Generalize common compile-time constants.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <setjmp.h>
28
29 #include <signal.h>
30
31 #ifdef HAVE_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 #include "lisp.h"
36 #include "process.h"
37 #include "intervals.h"
38 #include "puresize.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "syssignal.h"
46 #include "termhooks.h" /* For struct terminal. */
47 #include <setjmp.h>
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef WINDOWSNT
73 #include "w32.h"
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 extern size_t _bytes_used;
90 extern size_t __malloc_extra_blocks;
91 extern void *_malloc_internal (size_t);
92 extern void _free_internal (void *);
93
94 #endif /* not DOUG_LEA_MALLOC */
95
96 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
97 #ifdef HAVE_PTHREAD
98
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
103
104 Also, gconf and gsettings may create several threads.
105
106 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
107 functions below are called from malloc, there is a chance that one
108 of these threads preempts the Emacs main thread and the hook variables
109 end up in an inconsistent state. So we have a mutex to prevent that (note
110 that the backend handles concurrent access to malloc within its own threads
111 but Emacs code running in the main thread is not included in that control).
112
113 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
114 happens in one of the backend threads we will have two threads that tries
115 to run Emacs code at once, and the code is not prepared for that.
116 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
117
118 static pthread_mutex_t alloc_mutex;
119
120 #define BLOCK_INPUT_ALLOC \
121 do \
122 { \
123 if (pthread_equal (pthread_self (), main_thread)) \
124 BLOCK_INPUT; \
125 pthread_mutex_lock (&alloc_mutex); \
126 } \
127 while (0)
128 #define UNBLOCK_INPUT_ALLOC \
129 do \
130 { \
131 pthread_mutex_unlock (&alloc_mutex); \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 UNBLOCK_INPUT; \
134 } \
135 while (0)
136
137 #else /* ! defined HAVE_PTHREAD */
138
139 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
140 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
141
142 #endif /* ! defined HAVE_PTHREAD */
143 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
144
145 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
146 to a struct Lisp_String. */
147
148 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
149 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
150 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151
152 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
153 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
154 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
155
156 /* Default value of gc_cons_threshold (see below). */
157
158 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
159
160 /* Global variables. */
161 struct emacs_globals globals;
162
163 /* Number of bytes of consing done since the last gc. */
164
165 EMACS_INT consing_since_gc;
166
167 /* Similar minimum, computed from Vgc_cons_percentage. */
168
169 EMACS_INT gc_relative_threshold;
170
171 /* Minimum number of bytes of consing since GC before next GC,
172 when memory is full. */
173
174 EMACS_INT memory_full_cons_threshold;
175
176 /* Nonzero during GC. */
177
178 int gc_in_progress;
179
180 /* Nonzero means abort if try to GC.
181 This is for code which is written on the assumption that
182 no GC will happen, so as to verify that assumption. */
183
184 int abort_on_gc;
185
186 /* Number of live and free conses etc. */
187
188 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
189 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
190 static EMACS_INT total_free_floats, total_floats;
191
192 /* Points to memory space allocated as "spare", to be freed if we run
193 out of memory. We keep one large block, four cons-blocks, and
194 two string blocks. */
195
196 static char *spare_memory[7];
197
198 /* Amount of spare memory to keep in large reserve block, or to see
199 whether this much is available when malloc fails on a larger request. */
200
201 #define SPARE_MEMORY (1 << 14)
202
203 /* Number of extra blocks malloc should get when it needs more core. */
204
205 static int malloc_hysteresis;
206
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
212
213 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
214 #define PUREBEG (char *) pure
215
216 /* Pointer to the pure area, and its size. */
217
218 static char *purebeg;
219 static ptrdiff_t pure_size;
220
221 /* Number of bytes of pure storage used before pure storage overflowed.
222 If this is non-zero, this implies that an overflow occurred. */
223
224 static ptrdiff_t pure_bytes_used_before_overflow;
225
226 /* Value is non-zero if P points into pure space. */
227
228 #define PURE_POINTER_P(P) \
229 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
230
231 /* Index in pure at which next pure Lisp object will be allocated.. */
232
233 static ptrdiff_t pure_bytes_used_lisp;
234
235 /* Number of bytes allocated for non-Lisp objects in pure storage. */
236
237 static ptrdiff_t pure_bytes_used_non_lisp;
238
239 /* If nonzero, this is a warning delivered by malloc and not yet
240 displayed. */
241
242 const char *pending_malloc_warning;
243
244 /* Maximum amount of C stack to save when a GC happens. */
245
246 #ifndef MAX_SAVE_STACK
247 #define MAX_SAVE_STACK 16000
248 #endif
249
250 /* Buffer in which we save a copy of the C stack at each GC. */
251
252 #if MAX_SAVE_STACK > 0
253 static char *stack_copy;
254 static ptrdiff_t stack_copy_size;
255 #endif
256
257 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
258 static Lisp_Object Qgc_cons_threshold;
259 Lisp_Object Qchar_table_extra_slots;
260
261 /* Hook run after GC has finished. */
262
263 static Lisp_Object Qpost_gc_hook;
264
265 static void mark_terminals (void);
266 static void gc_sweep (void);
267 static Lisp_Object make_pure_vector (ptrdiff_t);
268 static void mark_glyph_matrix (struct glyph_matrix *);
269 static void mark_face_cache (struct face_cache *);
270
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static struct Lisp_String *allocate_string (void);
275 static void compact_small_strings (void);
276 static void free_large_strings (void);
277 static void sweep_strings (void);
278 static void free_misc (Lisp_Object);
279 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
280
281 /* When scanning the C stack for live Lisp objects, Emacs keeps track
282 of what memory allocated via lisp_malloc is intended for what
283 purpose. This enumeration specifies the type of memory. */
284
285 enum mem_type
286 {
287 MEM_TYPE_NON_LISP,
288 MEM_TYPE_BUFFER,
289 MEM_TYPE_CONS,
290 MEM_TYPE_STRING,
291 MEM_TYPE_MISC,
292 MEM_TYPE_SYMBOL,
293 MEM_TYPE_FLOAT,
294 /* We used to keep separate mem_types for subtypes of vectors such as
295 process, hash_table, frame, terminal, and window, but we never made
296 use of the distinction, so it only caused source-code complexity
297 and runtime slowdown. Minor but pointless. */
298 MEM_TYPE_VECTORLIKE,
299 /* Special type to denote vector blocks. */
300 MEM_TYPE_VECTOR_BLOCK
301 };
302
303 static void *lisp_malloc (size_t, enum mem_type);
304
305
306 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
307
308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
309 #include <stdio.h> /* For fprintf. */
310 #endif
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
385 static void lisp_free (void *);
386 static void mark_stack (void);
387 static int live_vector_p (struct mem_node *, void *);
388 static int live_buffer_p (struct mem_node *, void *);
389 static int live_string_p (struct mem_node *, void *);
390 static int live_cons_p (struct mem_node *, void *);
391 static int live_symbol_p (struct mem_node *, void *);
392 static int live_float_p (struct mem_node *, void *);
393 static int live_misc_p (struct mem_node *, void *);
394 static void mark_maybe_object (Lisp_Object);
395 static void mark_memory (void *, void *);
396 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
397 static void mem_init (void);
398 static struct mem_node *mem_insert (void *, void *, enum mem_type);
399 static void mem_insert_fixup (struct mem_node *);
400 #endif
401 static void mem_rotate_left (struct mem_node *);
402 static void mem_rotate_right (struct mem_node *);
403 static void mem_delete (struct mem_node *);
404 static void mem_delete_fixup (struct mem_node *);
405 static inline struct mem_node *mem_find (void *);
406
407
408 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
409 static void check_gcpros (void);
410 #endif
411
412 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
413
414 #ifndef DEADP
415 # define DEADP(x) 0
416 #endif
417
418 /* Recording what needs to be marked for gc. */
419
420 struct gcpro *gcprolist;
421
422 /* Addresses of staticpro'd variables. Initialize it to a nonzero
423 value; otherwise some compilers put it into BSS. */
424
425 #define NSTATICS 0x650
426 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
427
428 /* Index of next unused slot in staticvec. */
429
430 static int staticidx;
431
432 static void *pure_alloc (size_t, int);
433
434
435 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
436 ALIGNMENT must be a power of 2. */
437
438 #define ALIGN(ptr, ALIGNMENT) \
439 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
440 & ~ ((ALIGNMENT) - 1)))
441
442
443 \f
444 /************************************************************************
445 Malloc
446 ************************************************************************/
447
448 /* Function malloc calls this if it finds we are near exhausting storage. */
449
450 void
451 malloc_warning (const char *str)
452 {
453 pending_malloc_warning = str;
454 }
455
456
457 /* Display an already-pending malloc warning. */
458
459 void
460 display_malloc_warning (void)
461 {
462 call3 (intern ("display-warning"),
463 intern ("alloc"),
464 build_string (pending_malloc_warning),
465 intern ("emergency"));
466 pending_malloc_warning = 0;
467 }
468 \f
469 /* Called if we can't allocate relocatable space for a buffer. */
470
471 void
472 buffer_memory_full (ptrdiff_t nbytes)
473 {
474 /* If buffers use the relocating allocator, no need to free
475 spare_memory, because we may have plenty of malloc space left
476 that we could get, and if we don't, the malloc that fails will
477 itself cause spare_memory to be freed. If buffers don't use the
478 relocating allocator, treat this like any other failing
479 malloc. */
480
481 #ifndef REL_ALLOC
482 memory_full (nbytes);
483 #endif
484
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil, Vmemory_signal_data);
488 }
489
490 /* A common multiple of the positive integers A and B. Ideally this
491 would be the least common multiple, but there's no way to do that
492 as a constant expression in C, so do the best that we can easily do. */
493 #define COMMON_MULTIPLE(a, b) \
494 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
495
496 #ifndef XMALLOC_OVERRUN_CHECK
497 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
498 #else
499
500 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
501 around each block.
