->produced;
5230 if (multibytep)
5231 src += source_byteidx[ccl->consumed];
5232 else
5233 src += ccl->consumed;
5234 consumed_chars += ccl->consumed;
5235 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5236 break;
5237 }
5238
5239 switch (ccl->status)
5240 {
5241 case CCL_STAT_SUSPEND_BY_SRC:
5242 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5243 break;
5244 case CCL_STAT_SUSPEND_BY_DST:
5245 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5246 break;
5247 case CCL_STAT_QUIT:
5248 case CCL_STAT_INVALID_CMD:
5249 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5250 break;
5251 default:
5252 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5253 break;
5254 }
5255 coding->consumed_char += consumed_chars;
5256 coding->consumed = src - coding->source;
5257 coding->charbuf_used = charbuf - coding->charbuf;
5258 }
5259
5260 static int
5261 encode_coding_ccl (struct coding_system *coding)
5262 {
5263 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5264 int multibytep = coding->dst_multibyte;
5265 int *charbuf = coding->charbuf;
5266 int *charbuf_end = charbuf + coding->charbuf_used;
5267 unsigned char *dst = coding->destination + coding->produced;
5268 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5269 int destination_charbuf[1024];
5270 int i, produced_chars = 0;
5271 Lisp_Object attrs, charset_list;
5272
5273 CODING_GET_INFO (coding, attrs, charset_list);
5274 if (coding->consumed_char == coding->src_chars
5275 && coding->mode & CODING_MODE_LAST_BLOCK)
5276 ccl->last_block = 1;
5277
5278 while (charbuf < charbuf_end)
5279 {
5280 ccl_driver (ccl, charbuf, destination_charbuf,
5281 charbuf_end - charbuf, 1024, charset_list);
5282 if (multibytep)
5283 {
5284 ASSURE_DESTINATION (ccl->produced * 2);
5285 for (i = 0; i < ccl->produced; i++)
5286 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5287 }
5288 else
5289 {
5290 ASSURE_DESTINATION (ccl->produced);
5291 for (i = 0; i < ccl->produced; i++)
5292 *dst++ = destination_charbuf[i] & 0xFF;
5293 produced_chars += ccl->produced;
5294 }
5295 charbuf += ccl->consumed;
5296 if (ccl->status == CCL_STAT_QUIT
5297 || ccl->status == CCL_STAT_INVALID_CMD)
5298 break;
5299 }
5300
5301 switch (ccl->status)
5302 {
5303 case CCL_STAT_SUSPEND_BY_SRC:
5304 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5305 break;
5306 case CCL_STAT_SUSPEND_BY_DST:
5307 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5308 break;
5309 case CCL_STAT_QUIT:
5310 case CCL_STAT_INVALID_CMD:
5311 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5312 break;
5313 default:
5314 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5315 break;
5316 }
5317
5318 coding->produced_char += produced_chars;
5319 coding->produced = dst - coding->destination;
5320 return 0;
5321 }
5322
5323
5324 \f
5325 /*** 10, 11. no-conversion handlers ***/
5326
5327 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5328
5329 static void
5330 decode_coding_raw_text (struct coding_system *coding)
5331 {
5332 int eol_crlf =
5333 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5334
5335 coding->chars_at_source = 1;
5336 coding->consumed_char = coding->src_chars;
5337 coding->consumed = coding->src_bytes;
5338 if (eol_crlf && coding->source[coding->src_bytes - 1] == '\r')
5339 {
5340 coding->consumed_char--;
5341 coding->consumed--;
5342 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5343 }
5344 else
5345 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5346 }
5347
5348 static int
5349 encode_coding_raw_text (struct coding_system *coding)
5350 {
5351 int multibytep = coding->dst_multibyte;
5352 int *charbuf = coding->charbuf;
5353 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5354 unsigned char *dst = coding->destination + coding->produced;
5355 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5356 int produced_chars = 0;
5357 int c;
5358
5359 if (multibytep)
5360 {
5361 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5362
5363 if (coding->src_multibyte)
5364 while (charbuf < charbuf_end)
5365 {
5366 ASSURE_DESTINATION (safe_room);
5367 c = *charbuf++;
5368 if (ASCII_CHAR_P (c))
5369 EMIT_ONE_ASCII_BYTE (c);
5370 else if (CHAR_BYTE8_P (c))
5371 {
5372 c = CHAR_TO_BYTE8 (c);
5373 EMIT_ONE_BYTE (c);
5374 }
5375 else
5376 {
5377 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5378
5379 CHAR_STRING_ADVANCE (c, p1);
5380 while (p0 < p1)
5381 {
5382 EMIT_ONE_BYTE (*p0);
5383 p0++;
5384 }
5385 }
5386 }
5387 else
5388 while (charbuf < charbuf_end)
5389 {
5390 ASSURE_DESTINATION (safe_room);
5391 c = *charbuf++;
5392 EMIT_ONE_BYTE (c);
5393 }
5394 }
5395 else
5396 {
5397 if (coding->src_multibyte)
5398 {
5399 int safe_room = MAX_MULTIBYTE_LENGTH;
5400
5401 while (charbuf < charbuf_end)
5402 {
5403 ASSURE_DESTINATION (safe_room);
5404 c = *charbuf++;
5405 if (ASCII_CHAR_P (c))
5406 *dst++ = c;
5407 else if (CHAR_BYTE8_P (c))
5408 *dst++ = CHAR_TO_BYTE8 (c);
5409 else
5410 CHAR_STRING_ADVANCE (c, dst);
5411 }
5412 }
5413 else
5414 {
5415 ASSURE_DESTINATION (charbuf_end - charbuf);
5416 while (charbuf < charbuf_end && dst < dst_end)
5417 *dst++ = *charbuf++;
5418 }
5419 produced_chars = dst - (coding->destination + coding->produced);
5420 }
5421 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5422 coding->produced_char += produced_chars;
5423 coding->produced = dst - coding->destination;
5424 return 0;
5425 }
5426
5427 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5428 Check if a text is encoded in a charset-based coding system. If it
5429 is, return 1, else return 0. */
5430
5431 static int
5432 detect_coding_charset (struct coding_system *coding,
5433 struct coding_detection_info *detect_info)
5434 {
5435 const unsigned char *src = coding->source, *src_base;
5436 const unsigned char *src_end = coding->source + coding->src_bytes;
5437 int multibytep = coding->src_multibyte;
5438 int consumed_chars = 0;
5439 Lisp_Object attrs, valids, name;
5440 int found = 0;
5441 int head_ascii = coding->head_ascii;
5442 int check_latin_extra = 0;
5443
5444 detect_info->checked |= CATEGORY_MASK_CHARSET;
5445
5446 coding = &coding_categories[coding_category_charset];
5447 attrs = CODING_ID_ATTRS (coding->id);
5448 valids = AREF (attrs, coding_attr_charset_valids);
5449 name = CODING_ID_NAME (coding->id);
5450 if (strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5451 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5452 || strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5453 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5454 check_latin_extra = 1;
5455
5456 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5457 src += head_ascii;
5458
5459 while (1)
5460 {
5461 int c;
5462 Lisp_Object val;
5463 struct charset *charset;
5464 int dim, idx;
5465
5466 src_base = src;
5467 ONE_MORE_BYTE (c);
5468 if (c < 0)
5469 continue;
5470 val = AREF (valids, c);
5471 if (NILP (val))
5472 break;
5473 if (c >= 0x80)
5474 {
5475 if (c < 0xA0
5476 && check_latin_extra
5477 && (!VECTORP (Vlatin_extra_code_table)
5478 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5479 break;
5480 found = CATEGORY_MASK_CHARSET;
5481 }
5482 if (INTEGERP (val))
5483 {
5484 charset = CHARSET_FROM_ID (XFASTINT (val));
5485 dim = CHARSET_DIMENSION (charset);
5486 for (idx = 1; idx < dim; idx++)
5487 {
5488 if (src == src_end)
5489 goto too_short;
5490 ONE_MORE_BYTE (c);
5491 if (c < charset->code_space[(dim - 1 - idx) * 2]
5492 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5493 break;
5494 }
5495 if (idx < dim)
5496 break;
5497 }
5498 else
5499 {
5500 idx = 1;
5501 for (; CONSP (val); val = XCDR (val))
5502 {
5503 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5504 dim = CHARSET_DIMENSION (charset);
5505 while (idx < dim)
5506 {
5507 if (src == src_end)
5508 goto too_short;
5509 ONE_MORE_BYTE (c);
5510 if (c < charset->code_space[(dim - 1 - idx) * 4]
5511 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5512 break;
5513 idx++;
5514 }
5515 if (idx == dim)
5516 {
5517 val = Qnil;
5518 break;
5519 }
5520 }
5521 if (CONSP (val))
5522 break;
5523 }
5524 }
5525 too_short:
5526 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5527 return 0;
5528
5529 no_more_source:
5530 detect_info->found |= found;
5531 return 1;
5532 }
5533
5534 static void
5535 decode_coding_charset (struct coding_system *coding)
5536 {
5537 const unsigned char *src = coding->source + coding->consumed;
5538 const unsigned char *src_end = coding->source + coding->src_bytes;
5539 const unsigned char *src_base;
5540 int *charbuf = coding->charbuf + coding->charbuf_used;
5541 /* We may produce one charset annocation in one loop and one more at
5542 the end. */
5543 int *charbuf_end
5544 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5545 int consumed_chars = 0, consumed_chars_base;
5546 int multibytep = coding->src_multibyte;
5547 Lisp_Object attrs, charset_list, valids;
5548 int char_offset = coding->produced_char;
5549 int last_offset = char_offset;
5550 int last_id = charset_ascii;
5551 int eol_crlf =
5552 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5553 int byte_after_cr = -1;
5554
5555 CODING_GET_INFO (coding, attrs, charset_list);
5556 valids = AREF (attrs, coding_attr_charset_valids);
5557
5558 while (1)
5559 {
5560 int c;
5561 Lisp_Object val;
5562 struct charset *charset;
5563 int dim;
5564 int len = 1;
5565 unsigned code;
5566
5567 src_base = src;
5568 consumed_chars_base = consumed_chars;
5569
5570 if (charbuf >= charbuf_end)
5571 {
5572 if (byte_after_cr >= 0)
5573 src_base--;
5574 break;
5575 }
5576
5577 if (byte_after_cr >= 0)
5578 {
5579 c = byte_after_cr;
5580 byte_after_cr = -1;
5581 }
5582 else
5583 {
5584 ONE_MORE_BYTE (c);
5585 if (eol_crlf && c == '\r')
5586 ONE_MORE_BYTE (byte_after_cr);
5587 }
5588 if (c < 0)
5589 goto invalid_code;
5590 code = c;
5591
5592 val = AREF (valids, c);
5593 if (! INTEGERP (val) && ! CONSP (val))
5594 goto invalid_code;
5595 if (INTEGERP (val))
5596 {
5597 charset = CHARSET_FROM_ID (XFASTINT (val));
5598 dim = CHARSET_DIMENSION (charset);
5599 while (len < dim)
5600 {
5601 ONE_MORE_BYTE (c);
5602 code = (code << 8) | c;
5603 len++;
5604 }
5605 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5606 charset, code, c);
5607 }
5608 else
5609 {
5610 /* VAL is a list of charset IDs. It is assured that the
5611 list is sorted by charset dimensions (smaller one
5612 comes first). */
5613 while (CONSP (val))
5614 {
5615 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5616 dim = CHARSET_DIMENSION (charset);
5617 while (len < dim)
5618 {
5619 ONE_MORE_BYTE (c);
5620 code = (code << 8) | c;
5621 len++;
5622 }
5623 CODING_DECODE_CHAR (coding, src, src_base,
5624 src_end, charset, code, c);
5625 if (c >= 0)
5626 break;
5627 val = XCDR (val);
5628 }
5629 }
5630 if (c < 0)
5631 goto invalid_code;
5632 if (charset->id != charset_ascii
5633 && last_id != charset->id)
5634 {
5635 if (last_id != charset_ascii)
5636 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5637 last_id = charset->id;
5638 last_offset = char_offset;
5639 }
5640
5641 *charbuf++ = c;
5642 char_offset++;
5643 continue;
5644
5645 invalid_code:
5646 src = src_base;
5647 consumed_chars = consumed_chars_base;
5648 ONE_MORE_BYTE (c);
5649 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5650 char_offset++;
5651 coding->errors++;
5652 }
5653
5654 no_more_source:
5655 if (last_id != charset_ascii)
5656 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5657 coding->consumed_char += consumed_chars_base;
5658 coding->consumed = src_base - coding->source;
5659 coding->charbuf_used = charbuf - coding->charbuf;
5660 }
5661
5662 static int
5663 encode_coding_charset (struct coding_system *coding)
5664 {
5665 int multibytep = coding->dst_multibyte;
5666 int *charbuf = coding->charbuf;
5667 int *charbuf_end = charbuf + coding->charbuf_used;
5668 unsigned char *dst = coding->destination + coding->produced;
5669 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5670 int safe_room = MAX_MULTIBYTE_LENGTH;
5671 int produced_chars = 0;
5672 Lisp_Object attrs, charset_list;
5673 int ascii_compatible;
5674 int c;
5675
5676 CODING_GET_INFO (coding, attrs, charset_list);
5677 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5678
5679 while (charbuf < charbuf_end)
5680 {
5681 struct charset *charset;
5682 unsigned code;
5683
5684 ASSURE_DESTINATION (safe_room);
5685 c = *charbuf++;
5686 if (ascii_compatible && ASCII_CHAR_P (c))
5687 EMIT_ONE_ASCII_BYTE (c);
5688 else if (CHAR_BYTE8_P (c))
5689 {
5690 c = CHAR_TO_BYTE8 (c);
5691 EMIT_ONE_BYTE (c);
5692 }
5693 else
5694 {
5695 charset = char_charset (c, charset_list, &code);
5696 if (charset)
5697 {
5698 if (CHARSET_DIMENSION (charset) == 1)
5699 EMIT_ONE_BYTE (code);
5700 else if (CHARSET_DIMENSION (charset) == 2)
5701 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5702 else if (CHARSET_DIMENSION (charset) == 3)
5703 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5704 else
5705 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5706 (code >> 8) & 0xFF, code & 0xFF);
5707 }
5708 else
5709 {
5710 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5711 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5712 else
5713 c = coding->default_char;
5714 EMIT_ONE_BYTE (c);
5715 }
5716 }
5717 }
5718
5719 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5720 coding->produced_char += produced_chars;
5721 coding->produced = dst - coding->destination;
5722 return 0;
5723 }
5724
5725 \f
5726 /*** 7. C library functions ***/
5727
5728 /* Setup coding context CODING from information about CODING_SYSTEM.
5729 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5730 CODING_SYSTEM is invalid, signal an error. */
5731
5732 void
5733 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5734 {
5735 Lisp_Object attrs;
5736 Lisp_Object eol_type;
5737 Lisp_Object coding_type;
5738 Lisp_Object val;
5739
5740 if (NILP (coding_system))
5741 coding_system = Qundecided;
5742
5743 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5744
5745 attrs = CODING_ID_ATTRS (coding->id);
5746 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5747
5748 coding->mode = 0;
5749 coding->head_ascii = -1;
5750 if (VECTORP (eol_type))
5751 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5752 | CODING_REQUIRE_DETECTION_MASK);
5753 else if (! EQ (eol_type, Qunix))
5754 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5755 | CODING_REQUIRE_ENCODING_MASK);
5756 else
5757 coding->common_flags = 0;
5758 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5759 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5760 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5761 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5762 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5763 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5764
5765 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5766 coding->max_charset_id = SCHARS (val) - 1;
5767 coding->safe_charsets = SDATA (val);
5768 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5769 coding->carryover_bytes = 0;
5770
5771 coding_type = CODING_ATTR_TYPE (attrs);
5772 if (EQ (coding_type, Qundecided))
5773 {
5774 coding->detector = NULL;
5775 coding->decoder = decode_coding_raw_text;
5776 coding->encoder = encode_coding_raw_text;
5777 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5778 }
5779 else if (EQ (coding_type, Qiso_2022))
5780 {
5781 int i;
5782 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5783
5784 /* Invoke graphic register 0 to plane 0. */
5785 CODING_ISO_INVOCATION (coding, 0) = 0;
5786 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5787 CODING_ISO_INVOCATION (coding, 1)
5788 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5789 /* Setup the initial status of designation. */
5790 for (i = 0; i < 4; i++)
5791 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5792 /* Not single shifting initially. */
5793 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5794 /* Beginning of buffer should also be regarded as bol. */
5795 CODING_ISO_BOL (coding) = 1;
5796 coding->detector = detect_coding_iso_2022;
5797 coding->decoder = decode_coding_iso_2022;
5798 coding->encoder = encode_coding_iso_2022;
5799 if (flags & CODING_ISO_FLAG_SAFE)
5800 coding->mode |= CODING_MODE_SAFE_ENCODING;
5801 coding->common_flags
5802 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5803 | CODING_REQUIRE_FLUSHING_MASK);
5804 if (flags & CODING_ISO_FLAG_COMPOSITION)
5805 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5806 if (flags & CODING_ISO_FLAG_DESIGNATION)
5807 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5808 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5809 {
5810 setup_iso_safe_charsets (attrs);
5811 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5812 coding->max_charset_id = SCHARS (val) - 1;
5813 coding->safe_charsets = SDATA (val);
5814 }
5815 CODING_ISO_FLAGS (coding) = flags;
5816 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5817 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5818 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5819 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5820 }
5821 else if (EQ (coding_type, Qcharset))
5822 {
5823 coding->detector = detect_coding_charset;
5824 coding->decoder = decode_coding_charset;
5825 coding->encoder = encode_coding_charset;
5826 coding->common_flags
5827 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5828 }
5829 else if (EQ (coding_type, Qutf_8))
5830 {
5831 val = AREF (attrs, coding_attr_utf_bom);
5832 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5833 : EQ (val, Qt) ? utf_with_bom
5834 : utf_without_bom);
5835 coding->detector = detect_coding_utf_8;
5836 coding->decoder = decode_coding_utf_8;
5837 coding->encoder = encode_coding_utf_8;
5838 coding->common_flags
5839 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5840 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5841 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5842 }
5843 else if (EQ (coding_type, Qutf_16))
5844 {
5845 val = AREF (attrs, coding_attr_utf_bom);
5846 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5847 : EQ (val, Qt) ? utf_with_bom
5848 : utf_without_bom);
5849 val = AREF (attrs, coding_attr_utf_16_endian);
5850 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5851 : utf_16_little_endian);
5852 CODING_UTF_16_SURROGATE (coding) = 0;
5853 coding->detector = detect_coding_utf_16;
5854 coding->decoder = decode_coding_utf_16;
5855 coding->encoder = encode_coding_utf_16;
5856 coding->common_flags
5857 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5858 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5859 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5860 }
5861 else if (EQ (coding_type, Qccl))
5862 {
5863 coding->detector = detect_coding_ccl;
5864 coding->decoder = decode_coding_ccl;
5865 coding->encoder = encode_coding_ccl;
5866 coding->common_flags
5867 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5868 | CODING_REQUIRE_FLUSHING_MASK);
5869 }
5870 else if (EQ (coding_type, Qemacs_mule))
5871 {
5872 coding->detector = detect_coding_emacs_mule;
5873 coding->decoder = decode_coding_emacs_mule;
5874 coding->encoder = encode_coding_emacs_mule;
5875 coding->common_flags
5876 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5877 coding->spec.emacs_mule.full_support = 1;
5878 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5879 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5880 {
5881 Lisp_Object tail, safe_charsets;
5882 int max_charset_id = 0;
5883
5884 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5885 tail = XCDR (tail))
5886 if (max_charset_id < XFASTINT (XCAR (tail)))
5887 max_charset_id = XFASTINT (XCAR (tail));
5888 safe_charsets = make_uninit_string (max_charset_id + 1);
5889 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5890 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5891 tail = XCDR (tail))
5892 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5893 coding->max_charset_id = max_charset_id;
5894 coding->safe_charsets = SDATA (safe_charsets);
5895 coding->spec.emacs_mule.full_support = 1;
5896 }
5897 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5898 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5899 }
5900 else if (EQ (coding_type, Qshift_jis))
5901 {
5902 coding->detector = detect_coding_sjis;
5903 coding->decoder = decode_coding_sjis;
5904 coding->encoder = encode_coding_sjis;
5905 coding->common_flags
5906 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5907 }
5908 else if (EQ (coding_type, Qbig5))
5909 {
5910 coding->detector = detect_coding_big5;
5911 coding->decoder = decode_coding_big5;
5912 coding->encoder = encode_coding_big5;
5913 coding->common_flags
5914 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5915 }
5916 else /* EQ (coding_type, Qraw_text) */
5917 {
5918 coding->detector = NULL;
5919 coding->decoder = decode_coding_raw_text;
5920 coding->encoder = encode_coding_raw_text;
5921 if (! EQ (eol_type, Qunix))
5922 {
5923 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5924 if (! VECTORP (eol_type))
5925 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5926 }
5927
5928 }
5929
5930 return;
5931 }
5932
5933 /* Return a list of charsets supported by CODING. */
5934
5935 Lisp_Object
5936 coding_charset_list (struct coding_system *coding)
5937 {
5938 Lisp_Object attrs, charset_list;
5939
5940 CODING_GET_INFO (coding, attrs, charset_list);
5941 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5942 {
5943 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5944
5945 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5946 charset_list = Viso_2022_charset_list;
5947 }
5948 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5949 {
5950 charset_list = Vemacs_mule_charset_list;
5951 }
5952 return charset_list;
5953 }
5954
5955
5956 /* Return a list of charsets supported by CODING-SYSTEM. */
5957
5958 Lisp_Object
5959 coding_system_charset_list (Lisp_Object coding_system)
5960 {
5961 int id;
5962 Lisp_Object attrs, charset_list;
5963
5964 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5965 attrs = CODING_ID_ATTRS (id);
5966
5967 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5968 {
5969 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5970
5971 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5972 charset_list = Viso_2022_charset_list;
5973 else
5974 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5975 }
5976 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5977 {
5978 charset_list = Vemacs_mule_charset_list;
5979 }
5980 else
5981 {
5982 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5983 }
5984 return charset_list;
5985 }
5986
5987
5988 /* Return raw-text or one of its subsidiaries that has the same
5989 eol_type as CODING-SYSTEM. */
5990
5991 Lisp_Object
5992 raw_text_coding_system (Lisp_Object coding_system)
5993 {
5994 Lisp_Object spec, attrs;
5995 Lisp_Object eol_type, raw_text_eol_type;
5996
5997 if (NILP (coding_system))
5998 return Qraw_text;
5999 spec = CODING_SYSTEM_SPEC (coding_system);
6000 attrs = AREF (spec, 0);
6001
6002 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
6003 return coding_system;
6004
6005 eol_type = AREF (spec, 2);
6006 if (VECTORP (eol_type))
6007 return Qraw_text;
6008 spec = CODING_SYSTEM_SPEC (Qraw_text);
6009 raw_text_eol_type = AREF (spec, 2);
6010 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
6011 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
6012 : AREF (raw_text_eol_type, 2));
6013 }
6014
6015
6016 /* If CODING_SYSTEM doesn't specify end-of-line format but PARENT
6017 does, return one of the subsidiary that has the same eol-spec as
6018 PARENT. Otherwise, return CODING_SYSTEM. If PARENT is nil,
6019 inherit end-of-line format from the system's setting
6020 (system_eol_type). */
6021
6022 Lisp_Object
6023 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
6024 {
6025 Lisp_Object spec, eol_type;
6026
6027 if (NILP (coding_system))
6028 coding_system = Qraw_text;
6029 spec = CODING_SYSTEM_SPEC (coding_system);
6030 eol_type = AREF (spec, 2);
6031 if (VECTORP (eol_type))
6032 {
6033 Lisp_Object parent_eol_type;
6034
6035 if (! NILP (parent))
6036 {
6037 Lisp_Object parent_spec;
6038
6039 parent_spec = CODING_SYSTEM_SPEC (parent);
6040 parent_eol_type = AREF (parent_spec, 2);
6041 }
6042 else
6043 parent_eol_type = system_eol_type;
6044 if (EQ (parent_eol_type, Qunix))
6045 coding_system = AREF (eol_type, 0);
6046 else if (EQ (parent_eol_type, Qdos))
6047 coding_system = AREF (eol_type, 1);
6048 else if (EQ (parent_eol_type, Qmac))
6049 coding_system = AREF (eol_type, 2);
6050 }
6051 return coding_system;
6052 }
6053
6054 /* Emacs has a mechanism to automatically detect a coding system if it
6055 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6056 it's impossible to distinguish some coding systems accurately
6057 because they use the same range of codes. So, at first, coding
6058 systems are categorized into 7, those are:
6059
6060 o coding-category-emacs-mule
6061
6062 The category for a coding system which has the same code range
6063 as Emacs' internal format. Assigned the coding-system (Lisp
6064 symbol) `emacs-mule' by default.
