Merge from emacs-24; up to 2012-04-21T14:12:27Z!sdl.web@gmail.com
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <ctype.h>
48 #include <float.h>
49 #include <limits.h>
50 #include <intprops.h>
51 #include <strftime.h>
52 #include <verify.h>
53
54 #include "intervals.h"
55 #include "buffer.h"
56 #include "character.h"
57 #include "coding.h"
58 #include "frame.h"
59 #include "window.h"
60 #include "blockinput.h"
61
62 #ifndef NULL
63 #define NULL 0
64 #endif
65
66 #ifndef USER_FULL_NAME
67 #define USER_FULL_NAME pw->pw_gecos
68 #endif
69
70 #ifndef USE_CRT_DLL
71 extern char **environ;
72 #endif
73
74 #define TM_YEAR_BASE 1900
75
76 #ifdef WINDOWSNT
77 extern Lisp_Object w32_get_internal_run_time (void);
78 #endif
79
80 static void time_overflow (void) NO_RETURN;
81 static Lisp_Object format_time_string (char const *, ptrdiff_t, Lisp_Object,
82 int, time_t *, struct tm *);
83 static int tm_diff (struct tm *, struct tm *);
84 static void update_buffer_properties (EMACS_INT, EMACS_INT);
85
86 static Lisp_Object Qbuffer_access_fontify_functions;
87 static Lisp_Object Fuser_full_name (Lisp_Object);
88
89 /* Symbol for the text property used to mark fields. */
90
91 Lisp_Object Qfield;
92
93 /* A special value for Qfield properties. */
94
95 static Lisp_Object Qboundary;
96
97
98 void
99 init_editfns (void)
100 {
101 const char *user_name;
102 register char *p;
103 struct passwd *pw; /* password entry for the current user */
104 Lisp_Object tem;
105
106 /* Set up system_name even when dumping. */
107 init_system_name ();
108
109 #ifndef CANNOT_DUMP
110 /* Don't bother with this on initial start when just dumping out */
111 if (!initialized)
112 return;
113 #endif /* not CANNOT_DUMP */
114
115 pw = getpwuid (getuid ());
116 #ifdef MSDOS
117 /* We let the real user name default to "root" because that's quite
118 accurate on MSDOG and because it lets Emacs find the init file.
119 (The DVX libraries override the Djgpp libraries here.) */
120 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
121 #else
122 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
123 #endif
124
125 /* Get the effective user name, by consulting environment variables,
126 or the effective uid if those are unset. */
127 user_name = getenv ("LOGNAME");
128 if (!user_name)
129 #ifdef WINDOWSNT
130 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
131 #else /* WINDOWSNT */
132 user_name = getenv ("USER");
133 #endif /* WINDOWSNT */
134 if (!user_name)
135 {
136 pw = getpwuid (geteuid ());
137 user_name = pw ? pw->pw_name : "unknown";
138 }
139 Vuser_login_name = build_string (user_name);
140
141 /* If the user name claimed in the environment vars differs from
142 the real uid, use the claimed name to find the full name. */
143 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
144 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid ())
145 : Vuser_login_name);
146
147 p = getenv ("NAME");
148 if (p)
149 Vuser_full_name = build_string (p);
150 else if (NILP (Vuser_full_name))
151 Vuser_full_name = build_string ("unknown");
152
153 #ifdef HAVE_SYS_UTSNAME_H
154 {
155 struct utsname uts;
156 uname (&uts);
157 Voperating_system_release = build_string (uts.release);
158 }
159 #else
160 Voperating_system_release = Qnil;
161 #endif
162 }
163 \f
164 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
165 doc: /* Convert arg CHAR to a string containing that character.
166 usage: (char-to-string CHAR) */)
167 (Lisp_Object character)
168 {
169 int c, len;
170 unsigned char str[MAX_MULTIBYTE_LENGTH];
171
172 CHECK_CHARACTER (character);
173 c = XFASTINT (character);
174
175 len = CHAR_STRING (c, str);
176 return make_string_from_bytes ((char *) str, 1, len);
177 }
178
179 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
180 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
181 (Lisp_Object byte)
182 {
183 unsigned char b;
184 CHECK_NUMBER (byte);
185 if (XINT (byte) < 0 || XINT (byte) > 255)
186 error ("Invalid byte");
187 b = XINT (byte);
188 return make_string_from_bytes ((char *) &b, 1, 1);
189 }
190
191 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
192 doc: /* Return the first character in STRING. */)
193 (register Lisp_Object string)
194 {
195 register Lisp_Object val;
196 CHECK_STRING (string);
197 if (SCHARS (string))
198 {
199 if (STRING_MULTIBYTE (string))
200 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
201 else
202 XSETFASTINT (val, SREF (string, 0));
203 }
204 else
205 XSETFASTINT (val, 0);
206 return val;
207 }
208 \f
209 static Lisp_Object
210 buildmark (EMACS_INT charpos, EMACS_INT bytepos)
211 {
212 register Lisp_Object mark;
213 mark = Fmake_marker ();
214 set_marker_both (mark, Qnil, charpos, bytepos);
215 return mark;
216 }
217
218 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
219 doc: /* Return value of point, as an integer.
220 Beginning of buffer is position (point-min). */)
221 (void)
222 {
223 Lisp_Object temp;
224 XSETFASTINT (temp, PT);
225 return temp;
226 }
227
228 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
229 doc: /* Return value of point, as a marker object. */)
230 (void)
231 {
232 return buildmark (PT, PT_BYTE);
233 }
234
235 EMACS_INT
236 clip_to_bounds (EMACS_INT lower, EMACS_INT num, EMACS_INT upper)
237 {
238 if (num < lower)
239 return lower;
240 else if (num > upper)
241 return upper;
242 else
243 return num;
244 }
245
246 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
247 doc: /* Set point to POSITION, a number or marker.
248 Beginning of buffer is position (point-min), end is (point-max).
249
250 The return value is POSITION. */)
251 (register Lisp_Object position)
252 {
253 EMACS_INT pos;
254
255 if (MARKERP (position)
256 && current_buffer == XMARKER (position)->buffer)
257 {
258 pos = marker_position (position);
259 if (pos < BEGV)
260 SET_PT_BOTH (BEGV, BEGV_BYTE);
261 else if (pos > ZV)
262 SET_PT_BOTH (ZV, ZV_BYTE);
263 else
264 SET_PT_BOTH (pos, marker_byte_position (position));
265
266 return position;
267 }
268
269 CHECK_NUMBER_COERCE_MARKER (position);
270
271 pos = clip_to_bounds (BEGV, XINT (position), ZV);
272 SET_PT (pos);
273 return position;
274 }
275
276
277 /* Return the start or end position of the region.
278 BEGINNINGP non-zero means return the start.
279 If there is no region active, signal an error. */
280
281 static Lisp_Object
282 region_limit (int beginningp)
283 {
284 Lisp_Object m;
285
286 if (!NILP (Vtransient_mark_mode)
287 && NILP (Vmark_even_if_inactive)
288 && NILP (BVAR (current_buffer, mark_active)))
289 xsignal0 (Qmark_inactive);
290
291 m = Fmarker_position (BVAR (current_buffer, mark));
292 if (NILP (m))
293 error ("The mark is not set now, so there is no region");
294
295 if ((PT < XFASTINT (m)) == (beginningp != 0))
296 m = make_number (PT);
297 return m;
298 }
299
300 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
301 doc: /* Return the integer value of point or mark, whichever is smaller. */)
302 (void)
303 {
304 return region_limit (1);
305 }
306
307 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
308 doc: /* Return the integer value of point or mark, whichever is larger. */)
309 (void)
310 {
311 return region_limit (0);
312 }
313
314 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
315 doc: /* Return this buffer's mark, as a marker object.
316 Watch out! Moving this marker changes the mark position.
317 If you set the marker not to point anywhere, the buffer will have no mark. */)
318 (void)
319 {
320 return BVAR (current_buffer, mark);
321 }
322
323 \f
324 /* Find all the overlays in the current buffer that touch position POS.
325 Return the number found, and store them in a vector in VEC
326 of length LEN. */
327
328 static ptrdiff_t
329 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
330 {
331 Lisp_Object overlay, start, end;
332 struct Lisp_Overlay *tail;
333 EMACS_INT startpos, endpos;
334 ptrdiff_t idx = 0;
335
336 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (endpos < pos)
343 break;
344 start = OVERLAY_START (overlay);
345 startpos = OVERLAY_POSITION (start);
346 if (startpos <= pos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 /* Keep counting overlays even if we can't return them all. */
351 idx++;
352 }
353 }
354
355 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
356 {
357 XSETMISC (overlay, tail);
358
359 start = OVERLAY_START (overlay);
360 startpos = OVERLAY_POSITION (start);
361 if (pos < startpos)
362 break;
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (pos <= endpos)
366 {
367 if (idx < len)
368 vec[idx] = overlay;
369 idx++;
370 }
371 }
372
373 return idx;
374 }
375
376 /* Return the value of property PROP, in OBJECT at POSITION.
377 It's the value of PROP that a char inserted at POSITION would get.
378 OBJECT is optional and defaults to the current buffer.
379 If OBJECT is a buffer, then overlay properties are considered as well as
380 text properties.
381 If OBJECT is a window, then that window's buffer is used, but
382 window-specific overlays are considered only if they are associated
383 with OBJECT. */
384 Lisp_Object
385 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
386 {
387 CHECK_NUMBER_COERCE_MARKER (position);
388
389 if (NILP (object))
390 XSETBUFFER (object, current_buffer);
391 else if (WINDOWP (object))
392 object = XWINDOW (object)->buffer;
393
394 if (!BUFFERP (object))
395 /* pos-property only makes sense in buffers right now, since strings
396 have no overlays and no notion of insertion for which stickiness
397 could be obeyed. */
398 return Fget_text_property (position, prop, object);
399 else
400 {
401 EMACS_INT posn = XINT (position);
402 ptrdiff_t noverlays;
403 Lisp_Object *overlay_vec, tem;
404 struct buffer *obuf = current_buffer;
405
406 set_buffer_temp (XBUFFER (object));
407
408 /* First try with room for 40 overlays. */
409 noverlays = 40;
410 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
411 noverlays = overlays_around (posn, overlay_vec, noverlays);
412
413 /* If there are more than 40,
414 make enough space for all, and try again. */
415 if (noverlays > 40)
416 {
417 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
418 noverlays = overlays_around (posn, overlay_vec, noverlays);
419 }
420 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
421
422 set_buffer_temp (obuf);
423
424 /* Now check the overlays in order of decreasing priority. */
425 while (--noverlays >= 0)
426 {
427 Lisp_Object ol = overlay_vec[noverlays];
428 tem = Foverlay_get (ol, prop);
429 if (!NILP (tem))
430 {
431 /* Check the overlay is indeed active at point. */
432 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
433 if ((OVERLAY_POSITION (start) == posn
434 && XMARKER (start)->insertion_type == 1)
435 || (OVERLAY_POSITION (finish) == posn
436 && XMARKER (finish)->insertion_type == 0))
437 ; /* The overlay will not cover a char inserted at point. */
438 else
439 {
440 return tem;
441 }
442 }
443 }
444
445 { /* Now check the text properties. */
446 int stickiness = text_property_stickiness (prop, position, object);
447 if (stickiness > 0)
448 return Fget_text_property (position, prop, object);
449 else if (stickiness < 0
450 && XINT (position) > BUF_BEGV (XBUFFER (object)))
451 return Fget_text_property (make_number (XINT (position) - 1),
452 prop, object);
453 else
454 return Qnil;
455 }
456 }
457 }
458
459 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
460 the value of point is used instead. If BEG or END is null,
461 means don't store the beginning or end of the field.
462
463 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
464 results; they do not effect boundary behavior.
465
466 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
467 position of a field, then the beginning of the previous field is
468 returned instead of the beginning of POS's field (since the end of a
469 field is actually also the beginning of the next input field, this
470 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
471 true case, if two fields are separated by a field with the special
472 value `boundary', and POS lies within it, then the two separated
473 fields are considered to be adjacent, and POS between them, when
474 finding the beginning and ending of the "merged" field.
475
476 Either BEG or END may be 0, in which case the corresponding value
477 is not stored. */
478
479 static void
480 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
481 Lisp_Object beg_limit,
482 EMACS_INT *beg, Lisp_Object end_limit, EMACS_INT *end)
483 {
484 /* Fields right before and after the point. */
485 Lisp_Object before_field, after_field;
486 /* 1 if POS counts as the start of a field. */
487 int at_field_start = 0;
488 /* 1 if POS counts as the end of a field. */
489 int at_field_end = 0;
490
491 if (NILP (pos))
492 XSETFASTINT (pos, PT);
493 else
494 CHECK_NUMBER_COERCE_MARKER (pos);
495
496 after_field
497 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
498 before_field
499 = (XFASTINT (pos) > BEGV
500 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
501 Qfield, Qnil, NULL)
502 /* Using nil here would be a more obvious choice, but it would
503 fail when the buffer starts with a non-sticky field. */
504 : after_field);
505
506 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
507 and POS is at beginning of a field, which can also be interpreted
508 as the end of the previous field. Note that the case where if
509 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
510 more natural one; then we avoid treating the beginning of a field
511 specially. */
512 if (NILP (merge_at_boundary))
513 {
514 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
515 if (!EQ (field, after_field))
516 at_field_end = 1;
517 if (!EQ (field, before_field))
518 at_field_start = 1;
519 if (NILP (field) && at_field_start && at_field_end)
520 /* If an inserted char would have a nil field while the surrounding
521 text is non-nil, we're probably not looking at a
522 zero-length field, but instead at a non-nil field that's
523 not intended for editing (such as comint's prompts). */
524 at_field_end = at_field_start = 0;
525 }
526
527 /* Note about special `boundary' fields:
528
529 Consider the case where the point (`.') is between the fields `x' and `y':
530
531 xxxx.yyyy
532
533 In this situation, if merge_at_boundary is true, we consider the
534 `x' and `y' fields as forming one big merged field, and so the end
535 of the field is the end of `y'.
536
537 However, if `x' and `y' are separated by a special `boundary' field
538 (a field with a `field' char-property of 'boundary), then we ignore
539 this special field when merging adjacent fields. Here's the same
540 situation, but with a `boundary' field between the `x' and `y' fields:
541
542 xxx.BBBByyyy
543
544 Here, if point is at the end of `x', the beginning of `y', or
545 anywhere in-between (within the `boundary' field), we merge all
546 three fields and consider the beginning as being the beginning of
547 the `x' field, and the end as being the end of the `y' field. */
548
549 if (beg)
550 {
551 if (at_field_start)
552 /* POS is at the edge of a field, and we should consider it as
553 the beginning of the following field. */
554 *beg = XFASTINT (pos);
555 else
556 /* Find the previous field boundary. */
557 {
558 Lisp_Object p = pos;
559 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
560 /* Skip a `boundary' field. */
561 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
562 beg_limit);
563
564 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
565 beg_limit);
566 *beg = NILP (p) ? BEGV : XFASTINT (p);
567 }
568 }
569
570 if (end)
571 {
572 if (at_field_end)
573 /* POS is at the edge of a field, and we should consider it as
574 the end of the previous field. */
575 *end = XFASTINT (pos);
576 else
577 /* Find the next field boundary. */
578 {
579 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
580 /* Skip a `boundary' field. */
581 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
582 end_limit);
583
584 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
585 end_limit);
586 *end = NILP (pos) ? ZV : XFASTINT (pos);
587 }
588 }
589 }
590
591 \f
592 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
593 doc: /* Delete the field surrounding POS.
594 A field is a region of text with the same `field' property.
595 If POS is nil, the value of point is used for POS. */)
596 (Lisp_Object pos)
597 {
598 EMACS_INT beg, end;
599 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
600 if (beg != end)
601 del_range (beg, end);
602 return Qnil;
603 }
604
605 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
606 doc: /* Return the contents of the field surrounding POS as a string.
607 A field is a region of text with the same `field' property.
608 If POS is nil, the value of point is used for POS. */)
609 (Lisp_Object pos)
610 {
611 EMACS_INT beg, end;
612 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
613 return make_buffer_string (beg, end, 1);
614 }
615
616 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
617 doc: /* Return the contents of the field around POS, without text properties.
618 A field is a region of text with the same `field' property.
619 If POS is nil, the value of point is used for POS. */)
620 (Lisp_Object pos)
621 {
622 EMACS_INT beg, end;
623 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
624 return make_buffer_string (beg, end, 0);
625 }
626
627 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
628 doc: /* Return the beginning of the field surrounding POS.
629 A field is a region of text with the same `field' property.
630 If POS is nil, the value of point is used for POS.
631 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
632 field, then the beginning of the *previous* field is returned.
633 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
634 is before LIMIT, then LIMIT will be returned instead. */)
635 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
636 {
637 EMACS_INT beg;
638 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
639 return make_number (beg);
640 }
641
642 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
643 doc: /* Return the end of the field surrounding POS.
644 A field is a region of text with the same `field' property.
645 If POS is nil, the value of point is used for POS.
646 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
647 then the end of the *following* field is returned.
648 If LIMIT is non-nil, it is a buffer position; if the end of the field
649 is after LIMIT, then LIMIT will be returned instead. */)
650 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
651 {
652 EMACS_INT end;
653 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
654 return make_number (end);
655 }
656
657 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
658 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
659 A field is a region of text with the same `field' property.
660
661 If NEW-POS is nil, then use the current point instead, and move point
662 to the resulting constrained position, in addition to returning that
663 position.
664
665 If OLD-POS is at the boundary of two fields, then the allowable
666 positions for NEW-POS depends on the value of the optional argument
667 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
668 constrained to the field that has the same `field' char-property
669 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
670 is non-nil, NEW-POS is constrained to the union of the two adjacent
671 fields. Additionally, if two fields are separated by another field with
672 the special value `boundary', then any point within this special field is
673 also considered to be `on the boundary'.
674
675 If the optional argument ONLY-IN-LINE is non-nil and constraining
676 NEW-POS would move it to a different line, NEW-POS is returned
677 unconstrained. This useful for commands that move by line, like
678 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
679 only in the case where they can still move to the right line.
680
681 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
682 a non-nil property of that name, then any field boundaries are ignored.