502
503 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
504 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
505 block size in little-endian order. The trailer consists of
506 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
507
508 The header is used to detect whether this block has been allocated
509 through these functions, as some low-level libc functions may
510 bypass the malloc hooks. */
511
512 #define XMALLOC_OVERRUN_CHECK_SIZE 16
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
514 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
515
516 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
517 hold a size_t value and (2) the header size is a multiple of the
518 alignment that Emacs needs for C types and for USE_LSB_TAG. */
519 #define XMALLOC_BASE_ALIGNMENT \
520 alignof (union { long double d; intmax_t i; void *p; })
521
522 #if USE_LSB_TAG
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
533
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
539
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
545
546 /* Insert and extract the block size in the header. */
547
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
550 {
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
553 {
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
556 }
557 }
558
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
561 {
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 size <<= CHAR_BIT;
568 size += *ptr++;
569 }
570 return size;
571 }
572
573
574 /* The call depth in overrun_check functions. For example, this might happen:
575 xmalloc()
576 overrun_check_malloc()
577 -> malloc -> (via hook)_-> emacs_blocked_malloc
578 -> overrun_check_malloc
579 call malloc (hooks are NULL, so real malloc is called).
580 malloc returns 10000.
581 add overhead, return 10016.
582 <- (back in overrun_check_malloc)
583 add overhead again, return 10032
584 xmalloc returns 10032.
585
586 (time passes).
587
588 xfree(10032)
589 overrun_check_free(10032)
590 decrease overhead
591 free(10016) <- crash, because 10000 is the original pointer. */
592
593 static ptrdiff_t check_depth;
594
595 /* Like malloc, but wraps allocated block with header and trailer. */
596
597 static void *
598 overrun_check_malloc (size_t size)
599 {
600 register unsigned char *val;
601 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
602 if (SIZE_MAX - overhead < size)
603 abort ();
604
605 val = malloc (size + overhead);
606 if (val && check_depth == 1)
607 {
608 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
609 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
610 xmalloc_put_size (val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614 --check_depth;
615 return val;
616 }
617
618
619 /* Like realloc, but checks old block for overrun, and wraps new block
620 with header and trailer. */
621
622 static void *
623 overrun_check_realloc (void *block, size_t size)
624 {
625 register unsigned char *val = (unsigned char *) block;
626 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
627 if (SIZE_MAX - overhead < size)
628 abort ();
629
630 if (val
631 && check_depth == 1
632 && memcmp (xmalloc_overrun_check_header,
633 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
634 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
635 {
636 size_t osize = xmalloc_get_size (val);
637 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
638 XMALLOC_OVERRUN_CHECK_SIZE))
639 abort ();
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
643 }
644
645 val = realloc (val, size + overhead);
646
647 if (val && check_depth == 1)
648 {
649 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
650 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 xmalloc_put_size (val, size);
652 memcpy (val + size, xmalloc_overrun_check_trailer,
653 XMALLOC_OVERRUN_CHECK_SIZE);
654 }
655 --check_depth;
656 return val;
657 }
658
659 /* Like free, but checks block for overrun. */
660
661 static void
662 overrun_check_free (void *block)
663 {
664 unsigned char *val = (unsigned char *) block;
665
666 ++check_depth;
667 if (val
668 && check_depth == 1
669 && memcmp (xmalloc_overrun_check_header,
670 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
671 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
672 {
673 size_t osize = xmalloc_get_size (val);
674 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
675 XMALLOC_OVERRUN_CHECK_SIZE))
676 abort ();
677 #ifdef XMALLOC_CLEAR_FREE_MEMORY
678 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
679 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
680 #else
681 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
682 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
683 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
684 #endif
685 }
686
687 free (val);
688 --check_depth;
689 }
690
691 #undef malloc
692 #undef realloc
693 #undef free
694 #define malloc overrun_check_malloc
695 #define realloc overrun_check_realloc
696 #define free overrun_check_free
697 #endif
698
699 #ifdef SYNC_INPUT
700 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
701 there's no need to block input around malloc. */
702 #define MALLOC_BLOCK_INPUT ((void)0)
703 #define MALLOC_UNBLOCK_INPUT ((void)0)
704 #else
705 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
706 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
707 #endif
708
709 /* Like malloc but check for no memory and block interrupt input.. */
710
711 void *
712 xmalloc (size_t size)
713 {
714 void *val;
715
716 MALLOC_BLOCK_INPUT;
717 val = malloc (size);
718 MALLOC_UNBLOCK_INPUT;
719
720 if (!val && size)
721 memory_full (size);
722 return val;
723 }
724
725 /* Like the above, but zeroes out the memory just allocated. */
726
727 void *
728 xzalloc (size_t size)
729 {
730 void *val;
731
732 MALLOC_BLOCK_INPUT;
733 val = malloc (size);
734 MALLOC_UNBLOCK_INPUT;
735
736 if (!val && size)
737 memory_full (size);
738 memset (val, 0, size);
739 return val;
740 }
741
742 /* Like realloc but check for no memory and block interrupt input.. */
743
744 void *
745 xrealloc (void *block, size_t size)
746 {
747 void *val;
748
749 MALLOC_BLOCK_INPUT;
750 /* We must call malloc explicitly when BLOCK is 0, since some
751 reallocs don't do this. */
752 if (! block)
753 val = malloc (size);
754 else
755 val = realloc (block, size);
756 MALLOC_UNBLOCK_INPUT;
757
758 if (!val && size)
759 memory_full (size);
760 return val;
761 }
762
763
764 /* Like free but block interrupt input. */
765
766 void
767 xfree (void *block)
768 {
769 if (!block)
770 return;
771 MALLOC_BLOCK_INPUT;
772 free (block);
773 MALLOC_UNBLOCK_INPUT;
774 /* We don't call refill_memory_reserve here
775 because that duplicates doing so in emacs_blocked_free
776 and the criterion should go there. */
777 }
778
779
780 /* Other parts of Emacs pass large int values to allocator functions
781 expecting ptrdiff_t. This is portable in practice, but check it to
782 be safe. */
783 verify (INT_MAX <= PTRDIFF_MAX);
784
785
786 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
787 Signal an error on memory exhaustion, and block interrupt input. */
788
789 void *
790 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
791 {
792 eassert (0 <= nitems && 0 < item_size);
793 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
794 memory_full (SIZE_MAX);
795 return xmalloc (nitems * item_size);
796 }
797
798
799 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
800 Signal an error on memory exhaustion, and block interrupt input. */
801
802 void *
803 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
804 {
805 eassert (0 <= nitems && 0 < item_size);
806 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
807 memory_full (SIZE_MAX);
808 return xrealloc (pa, nitems * item_size);
809 }
810
811
812 /* Grow PA, which points to an array of *NITEMS items, and return the
813 location of the reallocated array, updating *NITEMS to reflect its
814 new size. The new array will contain at least NITEMS_INCR_MIN more
815 items, but will not contain more than NITEMS_MAX items total.
816 ITEM_SIZE is the size of each item, in bytes.
817
818 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
819 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
820 infinity.
821
822 If PA is null, then allocate a new array instead of reallocating
823 the old one. Thus, to grow an array A without saving its old
824 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
825 &NITEMS, ...).