6065
6066 o coding-category-sjis
6067
6068 The category for a coding system which has the same code range
6069 as SJIS. Assigned the coding-system (Lisp
6070 symbol) `japanese-shift-jis' by default.
6071
6072 o coding-category-iso-7
6073
6074 The category for a coding system which has the same code range
6075 as ISO2022 of 7-bit environment. This doesn't use any locking
6076 shift and single shift functions. This can encode/decode all
6077 charsets. Assigned the coding-system (Lisp symbol)
6078 `iso-2022-7bit' by default.
6079
6080 o coding-category-iso-7-tight
6081
6082 Same as coding-category-iso-7 except that this can
6083 encode/decode only the specified charsets.
6084
6085 o coding-category-iso-8-1
6086
6087 The category for a coding system which has the same code range
6088 as ISO2022 of 8-bit environment and graphic plane 1 used only
6089 for DIMENSION1 charset. This doesn't use any locking shift
6090 and single shift functions. Assigned the coding-system (Lisp
6091 symbol) `iso-latin-1' by default.
6092
6093 o coding-category-iso-8-2
6094
6095 The category for a coding system which has the same code range
6096 as ISO2022 of 8-bit environment and graphic plane 1 used only
6097 for DIMENSION2 charset. This doesn't use any locking shift
6098 and single shift functions. Assigned the coding-system (Lisp
6099 symbol) `japanese-iso-8bit' by default.
6100
6101 o coding-category-iso-7-else
6102
6103 The category for a coding system which has the same code range
6104 as ISO2022 of 7-bit environemnt but uses locking shift or
6105 single shift functions. Assigned the coding-system (Lisp
6106 symbol) `iso-2022-7bit-lock' by default.
6107
6108 o coding-category-iso-8-else
6109
6110 The category for a coding system which has the same code range
6111 as ISO2022 of 8-bit environemnt but uses locking shift or
6112 single shift functions. Assigned the coding-system (Lisp
6113 symbol) `iso-2022-8bit-ss2' by default.
6114
6115 o coding-category-big5
6116
6117 The category for a coding system which has the same code range
6118 as BIG5. Assigned the coding-system (Lisp symbol)
6119 `cn-big5' by default.
6120
6121 o coding-category-utf-8
6122
6123 The category for a coding system which has the same code range
6124 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6125 symbol) `utf-8' by default.
6126
6127 o coding-category-utf-16-be
6128
6129 The category for a coding system in which a text has an
6130 Unicode signature (cf. Unicode Standard) in the order of BIG
6131 endian at the head. Assigned the coding-system (Lisp symbol)
6132 `utf-16-be' by default.
6133
6134 o coding-category-utf-16-le
6135
6136 The category for a coding system in which a text has an
6137 Unicode signature (cf. Unicode Standard) in the order of
6138 LITTLE endian at the head. Assigned the coding-system (Lisp
6139 symbol) `utf-16-le' by default.
6140
6141 o coding-category-ccl
6142
6143 The category for a coding system of which encoder/decoder is
6144 written in CCL programs. The default value is nil, i.e., no
6145 coding system is assigned.
6146
6147 o coding-category-binary
6148
6149 The category for a coding system not categorized in any of the
6150 above. Assigned the coding-system (Lisp symbol)
6151 `no-conversion' by default.
6152
6153 Each of them is a Lisp symbol and the value is an actual
6154 `coding-system's (this is also a Lisp symbol) assigned by a user.
6155 What Emacs does actually is to detect a category of coding system.
6156 Then, it uses a `coding-system' assigned to it. If Emacs can't
6157 decide only one possible category, it selects a category of the
6158 highest priority. Priorities of categories are also specified by a
6159 user in a Lisp variable `coding-category-list'.
6160
6161 */
6162
6163 #define EOL_SEEN_NONE 0
6164 #define EOL_SEEN_LF 1
6165 #define EOL_SEEN_CR 2
6166 #define EOL_SEEN_CRLF 4
6167
6168 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6169 SOURCE is encoded. If CATEGORY is one of
6170 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6171 two-byte, else they are encoded by one-byte.
6172
6173 Return one of EOL_SEEN_XXX. */
6174
6175 #define MAX_EOL_CHECK_COUNT 3
6176
6177 static int
6178 detect_eol (const unsigned char *source, EMACS_INT src_bytes,
6179 enum coding_category category)
6180 {
6181 const unsigned char *src = source, *src_end = src + src_bytes;
6182 unsigned char c;
6183 int total = 0;
6184 int eol_seen = EOL_SEEN_NONE;
6185
6186 if ((1 << category) & CATEGORY_MASK_UTF_16)
6187 {
6188 int msb, lsb;
6189
6190 msb = category == (coding_category_utf_16_le
6191 | coding_category_utf_16_le_nosig);
6192 lsb = 1 - msb;
6193
6194 while (src + 1 < src_end)
6195 {
6196 c = src[lsb];
6197 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6198 {
6199 int this_eol;
6200
6201 if (c == '\n')
6202 this_eol = EOL_SEEN_LF;
6203 else if (src + 3 >= src_end
6204 || src[msb + 2] != 0
6205 || src[lsb + 2] != '\n')
6206 this_eol = EOL_SEEN_CR;
6207 else
6208 {
6209 this_eol = EOL_SEEN_CRLF;
6210 src += 2;
6211 }
6212
6213 if (eol_seen == EOL_SEEN_NONE)
6214 /* This is the first end-of-line. */
6215 eol_seen = this_eol;
6216 else if (eol_seen != this_eol)
6217 {
6218 /* The found type is different from what found before.
6219 Allow for stray ^M characters in DOS EOL files. */
6220 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6221 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6222 eol_seen = EOL_SEEN_CRLF;
6223 else
6224 {
6225 eol_seen = EOL_SEEN_LF;
6226 break;
6227 }
6228 }
6229 if (++total == MAX_EOL_CHECK_COUNT)
6230 break;
6231 }
6232 src += 2;
6233 }
6234 }
6235 else
6236 {
6237 while (src < src_end)
6238 {
6239 c = *src++;
6240 if (c == '\n' || c == '\r')
6241 {
6242 int this_eol;
6243
6244 if (c == '\n')
6245 this_eol = EOL_SEEN_LF;
6246 else if (src >= src_end || *src != '\n')
6247 this_eol = EOL_SEEN_CR;
6248 else
6249 this_eol = EOL_SEEN_CRLF, src++;
6250
6251 if (eol_seen == EOL_SEEN_NONE)
6252 /* This is the first end-of-line. */
6253 eol_seen = this_eol;
6254 else if (eol_seen != this_eol)
6255 {
6256 /* The found type is different from what found before.
6257 Allow for stray ^M characters in DOS EOL files. */
6258 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6259 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6260 eol_seen = EOL_SEEN_CRLF;
6261 else
6262 {
6263 eol_seen = EOL_SEEN_LF;
6264 break;
6265 }
6266 }
6267 if (++total == MAX_EOL_CHECK_COUNT)
6268 break;
6269 }
6270 }
6271 }
6272 return eol_seen;
6273 }
6274
6275
6276 static Lisp_Object
6277 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6278 {
6279 Lisp_Object eol_type;
6280
6281 eol_type = CODING_ID_EOL_TYPE (coding->id);
6282 if (eol_seen & EOL_SEEN_LF)
6283 {
6284 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6285 eol_type = Qunix;
6286 }
6287 else if (eol_seen & EOL_SEEN_CRLF)
6288 {
6289 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6290 eol_type = Qdos;
6291 }
6292 else if (eol_seen & EOL_SEEN_CR)
6293 {
6294 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6295 eol_type = Qmac;
6296 }
6297 return eol_type;
6298 }
6299
6300 /* Detect how a text specified in CODING is encoded. If a coding
6301 system is detected, update fields of CODING by the detected coding
6302 system. */
6303
6304 void
6305 detect_coding (struct coding_system *coding)
6306 {
6307 const unsigned char *src, *src_end;
6308 int saved_mode = coding->mode;
6309
6310 coding->consumed = coding->consumed_char = 0;
6311 coding->produced = coding->produced_char = 0;
6312 coding_set_source (coding);
6313
6314 src_end = coding->source + coding->src_bytes;
6315 coding->head_ascii = 0;
6316
6317 /* If we have not yet decided the text encoding type, detect it
6318 now. */
6319 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6320 {
6321 int c, i;
6322 struct coding_detection_info detect_info;
6323 int null_byte_found = 0, eight_bit_found = 0;
6324
6325 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6326 for (src = coding->source; src < src_end; src++)
6327 {
6328 c = *src;
6329 if (c & 0x80)
6330 {
6331 eight_bit_found = 1;
6332 if (null_byte_found)
6333 break;
6334 }
6335 else if (c < 0x20)
6336 {
6337 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6338 && ! inhibit_iso_escape_detection
6339 && ! detect_info.checked)
6340 {
6341 if (detect_coding_iso_2022 (coding, &detect_info))
6342 {
6343 /* We have scanned the whole data. */
6344 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6345 {
6346 /* We didn't find an 8-bit code. We may
6347 have found a null-byte, but it's very
6348 rare that a binary file conforms to
6349 ISO-2022. */
6350 src = src_end;
6351 coding->head_ascii = src - coding->source;
6352 }
6353 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6354 break;
6355 }
6356 }
6357 else if (! c && !inhibit_null_byte_detection)
6358 {
6359 null_byte_found = 1;
6360 if (eight_bit_found)
6361 break;
6362 }
6363 if (! eight_bit_found)
6364 coding->head_ascii++;
6365 }
6366 else if (! eight_bit_found)
6367 coding->head_ascii++;
6368 }
6369
6370 if (null_byte_found || eight_bit_found
6371 || coding->head_ascii < coding->src_bytes
6372 || detect_info.found)
6373 {
6374 enum coding_category category;
6375 struct coding_system *this;
6376
6377 if (coding->head_ascii == coding->src_bytes)
6378 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6379 for (i = 0; i < coding_category_raw_text; i++)
6380 {
6381 category = coding_priorities[i];
6382 this = coding_categories + category;
6383 if (detect_info.found & (1 << category))
6384 break;
6385 }
6386 else
6387 {
6388 if (null_byte_found)
6389 {
6390 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6391 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6392 }
6393 for (i = 0; i < coding_category_raw_text; i++)
6394 {
6395 category = coding_priorities[i];
6396 this = coding_categories + category;
6397 if (this->id < 0)
6398 {
6399 /* No coding system of this category is defined. */
6400 detect_info.rejected |= (1 << category);
6401 }
6402 else if (category >= coding_category_raw_text)
6403 continue;
6404 else if (detect_info.checked & (1 << category))
6405 {
6406 if (detect_info.found & (1 << category))
6407 break;
6408 }
6409 else if ((*(this->detector)) (coding, &detect_info)
6410 && detect_info.found & (1 << category))
6411 {
6412 if (category == coding_category_utf_16_auto)
6413 {
6414 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6415 category = coding_category_utf_16_le;
6416 else
6417 category = coding_category_utf_16_be;
6418 }
6419 break;
6420 }
6421 }
6422 }
6423
6424 if (i < coding_category_raw_text)
6425 setup_coding_system (CODING_ID_NAME (this->id), coding);
6426 else if (null_byte_found)
6427 setup_coding_system (Qno_conversion, coding);
6428 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6429 == CATEGORY_MASK_ANY)
6430 setup_coding_system (Qraw_text, coding);
6431 else if (detect_info.rejected)
6432 for (i = 0; i < coding_category_raw_text; i++)
6433 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6434 {
6435 this = coding_categories + coding_priorities[i];
6436 setup_coding_system (CODING_ID_NAME (this->id), coding);
6437 break;
6438 }
6439 }
6440 }
6441 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6442 == coding_category_utf_8_auto)
6443 {
6444 Lisp_Object coding_systems;
6445 struct coding_detection_info detect_info;
6446
6447 coding_systems
6448 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6449 detect_info.found = detect_info.rejected = 0;
6450 coding->head_ascii = 0;
6451 if (CONSP (coding_systems)
6452 && detect_coding_utf_8 (coding, &detect_info))
6453 {
6454 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6455 setup_coding_system (XCAR (coding_systems), coding);
6456 else
6457 setup_coding_system (XCDR (coding_systems), coding);
6458 }
6459 }
6460 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6461 == coding_category_utf_16_auto)
6462 {
6463 Lisp_Object coding_systems;
6464 struct coding_detection_info detect_info;
6465
6466 coding_systems
6467 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6468 detect_info.found = detect_info.rejected = 0;
6469 coding->head_ascii = 0;
6470 if (CONSP (coding_systems)
6471 && detect_coding_utf_16 (coding, &detect_info))
6472 {
6473 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6474 setup_coding_system (XCAR (coding_systems), coding);
6475 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6476 setup_coding_system (XCDR (coding_systems), coding);
6477 }
6478 }
6479 coding->mode = saved_mode;
6480 }
6481
6482
6483 static void
6484 decode_eol (struct coding_system *coding)
6485 {
6486 Lisp_Object eol_type;
6487 unsigned char *p, *pbeg, *pend;
6488
6489 eol_type = CODING_ID_EOL_TYPE (coding->id);
6490 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6491 return;
6492
6493 if (NILP (coding->dst_object))
6494 pbeg = coding->destination;
6495 else
6496 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6497 pend = pbeg + coding->produced;
6498
6499 if (VECTORP (eol_type))
6500 {
6501 int eol_seen = EOL_SEEN_NONE;
6502
6503 for (p = pbeg; p < pend; p++)
6504 {
6505 if (*p == '\n')
6506 eol_seen |= EOL_SEEN_LF;
6507 else if (*p == '\r')
6508 {
6509 if (p + 1 < pend && *(p + 1) == '\n')
6510 {
6511 eol_seen |= EOL_SEEN_CRLF;
6512 p++;
6513 }
6514 else
6515 eol_seen |= EOL_SEEN_CR;
6516 }
6517 }
6518 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6519 if ((eol_seen & EOL_SEEN_CRLF) != 0
6520 && (eol_seen & EOL_SEEN_CR) != 0
6521 && (eol_seen & EOL_SEEN_LF) == 0)
6522 eol_seen = EOL_SEEN_CRLF;
6523 else if (eol_seen != EOL_SEEN_NONE
6524 && eol_seen != EOL_SEEN_LF
6525 && eol_seen != EOL_SEEN_CRLF
6526 && eol_seen != EOL_SEEN_CR)
6527 eol_seen = EOL_SEEN_LF;
6528 if (eol_seen != EOL_SEEN_NONE)
6529 eol_type = adjust_coding_eol_type (coding, eol_seen);
6530 }
6531
6532 if (EQ (eol_type, Qmac))
6533 {
6534 for (p = pbeg; p < pend; p++)
6535 if (*p == '\r')
6536 *p = '\n';
6537 }
6538 else if (EQ (eol_type, Qdos))
6539 {
6540 int n = 0;
6541
6542 if (NILP (coding->dst_object))
6543 {
6544 /* Start deleting '\r' from the tail to minimize the memory
6545 movement. */
6546 for (p = pend - 2; p >= pbeg; p--)
6547 if (*p == '\r')
6548 {
6549 memmove (p, p + 1, pend-- - p - 1);
6550 n++;
6551 }
6552 }
6553 else
6554 {
6555 int pos_byte = coding->dst_pos_byte;
6556 int pos = coding->dst_pos;
6557 int pos_end = pos + coding->produced_char - 1;
6558
6559 while (pos < pos_end)
6560 {
6561 p = BYTE_POS_ADDR (pos_byte);
6562 if (*p == '\r' && p[1] == '\n')
6563 {
6564 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6565 n++;
6566 pos_end--;
6567 }
6568 pos++;
6569 if (coding->dst_multibyte)
6570 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6571 else
6572 pos_byte++;
6573 }
6574 }
6575 coding->produced -= n;
6576 coding->produced_char -= n;
6577 }
6578 }
6579
6580
6581 /* Return a translation table (or list of them) from coding system
6582 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6583 decoding (ENCODEP is zero). */
6584
6585 static Lisp_Object
6586 get_translation_table (Lisp_Object attrs, int encodep, int *max_lookup)
6587 {
6588 Lisp_Object standard, translation_table;
6589 Lisp_Object val;
6590
6591 if (NILP (Venable_character_translation))
6592 {
6593 if (max_lookup)
6594 *max_lookup = 0;
6595 return Qnil;
6596 }
6597 if (encodep)
6598 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6599 standard = Vstandard_translation_table_for_encode;
6600 else
6601 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6602 standard = Vstandard_translation_table_for_decode;
6603 if (NILP (translation_table))
6604 translation_table = standard;
6605 else
6606 {
6607 if (SYMBOLP (translation_table))
6608 translation_table = Fget (translation_table, Qtranslation_table);
6609 else if (CONSP (translation_table))
6610 {
6611 translation_table = Fcopy_sequence (translation_table);
6612 for (val = translation_table; CONSP (val); val = XCDR (val))
6613 if (SYMBOLP (XCAR (val)))
6614 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6615 }
6616 if (CHAR_TABLE_P (standard))
6617 {
6618 if (CONSP (translation_table))
6619 translation_table = nconc2 (translation_table,
6620 Fcons (standard, Qnil));
6621 else
6622 translation_table = Fcons (translation_table,
6623 Fcons (standard, Qnil));
6624 }
6625 }
6626
6627 if (max_lookup)
6628 {
6629 *max_lookup = 1;
6630 if (CHAR_TABLE_P (translation_table)
6631 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6632 {
6633 val = XCHAR_TABLE (translation_table)->extras[1];
6634 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6635 *max_lookup = XFASTINT (val);
6636 }
6637 else if (CONSP (translation_table))
6638 {
6639 Lisp_Object tail, val;
6640
6641 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6642 if (CHAR_TABLE_P (XCAR (tail))
6643 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6644 {
6645 val = XCHAR_TABLE (XCAR (tail))->extras[1];
6646 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6647 *max_lookup = XFASTINT (val);
6648 }
6649 }
6650 }
6651 return translation_table;
6652 }
6653
6654 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6655 do { \
6656 trans = Qnil; \
6657 if (CHAR_TABLE_P (table)) \
6658 { \
6659 trans = CHAR_TABLE_REF (table, c); \
6660 if (CHARACTERP (trans)) \
6661 c = XFASTINT (trans), trans = Qnil; \
6662 } \
6663 else if (CONSP (table)) \
6664 { \
6665 Lisp_Object tail; \
6666 \
6667 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6668 if (CHAR_TABLE_P (XCAR (tail))) \
6669 { \
6670 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6671 if (CHARACTERP (trans)) \
6672 c = XFASTINT (trans), trans = Qnil; \
6673 else if (! NILP (trans)) \
6674 break; \
6675 } \
6676 } \
6677 } while (0)
6678
6679
6680 /* Return a translation of character(s) at BUF according to TRANS.
6681 TRANS is TO-CHAR or ((FROM . TO) ...) where
6682 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6683 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6684 translation is found, and Qnil if not found..