683
684 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
685 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
686 {
687 /* If non-zero, then the original point, before re-positioning. */
688 EMACS_INT orig_point = 0;
689 int fwd;
690 Lisp_Object prev_old, prev_new;
691
692 if (NILP (new_pos))
693 /* Use the current point, and afterwards, set it. */
694 {
695 orig_point = PT;
696 XSETFASTINT (new_pos, PT);
697 }
698
699 CHECK_NUMBER_COERCE_MARKER (new_pos);
700 CHECK_NUMBER_COERCE_MARKER (old_pos);
701
702 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
703
704 prev_old = make_number (XFASTINT (old_pos) - 1);
705 prev_new = make_number (XFASTINT (new_pos) - 1);
706
707 if (NILP (Vinhibit_field_text_motion)
708 && !EQ (new_pos, old_pos)
709 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
710 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
711 /* To recognize field boundaries, we must also look at the
712 previous positions; we could use `get_pos_property'
713 instead, but in itself that would fail inside non-sticky
714 fields (like comint prompts). */
715 || (XFASTINT (new_pos) > BEGV
716 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
717 || (XFASTINT (old_pos) > BEGV
718 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
719 && (NILP (inhibit_capture_property)
720 /* Field boundaries are again a problem; but now we must
721 decide the case exactly, so we need to call
722 `get_pos_property' as well. */
723 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
724 && (XFASTINT (old_pos) <= BEGV
725 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
726 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
727 /* It is possible that NEW_POS is not within the same field as
728 OLD_POS; try to move NEW_POS so that it is. */
729 {
730 EMACS_INT shortage;
731 Lisp_Object field_bound;
732
733 if (fwd)
734 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
735 else
736 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
737
738 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
739 other side of NEW_POS, which would mean that NEW_POS is
740 already acceptable, and it's not necessary to constrain it
741 to FIELD_BOUND. */
742 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
743 /* NEW_POS should be constrained, but only if either
744 ONLY_IN_LINE is nil (in which case any constraint is OK),
745 or NEW_POS and FIELD_BOUND are on the same line (in which
746 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
747 && (NILP (only_in_line)
748 /* This is the ONLY_IN_LINE case, check that NEW_POS and
749 FIELD_BOUND are on the same line by seeing whether
750 there's an intervening newline or not. */
751 || (scan_buffer ('\n',
752 XFASTINT (new_pos), XFASTINT (field_bound),
753 fwd ? -1 : 1, &shortage, 1),
754 shortage != 0)))
755 /* Constrain NEW_POS to FIELD_BOUND. */
756 new_pos = field_bound;
757
758 if (orig_point && XFASTINT (new_pos) != orig_point)
759 /* The NEW_POS argument was originally nil, so automatically set PT. */
760 SET_PT (XFASTINT (new_pos));
761 }
762
763 return new_pos;
764 }
765
766 \f
767 DEFUN ("line-beginning-position",
768 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
769 doc: /* Return the character position of the first character on the current line.
770 With argument N not nil or 1, move forward N - 1 lines first.
771 If scan reaches end of buffer, return that position.
772
773 The returned position is of the first character in the logical order,
774 i.e. the one that has the smallest character position.
775
776 This function constrains the returned position to the current field
777 unless that would be on a different line than the original,
778 unconstrained result. If N is nil or 1, and a front-sticky field
779 starts at point, the scan stops as soon as it starts. To ignore field
780 boundaries bind `inhibit-field-text-motion' to t.
781
782 This function does not move point. */)
783 (Lisp_Object n)
784 {
785 EMACS_INT orig, orig_byte, end;
786 int count = SPECPDL_INDEX ();
787 specbind (Qinhibit_point_motion_hooks, Qt);
788
789 if (NILP (n))
790 XSETFASTINT (n, 1);
791 else
792 CHECK_NUMBER (n);
793
794 orig = PT;
795 orig_byte = PT_BYTE;
796 Fforward_line (make_number (XINT (n) - 1));
797 end = PT;
798
799 SET_PT_BOTH (orig, orig_byte);
800
801 unbind_to (count, Qnil);
802
803 /* Return END constrained to the current input field. */
804 return Fconstrain_to_field (make_number (end), make_number (orig),
805 XINT (n) != 1 ? Qt : Qnil,
806 Qt, Qnil);
807 }
808
809 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
810 doc: /* Return the character position of the last character on the current line.
811 With argument N not nil or 1, move forward N - 1 lines first.
812 If scan reaches end of buffer, return that position.
813
814 The returned position is of the last character in the logical order,
815 i.e. the character whose buffer position is the largest one.
816
817 This function constrains the returned position to the current field
818 unless that would be on a different line than the original,
819 unconstrained result. If N is nil or 1, and a rear-sticky field ends
820 at point, the scan stops as soon as it starts. To ignore field
821 boundaries bind `inhibit-field-text-motion' to t.
822
823 This function does not move point. */)
824 (Lisp_Object n)
825 {
826 EMACS_INT end_pos;
827 EMACS_INT orig = PT;
828
829 if (NILP (n))
830 XSETFASTINT (n, 1);
831 else
832 CHECK_NUMBER (n);
833
834 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
835
836 /* Return END_POS constrained to the current input field. */
837 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
838 Qnil, Qt, Qnil);
839 }
840
841 \f
842 Lisp_Object
843 save_excursion_save (void)
844 {
845 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
846 == current_buffer);
847
848 return Fcons (Fpoint_marker (),
849 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
850 Fcons (visible ? Qt : Qnil,
851 Fcons (BVAR (current_buffer, mark_active),
852 selected_window))));
853 }
854
855 Lisp_Object
856 save_excursion_restore (Lisp_Object info)
857 {
858 Lisp_Object tem, tem1, omark, nmark;
859 struct gcpro gcpro1, gcpro2, gcpro3;
860 int visible_p;
861
862 tem = Fmarker_buffer (XCAR (info));
863 /* If buffer being returned to is now deleted, avoid error */
864 /* Otherwise could get error here while unwinding to top level
865 and crash */
866 /* In that case, Fmarker_buffer returns nil now. */
867 if (NILP (tem))
868 return Qnil;
869
870 omark = nmark = Qnil;
871 GCPRO3 (info, omark, nmark);
872
873 Fset_buffer (tem);
874
875 /* Point marker. */
876 tem = XCAR (info);
877 Fgoto_char (tem);
878 unchain_marker (XMARKER (tem));
879
880 /* Mark marker. */
881 info = XCDR (info);
882 tem = XCAR (info);
883 omark = Fmarker_position (BVAR (current_buffer, mark));
884 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
885 nmark = Fmarker_position (tem);
886 unchain_marker (XMARKER (tem));
887
888 /* visible */
889 info = XCDR (info);
890 visible_p = !NILP (XCAR (info));
891
892 #if 0 /* We used to make the current buffer visible in the selected window
893 if that was true previously. That avoids some anomalies.
894 But it creates others, and it wasn't documented, and it is simpler
895 and cleaner never to alter the window/buffer connections. */
896 tem1 = Fcar (tem);
897 if (!NILP (tem1)
898 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
899 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
900 #endif /* 0 */
901
902 /* Mark active */
903 info = XCDR (info);
904 tem = XCAR (info);
905 tem1 = BVAR (current_buffer, mark_active);
906 BVAR (current_buffer, mark_active) = tem;
907
908 /* If mark is active now, and either was not active
909 or was at a different place, run the activate hook. */
910 if (! NILP (tem))
911 {
912 if (! EQ (omark, nmark))
913 {
914 tem = intern ("activate-mark-hook");
915 Frun_hooks (1, &tem);
916 }
917 }
918 /* If mark has ceased to be active, run deactivate hook. */
919 else if (! NILP (tem1))
920 {
921 tem = intern ("deactivate-mark-hook");
922 Frun_hooks (1, &tem);
923 }
924
925 /* If buffer was visible in a window, and a different window was
926 selected, and the old selected window is still showing this
927 buffer, restore point in that window. */
928 tem = XCDR (info);
929 if (visible_p
930 && !EQ (tem, selected_window)
931 && (tem1 = XWINDOW (tem)->buffer,
932 (/* Window is live... */
933 BUFFERP (tem1)
934 /* ...and it shows the current buffer. */
935 && XBUFFER (tem1) == current_buffer)))
936 Fset_window_point (tem, make_number (PT));
937
938 UNGCPRO;
939 return Qnil;
940 }
941
942 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
943 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
944 Executes BODY just like `progn'.
945 The values of point, mark and the current buffer are restored
946 even in case of abnormal exit (throw or error).
947 The state of activation of the mark is also restored.
948
949 This construct does not save `deactivate-mark', and therefore
950 functions that change the buffer will still cause deactivation
951 of the mark at the end of the command. To prevent that, bind
952 `deactivate-mark' with `let'.
953
954 If you only want to save the current buffer but not point nor mark,
955 then just use `save-current-buffer', or even `with-current-buffer'.
956
957 usage: (save-excursion &rest BODY) */)
958 (Lisp_Object args)
959 {
960 register Lisp_Object val;
961 int count = SPECPDL_INDEX ();
962
963 record_unwind_protect (save_excursion_restore, save_excursion_save ());
964
965 val = Fprogn (args);
966 return unbind_to (count, val);
967 }
968
969 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
970 doc: /* Save the current buffer; execute BODY; restore the current buffer.
971 Executes BODY just like `progn'.
972 usage: (save-current-buffer &rest BODY) */)
973 (Lisp_Object args)
974 {
975 Lisp_Object val;
976 int count = SPECPDL_INDEX ();
977
978 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
979
980 val = Fprogn (args);
981 return unbind_to (count, val);
982 }
983 \f
984 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
985 doc: /* Return the number of characters in the current buffer.
986 If BUFFER, return the number of characters in that buffer instead. */)
987 (Lisp_Object buffer)
988 {
989 if (NILP (buffer))
990 return make_number (Z - BEG);
991 else
992 {
993 CHECK_BUFFER (buffer);
994 return make_number (BUF_Z (XBUFFER (buffer))
995 - BUF_BEG (XBUFFER (buffer)));
996 }
997 }
998
999 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1000 doc: /* Return the minimum permissible value of point in the current buffer.
1001 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1002 (void)
1003 {
1004 Lisp_Object temp;
1005 XSETFASTINT (temp, BEGV);
1006 return temp;
1007 }
1008
1009 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1010 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1011 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1012 (void)
1013 {
1014 return buildmark (BEGV, BEGV_BYTE);
1015 }
1016
1017 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1018 doc: /* Return the maximum permissible value of point in the current buffer.
1019 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1020 is in effect, in which case it is less. */)
1021 (void)
1022 {
1023 Lisp_Object temp;
1024 XSETFASTINT (temp, ZV);
1025 return temp;
1026 }
1027
1028 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1029 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1030 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1031 is in effect, in which case it is less. */)
1032 (void)
1033 {
1034 return buildmark (ZV, ZV_BYTE);
1035 }
1036
1037 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1038 doc: /* Return the position of the gap, in the current buffer.
1039 See also `gap-size'. */)
1040 (void)
1041 {
1042 Lisp_Object temp;
1043 XSETFASTINT (temp, GPT);
1044 return temp;
1045 }
1046
1047 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1048 doc: /* Return the size of the current buffer's gap.
1049 See also `gap-position'. */)
1050 (void)
1051 {
1052 Lisp_Object temp;
1053 XSETFASTINT (temp, GAP_SIZE);
1054 return temp;
1055 }
1056
1057 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1058 doc: /* Return the byte position for character position POSITION.
1059 If POSITION is out of range, the value is nil. */)
1060 (Lisp_Object position)
1061 {
1062 CHECK_NUMBER_COERCE_MARKER (position);
1063 if (XINT (position) < BEG || XINT (position) > Z)
1064 return Qnil;
1065 return make_number (CHAR_TO_BYTE (XINT (position)));
1066 }
1067
1068 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1069 doc: /* Return the character position for byte position BYTEPOS.
1070 If BYTEPOS is out of range, the value is nil. */)
1071 (Lisp_Object bytepos)
1072 {
1073 CHECK_NUMBER (bytepos);
1074 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1075 return Qnil;
1076 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1077 }
1078 \f
1079 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1080 doc: /* Return the character following point, as a number.
1081 At the end of the buffer or accessible region, return 0. */)
1082 (void)
1083 {
1084 Lisp_Object temp;
1085 if (PT >= ZV)
1086 XSETFASTINT (temp, 0);
1087 else
1088 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1089 return temp;
1090 }
1091
1092 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1093 doc: /* Return the character preceding point, as a number.
1094 At the beginning of the buffer or accessible region, return 0. */)
1095 (void)
1096 {
1097 Lisp_Object temp;
1098 if (PT <= BEGV)
1099 XSETFASTINT (temp, 0);
1100 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1101 {
1102 EMACS_INT pos = PT_BYTE;
1103 DEC_POS (pos);
1104 XSETFASTINT (temp, FETCH_CHAR (pos));
1105 }
1106 else
1107 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1108 return temp;
1109 }
1110
1111 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1112 doc: /* Return t if point is at the beginning of the buffer.
1113 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1114 (void)
1115 {
1116 if (PT == BEGV)
1117 return Qt;
1118 return Qnil;
1119 }
1120
1121 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1122 doc: /* Return t if point is at the end of the buffer.
1123 If the buffer is narrowed, this means the end of the narrowed part. */)
1124 (void)
1125 {
1126 if (PT == ZV)
1127 return Qt;
1128 return Qnil;
1129 }
1130
1131 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1132 doc: /* Return t if point is at the beginning of a line. */)
1133 (void)
1134 {
1135 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1136 return Qt;
1137 return Qnil;
1138 }
1139
1140 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1141 doc: /* Return t if point is at the end of a line.
1142 `End of a line' includes point being at the end of the buffer. */)
1143 (void)
1144 {
1145 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1146 return Qt;
1147 return Qnil;
1148 }
1149
1150 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1151 doc: /* Return character in current buffer at position POS.
1152 POS is an integer or a marker and defaults to point.
1153 If POS is out of range, the value is nil. */)
1154 (Lisp_Object pos)
1155 {
1156 register EMACS_INT pos_byte;
1157
1158 if (NILP (pos))
1159 {
1160 pos_byte = PT_BYTE;
1161 XSETFASTINT (pos, PT);
1162 }
1163
1164 if (MARKERP (pos))
1165 {
1166 pos_byte = marker_byte_position (pos);
1167 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1168 return Qnil;
1169 }
1170 else
1171 {
1172 CHECK_NUMBER_COERCE_MARKER (pos);
1173 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1174 return Qnil;
1175
1176 pos_byte = CHAR_TO_BYTE (XINT (pos));
1177 }
1178
1179 return make_number (FETCH_CHAR (pos_byte));
1180 }
1181
1182 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1183 doc: /* Return character in current buffer preceding position POS.
1184 POS is an integer or a marker and defaults to point.
1185 If POS is out of range, the value is nil. */)
1186 (Lisp_Object pos)
1187 {
1188 register Lisp_Object val;
1189 register EMACS_INT pos_byte;
1190
1191 if (NILP (pos))
1192 {
1193 pos_byte = PT_BYTE;
1194 XSETFASTINT (pos, PT);
1195 }
1196
1197 if (MARKERP (pos))
1198 {
1199 pos_byte = marker_byte_position (pos);
1200
1201 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1202 return Qnil;
1203 }
1204 else
1205 {
1206 CHECK_NUMBER_COERCE_MARKER (pos);
1207
1208 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1209 return Qnil;
1210
1211 pos_byte = CHAR_TO_BYTE (XINT (pos));
1212 }
1213
1214 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1215 {
1216 DEC_POS (pos_byte);
1217 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1218 }
1219 else
1220 {
1221 pos_byte--;
1222 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1223 }
1224 return val;
1225 }
1226 \f
1227 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1228 doc: /* Return the name under which the user logged in, as a string.
1229 This is based on the effective uid, not the real uid.
1230 Also, if the environment variables LOGNAME or USER are set,
1231 that determines the value of this function.
1232
1233 If optional argument UID is an integer or a float, return the login name
1234 of the user with that uid, or nil if there is no such user. */)
1235 (Lisp_Object uid)
1236 {
1237 struct passwd *pw;
1238 uid_t id;
1239
1240 /* Set up the user name info if we didn't do it before.
1241 (That can happen if Emacs is dumpable
1242 but you decide to run `temacs -l loadup' and not dump. */
1243 if (INTEGERP (Vuser_login_name))
1244 init_editfns ();
1245
1246 if (NILP (uid))
1247 return Vuser_login_name;
1248
1249 id = XFLOATINT (uid);
1250 BLOCK_INPUT;
1251 pw = getpwuid (id);
1252 UNBLOCK_INPUT;
1253 return (pw ? build_string (pw->pw_name) : Qnil);
1254 }
1255
1256 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1257 0, 0, 0,
1258 doc: /* Return the name of the user's real uid, as a string.
1259 This ignores the environment variables LOGNAME and USER, so it differs from
1260 `user-login-name' when running under `su'. */)
1261 (void)
1262 {
1263 /* Set up the user name info if we didn't do it before.
1264 (That can happen if Emacs is dumpable
1265 but you decide to run `temacs -l loadup' and not dump. */
1266 if (INTEGERP (Vuser_login_name))
1267 init_editfns ();
1268 return Vuser_real_login_name;
1269 }
1270
1271 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1272 doc: /* Return the effective uid of Emacs.
1273 Value is an integer or a float, depending on the value. */)
1274 (void)
1275 {
1276 /* Assignment to EMACS_INT stops GCC whining about limited range of
1277 data type. */
1278 EMACS_INT euid = geteuid ();
1279
1280 /* Make sure we don't produce a negative UID due to signed integer
1281 overflow. */
1282 if (euid < 0)
1283 return make_float (geteuid ());
1284 return make_fixnum_or_float (euid);
1285 }
1286
1287 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1288 doc: /* Return the real uid of Emacs.
1289 Value is an integer or a float, depending on the value. */)
1290 (void)
1291 {
1292 /* Assignment to EMACS_INT stops GCC whining about limited range of
1293 data type. */
1294 EMACS_INT uid = getuid ();
1295
1296 /* Make sure we don't produce a negative UID due to signed integer
1297 overflow. */
1298 if (uid < 0)
1299 return make_float (getuid ());
1300 return make_fixnum_or_float (uid);
1301 }
1302
1303 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1304 doc: /* Return the full name of the user logged in, as a string.
1305 If the full name corresponding to Emacs's userid is not known,
1306 return "unknown".
1307
1308 If optional argument UID is an integer or float, return the full name
1309 of the user with that uid, or nil if there is no such user.