826
827 Block interrupt input as needed. If memory exhaustion occurs, set
828 *NITEMS to zero if PA is null, and signal an error (i.e., do not
829 return). */
830
831 void *
832 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
833 ptrdiff_t nitems_max, ptrdiff_t item_size)
834 {
835 /* The approximate size to use for initial small allocation
836 requests. This is the largest "small" request for the GNU C
837 library malloc. */
838 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
839
840 /* If the array is tiny, grow it to about (but no greater than)
841 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
842 ptrdiff_t n = *nitems;
843 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
844 ptrdiff_t half_again = n >> 1;
845 ptrdiff_t incr_estimate = max (tiny_max, half_again);
846
847 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
848 NITEMS_MAX, and what the C language can represent safely. */
849 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
850 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
851 ? nitems_max : C_language_max);
852 ptrdiff_t nitems_incr_max = n_max - n;
853 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
854
855 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
856 if (! pa)
857 *nitems = 0;
858 if (nitems_incr_max < incr)
859 memory_full (SIZE_MAX);
860 n += incr;
861 pa = xrealloc (pa, n * item_size);
862 *nitems = n;
863 return pa;
864 }
865
866
867 /* Like strdup, but uses xmalloc. */
868
869 char *
870 xstrdup (const char *s)
871 {
872 size_t len = strlen (s) + 1;
873 char *p = xmalloc (len);
874 memcpy (p, s, len);
875 return p;
876 }
877
878
879 /* Unwind for SAFE_ALLOCA */
880
881 Lisp_Object
882 safe_alloca_unwind (Lisp_Object arg)
883 {
884 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
885
886 p->dogc = 0;
887 xfree (p->pointer);
888 p->pointer = 0;
889 free_misc (arg);
890 return Qnil;
891 }
892
893 /* Return a newly allocated memory block of SIZE bytes, remembering
894 to free it when unwinding. */
895 void *
896 record_xmalloc (size_t size)
897 {
898 void *p = xmalloc (size);
899 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
900 return p;
901 }
902
903
904 /* Like malloc but used for allocating Lisp data. NBYTES is the
905 number of bytes to allocate, TYPE describes the intended use of the
906 allocated memory block (for strings, for conses, ...). */
907
908 #if ! USE_LSB_TAG
909 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
910 #endif
911
912 static void *
913 lisp_malloc (size_t nbytes, enum mem_type type)
914 {
915 register void *val;
916
917 MALLOC_BLOCK_INPUT;
918
919 #ifdef GC_MALLOC_CHECK
920 allocated_mem_type = type;
921 #endif
922
923 val = malloc (nbytes);
924
925 #if ! USE_LSB_TAG
926 /* If the memory just allocated cannot be addressed thru a Lisp
927 object's pointer, and it needs to be,
928 that's equivalent to running out of memory. */
929 if (val && type != MEM_TYPE_NON_LISP)
930 {
931 Lisp_Object tem;
932 XSETCONS (tem, (char *) val + nbytes - 1);
933 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
934 {
935 lisp_malloc_loser = val;
936 free (val);
937 val = 0;
938 }
939 }
940 #endif
941
942 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
943 if (val && type != MEM_TYPE_NON_LISP)
944 mem_insert (val, (char *) val + nbytes, type);
945 #endif
946
947 MALLOC_UNBLOCK_INPUT;
948 if (!val && nbytes)
949 memory_full (nbytes);
950 return val;
951 }
952
953 /* Free BLOCK. This must be called to free memory allocated with a
954 call to lisp_malloc. */
955
956 static void
957 lisp_free (void *block)
958 {
959 MALLOC_BLOCK_INPUT;
960 free (block);
961 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
962 mem_delete (mem_find (block));
963 #endif
964 MALLOC_UNBLOCK_INPUT;
965 }
966
967 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
968
969 /* The entry point is lisp_align_malloc which returns blocks of at most
970 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
971
972 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
973 #define USE_POSIX_MEMALIGN 1
974 #endif
975
976 /* BLOCK_ALIGN has to be a power of 2. */
977 #define BLOCK_ALIGN (1 << 10)
978
979 /* Padding to leave at the end of a malloc'd block. This is to give
980 malloc a chance to minimize the amount of memory wasted to alignment.
981 It should be tuned to the particular malloc library used.
982 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
983 posix_memalign on the other hand would ideally prefer a value of 4
984 because otherwise, there's 1020 bytes wasted between each ablocks.
985 In Emacs, testing shows that those 1020 can most of the time be
986 efficiently used by malloc to place other objects, so a value of 0 can
987 still preferable unless you have a lot of aligned blocks and virtually
988 nothing else. */
989 #define BLOCK_PADDING 0
990 #define BLOCK_BYTES \
991 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
992
993 /* Internal data structures and constants. */
994
995 #define ABLOCKS_SIZE 16
996
997 /* An aligned block of memory. */
998 struct ablock
999 {
1000 union
1001 {
1002 char payload[BLOCK_BYTES];
1003 struct ablock *next_free;
1004 } x;
1005 /* `abase' is the aligned base of the ablocks. */
1006 /* It is overloaded to hold the virtual `busy' field that counts
1007 the number of used ablock in the parent ablocks.
1008 The first ablock has the `busy' field, the others have the `abase'
1009 field. To tell the difference, we assume that pointers will have
1010 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1011 is used to tell whether the real base of the parent ablocks is `abase'
1012 (if not, the word before the first ablock holds a pointer to the
1013 real base). */
1014 struct ablocks *abase;
1015 /* The padding of all but the last ablock is unused. The padding of
1016 the last ablock in an ablocks is not allocated. */
1017 #if BLOCK_PADDING
1018 char padding[BLOCK_PADDING];
1019 #endif
1020 };
1021
1022 /* A bunch of consecutive aligned blocks. */
1023 struct ablocks
1024 {
1025 struct ablock blocks[ABLOCKS_SIZE];
1026 };
1027
1028 /* Size of the block requested from malloc or posix_memalign. */
1029 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1030
1031 #define ABLOCK_ABASE(block) \
1032 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1033 ? (struct ablocks *)(block) \
1034 : (block)->abase)
1035
1036 /* Virtual `busy' field. */
1037 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1038
1039 /* Pointer to the (not necessarily aligned) malloc block. */
1040 #ifdef USE_POSIX_MEMALIGN
1041 #define ABLOCKS_BASE(abase) (abase)
1042 #else
1043 #define ABLOCKS_BASE(abase) \
1044 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1045 #endif
1046
1047 /* The list of free ablock. */
1048 static struct ablock *free_ablock;
1049
1050 /* Allocate an aligned block of nbytes.
1051 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1052 smaller or equal to BLOCK_BYTES. */
1053 static void *
1054 lisp_align_malloc (size_t nbytes, enum mem_type type)
1055 {
1056 void *base, *val;
1057 struct ablocks *abase;
1058
1059 eassert (nbytes <= BLOCK_BYTES);
1060
1061 MALLOC_BLOCK_INPUT;
1062
1063 #ifdef GC_MALLOC_CHECK
1064 allocated_mem_type = type;
1065 #endif
1066
1067 if (!free_ablock)
1068 {
1069 int i;
1070 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1071
1072 #ifdef DOUG_LEA_MALLOC
1073 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1074 because mapped region contents are not preserved in
1075 a dumped Emacs. */
1076 mallopt (M_MMAP_MAX, 0);
1077 #endif
1078
1079 #ifdef USE_POSIX_MEMALIGN
1080 {
1081 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1082 if (err)
1083 base = NULL;
1084 abase = base;
1085 }
1086 #else
1087 base = malloc (ABLOCKS_BYTES);
1088 abase = ALIGN (base, BLOCK_ALIGN);
1089 #endif
1090
1091 if (base == 0)
1092 {
1093 MALLOC_UNBLOCK_INPUT;
1094 memory_full (ABLOCKS_BYTES);
1095 }
1096
1097 aligned = (base == abase);
1098 if (!aligned)
1099 ((void**)abase)[-1] = base;
1100
1101 #ifdef DOUG_LEA_MALLOC
1102 /* Back to a reasonable maximum of mmap'ed areas. */
1103 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1104 #endif
1105
1106 #if ! USE_LSB_TAG
1107 /* If the memory just allocated cannot be addressed thru a Lisp
1108 object's pointer, and it needs to be, that's equivalent to
1109 running out of memory. */
1110 if (type != MEM_TYPE_NON_LISP)
1111 {
1112 Lisp_Object tem;
1113 char *end = (char *) base + ABLOCKS_BYTES - 1;
1114 XSETCONS (tem, end);
1115 if ((char *) XCONS (tem) != end)
1116 {
1117 lisp_malloc_loser = base;
1118 free (base);
1119 MALLOC_UNBLOCK_INPUT;
1120 memory_full (SIZE_MAX);
1121 }
1122 }
1123 #endif
1124
1125 /* Initialize the blocks and put them on the free list.