6685 If BUF is too short to lookup characters in FROM, return Qt. */
6686
6687 static Lisp_Object
6688 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6689 {
6690
6691 if (INTEGERP (trans))
6692 return trans;
6693 for (; CONSP (trans); trans = XCDR (trans))
6694 {
6695 Lisp_Object val = XCAR (trans);
6696 Lisp_Object from = XCAR (val);
6697 int len = ASIZE (from);
6698 int i;
6699
6700 for (i = 0; i < len; i++)
6701 {
6702 if (buf + i == buf_end)
6703 return Qt;
6704 if (XINT (AREF (from, i)) != buf[i])
6705 break;
6706 }
6707 if (i == len)
6708 return val;
6709 }
6710 return Qnil;
6711 }
6712
6713
6714 static int
6715 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6716 int last_block)
6717 {
6718 unsigned char *dst = coding->destination + coding->produced;
6719 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6720 EMACS_INT produced;
6721 EMACS_INT produced_chars = 0;
6722 int carryover = 0;
6723
6724 if (! coding->chars_at_source)
6725 {
6726 /* Source characters are in coding->charbuf. */
6727 int *buf = coding->charbuf;
6728 int *buf_end = buf + coding->charbuf_used;
6729
6730 if (EQ (coding->src_object, coding->dst_object))
6731 {
6732 coding_set_source (coding);
6733 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6734 }
6735
6736 while (buf < buf_end)
6737 {
6738 int c = *buf, i;
6739
6740 if (c >= 0)
6741 {
6742 int from_nchars = 1, to_nchars = 1;
6743 Lisp_Object trans = Qnil;
6744
6745 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6746 if (! NILP (trans))
6747 {
6748 trans = get_translation (trans, buf, buf_end);
6749 if (INTEGERP (trans))
6750 c = XINT (trans);
6751 else if (CONSP (trans))
6752 {
6753 from_nchars = ASIZE (XCAR (trans));
6754 trans = XCDR (trans);
6755 if (INTEGERP (trans))
6756 c = XINT (trans);
6757 else
6758 {
6759 to_nchars = ASIZE (trans);
6760 c = XINT (AREF (trans, 0));
6761 }
6762 }
6763 else if (EQ (trans, Qt) && ! last_block)
6764 break;
6765 }
6766
6767 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6768 {
6769 dst = alloc_destination (coding,
6770 buf_end - buf
6771 + MAX_MULTIBYTE_LENGTH * to_nchars,
6772 dst);
6773 if (EQ (coding->src_object, coding->dst_object))
6774 {
6775 coding_set_source (coding);
6776 dst_end = (((unsigned char *) coding->source)
6777 + coding->consumed);
6778 }
6779 else
6780 dst_end = coding->destination + coding->dst_bytes;
6781 }
6782
6783 for (i = 0; i < to_nchars; i++)
6784 {
6785 if (i > 0)
6786 c = XINT (AREF (trans, i));
6787 if (coding->dst_multibyte
6788 || ! CHAR_BYTE8_P (c))
6789 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6790 else
6791 *dst++ = CHAR_TO_BYTE8 (c);
6792 }
6793 produced_chars += to_nchars;
6794 buf += from_nchars;
6795 }
6796 else
6797 /* This is an annotation datum. (-C) is the length. */
6798 buf += -c;
6799 }
6800 carryover = buf_end - buf;
6801 }
6802 else
6803 {
6804 /* Source characters are at coding->source. */
6805 const unsigned char *src = coding->source;
6806 const unsigned char *src_end = src + coding->consumed;
6807
6808 if (EQ (coding->dst_object, coding->src_object))
6809 dst_end = (unsigned char *) src;
6810 if (coding->src_multibyte != coding->dst_multibyte)
6811 {
6812 if (coding->src_multibyte)
6813 {
6814 int multibytep = 1;
6815 EMACS_INT consumed_chars = 0;
6816
6817 while (1)
6818 {
6819 const unsigned char *src_base = src;
6820 int c;
6821
6822 ONE_MORE_BYTE (c);
6823 if (dst == dst_end)
6824 {
6825 if (EQ (coding->src_object, coding->dst_object))
6826 dst_end = (unsigned char *) src;
6827 if (dst == dst_end)
6828 {
6829 EMACS_INT offset = src - coding->source;
6830
6831 dst = alloc_destination (coding, src_end - src + 1,
6832 dst);
6833 dst_end = coding->destination + coding->dst_bytes;
6834 coding_set_source (coding);
6835 src = coding->source + offset;
6836 src_end = coding->source + coding->src_bytes;
6837 if (EQ (coding->src_object, coding->dst_object))
6838 dst_end = (unsigned char *) src;
6839 }
6840 }
6841 *dst++ = c;
6842 produced_chars++;
6843 }
6844 no_more_source:
6845 ;
6846 }
6847 else
6848 while (src < src_end)
6849 {
6850 int multibytep = 1;
6851 int c = *src++;
6852
6853 if (dst >= dst_end - 1)
6854 {
6855 if (EQ (coding->src_object, coding->dst_object))
6856 dst_end = (unsigned char *) src;
6857 if (dst >= dst_end - 1)
6858 {
6859 EMACS_INT offset = src - coding->source;
6860 EMACS_INT more_bytes;
6861
6862 if (EQ (coding->src_object, coding->dst_object))
6863 more_bytes = ((src_end - src) / 2) + 2;
6864 else
6865 more_bytes = src_end - src + 2;
6866 dst = alloc_destination (coding, more_bytes, dst);
6867 dst_end = coding->destination + coding->dst_bytes;
6868 coding_set_source (coding);
6869 src = coding->source + offset;
6870 src_end = coding->source + coding->src_bytes;
6871 if (EQ (coding->src_object, coding->dst_object))
6872 dst_end = (unsigned char *) src;
6873 }
6874 }
6875 EMIT_ONE_BYTE (c);
6876 }
6877 }
6878 else
6879 {
6880 if (!EQ (coding->src_object, coding->dst_object))
6881 {
6882 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6883
6884 if (require > 0)
6885 {
6886 EMACS_INT offset = src - coding->source;
6887
6888 dst = alloc_destination (coding, require, dst);
6889 coding_set_source (coding);
6890 src = coding->source + offset;
6891 src_end = coding->source + coding->src_bytes;
6892 }
6893 }
6894 produced_chars = coding->consumed_char;
6895 while (src < src_end)
6896 *dst++ = *src++;
6897 }
6898 }
6899
6900 produced = dst - (coding->destination + coding->produced);
6901 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6902 insert_from_gap (produced_chars, produced);
6903 coding->produced += produced;
6904 coding->produced_char += produced_chars;
6905 return carryover;
6906 }
6907
6908 /* Compose text in CODING->object according to the annotation data at
6909 CHARBUF. CHARBUF is an array:
6910 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6911 */
6912
6913 static INLINE void
6914 produce_composition (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6915 {
6916 int len;
6917 EMACS_INT to;
6918 enum composition_method method;
6919 Lisp_Object components;
6920
6921 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6922 to = pos + charbuf[2];
6923 method = (enum composition_method) (charbuf[4]);
6924
6925 if (method == COMPOSITION_RELATIVE)
6926 components = Qnil;
6927 else
6928 {
6929 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6930 int i, j;
6931
6932 if (method == COMPOSITION_WITH_RULE)
6933 len = charbuf[2] * 3 - 2;
6934 charbuf += MAX_ANNOTATION_LENGTH;
6935 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6936 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6937 {
6938 if (charbuf[i] >= 0)
6939 args[j] = make_number (charbuf[i]);
6940 else
6941 {
6942 i++;
6943 args[j] = make_number (charbuf[i] % 0x100);
6944 }
6945 }
6946 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6947 }
6948 compose_text (pos, to, components, Qnil, coding->dst_object);
6949 }
6950
6951
6952 /* Put `charset' property on text in CODING->object according to
6953 the annotation data at CHARBUF. CHARBUF is an array:
6954 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6955 */
6956
6957 static INLINE void
6958 produce_charset (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6959 {
6960 EMACS_INT from = pos - charbuf[2];
6961 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
6962
6963 Fput_text_property (make_number (from), make_number (pos),
6964 Qcharset, CHARSET_NAME (charset),
6965 coding->dst_object);
6966 }
6967
6968
6969 #define CHARBUF_SIZE 0x4000
6970
6971 #define ALLOC_CONVERSION_WORK_AREA(coding) \
6972 do { \
6973 int size = CHARBUF_SIZE; \
6974 \
6975 coding->charbuf = NULL; \
6976 while (size > 1024) \
6977 { \
6978 coding->charbuf = (int *) alloca (sizeof (int) * size); \
6979 if (coding->charbuf) \
6980 break; \
6981 size >>= 1; \
6982 } \
6983 if (! coding->charbuf) \
6984 { \
6985 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
6986 return coding->result; \
6987 } \
6988 coding->charbuf_size = size; \
6989 } while (0)
6990
6991
6992 static void
6993 produce_annotation (struct coding_system *coding, EMACS_INT pos)
6994 {
6995 int *charbuf = coding->charbuf;
6996 int *charbuf_end = charbuf + coding->charbuf_used;
6997
6998 if (NILP (coding->dst_object))
6999 return;
7000
7001 while (charbuf < charbuf_end)
7002 {
7003 if (*charbuf >= 0)
7004 pos++, charbuf++;
7005 else
7006 {
7007 int len = -*charbuf;
7008
7009 if (len > 2)
7010 switch (charbuf[1])
7011 {
7012 case CODING_ANNOTATE_COMPOSITION_MASK:
7013 produce_composition (coding, charbuf, pos);
7014 break;
7015 case CODING_ANNOTATE_CHARSET_MASK:
7016 produce_charset (coding, charbuf, pos);
7017 break;
7018 }
7019 charbuf += len;
7020 }
7021 }
7022 }
7023
7024 /* Decode the data at CODING->src_object into CODING->dst_object.
7025 CODING->src_object is a buffer, a string, or nil.
7026 CODING->dst_object is a buffer.
7027
7028 If CODING->src_object is a buffer, it must be the current buffer.
7029 In this case, if CODING->src_pos is positive, it is a position of
7030 the source text in the buffer, otherwise, the source text is in the
7031 gap area of the buffer, and CODING->src_pos specifies the offset of
7032 the text from GPT (which must be the same as PT). If this is the
7033 same buffer as CODING->dst_object, CODING->src_pos must be
7034 negative.
7035
7036 If CODING->src_object is a string, CODING->src_pos is an index to
7037 that string.
7038
7039 If CODING->src_object is nil, CODING->source must already point to
7040 the non-relocatable memory area. In this case, CODING->src_pos is
7041 an offset from CODING->source.
7042
7043 The decoded data is inserted at the current point of the buffer
7044 CODING->dst_object.
7045 */
7046
7047 static int
7048 decode_coding (struct coding_system *coding)
7049 {
7050 Lisp_Object attrs;
7051 Lisp_Object undo_list;
7052 Lisp_Object translation_table;
7053 struct ccl_spec cclspec;
7054 int carryover;
7055 int i;
7056
7057 if (BUFFERP (coding->src_object)
7058 && coding->src_pos > 0
7059 && coding->src_pos < GPT
7060 && coding->src_pos + coding->src_chars > GPT)
7061 move_gap_both (coding->src_pos, coding->src_pos_byte);
7062
7063 undo_list = Qt;
7064 if (BUFFERP (coding->dst_object))
7065 {
7066 if (current_buffer != XBUFFER (coding->dst_object))
7067 set_buffer_internal (XBUFFER (coding->dst_object));
7068 if (GPT != PT)
7069 move_gap_both (PT, PT_BYTE);
7070 undo_list = current_buffer->undo_list;
7071 current_buffer->undo_list = Qt;
7072 }
7073
7074 coding->consumed = coding->consumed_char = 0;
7075 coding->produced = coding->produced_char = 0;
7076 coding->chars_at_source = 0;
7077 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7078 coding->errors = 0;
7079
7080 ALLOC_CONVERSION_WORK_AREA (coding);
7081
7082 attrs = CODING_ID_ATTRS (coding->id);
7083 translation_table = get_translation_table (attrs, 0, NULL);
7084
7085 carryover = 0;
7086 if (coding->decoder == decode_coding_ccl)
7087 {
7088 coding->spec.ccl = &cclspec;
7089 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7090 }
7091 do
7092 {
7093 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7094
7095 coding_set_source (coding);
7096 coding->annotated = 0;
7097 coding->charbuf_used = carryover;
7098 (*(coding->decoder)) (coding);
7099 coding_set_destination (coding);
7100 carryover = produce_chars (coding, translation_table, 0);
7101 if (coding->annotated)
7102 produce_annotation (coding, pos);
7103 for (i = 0; i < carryover; i++)
7104 coding->charbuf[i]
7105 = coding->charbuf[coding->charbuf_used - carryover + i];
7106 }
7107 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7108 || (coding->consumed < coding->src_bytes
7109 && (coding->result == CODING_RESULT_SUCCESS
7110 || coding->result == CODING_RESULT_INVALID_SRC)));
7111
7112 if (carryover > 0)
7113 {
7114 coding_set_destination (coding);
7115 coding->charbuf_used = carryover;
7116 produce_chars (coding, translation_table, 1);
7117 }
7118
7119 coding->carryover_bytes = 0;
7120 if (coding->consumed < coding->src_bytes)
7121 {
7122 int nbytes = coding->src_bytes - coding->consumed;
7123 const unsigned char *src;
7124
7125 coding_set_source (coding);
7126 coding_set_destination (coding);
7127 src = coding->source + coding->consumed;
7128
7129 if (coding->mode & CODING_MODE_LAST_BLOCK)
7130 {
7131 /* Flush out unprocessed data as binary chars. We are sure
7132 that the number of data is less than the size of
7133 coding->charbuf. */
7134 coding->charbuf_used = 0;
7135 coding->chars_at_source = 0;
7136
7137 while (nbytes-- > 0)
7138 {
7139 int c = *src++;
7140
7141 if (c & 0x80)
7142 c = BYTE8_TO_CHAR (c);
7143 coding->charbuf[coding->charbuf_used++] = c;
7144 }
7145 produce_chars (coding, Qnil, 1);
7146 }
7147 else
7148 {
7149 /* Record unprocessed bytes in coding->carryover. We are
7150 sure that the number of data is less than the size of
7151 coding->carryover. */
7152 unsigned char *p = coding->carryover;
7153
7154 if (nbytes > sizeof coding->carryover)
7155 nbytes = sizeof coding->carryover;
7156 coding->carryover_bytes = nbytes;
7157 while (nbytes-- > 0)
7158 *p++ = *src++;
7159 }
7160 coding->consumed = coding->src_bytes;
7161 }
7162
7163 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7164 && !inhibit_eol_conversion)
7165 decode_eol (coding);
7166 if (BUFFERP (coding->dst_object))
7167 {
7168 current_buffer->undo_list = undo_list;
7169 record_insert (coding->dst_pos, coding->produced_char);
7170 }
7171 return coding->result;
7172 }
7173
7174
7175 /* Extract an annotation datum from a composition starting at POS and
7176 ending before LIMIT of CODING->src_object (buffer or string), store
7177 the data in BUF, set *STOP to a starting position of the next
7178 composition (if any) or to LIMIT, and return the address of the
7179 next element of BUF.
7180
7181 If such an annotation is not found, set *STOP to a starting
7182 position of a composition after POS (if any) or to LIMIT, and
7183 return BUF. */
7184
7185 static INLINE int *
7186 handle_composition_annotation (EMACS_INT pos, EMACS_INT limit,
7187 struct coding_system *coding, int *buf,
7188 EMACS_INT *stop)
7189 {
7190 EMACS_INT start, end;
7191 Lisp_Object prop;
7192
7193 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7194 || end > limit)
7195 *stop = limit;
7196 else if (start > pos)
7197 *stop = start;
7198 else
7199 {
7200 if (start == pos)
7201 {
7202 /* We found a composition. Store the corresponding
7203 annotation data in BUF. */
7204 int *head = buf;
7205 enum composition_method method = COMPOSITION_METHOD (prop);
7206 int nchars = COMPOSITION_LENGTH (prop);
7207
7208 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7209 if (method != COMPOSITION_RELATIVE)
7210 {
7211 Lisp_Object components;
7212 int len, i, i_byte;
7213
7214 components = COMPOSITION_COMPONENTS (prop);
7215 if (VECTORP (components))
7216 {
7217 len = XVECTOR (components)->size;
7218 for (i = 0; i < len; i++)
7219 *buf++ = XINT (AREF (components, i));
7220 }
7221 else if (STRINGP (components))
7222 {
7223 len = SCHARS (components);
7224 i = i_byte = 0;
7225 while (i < len)
7226 {
7227 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7228 buf++;
7229 }
7230 }
7231 else if (INTEGERP (components))
7232 {
7233 len = 1;
7234 *buf++ = XINT (components);
7235 }
7236 else if (CONSP (components))
7237 {
7238 for (len = 0; CONSP (components);
7239 len++, components = XCDR (components))
7240 *buf++ = XINT (XCAR (components));
7241 }
7242 else
7243 abort ();
7244 *head -= len;
7245 }
7246 }
7247
7248 if (find_composition (end, limit, &start, &end, &prop,
7249 coding->src_object)
7250 && end <= limit)
7251 *stop = start;
7252 else
7253 *stop = limit;
7254 }
7255 return buf;
7256 }
7257
7258
7259 /* Extract an annotation datum from a text property `charset' at POS of
7260 CODING->src_object (buffer of string), store the data in BUF, set
7261 *STOP to the position where the value of `charset' property changes
7262 (limiting by LIMIT), and return the address of the next element of
7263 BUF.
7264
7265 If the property value is nil, set *STOP to the position where the
7266 property value is non-nil (limiting by LIMIT), and return BUF. */
7267
7268 static INLINE int *
7269 handle_charset_annotation (EMACS_INT pos, EMACS_INT limit,
7270 struct coding_system *coding, int *buf,
7271 EMACS_INT *stop)
7272 {
7273 Lisp_Object val, next;
7274 int id;
7275
7276 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7277 if (! NILP (val) && CHARSETP (val))
7278 id = XINT (CHARSET_SYMBOL_ID (val));
7279 else
7280 id = -1;
7281 ADD_CHARSET_DATA (buf, 0, id);
7282 next = Fnext_single_property_change (make_number (pos), Qcharset,
7283 coding->src_object,
7284 make_number (limit));
7285 *stop = XINT (next);
7286 return buf;
7287 }
7288
7289
7290 static void
7291 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7292 int max_lookup)
7293 {
7294 int *buf = coding->charbuf;
7295 int *buf_end = coding->charbuf + coding->charbuf_size;
7296 const unsigned char *src = coding->source + coding->consumed;
7297 const unsigned char *src_end = coding->source + coding->src_bytes;
7298 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7299 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7300 int multibytep = coding->src_multibyte;
7301 Lisp_Object eol_type;
7302 int c;
7303 EMACS_INT stop, stop_composition, stop_charset;
7304 int *lookup_buf = NULL;
7305
7306 if (! NILP (translation_table))
7307 lookup_buf = alloca (sizeof (int) * max_lookup);
7308
7309 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7310 if (VECTORP (eol_type))
7311 eol_type = Qunix;
7312
7313 /* Note: composition handling is not yet implemented. */
7314 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7315
7316 if (NILP (coding->src_object))
7317 stop = stop_composition = stop_charset = end_pos;
7318 else
7319 {
7320 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7321 stop = stop_composition = pos;
7322 else
7323 stop = stop_composition = end_pos;
7324 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7325 stop = stop_charset = pos;
7326 else
7327 stop_charset = end_pos;
7328 }
7329
7330 /* Compensate for CRLF and conversion. */
7331 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7332 while (buf < buf_end)
7333 {
7334 Lisp_Object trans;
7335
7336 if (pos == stop)
7337 {
7338 if (pos == end_pos)
7339 break;
7340 if (pos == stop_composition)
7341 buf = handle_composition_annotation (pos, end_pos, coding,
7342 buf, &stop_composition);
7343 if (pos == stop_charset)
7344 buf = handle_charset_annotation (pos, end_pos, coding,
7345 buf, &stop_charset);
7346 stop = (stop_composition < stop_charset
7347 ? stop_composition : stop_charset);
7348 }
7349
7350 if (! multibytep)
7351 {
7352 EMACS_INT bytes;
7353
7354 if (coding->encoder == encode_coding_raw_text
7355 || coding->encoder == encode_coding_ccl)
7356 c = *src++, pos++;
7357 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7358 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7359 else
7360 c = BYTE8_TO_CHAR (*src), src++, pos++;
7361 }
7362 else
7363 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7364 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7365 c = '\n';
7366 if (! EQ (eol_type, Qunix))
7367 {
7368 if (c == '\n')
7369 {
7370 if (EQ (eol_type, Qdos))
7371 *buf++ = '\r';
7372 else
7373 c = '\r';
7374 }
7375 }
7376
7377 trans = Qnil;
7378 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7379 if (NILP (trans))
7380 *buf++ = c;
7381 else
7382 {
7383 int from_nchars = 1, to_nchars = 1;
7384 int *lookup_buf_end;
7385 const unsigned char *p = src;
7386 int i;
7387
7388 lookup_buf[0] = c;
7389 for (i = 1; i < max_lookup && p < src_end; i++)
7390 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7391 lookup_buf_end = lookup_buf + i;
7392 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7393 if (INTEGERP (trans))
7394 c = XINT (trans);
7395 else if (CONSP (trans))
7396 {
7397 from_nchars = ASIZE (XCAR (trans));
7398 trans = XCDR (trans);
7399 if (INTEGERP (trans))
7400 c = XINT (trans);
7401 else
7402 {
7403 to_nchars = ASIZE (trans);
7404 if (buf + to_nchars > buf_end)
7405 break;
7406 c = XINT (AREF (trans, 0));
7407 }
7408 }
7409 else
7410 break;
7411 *buf++ = c;
7412 for (i = 1; i < to_nchars; i++)
7413 *buf++ = XINT (AREF (trans, i));
7414 for (i = 1; i < from_nchars; i++, pos++)
7415 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7416 }
7417 }
7418
7419 coding->consumed = src - coding->source;
7420 coding->consumed_char = pos - coding->src_pos;
7421 coding->charbuf_used = buf - coding->charbuf;
7422 coding->chars_at_source = 0;
7423 }
7424
7425
7426 /* Encode the text at CODING->src_object into CODING->dst_object.
7427 CODING->src_object is a buffer or a string.
7428 CODING->dst_object is a buffer or nil.
7429
7430 If CODING->src_object is a buffer, it must be the current buffer.
7431 In this case, if CODING->src_pos is positive, it is a position of
7432 the source text in the buffer, otherwise. the source text is in the
7433 gap area of the buffer, and coding->src_pos specifies the offset of
7434 the text from GPT (which must be the same as PT). If this is the
7435 same buffer as CODING->dst_object, CODING->src_pos must be
7436 negative and CODING should not have `pre-write-conversion'.