1310 If UID is a string, return the full name of the user with that login
1311 name, or nil if there is no such user. */)
1312 (Lisp_Object uid)
1313 {
1314 struct passwd *pw;
1315 register char *p, *q;
1316 Lisp_Object full;
1317
1318 if (NILP (uid))
1319 return Vuser_full_name;
1320 else if (NUMBERP (uid))
1321 {
1322 uid_t u = XFLOATINT (uid);
1323 BLOCK_INPUT;
1324 pw = getpwuid (u);
1325 UNBLOCK_INPUT;
1326 }
1327 else if (STRINGP (uid))
1328 {
1329 BLOCK_INPUT;
1330 pw = getpwnam (SSDATA (uid));
1331 UNBLOCK_INPUT;
1332 }
1333 else
1334 error ("Invalid UID specification");
1335
1336 if (!pw)
1337 return Qnil;
1338
1339 p = USER_FULL_NAME;
1340 /* Chop off everything after the first comma. */
1341 q = strchr (p, ',');
1342 full = make_string (p, q ? q - p : strlen (p));
1343
1344 #ifdef AMPERSAND_FULL_NAME
1345 p = SSDATA (full);
1346 q = strchr (p, '&');
1347 /* Substitute the login name for the &, upcasing the first character. */
1348 if (q)
1349 {
1350 register char *r;
1351 Lisp_Object login;
1352
1353 login = Fuser_login_name (make_number (pw->pw_uid));
1354 r = (char *) alloca (strlen (p) + SCHARS (login) + 1);
1355 memcpy (r, p, q - p);
1356 r[q - p] = 0;
1357 strcat (r, SSDATA (login));
1358 r[q - p] = upcase ((unsigned char) r[q - p]);
1359 strcat (r, q + 1);
1360 full = build_string (r);
1361 }
1362 #endif /* AMPERSAND_FULL_NAME */
1363
1364 return full;
1365 }
1366
1367 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1368 doc: /* Return the host name of the machine you are running on, as a string. */)
1369 (void)
1370 {
1371 return Vsystem_name;
1372 }
1373
1374 const char *
1375 get_system_name (void)
1376 {
1377 if (STRINGP (Vsystem_name))
1378 return SSDATA (Vsystem_name);
1379 else
1380 return "";
1381 }
1382
1383 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1384 doc: /* Return the process ID of Emacs, as an integer. */)
1385 (void)
1386 {
1387 return make_number (getpid ());
1388 }
1389
1390 \f
1391
1392 #ifndef TIME_T_MIN
1393 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1394 #endif
1395 #ifndef TIME_T_MAX
1396 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1397 #endif
1398
1399 /* Report that a time value is out of range for Emacs. */
1400 static void
1401 time_overflow (void)
1402 {
1403 error ("Specified time is not representable");
1404 }
1405
1406 /* Return the upper part of the time T (everything but the bottom 16 bits),
1407 making sure that it is representable. */
1408 static EMACS_INT
1409 hi_time (time_t t)
1410 {
1411 time_t hi = t >> 16;
1412
1413 /* Check for overflow, helping the compiler for common cases where
1414 no runtime check is needed, and taking care not to convert
1415 negative numbers to unsigned before comparing them. */
1416 if (! ((! TYPE_SIGNED (time_t)
1417 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1418 || MOST_NEGATIVE_FIXNUM <= hi)
1419 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1420 || hi <= MOST_POSITIVE_FIXNUM)))
1421 time_overflow ();
1422
1423 return hi;
1424 }
1425
1426 /* Return the bottom 16 bits of the time T. */
1427 static EMACS_INT
1428 lo_time (time_t t)
1429 {
1430 return t & ((1 << 16) - 1);
1431 }
1432
1433 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1434 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1435 The time is returned as a list of three integers. The first has the
1436 most significant 16 bits of the seconds, while the second has the
1437 least significant 16 bits. The third integer gives the microsecond
1438 count.
1439
1440 The microsecond count is zero on systems that do not provide
1441 resolution finer than a second. */)
1442 (void)
1443 {
1444 EMACS_TIME t;
1445
1446 EMACS_GET_TIME (t);
1447 return list3 (make_number (hi_time (EMACS_SECS (t))),
1448 make_number (lo_time (EMACS_SECS (t))),
1449 make_number (EMACS_USECS (t)));
1450 }
1451
1452 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1453 0, 0, 0,
1454 doc: /* Return the current run time used by Emacs.
1455 The time is returned as a list of three integers. The first has the
1456 most significant 16 bits of the seconds, while the second has the
1457 least significant 16 bits. The third integer gives the microsecond
1458 count.
1459
1460 On systems that can't determine the run time, `get-internal-run-time'
1461 does the same thing as `current-time'. The microsecond count is zero
1462 on systems that do not provide resolution finer than a second. */)
1463 (void)
1464 {
1465 #ifdef HAVE_GETRUSAGE
1466 struct rusage usage;
1467 time_t secs;
1468 int usecs;
1469
1470 if (getrusage (RUSAGE_SELF, &usage) < 0)
1471 /* This shouldn't happen. What action is appropriate? */
1472 xsignal0 (Qerror);
1473
1474 /* Sum up user time and system time. */
1475 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1476 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1477 if (usecs >= 1000000)
1478 {
1479 usecs -= 1000000;
1480 secs++;
1481 }
1482
1483 return list3 (make_number (hi_time (secs)),
1484 make_number (lo_time (secs)),
1485 make_number (usecs));
1486 #else /* ! HAVE_GETRUSAGE */
1487 #ifdef WINDOWSNT
1488 return w32_get_internal_run_time ();
1489 #else /* ! WINDOWSNT */
1490 return Fcurrent_time ();
1491 #endif /* WINDOWSNT */
1492 #endif /* HAVE_GETRUSAGE */
1493 }
1494 \f
1495
1496 /* Make a Lisp list that represents the time T. */
1497 Lisp_Object
1498 make_time (time_t t)
1499 {
1500 return list2 (make_number (hi_time (t)),
1501 make_number (lo_time (t)));
1502 }
1503
1504 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1505 If SPECIFIED_TIME is nil, use the current time.
1506 Set *RESULT to seconds since the Epoch.
1507 If USEC is not null, set *USEC to the microseconds component.
1508 Return nonzero if successful. */
1509 int
1510 lisp_time_argument (Lisp_Object specified_time, time_t *result, int *usec)
1511 {
1512 if (NILP (specified_time))
1513 {
1514 if (usec)
1515 {
1516 EMACS_TIME t;
1517
1518 EMACS_GET_TIME (t);
1519 *usec = EMACS_USECS (t);
1520 *result = EMACS_SECS (t);
1521 return 1;
1522 }
1523 else
1524 return time (result) != -1;
1525 }
1526 else
1527 {
1528 Lisp_Object high, low;
1529 EMACS_INT hi;
1530 high = Fcar (specified_time);
1531 CHECK_NUMBER (high);
1532 low = Fcdr (specified_time);
1533 if (CONSP (low))
1534 {
1535 if (usec)
1536 {
1537 Lisp_Object usec_l = Fcdr (low);
1538 if (CONSP (usec_l))
1539 usec_l = Fcar (usec_l);
1540 if (NILP (usec_l))
1541 *usec = 0;
1542 else
1543 {
1544 CHECK_NUMBER (usec_l);
1545 *usec = XINT (usec_l);
1546 }
1547 }
1548 low = Fcar (low);
1549 }
1550 else if (usec)
1551 *usec = 0;
1552 CHECK_NUMBER (low);
1553 hi = XINT (high);
1554
1555 /* Check for overflow, helping the compiler for common cases
1556 where no runtime check is needed, and taking care not to
1557 convert negative numbers to unsigned before comparing them. */
1558 if (! ((TYPE_SIGNED (time_t)
1559 ? (TIME_T_MIN >> 16 <= MOST_NEGATIVE_FIXNUM
1560 || TIME_T_MIN >> 16 <= hi)
1561 : 0 <= hi)
1562 && (MOST_POSITIVE_FIXNUM <= TIME_T_MAX >> 16
1563 || hi <= TIME_T_MAX >> 16)))
1564 return 0;
1565
1566 *result = (hi << 16) + (XINT (low) & 0xffff);
1567 return 1;
1568 }
1569 }
1570
1571 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1572 doc: /* Return the current time, as a float number of seconds since the epoch.
1573 If SPECIFIED-TIME is given, it is the time to convert to float
1574 instead of the current time. The argument should have the form
1575 (HIGH LOW) or (HIGH LOW USEC). Thus, you can use times obtained from
1576 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1577 have the form (HIGH . LOW), but this is considered obsolete.
1578
1579 WARNING: Since the result is floating point, it may not be exact.
1580 If precise time stamps are required, use either `current-time',
1581 or (if you need time as a string) `format-time-string'. */)
1582 (Lisp_Object specified_time)
1583 {
1584 time_t sec;
1585 int usec;
1586
1587 if (! lisp_time_argument (specified_time, &sec, &usec))
1588 error ("Invalid time specification");
1589
1590 return make_float ((sec * 1e6 + usec) / 1e6);
1591 }
1592
1593 /* Write information into buffer S of size MAXSIZE, according to the
1594 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1595 Default to Universal Time if UT is nonzero, local time otherwise.
1596 Use NS as the number of nanoseconds in the %N directive.
1597 Return the number of bytes written, not including the terminating
1598 '\0'. If S is NULL, nothing will be written anywhere; so to
1599 determine how many bytes would be written, use NULL for S and
1600 ((size_t) -1) for MAXSIZE.
1601
1602 This function behaves like nstrftime, except it allows null
1603 bytes in FORMAT and it does not support nanoseconds. */
1604 static size_t
1605 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1606 size_t format_len, const struct tm *tp, int ut, int ns)
1607 {
1608 size_t total = 0;
1609
1610 /* Loop through all the null-terminated strings in the format
1611 argument. Normally there's just one null-terminated string, but
1612 there can be arbitrarily many, concatenated together, if the
1613 format contains '\0' bytes. nstrftime stops at the first
1614 '\0' byte so we must invoke it separately for each such string. */
1615 for (;;)
1616 {
1617 size_t len;
1618 size_t result;
1619
1620 if (s)
1621 s[0] = '\1';
1622
1623 result = nstrftime (s, maxsize, format, tp, ut, ns);
1624
1625 if (s)
1626 {
1627 if (result == 0 && s[0] != '\0')
1628 return 0;
1629 s += result + 1;
1630 }
1631
1632 maxsize -= result + 1;
1633 total += result;
1634 len = strlen (format);
1635 if (len == format_len)
1636 return total;
1637 total++;
1638 format += len + 1;
1639 format_len -= len + 1;
1640 }
1641 }
1642
1643 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1644 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1645 TIME is specified as (HIGH LOW . IGNORED), as returned by
1646 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1647 is also still accepted.
1648 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1649 as Universal Time; nil means describe TIME in the local time zone.
1650 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1651 by text that describes the specified date and time in TIME:
1652
1653 %Y is the year, %y within the century, %C the century.
1654 %G is the year corresponding to the ISO week, %g within the century.
1655 %m is the numeric month.
1656 %b and %h are the locale's abbreviated month name, %B the full name.
1657 %d is the day of the month, zero-padded, %e is blank-padded.
1658 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1659 %a is the locale's abbreviated name of the day of week, %A the full name.
1660 %U is the week number starting on Sunday, %W starting on Monday,
1661 %V according to ISO 8601.
1662 %j is the day of the year.
1663
1664 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1665 only blank-padded, %l is like %I blank-padded.
1666 %p is the locale's equivalent of either AM or PM.
1667 %M is the minute.
1668 %S is the second.
1669 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1670 %Z is the time zone name, %z is the numeric form.
1671 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1672
1673 %c is the locale's date and time format.
1674 %x is the locale's "preferred" date format.
1675 %D is like "%m/%d/%y".
1676
1677 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1678 %X is the locale's "preferred" time format.
1679
1680 Finally, %n is a newline, %t is a tab, %% is a literal %.
1681
1682 Certain flags and modifiers are available with some format controls.
1683 The flags are `_', `-', `^' and `#'. For certain characters X,
1684 %_X is like %X, but padded with blanks; %-X is like %X,
1685 but without padding. %^X is like %X, but with all textual
1686 characters up-cased; %#X is like %X, but with letter-case of
1687 all textual characters reversed.
1688 %NX (where N stands for an integer) is like %X,
1689 but takes up at least N (a number) positions.
1690 The modifiers are `E' and `O'. For certain characters X,
1691 %EX is a locale's alternative version of %X;
1692 %OX is like %X, but uses the locale's number symbols.
1693
1694 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1695
1696 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1697 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1698 {
1699 time_t t;
1700 struct tm tm;
1701
1702 CHECK_STRING (format_string);
1703 format_string = code_convert_string_norecord (format_string,
1704 Vlocale_coding_system, 1);
1705 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1706 timeval, ! NILP (universal), &t, &tm);
1707 }
1708
1709 static Lisp_Object
1710 format_time_string (char const *format, ptrdiff_t formatlen,
1711 Lisp_Object timeval, int ut, time_t *tval, struct tm *tmp)
1712 {
1713 char buffer[4000];
1714 char *buf = buffer;
1715 size_t size = sizeof buffer;
1716 size_t len;
1717 Lisp_Object bufstring;
1718 int usec;
1719 int ns;
1720 struct tm *tm;
1721 USE_SAFE_ALLOCA;
1722
1723 if (! (lisp_time_argument (timeval, tval, &usec)
1724 && 0 <= usec && usec < 1000000))
1725 error ("Invalid time specification");
1726 ns = usec * 1000;
1727
1728 while (1)
1729 {
1730 BLOCK_INPUT;
1731
1732 synchronize_system_time_locale ();
1733
1734 tm = ut ? gmtime (tval) : localtime (tval);
1735 if (! tm)
1736 {
1737 UNBLOCK_INPUT;
1738 time_overflow ();
1739 }
1740 *tmp = *tm;
1741
1742 buf[0] = '\1';
1743 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1744 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1745 break;
1746
1747 /* Buffer was too small, so make it bigger and try again. */
1748 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1749 UNBLOCK_INPUT;
1750 if (STRING_BYTES_BOUND <= len)
1751 string_overflow ();
1752 size = len + 1;
1753 SAFE_ALLOCA (buf, char *, size);
1754 }
1755
1756 UNBLOCK_INPUT;
1757 bufstring = make_unibyte_string (buf, len);
1758 SAFE_FREE ();
1759 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1760 }
1761
1762 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1763 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1764 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1765 as from `current-time' and `file-attributes', or nil to use the
1766 current time. The obsolete form (HIGH . LOW) is also still accepted.
1767 The list has the following nine members: SEC is an integer between 0
1768 and 60; SEC is 60 for a leap second, which only some operating systems
1769 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1770 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1771 integer between 1 and 12. YEAR is an integer indicating the
1772 four-digit year. DOW is the day of week, an integer between 0 and 6,
1773 where 0 is Sunday. DST is t if daylight saving time is in effect,
1774 otherwise nil. ZONE is an integer indicating the number of seconds
1775 east of Greenwich. (Note that Common Lisp has different meanings for
1776 DOW and ZONE.) */)
1777 (Lisp_Object specified_time)
1778 {
1779 time_t time_spec;
1780 struct tm save_tm;
1781 struct tm *decoded_time;
1782 Lisp_Object list_args[9];
1783
1784 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1785 error ("Invalid time specification");
1786
1787 BLOCK_INPUT;
1788 decoded_time = localtime (&time_spec);
1789 /* Make a copy, in case a signal handler modifies TZ or the struct. */
1790 if (decoded_time)
1791 save_tm = *decoded_time;
1792 UNBLOCK_INPUT;
1793 if (! (decoded_time
1794 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1795 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1796 time_overflow ();
1797 XSETFASTINT (list_args[0], save_tm.tm_sec);
1798 XSETFASTINT (list_args[1], save_tm.tm_min);
1799 XSETFASTINT (list_args[2], save_tm.tm_hour);
1800 XSETFASTINT (list_args[3], save_tm.tm_mday);
1801 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1802 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1803 cast below avoids overflow in int arithmetics. */
1804 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1805 XSETFASTINT (list_args[6], save_tm.tm_wday);
1806 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1807
1808 BLOCK_INPUT;
1809 decoded_time = gmtime (&time_spec);
1810 if (decoded_time == 0)
1811 list_args[8] = Qnil;
1812 else
1813 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1814 UNBLOCK_INPUT;
1815 return Flist (9, list_args);
1816 }
1817
1818 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1819 the result is representable as an int. Assume OFFSET is small and
1820 nonnegative. */
1821 static int
1822 check_tm_member (Lisp_Object obj, int offset)
1823 {
1824 EMACS_INT n;
1825 CHECK_NUMBER (obj);
1826 n = XINT (obj);
1827 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1828 time_overflow ();
1829 return n - offset;
1830 }
1831
1832 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1833 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1834 This is the reverse operation of `decode-time', which see.
1835 ZONE defaults to the current time zone rule. This can
1836 be a string or t (as from `set-time-zone-rule'), or it can be a list
1837 \(as from `current-time-zone') or an integer (as from `decode-time')
1838 applied without consideration for daylight saving time.
1839
1840 You can pass more than 7 arguments; then the first six arguments
1841 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1842 The intervening arguments are ignored.
1843 This feature lets (apply 'encode-time (decode-time ...)) work.
1844
1845 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1846 for example, a DAY of 0 means the day preceding the given month.
1847 Year numbers less than 100 are treated just like other year numbers.
1848 If you want them to stand for years in this century, you must do that yourself.
1849
1850 Years before 1970 are not guaranteed to work. On some systems,
1851 year values as low as 1901 do work.
1852
1853 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1854 (ptrdiff_t nargs, Lisp_Object *args)
1855 {
1856 time_t value;
1857 struct tm tm;
1858 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1859
1860 tm.tm_sec = check_tm_member (args[0], 0);
1861 tm.tm_min = check_tm_member (args[1], 0);
1862 tm.tm_hour = check_tm_member (args[2], 0);
1863 tm.tm_mday = check_tm_member (args[3], 0);
1864 tm.tm_mon = check_tm_member (args[4], 1);
1865 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1866 tm.tm_isdst = -1;
1867
1868 if (CONSP (zone))
1869 zone = Fcar (zone);
1870 if (NILP (zone))
1871 {
1872 BLOCK_INPUT;
1873 value = mktime (&tm);
1874 UNBLOCK_INPUT;
1875 }
1876 else
1877 {
1878 char tzbuf[100];
1879 const char *tzstring;
1880 char **oldenv = environ, **newenv;
1881
1882 if (EQ (zone, Qt))
1883 tzstring = "UTC0";
1884 else if (STRINGP (zone))
1885 tzstring = SSDATA (zone);
1886 else if (INTEGERP (zone))
1887 {
1888 int abszone = eabs (XINT (zone));
1889 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1890 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1891 tzstring = tzbuf;
1892 }
1893 else
1894 error ("Invalid time zone specification");
1895
1896 BLOCK_INPUT;
1897
1898 /* Set TZ before calling mktime; merely adjusting mktime's returned
1899 value doesn't suffice, since that would mishandle leap seconds. */
1900 set_time_zone_rule (tzstring);
1901
1902 value = mktime (&tm);
1903
1904 /* Restore TZ to previous value. */
1905 newenv = environ;
1906 environ = oldenv;
1907 #ifdef LOCALTIME_CACHE
1908 tzset ();
1909 #endif
1910 UNBLOCK_INPUT;
1911
1912 xfree (newenv);
1913 }
1914
1915 if (value == (time_t) -1)
1916 time_overflow ();
1917
1918 return make_time (value);
1919 }
1920
1921 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1922 doc: /* Return the current local time, as a human-readable string.
1923 Programs can use this function to decode a time,
1924 since the number of columns in each field is fixed
1925 if the year is in the range 1000-9999.
1926 The format is `Sun Sep 16 01:03:52 1973'.
1927 However, see also the functions `decode-time' and `format-time-string'
1928 which provide a much more powerful and general facility.
1929
1930 If SPECIFIED-TIME is given, it is a time to format instead of the
1931 current time. The argument should have the form (HIGH LOW . IGNORED).