1126 If `base' was not properly aligned, we can't use the last block. */
1127 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1128 {
1129 abase->blocks[i].abase = abase;
1130 abase->blocks[i].x.next_free = free_ablock;
1131 free_ablock = &abase->blocks[i];
1132 }
1133 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1134
1135 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1136 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1137 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1138 eassert (ABLOCKS_BASE (abase) == base);
1139 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1140 }
1141
1142 abase = ABLOCK_ABASE (free_ablock);
1143 ABLOCKS_BUSY (abase) =
1144 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1145 val = free_ablock;
1146 free_ablock = free_ablock->x.next_free;
1147
1148 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1149 if (type != MEM_TYPE_NON_LISP)
1150 mem_insert (val, (char *) val + nbytes, type);
1151 #endif
1152
1153 MALLOC_UNBLOCK_INPUT;
1154
1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1156 return val;
1157 }
1158
1159 static void
1160 lisp_align_free (void *block)
1161 {
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1164
1165 MALLOC_BLOCK_INPUT;
1166 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168 #endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1175
1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1177 { /* All the blocks are free. */
1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1181
1182 while (*tem)
1183 {
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1185 {
1186 i++;
1187 *tem = (*tem)->x.next_free;
1188 }
1189 else
1190 tem = &(*tem)->x.next_free;
1191 }
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1194 #ifdef USE_POSIX_MEMALIGN
1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1196 #endif
1197 free (ABLOCKS_BASE (abase));
1198 }
1199 MALLOC_UNBLOCK_INPUT;
1200 }
1201
1202 \f
1203 #ifndef SYSTEM_MALLOC
1204
1205 /* Arranging to disable input signals while we're in malloc.
1206
1207 This only works with GNU malloc. To help out systems which can't
1208 use GNU malloc, all the calls to malloc, realloc, and free
1209 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1210 pair; unfortunately, we have no idea what C library functions
1211 might call malloc, so we can't really protect them unless you're
1212 using GNU malloc. Fortunately, most of the major operating systems
1213 can use GNU malloc. */
1214
1215 #ifndef SYNC_INPUT
1216 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1217 there's no need to block input around malloc. */
1218
1219 #ifndef DOUG_LEA_MALLOC
1220 extern void * (*__malloc_hook) (size_t, const void *);
1221 extern void * (*__realloc_hook) (void *, size_t, const void *);
1222 extern void (*__free_hook) (void *, const void *);
1223 /* Else declared in malloc.h, perhaps with an extra arg. */
1224 #endif /* DOUG_LEA_MALLOC */
1225 static void * (*old_malloc_hook) (size_t, const void *);
1226 static void * (*old_realloc_hook) (void *, size_t, const void*);
1227 static void (*old_free_hook) (void*, const void*);
1228
1229 #ifdef DOUG_LEA_MALLOC
1230 # define BYTES_USED (mallinfo ().uordblks)
1231 #else
1232 # define BYTES_USED _bytes_used
1233 #endif
1234
1235 #ifdef GC_MALLOC_CHECK
1236 static int dont_register_blocks;
1237 #endif
1238
1239 static size_t bytes_used_when_reconsidered;
1240
1241 /* Value of _bytes_used, when spare_memory was freed. */
1242
1243 static size_t bytes_used_when_full;
1244
1245 /* This function is used as the hook for free to call. */
1246
1247 static void
1248 emacs_blocked_free (void *ptr, const void *ptr2)
1249 {
1250 BLOCK_INPUT_ALLOC;
1251
1252 #ifdef GC_MALLOC_CHECK
1253 if (ptr)
1254 {
1255 struct mem_node *m;
1256
1257 m = mem_find (ptr);
1258 if (m == MEM_NIL || m->start != ptr)
1259 {
1260 fprintf (stderr,
1261 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1262 abort ();
1263 }
1264 else
1265 {
1266 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1267 mem_delete (m);
1268 }
1269 }
1270 #endif /* GC_MALLOC_CHECK */
1271
1272 __free_hook = old_free_hook;
1273 free (ptr);
1274
1275 /* If we released our reserve (due to running out of memory),
1276 and we have a fair amount free once again,
1277 try to set aside another reserve in case we run out once more. */
1278 if (! NILP (Vmemory_full)
1279 /* Verify there is enough space that even with the malloc
1280 hysteresis this call won't run out again.
1281 The code here is correct as long as SPARE_MEMORY
1282 is substantially larger than the block size malloc uses. */
1283 && (bytes_used_when_full
1284 > ((bytes_used_when_reconsidered = BYTES_USED)
1285 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1286 refill_memory_reserve ();
1287
1288 __free_hook = emacs_blocked_free;
1289 UNBLOCK_INPUT_ALLOC;
1290 }
1291
1292
1293 /* This function is the malloc hook that Emacs uses. */
1294
1295 static void *
1296 emacs_blocked_malloc (size_t size, const void *ptr)
1297 {
1298 void *value;
1299
1300 BLOCK_INPUT_ALLOC;
1301 __malloc_hook = old_malloc_hook;
1302 #ifdef DOUG_LEA_MALLOC
1303 /* Segfaults on my system. --lorentey */
1304 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1305 #else
1306 __malloc_extra_blocks = malloc_hysteresis;
1307 #endif
1308
1309 value = malloc (size);
1310
1311 #ifdef GC_MALLOC_CHECK
1312 {
1313 struct mem_node *m = mem_find (value);
1314 if (m != MEM_NIL)
1315 {
1316 fprintf (stderr, "Malloc returned %p which is already in use\n",
1317 value);
1318 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1319 m->start, m->end, (char *) m->end - (char *) m->start,
1320 m->type);
1321 abort ();
1322 }
1323
1324 if (!dont_register_blocks)
1325 {
1326 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1327 allocated_mem_type = MEM_TYPE_NON_LISP;
1328 }
1329 }
1330 #endif /* GC_MALLOC_CHECK */
1331
1332 __malloc_hook = emacs_blocked_malloc;
1333 UNBLOCK_INPUT_ALLOC;
1334
1335 /* fprintf (stderr, "%p malloc\n", value); */
1336 return value;
1337 }
1338
1339
1340 /* This function is the realloc hook that Emacs uses. */
1341
1342 static void *
1343 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1344 {
1345 void *value;
1346
1347 BLOCK_INPUT_ALLOC;
1348 __realloc_hook = old_realloc_hook;
1349
1350 #ifdef GC_MALLOC_CHECK
1351 if (ptr)
1352 {
1353 struct mem_node *m = mem_find (ptr);
1354 if (m == MEM_NIL || m->start != ptr)
1355 {
1356 fprintf (stderr,
1357 "Realloc of %p which wasn't allocated with malloc\n",
1358 ptr);
1359 abort ();
1360 }
1361
1362 mem_delete (m);
1363 }
1364
1365 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1366
1367 /* Prevent malloc from registering blocks. */
1368 dont_register_blocks = 1;
1369 #endif /* GC_MALLOC_CHECK */
1370
1371 value = realloc (ptr, size);
1372
1373 #ifdef GC_MALLOC_CHECK
1374 dont_register_blocks = 0;
1375
1376 {
1377 struct mem_node *m = mem_find (value);
1378 if (m != MEM_NIL)
1379 {
1380 fprintf (stderr, "Realloc returns memory that is already in use\n");
1381 abort ();
1382 }
1383
1384 /* Can't handle zero size regions in the red-black tree. */
1385 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1386 }
1387
1388 /* fprintf (stderr, "%p <- realloc\n", value); */
1389 #endif /* GC_MALLOC_CHECK */
1390
1391 __realloc_hook = emacs_blocked_realloc;
1392 UNBLOCK_INPUT_ALLOC;
1393
1394 return value;
1395 }
1396
1397
1398 #ifdef HAVE_PTHREAD
1399 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1400 normal malloc. Some thread implementations need this as they call
1401 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1402 calls malloc because it is the first call, and we have an endless loop. */
1403
1404 void
1405 reset_malloc_hooks (void)
1406 {
1407 __free_hook = old_free_hook;
1408 __malloc_hook = old_malloc_hook;
1409 __realloc_hook = old_realloc_hook;
1410 }
1411 #endif /* HAVE_PTHREAD */
1412
1413
1414 /* Called from main to set up malloc to use our hooks. */
1415
1416 void
1417 uninterrupt_malloc (void)
1418 {
1419 #ifdef HAVE_PTHREAD
1420 #ifdef DOUG_LEA_MALLOC
1421 pthread_mutexattr_t attr;
1422
1423 /* GLIBC has a faster way to do this, but let's keep it portable.
1424 This is according to the Single UNIX Specification. */
1425 pthread_mutexattr_init (&attr);
1426 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1427 pthread_mutex_init (&alloc_mutex, &attr);
1428 #else /* !DOUG_LEA_MALLOC */
1429 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1430 and the bundled gmalloc.c doesn't require it. */
1431 pthread_mutex_init (&alloc_mutex, NULL);
1432 #endif /* !DOUG_LEA_MALLOC */
1433 #endif /* HAVE_PTHREAD */
1434
1435 if (__free_hook != emacs_blocked_free)
1436 old_free_hook = __free_hook;
1437 __free_hook = emacs_blocked_free;
1438
1439 if (__malloc_hook != emacs_blocked_malloc)
1440 old_malloc_hook = __malloc_hook;
1441 __malloc_hook = emacs_blocked_malloc;
1442
1443 if (__realloc_hook != emacs_blocked_realloc)
1444 old_realloc_hook = __realloc_hook;
1445 __realloc_hook = emacs_blocked_realloc;
1446 }
1447
1448 #endif /* not SYNC_INPUT */
1449 #endif /* not SYSTEM_MALLOC */
1450
1451
1452 \f
1453 /***********************************************************************
1454 Interval Allocation
1455 ***********************************************************************/
1456
1457 /* Number of intervals allocated in an interval_block structure.