7437
7438 If CODING->src_object is a string, CODING should not have
7439 `pre-write-conversion'.
7440
7441 If CODING->dst_object is a buffer, the encoded data is inserted at
7442 the current point of that buffer.
7443
7444 If CODING->dst_object is nil, the encoded data is placed at the
7445 memory area specified by CODING->destination. */
7446
7447 static int
7448 encode_coding (struct coding_system *coding)
7449 {
7450 Lisp_Object attrs;
7451 Lisp_Object translation_table;
7452 int max_lookup;
7453 struct ccl_spec cclspec;
7454
7455 attrs = CODING_ID_ATTRS (coding->id);
7456 if (coding->encoder == encode_coding_raw_text)
7457 translation_table = Qnil, max_lookup = 0;
7458 else
7459 translation_table = get_translation_table (attrs, 1, &max_lookup);
7460
7461 if (BUFFERP (coding->dst_object))
7462 {
7463 set_buffer_internal (XBUFFER (coding->dst_object));
7464 coding->dst_multibyte
7465 = ! NILP (current_buffer->enable_multibyte_characters);
7466 }
7467
7468 coding->consumed = coding->consumed_char = 0;
7469 coding->produced = coding->produced_char = 0;
7470 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7471 coding->errors = 0;
7472
7473 ALLOC_CONVERSION_WORK_AREA (coding);
7474
7475 if (coding->encoder == encode_coding_ccl)
7476 {
7477 coding->spec.ccl = &cclspec;
7478 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7479 }
7480 do {
7481 coding_set_source (coding);
7482 consume_chars (coding, translation_table, max_lookup);
7483 coding_set_destination (coding);
7484 (*(coding->encoder)) (coding);
7485 } while (coding->consumed_char < coding->src_chars);
7486
7487 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7488 insert_from_gap (coding->produced_char, coding->produced);
7489
7490 return (coding->result);
7491 }
7492
7493
7494 /* Name (or base name) of work buffer for code conversion. */
7495 static Lisp_Object Vcode_conversion_workbuf_name;
7496
7497 /* A working buffer used by the top level conversion. Once it is
7498 created, it is never destroyed. It has the name
7499 Vcode_conversion_workbuf_name. The other working buffers are
7500 destroyed after the use is finished, and their names are modified
7501 versions of Vcode_conversion_workbuf_name. */
7502 static Lisp_Object Vcode_conversion_reused_workbuf;
7503
7504 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7505 static int reused_workbuf_in_use;
7506
7507
7508 /* Return a working buffer of code convesion. MULTIBYTE specifies the
7509 multibyteness of returning buffer. */
7510
7511 static Lisp_Object
7512 make_conversion_work_buffer (int multibyte)
7513 {
7514 Lisp_Object name, workbuf;
7515 struct buffer *current;
7516
7517 if (reused_workbuf_in_use++)
7518 {
7519 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7520 workbuf = Fget_buffer_create (name);
7521 }
7522 else
7523 {
7524 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7525 Vcode_conversion_reused_workbuf
7526 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7527 workbuf = Vcode_conversion_reused_workbuf;
7528 }
7529 current = current_buffer;
7530 set_buffer_internal (XBUFFER (workbuf));
7531 /* We can't allow modification hooks to run in the work buffer. For
7532 instance, directory_files_internal assumes that file decoding
7533 doesn't compile new regexps. */
7534 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7535 Ferase_buffer ();
7536 current_buffer->undo_list = Qt;
7537 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
7538 set_buffer_internal (current);
7539 return workbuf;
7540 }
7541
7542
7543 static Lisp_Object
7544 code_conversion_restore (Lisp_Object arg)
7545 {
7546 Lisp_Object current, workbuf;
7547 struct gcpro gcpro1;
7548
7549 GCPRO1 (arg);
7550 current = XCAR (arg);
7551 workbuf = XCDR (arg);
7552 if (! NILP (workbuf))
7553 {
7554 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7555 reused_workbuf_in_use = 0;
7556 else if (! NILP (Fbuffer_live_p (workbuf)))
7557 Fkill_buffer (workbuf);
7558 }
7559 set_buffer_internal (XBUFFER (current));
7560 UNGCPRO;
7561 return Qnil;
7562 }
7563
7564 Lisp_Object
7565 code_conversion_save (int with_work_buf, int multibyte)
7566 {
7567 Lisp_Object workbuf = Qnil;
7568
7569 if (with_work_buf)
7570 workbuf = make_conversion_work_buffer (multibyte);
7571 record_unwind_protect (code_conversion_restore,
7572 Fcons (Fcurrent_buffer (), workbuf));
7573 return workbuf;
7574 }
7575
7576 int
7577 decode_coding_gap (struct coding_system *coding,
7578 EMACS_INT chars, EMACS_INT bytes)
7579 {
7580 int count = SPECPDL_INDEX ();
7581 Lisp_Object attrs;
7582
7583 code_conversion_save (0, 0);
7584
7585 coding->src_object = Fcurrent_buffer ();
7586 coding->src_chars = chars;
7587 coding->src_bytes = bytes;
7588 coding->src_pos = -chars;
7589 coding->src_pos_byte = -bytes;
7590 coding->src_multibyte = chars < bytes;
7591 coding->dst_object = coding->src_object;
7592 coding->dst_pos = PT;
7593 coding->dst_pos_byte = PT_BYTE;
7594 coding->dst_multibyte = ! NILP (current_buffer->enable_multibyte_characters);
7595
7596 if (CODING_REQUIRE_DETECTION (coding))
7597 detect_coding (coding);
7598
7599 coding->mode |= CODING_MODE_LAST_BLOCK;
7600 current_buffer->text->inhibit_shrinking = 1;
7601 decode_coding (coding);
7602 current_buffer->text->inhibit_shrinking = 0;
7603
7604 attrs = CODING_ID_ATTRS (coding->id);
7605 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7606 {
7607 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7608 Lisp_Object val;
7609
7610 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7611 val = call1 (CODING_ATTR_POST_READ (attrs),
7612 make_number (coding->produced_char));
7613 CHECK_NATNUM (val);
7614 coding->produced_char += Z - prev_Z;
7615 coding->produced += Z_BYTE - prev_Z_BYTE;
7616 }
7617
7618 unbind_to (count, Qnil);
7619 return coding->result;
7620 }
7621
7622 int
7623 encode_coding_gap (struct coding_system *coding,
7624 EMACS_INT chars, EMACS_INT bytes)
7625 {
7626 int count = SPECPDL_INDEX ();
7627
7628 code_conversion_save (0, 0);
7629
7630 coding->src_object = Fcurrent_buffer ();
7631 coding->src_chars = chars;
7632 coding->src_bytes = bytes;
7633 coding->src_pos = -chars;
7634 coding->src_pos_byte = -bytes;
7635 coding->src_multibyte = chars < bytes;
7636 coding->dst_object = coding->src_object;
7637 coding->dst_pos = PT;
7638 coding->dst_pos_byte = PT_BYTE;
7639
7640 encode_coding (coding);
7641
7642 unbind_to (count, Qnil);
7643 return coding->result;
7644 }
7645
7646
7647 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7648 SRC_OBJECT into DST_OBJECT by coding context CODING.
7649
7650 SRC_OBJECT is a buffer, a string, or Qnil.
7651
7652 If it is a buffer, the text is at point of the buffer. FROM and TO
7653 are positions in the buffer.
7654
7655 If it is a string, the text is at the beginning of the string.
7656 FROM and TO are indices to the string.
7657
7658 If it is nil, the text is at coding->source. FROM and TO are
7659 indices to coding->source.
7660
7661 DST_OBJECT is a buffer, Qt, or Qnil.
7662
7663 If it is a buffer, the decoded text is inserted at point of the
7664 buffer. If the buffer is the same as SRC_OBJECT, the source text
7665 is deleted.
7666
7667 If it is Qt, a string is made from the decoded text, and
7668 set in CODING->dst_object.
7669
7670 If it is Qnil, the decoded text is stored at CODING->destination.
7671 The caller must allocate CODING->dst_bytes bytes at
7672 CODING->destination by xmalloc. If the decoded text is longer than
7673 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7674 */
7675
7676 void
7677 decode_coding_object (struct coding_system *coding,
7678 Lisp_Object src_object,
7679 EMACS_INT from, EMACS_INT from_byte,
7680 EMACS_INT to, EMACS_INT to_byte,
7681 Lisp_Object dst_object)
7682 {
7683 int count = SPECPDL_INDEX ();
7684 unsigned char *destination;
7685 EMACS_INT dst_bytes;
7686 EMACS_INT chars = to - from;
7687 EMACS_INT bytes = to_byte - from_byte;
7688 Lisp_Object attrs;
7689 int saved_pt = -1, saved_pt_byte;
7690 int need_marker_adjustment = 0;
7691 Lisp_Object old_deactivate_mark;
7692
7693 old_deactivate_mark = Vdeactivate_mark;
7694
7695 if (NILP (dst_object))
7696 {
7697 destination = coding->destination;
7698 dst_bytes = coding->dst_bytes;
7699 }
7700
7701 coding->src_object = src_object;
7702 coding->src_chars = chars;
7703 coding->src_bytes = bytes;
7704 coding->src_multibyte = chars < bytes;
7705
7706 if (STRINGP (src_object))
7707 {
7708 coding->src_pos = from;
7709 coding->src_pos_byte = from_byte;
7710 }
7711 else if (BUFFERP (src_object))
7712 {
7713 set_buffer_internal (XBUFFER (src_object));
7714 if (from != GPT)
7715 move_gap_both (from, from_byte);
7716 if (EQ (src_object, dst_object))
7717 {
7718 struct Lisp_Marker *tail;
7719
7720 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7721 {
7722 tail->need_adjustment
7723 = tail->charpos == (tail->insertion_type ? from : to);
7724 need_marker_adjustment |= tail->need_adjustment;
7725 }
7726 saved_pt = PT, saved_pt_byte = PT_BYTE;
7727 TEMP_SET_PT_BOTH (from, from_byte);
7728 current_buffer->text->inhibit_shrinking = 1;
7729 del_range_both (from, from_byte, to, to_byte, 1);
7730 coding->src_pos = -chars;
7731 coding->src_pos_byte = -bytes;
7732 }
7733 else
7734 {
7735 coding->src_pos = from;
7736 coding->src_pos_byte = from_byte;
7737 }
7738 }
7739
7740 if (CODING_REQUIRE_DETECTION (coding))
7741 detect_coding (coding);
7742 attrs = CODING_ID_ATTRS (coding->id);
7743
7744 if (EQ (dst_object, Qt)
7745 || (! NILP (CODING_ATTR_POST_READ (attrs))
7746 && NILP (dst_object)))
7747 {
7748 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7749 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7750 coding->dst_pos = BEG;
7751 coding->dst_pos_byte = BEG_BYTE;
7752 }
7753 else if (BUFFERP (dst_object))
7754 {
7755 code_conversion_save (0, 0);
7756 coding->dst_object = dst_object;
7757 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7758 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7759 coding->dst_multibyte
7760 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7761 }
7762 else
7763 {
7764 code_conversion_save (0, 0);
7765 coding->dst_object = Qnil;
7766 /* Most callers presume this will return a multibyte result, and they
7767 won't use `binary' or `raw-text' anyway, so let's not worry about
7768 CODING_FOR_UNIBYTE. */
7769 coding->dst_multibyte = 1;
7770 }
7771
7772 decode_coding (coding);
7773
7774 if (BUFFERP (coding->dst_object))
7775 set_buffer_internal (XBUFFER (coding->dst_object));
7776
7777 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7778 {
7779 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7780 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7781 Lisp_Object val;
7782
7783 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7784 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7785 old_deactivate_mark);
7786 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7787 make_number (coding->produced_char));
7788 UNGCPRO;
7789 CHECK_NATNUM (val);
7790 coding->produced_char += Z - prev_Z;
7791 coding->produced += Z_BYTE - prev_Z_BYTE;
7792 }
7793
7794 if (EQ (dst_object, Qt))
7795 {
7796 coding->dst_object = Fbuffer_string ();
7797 }
7798 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7799 {
7800 set_buffer_internal (XBUFFER (coding->dst_object));
7801 if (dst_bytes < coding->produced)
7802 {
7803 destination = xrealloc (destination, coding->produced);
7804 if (! destination)
7805 {
7806 record_conversion_result (coding,
7807 CODING_RESULT_INSUFFICIENT_MEM);
7808 unbind_to (count, Qnil);
7809 return;
7810 }
7811 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7812 move_gap_both (BEGV, BEGV_BYTE);
7813 memcpy (destination, BEGV_ADDR, coding->produced);
7814 coding->destination = destination;
7815 }
7816 }
7817
7818 if (saved_pt >= 0)
7819 {
7820 /* This is the case of:
7821 (BUFFERP (src_object) && EQ (src_object, dst_object))
7822 As we have moved PT while replacing the original buffer
7823 contents, we must recover it now. */
7824 set_buffer_internal (XBUFFER (src_object));
7825 current_buffer->text->inhibit_shrinking = 0;
7826 if (saved_pt < from)
7827 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7828 else if (saved_pt < from + chars)
7829 TEMP_SET_PT_BOTH (from, from_byte);
7830 else if (! NILP (current_buffer->enable_multibyte_characters))
7831 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7832 saved_pt_byte + (coding->produced - bytes));
7833 else
7834 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7835 saved_pt_byte + (coding->produced - bytes));
7836
7837 if (need_marker_adjustment)
7838 {
7839 struct Lisp_Marker *tail;
7840
7841 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7842 if (tail->need_adjustment)
7843 {
7844 tail->need_adjustment = 0;
7845 if (tail->insertion_type)
7846 {
7847 tail->bytepos = from_byte;
7848 tail->charpos = from;
7849 }
7850 else
7851 {
7852 tail->bytepos = from_byte + coding->produced;
7853 tail->charpos
7854 = (NILP (current_buffer->enable_multibyte_characters)
7855 ? tail->bytepos : from + coding->produced_char);
7856 }
7857 }
7858 }
7859 }
7860
7861 Vdeactivate_mark = old_deactivate_mark;
7862 unbind_to (count, coding->dst_object);
7863 }
7864
7865
7866 void
7867 encode_coding_object (struct coding_system *coding,
7868 Lisp_Object src_object,
7869 EMACS_INT from, EMACS_INT from_byte,
7870 EMACS_INT to, EMACS_INT to_byte,
7871 Lisp_Object dst_object)
7872 {
7873 int count = SPECPDL_INDEX ();
7874 EMACS_INT chars = to - from;
7875 EMACS_INT bytes = to_byte - from_byte;
7876 Lisp_Object attrs;
7877 int saved_pt = -1, saved_pt_byte;
7878 int need_marker_adjustment = 0;
7879 int kill_src_buffer = 0;
7880 Lisp_Object old_deactivate_mark;
7881
7882 old_deactivate_mark = Vdeactivate_mark;
7883
7884 coding->src_object = src_object;
7885 coding->src_chars = chars;
7886 coding->src_bytes = bytes;
7887 coding->src_multibyte = chars < bytes;
7888
7889 attrs = CODING_ID_ATTRS (coding->id);
7890
7891 if (EQ (src_object, dst_object))
7892 {
7893 struct Lisp_Marker *tail;
7894
7895 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7896 {
7897 tail->need_adjustment
7898 = tail->charpos == (tail->insertion_type ? from : to);
7899 need_marker_adjustment |= tail->need_adjustment;
7900 }
7901 }
7902
7903 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7904 {
7905 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7906 set_buffer_internal (XBUFFER (coding->src_object));
7907 if (STRINGP (src_object))
7908 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7909 else if (BUFFERP (src_object))
7910 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7911 else
7912 insert_1_both (coding->source + from, chars, bytes, 0, 0, 0);
7913
7914 if (EQ (src_object, dst_object))
7915 {
7916 set_buffer_internal (XBUFFER (src_object));
7917 saved_pt = PT, saved_pt_byte = PT_BYTE;
7918 del_range_both (from, from_byte, to, to_byte, 1);
7919 set_buffer_internal (XBUFFER (coding->src_object));
7920 }
7921
7922 {
7923 Lisp_Object args[3];
7924 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7925
7926 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7927 old_deactivate_mark);
7928 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7929 args[1] = make_number (BEG);
7930 args[2] = make_number (Z);
7931 safe_call (3, args);
7932 UNGCPRO;
7933 }
7934 if (XBUFFER (coding->src_object) != current_buffer)
7935 kill_src_buffer = 1;
7936 coding->src_object = Fcurrent_buffer ();
7937 if (BEG != GPT)
7938 move_gap_both (BEG, BEG_BYTE);
7939 coding->src_chars = Z - BEG;
7940 coding->src_bytes = Z_BYTE - BEG_BYTE;
7941 coding->src_pos = BEG;
7942 coding->src_pos_byte = BEG_BYTE;
7943 coding->src_multibyte = Z < Z_BYTE;
7944 }
7945 else if (STRINGP (src_object))
7946 {
7947 code_conversion_save (0, 0);
7948 coding->src_pos = from;
7949 coding->src_pos_byte = from_byte;
7950 }
7951 else if (BUFFERP (src_object))
7952 {
7953 code_conversion_save (0, 0);
7954 set_buffer_internal (XBUFFER (src_object));
7955 if (EQ (src_object, dst_object))
7956 {
7957 saved_pt = PT, saved_pt_byte = PT_BYTE;
7958 coding->src_object = del_range_1 (from, to, 1, 1);
7959 coding->src_pos = 0;
7960 coding->src_pos_byte = 0;
7961 }
7962 else
7963 {
7964 if (from < GPT && to >= GPT)
7965 move_gap_both (from, from_byte);
7966 coding->src_pos = from;
7967 coding->src_pos_byte = from_byte;
7968 }
7969 }
7970 else
7971 code_conversion_save (0, 0);
7972
7973 if (BUFFERP (dst_object))
7974 {
7975 coding->dst_object = dst_object;
7976 if (EQ (src_object, dst_object))
7977 {
7978 coding->dst_pos = from;
7979 coding->dst_pos_byte = from_byte;
7980 }
7981 else
7982 {
7983 struct buffer *current = current_buffer;
7984
7985 set_buffer_temp (XBUFFER (dst_object));
7986 coding->dst_pos = PT;
7987 coding->dst_pos_byte = PT_BYTE;
7988 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
7989 set_buffer_temp (current);
7990 }
7991 coding->dst_multibyte
7992 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7993 }
7994 else if (EQ (dst_object, Qt))
7995 {
7996 coding->dst_object = Qnil;
7997 coding->dst_bytes = coding->src_chars;
7998 if (coding->dst_bytes == 0)
7999 coding->dst_bytes = 1;
8000 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
8001 coding->dst_multibyte = 0;
8002 }
8003 else
8004 {
8005 coding->dst_object = Qnil;
8006 coding->dst_multibyte = 0;
8007 }
8008
8009 encode_coding (coding);
8010
8011 if (EQ (dst_object, Qt))
8012 {
8013 if (BUFFERP (coding->dst_object))
8014 coding->dst_object = Fbuffer_string ();
8015 else
8016 {
8017 coding->dst_object
8018 = make_unibyte_string ((char *) coding->destination,
8019 coding->produced);
8020 xfree (coding->destination);
8021 }
8022 }
8023
8024 if (saved_pt >= 0)
8025 {
8026 /* This is the case of:
8027 (BUFFERP (src_object) && EQ (src_object, dst_object))
8028 As we have moved PT while replacing the original buffer
8029 contents, we must recover it now. */
8030 set_buffer_internal (XBUFFER (src_object));
8031 if (saved_pt < from)
8032 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8033 else if (saved_pt < from + chars)
8034 TEMP_SET_PT_BOTH (from, from_byte);
8035 else if (! NILP (current_buffer->enable_multibyte_characters))
8036 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8037 saved_pt_byte + (coding->produced - bytes));
8038 else
8039 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8040 saved_pt_byte + (coding->produced - bytes));
8041
8042 if (need_marker_adjustment)
8043 {
8044 struct Lisp_Marker *tail;
8045
8046 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8047 if (tail->need_adjustment)
8048 {
8049 tail->need_adjustment = 0;
8050 if (tail->insertion_type)
8051 {
8052 tail->bytepos = from_byte;
8053 tail->charpos = from;
8054 }
8055 else
8056 {
8057 tail->bytepos = from_byte + coding->produced;
8058 tail->charpos
8059 = (NILP (current_buffer->enable_multibyte_characters)
8060 ? tail->bytepos : from + coding->produced_char);
8061 }
8062 }
8063 }
8064 }
8065
8066 if (kill_src_buffer)
8067 Fkill_buffer (coding->src_object);
8068
8069 Vdeactivate_mark = old_deactivate_mark;
8070 unbind_to (count, Qnil);
8071 }
8072
8073
8074 Lisp_Object
8075 preferred_coding_system (void)
8076 {
8077 int id = coding_categories[coding_priorities[0]].id;
8078
8079 return CODING_ID_NAME (id);
8080 }
8081
8082 \f
8083 #ifdef emacs
8084 /*** 8. Emacs Lisp library functions ***/
8085
8086 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8087 doc: /* Return t if OBJECT is nil or a coding-system.
8088 See the documentation of `define-coding-system' for information
8089 about coding-system objects. */)
8090 (Lisp_Object object)
8091 {
8092 if (NILP (object)
8093 || CODING_SYSTEM_ID (object) >= 0)
8094 return Qt;
8095 if (! SYMBOLP (object)
8096 || NILP (Fget (object, Qcoding_system_define_form)))
8097 return Qnil;
8098 return Qt;
8099 }
8100
8101 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8102 Sread_non_nil_coding_system, 1, 1, 0,
8103 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8104 (Lisp_Object prompt)
8105 {
8106 Lisp_Object val;
8107 do
8108 {
8109 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8110 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8111 }
8112 while (SCHARS (val) == 0);
8113 return (Fintern (val, Qnil));
8114 }
8115
8116 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8117 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8118 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8119 Ignores case when completing coding systems (all Emacs coding systems
8120 are lower-case). */)
8121 (Lisp_Object prompt, Lisp_Object default_coding_system)
8122 {
8123 Lisp_Object val;
8124 int count = SPECPDL_INDEX ();
8125
8126 if (SYMBOLP (default_coding_system))
8127 default_coding_system = SYMBOL_NAME (default_coding_system);
8128 specbind (Qcompletion_ignore_case, Qt);
8129 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8130 Qt, Qnil, Qcoding_system_history,
8131 default_coding_system, Qnil);
8132 unbind_to (count, Qnil);
8133 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8134 }
8135
8136 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8137 1, 1, 0,
8138 doc: /* Check validity of CODING-SYSTEM.