1932 Thus, you can use times obtained from `current-time' and from
1933 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1934 but this is considered obsolete. */)
1935 (Lisp_Object specified_time)
1936 {
1937 time_t value;
1938 struct tm *tm;
1939 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1940 int len IF_LINT (= 0);
1941
1942 if (! lisp_time_argument (specified_time, &value, NULL))
1943 error ("Invalid time specification");
1944
1945 /* Convert to a string in ctime format, except without the trailing
1946 newline, and without the 4-digit year limit. Don't use asctime
1947 or ctime, as they might dump core if the year is outside the
1948 range -999 .. 9999. */
1949 BLOCK_INPUT;
1950 tm = localtime (&value);
1951 if (tm)
1952 {
1953 static char const wday_name[][4] =
1954 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1955 static char const mon_name[][4] =
1956 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1957 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1958 printmax_t year_base = TM_YEAR_BASE;
1959
1960 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1961 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
1962 tm->tm_hour, tm->tm_min, tm->tm_sec,
1963 tm->tm_year + year_base);
1964 }
1965 UNBLOCK_INPUT;
1966 if (! tm)
1967 time_overflow ();
1968
1969 return make_unibyte_string (buf, len);
1970 }
1971
1972 /* Yield A - B, measured in seconds.
1973 This function is copied from the GNU C Library. */
1974 static int
1975 tm_diff (struct tm *a, struct tm *b)
1976 {
1977 /* Compute intervening leap days correctly even if year is negative.
1978 Take care to avoid int overflow in leap day calculations,
1979 but it's OK to assume that A and B are close to each other. */
1980 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1981 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1982 int a100 = a4 / 25 - (a4 % 25 < 0);
1983 int b100 = b4 / 25 - (b4 % 25 < 0);
1984 int a400 = a100 >> 2;
1985 int b400 = b100 >> 2;
1986 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1987 int years = a->tm_year - b->tm_year;
1988 int days = (365 * years + intervening_leap_days
1989 + (a->tm_yday - b->tm_yday));
1990 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1991 + (a->tm_min - b->tm_min))
1992 + (a->tm_sec - b->tm_sec));
1993 }
1994
1995 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1996 doc: /* Return the offset and name for the local time zone.
1997 This returns a list of the form (OFFSET NAME).
1998 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1999 A negative value means west of Greenwich.
2000 NAME is a string giving the name of the time zone.
2001 If SPECIFIED-TIME is given, the time zone offset is determined from it
2002 instead of using the current time. The argument should have the form
2003 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2004 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2005 have the form (HIGH . LOW), but this is considered obsolete.
2006
2007 Some operating systems cannot provide all this information to Emacs;
2008 in this case, `current-time-zone' returns a list containing nil for
2009 the data it can't find. */)
2010 (Lisp_Object specified_time)
2011 {
2012 time_t value;
2013 int offset;
2014 struct tm *t;
2015 struct tm localtm;
2016 Lisp_Object zone_offset, zone_name;
2017
2018 zone_offset = Qnil;
2019 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, specified_time,
2020 0, &value, &localtm);
2021 BLOCK_INPUT;
2022 t = gmtime (&value);
2023 if (t)
2024 offset = tm_diff (&localtm, t);
2025 UNBLOCK_INPUT;
2026
2027 if (t)
2028 {
2029 zone_offset = make_number (offset);
2030 if (SCHARS (zone_name) == 0)
2031 {
2032 /* No local time zone name is available; use "+-NNNN" instead. */
2033 int m = offset / 60;
2034 int am = offset < 0 ? - m : m;
2035 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2036 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
2037 zone_name = build_string (buf);
2038 }
2039 }
2040
2041 return list2 (zone_offset, zone_name);
2042 }
2043
2044 /* This holds the value of `environ' produced by the previous
2045 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2046 has never been called. */
2047 static char **environbuf;
2048
2049 /* This holds the startup value of the TZ environment variable so it
2050 can be restored if the user calls set-time-zone-rule with a nil
2051 argument. */
2052 static char *initial_tz;
2053
2054 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2055 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2056 If TZ is nil, use implementation-defined default time zone information.
2057 If TZ is t, use Universal Time.
2058
2059 Instead of calling this function, you typically want (setenv "TZ" TZ).
2060 That changes both the environment of the Emacs process and the
2061 variable `process-environment', whereas `set-time-zone-rule' affects
2062 only the former. */)
2063 (Lisp_Object tz)
2064 {
2065 const char *tzstring;
2066 char **old_environbuf;
2067
2068 if (! (NILP (tz) || EQ (tz, Qt)))
2069 CHECK_STRING (tz);
2070
2071 BLOCK_INPUT;
2072
2073 /* When called for the first time, save the original TZ. */
2074 old_environbuf = environbuf;
2075 if (!old_environbuf)
2076 initial_tz = (char *) getenv ("TZ");
2077
2078 if (NILP (tz))
2079 tzstring = initial_tz;
2080 else if (EQ (tz, Qt))
2081 tzstring = "UTC0";
2082 else
2083 tzstring = SSDATA (tz);
2084
2085 set_time_zone_rule (tzstring);
2086 environbuf = environ;
2087
2088 UNBLOCK_INPUT;
2089
2090 xfree (old_environbuf);
2091 return Qnil;
2092 }
2093
2094 #ifdef LOCALTIME_CACHE
2095
2096 /* These two values are known to load tz files in buggy implementations,
2097 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2098 Their values shouldn't matter in non-buggy implementations.
2099 We don't use string literals for these strings,
2100 since if a string in the environment is in readonly
2101 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2102 See Sun bugs 1113095 and 1114114, ``Timezone routines
2103 improperly modify environment''. */
2104
2105 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2106 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2107
2108 #endif
2109
2110 /* Set the local time zone rule to TZSTRING.
2111 This allocates memory into `environ', which it is the caller's
2112 responsibility to free. */
2113
2114 void
2115 set_time_zone_rule (const char *tzstring)
2116 {
2117 ptrdiff_t envptrs;
2118 char **from, **to, **newenv;
2119
2120 /* Make the ENVIRON vector longer with room for TZSTRING. */
2121 for (from = environ; *from; from++)
2122 continue;
2123 envptrs = from - environ + 2;
2124 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2125 + (tzstring ? strlen (tzstring) + 4 : 0));
2126
2127 /* Add TZSTRING to the end of environ, as a value for TZ. */
2128 if (tzstring)
2129 {
2130 char *t = (char *) (to + envptrs);
2131 strcpy (t, "TZ=");
2132 strcat (t, tzstring);
2133 *to++ = t;
2134 }
2135
2136 /* Copy the old environ vector elements into NEWENV,
2137 but don't copy the TZ variable.
2138 So we have only one definition of TZ, which came from TZSTRING. */
2139 for (from = environ; *from; from++)
2140 if (strncmp (*from, "TZ=", 3) != 0)
2141 *to++ = *from;
2142 *to = 0;
2143
2144 environ = newenv;
2145
2146 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2147 the TZ variable is stored. If we do not have a TZSTRING,
2148 TO points to the vector slot which has the terminating null. */
2149
2150 #ifdef LOCALTIME_CACHE
2151 {
2152 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2153 "US/Pacific" that loads a tz file, then changes to a value like
2154 "XXX0" that does not load a tz file, and then changes back to
2155 its original value, the last change is (incorrectly) ignored.
2156 Also, if TZ changes twice in succession to values that do
2157 not load a tz file, tzset can dump core (see Sun bug#1225179).
2158 The following code works around these bugs. */
2159
2160 if (tzstring)
2161 {
2162 /* Temporarily set TZ to a value that loads a tz file
2163 and that differs from tzstring. */
2164 char *tz = *newenv;
2165 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2166 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2167 tzset ();
2168 *newenv = tz;
2169 }
2170 else
2171 {
2172 /* The implied tzstring is unknown, so temporarily set TZ to
2173 two different values that each load a tz file. */
2174 *to = set_time_zone_rule_tz1;
2175 to[1] = 0;
2176 tzset ();
2177 *to = set_time_zone_rule_tz2;
2178 tzset ();
2179 *to = 0;
2180 }
2181
2182 /* Now TZ has the desired value, and tzset can be invoked safely. */
2183 }
2184
2185 tzset ();
2186 #endif
2187 }
2188 \f
2189 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2190 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2191 type of object is Lisp_String). INHERIT is passed to
2192 INSERT_FROM_STRING_FUNC as the last argument. */
2193
2194 static void
2195 general_insert_function (void (*insert_func)
2196 (const char *, EMACS_INT),
2197 void (*insert_from_string_func)
2198 (Lisp_Object, EMACS_INT, EMACS_INT,
2199 EMACS_INT, EMACS_INT, int),
2200 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2201 {
2202 ptrdiff_t argnum;
2203 register Lisp_Object val;
2204
2205 for (argnum = 0; argnum < nargs; argnum++)
2206 {
2207 val = args[argnum];
2208 if (CHARACTERP (val))
2209 {
2210 int c = XFASTINT (val);
2211 unsigned char str[MAX_MULTIBYTE_LENGTH];
2212 int len;
2213
2214 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2215 len = CHAR_STRING (c, str);
2216 else
2217 {
2218 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2219 len = 1;
2220 }
2221 (*insert_func) ((char *) str, len);
2222 }
2223 else if (STRINGP (val))
2224 {
2225 (*insert_from_string_func) (val, 0, 0,
2226 SCHARS (val),
2227 SBYTES (val),
2228 inherit);
2229 }
2230 else
2231 wrong_type_argument (Qchar_or_string_p, val);
2232 }
2233 }
2234
2235 void
2236 insert1 (Lisp_Object arg)
2237 {
2238 Finsert (1, &arg);
2239 }
2240
2241
2242 /* Callers passing one argument to Finsert need not gcpro the
2243 argument "array", since the only element of the array will
2244 not be used after calling insert or insert_from_string, so
2245 we don't care if it gets trashed. */
2246
2247 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2248 doc: /* Insert the arguments, either strings or characters, at point.
2249 Point and before-insertion markers move forward to end up
2250 after the inserted text.
2251 Any other markers at the point of insertion remain before the text.
2252
2253 If the current buffer is multibyte, unibyte strings are converted
2254 to multibyte for insertion (see `string-make-multibyte').
2255 If the current buffer is unibyte, multibyte strings are converted
2256 to unibyte for insertion (see `string-make-unibyte').
2257
2258 When operating on binary data, it may be necessary to preserve the
2259 original bytes of a unibyte string when inserting it into a multibyte
2260 buffer; to accomplish this, apply `string-as-multibyte' to the string
2261 and insert the result.
2262
2263 usage: (insert &rest ARGS) */)
2264 (ptrdiff_t nargs, Lisp_Object *args)
2265 {
2266 general_insert_function (insert, insert_from_string, 0, nargs, args);
2267 return Qnil;
2268 }
2269
2270 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2271 0, MANY, 0,
2272 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2273 Point and before-insertion markers move forward to end up
2274 after the inserted text.
2275 Any other markers at the point of insertion remain before the text.
2276
2277 If the current buffer is multibyte, unibyte strings are converted
2278 to multibyte for insertion (see `unibyte-char-to-multibyte').
2279 If the current buffer is unibyte, multibyte strings are converted
2280 to unibyte for insertion.
2281
2282 usage: (insert-and-inherit &rest ARGS) */)
2283 (ptrdiff_t nargs, Lisp_Object *args)
2284 {
2285 general_insert_function (insert_and_inherit, insert_from_string, 1,
2286 nargs, args);
2287 return Qnil;
2288 }
2289
2290 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2291 doc: /* Insert strings or characters at point, relocating markers after the text.
2292 Point and markers move forward to end up after the inserted text.
2293
2294 If the current buffer is multibyte, unibyte strings are converted
2295 to multibyte for insertion (see `unibyte-char-to-multibyte').
2296 If the current buffer is unibyte, multibyte strings are converted
2297 to unibyte for insertion.
2298
2299 usage: (insert-before-markers &rest ARGS) */)
2300 (ptrdiff_t nargs, Lisp_Object *args)
2301 {
2302 general_insert_function (insert_before_markers,
2303 insert_from_string_before_markers, 0,
2304 nargs, args);
2305 return Qnil;
2306 }
2307
2308 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2309 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2310 doc: /* Insert text at point, relocating markers and inheriting properties.
2311 Point and markers move forward to end up after the inserted text.
2312
2313 If the current buffer is multibyte, unibyte strings are converted
2314 to multibyte for insertion (see `unibyte-char-to-multibyte').
2315 If the current buffer is unibyte, multibyte strings are converted
2316 to unibyte for insertion.
2317
2318 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2319 (ptrdiff_t nargs, Lisp_Object *args)
2320 {
2321 general_insert_function (insert_before_markers_and_inherit,
2322 insert_from_string_before_markers, 1,
2323 nargs, args);
2324 return Qnil;
2325 }
2326 \f
2327 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2328 doc: /* Insert COUNT copies of CHARACTER.
2329 Point, and before-insertion markers, are relocated as in the function `insert'.
2330 The optional third arg INHERIT, if non-nil, says to inherit text properties
2331 from adjoining text, if those properties are sticky. */)
2332 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2333 {
2334 int i, stringlen;
2335 register EMACS_INT n;
2336 int c, len;
2337 unsigned char str[MAX_MULTIBYTE_LENGTH];
2338 char string[4000];
2339
2340 CHECK_CHARACTER (character);
2341 CHECK_NUMBER (count);
2342 c = XFASTINT (character);
2343
2344 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2345 len = CHAR_STRING (c, str);
2346 else
2347 str[0] = c, len = 1;
2348 if (XINT (count) <= 0)
2349 return Qnil;
2350 if (BUF_BYTES_MAX / len < XINT (count))
2351 buffer_overflow ();
2352 n = XINT (count) * len;
2353 stringlen = min (n, sizeof string - sizeof string % len);
2354 for (i = 0; i < stringlen; i++)
2355 string[i] = str[i % len];
2356 while (n > stringlen)
2357 {
2358 QUIT;
2359 if (!NILP (inherit))
2360 insert_and_inherit (string, stringlen);
2361 else
2362 insert (string, stringlen);
2363 n -= stringlen;
2364 }
2365 if (!NILP (inherit))
2366 insert_and_inherit (string, n);
2367 else
2368 insert (string, n);
2369 return Qnil;
2370 }
2371
2372 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2373 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2374 Both arguments are required.
2375 BYTE is a number of the range 0..255.
2376
2377 If BYTE is 128..255 and the current buffer is multibyte, the
2378 corresponding eight-bit character is inserted.
2379
2380 Point, and before-insertion markers, are relocated as in the function `insert'.
2381 The optional third arg INHERIT, if non-nil, says to inherit text properties
2382 from adjoining text, if those properties are sticky. */)
2383 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2384 {
2385 CHECK_NUMBER (byte);
2386 if (XINT (byte) < 0 || XINT (byte) > 255)
2387 args_out_of_range_3 (byte, make_number (0), make_number (255));
2388 if (XINT (byte) >= 128
2389 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2390 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2391 return Finsert_char (byte, count, inherit);
2392 }
2393
2394 \f
2395 /* Making strings from buffer contents. */
2396
2397 /* Return a Lisp_String containing the text of the current buffer from
2398 START to END. If text properties are in use and the current buffer
2399 has properties in the range specified, the resulting string will also
2400 have them, if PROPS is nonzero.
2401
2402 We don't want to use plain old make_string here, because it calls
2403 make_uninit_string, which can cause the buffer arena to be
2404 compacted. make_string has no way of knowing that the data has
2405 been moved, and thus copies the wrong data into the string. This
2406 doesn't effect most of the other users of make_string, so it should
2407 be left as is. But we should use this function when conjuring
2408 buffer substrings. */
2409
2410 Lisp_Object
2411 make_buffer_string (EMACS_INT start, EMACS_INT end, int props)
2412 {
2413 EMACS_INT start_byte = CHAR_TO_BYTE (start);
2414 EMACS_INT end_byte = CHAR_TO_BYTE (end);
2415
2416 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2417 }
2418
2419 /* Return a Lisp_String containing the text of the current buffer from
2420 START / START_BYTE to END / END_BYTE.
2421
2422 If text properties are in use and the current buffer
2423 has properties in the range specified, the resulting string will also
2424 have them, if PROPS is nonzero.
2425
2426 We don't want to use plain old make_string here, because it calls
2427 make_uninit_string, which can cause the buffer arena to be
2428 compacted. make_string has no way of knowing that the data has
2429 been moved, and thus copies the wrong data into the string. This
2430 doesn't effect most of the other users of make_string, so it should
2431 be left as is. But we should use this function when conjuring
2432 buffer substrings. */
2433
2434 Lisp_Object
2435 make_buffer_string_both (EMACS_INT start, EMACS_INT start_byte,
2436 EMACS_INT end, EMACS_INT end_byte, int props)
2437 {
2438 Lisp_Object result, tem, tem1;
2439
2440 if (start < GPT && GPT < end)
2441 move_gap (start);
2442
2443 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2444 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2445 else
2446 result = make_uninit_string (end - start);
2447 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2448
2449 /* If desired, update and copy the text properties. */
2450 if (props)
2451 {
2452 update_buffer_properties (start, end);
2453
2454 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2455 tem1 = Ftext_properties_at (make_number (start), Qnil);
2456
2457 if (XINT (tem) != end || !NILP (tem1))
2458 copy_intervals_to_string (result, current_buffer, start,
2459 end - start);
2460 }
2461
2462 return result;
2463 }
2464
2465 /* Call Vbuffer_access_fontify_functions for the range START ... END
2466 in the current buffer, if necessary. */
2467
2468 static void
2469 update_buffer_properties (EMACS_INT start, EMACS_INT end)
2470 {
2471 /* If this buffer has some access functions,
2472 call them, specifying the range of the buffer being accessed. */
2473 if (!NILP (Vbuffer_access_fontify_functions))
2474 {
2475 Lisp_Object args[3];
2476 Lisp_Object tem;
2477
2478 args[0] = Qbuffer_access_fontify_functions;
2479 XSETINT (args[1], start);
2480 XSETINT (args[2], end);
2481
2482 /* But don't call them if we can tell that the work
2483 has already been done. */
2484 if (!NILP (Vbuffer_access_fontified_property))
2485 {
2486 tem = Ftext_property_any (args[1], args[2],
2487 Vbuffer_access_fontified_property,
2488 Qnil, Qnil);
2489 if (! NILP (tem))
2490 Frun_hook_with_args (3, args);
2491 }
2492 else
2493 Frun_hook_with_args (3, args);
2494 }
2495 }
2496
2497 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2498 doc: /* Return the contents of part of the current buffer as a string.
2499 The two arguments START and END are character positions;
2500 they can be in either order.