1458 The 1020 is 1024 minus malloc overhead. */
1459
1460 #define INTERVAL_BLOCK_SIZE \
1461 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1462
1463 /* Intervals are allocated in chunks in form of an interval_block
1464 structure. */
1465
1466 struct interval_block
1467 {
1468 /* Place `intervals' first, to preserve alignment. */
1469 struct interval intervals[INTERVAL_BLOCK_SIZE];
1470 struct interval_block *next;
1471 };
1472
1473 /* Current interval block. Its `next' pointer points to older
1474 blocks. */
1475
1476 static struct interval_block *interval_block;
1477
1478 /* Index in interval_block above of the next unused interval
1479 structure. */
1480
1481 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1482
1483 /* Number of free and live intervals. */
1484
1485 static EMACS_INT total_free_intervals, total_intervals;
1486
1487 /* List of free intervals. */
1488
1489 static INTERVAL interval_free_list;
1490
1491 /* Return a new interval. */
1492
1493 INTERVAL
1494 make_interval (void)
1495 {
1496 INTERVAL val;
1497
1498 /* eassert (!handling_signal); */
1499
1500 MALLOC_BLOCK_INPUT;
1501
1502 if (interval_free_list)
1503 {
1504 val = interval_free_list;
1505 interval_free_list = INTERVAL_PARENT (interval_free_list);
1506 }
1507 else
1508 {
1509 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1510 {
1511 struct interval_block *newi
1512 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1513
1514 newi->next = interval_block;
1515 interval_block = newi;
1516 interval_block_index = 0;
1517 total_free_intervals += INTERVAL_BLOCK_SIZE;
1518 }
1519 val = &interval_block->intervals[interval_block_index++];
1520 }
1521
1522 MALLOC_UNBLOCK_INPUT;
1523
1524 consing_since_gc += sizeof (struct interval);
1525 intervals_consed++;
1526 total_free_intervals--;
1527 RESET_INTERVAL (val);
1528 val->gcmarkbit = 0;
1529 return val;
1530 }
1531
1532
1533 /* Mark Lisp objects in interval I. */
1534
1535 static void
1536 mark_interval (register INTERVAL i, Lisp_Object dummy)
1537 {
1538 /* Intervals should never be shared. So, if extra internal checking is
1539 enabled, GC aborts if it seems to have visited an interval twice. */
1540 eassert (!i->gcmarkbit);
1541 i->gcmarkbit = 1;
1542 mark_object (i->plist);
1543 }
1544
1545
1546 /* Mark the interval tree rooted in TREE. Don't call this directly;
1547 use the macro MARK_INTERVAL_TREE instead. */
1548
1549 static void
1550 mark_interval_tree (register INTERVAL tree)
1551 {
1552 /* No need to test if this tree has been marked already; this
1553 function is always called through the MARK_INTERVAL_TREE macro,
1554 which takes care of that. */
1555
1556 traverse_intervals_noorder (tree, mark_interval, Qnil);
1557 }
1558
1559
1560 /* Mark the interval tree rooted in I. */
1561
1562 #define MARK_INTERVAL_TREE(i) \
1563 do { \
1564 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1565 mark_interval_tree (i); \
1566 } while (0)
1567
1568
1569 #define UNMARK_BALANCE_INTERVALS(i) \
1570 do { \
1571 if (! NULL_INTERVAL_P (i)) \
1572 (i) = balance_intervals (i); \
1573 } while (0)
1574 \f
1575 /***********************************************************************
1576 String Allocation
1577 ***********************************************************************/
1578
1579 /* Lisp_Strings are allocated in string_block structures. When a new
1580 string_block is allocated, all the Lisp_Strings it contains are
1581 added to a free-list string_free_list. When a new Lisp_String is
1582 needed, it is taken from that list. During the sweep phase of GC,
1583 string_blocks that are entirely free are freed, except two which
1584 we keep.
1585
1586 String data is allocated from sblock structures. Strings larger
1587 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1588 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1589
1590 Sblocks consist internally of sdata structures, one for each
1591 Lisp_String. The sdata structure points to the Lisp_String it
1592 belongs to. The Lisp_String points back to the `u.data' member of
1593 its sdata structure.
1594
1595 When a Lisp_String is freed during GC, it is put back on
1596 string_free_list, and its `data' member and its sdata's `string'
1597 pointer is set to null. The size of the string is recorded in the
1598 `u.nbytes' member of the sdata. So, sdata structures that are no
1599 longer used, can be easily recognized, and it's easy to compact the
1600 sblocks of small strings which we do in compact_small_strings. */
1601
1602 /* Size in bytes of an sblock structure used for small strings. This
1603 is 8192 minus malloc overhead. */
1604
1605 #define SBLOCK_SIZE 8188
1606
1607 /* Strings larger than this are considered large strings. String data
1608 for large strings is allocated from individual sblocks. */
1609
1610 #define LARGE_STRING_BYTES 1024
1611
1612 /* Structure describing string memory sub-allocated from an sblock.
1613 This is where the contents of Lisp strings are stored. */
1614
1615 struct sdata
1616 {
1617 /* Back-pointer to the string this sdata belongs to. If null, this
1618 structure is free, and the NBYTES member of the union below
1619 contains the string's byte size (the same value that STRING_BYTES
1620 would return if STRING were non-null). If non-null, STRING_BYTES
1621 (STRING) is the size of the data, and DATA contains the string's
1622 contents. */
1623 struct Lisp_String *string;
1624
1625 #ifdef GC_CHECK_STRING_BYTES
1626
1627 ptrdiff_t nbytes;
1628 unsigned char data[1];
1629
1630 #define SDATA_NBYTES(S) (S)->nbytes
1631 #define SDATA_DATA(S) (S)->data
1632 #define SDATA_SELECTOR(member) member
1633
1634 #else /* not GC_CHECK_STRING_BYTES */
1635
1636 union
1637 {
1638 /* When STRING is non-null. */
1639 unsigned char data[1];
1640
1641 /* When STRING is null. */
1642 ptrdiff_t nbytes;
1643 } u;
1644
1645 #define SDATA_NBYTES(S) (S)->u.nbytes
1646 #define SDATA_DATA(S) (S)->u.data
1647 #define SDATA_SELECTOR(member) u.member
1648
1649 #endif /* not GC_CHECK_STRING_BYTES */
1650
1651 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1652 };
1653
1654
1655 /* Structure describing a block of memory which is sub-allocated to
1656 obtain string data memory for strings. Blocks for small strings
1657 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1658 as large as needed. */
1659
1660 struct sblock
1661 {
1662 /* Next in list. */
1663 struct sblock *next;
1664
1665 /* Pointer to the next free sdata block. This points past the end
1666 of the sblock if there isn't any space left in this block. */
1667 struct sdata *next_free;
1668
1669 /* Start of data. */
1670 struct sdata first_data;
1671 };
1672
1673 /* Number of Lisp strings in a string_block structure. The 1020 is
1674 1024 minus malloc overhead. */
1675
1676 #define STRING_BLOCK_SIZE \
1677 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1678
1679 /* Structure describing a block from which Lisp_String structures
1680 are allocated. */
1681
1682 struct string_block
1683 {
1684 /* Place `strings' first, to preserve alignment. */
1685 struct Lisp_String strings[STRING_BLOCK_SIZE];
1686 struct string_block *next;
1687 };
1688
1689 /* Head and tail of the list of sblock structures holding Lisp string
1690 data. We always allocate from current_sblock. The NEXT pointers
1691 in the sblock structures go from oldest_sblock to current_sblock. */
1692
1693 static struct sblock *oldest_sblock, *current_sblock;
1694
1695 /* List of sblocks for large strings. */
1696
1697 static struct sblock *large_sblocks;
1698
1699 /* List of string_block structures. */
1700
1701 static struct string_block *string_blocks;
1702
1703 /* Free-list of Lisp_Strings. */
1704
1705 static struct Lisp_String *string_free_list;
1706
1707 /* Number of live and free Lisp_Strings. */
1708
1709 static EMACS_INT total_strings, total_free_strings;
1710
1711 /* Number of bytes used by live strings. */
1712
1713 static EMACS_INT total_string_bytes;
1714
1715 /* Given a pointer to a Lisp_String S which is on the free-list
1716 string_free_list, return a pointer to its successor in the
1717 free-list. */
1718
1719 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1720
1721 /* Return a pointer to the sdata structure belonging to Lisp string S.