8139 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8140 It is valid if it is nil or a symbol defined as a coding system by the
8141 function `define-coding-system'. */)
8142 (Lisp_Object coding_system)
8143 {
8144 Lisp_Object define_form;
8145
8146 define_form = Fget (coding_system, Qcoding_system_define_form);
8147 if (! NILP (define_form))
8148 {
8149 Fput (coding_system, Qcoding_system_define_form, Qnil);
8150 safe_eval (define_form);
8151 }
8152 if (!NILP (Fcoding_system_p (coding_system)))
8153 return coding_system;
8154 xsignal1 (Qcoding_system_error, coding_system);
8155 }
8156
8157 \f
8158 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8159 HIGHEST is nonzero, return the coding system of the highest
8160 priority among the detected coding systems. Otherwize return a
8161 list of detected coding systems sorted by their priorities. If
8162 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8163 multibyte form but contains only ASCII and eight-bit chars.
8164 Otherwise, the bytes are raw bytes.
8165
8166 CODING-SYSTEM controls the detection as below:
8167
8168 If it is nil, detect both text-format and eol-format. If the
8169 text-format part of CODING-SYSTEM is already specified
8170 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8171 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8172 detect only text-format. */
8173
8174 Lisp_Object
8175 detect_coding_system (const unsigned char *src,
8176 EMACS_INT src_chars, EMACS_INT src_bytes,
8177 int highest, int multibytep,
8178 Lisp_Object coding_system)
8179 {
8180 const unsigned char *src_end = src + src_bytes;
8181 Lisp_Object attrs, eol_type;
8182 Lisp_Object val = Qnil;
8183 struct coding_system coding;
8184 int id;
8185 struct coding_detection_info detect_info;
8186 enum coding_category base_category;
8187 int null_byte_found = 0, eight_bit_found = 0;
8188
8189 if (NILP (coding_system))
8190 coding_system = Qundecided;
8191 setup_coding_system (coding_system, &coding);
8192 attrs = CODING_ID_ATTRS (coding.id);
8193 eol_type = CODING_ID_EOL_TYPE (coding.id);
8194 coding_system = CODING_ATTR_BASE_NAME (attrs);
8195
8196 coding.source = src;
8197 coding.src_chars = src_chars;
8198 coding.src_bytes = src_bytes;
8199 coding.src_multibyte = multibytep;
8200 coding.consumed = 0;
8201 coding.mode |= CODING_MODE_LAST_BLOCK;
8202 coding.head_ascii = 0;
8203
8204 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8205
8206 /* At first, detect text-format if necessary. */
8207 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8208 if (base_category == coding_category_undecided)
8209 {
8210 enum coding_category category;
8211 struct coding_system *this;
8212 int c, i;
8213
8214 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8215 for (; src < src_end; src++)
8216 {
8217 c = *src;
8218 if (c & 0x80)
8219 {
8220 eight_bit_found = 1;
8221 if (null_byte_found)
8222 break;
8223 }
8224 else if (c < 0x20)
8225 {
8226 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8227 && ! inhibit_iso_escape_detection
8228 && ! detect_info.checked)
8229 {
8230 if (detect_coding_iso_2022 (&coding, &detect_info))
8231 {
8232 /* We have scanned the whole data. */
8233 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8234 {
8235 /* We didn't find an 8-bit code. We may
8236 have found a null-byte, but it's very
8237 rare that a binary file confirm to
8238 ISO-2022. */
8239 src = src_end;
8240 coding.head_ascii = src - coding.source;
8241 }
8242 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8243 break;
8244 }
8245 }
8246 else if (! c && !inhibit_null_byte_detection)
8247 {
8248 null_byte_found = 1;
8249 if (eight_bit_found)
8250 break;
8251 }
8252 if (! eight_bit_found)
8253 coding.head_ascii++;
8254 }
8255 else if (! eight_bit_found)
8256 coding.head_ascii++;
8257 }
8258
8259 if (null_byte_found || eight_bit_found
8260 || coding.head_ascii < coding.src_bytes
8261 || detect_info.found)
8262 {
8263 if (coding.head_ascii == coding.src_bytes)
8264 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8265 for (i = 0; i < coding_category_raw_text; i++)
8266 {
8267 category = coding_priorities[i];
8268 this = coding_categories + category;
8269 if (detect_info.found & (1 << category))
8270 break;
8271 }
8272 else
8273 {
8274 if (null_byte_found)
8275 {
8276 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8277 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8278 }
8279 for (i = 0; i < coding_category_raw_text; i++)
8280 {
8281 category = coding_priorities[i];
8282 this = coding_categories + category;
8283
8284 if (this->id < 0)
8285 {
8286 /* No coding system of this category is defined. */
8287 detect_info.rejected |= (1 << category);
8288 }
8289 else if (category >= coding_category_raw_text)
8290 continue;
8291 else if (detect_info.checked & (1 << category))
8292 {
8293 if (highest
8294 && (detect_info.found & (1 << category)))
8295 break;
8296 }
8297 else if ((*(this->detector)) (&coding, &detect_info)
8298 && highest
8299 && (detect_info.found & (1 << category)))
8300 {
8301 if (category == coding_category_utf_16_auto)
8302 {
8303 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8304 category = coding_category_utf_16_le;
8305 else
8306 category = coding_category_utf_16_be;
8307 }
8308 break;
8309 }
8310 }
8311 }
8312 }
8313
8314 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8315 || null_byte_found)
8316 {
8317 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8318 id = CODING_SYSTEM_ID (Qno_conversion);
8319 val = Fcons (make_number (id), Qnil);
8320 }
8321 else if (! detect_info.rejected && ! detect_info.found)
8322 {
8323 detect_info.found = CATEGORY_MASK_ANY;
8324 id = coding_categories[coding_category_undecided].id;
8325 val = Fcons (make_number (id), Qnil);
8326 }
8327 else if (highest)
8328 {
8329 if (detect_info.found)
8330 {
8331 detect_info.found = 1 << category;
8332 val = Fcons (make_number (this->id), Qnil);
8333 }
8334 else
8335 for (i = 0; i < coding_category_raw_text; i++)
8336 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8337 {
8338 detect_info.found = 1 << coding_priorities[i];
8339 id = coding_categories[coding_priorities[i]].id;
8340 val = Fcons (make_number (id), Qnil);
8341 break;
8342 }
8343 }
8344 else
8345 {
8346 int mask = detect_info.rejected | detect_info.found;
8347 int found = 0;
8348
8349 for (i = coding_category_raw_text - 1; i >= 0; i--)
8350 {
8351 category = coding_priorities[i];
8352 if (! (mask & (1 << category)))
8353 {
8354 found |= 1 << category;
8355 id = coding_categories[category].id;
8356 if (id >= 0)
8357 val = Fcons (make_number (id), val);
8358 }
8359 }
8360 for (i = coding_category_raw_text - 1; i >= 0; i--)
8361 {
8362 category = coding_priorities[i];
8363 if (detect_info.found & (1 << category))
8364 {
8365 id = coding_categories[category].id;
8366 val = Fcons (make_number (id), val);
8367 }
8368 }
8369 detect_info.found |= found;
8370 }
8371 }
8372 else if (base_category == coding_category_utf_8_auto)
8373 {
8374 if (detect_coding_utf_8 (&coding, &detect_info))
8375 {
8376 struct coding_system *this;
8377
8378 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8379 this = coding_categories + coding_category_utf_8_sig;
8380 else
8381 this = coding_categories + coding_category_utf_8_nosig;
8382 val = Fcons (make_number (this->id), Qnil);
8383 }
8384 }
8385 else if (base_category == coding_category_utf_16_auto)
8386 {
8387 if (detect_coding_utf_16 (&coding, &detect_info))
8388 {
8389 struct coding_system *this;
8390
8391 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8392 this = coding_categories + coding_category_utf_16_le;
8393 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8394 this = coding_categories + coding_category_utf_16_be;
8395 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8396 this = coding_categories + coding_category_utf_16_be_nosig;
8397 else
8398 this = coding_categories + coding_category_utf_16_le_nosig;
8399 val = Fcons (make_number (this->id), Qnil);
8400 }
8401 }
8402 else
8403 {
8404 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8405 val = Fcons (make_number (coding.id), Qnil);
8406 }
8407
8408 /* Then, detect eol-format if necessary. */
8409 {
8410 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8411 Lisp_Object tail;
8412
8413 if (VECTORP (eol_type))
8414 {
8415 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8416 {
8417 if (null_byte_found)
8418 normal_eol = EOL_SEEN_LF;
8419 else
8420 normal_eol = detect_eol (coding.source, src_bytes,
8421 coding_category_raw_text);
8422 }
8423 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8424 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8425 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8426 coding_category_utf_16_be);
8427 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8428 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8429 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8430 coding_category_utf_16_le);
8431 }
8432 else
8433 {
8434 if (EQ (eol_type, Qunix))
8435 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8436 else if (EQ (eol_type, Qdos))
8437 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8438 else
8439 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8440 }
8441
8442 for (tail = val; CONSP (tail); tail = XCDR (tail))
8443 {
8444 enum coding_category category;
8445 int this_eol;
8446
8447 id = XINT (XCAR (tail));
8448 attrs = CODING_ID_ATTRS (id);
8449 category = XINT (CODING_ATTR_CATEGORY (attrs));
8450 eol_type = CODING_ID_EOL_TYPE (id);
8451 if (VECTORP (eol_type))
8452 {
8453 if (category == coding_category_utf_16_be
8454 || category == coding_category_utf_16_be_nosig)
8455 this_eol = utf_16_be_eol;
8456 else if (category == coding_category_utf_16_le
8457 || category == coding_category_utf_16_le_nosig)
8458 this_eol = utf_16_le_eol;
8459 else
8460 this_eol = normal_eol;
8461
8462 if (this_eol == EOL_SEEN_LF)
8463 XSETCAR (tail, AREF (eol_type, 0));
8464 else if (this_eol == EOL_SEEN_CRLF)
8465 XSETCAR (tail, AREF (eol_type, 1));
8466 else if (this_eol == EOL_SEEN_CR)
8467 XSETCAR (tail, AREF (eol_type, 2));
8468 else
8469 XSETCAR (tail, CODING_ID_NAME (id));
8470 }
8471 else
8472 XSETCAR (tail, CODING_ID_NAME (id));
8473 }
8474 }
8475
8476 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8477 }
8478
8479
8480 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8481 2, 3, 0,
8482 doc: /* Detect coding system of the text in the region between START and END.
8483 Return a list of possible coding systems ordered by priority.
8484 The coding systems to try and their priorities follows what
8485 the function `coding-system-priority-list' (which see) returns.
8486
8487 If only ASCII characters are found (except for such ISO-2022 control
8488 characters as ESC), it returns a list of single element `undecided'
8489 or its subsidiary coding system according to a detected end-of-line
8490 format.
8491
8492 If optional argument HIGHEST is non-nil, return the coding system of
8493 highest priority. */)
8494 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8495 {
8496 int from, to;
8497 int from_byte, to_byte;
8498
8499 CHECK_NUMBER_COERCE_MARKER (start);
8500 CHECK_NUMBER_COERCE_MARKER (end);
8501
8502 validate_region (&start, &end);
8503 from = XINT (start), to = XINT (end);
8504 from_byte = CHAR_TO_BYTE (from);
8505 to_byte = CHAR_TO_BYTE (to);
8506
8507 if (from < GPT && to >= GPT)
8508 move_gap_both (to, to_byte);
8509
8510 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8511 to - from, to_byte - from_byte,
8512 !NILP (highest),
8513 !NILP (current_buffer
8514 ->enable_multibyte_characters),
8515 Qnil);
8516 }
8517
8518 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8519 1, 2, 0,
8520 doc: /* Detect coding system of the text in STRING.
8521 Return a list of possible coding systems ordered by priority.
8522 The coding systems to try and their priorities follows what
8523 the function `coding-system-priority-list' (which see) returns.
8524
8525 If only ASCII characters are found (except for such ISO-2022 control
8526 characters as ESC), it returns a list of single element `undecided'
8527 or its subsidiary coding system according to a detected end-of-line
8528 format.
8529
8530 If optional argument HIGHEST is non-nil, return the coding system of
8531 highest priority. */)
8532 (Lisp_Object string, Lisp_Object highest)
8533 {
8534 CHECK_STRING (string);
8535
8536 return detect_coding_system (SDATA (string),
8537 SCHARS (string), SBYTES (string),
8538 !NILP (highest), STRING_MULTIBYTE (string),
8539 Qnil);
8540 }
8541
8542
8543 static INLINE int
8544 char_encodable_p (int c, Lisp_Object attrs)
8545 {
8546 Lisp_Object tail;
8547 struct charset *charset;
8548 Lisp_Object translation_table;
8549
8550 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8551 if (! NILP (translation_table))
8552 c = translate_char (translation_table, c);
8553 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8554 CONSP (tail); tail = XCDR (tail))
8555 {
8556 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8557 if (CHAR_CHARSET_P (c, charset))
8558 break;
8559 }
8560 return (! NILP (tail));
8561 }
8562
8563
8564 /* Return a list of coding systems that safely encode the text between
8565 START and END. If EXCLUDE is non-nil, it is a list of coding
8566 systems not to check. The returned list doesn't contain any such
8567 coding systems. In any case, if the text contains only ASCII or is
8568 unibyte, return t. */
8569
8570 DEFUN ("find-coding-systems-region-internal",
8571 Ffind_coding_systems_region_internal,
8572 Sfind_coding_systems_region_internal, 2, 3, 0,
8573 doc: /* Internal use only. */)
8574 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8575 {
8576 Lisp_Object coding_attrs_list, safe_codings;
8577 EMACS_INT start_byte, end_byte;
8578 const unsigned char *p, *pbeg, *pend;
8579 int c;
8580 Lisp_Object tail, elt, work_table;
8581
8582 if (STRINGP (start))
8583 {
8584 if (!STRING_MULTIBYTE (start)
8585 || SCHARS (start) == SBYTES (start))
8586 return Qt;
8587 start_byte = 0;
8588 end_byte = SBYTES (start);
8589 }
8590 else
8591 {
8592 CHECK_NUMBER_COERCE_MARKER (start);
8593 CHECK_NUMBER_COERCE_MARKER (end);
8594 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8595 args_out_of_range (start, end);
8596 if (NILP (current_buffer->enable_multibyte_characters))
8597 return Qt;
8598 start_byte = CHAR_TO_BYTE (XINT (start));
8599 end_byte = CHAR_TO_BYTE (XINT (end));
8600 if (XINT (end) - XINT (start) == end_byte - start_byte)
8601 return Qt;
8602
8603 if (XINT (start) < GPT && XINT (end) > GPT)
8604 {
8605 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8606 move_gap_both (XINT (start), start_byte);
8607 else
8608 move_gap_both (XINT (end), end_byte);
8609 }
8610 }
8611
8612 coding_attrs_list = Qnil;
8613 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8614 if (NILP (exclude)
8615 || NILP (Fmemq (XCAR (tail), exclude)))
8616 {
8617 Lisp_Object attrs;
8618
8619 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8620 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8621 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8622 {
8623 ASET (attrs, coding_attr_trans_tbl,
8624 get_translation_table (attrs, 1, NULL));
8625 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8626 }
8627 }
8628
8629 if (STRINGP (start))
8630 p = pbeg = SDATA (start);
8631 else
8632 p = pbeg = BYTE_POS_ADDR (start_byte);
8633 pend = p + (end_byte - start_byte);
8634
8635 while (p < pend && ASCII_BYTE_P (*p)) p++;
8636 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8637
8638 work_table = Fmake_char_table (Qnil, Qnil);
8639 while (p < pend)
8640 {
8641 if (ASCII_BYTE_P (*p))
8642 p++;
8643 else
8644 {
8645 c = STRING_CHAR_ADVANCE (p);
8646 if (!NILP (char_table_ref (work_table, c)))
8647 /* This character was already checked. Ignore it. */
8648 continue;
8649
8650 charset_map_loaded = 0;
8651 for (tail = coding_attrs_list; CONSP (tail);)
8652 {
8653 elt = XCAR (tail);
8654 if (NILP (elt))
8655 tail = XCDR (tail);
8656 else if (char_encodable_p (c, elt))
8657 tail = XCDR (tail);
8658 else if (CONSP (XCDR (tail)))
8659 {
8660 XSETCAR (tail, XCAR (XCDR (tail)));
8661 XSETCDR (tail, XCDR (XCDR (tail)));
8662 }
8663 else
8664 {
8665 XSETCAR (tail, Qnil);
8666 tail = XCDR (tail);
8667 }
8668 }
8669 if (charset_map_loaded)
8670 {
8671 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8672
8673 if (STRINGP (start))
8674 pbeg = SDATA (start);
8675 else
8676 pbeg = BYTE_POS_ADDR (start_byte);
8677 p = pbeg + p_offset;
8678 pend = pbeg + pend_offset;
8679 }
8680 char_table_set (work_table, c, Qt);
8681 }
8682 }
8683
8684 safe_codings = list2 (Qraw_text, Qno_conversion);
8685 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8686 if (! NILP (XCAR (tail)))
8687 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8688
8689 return safe_codings;
8690 }
8691
8692
8693 DEFUN ("unencodable-char-position", Funencodable_char_position,
8694 Sunencodable_char_position, 3, 5, 0,
8695 doc: /*
8696 Return position of first un-encodable character in a region.
8697 START and END specify the region and CODING-SYSTEM specifies the
8698 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8699
8700 If optional 4th argument COUNT is non-nil, it specifies at most how
8701 many un-encodable characters to search. In this case, the value is a
8702 list of positions.
8703
8704 If optional 5th argument STRING is non-nil, it is a string to search
8705 for un-encodable characters. In that case, START and END are indexes
8706 to the string. */)
8707 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object count, Lisp_Object string)
8708 {
8709 int n;
8710 struct coding_system coding;
8711 Lisp_Object attrs, charset_list, translation_table;
8712 Lisp_Object positions;
8713 int from, to;
8714 const unsigned char *p, *stop, *pend;
8715 int ascii_compatible;
8716
8717 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8718 attrs = CODING_ID_ATTRS (coding.id);
8719 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8720 return Qnil;
8721 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8722 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8723 translation_table = get_translation_table (attrs, 1, NULL);
8724
8725 if (NILP (string))
8726 {
8727 validate_region (&start, &end);
8728 from = XINT (start);
8729 to = XINT (end);
8730 if (NILP (current_buffer->enable_multibyte_characters)
8731 || (ascii_compatible
8732 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8733 return Qnil;
8734 p = CHAR_POS_ADDR (from);
8735 pend = CHAR_POS_ADDR (to);
8736 if (from < GPT && to >= GPT)
8737 stop = GPT_ADDR;
8738 else
8739 stop = pend;
8740 }
8741 else
8742 {
8743 CHECK_STRING (string);
8744 CHECK_NATNUM (start);
8745 CHECK_NATNUM (end);
8746 from = XINT (start);
8747 to = XINT (end);
8748 if (from > to
8749 || to > SCHARS (string))
8750 args_out_of_range_3 (string, start, end);
8751 if (! STRING_MULTIBYTE (string))
8752 return Qnil;
8753 p = SDATA (string) + string_char_to_byte (string, from);
8754 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8755 if (ascii_compatible && (to - from) == (pend - p))
8756 return Qnil;
8757 }
8758
8759 if (NILP (count))
8760 n = 1;
8761 else
8762 {
8763 CHECK_NATNUM (count);
8764 n = XINT (count);
8765 }
8766
8767 positions = Qnil;
8768 while (1)
8769 {
8770 int c;
8771
8772 if (ascii_compatible)
8773 while (p < stop && ASCII_BYTE_P (*p))
8774 p++, from++;
8775 if (p >= stop)
8776 {
8777 if (p >= pend)
8778 break;
8779 stop = pend;
8780 p = GAP_END_ADDR;
8781 }
8782
8783 c = STRING_CHAR_ADVANCE (p);
8784 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8785 && ! char_charset (translate_char (translation_table, c),
8786 charset_list, NULL))
8787 {
8788 positions = Fcons (make_number (from), positions);
8789 n--;
8790 if (n == 0)
8791 break;
8792 }
8793
8794 from++;
8795 }
8796
8797 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8798 }
8799
8800
8801 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8802 Scheck_coding_systems_region, 3, 3, 0,
8803 doc: /* Check if the region is encodable by coding systems.
8804
8805 START and END are buffer positions specifying the region.
8806 CODING-SYSTEM-LIST is a list of coding systems to check.
8807
8808 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8809 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8810 whole region, POS0, POS1, ... are buffer positions where non-encodable
8811 characters are found.
8812
8813 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8814 value is nil.
8815
8816 START may be a string. In that case, check if the string is
8817 encodable, and the value contains indices to the string instead of
8818 buffer positions. END is ignored.