2501 The string returned is multibyte if the buffer is multibyte.
2502
2503 This function copies the text properties of that part of the buffer
2504 into the result string; if you don't want the text properties,
2505 use `buffer-substring-no-properties' instead. */)
2506 (Lisp_Object start, Lisp_Object end)
2507 {
2508 register EMACS_INT b, e;
2509
2510 validate_region (&start, &end);
2511 b = XINT (start);
2512 e = XINT (end);
2513
2514 return make_buffer_string (b, e, 1);
2515 }
2516
2517 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2518 Sbuffer_substring_no_properties, 2, 2, 0,
2519 doc: /* Return the characters of part of the buffer, without the text properties.
2520 The two arguments START and END are character positions;
2521 they can be in either order. */)
2522 (Lisp_Object start, Lisp_Object end)
2523 {
2524 register EMACS_INT b, e;
2525
2526 validate_region (&start, &end);
2527 b = XINT (start);
2528 e = XINT (end);
2529
2530 return make_buffer_string (b, e, 0);
2531 }
2532
2533 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2534 doc: /* Return the contents of the current buffer as a string.
2535 If narrowing is in effect, this function returns only the visible part
2536 of the buffer. */)
2537 (void)
2538 {
2539 return make_buffer_string (BEGV, ZV, 1);
2540 }
2541
2542 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2543 1, 3, 0,
2544 doc: /* Insert before point a substring of the contents of BUFFER.
2545 BUFFER may be a buffer or a buffer name.
2546 Arguments START and END are character positions specifying the substring.
2547 They default to the values of (point-min) and (point-max) in BUFFER. */)
2548 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2549 {
2550 register EMACS_INT b, e, temp;
2551 register struct buffer *bp, *obuf;
2552 Lisp_Object buf;
2553
2554 buf = Fget_buffer (buffer);
2555 if (NILP (buf))
2556 nsberror (buffer);
2557 bp = XBUFFER (buf);
2558 if (NILP (BVAR (bp, name)))
2559 error ("Selecting deleted buffer");
2560
2561 if (NILP (start))
2562 b = BUF_BEGV (bp);
2563 else
2564 {
2565 CHECK_NUMBER_COERCE_MARKER (start);
2566 b = XINT (start);
2567 }
2568 if (NILP (end))
2569 e = BUF_ZV (bp);
2570 else
2571 {
2572 CHECK_NUMBER_COERCE_MARKER (end);
2573 e = XINT (end);
2574 }
2575
2576 if (b > e)
2577 temp = b, b = e, e = temp;
2578
2579 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2580 args_out_of_range (start, end);
2581
2582 obuf = current_buffer;
2583 set_buffer_internal_1 (bp);
2584 update_buffer_properties (b, e);
2585 set_buffer_internal_1 (obuf);
2586
2587 insert_from_buffer (bp, b, e - b, 0);
2588 return Qnil;
2589 }
2590
2591 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2592 6, 6, 0,
2593 doc: /* Compare two substrings of two buffers; return result as number.
2594 the value is -N if first string is less after N-1 chars,
2595 +N if first string is greater after N-1 chars, or 0 if strings match.
2596 Each substring is represented as three arguments: BUFFER, START and END.
2597 That makes six args in all, three for each substring.
2598
2599 The value of `case-fold-search' in the current buffer
2600 determines whether case is significant or ignored. */)
2601 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2602 {
2603 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2604 register struct buffer *bp1, *bp2;
2605 register Lisp_Object trt
2606 = (!NILP (BVAR (current_buffer, case_fold_search))
2607 ? BVAR (current_buffer, case_canon_table) : Qnil);
2608 EMACS_INT chars = 0;
2609 EMACS_INT i1, i2, i1_byte, i2_byte;
2610
2611 /* Find the first buffer and its substring. */
2612
2613 if (NILP (buffer1))
2614 bp1 = current_buffer;
2615 else
2616 {
2617 Lisp_Object buf1;
2618 buf1 = Fget_buffer (buffer1);
2619 if (NILP (buf1))
2620 nsberror (buffer1);
2621 bp1 = XBUFFER (buf1);
2622 if (NILP (BVAR (bp1, name)))
2623 error ("Selecting deleted buffer");
2624 }
2625
2626 if (NILP (start1))
2627 begp1 = BUF_BEGV (bp1);
2628 else
2629 {
2630 CHECK_NUMBER_COERCE_MARKER (start1);
2631 begp1 = XINT (start1);
2632 }
2633 if (NILP (end1))
2634 endp1 = BUF_ZV (bp1);
2635 else
2636 {
2637 CHECK_NUMBER_COERCE_MARKER (end1);
2638 endp1 = XINT (end1);
2639 }
2640
2641 if (begp1 > endp1)
2642 temp = begp1, begp1 = endp1, endp1 = temp;
2643
2644 if (!(BUF_BEGV (bp1) <= begp1
2645 && begp1 <= endp1
2646 && endp1 <= BUF_ZV (bp1)))
2647 args_out_of_range (start1, end1);
2648
2649 /* Likewise for second substring. */
2650
2651 if (NILP (buffer2))
2652 bp2 = current_buffer;
2653 else
2654 {
2655 Lisp_Object buf2;
2656 buf2 = Fget_buffer (buffer2);
2657 if (NILP (buf2))
2658 nsberror (buffer2);
2659 bp2 = XBUFFER (buf2);
2660 if (NILP (BVAR (bp2, name)))
2661 error ("Selecting deleted buffer");
2662 }
2663
2664 if (NILP (start2))
2665 begp2 = BUF_BEGV (bp2);
2666 else
2667 {
2668 CHECK_NUMBER_COERCE_MARKER (start2);
2669 begp2 = XINT (start2);
2670 }
2671 if (NILP (end2))
2672 endp2 = BUF_ZV (bp2);
2673 else
2674 {
2675 CHECK_NUMBER_COERCE_MARKER (end2);
2676 endp2 = XINT (end2);
2677 }
2678
2679 if (begp2 > endp2)
2680 temp = begp2, begp2 = endp2, endp2 = temp;
2681
2682 if (!(BUF_BEGV (bp2) <= begp2
2683 && begp2 <= endp2
2684 && endp2 <= BUF_ZV (bp2)))
2685 args_out_of_range (start2, end2);
2686
2687 i1 = begp1;
2688 i2 = begp2;
2689 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2690 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2691
2692 while (i1 < endp1 && i2 < endp2)
2693 {
2694 /* When we find a mismatch, we must compare the
2695 characters, not just the bytes. */
2696 int c1, c2;
2697
2698 QUIT;
2699
2700 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2701 {
2702 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2703 BUF_INC_POS (bp1, i1_byte);
2704 i1++;
2705 }
2706 else
2707 {
2708 c1 = BUF_FETCH_BYTE (bp1, i1);
2709 MAKE_CHAR_MULTIBYTE (c1);
2710 i1++;
2711 }
2712
2713 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2714 {
2715 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2716 BUF_INC_POS (bp2, i2_byte);
2717 i2++;
2718 }
2719 else
2720 {
2721 c2 = BUF_FETCH_BYTE (bp2, i2);
2722 MAKE_CHAR_MULTIBYTE (c2);
2723 i2++;
2724 }
2725
2726 if (!NILP (trt))
2727 {
2728 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2729 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2730 }
2731 if (c1 < c2)
2732 return make_number (- 1 - chars);
2733 if (c1 > c2)
2734 return make_number (chars + 1);
2735
2736 chars++;
2737 }
2738
2739 /* The strings match as far as they go.
2740 If one is shorter, that one is less. */
2741 if (chars < endp1 - begp1)
2742 return make_number (chars + 1);
2743 else if (chars < endp2 - begp2)
2744 return make_number (- chars - 1);
2745
2746 /* Same length too => they are equal. */
2747 return make_number (0);
2748 }
2749 \f
2750 static Lisp_Object
2751 subst_char_in_region_unwind (Lisp_Object arg)
2752 {
2753 return BVAR (current_buffer, undo_list) = arg;
2754 }
2755
2756 static Lisp_Object
2757 subst_char_in_region_unwind_1 (Lisp_Object arg)
2758 {
2759 return BVAR (current_buffer, filename) = arg;
2760 }
2761
2762 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2763 Ssubst_char_in_region, 4, 5, 0,
2764 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2765 If optional arg NOUNDO is non-nil, don't record this change for undo
2766 and don't mark the buffer as really changed.
2767 Both characters must have the same length of multi-byte form. */)
2768 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2769 {
2770 register EMACS_INT pos, pos_byte, stop, i, len, end_byte;
2771 /* Keep track of the first change in the buffer:
2772 if 0 we haven't found it yet.
2773 if < 0 we've found it and we've run the before-change-function.
2774 if > 0 we've actually performed it and the value is its position. */
2775 EMACS_INT changed = 0;
2776 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2777 unsigned char *p;
2778 int count = SPECPDL_INDEX ();
2779 #define COMBINING_NO 0
2780 #define COMBINING_BEFORE 1
2781 #define COMBINING_AFTER 2
2782 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2783 int maybe_byte_combining = COMBINING_NO;
2784 EMACS_INT last_changed = 0;
2785 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2786 int fromc, toc;
2787
2788 restart:
2789
2790 validate_region (&start, &end);
2791 CHECK_CHARACTER (fromchar);
2792 CHECK_CHARACTER (tochar);
2793 fromc = XFASTINT (fromchar);
2794 toc = XFASTINT (tochar);
2795
2796 if (multibyte_p)
2797 {
2798 len = CHAR_STRING (fromc, fromstr);
2799 if (CHAR_STRING (toc, tostr) != len)
2800 error ("Characters in `subst-char-in-region' have different byte-lengths");
2801 if (!ASCII_BYTE_P (*tostr))
2802 {
2803 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2804 complete multibyte character, it may be combined with the
2805 after bytes. If it is in the range 0xA0..0xFF, it may be
2806 combined with the before and after bytes. */
2807 if (!CHAR_HEAD_P (*tostr))
2808 maybe_byte_combining = COMBINING_BOTH;
2809 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2810 maybe_byte_combining = COMBINING_AFTER;
2811 }
2812 }
2813 else
2814 {
2815 len = 1;
2816 fromstr[0] = fromc;
2817 tostr[0] = toc;
2818 }
2819
2820 pos = XINT (start);
2821 pos_byte = CHAR_TO_BYTE (pos);
2822 stop = CHAR_TO_BYTE (XINT (end));
2823 end_byte = stop;
2824
2825 /* If we don't want undo, turn off putting stuff on the list.
2826 That's faster than getting rid of things,
2827 and it prevents even the entry for a first change.
2828 Also inhibit locking the file. */
2829 if (!changed && !NILP (noundo))
2830 {
2831 record_unwind_protect (subst_char_in_region_unwind,
2832 BVAR (current_buffer, undo_list));
2833 BVAR (current_buffer, undo_list) = Qt;
2834 /* Don't do file-locking. */
2835 record_unwind_protect (subst_char_in_region_unwind_1,
2836 BVAR (current_buffer, filename));
2837 BVAR (current_buffer, filename) = Qnil;
2838 }
2839
2840 if (pos_byte < GPT_BYTE)
2841 stop = min (stop, GPT_BYTE);
2842 while (1)
2843 {
2844 EMACS_INT pos_byte_next = pos_byte;
2845
2846 if (pos_byte >= stop)
2847 {
2848 if (pos_byte >= end_byte) break;
2849 stop = end_byte;
2850 }
2851 p = BYTE_POS_ADDR (pos_byte);
2852 if (multibyte_p)
2853 INC_POS (pos_byte_next);
2854 else
2855 ++pos_byte_next;
2856 if (pos_byte_next - pos_byte == len
2857 && p[0] == fromstr[0]
2858 && (len == 1
2859 || (p[1] == fromstr[1]
2860 && (len == 2 || (p[2] == fromstr[2]
2861 && (len == 3 || p[3] == fromstr[3]))))))
2862 {
2863 if (changed < 0)
2864 /* We've already seen this and run the before-change-function;
2865 this time we only need to record the actual position. */
2866 changed = pos;
2867 else if (!changed)
2868 {
2869 changed = -1;
2870 modify_region (current_buffer, pos, XINT (end), 0);
2871
2872 if (! NILP (noundo))
2873 {
2874 if (MODIFF - 1 == SAVE_MODIFF)
2875 SAVE_MODIFF++;
2876 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2877 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2878 }
2879
2880 /* The before-change-function may have moved the gap
2881 or even modified the buffer so we should start over. */
2882 goto restart;
2883 }
2884
2885 /* Take care of the case where the new character
2886 combines with neighboring bytes. */
2887 if (maybe_byte_combining
2888 && (maybe_byte_combining == COMBINING_AFTER
2889 ? (pos_byte_next < Z_BYTE
2890 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2891 : ((pos_byte_next < Z_BYTE
2892 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2893 || (pos_byte > BEG_BYTE
2894 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2895 {
2896 Lisp_Object tem, string;
2897
2898 struct gcpro gcpro1;
2899
2900 tem = BVAR (current_buffer, undo_list);
2901 GCPRO1 (tem);
2902
2903 /* Make a multibyte string containing this single character. */
2904 string = make_multibyte_string ((char *) tostr, 1, len);
2905 /* replace_range is less efficient, because it moves the gap,
2906 but it handles combining correctly. */
2907 replace_range (pos, pos + 1, string,
2908 0, 0, 1);
2909 pos_byte_next = CHAR_TO_BYTE (pos);
2910 if (pos_byte_next > pos_byte)
2911 /* Before combining happened. We should not increment
2912 POS. So, to cancel the later increment of POS,
2913 decrease it now. */
2914 pos--;
2915 else
2916 INC_POS (pos_byte_next);
2917
2918 if (! NILP (noundo))
2919 BVAR (current_buffer, undo_list) = tem;
2920
2921 UNGCPRO;
2922 }
2923 else
2924 {
2925 if (NILP (noundo))
2926 record_change (pos, 1);
2927 for (i = 0; i < len; i++) *p++ = tostr[i];
2928 }
2929 last_changed = pos + 1;
2930 }
2931 pos_byte = pos_byte_next;
2932 pos++;
2933 }
2934
2935 if (changed > 0)
2936 {
2937 signal_after_change (changed,
2938 last_changed - changed, last_changed - changed);
2939 update_compositions (changed, last_changed, CHECK_ALL);
2940 }
2941
2942 unbind_to (count, Qnil);
2943 return Qnil;
2944 }
2945
2946
2947 static Lisp_Object check_translation (EMACS_INT, EMACS_INT, EMACS_INT,
2948 Lisp_Object);
2949
2950 /* Helper function for Ftranslate_region_internal.
2951
2952 Check if a character sequence at POS (POS_BYTE) matches an element
2953 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2954 element is found, return it. Otherwise return Qnil. */
2955
2956 static Lisp_Object
2957 check_translation (EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT end,
2958 Lisp_Object val)
2959 {
2960 int buf_size = 16, buf_used = 0;
2961 int *buf = alloca (sizeof (int) * buf_size);
2962
2963 for (; CONSP (val); val = XCDR (val))
2964 {
2965 Lisp_Object elt;
2966 EMACS_INT len, i;
2967
2968 elt = XCAR (val);
2969 if (! CONSP (elt))
2970 continue;
2971 elt = XCAR (elt);
2972 if (! VECTORP (elt))
2973 continue;
2974 len = ASIZE (elt);
2975 if (len <= end - pos)
2976 {
2977 for (i = 0; i < len; i++)
2978 {
2979 if (buf_used <= i)
2980 {
2981 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2982 int len1;
2983
2984 if (buf_used == buf_size)
2985 {
2986 int *newbuf;
2987
2988 buf_size += 16;
2989 newbuf = alloca (sizeof (int) * buf_size);
2990 memcpy (newbuf, buf, sizeof (int) * buf_used);
2991 buf = newbuf;
2992 }
2993 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
2994 pos_byte += len1;
2995 }
2996 if (XINT (AREF (elt, i)) != buf[i])
2997 break;
2998 }
2999 if (i == len)
3000 return XCAR (val);
3001 }
3002 }
3003 return Qnil;
3004 }
3005
3006
3007 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3008 Stranslate_region_internal, 3, 3, 0,
3009 doc: /* Internal use only.
3010 From START to END, translate characters according to TABLE.
3011 TABLE is a string or a char-table; the Nth character in it is the
3012 mapping for the character with code N.
3013 It returns the number of characters changed. */)
3014 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3015 {
3016 register unsigned char *tt; /* Trans table. */
3017 register int nc; /* New character. */
3018 int cnt; /* Number of changes made. */
3019 EMACS_INT size; /* Size of translate table. */
3020 EMACS_INT pos, pos_byte, end_pos;
3021 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3022 int string_multibyte IF_LINT (= 0);
3023
3024 validate_region (&start, &end);
3025 if (CHAR_TABLE_P (table))
3026 {
3027 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3028 error ("Not a translation table");
3029 size = MAX_CHAR;
3030 tt = NULL;
3031 }
3032 else
3033 {
3034 CHECK_STRING (table);
3035
3036 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3037 table = string_make_unibyte (table);
3038 string_multibyte = SCHARS (table) < SBYTES (table);
3039 size = SBYTES (table);
3040 tt = SDATA (table);
3041 }
3042
3043 pos = XINT (start);
3044 pos_byte = CHAR_TO_BYTE (pos);
3045 end_pos = XINT (end);
3046 modify_region (current_buffer, pos, end_pos, 0);
3047
3048 cnt = 0;
3049 for (; pos < end_pos; )
3050 {
3051 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3052 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3053 int len, str_len;
3054 int oc;
3055 Lisp_Object val;
3056
3057 if (multibyte)
3058 oc = STRING_CHAR_AND_LENGTH (p, len);
3059 else
3060 oc = *p, len = 1;
3061 if (oc < size)
3062 {
3063 if (tt)
3064 {
3065 /* Reload as signal_after_change in last iteration may GC. */
3066 tt = SDATA (table);
3067 if (string_multibyte)
3068 {
3069 str = tt + string_char_to_byte (table, oc);
3070 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3071 }
3072 else
3073 {
3074 nc = tt[oc];
3075 if (! ASCII_BYTE_P (nc) && multibyte)
3076 {
3077 str_len = BYTE8_STRING (nc, buf);
3078 str = buf;
3079 }
3080 else
3081 {
3082 str_len = 1;
3083 str = tt + oc;
3084 }
3085 }
3086 }
3087 else
3088 {
3089 nc = oc;
3090 val = CHAR_TABLE_REF (table, oc);
3091 if (CHARACTERP (val))
3092 {
3093 nc = XFASTINT (val);
3094 str_len = CHAR_STRING (nc, buf);
3095 str = buf;
3096 }
3097 else if (VECTORP (val) || (CONSP (val)))
3098 {
3099 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3100 where TO is TO-CHAR or [TO-CHAR ...]. */
3101 nc = -1;
3102 }
3103 }
3104
3105 if (nc != oc && nc >= 0)
3106 {
3107 /* Simple one char to one char translation. */
3108 if (len != str_len)
3109 {
3110 Lisp_Object string;
3111
3112 /* This is less efficient, because it moves the gap,
3113 but it should handle multibyte characters correctly. */
3114 string = make_multibyte_string ((char *) str, 1, str_len);
3115 replace_range (pos, pos + 1, string, 1, 0, 1);
3116 len = str_len;
3117 }
3118 else
3119 {
3120 record_change (pos, 1);
3121 while (str_len-- > 0)
3122 *p++ = *str++;
3123 signal_after_change (pos, 1, 1);
3124 update_compositions (pos, pos + 1, CHECK_BORDER);
3125 }
3126 ++cnt;
3127 }
3128 else if (nc < 0)
3129 {
3130 Lisp_Object string;
3131
3132 if (CONSP (val))
3133 {
3134 val = check_translation (pos, pos_byte, end_pos, val);
3135 if (NILP (val))
3136 {
3137 pos_byte += len;
3138 pos++;
3139 continue;
3140 }
3141 /* VAL is ([FROM-CHAR ...] . TO). */
3142 len = ASIZE (XCAR (val));
3143 val = XCDR (val);
3144 }
3145 else
3146 len = 1;
3147
3148 if (VECTORP (val))
3149 {
3150 string = Fconcat (1, &val);
3151 }
3152 else
3153 {
3154 string = Fmake_string (make_number (1), val);
3155 }
3156 replace_range (pos, pos + len, string, 1, 0, 1);
3157 pos_byte += SBYTES (string);
3158 pos += SCHARS (string);
3159 cnt += SCHARS (string);
3160 end_pos += SCHARS (string) - len;
3161 continue;
3162 }
3163 }
3164 pos_byte += len;
3165 pos++;
3166 }
3167
3168 return make_number (cnt);
3169 }
3170
3171 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3172 doc: /* Delete the text between START and END.