1722 S must be live, i.e. S->data must not be null. S->data is actually
1723 a pointer to the `u.data' member of its sdata structure; the
1724 structure starts at a constant offset in front of that. */
1725
1726 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1727
1728
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730
1731 /* We check for overrun in string data blocks by appending a small
1732 "cookie" after each allocated string data block, and check for the
1733 presence of this cookie during GC. */
1734
1735 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1736 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1737 { '\xde', '\xad', '\xbe', '\xef' };
1738
1739 #else
1740 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1741 #endif
1742
1743 /* Value is the size of an sdata structure large enough to hold NBYTES
1744 bytes of string data. The value returned includes a terminating
1745 NUL byte, the size of the sdata structure, and padding. */
1746
1747 #ifdef GC_CHECK_STRING_BYTES
1748
1749 #define SDATA_SIZE(NBYTES) \
1750 ((SDATA_DATA_OFFSET \
1751 + (NBYTES) + 1 \
1752 + sizeof (ptrdiff_t) - 1) \
1753 & ~(sizeof (ptrdiff_t) - 1))
1754
1755 #else /* not GC_CHECK_STRING_BYTES */
1756
1757 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1758 less than the size of that member. The 'max' is not needed when
1759 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1760 alignment code reserves enough space. */
1761
1762 #define SDATA_SIZE(NBYTES) \
1763 ((SDATA_DATA_OFFSET \
1764 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1765 ? NBYTES \
1766 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1767 + 1 \
1768 + sizeof (ptrdiff_t) - 1) \
1769 & ~(sizeof (ptrdiff_t) - 1))
1770
1771 #endif /* not GC_CHECK_STRING_BYTES */
1772
1773 /* Extra bytes to allocate for each string. */
1774
1775 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1776
1777 /* Exact bound on the number of bytes in a string, not counting the
1778 terminating null. A string cannot contain more bytes than
1779 STRING_BYTES_BOUND, nor can it be so long that the size_t
1780 arithmetic in allocate_string_data would overflow while it is
1781 calculating a value to be passed to malloc. */
1782 static ptrdiff_t const STRING_BYTES_MAX =
1783 min (STRING_BYTES_BOUND,
1784 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1785 - GC_STRING_EXTRA
1786 - offsetof (struct sblock, first_data)
1787 - SDATA_DATA_OFFSET)
1788 & ~(sizeof (EMACS_INT) - 1)));
1789
1790 /* Initialize string allocation. Called from init_alloc_once. */
1791
1792 static void
1793 init_strings (void)
1794 {
1795 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1796 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1797 }
1798
1799
1800 #ifdef GC_CHECK_STRING_BYTES
1801
1802 static int check_string_bytes_count;
1803
1804 /* Like STRING_BYTES, but with debugging check. Can be
1805 called during GC, so pay attention to the mark bit. */
1806
1807 ptrdiff_t
1808 string_bytes (struct Lisp_String *s)
1809 {
1810 ptrdiff_t nbytes =
1811 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1812
1813 if (!PURE_POINTER_P (s)
1814 && s->data
1815 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1816 abort ();
1817 return nbytes;
1818 }
1819
1820 /* Check validity of Lisp strings' string_bytes member in B. */
1821
1822 static void
1823 check_sblock (struct sblock *b)
1824 {
1825 struct sdata *from, *end, *from_end;
1826
1827 end = b->next_free;
1828
1829 for (from = &b->first_data; from < end; from = from_end)
1830 {
1831 /* Compute the next FROM here because copying below may
1832 overwrite data we need to compute it. */
1833 ptrdiff_t nbytes;
1834
1835 /* Check that the string size recorded in the string is the
1836 same as the one recorded in the sdata structure. */
1837 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1838 : SDATA_NBYTES (from));
1839 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1840 }
1841 }
1842
1843
1844 /* Check validity of Lisp strings' string_bytes member. ALL_P
1845 non-zero means check all strings, otherwise check only most
1846 recently allocated strings. Used for hunting a bug. */
1847
1848 static void
1849 check_string_bytes (int all_p)
1850 {
1851 if (all_p)
1852 {
1853 struct sblock *b;
1854
1855 for (b = large_sblocks; b; b = b->next)
1856 {
1857 struct Lisp_String *s = b->first_data.string;
1858 if (s)
1859 string_bytes (s);
1860 }
1861
1862 for (b = oldest_sblock; b; b = b->next)
1863 check_sblock (b);
1864 }
1865 else if (current_sblock)
1866 check_sblock (current_sblock);
1867 }
1868
1869 #else /* not GC_CHECK_STRING_BYTES */
1870
1871 #define check_string_bytes(all) ((void) 0)
1872
1873 #endif /* GC_CHECK_STRING_BYTES */
1874
1875 #ifdef GC_CHECK_STRING_FREE_LIST
1876
1877 /* Walk through the string free list looking for bogus next pointers.
1878 This may catch buffer overrun from a previous string. */
1879
1880 static void
1881 check_string_free_list (void)
1882 {
1883 struct Lisp_String *s;
1884
1885 /* Pop a Lisp_String off the free-list. */
1886 s = string_free_list;
1887 while (s != NULL)
1888 {
1889 if ((uintptr_t) s < 1024)
1890 abort ();
1891 s = NEXT_FREE_LISP_STRING (s);
1892 }
1893 }
1894 #else
1895 #define check_string_free_list()
1896 #endif
1897
1898 /* Return a new Lisp_String. */
1899
1900 static struct Lisp_String *
1901 allocate_string (void)
1902 {
1903 struct Lisp_String *s;
1904
1905 /* eassert (!handling_signal); */
1906
1907 MALLOC_BLOCK_INPUT;
1908
1909 /* If the free-list is empty, allocate a new string_block, and
1910 add all the Lisp_Strings in it to the free-list. */
1911 if (string_free_list == NULL)
1912 {
1913 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1914 int i;
1915
1916 b->next = string_blocks;
1917 string_blocks = b;
1918
1919 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1920 {
1921 s = b->strings + i;
1922 /* Every string on a free list should have NULL data pointer. */
1923 s->data = NULL;
1924 NEXT_FREE_LISP_STRING (s) = string_free_list;
1925 string_free_list = s;
1926 }
1927
1928 total_free_strings += STRING_BLOCK_SIZE;
1929 }
1930
1931 check_string_free_list ();
1932
1933 /* Pop a Lisp_String off the free-list. */
1934 s = string_free_list;
1935 string_free_list = NEXT_FREE_LISP_STRING (s);
1936
1937 MALLOC_UNBLOCK_INPUT;
1938
1939 --total_free_strings;
1940 ++total_strings;
1941 ++strings_consed;
1942 consing_since_gc += sizeof *s;
1943
1944 #ifdef GC_CHECK_STRING_BYTES
1945 if (!noninteractive)
1946 {
1947 if (++check_string_bytes_count == 200)
1948 {
1949 check_string_bytes_count = 0;
1950 check_string_bytes (1);
1951 }
1952 else
1953 check_string_bytes (0);
1954 }
1955 #endif /* GC_CHECK_STRING_BYTES */
1956
1957 return s;
1958 }
1959
1960
1961 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1962 plus a NUL byte at the end. Allocate an sdata structure for S, and
1963 set S->data to its `u.data' member. Store a NUL byte at the end of
1964 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1965 S->data if it was initially non-null. */
1966
1967 void
1968 allocate_string_data (struct Lisp_String *s,
1969 EMACS_INT nchars, EMACS_INT nbytes)
1970 {
1971 struct sdata *data, *old_data;
1972 struct sblock *b;
1973 ptrdiff_t needed, old_nbytes;
1974
1975 if (STRING_BYTES_MAX < nbytes)
1976 string_overflow ();
1977
1978 /* Determine the number of bytes needed to store NBYTES bytes
1979 of string data. */
1980 needed = SDATA_SIZE (nbytes);
1981 if (s->data)
1982 {
1983 old_data = SDATA_OF_STRING (s);
1984 old_nbytes = STRING_BYTES (s);
1985 }
1986 else
1987 old_data = NULL;
1988
1989 MALLOC_BLOCK_INPUT;
1990
1991 if (nbytes > LARGE_STRING_BYTES)
1992 {
1993 size_t size = offsetof (struct sblock, first_data) + needed;
1994
1995 #ifdef DOUG_LEA_MALLOC
1996 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1997 because mapped region contents are not preserved in
1998 a dumped Emacs.