8819
8820 If the current buffer (or START if it is a string) is unibyte, the value
8821 is nil. */)
8822 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
8823 {
8824 Lisp_Object list;
8825 EMACS_INT start_byte, end_byte;
8826 int pos;
8827 const unsigned char *p, *pbeg, *pend;
8828 int c;
8829 Lisp_Object tail, elt, attrs;
8830
8831 if (STRINGP (start))
8832 {
8833 if (!STRING_MULTIBYTE (start)
8834 || SCHARS (start) == SBYTES (start))
8835 return Qnil;
8836 start_byte = 0;
8837 end_byte = SBYTES (start);
8838 pos = 0;
8839 }
8840 else
8841 {
8842 CHECK_NUMBER_COERCE_MARKER (start);
8843 CHECK_NUMBER_COERCE_MARKER (end);
8844 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8845 args_out_of_range (start, end);
8846 if (NILP (current_buffer->enable_multibyte_characters))
8847 return Qnil;
8848 start_byte = CHAR_TO_BYTE (XINT (start));
8849 end_byte = CHAR_TO_BYTE (XINT (end));
8850 if (XINT (end) - XINT (start) == end_byte - start_byte)
8851 return Qnil;
8852
8853 if (XINT (start) < GPT && XINT (end) > GPT)
8854 {
8855 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8856 move_gap_both (XINT (start), start_byte);
8857 else
8858 move_gap_both (XINT (end), end_byte);
8859 }
8860 pos = XINT (start);
8861 }
8862
8863 list = Qnil;
8864 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8865 {
8866 elt = XCAR (tail);
8867 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8868 ASET (attrs, coding_attr_trans_tbl,
8869 get_translation_table (attrs, 1, NULL));
8870 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8871 }
8872
8873 if (STRINGP (start))
8874 p = pbeg = SDATA (start);
8875 else
8876 p = pbeg = BYTE_POS_ADDR (start_byte);
8877 pend = p + (end_byte - start_byte);
8878
8879 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8880 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8881
8882 while (p < pend)
8883 {
8884 if (ASCII_BYTE_P (*p))
8885 p++;
8886 else
8887 {
8888 c = STRING_CHAR_ADVANCE (p);
8889
8890 charset_map_loaded = 0;
8891 for (tail = list; CONSP (tail); tail = XCDR (tail))
8892 {
8893 elt = XCDR (XCAR (tail));
8894 if (! char_encodable_p (c, XCAR (elt)))
8895 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8896 }
8897 if (charset_map_loaded)
8898 {
8899 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8900
8901 if (STRINGP (start))
8902 pbeg = SDATA (start);
8903 else
8904 pbeg = BYTE_POS_ADDR (start_byte);
8905 p = pbeg + p_offset;
8906 pend = pbeg + pend_offset;
8907 }
8908 }
8909 pos++;
8910 }
8911
8912 tail = list;
8913 list = Qnil;
8914 for (; CONSP (tail); tail = XCDR (tail))
8915 {
8916 elt = XCAR (tail);
8917 if (CONSP (XCDR (XCDR (elt))))
8918 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8919 list);
8920 }
8921
8922 return list;
8923 }
8924
8925
8926 Lisp_Object
8927 code_convert_region (Lisp_Object start, Lisp_Object end,
8928 Lisp_Object coding_system, Lisp_Object dst_object,
8929 int encodep, int norecord)
8930 {
8931 struct coding_system coding;
8932 EMACS_INT from, from_byte, to, to_byte;
8933 Lisp_Object src_object;
8934
8935 CHECK_NUMBER_COERCE_MARKER (start);
8936 CHECK_NUMBER_COERCE_MARKER (end);
8937 if (NILP (coding_system))
8938 coding_system = Qno_conversion;
8939 else
8940 CHECK_CODING_SYSTEM (coding_system);
8941 src_object = Fcurrent_buffer ();
8942 if (NILP (dst_object))
8943 dst_object = src_object;
8944 else if (! EQ (dst_object, Qt))
8945 CHECK_BUFFER (dst_object);
8946
8947 validate_region (&start, &end);
8948 from = XFASTINT (start);
8949 from_byte = CHAR_TO_BYTE (from);
8950 to = XFASTINT (end);
8951 to_byte = CHAR_TO_BYTE (to);
8952
8953 setup_coding_system (coding_system, &coding);
8954 coding.mode |= CODING_MODE_LAST_BLOCK;
8955
8956 if (encodep)
8957 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8958 dst_object);
8959 else
8960 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8961 dst_object);
8962 if (! norecord)
8963 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8964
8965 return (BUFFERP (dst_object)
8966 ? make_number (coding.produced_char)
8967 : coding.dst_object);
8968 }
8969
8970
8971 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
8972 3, 4, "r\nzCoding system: ",
8973 doc: /* Decode the current region from the specified coding system.
8974 When called from a program, takes four arguments:
8975 START, END, CODING-SYSTEM, and DESTINATION.
8976 START and END are buffer positions.
8977
8978 Optional 4th arguments DESTINATION specifies where the decoded text goes.
8979 If nil, the region between START and END is replaced by the decoded text.
8980 If buffer, the decoded text is inserted in that buffer after point (point
8981 does not move).
8982 In those cases, the length of the decoded text is returned.
8983 If DESTINATION is t, the decoded text is returned.
8984
8985 This function sets `last-coding-system-used' to the precise coding system
8986 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8987 not fully specified.) */)
8988 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8989 {
8990 return code_convert_region (start, end, coding_system, destination, 0, 0);
8991 }
8992
8993 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
8994 3, 4, "r\nzCoding system: ",
8995 doc: /* Encode the current region by specified coding system.
8996 When called from a program, takes four arguments:
8997 START, END, CODING-SYSTEM and DESTINATION.
8998 START and END are buffer positions.
8999
9000 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9001 If nil, the region between START and END is replace by the encoded text.
9002 If buffer, the encoded text is inserted in that buffer after point (point
9003 does not move).
9004 In those cases, the length of the encoded text is returned.
9005 If DESTINATION is t, the encoded text is returned.
9006
9007 This function sets `last-coding-system-used' to the precise coding system
9008 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9009 not fully specified.) */)
9010 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9011 {
9012 return code_convert_region (start, end, coding_system, destination, 1, 0);
9013 }
9014
9015 Lisp_Object
9016 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
9017 Lisp_Object dst_object, int encodep, int nocopy, int norecord)
9018 {
9019 struct coding_system coding;
9020 EMACS_INT chars, bytes;
9021
9022 CHECK_STRING (string);
9023 if (NILP (coding_system))
9024 {
9025 if (! norecord)
9026 Vlast_coding_system_used = Qno_conversion;
9027 if (NILP (dst_object))
9028 return (nocopy ? Fcopy_sequence (string) : string);
9029 }
9030
9031 if (NILP (coding_system))
9032 coding_system = Qno_conversion;
9033 else
9034 CHECK_CODING_SYSTEM (coding_system);
9035 if (NILP (dst_object))
9036 dst_object = Qt;
9037 else if (! EQ (dst_object, Qt))
9038 CHECK_BUFFER (dst_object);
9039
9040 setup_coding_system (coding_system, &coding);
9041 coding.mode |= CODING_MODE_LAST_BLOCK;
9042 chars = SCHARS (string);
9043 bytes = SBYTES (string);
9044 if (encodep)
9045 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9046 else
9047 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9048 if (! norecord)
9049 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9050
9051 return (BUFFERP (dst_object)
9052 ? make_number (coding.produced_char)
9053 : coding.dst_object);
9054 }
9055
9056
9057 /* Encode or decode STRING according to CODING_SYSTEM.
9058 Do not set Vlast_coding_system_used.
9059
9060 This function is called only from macros DECODE_FILE and
9061 ENCODE_FILE, thus we ignore character composition. */
9062
9063 Lisp_Object
9064 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
9065 int encodep)
9066 {
9067 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9068 }
9069
9070
9071 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9072 2, 4, 0,
9073 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9074
9075 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9076 if the decoding operation is trivial.
9077
9078 Optional fourth arg BUFFER non-nil means that the decoded text is
9079 inserted in that buffer after point (point does not move). In this
9080 case, the return value is the length of the decoded text.
9081
9082 This function sets `last-coding-system-used' to the precise coding system
9083 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9084 not fully specified.) */)
9085 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9086 {
9087 return code_convert_string (string, coding_system, buffer,
9088 0, ! NILP (nocopy), 0);
9089 }
9090
9091 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9092 2, 4, 0,
9093 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9094
9095 Optional third arg NOCOPY non-nil means it is OK to return STRING
9096 itself if the encoding operation is trivial.
9097
9098 Optional fourth arg BUFFER non-nil means that the encoded text is
9099 inserted in that buffer after point (point does not move). In this
9100 case, the return value is the length of the encoded text.
9101
9102 This function sets `last-coding-system-used' to the precise coding system
9103 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9104 not fully specified.) */)
9105 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9106 {
9107 return code_convert_string (string, coding_system, buffer,
9108 1, ! NILP (nocopy), 1);
9109 }
9110
9111 \f
9112 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9113 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9114 Return the corresponding character. */)
9115 (Lisp_Object code)
9116 {
9117 Lisp_Object spec, attrs, val;
9118 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9119 int c;
9120
9121 CHECK_NATNUM (code);
9122 c = XFASTINT (code);
9123 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9124 attrs = AREF (spec, 0);
9125
9126 if (ASCII_BYTE_P (c)
9127 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9128 return code;
9129
9130 val = CODING_ATTR_CHARSET_LIST (attrs);
9131 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9132 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9133 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9134
9135 if (c <= 0x7F)
9136 charset = charset_roman;
9137 else if (c >= 0xA0 && c < 0xDF)
9138 {
9139 charset = charset_kana;
9140 c -= 0x80;
9141 }
9142 else
9143 {
9144 int s1 = c >> 8, s2 = c & 0xFF;
9145
9146 if (s1 < 0x81 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF
9147 || s2 < 0x40 || s2 == 0x7F || s2 > 0xFC)
9148 error ("Invalid code: %d", code);
9149 SJIS_TO_JIS (c);
9150 charset = charset_kanji;
9151 }
9152 c = DECODE_CHAR (charset, c);
9153 if (c < 0)
9154 error ("Invalid code: %d", code);
9155 return make_number (c);
9156 }
9157
9158
9159 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9160 doc: /* Encode a Japanese character CH to shift_jis encoding.
9161 Return the corresponding code in SJIS. */)
9162 (Lisp_Object ch)
9163 {
9164 Lisp_Object spec, attrs, charset_list;
9165 int c;
9166 struct charset *charset;
9167 unsigned code;
9168
9169 CHECK_CHARACTER (ch);
9170 c = XFASTINT (ch);
9171 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9172 attrs = AREF (spec, 0);
9173
9174 if (ASCII_CHAR_P (c)
9175 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9176 return ch;
9177
9178 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9179 charset = char_charset (c, charset_list, &code);
9180 if (code == CHARSET_INVALID_CODE (charset))
9181 error ("Can't encode by shift_jis encoding: %d", c);
9182 JIS_TO_SJIS (code);
9183
9184 return make_number (code);
9185 }
9186
9187 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9188 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9189 Return the corresponding character. */)
9190 (Lisp_Object code)
9191 {
9192 Lisp_Object spec, attrs, val;
9193 struct charset *charset_roman, *charset_big5, *charset;
9194 int c;
9195
9196 CHECK_NATNUM (code);
9197 c = XFASTINT (code);
9198 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9199 attrs = AREF (spec, 0);
9200
9201 if (ASCII_BYTE_P (c)
9202 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9203 return code;
9204
9205 val = CODING_ATTR_CHARSET_LIST (attrs);
9206 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9207 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9208
9209 if (c <= 0x7F)
9210 charset = charset_roman;
9211 else
9212 {
9213 int b1 = c >> 8, b2 = c & 0x7F;
9214 if (b1 < 0xA1 || b1 > 0xFE
9215 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9216 error ("Invalid code: %d", code);
9217 charset = charset_big5;
9218 }
9219 c = DECODE_CHAR (charset, (unsigned )c);
9220 if (c < 0)
9221 error ("Invalid code: %d", code);
9222 return make_number (c);
9223 }
9224
9225 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9226 doc: /* Encode the Big5 character CH to BIG5 coding system.
9227 Return the corresponding character code in Big5. */)
9228 (Lisp_Object ch)
9229 {
9230 Lisp_Object spec, attrs, charset_list;
9231 struct charset *charset;
9232 int c;
9233 unsigned code;
9234
9235 CHECK_CHARACTER (ch);
9236 c = XFASTINT (ch);
9237 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9238 attrs = AREF (spec, 0);
9239 if (ASCII_CHAR_P (c)
9240 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9241 return ch;
9242
9243 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9244 charset = char_charset (c, charset_list, &code);
9245 if (code == CHARSET_INVALID_CODE (charset))
9246 error ("Can't encode by Big5 encoding: %d", c);
9247
9248 return make_number (code);
9249 }
9250
9251 \f
9252 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9253 Sset_terminal_coding_system_internal, 1, 2, 0,
9254 doc: /* Internal use only. */)
9255 (Lisp_Object coding_system, Lisp_Object terminal)
9256 {
9257 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9258 CHECK_SYMBOL (coding_system);
9259 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9260 /* We had better not send unsafe characters to terminal. */
9261 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9262 /* Characer composition should be disabled. */
9263 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9264 terminal_coding->src_multibyte = 1;
9265 terminal_coding->dst_multibyte = 0;
9266 return Qnil;
9267 }
9268
9269 DEFUN ("set-safe-terminal-coding-system-internal",
9270 Fset_safe_terminal_coding_system_internal,
9271 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9272 doc: /* Internal use only. */)
9273 (Lisp_Object coding_system)
9274 {
9275 CHECK_SYMBOL (coding_system);
9276 setup_coding_system (Fcheck_coding_system (coding_system),
9277 &safe_terminal_coding);
9278 /* Characer composition should be disabled. */
9279 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9280 safe_terminal_coding.src_multibyte = 1;
9281 safe_terminal_coding.dst_multibyte = 0;
9282 return Qnil;
9283 }
9284
9285 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9286 Sterminal_coding_system, 0, 1, 0,
9287 doc: /* Return coding system specified for terminal output on the given terminal.
9288 TERMINAL may be a terminal object, a frame, or nil for the selected
9289 frame's terminal device. */)
9290 (Lisp_Object terminal)
9291 {
9292 struct coding_system *terminal_coding
9293 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9294 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9295
9296 /* For backward compatibility, return nil if it is `undecided'. */
9297 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9298 }
9299
9300 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9301 Sset_keyboard_coding_system_internal, 1, 2, 0,
9302 doc: /* Internal use only. */)
9303 (Lisp_Object coding_system, Lisp_Object terminal)
9304 {
9305 struct terminal *t = get_terminal (terminal, 1);
9306 CHECK_SYMBOL (coding_system);
9307 if (NILP (coding_system))
9308 coding_system = Qno_conversion;
9309 else
9310 Fcheck_coding_system (coding_system);
9311 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9312 /* Characer composition should be disabled. */
9313 TERMINAL_KEYBOARD_CODING (t)->common_flags
9314 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9315 return Qnil;
9316 }
9317
9318 DEFUN ("keyboard-coding-system",
9319 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9320 doc: /* Return coding system specified for decoding keyboard input. */)
9321 (Lisp_Object terminal)
9322 {
9323 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9324 (get_terminal (terminal, 1))->id);
9325 }
9326
9327 \f
9328 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9329 Sfind_operation_coding_system, 1, MANY, 0,
9330 doc: /* Choose a coding system for an operation based on the target name.
9331 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9332 DECODING-SYSTEM is the coding system to use for decoding
9333 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9334 for encoding (in case OPERATION does encoding).
9335
9336 The first argument OPERATION specifies an I/O primitive:
9337 For file I/O, `insert-file-contents' or `write-region'.
9338 For process I/O, `call-process', `call-process-region', or `start-process'.
9339 For network I/O, `open-network-stream'.
9340
9341 The remaining arguments should be the same arguments that were passed
9342 to the primitive. Depending on which primitive, one of those arguments
9343 is selected as the TARGET. For example, if OPERATION does file I/O,
9344 whichever argument specifies the file name is TARGET.
9345
9346 TARGET has a meaning which depends on OPERATION:
9347 For file I/O, TARGET is a file name (except for the special case below).
9348 For process I/O, TARGET is a process name.
9349 For network I/O, TARGET is a service name or a port number.
9350
9351 This function looks up what is specified for TARGET in
9352 `file-coding-system-alist', `process-coding-system-alist',
9353 or `network-coding-system-alist' depending on OPERATION.
9354 They may specify a coding system, a cons of coding systems,
9355 or a function symbol to call.
9356 In the last case, we call the function with one argument,
9357 which is a list of all the arguments given to this function.
9358 If the function can't decide a coding system, it can return
9359 `undecided' so that the normal code-detection is performed.
9360
9361 If OPERATION is `insert-file-contents', the argument corresponding to
9362 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9363 file name to look up, and BUFFER is a buffer that contains the file's
9364 contents (not yet decoded). If `file-coding-system-alist' specifies a
9365 function to call for FILENAME, that function should examine the
9366 contents of BUFFER instead of reading the file.
9367
9368 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9369 (int nargs, Lisp_Object *args)
9370 {
9371 Lisp_Object operation, target_idx, target, val;
9372 register Lisp_Object chain;
9373
9374 if (nargs < 2)
9375 error ("Too few arguments");
9376 operation = args[0];
9377 if (!SYMBOLP (operation)
9378 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
9379 error ("Invalid first argument");
9380 if (nargs < 1 + XINT (target_idx))
9381 error ("Too few arguments for operation: %s",
9382 SDATA (SYMBOL_NAME (operation)));
9383 target = args[XINT (target_idx) + 1];
9384 if (!(STRINGP (target)
9385 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9386 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9387 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9388 error ("Invalid %dth argument", XINT (target_idx) + 1);
9389 if (CONSP (target))
9390 target = XCAR (target);
9391
9392 chain = ((EQ (operation, Qinsert_file_contents)
9393 || EQ (operation, Qwrite_region))
9394 ? Vfile_coding_system_alist
9395 : (EQ (operation, Qopen_network_stream)
9396 ? Vnetwork_coding_system_alist
9397 : Vprocess_coding_system_alist));
9398 if (NILP (chain))
9399 return Qnil;
9400
9401 for (; CONSP (chain); chain = XCDR (chain))
9402 {
9403 Lisp_Object elt;
9404
9405 elt = XCAR (chain);
9406 if (CONSP (elt)
9407 && ((STRINGP (target)
9408 && STRINGP (XCAR (elt))
9409 && fast_string_match (XCAR (elt), target) >= 0)
9410 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9411 {
9412 val = XCDR (elt);
9413 /* Here, if VAL is both a valid coding system and a valid
9414 function symbol, we return VAL as a coding system. */
9415 if (CONSP (val))
9416 return val;
9417 if (! SYMBOLP (val))
9418 return Qnil;
9419 if (! NILP (Fcoding_system_p (val)))
9420 return Fcons (val, val);
9421 if (! NILP (Ffboundp (val)))
9422 {
9423 /* We use call1 rather than safe_call1
9424 so as to get bug reports about functions called here
9425 which don't handle the current interface. */
9426 val = call1 (val, Flist (nargs, args));
9427 if (CONSP (val))
9428 return val;
9429 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9430 return Fcons (val, val);
9431 }
9432 return Qnil;
9433 }
9434 }
9435 return Qnil;
9436 }
9437
9438 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9439 Sset_coding_system_priority, 0, MANY, 0,
9440 doc: /* Assign higher priority to the coding systems given as arguments.
9441 If multiple coding systems belong to the same category,
9442 all but the first one are ignored.
9443
9444 usage: (set-coding-system-priority &rest coding-systems) */)
9445 (int nargs, Lisp_Object *args)
9446 {
9447 int i, j;
9448 int changed[coding_category_max];
9449 enum coding_category priorities[coding_category_max];
9450
9451 memset (changed, 0, sizeof changed);
9452
9453 for (i = j = 0; i < nargs; i++)
9454 {
9455 enum coding_category category;
9456 Lisp_Object spec, attrs;
9457
9458 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9459 attrs = AREF (spec, 0);
9460 category = XINT (CODING_ATTR_CATEGORY (attrs));
9461 if (changed[category])
9462 /* Ignore this coding system because a coding system of the
9463 same category already had a higher priority. */
9464 continue;
9465 changed[category] = 1;
9466 priorities[j++] = category;
9467 if (coding_categories[category].id >= 0
9468 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9469 setup_coding_system (args[i], &coding_categories[category]);
9470 Fset (AREF (Vcoding_category_table, category), args[i]);
9471 }
9472
9473 /* Now we have decided top J priorities. Reflect the order of the
9474 original priorities to the remaining priorities. */
9475
9476 for (i = j, j = 0; i < coding_category_max; i++, j++)
9477 {
9478 while (j < coding_category_max
9479 && changed[coding_priorities[j]])
9480 j++;
9481 if (j == coding_category_max)
9482 abort ();
9483 priorities[i] = coding_priorities[j];
9484 }
9485
9486 memcpy (coding_priorities, priorities, sizeof priorities);
9487
9488 /* Update `coding-category-list'. */
9489 Vcoding_category_list = Qnil;
9490 for (i = coding_category_max - 1; i >= 0; i--)
9491 Vcoding_category_list
9492 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9493 Vcoding_category_list);
9494
9495 return Qnil;
9496 }
9497
9498 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9499 Scoding_system_priority_list, 0, 1, 0,
9500 doc: /* Return a list of coding systems ordered by their priorities.
9501 The list contains a subset of coding systems; i.e. coding systems
9502 assigned to each coding category (see `coding-category-list').
9503
9504 HIGHESTP non-nil means just return the highest priority one. */)
9505 (Lisp_Object highestp)
9506 {
9507 int i;
9508 Lisp_Object val;
9509
9510 for (i = 0, val = Qnil; i < coding_category_max; i++)
9511 {
9512 enum coding_category category = coding_priorities[i];
9513 int id = coding_categories[category].id;
9514 Lisp_Object attrs;
9515
9516 if (id < 0)
9517 continue;
9518 attrs = CODING_ID_ATTRS (id);
9519 if (! NILP (highestp))
9520 return CODING_ATTR_BASE_NAME (attrs);
9521 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9522 }
9523 return Fnreverse (val);
9524 }
9525
9526 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9527
9528 static Lisp_Object
9529 make_subsidiaries (Lisp_Object base)
9530 {
9531 Lisp_Object subsidiaries;
9532 int base_name_len = SBYTES (SYMBOL_NAME (base));
9533 char *buf = (char *) alloca (base_name_len + 6);
9534 int i;
9535
9536 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9537 subsidiaries = Fmake_vector (make_number (3), Qnil);
9538 for (i = 0; i < 3; i++)
9539 {
9540 memcpy (buf + base_name_len, suffixes[i], strlen (suffixes[i]) + 1);
9541 ASET (subsidiaries, i, intern (buf));
9542 }
9543 return subsidiaries;
9544 }
9545
9546
9547 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9548 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9549 doc: /* For internal use only.