3173 If called interactively, delete the region between point and mark.
3174 This command deletes buffer text without modifying the kill ring. */)
3175 (Lisp_Object start, Lisp_Object end)
3176 {
3177 validate_region (&start, &end);
3178 del_range (XINT (start), XINT (end));
3179 return Qnil;
3180 }
3181
3182 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3183 Sdelete_and_extract_region, 2, 2, 0,
3184 doc: /* Delete the text between START and END and return it. */)
3185 (Lisp_Object start, Lisp_Object end)
3186 {
3187 validate_region (&start, &end);
3188 if (XINT (start) == XINT (end))
3189 return empty_unibyte_string;
3190 return del_range_1 (XINT (start), XINT (end), 1, 1);
3191 }
3192 \f
3193 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3194 doc: /* Remove restrictions (narrowing) from current buffer.
3195 This allows the buffer's full text to be seen and edited. */)
3196 (void)
3197 {
3198 if (BEG != BEGV || Z != ZV)
3199 current_buffer->clip_changed = 1;
3200 BEGV = BEG;
3201 BEGV_BYTE = BEG_BYTE;
3202 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3203 /* Changing the buffer bounds invalidates any recorded current column. */
3204 invalidate_current_column ();
3205 return Qnil;
3206 }
3207
3208 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3209 doc: /* Restrict editing in this buffer to the current region.
3210 The rest of the text becomes temporarily invisible and untouchable
3211 but is not deleted; if you save the buffer in a file, the invisible
3212 text is included in the file. \\[widen] makes all visible again.
3213 See also `save-restriction'.
3214
3215 When calling from a program, pass two arguments; positions (integers
3216 or markers) bounding the text that should remain visible. */)
3217 (register Lisp_Object start, Lisp_Object end)
3218 {
3219 CHECK_NUMBER_COERCE_MARKER (start);
3220 CHECK_NUMBER_COERCE_MARKER (end);
3221
3222 if (XINT (start) > XINT (end))
3223 {
3224 Lisp_Object tem;
3225 tem = start; start = end; end = tem;
3226 }
3227
3228 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3229 args_out_of_range (start, end);
3230
3231 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3232 current_buffer->clip_changed = 1;
3233
3234 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3235 SET_BUF_ZV (current_buffer, XFASTINT (end));
3236 if (PT < XFASTINT (start))
3237 SET_PT (XFASTINT (start));
3238 if (PT > XFASTINT (end))
3239 SET_PT (XFASTINT (end));
3240 /* Changing the buffer bounds invalidates any recorded current column. */
3241 invalidate_current_column ();
3242 return Qnil;
3243 }
3244
3245 Lisp_Object
3246 save_restriction_save (void)
3247 {
3248 if (BEGV == BEG && ZV == Z)
3249 /* The common case that the buffer isn't narrowed.
3250 We return just the buffer object, which save_restriction_restore
3251 recognizes as meaning `no restriction'. */
3252 return Fcurrent_buffer ();
3253 else
3254 /* We have to save a restriction, so return a pair of markers, one
3255 for the beginning and one for the end. */
3256 {
3257 Lisp_Object beg, end;
3258
3259 beg = buildmark (BEGV, BEGV_BYTE);
3260 end = buildmark (ZV, ZV_BYTE);
3261
3262 /* END must move forward if text is inserted at its exact location. */
3263 XMARKER (end)->insertion_type = 1;
3264
3265 return Fcons (beg, end);
3266 }
3267 }
3268
3269 Lisp_Object
3270 save_restriction_restore (Lisp_Object data)
3271 {
3272 struct buffer *cur = NULL;
3273 struct buffer *buf = (CONSP (data)
3274 ? XMARKER (XCAR (data))->buffer
3275 : XBUFFER (data));
3276
3277 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3278 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3279 is the case if it is or has an indirect buffer), then make
3280 sure it is current before we update BEGV, so
3281 set_buffer_internal takes care of managing those markers. */
3282 cur = current_buffer;
3283 set_buffer_internal (buf);
3284 }
3285
3286 if (CONSP (data))
3287 /* A pair of marks bounding a saved restriction. */
3288 {
3289 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3290 struct Lisp_Marker *end = XMARKER (XCDR (data));
3291 eassert (buf == end->buffer);
3292
3293 if (buf /* Verify marker still points to a buffer. */
3294 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3295 /* The restriction has changed from the saved one, so restore
3296 the saved restriction. */
3297 {
3298 EMACS_INT pt = BUF_PT (buf);
3299
3300 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3301 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3302
3303 if (pt < beg->charpos || pt > end->charpos)
3304 /* The point is outside the new visible range, move it inside. */
3305 SET_BUF_PT_BOTH (buf,
3306 clip_to_bounds (beg->charpos, pt, end->charpos),
3307 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3308 end->bytepos));
3309
3310 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3311 }
3312 }
3313 else
3314 /* A buffer, which means that there was no old restriction. */
3315 {
3316 if (buf /* Verify marker still points to a buffer. */
3317 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3318 /* The buffer has been narrowed, get rid of the narrowing. */
3319 {
3320 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3321 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3322
3323 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3324 }
3325 }
3326
3327 /* Changing the buffer bounds invalidates any recorded current column. */
3328 invalidate_current_column ();
3329
3330 if (cur)
3331 set_buffer_internal (cur);
3332
3333 return Qnil;
3334 }
3335
3336 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3337 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3338 The buffer's restrictions make parts of the beginning and end invisible.
3339 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3340 This special form, `save-restriction', saves the current buffer's restrictions
3341 when it is entered, and restores them when it is exited.
3342 So any `narrow-to-region' within BODY lasts only until the end of the form.
3343 The old restrictions settings are restored
3344 even in case of abnormal exit (throw or error).
3345
3346 The value returned is the value of the last form in BODY.
3347
3348 Note: if you are using both `save-excursion' and `save-restriction',
3349 use `save-excursion' outermost:
3350 (save-excursion (save-restriction ...))
3351
3352 usage: (save-restriction &rest BODY) */)
3353 (Lisp_Object body)
3354 {
3355 register Lisp_Object val;
3356 int count = SPECPDL_INDEX ();
3357
3358 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3359 val = Fprogn (body);
3360 return unbind_to (count, val);
3361 }
3362 \f
3363 /* Buffer for the most recent text displayed by Fmessage_box. */
3364 static char *message_text;
3365
3366 /* Allocated length of that buffer. */
3367 static ptrdiff_t message_length;
3368
3369 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3370 doc: /* Display a message at the bottom of the screen.
3371 The message also goes into the `*Messages*' buffer.
3372 \(In keyboard macros, that's all it does.)
3373 Return the message.
3374
3375 The first argument is a format control string, and the rest are data
3376 to be formatted under control of the string. See `format' for details.
3377
3378 Note: Use (message "%s" VALUE) to print the value of expressions and
3379 variables to avoid accidentally interpreting `%' as format specifiers.
3380
3381 If the first argument is nil or the empty string, the function clears
3382 any existing message; this lets the minibuffer contents show. See
3383 also `current-message'.
3384
3385 usage: (message FORMAT-STRING &rest ARGS) */)
3386 (ptrdiff_t nargs, Lisp_Object *args)
3387 {
3388 if (NILP (args[0])
3389 || (STRINGP (args[0])
3390 && SBYTES (args[0]) == 0))
3391 {
3392 message (0);
3393 return args[0];
3394 }
3395 else
3396 {
3397 register Lisp_Object val;
3398 val = Fformat (nargs, args);
3399 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3400 return val;
3401 }
3402 }
3403
3404 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3405 doc: /* Display a message, in a dialog box if possible.
3406 If a dialog box is not available, use the echo area.
3407 The first argument is a format control string, and the rest are data
3408 to be formatted under control of the string. See `format' for details.
3409
3410 If the first argument is nil or the empty string, clear any existing
3411 message; let the minibuffer contents show.
3412
3413 usage: (message-box FORMAT-STRING &rest ARGS) */)
3414 (ptrdiff_t nargs, Lisp_Object *args)
3415 {
3416 if (NILP (args[0]))
3417 {
3418 message (0);
3419 return Qnil;
3420 }
3421 else
3422 {
3423 register Lisp_Object val;
3424 val = Fformat (nargs, args);
3425 #ifdef HAVE_MENUS
3426 /* The MS-DOS frames support popup menus even though they are
3427 not FRAME_WINDOW_P. */
3428 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3429 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3430 {
3431 Lisp_Object pane, menu;
3432 struct gcpro gcpro1;
3433 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3434 GCPRO1 (pane);
3435 menu = Fcons (val, pane);
3436 Fx_popup_dialog (Qt, menu, Qt);
3437 UNGCPRO;
3438 return val;
3439 }
3440 #endif /* HAVE_MENUS */
3441 /* Copy the data so that it won't move when we GC. */
3442 if (! message_text)
3443 {
3444 message_text = (char *)xmalloc (80);
3445 message_length = 80;
3446 }
3447 if (SBYTES (val) > message_length)
3448 {
3449 message_text = (char *) xrealloc (message_text, SBYTES (val));
3450 message_length = SBYTES (val);
3451 }
3452 memcpy (message_text, SDATA (val), SBYTES (val));
3453 message2 (message_text, SBYTES (val),
3454 STRING_MULTIBYTE (val));
3455 return val;
3456 }
3457 }
3458
3459 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3460 doc: /* Display a message in a dialog box or in the echo area.
3461 If this command was invoked with the mouse, use a dialog box if
3462 `use-dialog-box' is non-nil.
3463 Otherwise, use the echo area.
3464 The first argument is a format control string, and the rest are data
3465 to be formatted under control of the string. See `format' for details.
3466
3467 If the first argument is nil or the empty string, clear any existing
3468 message; let the minibuffer contents show.
3469
3470 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3471 (ptrdiff_t nargs, Lisp_Object *args)
3472 {
3473 #ifdef HAVE_MENUS
3474 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3475 && use_dialog_box)
3476 return Fmessage_box (nargs, args);
3477 #endif
3478 return Fmessage (nargs, args);
3479 }
3480
3481 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3482 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3483 (void)
3484 {
3485 return current_message ();
3486 }
3487
3488
3489 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3490 doc: /* Return a copy of STRING with text properties added.
3491 First argument is the string to copy.
3492 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3493 properties to add to the result.
3494 usage: (propertize STRING &rest PROPERTIES) */)
3495 (ptrdiff_t nargs, Lisp_Object *args)
3496 {
3497 Lisp_Object properties, string;
3498 struct gcpro gcpro1, gcpro2;
3499 ptrdiff_t i;
3500
3501 /* Number of args must be odd. */
3502 if ((nargs & 1) == 0)
3503 error ("Wrong number of arguments");
3504
3505 properties = string = Qnil;
3506 GCPRO2 (properties, string);
3507
3508 /* First argument must be a string. */
3509 CHECK_STRING (args[0]);
3510 string = Fcopy_sequence (args[0]);
3511
3512 for (i = 1; i < nargs; i += 2)
3513 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3514
3515 Fadd_text_properties (make_number (0),
3516 make_number (SCHARS (string)),
3517 properties, string);
3518 RETURN_UNGCPRO (string);
3519 }
3520
3521 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3522 doc: /* Format a string out of a format-string and arguments.
3523 The first argument is a format control string.
3524 The other arguments are substituted into it to make the result, a string.
3525
3526 The format control string may contain %-sequences meaning to substitute
3527 the next available argument:
3528
3529 %s means print a string argument. Actually, prints any object, with `princ'.
3530 %d means print as number in decimal (%o octal, %x hex).
3531 %X is like %x, but uses upper case.
3532 %e means print a number in exponential notation.
3533 %f means print a number in decimal-point notation.
3534 %g means print a number in exponential notation
3535 or decimal-point notation, whichever uses fewer characters.
3536 %c means print a number as a single character.
3537 %S means print any object as an s-expression (using `prin1').
3538
3539 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3540 Use %% to put a single % into the output.
3541
3542 A %-sequence may contain optional flag, width, and precision
3543 specifiers, as follows:
3544
3545 %<flags><width><precision>character
3546
3547 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3548
3549 The + flag character inserts a + before any positive number, while a
3550 space inserts a space before any positive number; these flags only
3551 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3552 The # flag means to use an alternate display form for %o, %x, %X, %e,
3553 %f, and %g sequences. The - and 0 flags affect the width specifier,
3554 as described below.
3555
3556 The width specifier supplies a lower limit for the length of the
3557 printed representation. The padding, if any, normally goes on the
3558 left, but it goes on the right if the - flag is present. The padding
3559 character is normally a space, but it is 0 if the 0 flag is present.
3560 The 0 flag is ignored if the - flag is present, or the format sequence
3561 is something other than %d, %e, %f, and %g.
3562
3563 For %e, %f, and %g sequences, the number after the "." in the
3564 precision specifier says how many decimal places to show; if zero, the
3565 decimal point itself is omitted. For %s and %S, the precision
3566 specifier truncates the string to the given width.
3567
3568 usage: (format STRING &rest OBJECTS) */)
3569 (ptrdiff_t nargs, Lisp_Object *args)
3570 {
3571 ptrdiff_t n; /* The number of the next arg to substitute */
3572 char initial_buffer[4000];
3573 char *buf = initial_buffer;
3574 EMACS_INT bufsize = sizeof initial_buffer;
3575 EMACS_INT max_bufsize = STRING_BYTES_BOUND + 1;
3576 char *p;
3577 Lisp_Object buf_save_value IF_LINT (= {0});
3578 register char *format, *end, *format_start;
3579 EMACS_INT formatlen, nchars;
3580 /* Nonzero if the format is multibyte. */
3581 int multibyte_format = 0;
3582 /* Nonzero if the output should be a multibyte string,
3583 which is true if any of the inputs is one. */
3584 int multibyte = 0;
3585 /* When we make a multibyte string, we must pay attention to the
3586 byte combining problem, i.e., a byte may be combined with a
3587 multibyte character of the previous string. This flag tells if we
3588 must consider such a situation or not. */
3589 int maybe_combine_byte;
3590 Lisp_Object val;
3591 int arg_intervals = 0;
3592 USE_SAFE_ALLOCA;
3593
3594 /* discarded[I] is 1 if byte I of the format
3595 string was not copied into the output.
3596 It is 2 if byte I was not the first byte of its character. */
3597 char *discarded;
3598
3599 /* Each element records, for one argument,
3600 the start and end bytepos in the output string,
3601 whether the argument has been converted to string (e.g., due to "%S"),
3602 and whether the argument is a string with intervals.
3603 info[0] is unused. Unused elements have -1 for start. */
3604 struct info
3605 {
3606 EMACS_INT start, end;
3607 int converted_to_string;
3608 int intervals;
3609 } *info = 0;
3610
3611 /* It should not be necessary to GCPRO ARGS, because
3612 the caller in the interpreter should take care of that. */
3613
3614 CHECK_STRING (args[0]);
3615 format_start = SSDATA (args[0]);
3616 formatlen = SBYTES (args[0]);
3617
3618 /* Allocate the info and discarded tables. */
3619 {
3620 ptrdiff_t i;
3621 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3622 memory_full (SIZE_MAX);
3623 SAFE_ALLOCA (info, struct info *, (nargs + 1) * sizeof *info + formatlen);
3624 discarded = (char *) &info[nargs + 1];
3625 for (i = 0; i < nargs + 1; i++)
3626 {
3627 info[i].start = -1;
3628 info[i].intervals = info[i].converted_to_string = 0;
3629 }
3630 memset (discarded, 0, formatlen);
3631 }
3632
3633 /* Try to determine whether the result should be multibyte.
3634 This is not always right; sometimes the result needs to be multibyte
3635 because of an object that we will pass through prin1,
3636 and in that case, we won't know it here. */
3637 multibyte_format = STRING_MULTIBYTE (args[0]);
3638 multibyte = multibyte_format;
3639 for (n = 1; !multibyte && n < nargs; n++)
3640 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3641 multibyte = 1;
3642
3643 /* If we start out planning a unibyte result,
3644 then discover it has to be multibyte, we jump back to retry. */
3645 retry:
3646
3647 p = buf;
3648 nchars = 0;
3649 n = 0;
3650
3651 /* Scan the format and store result in BUF. */
3652 format = format_start;
3653 end = format + formatlen;
3654 maybe_combine_byte = 0;
3655
3656 while (format != end)
3657 {
3658 /* The values of N and FORMAT when the loop body is entered. */
3659 ptrdiff_t n0 = n;
3660 char *format0 = format;
3661
3662 /* Bytes needed to represent the output of this conversion. */
3663 EMACS_INT convbytes;
3664
3665 if (*format == '%')
3666 {
3667 /* General format specifications look like
3668
3669 '%' [flags] [field-width] [precision] format
3670
3671 where
3672
3673 flags ::= [-+0# ]+
3674 field-width ::= [0-9]+
3675 precision ::= '.' [0-9]*
3676
3677 If a field-width is specified, it specifies to which width
3678 the output should be padded with blanks, if the output
3679 string is shorter than field-width.
3680
3681 If precision is specified, it specifies the number of
3682 digits to print after the '.' for floats, or the max.