1999
2000 In case you think of allowing it in a dumped Emacs at the
2001 cost of not being able to re-dump, there's another reason:
2002 mmap'ed data typically have an address towards the top of the
2003 address space, which won't fit into an EMACS_INT (at least on
2004 32-bit systems with the current tagging scheme). --fx */
2005 mallopt (M_MMAP_MAX, 0);
2006 #endif
2007
2008 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2009
2010 #ifdef DOUG_LEA_MALLOC
2011 /* Back to a reasonable maximum of mmap'ed areas. */
2012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2013 #endif
2014
2015 b->next_free = &b->first_data;
2016 b->first_data.string = NULL;
2017 b->next = large_sblocks;
2018 large_sblocks = b;
2019 }
2020 else if (current_sblock == NULL
2021 || (((char *) current_sblock + SBLOCK_SIZE
2022 - (char *) current_sblock->next_free)
2023 < (needed + GC_STRING_EXTRA)))
2024 {
2025 /* Not enough room in the current sblock. */
2026 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2027 b->next_free = &b->first_data;
2028 b->first_data.string = NULL;
2029 b->next = NULL;
2030
2031 if (current_sblock)
2032 current_sblock->next = b;
2033 else
2034 oldest_sblock = b;
2035 current_sblock = b;
2036 }
2037 else
2038 b = current_sblock;
2039
2040 data = b->next_free;
2041 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2042
2043 MALLOC_UNBLOCK_INPUT;
2044
2045 data->string = s;
2046 s->data = SDATA_DATA (data);
2047 #ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data) = nbytes;
2049 #endif
2050 s->size = nchars;
2051 s->size_byte = nbytes;
2052 s->data[nbytes] = '\0';
2053 #ifdef GC_CHECK_STRING_OVERRUN
2054 memcpy ((char *) data + needed, string_overrun_cookie,
2055 GC_STRING_OVERRUN_COOKIE_SIZE);
2056 #endif
2057
2058 /* Note that Faset may call to this function when S has already data
2059 assigned. In this case, mark data as free by setting it's string
2060 back-pointer to null, and record the size of the data in it. */
2061 if (old_data)
2062 {
2063 SDATA_NBYTES (old_data) = old_nbytes;
2064 old_data->string = NULL;
2065 }
2066
2067 consing_since_gc += needed;
2068 }
2069
2070
2071 /* Sweep and compact strings. */
2072
2073 static void
2074 sweep_strings (void)
2075 {
2076 struct string_block *b, *next;
2077 struct string_block *live_blocks = NULL;
2078
2079 string_free_list = NULL;
2080 total_strings = total_free_strings = 0;
2081 total_string_bytes = 0;
2082
2083 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2084 for (b = string_blocks; b; b = next)
2085 {
2086 int i, nfree = 0;
2087 struct Lisp_String *free_list_before = string_free_list;
2088
2089 next = b->next;
2090
2091 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2092 {
2093 struct Lisp_String *s = b->strings + i;
2094
2095 if (s->data)
2096 {
2097 /* String was not on free-list before. */
2098 if (STRING_MARKED_P (s))
2099 {
2100 /* String is live; unmark it and its intervals. */
2101 UNMARK_STRING (s);
2102
2103 if (!NULL_INTERVAL_P (s->intervals))
2104 UNMARK_BALANCE_INTERVALS (s->intervals);
2105
2106 ++total_strings;
2107 total_string_bytes += STRING_BYTES (s);
2108 }
2109 else
2110 {
2111 /* String is dead. Put it on the free-list. */
2112 struct sdata *data = SDATA_OF_STRING (s);
2113
2114 /* Save the size of S in its sdata so that we know
2115 how large that is. Reset the sdata's string
2116 back-pointer so that we know it's free. */
2117 #ifdef GC_CHECK_STRING_BYTES
2118 if (string_bytes (s) != SDATA_NBYTES (data))
2119 abort ();
2120 #else
2121 data->u.nbytes = STRING_BYTES (s);
2122 #endif
2123 data->string = NULL;
2124
2125 /* Reset the strings's `data' member so that we
2126 know it's free. */
2127 s->data = NULL;
2128
2129 /* Put the string on the free-list. */
2130 NEXT_FREE_LISP_STRING (s) = string_free_list;
2131 string_free_list = s;
2132 ++nfree;
2133 }
2134 }
2135 else
2136 {
2137 /* S was on the free-list before. Put it there again. */
2138 NEXT_FREE_LISP_STRING (s) = string_free_list;
2139 string_free_list = s;
2140 ++nfree;
2141 }
2142 }
2143
2144 /* Free blocks that contain free Lisp_Strings only, except
2145 the first two of them. */
2146 if (nfree == STRING_BLOCK_SIZE
2147 && total_free_strings > STRING_BLOCK_SIZE)
2148 {
2149 lisp_free (b);
2150 string_free_list = free_list_before;
2151 }
2152 else
2153 {
2154 total_free_strings += nfree;
2155 b->next = live_blocks;
2156 live_blocks = b;
2157 }
2158 }
2159
2160 check_string_free_list ();
2161
2162 string_blocks = live_blocks;
2163 free_large_strings ();
2164 compact_small_strings ();
2165
2166 check_string_free_list ();
2167 }
2168
2169
2170 /* Free dead large strings. */
2171
2172 static void
2173 free_large_strings (void)
2174 {
2175 struct sblock *b, *next;
2176 struct sblock *live_blocks = NULL;
2177
2178 for (b = large_sblocks; b; b = next)
2179 {
2180 next = b->next;
2181
2182 if (b->first_data.string == NULL)
2183 lisp_free (b);
2184 else
2185 {
2186 b->next = live_blocks;
2187 live_blocks = b;
2188 }
2189 }
2190
2191 large_sblocks = live_blocks;
2192 }
2193
2194
2195 /* Compact data of small strings. Free sblocks that don't contain
2196 data of live strings after compaction. */
2197
2198 static void
2199 compact_small_strings (void)
2200 {
2201 struct sblock *b, *tb, *next;
2202 struct sdata *from, *to, *end, *tb_end;
2203 struct sdata *to_end, *from_end;
2204
2205 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2206 to, and TB_END is the end of TB. */
2207 tb = oldest_sblock;
2208 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2209 to = &tb->first_data;
2210
2211 /* Step through the blocks from the oldest to the youngest. We
2212 expect that old blocks will stabilize over time, so that less
2213 copying will happen this way. */
2214 for (b = oldest_sblock; b; b = b->next)
2215 {
2216 end = b->next_free;
2217 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2218
2219 for (from = &b->first_data; from < end; from = from_end)
2220 {
2221 /* Compute the next FROM here because copying below may
2222 overwrite data we need to compute it. */
2223 ptrdiff_t nbytes;
2224 struct Lisp_String *s = from->string;
2225
2226 #ifdef GC_CHECK_STRING_BYTES
2227 /* Check that the string size recorded in the string is the
2228 same as the one recorded in the sdata structure. */
2229 if (s && string_bytes (s) != SDATA_NBYTES (from))
2230 abort ();
2231 #endif /* GC_CHECK_STRING_BYTES */
2232
2233 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2234 eassert (nbytes <= LARGE_STRING_BYTES);
2235
2236 nbytes = SDATA_SIZE (nbytes);
2237 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2238
2239 #ifdef GC_CHECK_STRING_OVERRUN
2240 if (memcmp (string_overrun_cookie,
2241 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2242 GC_STRING_OVERRUN_COOKIE_SIZE))
2243 abort ();
2244 #endif
2245
2246 /* Non-NULL S means it's alive. Copy its data. */
2247 if (s)
2248 {
2249 /* If TB is full, proceed with the next sblock. */
2250 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2251 if (to_end > tb_end)
2252 {
2253 tb->next_free = to;
2254 tb = tb->next;
2255 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2256 to = &tb->first_data;
2257 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2258 }
2259
2260 /* Copy, and update the string's `data' pointer. */
2261 if (from != to)
2262 {
2263 eassert (tb != b || to < from);
2264 memmove (to, from, nbytes + GC_STRING_EXTRA);
2265 to->string->data = SDATA_DATA (to);
2266 }
2267
2268 /* Advance past the sdata we copied to. */
2269 to = to_end;
2270 }
2271 }
2272 }
2273
2274 /* The rest of the sblocks following TB don't contain live data, so
2275 we can free them. */
2276 for (b = tb->next; b; b = next)
2277 {
2278 next = b->next;
2279 lisp_free (b);
2280 }
2281
2282 tb->next_free = to;
2283 tb->next = NULL;
2284 current_sblock = tb;
2285 }
2286
2287 void
2288 string_overflow (void)
2289 {
2290 error ("Maximum string size exceeded");
2291 }
2292
2293 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2294 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2295 LENGTH must be an integer.