9550 usage: (define-coding-system-internal ...) */)
9551 (int nargs, Lisp_Object *args)
9552 {
9553 Lisp_Object name;
9554 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9555 Lisp_Object attrs; /* Vector of attributes. */
9556 Lisp_Object eol_type;
9557 Lisp_Object aliases;
9558 Lisp_Object coding_type, charset_list, safe_charsets;
9559 enum coding_category category;
9560 Lisp_Object tail, val;
9561 int max_charset_id = 0;
9562 int i;
9563
9564 if (nargs < coding_arg_max)
9565 goto short_args;
9566
9567 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9568
9569 name = args[coding_arg_name];
9570 CHECK_SYMBOL (name);
9571 CODING_ATTR_BASE_NAME (attrs) = name;
9572
9573 val = args[coding_arg_mnemonic];
9574 if (! STRINGP (val))
9575 CHECK_CHARACTER (val);
9576 CODING_ATTR_MNEMONIC (attrs) = val;
9577
9578 coding_type = args[coding_arg_coding_type];
9579 CHECK_SYMBOL (coding_type);
9580 CODING_ATTR_TYPE (attrs) = coding_type;
9581
9582 charset_list = args[coding_arg_charset_list];
9583 if (SYMBOLP (charset_list))
9584 {
9585 if (EQ (charset_list, Qiso_2022))
9586 {
9587 if (! EQ (coding_type, Qiso_2022))
9588 error ("Invalid charset-list");
9589 charset_list = Viso_2022_charset_list;
9590 }
9591 else if (EQ (charset_list, Qemacs_mule))
9592 {
9593 if (! EQ (coding_type, Qemacs_mule))
9594 error ("Invalid charset-list");
9595 charset_list = Vemacs_mule_charset_list;
9596 }
9597 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9598 if (max_charset_id < XFASTINT (XCAR (tail)))
9599 max_charset_id = XFASTINT (XCAR (tail));
9600 }
9601 else
9602 {
9603 charset_list = Fcopy_sequence (charset_list);
9604 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9605 {
9606 struct charset *charset;
9607
9608 val = XCAR (tail);
9609 CHECK_CHARSET_GET_CHARSET (val, charset);
9610 if (EQ (coding_type, Qiso_2022)
9611 ? CHARSET_ISO_FINAL (charset) < 0
9612 : EQ (coding_type, Qemacs_mule)
9613 ? CHARSET_EMACS_MULE_ID (charset) < 0
9614 : 0)
9615 error ("Can't handle charset `%s'",
9616 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9617
9618 XSETCAR (tail, make_number (charset->id));
9619 if (max_charset_id < charset->id)
9620 max_charset_id = charset->id;
9621 }
9622 }
9623 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9624
9625 safe_charsets = make_uninit_string (max_charset_id + 1);
9626 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9627 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9628 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9629 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9630
9631 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9632
9633 val = args[coding_arg_decode_translation_table];
9634 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9635 CHECK_SYMBOL (val);
9636 CODING_ATTR_DECODE_TBL (attrs) = val;
9637
9638 val = args[coding_arg_encode_translation_table];
9639 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9640 CHECK_SYMBOL (val);
9641 CODING_ATTR_ENCODE_TBL (attrs) = val;
9642
9643 val = args[coding_arg_post_read_conversion];
9644 CHECK_SYMBOL (val);
9645 CODING_ATTR_POST_READ (attrs) = val;
9646
9647 val = args[coding_arg_pre_write_conversion];
9648 CHECK_SYMBOL (val);
9649 CODING_ATTR_PRE_WRITE (attrs) = val;
9650
9651 val = args[coding_arg_default_char];
9652 if (NILP (val))
9653 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9654 else
9655 {
9656 CHECK_CHARACTER (val);
9657 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9658 }
9659
9660 val = args[coding_arg_for_unibyte];
9661 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9662
9663 val = args[coding_arg_plist];
9664 CHECK_LIST (val);
9665 CODING_ATTR_PLIST (attrs) = val;
9666
9667 if (EQ (coding_type, Qcharset))
9668 {
9669 /* Generate a lisp vector of 256 elements. Each element is nil,
9670 integer, or a list of charset IDs.
9671
9672 If Nth element is nil, the byte code N is invalid in this
9673 coding system.
9674
9675 If Nth element is a number NUM, N is the first byte of a
9676 charset whose ID is NUM.
9677
9678 If Nth element is a list of charset IDs, N is the first byte
9679 of one of them. The list is sorted by dimensions of the
9680 charsets. A charset of smaller dimension comes firtst. */
9681 val = Fmake_vector (make_number (256), Qnil);
9682
9683 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9684 {
9685 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9686 int dim = CHARSET_DIMENSION (charset);
9687 int idx = (dim - 1) * 4;
9688
9689 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9690 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9691
9692 for (i = charset->code_space[idx];
9693 i <= charset->code_space[idx + 1]; i++)
9694 {
9695 Lisp_Object tmp, tmp2;
9696 int dim2;
9697
9698 tmp = AREF (val, i);
9699 if (NILP (tmp))
9700 tmp = XCAR (tail);
9701 else if (NUMBERP (tmp))
9702 {
9703 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9704 if (dim < dim2)
9705 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9706 else
9707 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9708 }
9709 else
9710 {
9711 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9712 {
9713 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9714 if (dim < dim2)
9715 break;
9716 }
9717 if (NILP (tmp2))
9718 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9719 else
9720 {
9721 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9722 XSETCAR (tmp2, XCAR (tail));
9723 }
9724 }
9725 ASET (val, i, tmp);
9726 }
9727 }
9728 ASET (attrs, coding_attr_charset_valids, val);
9729 category = coding_category_charset;
9730 }
9731 else if (EQ (coding_type, Qccl))
9732 {
9733 Lisp_Object valids;
9734
9735 if (nargs < coding_arg_ccl_max)
9736 goto short_args;
9737
9738 val = args[coding_arg_ccl_decoder];
9739 CHECK_CCL_PROGRAM (val);
9740 if (VECTORP (val))
9741 val = Fcopy_sequence (val);
9742 ASET (attrs, coding_attr_ccl_decoder, val);
9743
9744 val = args[coding_arg_ccl_encoder];
9745 CHECK_CCL_PROGRAM (val);
9746 if (VECTORP (val))
9747 val = Fcopy_sequence (val);
9748 ASET (attrs, coding_attr_ccl_encoder, val);
9749
9750 val = args[coding_arg_ccl_valids];
9751 valids = Fmake_string (make_number (256), make_number (0));
9752 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9753 {
9754 int from, to;
9755
9756 val = Fcar (tail);
9757 if (INTEGERP (val))
9758 {
9759 from = to = XINT (val);
9760 if (from < 0 || from > 255)
9761 args_out_of_range_3 (val, make_number (0), make_number (255));
9762 }
9763 else
9764 {
9765 CHECK_CONS (val);
9766 CHECK_NATNUM_CAR (val);
9767 CHECK_NATNUM_CDR (val);
9768 from = XINT (XCAR (val));
9769 if (from > 255)
9770 args_out_of_range_3 (XCAR (val),
9771 make_number (0), make_number (255));
9772 to = XINT (XCDR (val));
9773 if (to < from || to > 255)
9774 args_out_of_range_3 (XCDR (val),
9775 XCAR (val), make_number (255));
9776 }
9777 for (i = from; i <= to; i++)
9778 SSET (valids, i, 1);
9779 }
9780 ASET (attrs, coding_attr_ccl_valids, valids);
9781
9782 category = coding_category_ccl;
9783 }
9784 else if (EQ (coding_type, Qutf_16))
9785 {
9786 Lisp_Object bom, endian;
9787
9788 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9789
9790 if (nargs < coding_arg_utf16_max)
9791 goto short_args;
9792
9793 bom = args[coding_arg_utf16_bom];
9794 if (! NILP (bom) && ! EQ (bom, Qt))
9795 {
9796 CHECK_CONS (bom);
9797 val = XCAR (bom);
9798 CHECK_CODING_SYSTEM (val);
9799 val = XCDR (bom);
9800 CHECK_CODING_SYSTEM (val);
9801 }
9802 ASET (attrs, coding_attr_utf_bom, bom);
9803
9804 endian = args[coding_arg_utf16_endian];
9805 CHECK_SYMBOL (endian);
9806 if (NILP (endian))
9807 endian = Qbig;
9808 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9809 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9810 ASET (attrs, coding_attr_utf_16_endian, endian);
9811
9812 category = (CONSP (bom)
9813 ? coding_category_utf_16_auto
9814 : NILP (bom)
9815 ? (EQ (endian, Qbig)
9816 ? coding_category_utf_16_be_nosig
9817 : coding_category_utf_16_le_nosig)
9818 : (EQ (endian, Qbig)
9819 ? coding_category_utf_16_be
9820 : coding_category_utf_16_le));
9821 }
9822 else if (EQ (coding_type, Qiso_2022))
9823 {
9824 Lisp_Object initial, reg_usage, request, flags;
9825 int i;
9826
9827 if (nargs < coding_arg_iso2022_max)
9828 goto short_args;
9829
9830 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9831 CHECK_VECTOR (initial);
9832 for (i = 0; i < 4; i++)
9833 {
9834 val = Faref (initial, make_number (i));
9835 if (! NILP (val))
9836 {
9837 struct charset *charset;
9838
9839 CHECK_CHARSET_GET_CHARSET (val, charset);
9840 ASET (initial, i, make_number (CHARSET_ID (charset)));
9841 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9842 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9843 }
9844 else
9845 ASET (initial, i, make_number (-1));
9846 }
9847
9848 reg_usage = args[coding_arg_iso2022_reg_usage];
9849 CHECK_CONS (reg_usage);
9850 CHECK_NUMBER_CAR (reg_usage);
9851 CHECK_NUMBER_CDR (reg_usage);
9852
9853 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9854 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9855 {
9856 int id;
9857 Lisp_Object tmp;
9858
9859 val = Fcar (tail);
9860 CHECK_CONS (val);
9861 tmp = XCAR (val);
9862 CHECK_CHARSET_GET_ID (tmp, id);
9863 CHECK_NATNUM_CDR (val);
9864 if (XINT (XCDR (val)) >= 4)
9865 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9866 XSETCAR (val, make_number (id));
9867 }
9868
9869 flags = args[coding_arg_iso2022_flags];
9870 CHECK_NATNUM (flags);
9871 i = XINT (flags);
9872 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9873 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9874
9875 ASET (attrs, coding_attr_iso_initial, initial);
9876 ASET (attrs, coding_attr_iso_usage, reg_usage);
9877 ASET (attrs, coding_attr_iso_request, request);
9878 ASET (attrs, coding_attr_iso_flags, flags);
9879 setup_iso_safe_charsets (attrs);
9880
9881 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9882 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9883 | CODING_ISO_FLAG_SINGLE_SHIFT))
9884 ? coding_category_iso_7_else
9885 : EQ (args[coding_arg_charset_list], Qiso_2022)
9886 ? coding_category_iso_7
9887 : coding_category_iso_7_tight);
9888 else
9889 {
9890 int id = XINT (AREF (initial, 1));
9891
9892 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9893 || EQ (args[coding_arg_charset_list], Qiso_2022)
9894 || id < 0)
9895 ? coding_category_iso_8_else
9896 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9897 ? coding_category_iso_8_1
9898 : coding_category_iso_8_2);
9899 }
9900 if (category != coding_category_iso_8_1
9901 && category != coding_category_iso_8_2)
9902 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9903 }
9904 else if (EQ (coding_type, Qemacs_mule))
9905 {
9906 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9907 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9908 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9909 category = coding_category_emacs_mule;
9910 }
9911 else if (EQ (coding_type, Qshift_jis))
9912 {
9913
9914 struct charset *charset;
9915
9916 if (XINT (Flength (charset_list)) != 3
9917 && XINT (Flength (charset_list)) != 4)
9918 error ("There should be three or four charsets");
9919
9920 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9921 if (CHARSET_DIMENSION (charset) != 1)
9922 error ("Dimension of charset %s is not one",
9923 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9924 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9925 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9926
9927 charset_list = XCDR (charset_list);
9928 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9929 if (CHARSET_DIMENSION (charset) != 1)
9930 error ("Dimension of charset %s is not one",
9931 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9932
9933 charset_list = XCDR (charset_list);
9934 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9935 if (CHARSET_DIMENSION (charset) != 2)
9936 error ("Dimension of charset %s is not two",
9937 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9938
9939 charset_list = XCDR (charset_list);
9940 if (! NILP (charset_list))
9941 {
9942 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9943 if (CHARSET_DIMENSION (charset) != 2)
9944 error ("Dimension of charset %s is not two",
9945 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9946 }
9947
9948 category = coding_category_sjis;
9949 Vsjis_coding_system = name;
9950 }
9951 else if (EQ (coding_type, Qbig5))
9952 {
9953 struct charset *charset;
9954
9955 if (XINT (Flength (charset_list)) != 2)
9956 error ("There should be just two charsets");
9957
9958 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9959 if (CHARSET_DIMENSION (charset) != 1)
9960 error ("Dimension of charset %s is not one",
9961 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9962 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9963 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9964
9965 charset_list = XCDR (charset_list);
9966 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9967 if (CHARSET_DIMENSION (charset) != 2)
9968 error ("Dimension of charset %s is not two",
9969 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9970
9971 category = coding_category_big5;
9972 Vbig5_coding_system = name;
9973 }
9974 else if (EQ (coding_type, Qraw_text))
9975 {
9976 category = coding_category_raw_text;
9977 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9978 }
9979 else if (EQ (coding_type, Qutf_8))
9980 {
9981 Lisp_Object bom;
9982
9983 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9984
9985 if (nargs < coding_arg_utf8_max)
9986 goto short_args;
9987
9988 bom = args[coding_arg_utf8_bom];
9989 if (! NILP (bom) && ! EQ (bom, Qt))
9990 {
9991 CHECK_CONS (bom);
9992 val = XCAR (bom);
9993 CHECK_CODING_SYSTEM (val);
9994 val = XCDR (bom);
9995 CHECK_CODING_SYSTEM (val);
9996 }
9997 ASET (attrs, coding_attr_utf_bom, bom);
9998
9999 category = (CONSP (bom) ? coding_category_utf_8_auto
10000 : NILP (bom) ? coding_category_utf_8_nosig
10001 : coding_category_utf_8_sig);
10002 }
10003 else if (EQ (coding_type, Qundecided))
10004 category = coding_category_undecided;
10005 else
10006 error ("Invalid coding system type: %s",
10007 SDATA (SYMBOL_NAME (coding_type)));
10008
10009 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10010 CODING_ATTR_PLIST (attrs)
10011 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10012 CODING_ATTR_PLIST (attrs)));
10013 CODING_ATTR_PLIST (attrs)
10014 = Fcons (QCascii_compatible_p,
10015 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10016 CODING_ATTR_PLIST (attrs)));
10017
10018 eol_type = args[coding_arg_eol_type];
10019 if (! NILP (eol_type)
10020 && ! EQ (eol_type, Qunix)
10021 && ! EQ (eol_type, Qdos)
10022 && ! EQ (eol_type, Qmac))
10023 error ("Invalid eol-type");
10024
10025 aliases = Fcons (name, Qnil);
10026
10027 if (NILP (eol_type))
10028 {
10029 eol_type = make_subsidiaries (name);
10030 for (i = 0; i < 3; i++)
10031 {
10032 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10033
10034 this_name = AREF (eol_type, i);
10035 this_aliases = Fcons (this_name, Qnil);
10036 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10037 this_spec = Fmake_vector (make_number (3), attrs);
10038 ASET (this_spec, 1, this_aliases);
10039 ASET (this_spec, 2, this_eol_type);
10040 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10041 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10042 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10043 if (NILP (val))
10044 Vcoding_system_alist
10045 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10046 Vcoding_system_alist);
10047 }
10048 }
10049
10050 spec_vec = Fmake_vector (make_number (3), attrs);
10051 ASET (spec_vec, 1, aliases);
10052 ASET (spec_vec, 2, eol_type);
10053
10054 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10055 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10056 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10057 if (NILP (val))
10058 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10059 Vcoding_system_alist);
10060
10061 {
10062 int id = coding_categories[category].id;
10063
10064 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10065 setup_coding_system (name, &coding_categories[category]);
10066 }
10067
10068 return Qnil;
10069
10070 short_args:
10071 return Fsignal (Qwrong_number_of_arguments,
10072 Fcons (intern ("define-coding-system-internal"),
10073 make_number (nargs)));
10074 }
10075
10076
10077 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10078 3, 3, 0,
10079 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10080 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10081 {
10082 Lisp_Object spec, attrs;
10083
10084 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10085 attrs = AREF (spec, 0);
10086 if (EQ (prop, QCmnemonic))
10087 {
10088 if (! STRINGP (val))
10089 CHECK_CHARACTER (val);
10090 CODING_ATTR_MNEMONIC (attrs) = val;
10091 }
10092 else if (EQ (prop, QCdefault_char))
10093 {
10094 if (NILP (val))
10095 val = make_number (' ');
10096 else
10097 CHECK_CHARACTER (val);
10098 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10099 }
10100 else if (EQ (prop, QCdecode_translation_table))
10101 {
10102 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10103 CHECK_SYMBOL (val);
10104 CODING_ATTR_DECODE_TBL (attrs) = val;
10105 }
10106 else if (EQ (prop, QCencode_translation_table))
10107 {
10108 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10109 CHECK_SYMBOL (val);
10110 CODING_ATTR_ENCODE_TBL (attrs) = val;
10111 }
10112 else if (EQ (prop, QCpost_read_conversion))
10113 {
10114 CHECK_SYMBOL (val);
10115 CODING_ATTR_POST_READ (attrs) = val;
10116 }
10117 else if (EQ (prop, QCpre_write_conversion))
10118 {
10119 CHECK_SYMBOL (val);
10120 CODING_ATTR_PRE_WRITE (attrs) = val;
10121 }
10122 else if (EQ (prop, QCascii_compatible_p))
10123 {
10124 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10125 }
10126
10127 CODING_ATTR_PLIST (attrs)
10128 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10129 return val;
10130 }
10131
10132
10133 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10134 Sdefine_coding_system_alias, 2, 2, 0,
10135 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10136 (Lisp_Object alias, Lisp_Object coding_system)
10137 {
10138 Lisp_Object spec, aliases, eol_type, val;
10139
10140 CHECK_SYMBOL (alias);
10141 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10142 aliases = AREF (spec, 1);
10143 /* ALIASES should be a list of length more than zero, and the first
10144 element is a base coding system. Append ALIAS at the tail of the
10145 list. */
10146 while (!NILP (XCDR (aliases)))
10147 aliases = XCDR (aliases);
10148 XSETCDR (aliases, Fcons (alias, Qnil));
10149
10150 eol_type = AREF (spec, 2);
10151 if (VECTORP (eol_type))
10152 {
10153 Lisp_Object subsidiaries;
10154 int i;
10155
10156 subsidiaries = make_subsidiaries (alias);
10157 for (i = 0; i < 3; i++)
10158 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10159 AREF (eol_type, i));
10160 }
10161
10162 Fputhash (alias, spec, Vcoding_system_hash_table);
10163 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10164 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10165 if (NILP (val))
10166 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10167 Vcoding_system_alist);
10168
10169 return Qnil;
10170 }
10171
10172 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10173 1, 1, 0,
10174 doc: /* Return the base of CODING-SYSTEM.
10175 Any alias or subsidiary coding system is not a base coding system. */)
10176 (Lisp_Object coding_system)
10177 {
10178 Lisp_Object spec, attrs;
10179
10180 if (NILP (coding_system))
10181 return (Qno_conversion);
10182 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10183 attrs = AREF (spec, 0);
10184 return CODING_ATTR_BASE_NAME (attrs);
10185 }
10186
10187 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10188 1, 1, 0,
10189 doc: "Return the property list of CODING-SYSTEM.")
10190 (Lisp_Object coding_system)
10191 {
10192 Lisp_Object spec, attrs;
10193
10194 if (NILP (coding_system))
10195 coding_system = Qno_conversion;
10196 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10197 attrs = AREF (spec, 0);
10198 return CODING_ATTR_PLIST (attrs);
10199 }
10200
10201
10202 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10203 1, 1, 0,
10204 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10205 (Lisp_Object coding_system)
10206 {
10207 Lisp_Object spec;
10208
10209 if (NILP (coding_system))
10210 coding_system = Qno_conversion;
10211 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10212 return AREF (spec, 1);
10213 }
10214
10215 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10216 Scoding_system_eol_type, 1, 1, 0,
10217 doc: /* Return eol-type of CODING-SYSTEM.
10218 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10219
10220 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10221 and CR respectively.