3683 number of chars to print from a string. */
3684
3685 int minus_flag = 0;
3686 int plus_flag = 0;
3687 int space_flag = 0;
3688 int sharp_flag = 0;
3689 int zero_flag = 0;
3690 EMACS_INT field_width;
3691 int precision_given;
3692 uintmax_t precision = UINTMAX_MAX;
3693 char *num_end;
3694 char conversion;
3695
3696 while (1)
3697 {
3698 switch (*++format)
3699 {
3700 case '-': minus_flag = 1; continue;
3701 case '+': plus_flag = 1; continue;
3702 case ' ': space_flag = 1; continue;
3703 case '#': sharp_flag = 1; continue;
3704 case '0': zero_flag = 1; continue;
3705 }
3706 break;
3707 }
3708
3709 /* Ignore flags when sprintf ignores them. */
3710 space_flag &= ~ plus_flag;
3711 zero_flag &= ~ minus_flag;
3712
3713 {
3714 uintmax_t w = strtoumax (format, &num_end, 10);
3715 if (max_bufsize <= w)
3716 string_overflow ();
3717 field_width = w;
3718 }
3719 precision_given = *num_end == '.';
3720 if (precision_given)
3721 precision = strtoumax (num_end + 1, &num_end, 10);
3722 format = num_end;
3723
3724 if (format == end)
3725 error ("Format string ends in middle of format specifier");
3726
3727 memset (&discarded[format0 - format_start], 1, format - format0);
3728 conversion = *format;
3729 if (conversion == '%')
3730 goto copy_char;
3731 discarded[format - format_start] = 1;
3732 format++;
3733
3734 ++n;
3735 if (! (n < nargs))
3736 error ("Not enough arguments for format string");
3737
3738 /* For 'S', prin1 the argument, and then treat like 's'.
3739 For 's', princ any argument that is not a string or
3740 symbol. But don't do this conversion twice, which might
3741 happen after retrying. */
3742 if ((conversion == 'S'
3743 || (conversion == 's'
3744 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3745 {
3746 if (! info[n].converted_to_string)
3747 {
3748 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3749 args[n] = Fprin1_to_string (args[n], noescape);
3750 info[n].converted_to_string = 1;
3751 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3752 {
3753 multibyte = 1;
3754 goto retry;
3755 }
3756 }
3757 conversion = 's';
3758 }
3759 else if (conversion == 'c')
3760 {
3761 if (FLOATP (args[n]))
3762 {
3763 double d = XFLOAT_DATA (args[n]);
3764 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3765 }
3766
3767 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3768 {
3769 if (!multibyte)
3770 {
3771 multibyte = 1;
3772 goto retry;
3773 }
3774 args[n] = Fchar_to_string (args[n]);
3775 info[n].converted_to_string = 1;
3776 }
3777
3778 if (info[n].converted_to_string)
3779 conversion = 's';
3780 zero_flag = 0;
3781 }
3782
3783 if (SYMBOLP (args[n]))
3784 {
3785 args[n] = SYMBOL_NAME (args[n]);
3786 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3787 {
3788 multibyte = 1;
3789 goto retry;
3790 }
3791 }
3792
3793 if (conversion == 's')
3794 {
3795 /* handle case (precision[n] >= 0) */
3796
3797 EMACS_INT width, padding, nbytes;
3798 EMACS_INT nchars_string;
3799
3800 EMACS_INT prec = -1;
3801 if (precision_given && precision <= TYPE_MAXIMUM (EMACS_INT))
3802 prec = precision;
3803
3804 /* lisp_string_width ignores a precision of 0, but GNU
3805 libc functions print 0 characters when the precision
3806 is 0. Imitate libc behavior here. Changing
3807 lisp_string_width is the right thing, and will be
3808 done, but meanwhile we work with it. */
3809
3810 if (prec == 0)
3811 width = nchars_string = nbytes = 0;
3812 else
3813 {
3814 EMACS_INT nch, nby;
3815 width = lisp_string_width (args[n], prec, &nch, &nby);
3816 if (prec < 0)
3817 {
3818 nchars_string = SCHARS (args[n]);
3819 nbytes = SBYTES (args[n]);
3820 }
3821 else
3822 {
3823 nchars_string = nch;
3824 nbytes = nby;
3825 }
3826 }
3827
3828 convbytes = nbytes;
3829 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3830 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3831
3832 padding = width < field_width ? field_width - width : 0;
3833
3834 if (max_bufsize - padding <= convbytes)
3835 string_overflow ();
3836 convbytes += padding;
3837 if (convbytes <= buf + bufsize - p)
3838 {
3839 if (! minus_flag)
3840 {
3841 memset (p, ' ', padding);
3842 p += padding;
3843 nchars += padding;
3844 }
3845
3846 if (p > buf
3847 && multibyte
3848 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3849 && STRING_MULTIBYTE (args[n])
3850 && !CHAR_HEAD_P (SREF (args[n], 0)))
3851 maybe_combine_byte = 1;
3852
3853 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3854 nbytes,
3855 STRING_MULTIBYTE (args[n]), multibyte);
3856
3857 info[n].start = nchars;
3858 nchars += nchars_string;
3859 info[n].end = nchars;
3860
3861 if (minus_flag)
3862 {
3863 memset (p, ' ', padding);
3864 p += padding;
3865 nchars += padding;
3866 }
3867
3868 /* If this argument has text properties, record where
3869 in the result string it appears. */
3870 if (STRING_INTERVALS (args[n]))
3871 info[n].intervals = arg_intervals = 1;
3872
3873 continue;
3874 }
3875 }
3876 else if (! (conversion == 'c' || conversion == 'd'
3877 || conversion == 'e' || conversion == 'f'
3878 || conversion == 'g' || conversion == 'i'
3879 || conversion == 'o' || conversion == 'x'
3880 || conversion == 'X'))
3881 error ("Invalid format operation %%%c",
3882 STRING_CHAR ((unsigned char *) format - 1));
3883 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3884 error ("Format specifier doesn't match argument type");
3885 else
3886 {
3887 enum
3888 {
3889 /* Maximum precision for a %f conversion such that the
3890 trailing output digit might be nonzero. Any precision
3891 larger than this will not yield useful information. */
3892 USEFUL_PRECISION_MAX =
3893 ((1 - DBL_MIN_EXP)
3894 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3895 : FLT_RADIX == 16 ? 4
3896 : -1)),
3897
3898 /* Maximum number of bytes generated by any format, if
3899 precision is no more than USEFUL_PRECISION_MAX.
3900 On all practical hosts, %f is the worst case. */
3901 SPRINTF_BUFSIZE =
3902 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3903
3904 /* Length of pM (that is, of pMd without the
3905 trailing "d"). */
3906 pMlen = sizeof pMd - 2
3907 };
3908 verify (0 < USEFUL_PRECISION_MAX);
3909
3910 int prec;
3911 EMACS_INT padding, sprintf_bytes;
3912 uintmax_t excess_precision, numwidth;
3913 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3914
3915 char sprintf_buf[SPRINTF_BUFSIZE];
3916
3917 /* Copy of conversion specification, modified somewhat.
3918 At most three flags F can be specified at once. */
3919 char convspec[sizeof "%FFF.*d" + pMlen];
3920
3921 /* Avoid undefined behavior in underlying sprintf. */
3922 if (conversion == 'd' || conversion == 'i')
3923 sharp_flag = 0;
3924
3925 /* Create the copy of the conversion specification, with
3926 any width and precision removed, with ".*" inserted,
3927 and with pM inserted for integer formats. */
3928 {
3929 char *f = convspec;
3930 *f++ = '%';
3931 *f = '-'; f += minus_flag;
3932 *f = '+'; f += plus_flag;
3933 *f = ' '; f += space_flag;
3934 *f = '#'; f += sharp_flag;
3935 *f = '0'; f += zero_flag;
3936 *f++ = '.';
3937 *f++ = '*';
3938 if (conversion == 'd' || conversion == 'i'
3939 || conversion == 'o' || conversion == 'x'
3940 || conversion == 'X')
3941 {
3942 memcpy (f, pMd, pMlen);
3943 f += pMlen;
3944 zero_flag &= ~ precision_given;
3945 }
3946 *f++ = conversion;
3947 *f = '\0';
3948 }
3949
3950 prec = -1;
3951 if (precision_given)
3952 prec = min (precision, USEFUL_PRECISION_MAX);
3953
3954 /* Use sprintf to format this number into sprintf_buf. Omit
3955 padding and excess precision, though, because sprintf limits
3956 output length to INT_MAX.
3957
3958 There are four types of conversion: double, unsigned
3959 char (passed as int), wide signed int, and wide
3960 unsigned int. Treat them separately because the
3961 sprintf ABI is sensitive to which type is passed. Be
3962 careful about integer overflow, NaNs, infinities, and
3963 conversions; for example, the min and max macros are
3964 not suitable here. */
3965 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3966 {
3967 double x = (INTEGERP (args[n])
3968 ? XINT (args[n])
3969 : XFLOAT_DATA (args[n]));
3970 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
3971 }
3972 else if (conversion == 'c')
3973 {
3974 /* Don't use sprintf here, as it might mishandle prec. */
3975 sprintf_buf[0] = XINT (args[n]);
3976 sprintf_bytes = prec != 0;
3977 }
3978 else if (conversion == 'd')
3979 {
3980 /* For float, maybe we should use "%1.0f"
3981 instead so it also works for values outside
3982 the integer range. */
3983 printmax_t x;
3984 if (INTEGERP (args[n]))
3985 x = XINT (args[n]);
3986 else
3987 {
3988 double d = XFLOAT_DATA (args[n]);
3989 if (d < 0)
3990 {
3991 x = TYPE_MINIMUM (printmax_t);
3992 if (x < d)
3993 x = d;
3994 }
3995 else
3996 {
3997 x = TYPE_MAXIMUM (printmax_t);
3998 if (d < x)
3999 x = d;
4000 }
4001 }
4002 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4003 }
4004 else
4005 {
4006 /* Don't sign-extend for octal or hex printing. */
4007 uprintmax_t x;
4008 if (INTEGERP (args[n]))
4009 x = XUINT (args[n]);
4010 else
4011 {
4012 double d = XFLOAT_DATA (args[n]);
4013 if (d < 0)
4014 x = 0;
4015 else
4016 {
4017 x = TYPE_MAXIMUM (uprintmax_t);
4018 if (d < x)
4019 x = d;
4020 }
4021 }
4022 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4023 }
4024
4025 /* Now the length of the formatted item is known, except it omits
4026 padding and excess precision. Deal with excess precision
4027 first. This happens only when the format specifies
4028 ridiculously large precision. */
4029 excess_precision = precision - prec;
4030 if (excess_precision)
4031 {
4032 if (conversion == 'e' || conversion == 'f'
4033 || conversion == 'g')
4034 {
4035 if ((conversion == 'g' && ! sharp_flag)
4036 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4037 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4038 excess_precision = 0;
4039 else
4040 {
4041 if (conversion == 'g')
4042 {
4043 char *dot = strchr (sprintf_buf, '.');
4044 if (!dot)
4045 excess_precision = 0;
4046 }
4047 }
4048 trailing_zeros = excess_precision;
4049 }
4050 else
4051 leading_zeros = excess_precision;
4052 }
4053
4054 /* Compute the total bytes needed for this item, including
4055 excess precision and padding. */
4056 numwidth = sprintf_bytes + excess_precision;
4057 padding = numwidth < field_width ? field_width - numwidth : 0;
4058 if (max_bufsize - sprintf_bytes <= excess_precision
4059 || max_bufsize - padding <= numwidth)
4060 string_overflow ();
4061 convbytes = numwidth + padding;
4062
4063 if (convbytes <= buf + bufsize - p)
4064 {
4065 /* Copy the formatted item from sprintf_buf into buf,
4066 inserting padding and excess-precision zeros. */
4067
4068 char *src = sprintf_buf;
4069 char src0 = src[0];
4070 int exponent_bytes = 0;
4071 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4072 int significand_bytes;
4073 if (zero_flag
4074 && ((src[signedp] >= '0' && src[signedp] <= '9')
4075 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4076 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4077 {
4078 leading_zeros += padding;
4079 padding = 0;
4080 }
4081
4082 if (excess_precision
4083 && (conversion == 'e' || conversion == 'g'))
4084 {
4085 char *e = strchr (src, 'e');
4086 if (e)
4087 exponent_bytes = src + sprintf_bytes - e;
4088 }
4089
4090 if (! minus_flag)
4091 {
4092 memset (p, ' ', padding);
4093 p += padding;
4094 nchars += padding;
4095 }
4096
4097 *p = src0;
4098 src += signedp;
4099 p += signedp;
4100 memset (p, '0', leading_zeros);
4101 p += leading_zeros;
4102 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4103 memcpy (p, src, significand_bytes);
4104 p += significand_bytes;
4105 src += significand_bytes;
4106 memset (p, '0', trailing_zeros);
4107 p += trailing_zeros;
4108 memcpy (p, src, exponent_bytes);
4109 p += exponent_bytes;
4110
4111 info[n].start = nchars;
4112 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4113 info[n].end = nchars;
4114
4115 if (minus_flag)
4116 {
4117 memset (p, ' ', padding);
4118 p += padding;
4119 nchars += padding;
4120 }
4121
4122 continue;
4123 }
4124 }
4125 }
4126 else
4127 copy_char:
4128 {
4129 /* Copy a single character from format to buf. */
4130
4131 char *src = format;
4132 unsigned char str[MAX_MULTIBYTE_LENGTH];
4133
4134 if (multibyte_format)
4135 {
4136 /* Copy a whole multibyte character. */
4137 if (p > buf
4138 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4139 && !CHAR_HEAD_P (*format))
4140 maybe_combine_byte = 1;
4141
4142 do
4143 format++;
4144 while (! CHAR_HEAD_P (*format));
4145
4146 convbytes = format - src;
4147 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4148 }
4149 else
4150 {
4151 unsigned char uc = *format++;
4152 if (! multibyte || ASCII_BYTE_P (uc))
4153 convbytes = 1;
4154 else
4155 {
4156 int c = BYTE8_TO_CHAR (uc);
4157 convbytes = CHAR_STRING (c, str);
4158 src = (char *) str;
4159 }
4160 }
4161
4162 if (convbytes <= buf + bufsize - p)
4163 {
4164 memcpy (p, src, convbytes);
4165 p += convbytes;
4166 nchars++;
4167 continue;
4168 }
4169 }
4170
4171 /* There wasn't enough room to store this conversion or single
4172 character. CONVBYTES says how much room is needed. Allocate
4173 enough room (and then some) and do it again. */
4174 {
4175 ptrdiff_t used = p - buf;
4176
4177 if (max_bufsize - used < convbytes)
4178 string_overflow ();
4179 bufsize = used + convbytes;
4180 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4181
4182 if (buf == initial_buffer)
4183 {
4184 buf = xmalloc (bufsize);
4185 sa_must_free = 1;
4186 buf_save_value = make_save_value (buf, 0);
4187 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4188 memcpy (buf, initial_buffer, used);
4189 }
4190 else
4191 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4192
4193 p = buf + used;
4194 }
4195
4196 format = format0;
4197 n = n0;
4198 }
4199
4200 if (bufsize < p - buf)
4201 abort ();
4202
4203 if (maybe_combine_byte)
4204 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4205 val = make_specified_string (buf, nchars, p - buf, multibyte);
4206
4207 /* If we allocated BUF with malloc, free it too. */
4208 SAFE_FREE ();
4209
4210 /* If the format string has text properties, or any of the string
4211 arguments has text properties, set up text properties of the
4212 result string. */
4213
4214 if (STRING_INTERVALS (args[0]) || arg_intervals)
4215 {
4216 Lisp_Object len, new_len, props;
4217 struct gcpro gcpro1;
4218
4219 /* Add text properties from the format string. */
4220 len = make_number (SCHARS (args[0]));
4221 props = text_property_list (args[0], make_number (0), len, Qnil);
4222 GCPRO1 (props);
4223
4224 if (CONSP (props))
4225 {
4226 EMACS_INT bytepos = 0, position = 0, translated = 0;
4227 EMACS_INT argn = 1;
4228 Lisp_Object list;
4229
4230 /* Adjust the bounds of each text property
4231 to the proper start and end in the output string. */
4232
4233 /* Put the positions in PROPS in increasing order, so that
4234 we can do (effectively) one scan through the position
4235 space of the format string. */
4236 props = Fnreverse (props);
4237
4238 /* BYTEPOS is the byte position in the format string,
4239 POSITION is the untranslated char position in it,
4240 TRANSLATED is the translated char position in BUF,
4241 and ARGN is the number of the next arg we will come to. */
4242 for (list = props; CONSP (list); list = XCDR (list))
4243 {
4244 Lisp_Object item;
4245 EMACS_INT pos;
4246
4247 item = XCAR (list);
4248
4249 /* First adjust the property start position. */
4250 pos = XINT (XCAR (item));
4251
4252 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4253 up to this position. */
4254 for (; position < pos; bytepos++)
4255 {
4256 if (! discarded[bytepos])
4257 position++, translated++;
4258 else if (discarded[bytepos] == 1)
4259 {
4260 position++;
4261 if (translated == info[argn].start)
4262 {
4263 translated += info[argn].end - info[argn].start;
4264 argn++;
4265 }
4266 }
4267 }
4268
4269 XSETCAR (item, make_number (translated));
4270
4271 /* Likewise adjust the property end position. */
4272 pos = XINT (XCAR (XCDR (item)));
4273
4274 for (; position < pos; bytepos++)
4275 {
4276 if (! discarded[bytepos])
4277 position++, translated++;
4278 else if (discarded[bytepos] == 1)
4279 {
4280 position++;
4281 if (translated == info[argn].start)
4282 {
4283 translated += info[argn].end - info[argn].start;
4284 argn++;
4285 }
4286 }
4287 }
4288
4289 XSETCAR (XCDR (item), make_number (translated));
4290 }
4291
4292 add_text_properties_from_list (val, props, make_number (0));
4293 }
4294
4295 /* Add text properties from arguments. */
4296 if (arg_intervals)
4297 for (n = 1; n < nargs; ++n)
4298 if (info[n].intervals)
4299 {
4300 len = make_number (SCHARS (args[n]));
4301 new_len = make_number (info[n].end - info[n].start);
4302 props = text_property_list (args[n], make_number (0), len, Qnil);
4303 props = extend_property_ranges (props, new_len);
4304 /* If successive arguments have properties, be sure that
4305 the value of `composition' property be the copy. */
4306 if (n > 1 && info[n - 1].end)
4307 make_composition_value_copy (props);
4308 add_text_properties_from_list (val, props,
4309 make_number (info[n].start));
4310 }
4311
4312 UNGCPRO;
4313 }
4314
4315 return val;
4316 }
4317
4318 Lisp_Object
4319 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4320 {
4321 Lisp_Object args[3];
4322 args[0] = build_string (string1);
4323 args[1] = arg0;
4324 args[2] = arg1;
4325 return Fformat (3, args);
4326 }
4327 \f
4328 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4329 doc: /* Return t if two characters match, optionally ignoring case.
4330 Both arguments must be characters (i.e. integers).
4331 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4332 (register Lisp_Object c1, Lisp_Object c2)
4333 {
4334 int i1, i2;
4335 /* Check they're chars, not just integers, otherwise we could get array
4336 bounds violations in downcase. */
4337 CHECK_CHARACTER (c1);
4338 CHECK_CHARACTER (c2);
4339
4340 if (XINT (c1) == XINT (c2))
4341 return Qt;
4342 if (NILP (BVAR (current_buffer, case_fold_search)))
4343 return Qnil;
4344
4345 i1 = XFASTINT (c1);
4346 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4347 && ! ASCII_CHAR_P (i1))
4348 {
4349 MAKE_CHAR_MULTIBYTE (i1);
4350 }
4351 i2 = XFASTINT (c2);
4352 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4353 && ! ASCII_CHAR_P (i2))
4354 {
4355 MAKE_CHAR_MULTIBYTE (i2);
4356 }
4357 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4358 }
4359 \f
4360 /* Transpose the markers in two regions of the current buffer, and
4361 adjust the ones between them if necessary (i.e.: if the regions
4362 differ in size).
4363
4364 START1, END1 are the character positions of the first region.
4365 START1_BYTE, END1_BYTE are the byte positions.
4366 START2, END2 are the character positions of the second region.
4367 START2_BYTE, END2_BYTE are the byte positions.
4368
4369 Traverses the entire marker list of the buffer to do so, adding an
4370 appropriate amount to some, subtracting from some, and leaving the
4371 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4372
4373 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4374
4375 static void
4376 transpose_markers (EMACS_INT start1, EMACS_INT end1,
4377 EMACS_INT start2, EMACS_INT end2,
4378 EMACS_INT start1_byte, EMACS_INT end1_byte,
4379 EMACS_INT start2_byte, EMACS_INT end2_byte)
4380 {
4381 register EMACS_INT amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4382 register struct Lisp_Marker *marker;
4383
4384 /* Update point as if it were a marker. */
4385 if (PT < start1)
4386 ;
4387 else if (PT < end1)
4388 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4389 PT_BYTE + (end2_byte - end1_byte));
4390 else if (PT < start2)
4391 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4392 (PT_BYTE + (end2_byte - start2_byte)
4393 - (end1_byte - start1_byte)));
4394 else if (PT < end2)
4395 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4396 PT_BYTE - (start2_byte - start1_byte));
4397
4398 /* We used to adjust the endpoints here to account for the gap, but that
4399 isn't good enough. Even if we assume the caller has tried to move the
4400 gap out of our way, it might still be at start1 exactly, for example;
4401 and that places it `inside' the interval, for our purposes. The amount
4402 of adjustment is nontrivial if there's a `denormalized' marker whose
4403 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4404 the dirty work to Fmarker_position, below. */
4405
4406 /* The difference between the region's lengths */
4407 diff = (end2 - start2) - (end1 - start1);
4408 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4409
4410 /* For shifting each marker in a region by the length of the other
4411 region plus the distance between the regions. */
4412 amt1 = (end2 - start2) + (start2 - end1);
4413 amt2 = (end1 - start1) + (start2 - end1);
4414 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4415 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4416
4417 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4418 {
4419 mpos = marker->bytepos;
4420 if (mpos >= start1_byte && mpos < end2_byte)
4421 {
4422 if (mpos < end1_byte)
4423 mpos += amt1_byte;
4424 else if (mpos < start2_byte)
4425 mpos += diff_byte;
4426 else
4427 mpos -= amt2_byte;
4428 marker->bytepos = mpos;
4429 }
4430 mpos = marker->charpos;
4431 if (mpos >= start1 && mpos < end2)
4432 {
4433 if (mpos < end1)
4434 mpos += amt1;
4435 else if (mpos < start2)
4436 mpos += diff;
4437 else
4438 mpos -= amt2;
4439 }
4440 marker->charpos = mpos;
4441 }
4442 }
4443
4444 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4445 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4446 The regions should not be overlapping, because the size of the buffer is
4447 never changed in a transposition.
4448
4449 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4450 any markers that happen to be located in the regions.
4451
4452 Transposing beyond buffer boundaries is an error. */)
4453 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4454 {
4455 register EMACS_INT start1, end1, start2, end2;
4456 EMACS_INT start1_byte, start2_byte, len1_byte, len2_byte;
4457 EMACS_INT gap, len1, len_mid, len2;
4458 unsigned char *start1_addr, *start2_addr, *temp;
4459
4460 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4461 Lisp_Object buf;
4462
4463 XSETBUFFER (buf, current_buffer);
4464 cur_intv = BUF_INTERVALS (current_buffer);
4465
4466 validate_region (&startr1, &endr1);
4467 validate_region (&startr2, &endr2);
4468
4469 start1 = XFASTINT (startr1);
4470 end1 = XFASTINT (endr1);
4471 start2 = XFASTINT (startr2);
4472 end2 = XFASTINT (endr2);
4473 gap = GPT;
4474
4475 /* Swap the regions if they're reversed. */
4476 if (start2 < end1)
4477 {
4478 register EMACS_INT glumph = start1;
4479 start1 = start2;
4480 start2 = glumph;
4481 glumph = end1;
4482 end1 = end2;
4483 end2 = glumph;
4484 }
4485
4486 len1 = end1 - start1;
4487 len2 = end2 - start2;
4488
4489 if (start2 < end1)
4490 error ("Transposed regions overlap");
4491 /* Nothing to change for adjacent regions with one being empty */
4492 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4493 return Qnil;
4494
4495 /* The possibilities are:
4496 1. Adjacent (contiguous) regions, or separate but equal regions
4497 (no, really equal, in this case!), or
4498 2. Separate regions of unequal size.
4499
4500 The worst case is usually No. 2. It means that (aside from
4501 potential need for getting the gap out of the way), there also
4502 needs to be a shifting of the text between the two regions. So
4503 if they are spread far apart, we are that much slower... sigh. */
4504
4505 /* It must be pointed out that the really studly thing to do would
4506 be not to move the gap at all, but to leave it in place and work
4507 around it if necessary. This would be extremely efficient,
4508 especially considering that people are likely to do
4509 transpositions near where they are working interactively, which
4510 is exactly where the gap would be found. However, such code
4511 would be much harder to write and to read. So, if you are
4512 reading this comment and are feeling squirrely, by all means have
4513 a go! I just didn't feel like doing it, so I will simply move
4514 the gap the minimum distance to get it out of the way, and then
4515 deal with an unbroken array. */
4516
4517 /* Make sure the gap won't interfere, by moving it out of the text
4518 we will operate on. */
4519 if (start1 < gap && gap < end2)
4520 {
4521 if (gap - start1 < end2 - gap)
4522 move_gap (start1);
4523 else
4524 move_gap (end2);
4525 }
4526
4527 start1_byte = CHAR_TO_BYTE (start1);
4528 start2_byte = CHAR_TO_BYTE (start2);
4529 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4530 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4531
4532 #ifdef BYTE_COMBINING_DEBUG
4533 if (end1 == start2)
4534 {
4535 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4536 len2_byte, start1, start1_byte)
4537 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4538 len1_byte, end2, start2_byte + len2_byte)
4539 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4540 len1_byte, end2, start2_byte + len2_byte))
4541 abort ();
4542 }
4543 else
4544 {
4545 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4546 len2_byte, start1, start1_byte)
4547 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4548 len1_byte, start2, start2_byte)
4549 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4550 len2_byte, end1, start1_byte + len1_byte)
4551 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4552 len1_byte, end2, start2_byte + len2_byte))
4553 abort ();
4554 }
4555 #endif
4556
4557 /* Hmmm... how about checking to see if the gap is large
4558 enough to use as the temporary storage? That would avoid an
4559 allocation... interesting. Later, don't fool with it now. */
4560
4561 /* Working without memmove, for portability (sigh), so must be
4562 careful of overlapping subsections of the array... */
4563
4564 if (end1 == start2) /* adjacent regions */
4565 {
4566 modify_region (current_buffer, start1, end2, 0);
4567 record_change (start1, len1 + len2);
4568
4569 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4570 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4571 /* Don't use Fset_text_properties: that can cause GC, which can
4572 clobber objects stored in the tmp_intervals. */
4573 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4574 if (!NULL_INTERVAL_P (tmp_interval3))
4575 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4576
4577 /* First region smaller than second. */
4578 if (len1_byte < len2_byte)
4579 {
4580 USE_SAFE_ALLOCA;
4581
4582 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4583
4584 /* Don't precompute these addresses. We have to compute them
4585 at the last minute, because the relocating allocator might
4586 have moved the buffer around during the xmalloc. */
4587 start1_addr = BYTE_POS_ADDR (start1_byte);
4588 start2_addr = BYTE_POS_ADDR (start2_byte);
4589
4590 memcpy (temp, start2_addr, len2_byte);
4591 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4592 memcpy (start1_addr, temp, len2_byte);
4593 SAFE_FREE ();
4594 }
4595 else
4596 /* First region not smaller than second. */
4597 {
4598 USE_SAFE_ALLOCA;
4599
4600 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4601 start1_addr = BYTE_POS_ADDR (start1_byte);
4602 start2_addr = BYTE_POS_ADDR (start2_byte);
4603 memcpy (temp, start1_addr, len1_byte);
4604 memcpy (start1_addr, start2_addr, len2_byte);
4605 memcpy (start1_addr + len2_byte, temp, len1_byte);
4606 SAFE_FREE ();
4607 }
4608 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4609 len1, current_buffer, 0);
4610 graft_intervals_into_buffer (tmp_interval2, start1,
4611 len2, current_buffer, 0);
4612 update_compositions (start1, start1 + len2, CHECK_BORDER);
4613 update_compositions (start1 + len2, end2, CHECK_TAIL);
4614 }
4615 /* Non-adjacent regions, because end1 != start2, bleagh... */
4616 else
4617 {
4618 len_mid = start2_byte - (start1_byte + len1_byte);
4619
4620 if (len1_byte == len2_byte)
4621 /* Regions are same size, though, how nice. */
4622 {
4623 USE_SAFE_ALLOCA;
4624
4625 modify_region (current_buffer, start1, end1, 0);
4626 modify_region (current_buffer, start2, end2, 0);
4627 record_change (start1, len1);
4628 record_change (start2, len2);
4629 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4630 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4631
4632 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4633 if (!NULL_INTERVAL_P (tmp_interval3))
4634 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4635
4636 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4637 if (!NULL_INTERVAL_P (tmp_interval3))
4638 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4639
4640 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4641 start1_addr = BYTE_POS_ADDR (start1_byte);
4642 start2_addr = BYTE_POS_ADDR (start2_byte);
4643 memcpy (temp, start1_addr, len1_byte);
4644 memcpy (start1_addr, start2_addr, len2_byte);
4645 memcpy (start2_addr, temp, len1_byte);
4646 SAFE_FREE ();
4647
4648 graft_intervals_into_buffer (tmp_interval1, start2,
4649 len1, current_buffer, 0);
4650 graft_intervals_into_buffer (tmp_interval2, start1,
4651 len2, current_buffer, 0);
4652 }
4653
4654 else if (len1_byte < len2_byte) /* Second region larger than first */
4655 /* Non-adjacent & unequal size, area between must also be shifted. */
4656 {
4657 USE_SAFE_ALLOCA;
4658
4659 modify_region (current_buffer, start1, end2, 0);
4660 record_change (start1, (end2 - start1));
4661 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4662 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4663 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4664
4665 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4666 if (!NULL_INTERVAL_P (tmp_interval3))
4667 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4668
4669 /* holds region 2 */
4670 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4671 start1_addr = BYTE_POS_ADDR (start1_byte);
4672 start2_addr = BYTE_POS_ADDR (start2_byte);
4673 memcpy (temp, start2_addr, len2_byte);
4674 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4675 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4676 memcpy (start1_addr, temp, len2_byte);
4677 SAFE_FREE ();
4678
4679 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4680 len1, current_buffer, 0);
4681 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4682 len_mid, current_buffer, 0);
4683 graft_intervals_into_buffer (tmp_interval2, start1,
4684 len2, current_buffer, 0);
4685 }
4686 else
4687 /* Second region smaller than first. */
4688 {
4689 USE_SAFE_ALLOCA;
4690
4691 record_change (start1, (end2 - start1));
4692 modify_region (current_buffer, start1, end2, 0);
4693
4694 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4695 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4696 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4697
4698 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4699 if (!NULL_INTERVAL_P (tmp_interval3))
4700 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4701
4702 /* holds region 1 */
4703 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4704 start1_addr = BYTE_POS_ADDR (start1_byte);
4705 start2_addr = BYTE_POS_ADDR (start2_byte);
4706 memcpy (temp, start1_addr, len1_byte);
4707 memcpy (start1_addr, start2_addr, len2_byte);
4708 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4709 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4710 SAFE_FREE ();
4711
4712 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4713 len1, current_buffer, 0);
4714 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4715 len_mid, current_buffer, 0);
4716 graft_intervals_into_buffer (tmp_interval2, start1,
4717 len2, current_buffer, 0);
4718 }
4719
4720 update_compositions (start1, start1 + len2, CHECK_BORDER);
4721 update_compositions (end2 - len1, end2, CHECK_BORDER);
4722 }
4723
4724 /* When doing multiple transpositions, it might be nice
4725 to optimize this. Perhaps the markers in any one buffer
4726 should be organized in some sorted data tree. */
4727 if (NILP (leave_markers))
4728 {
4729 transpose_markers (start1, end1, start2, end2,
4730 start1_byte, start1_byte + len1_byte,
4731 start2_byte, start2_byte + len2_byte);
4732 fix_start_end_in_overlays (start1, end2);
4733 }
4734
4735 signal_after_change (start1, end2 - start1, end2 - start1);
4736 return Qnil;
4737 }
4738
4739 \f
4740 void
4741 syms_of_editfns (void)
4742 {
4743 environbuf = 0;
4744 initial_tz = 0;
4745
4746 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4747
4748 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4749 doc: /* Non-nil means text motion commands don't notice fields. */);
4750 Vinhibit_field_text_motion = Qnil;
4751
4752 DEFVAR_LISP ("buffer-access-fontify-functions",
4753 Vbuffer_access_fontify_functions,
4754 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4755 Each function is called with two arguments which specify the range
4756 of the buffer being accessed. */);
4757 Vbuffer_access_fontify_functions = Qnil;
4758
4759 {
4760 Lisp_Object obuf;
4761 obuf = Fcurrent_buffer ();
4762 /* Do this here, because init_buffer_once is too early--it won't work. */
4763 Fset_buffer (Vprin1_to_string_buffer);
4764 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4765 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4766 Qnil);
4767 Fset_buffer (obuf);
4768 }
4769
4770 DEFVAR_LISP ("buffer-access-fontified-property",
4771 Vbuffer_access_fontified_property,
4772 doc: /* Property which (if non-nil) indicates text has been fontified.
4773 `buffer-substring' need not call the `buffer-access-fontify-functions'
4774 functions if all the text being accessed has this property. */);
4775 Vbuffer_access_fontified_property = Qnil;
4776
4777 DEFVAR_LISP ("system-name", Vsystem_name,
4778 doc: /* The host name of the machine Emacs is running on. */);
4779
4780 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4781 doc: /* The full name of the user logged in. */);
4782
4783 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4784 doc: /* The user's name, taken from environment variables if possible. */);
4785
4786 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4787 doc: /* The user's name, based upon the real uid only. */);
4788
4789 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4790 doc: /* The release of the operating system Emacs is running on. */);
4791
4792 defsubr (&Spropertize);
4793 defsubr (&Schar_equal);
4794 defsubr (&Sgoto_char);
4795 defsubr (&Sstring_to_char);
4796 defsubr (&Schar_to_string);
4797 defsubr (&Sbyte_to_string);
4798 defsubr (&Sbuffer_substring);
4799 defsubr (&Sbuffer_substring_no_properties);
4800 defsubr (&Sbuffer_string);
4801
4802 defsubr (&Spoint_marker);
4803 defsubr (&Smark_marker);
4804 defsubr (&Spoint);
4805 defsubr (&Sregion_beginning);
4806 defsubr (&Sregion_end);
4807
4808 DEFSYM (Qfield, "field");
4809 DEFSYM (Qboundary, "boundary");
4810 defsubr (&Sfield_beginning);
4811 defsubr (&Sfield_end);
4812 defsubr (&Sfield_string);
4813 defsubr (&Sfield_string_no_properties);
4814 defsubr (&Sdelete_field);
4815 defsubr (&Sconstrain_to_field);
4816
4817 defsubr (&Sline_beginning_position);
4818 defsubr (&Sline_end_position);
4819
4820 /* defsubr (&Smark); */
4821 /* defsubr (&Sset_mark); */
4822 defsubr (&Ssave_excursion);
4823 defsubr (&Ssave_current_buffer);
4824
4825 defsubr (&Sbufsize);
4826 defsubr (&Spoint_max);
4827 defsubr (&Spoint_min);
4828 defsubr (&Spoint_min_marker);
4829 defsubr (&Spoint_max_marker);
4830 defsubr (&Sgap_position);
4831 defsubr (&Sgap_size);
4832 defsubr (&Sposition_bytes);
4833 defsubr (&Sbyte_to_position);
4834
4835 defsubr (&Sbobp);
4836 defsubr (&Seobp);
4837 defsubr (&Sbolp);
4838 defsubr (&Seolp);
4839 defsubr (&Sfollowing_char);
4840 defsubr (&Sprevious_char);
4841 defsubr (&Schar_after);
4842 defsubr (&Schar_before);
4843 defsubr (&Sinsert);
4844 defsubr (&Sinsert_before_markers);
4845 defsubr (&Sinsert_and_inherit);
4846 defsubr (&Sinsert_and_inherit_before_markers);
4847 defsubr (&Sinsert_char);
4848 defsubr (&Sinsert_byte);
4849
4850 defsubr (&Suser_login_name);
4851 defsubr (&Suser_real_login_name);
4852 defsubr (&Suser_uid);
4853 defsubr (&Suser_real_uid);
4854 defsubr (&Suser_full_name);
4855 defsubr (&Semacs_pid);
4856 defsubr (&Scurrent_time);
4857 defsubr (&Sget_internal_run_time);
4858 defsubr (&Sformat_time_string);
4859 defsubr (&Sfloat_time);
4860 defsubr (&Sdecode_time);
4861 defsubr (&Sencode_time);
4862 defsubr (&Scurrent_time_string);
4863 defsubr (&Scurrent_time_zone);
4864 defsubr (&Sset_time_zone_rule);
4865 defsubr (&Ssystem_name);
4866 defsubr (&Smessage);
4867 defsubr (&Smessage_box);
4868 defsubr (&Smessage_or_box);
4869 defsubr (&Scurrent_message);
4870 defsubr (&Sformat);
4871
4872 defsubr (&Sinsert_buffer_substring);
4873 defsubr (&Scompare_buffer_substrings);
4874 defsubr (&Ssubst_char_in_region);
4875 defsubr (&Stranslate_region_internal);
4876 defsubr (&Sdelete_region);
4877 defsubr (&Sdelete_and_extract_region);
4878 defsubr (&Swiden);
4879 defsubr (&Snarrow_to_region);
4880 defsubr (&Ssave_restriction);
4881 defsubr (&Stranspose_regions);
4882 }