10222
10223 A vector value indicates that a format of end-of-line should be
10224 detected automatically. Nth element of the vector is the subsidiary
10225 coding system whose eol-type is N. */)
10226 (Lisp_Object coding_system)
10227 {
10228 Lisp_Object spec, eol_type;
10229 int n;
10230
10231 if (NILP (coding_system))
10232 coding_system = Qno_conversion;
10233 if (! CODING_SYSTEM_P (coding_system))
10234 return Qnil;
10235 spec = CODING_SYSTEM_SPEC (coding_system);
10236 eol_type = AREF (spec, 2);
10237 if (VECTORP (eol_type))
10238 return Fcopy_sequence (eol_type);
10239 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10240 return make_number (n);
10241 }
10242
10243 #endif /* emacs */
10244
10245 \f
10246 /*** 9. Post-amble ***/
10247
10248 void
10249 init_coding_once (void)
10250 {
10251 int i;
10252
10253 for (i = 0; i < coding_category_max; i++)
10254 {
10255 coding_categories[i].id = -1;
10256 coding_priorities[i] = i;
10257 }
10258
10259 /* ISO2022 specific initialize routine. */
10260 for (i = 0; i < 0x20; i++)
10261 iso_code_class[i] = ISO_control_0;
10262 for (i = 0x21; i < 0x7F; i++)
10263 iso_code_class[i] = ISO_graphic_plane_0;
10264 for (i = 0x80; i < 0xA0; i++)
10265 iso_code_class[i] = ISO_control_1;
10266 for (i = 0xA1; i < 0xFF; i++)
10267 iso_code_class[i] = ISO_graphic_plane_1;
10268 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10269 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10270 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10271 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10272 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10273 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10274 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10275 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10276 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10277
10278 for (i = 0; i < 256; i++)
10279 {
10280 emacs_mule_bytes[i] = 1;
10281 }
10282 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10283 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10284 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10285 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10286 }
10287
10288 #ifdef emacs
10289
10290 void
10291 syms_of_coding (void)
10292 {
10293 staticpro (&Vcoding_system_hash_table);
10294 {
10295 Lisp_Object args[2];
10296 args[0] = QCtest;
10297 args[1] = Qeq;
10298 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10299 }
10300
10301 staticpro (&Vsjis_coding_system);
10302 Vsjis_coding_system = Qnil;
10303
10304 staticpro (&Vbig5_coding_system);
10305 Vbig5_coding_system = Qnil;
10306
10307 staticpro (&Vcode_conversion_reused_workbuf);
10308 Vcode_conversion_reused_workbuf = Qnil;
10309
10310 staticpro (&Vcode_conversion_workbuf_name);
10311 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10312
10313 reused_workbuf_in_use = 0;
10314
10315 DEFSYM (Qcharset, "charset");
10316 DEFSYM (Qtarget_idx, "target-idx");
10317 DEFSYM (Qcoding_system_history, "coding-system-history");
10318 Fset (Qcoding_system_history, Qnil);
10319
10320 /* Target FILENAME is the first argument. */
10321 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10322 /* Target FILENAME is the third argument. */
10323 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10324
10325 DEFSYM (Qcall_process, "call-process");
10326 /* Target PROGRAM is the first argument. */
10327 Fput (Qcall_process, Qtarget_idx, make_number (0));
10328
10329 DEFSYM (Qcall_process_region, "call-process-region");
10330 /* Target PROGRAM is the third argument. */
10331 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10332
10333 DEFSYM (Qstart_process, "start-process");
10334 /* Target PROGRAM is the third argument. */
10335 Fput (Qstart_process, Qtarget_idx, make_number (2));
10336
10337 DEFSYM (Qopen_network_stream, "open-network-stream");
10338 /* Target SERVICE is the fourth argument. */
10339 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10340
10341 DEFSYM (Qcoding_system, "coding-system");
10342 DEFSYM (Qcoding_aliases, "coding-aliases");
10343
10344 DEFSYM (Qeol_type, "eol-type");
10345 DEFSYM (Qunix, "unix");
10346 DEFSYM (Qdos, "dos");
10347
10348 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10349 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10350 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10351 DEFSYM (Qdefault_char, "default-char");
10352 DEFSYM (Qundecided, "undecided");
10353 DEFSYM (Qno_conversion, "no-conversion");
10354 DEFSYM (Qraw_text, "raw-text");
10355
10356 DEFSYM (Qiso_2022, "iso-2022");
10357
10358 DEFSYM (Qutf_8, "utf-8");
10359 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10360
10361 DEFSYM (Qutf_16, "utf-16");
10362 DEFSYM (Qbig, "big");
10363 DEFSYM (Qlittle, "little");
10364
10365 DEFSYM (Qshift_jis, "shift-jis");
10366 DEFSYM (Qbig5, "big5");
10367
10368 DEFSYM (Qcoding_system_p, "coding-system-p");
10369
10370 DEFSYM (Qcoding_system_error, "coding-system-error");
10371 Fput (Qcoding_system_error, Qerror_conditions,
10372 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10373 Fput (Qcoding_system_error, Qerror_message,
10374 make_pure_c_string ("Invalid coding system"));
10375
10376 /* Intern this now in case it isn't already done.
10377 Setting this variable twice is harmless.
10378 But don't staticpro it here--that is done in alloc.c. */
10379 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10380
10381 DEFSYM (Qtranslation_table, "translation-table");
10382 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10383 DEFSYM (Qtranslation_table_id, "translation-table-id");
10384 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10385 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10386
10387 DEFSYM (Qvalid_codes, "valid-codes");
10388
10389 DEFSYM (Qemacs_mule, "emacs-mule");
10390
10391 DEFSYM (QCcategory, ":category");
10392 DEFSYM (QCmnemonic, ":mnemonic");
10393 DEFSYM (QCdefault_char, ":default-char");
10394 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10395 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10396 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10397 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10398 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10399
10400 Vcoding_category_table
10401 = Fmake_vector (make_number (coding_category_max), Qnil);
10402 staticpro (&Vcoding_category_table);
10403 /* Followings are target of code detection. */
10404 ASET (Vcoding_category_table, coding_category_iso_7,
10405 intern_c_string ("coding-category-iso-7"));
10406 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10407 intern_c_string ("coding-category-iso-7-tight"));
10408 ASET (Vcoding_category_table, coding_category_iso_8_1,
10409 intern_c_string ("coding-category-iso-8-1"));
10410 ASET (Vcoding_category_table, coding_category_iso_8_2,
10411 intern_c_string ("coding-category-iso-8-2"));
10412 ASET (Vcoding_category_table, coding_category_iso_7_else,
10413 intern_c_string ("coding-category-iso-7-else"));
10414 ASET (Vcoding_category_table, coding_category_iso_8_else,
10415 intern_c_string ("coding-category-iso-8-else"));
10416 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10417 intern_c_string ("coding-category-utf-8-auto"));
10418 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10419 intern_c_string ("coding-category-utf-8"));
10420 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10421 intern_c_string ("coding-category-utf-8-sig"));
10422 ASET (Vcoding_category_table, coding_category_utf_16_be,
10423 intern_c_string ("coding-category-utf-16-be"));
10424 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10425 intern_c_string ("coding-category-utf-16-auto"));
10426 ASET (Vcoding_category_table, coding_category_utf_16_le,
10427 intern_c_string ("coding-category-utf-16-le"));
10428 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10429 intern_c_string ("coding-category-utf-16-be-nosig"));
10430 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10431 intern_c_string ("coding-category-utf-16-le-nosig"));
10432 ASET (Vcoding_category_table, coding_category_charset,
10433 intern_c_string ("coding-category-charset"));
10434 ASET (Vcoding_category_table, coding_category_sjis,
10435 intern_c_string ("coding-category-sjis"));
10436 ASET (Vcoding_category_table, coding_category_big5,
10437 intern_c_string ("coding-category-big5"));
10438 ASET (Vcoding_category_table, coding_category_ccl,
10439 intern_c_string ("coding-category-ccl"));
10440 ASET (Vcoding_category_table, coding_category_emacs_mule,
10441 intern_c_string ("coding-category-emacs-mule"));
10442 /* Followings are NOT target of code detection. */
10443 ASET (Vcoding_category_table, coding_category_raw_text,
10444 intern_c_string ("coding-category-raw-text"));
10445 ASET (Vcoding_category_table, coding_category_undecided,
10446 intern_c_string ("coding-category-undecided"));
10447
10448 DEFSYM (Qinsufficient_source, "insufficient-source");
10449 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10450 DEFSYM (Qinvalid_source, "invalid-source");
10451 DEFSYM (Qinterrupted, "interrupted");
10452 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10453 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10454
10455 defsubr (&Scoding_system_p);
10456 defsubr (&Sread_coding_system);
10457 defsubr (&Sread_non_nil_coding_system);
10458 defsubr (&Scheck_coding_system);
10459 defsubr (&Sdetect_coding_region);
10460 defsubr (&Sdetect_coding_string);
10461 defsubr (&Sfind_coding_systems_region_internal);
10462 defsubr (&Sunencodable_char_position);
10463 defsubr (&Scheck_coding_systems_region);
10464 defsubr (&Sdecode_coding_region);
10465 defsubr (&Sencode_coding_region);
10466 defsubr (&Sdecode_coding_string);
10467 defsubr (&Sencode_coding_string);
10468 defsubr (&Sdecode_sjis_char);
10469 defsubr (&Sencode_sjis_char);
10470 defsubr (&Sdecode_big5_char);
10471 defsubr (&Sencode_big5_char);
10472 defsubr (&Sset_terminal_coding_system_internal);
10473 defsubr (&Sset_safe_terminal_coding_system_internal);
10474 defsubr (&Sterminal_coding_system);
10475 defsubr (&Sset_keyboard_coding_system_internal);
10476 defsubr (&Skeyboard_coding_system);
10477 defsubr (&Sfind_operation_coding_system);
10478 defsubr (&Sset_coding_system_priority);
10479 defsubr (&Sdefine_coding_system_internal);
10480 defsubr (&Sdefine_coding_system_alias);
10481 defsubr (&Scoding_system_put);
10482 defsubr (&Scoding_system_base);
10483 defsubr (&Scoding_system_plist);
10484 defsubr (&Scoding_system_aliases);
10485 defsubr (&Scoding_system_eol_type);
10486 defsubr (&Scoding_system_priority_list);
10487
10488 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
10489 doc: /* List of coding systems.
10490
10491 Do not alter the value of this variable manually. This variable should be
10492 updated by the functions `define-coding-system' and
10493 `define-coding-system-alias'. */);
10494 Vcoding_system_list = Qnil;
10495
10496 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
10497 doc: /* Alist of coding system names.
10498 Each element is one element list of coding system name.
10499 This variable is given to `completing-read' as COLLECTION argument.
10500
10501 Do not alter the value of this variable manually. This variable should be
10502 updated by the functions `make-coding-system' and
10503 `define-coding-system-alias'. */);
10504 Vcoding_system_alist = Qnil;
10505
10506 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
10507 doc: /* List of coding-categories (symbols) ordered by priority.
10508
10509 On detecting a coding system, Emacs tries code detection algorithms
10510 associated with each coding-category one by one in this order. When
10511 one algorithm agrees with a byte sequence of source text, the coding
10512 system bound to the corresponding coding-category is selected.
10513
10514 Don't modify this variable directly, but use `set-coding-priority'. */);
10515 {
10516 int i;
10517
10518 Vcoding_category_list = Qnil;
10519 for (i = coding_category_max - 1; i >= 0; i--)
10520 Vcoding_category_list
10521 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10522 Vcoding_category_list);
10523 }
10524
10525 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
10526 doc: /* Specify the coding system for read operations.
10527 It is useful to bind this variable with `let', but do not set it globally.
10528 If the value is a coding system, it is used for decoding on read operation.
10529 If not, an appropriate element is used from one of the coding system alists.
10530 There are three such tables: `file-coding-system-alist',
10531 `process-coding-system-alist', and `network-coding-system-alist'. */);
10532 Vcoding_system_for_read = Qnil;
10533
10534 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
10535 doc: /* Specify the coding system for write operations.
10536 Programs bind this variable with `let', but you should not set it globally.
10537 If the value is a coding system, it is used for encoding of output,
10538 when writing it to a file and when sending it to a file or subprocess.
10539
10540 If this does not specify a coding system, an appropriate element
10541 is used from one of the coding system alists.
10542 There are three such tables: `file-coding-system-alist',
10543 `process-coding-system-alist', and `network-coding-system-alist'.
10544 For output to files, if the above procedure does not specify a coding system,
10545 the value of `buffer-file-coding-system' is used. */);
10546 Vcoding_system_for_write = Qnil;
10547
10548 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
10549 doc: /*
10550 Coding system used in the latest file or process I/O. */);
10551 Vlast_coding_system_used = Qnil;
10552
10553 DEFVAR_LISP ("last-code-conversion-error", &Vlast_code_conversion_error,
10554 doc: /*
10555 Error status of the last code conversion.
10556
10557 When an error was detected in the last code conversion, this variable
10558 is set to one of the following symbols.
10559 `insufficient-source'
10560 `inconsistent-eol'
10561 `invalid-source'
10562 `interrupted'
10563 `insufficient-memory'
10564 When no error was detected, the value doesn't change. So, to check
10565 the error status of a code conversion by this variable, you must
10566 explicitly set this variable to nil before performing code
10567 conversion. */);
10568 Vlast_code_conversion_error = Qnil;
10569
10570 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
10571 doc: /*
10572 *Non-nil means always inhibit code conversion of end-of-line format.
10573 See info node `Coding Systems' and info node `Text and Binary' concerning
10574 such conversion. */);
10575 inhibit_eol_conversion = 0;
10576
10577 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
10578 doc: /*
10579 Non-nil means process buffer inherits coding system of process output.
10580 Bind it to t if the process output is to be treated as if it were a file
10581 read from some filesystem. */);
10582 inherit_process_coding_system = 0;
10583
10584 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
10585 doc: /*
10586 Alist to decide a coding system to use for a file I/O operation.
10587 The format is ((PATTERN . VAL) ...),
10588 where PATTERN is a regular expression matching a file name,
10589 VAL is a coding system, a cons of coding systems, or a function symbol.
10590 If VAL is a coding system, it is used for both decoding and encoding
10591 the file contents.
10592 If VAL is a cons of coding systems, the car part is used for decoding,
10593 and the cdr part is used for encoding.
10594 If VAL is a function symbol, the function must return a coding system
10595 or a cons of coding systems which are used as above. The function is
10596 called with an argument that is a list of the arguments with which
10597 `find-operation-coding-system' was called. If the function can't decide
10598 a coding system, it can return `undecided' so that the normal
10599 code-detection is performed.
10600
10601 See also the function `find-operation-coding-system'
10602 and the variable `auto-coding-alist'. */);
10603 Vfile_coding_system_alist = Qnil;
10604
10605 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
10606 doc: /*
10607 Alist to decide a coding system to use for a process I/O operation.
10608 The format is ((PATTERN . VAL) ...),
10609 where PATTERN is a regular expression matching a program name,
10610 VAL is a coding system, a cons of coding systems, or a function symbol.
10611 If VAL is a coding system, it is used for both decoding what received
10612 from the program and encoding what sent to the program.
10613 If VAL is a cons of coding systems, the car part is used for decoding,
10614 and the cdr part is used for encoding.
10615 If VAL is a function symbol, the function must return a coding system
10616 or a cons of coding systems which are used as above.
10617
10618 See also the function `find-operation-coding-system'. */);
10619 Vprocess_coding_system_alist = Qnil;
10620
10621 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
10622 doc: /*
10623 Alist to decide a coding system to use for a network I/O operation.
10624 The format is ((PATTERN . VAL) ...),
10625 where PATTERN is a regular expression matching a network service name
10626 or is a port number to connect to,
10627 VAL is a coding system, a cons of coding systems, or a function symbol.
10628 If VAL is a coding system, it is used for both decoding what received
10629 from the network stream and encoding what sent to the network stream.
10630 If VAL is a cons of coding systems, the car part is used for decoding,
10631 and the cdr part is used for encoding.
10632 If VAL is a function symbol, the function must return a coding system
10633 or a cons of coding systems which are used as above.
10634
10635 See also the function `find-operation-coding-system'. */);
10636 Vnetwork_coding_system_alist = Qnil;
10637
10638 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
10639 doc: /* Coding system to use with system messages.
10640 Also used for decoding keyboard input on X Window system. */);
10641 Vlocale_coding_system = Qnil;
10642
10643 /* The eol mnemonics are reset in startup.el system-dependently. */
10644 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
10645 doc: /*
10646 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10647 eol_mnemonic_unix = make_pure_c_string (":");
10648
10649 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
10650 doc: /*
10651 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10652 eol_mnemonic_dos = make_pure_c_string ("\\");
10653
10654 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
10655 doc: /*
10656 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10657 eol_mnemonic_mac = make_pure_c_string ("/");
10658
10659 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
10660 doc: /*
10661 *String displayed in mode line when end-of-line format is not yet determined. */);
10662 eol_mnemonic_undecided = make_pure_c_string (":");
10663
10664 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
10665 doc: /*
10666 *Non-nil enables character translation while encoding and decoding. */);
10667 Venable_character_translation = Qt;
10668
10669 DEFVAR_LISP ("standard-translation-table-for-decode",
10670 &Vstandard_translation_table_for_decode,
10671 doc: /* Table for translating characters while decoding. */);
10672 Vstandard_translation_table_for_decode = Qnil;
10673
10674 DEFVAR_LISP ("standard-translation-table-for-encode",
10675 &Vstandard_translation_table_for_encode,
10676 doc: /* Table for translating characters while encoding. */);
10677 Vstandard_translation_table_for_encode = Qnil;
10678
10679 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_table,
10680 doc: /* Alist of charsets vs revision numbers.
10681 While encoding, if a charset (car part of an element) is found,
10682 designate it with the escape sequence identifying revision (cdr part
10683 of the element). */);
10684 Vcharset_revision_table = Qnil;
10685
10686 DEFVAR_LISP ("default-process-coding-system",
10687 &Vdefault_process_coding_system,
10688 doc: /* Cons of coding systems used for process I/O by default.
10689 The car part is used for decoding a process output,
10690 the cdr part is used for encoding a text to be sent to a process. */);
10691 Vdefault_process_coding_system = Qnil;
10692
10693 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
10694 doc: /*
10695 Table of extra Latin codes in the range 128..159 (inclusive).
10696 This is a vector of length 256.
10697 If Nth element is non-nil, the existence of code N in a file
10698 \(or output of subprocess) doesn't prevent it to be detected as
10699 a coding system of ISO 2022 variant which has a flag
10700 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10701 or reading output of a subprocess.
10702 Only 128th through 159th elements have a meaning. */);
10703 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10704
10705 DEFVAR_LISP ("select-safe-coding-system-function",
10706 &Vselect_safe_coding_system_function,
10707 doc: /*
10708 Function to call to select safe coding system for encoding a text.
10709
10710 If set, this function is called to force a user to select a proper
10711 coding system which can encode the text in the case that a default
10712 coding system used in each operation can't encode the text. The
10713 function should take care that the buffer is not modified while
10714 the coding system is being selected.
10715
10716 The default value is `select-safe-coding-system' (which see). */);
10717 Vselect_safe_coding_system_function = Qnil;
10718
10719 DEFVAR_BOOL ("coding-system-require-warning",
10720 &coding_system_require_warning,
10721 doc: /* Internal use only.
10722 If non-nil, on writing a file, `select-safe-coding-system-function' is
10723 called even if `coding-system-for-write' is non-nil. The command
10724 `universal-coding-system-argument' binds this variable to t temporarily. */);
10725 coding_system_require_warning = 0;
10726
10727
10728 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10729 &inhibit_iso_escape_detection,
10730 doc: /*
10731 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10732
10733 When Emacs reads text, it tries to detect how the text is encoded.
10734 This code detection is sensitive to escape sequences. If Emacs sees
10735 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10736 of the ISO2022 encodings, and decodes text by the corresponding coding
10737 system (e.g. `iso-2022-7bit').
10738
10739 However, there may be a case that you want to read escape sequences in
10740 a file as is. In such a case, you can set this variable to non-nil.
10741 Then the code detection will ignore any escape sequences, and no text is
10742 detected as encoded in some ISO-2022 encoding. The result is that all
10743 escape sequences become visible in a buffer.
10744
10745 The default value is nil, and it is strongly recommended not to change
10746 it. That is because many Emacs Lisp source files that contain
10747 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10748 in Emacs's distribution, and they won't be decoded correctly on
10749 reading if you suppress escape sequence detection.
10750
10751 The other way to read escape sequences in a file without decoding is
10752 to explicitly specify some coding system that doesn't use ISO-2022
10753 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10754 inhibit_iso_escape_detection = 0;
10755
10756 DEFVAR_BOOL ("inhibit-null-byte-detection",
10757 &inhibit_null_byte_detection,
10758 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10759 By default, Emacs treats it as binary data, and does not attempt to
10760 decode it. The effect is as if you specified `no-conversion' for
10761 reading that text.
10762
10763 Set this to non-nil when a regular text happens to include null bytes.
10764 Examples are Index nodes of Info files and null-byte delimited output
10765 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10766 decode text as usual. */);
10767 inhibit_null_byte_detection = 0;
10768
10769 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
10770 doc: /* Char table for translating self-inserting characters.
10771 This is applied to the result of input methods, not their input.
10772 See also `keyboard-translate-table'.
10773
10774 Use of this variable for character code unification was rendered
10775 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10776 internal character representation. */);
10777 Vtranslation_table_for_input = Qnil;
10778
10779 {
10780 Lisp_Object args[coding_arg_max];
10781 Lisp_Object plist[16];
10782 int i;
10783
10784 for (i = 0; i < coding_arg_max; i++)
10785 args[i] = Qnil;
10786
10787 plist[0] = intern_c_string (":name");
10788 plist[1] = args[coding_arg_name] = Qno_conversion;
10789 plist[2] = intern_c_string (":mnemonic");
10790 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10791 plist[4] = intern_c_string (":coding-type");
10792 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10793 plist[6] = intern_c_string (":ascii-compatible-p");
10794 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10795 plist[8] = intern_c_string (":default-char");
10796 plist[9] = args[coding_arg_default_char] = make_number (0);
10797 plist[10] = intern_c_string (":for-unibyte");
10798 plist[11] = args[coding_arg_for_unibyte] = Qt;
10799 plist[12] = intern_c_string (":docstring");
10800 plist[13] = make_pure_c_string ("Do no conversion.\n\
10801 \n\
10802 When you visit a file with this coding, the file is read into a\n\
10803 unibyte buffer as is, thus each byte of a file is treated as a\n\
10804 character.");
10805 plist[14] = intern_c_string (":eol-type");
10806 plist[15] = args[coding_arg_eol_type] = Qunix;
10807 args[coding_arg_plist] = Flist (16, plist);
10808 Fdefine_coding_system_internal (coding_arg_max, args);
10809
10810 plist[1] = args[coding_arg_name] = Qundecided;
10811 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10812 plist[5] = args[coding_arg_coding_type] = Qundecided;
10813 /* This is already set.
10814 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10815 plist[8] = intern_c_string (":charset-list");
10816 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10817 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10818 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10819 plist[15] = args[coding_arg_eol_type] = Qnil;
10820 args[coding_arg_plist] = Flist (16, plist);
10821 Fdefine_coding_system_internal (coding_arg_max, args);
10822 }
10823
10824 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10825
10826 {
10827 int i;
10828
10829 for (i = 0; i < coding_category_max; i++)
10830 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10831 }
10832 #if defined (DOS_NT)
10833 system_eol_type = Qdos;
10834 #else
10835 system_eol_type = Qunix;
10836 #endif
10837 staticpro (&system_eol_type);
10838 }
10839
10840 char *
10841 emacs_strerror (int error_number)
10842 {
10843 char *str;
10844
10845 synchronize_system_messages_locale ();
10846 str = strerror (error_number);
10847
10848 if (! NILP (Vlocale_coding_system))
10849 {
10850 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10851 Vlocale_coding_system,
10852 0);
10853 str = (char *) SDATA (dec);
10854 }
10855
10856 return str;
10857 }
10858
10859 #endif /* emacs */
10860
10861 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
10862 (do not change this comment) */