2296 INIT must be an integer that represents a character. */)
2297 (Lisp_Object length, Lisp_Object init)
2298 {
2299 register Lisp_Object val;
2300 register unsigned char *p, *end;
2301 int c;
2302 EMACS_INT nbytes;
2303
2304 CHECK_NATNUM (length);
2305 CHECK_CHARACTER (init);
2306
2307 c = XFASTINT (init);
2308 if (ASCII_CHAR_P (c))
2309 {
2310 nbytes = XINT (length);
2311 val = make_uninit_string (nbytes);
2312 p = SDATA (val);
2313 end = p + SCHARS (val);
2314 while (p != end)
2315 *p++ = c;
2316 }
2317 else
2318 {
2319 unsigned char str[MAX_MULTIBYTE_LENGTH];
2320 int len = CHAR_STRING (c, str);
2321 EMACS_INT string_len = XINT (length);
2322
2323 if (string_len > STRING_BYTES_MAX / len)
2324 string_overflow ();
2325 nbytes = len * string_len;
2326 val = make_uninit_multibyte_string (string_len, nbytes);
2327 p = SDATA (val);
2328 end = p + nbytes;
2329 while (p != end)
2330 {
2331 memcpy (p, str, len);
2332 p += len;
2333 }
2334 }
2335
2336 *p = 0;
2337 return val;
2338 }
2339
2340
2341 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2342 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2343 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2344 (Lisp_Object length, Lisp_Object init)
2345 {
2346 register Lisp_Object val;
2347 struct Lisp_Bool_Vector *p;
2348 ptrdiff_t length_in_chars;
2349 EMACS_INT length_in_elts;
2350 int bits_per_value;
2351 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2352 / word_size);
2353
2354 CHECK_NATNUM (length);
2355
2356 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2357
2358 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2359
2360 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2361
2362 /* No Lisp_Object to trace in there. */
2363 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2364
2365 p = XBOOL_VECTOR (val);
2366 p->size = XFASTINT (length);
2367
2368 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2369 / BOOL_VECTOR_BITS_PER_CHAR);
2370 if (length_in_chars)
2371 {
2372 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2373
2374 /* Clear any extraneous bits in the last byte. */
2375 p->data[length_in_chars - 1]
2376 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2377 }
2378
2379 return val;
2380 }
2381
2382
2383 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2384 of characters from the contents. This string may be unibyte or
2385 multibyte, depending on the contents. */
2386
2387 Lisp_Object
2388 make_string (const char *contents, ptrdiff_t nbytes)
2389 {
2390 register Lisp_Object val;
2391 ptrdiff_t nchars, multibyte_nbytes;
2392
2393 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2394 &nchars, &multibyte_nbytes);
2395 if (nbytes == nchars || nbytes != multibyte_nbytes)
2396 /* CONTENTS contains no multibyte sequences or contains an invalid
2397 multibyte sequence. We must make unibyte string. */
2398 val = make_unibyte_string (contents, nbytes);
2399 else
2400 val = make_multibyte_string (contents, nchars, nbytes);
2401 return val;
2402 }
2403
2404
2405 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2406
2407 Lisp_Object
2408 make_unibyte_string (const char *contents, ptrdiff_t length)
2409 {
2410 register Lisp_Object val;
2411 val = make_uninit_string (length);
2412 memcpy (SDATA (val), contents, length);
2413 return val;
2414 }
2415
2416
2417 /* Make a multibyte string from NCHARS characters occupying NBYTES
2418 bytes at CONTENTS. */
2419
2420 Lisp_Object
2421 make_multibyte_string (const char *contents,
2422 ptrdiff_t nchars, ptrdiff_t nbytes)
2423 {
2424 register Lisp_Object val;
2425 val = make_uninit_multibyte_string (nchars, nbytes);
2426 memcpy (SDATA (val), contents, nbytes);
2427 return val;
2428 }
2429
2430
2431 /* Make a string from NCHARS characters occupying NBYTES bytes at
2432 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2433
2434 Lisp_Object
2435 make_string_from_bytes (const char *contents,
2436 ptrdiff_t nchars, ptrdiff_t nbytes)
2437 {
2438 register Lisp_Object val;
2439 val = make_uninit_multibyte_string (nchars, nbytes);
2440 memcpy (SDATA (val), contents, nbytes);
2441 if (SBYTES (val) == SCHARS (val))
2442 STRING_SET_UNIBYTE (val);
2443 return val;
2444 }
2445
2446
2447 /* Make a string from NCHARS characters occupying NBYTES bytes at
2448 CONTENTS. The argument MULTIBYTE controls whether to label the
2449 string as multibyte. If NCHARS is negative, it counts the number of
2450 characters by itself. */
2451
2452 Lisp_Object
2453 make_specified_string (const char *contents,
2454 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2455 {
2456 register Lisp_Object val;
2457
2458 if (nchars < 0)
2459 {
2460 if (multibyte)
2461 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2462 nbytes);
2463 else
2464 nchars = nbytes;
2465 }
2466 val = make_uninit_multibyte_string (nchars, nbytes);
2467 memcpy (SDATA (val), contents, nbytes);
2468 if (!multibyte)
2469 STRING_SET_UNIBYTE (val);
2470 return val;
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (EMACS_INT length)
2479 {
2480 Lisp_Object val;
2481
2482 if (!length)
2483 return empty_unibyte_string;
2484 val = make_uninit_multibyte_string (length, length);
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2487 }
2488
2489
2490 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2491 which occupy NBYTES bytes. */
2492
2493 Lisp_Object
2494 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2495 {
2496 Lisp_Object string;
2497 struct Lisp_String *s;
2498
2499 if (nchars < 0)
2500 abort ();
2501 if (!nbytes)
2502 return empty_multibyte_string;
2503
2504 s = allocate_string ();
2505 s->intervals = NULL_INTERVAL;
2506 allocate_string_data (s, nchars, nbytes);
2507 XSETSTRING (string, s);
2508 string_chars_consed += nbytes;
2509 return string;
2510 }
2511
2512 /* Print arguments to BUF according to a FORMAT, then return
2513 a Lisp_String initialized with the data from BUF. */
2514
2515 Lisp_Object
2516 make_formatted_string (char *buf, const char *format, ...)
2517 {
2518 va_list ap;
2519 int length;
2520
2521 va_start (ap, format);
2522 length = vsprintf (buf, format, ap);
2523 va_end (ap);
2524 return make_string (buf, length);
2525 }
2526
2527 \f
2528 /***********************************************************************
2529 Float Allocation
2530 ***********************************************************************/
2531
2532 /* We store float cells inside of float_blocks, allocating a new
2533 float_block with malloc whenever necessary. Float cells reclaimed
2534 by GC are put on a free list to be reallocated before allocating
2535 any new float cells from the latest float_block. */
2536
2537 #define FLOAT_BLOCK_SIZE \
2538 (((BLOCK_BYTES - sizeof (struct float_block *) \
2539 /* The compiler might add padding at the end. */ \
2540 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2541 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2542
2543 #define GETMARKBIT(block,n) \
2544 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2545 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2546 & 1)
2547
2548 #define SETMARKBIT(block,n) \
2549 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2550 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2551
2552 #define UNSETMARKBIT(block,n) \
2553 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2554 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2555
2556 #define FLOAT_BLOCK(fptr) \
2557 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2558
2559 #define FLOAT_INDEX(fptr) \
2560 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2561
2562 struct float_block
2563 {
2564 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2565 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2566 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2567 struct float_block *next;
2568 };
2569
2570 #define FLOAT_MARKED_P(fptr) \
2571 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572
2573 #define FLOAT_MARK(fptr) \
2574 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2575
2576 #define FLOAT_UNMARK(fptr) \
2577 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2578
2579 /* Current float_block. */
2580
2581 static struct float_block *float_block;
2582
2583 /* Index of first unused Lisp_Float in the current float_block. */
2584
2585 static int float_block_index = FLOAT_BLOCK_SIZE;
2586
2587 /* Free-list of Lisp_Floats. */
2588
2589 static struct Lisp_Float *float_free_list;
2590
2591 /* Return a new float object with value FLOAT_VALUE. */
2592
2593 Lisp_Object
2594 make_float (double float_value)
2595 {
2596 register Lisp_Object val;
2597
2598 /* eassert (!handling_signal); */
2599
2600 MALLOC_BLOCK_INPUT;
2601
2602 if (float_free_list)
2603 {
2604 /* We use the data field for chaining the free list
2605 so that we won't use the same field that has the mark bit. */
2606 XSETFLOAT (val, float_free_list);
2607 float_free_list = float_free_list->u.chain;
2608 }
2609 else
2610 {
2611 if (float_block_index == FLOAT_BLOCK_SIZE)
2612 {
2613 struct float_block *new
2614 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2615 new->next = float_block;
2616 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2617 float_block = new;
2618 float_block_index = 0;
2619 total_free_floats += FLOAT_BLOCK_SIZE;
2620 }
2621 XSETFLOAT (val, &float_block->floats[float_block_index]);
2622 float_block_index++;
2623 }
2624
2625 MALLOC_UNBLOCK_INPUT;
2626
2627 XFLOAT_INIT (val, float_value);
2628 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2629 consing_since_gc += sizeof (struct Lisp_Float);
2630 floats_consed++;
2631 total_free_floats--;
2632 return val;
2633 }
2634
2635
2636 \f
2637 /***********************************************************************
2638 Cons Allocation
2639 ***********************************************************************/
2640
2641 /* We store cons cells inside of cons_blocks, allocating a new
2642 cons_block with malloc whenever necessary. Cons cells reclaimed by
2643 GC are put on a free list to be reallocated before allocating
2644 any new cons cells from the latest cons_block. */
2645
2646 #define CONS_BLOCK_SIZE \
2647 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2648 /* The compiler might add padding at the end. */ \
2649 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2650 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2651
2652 #define CONS_BLOCK(fptr) \
2653 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2654
2655 #define CONS_INDEX(fptr) \
2656 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2657
2658 struct cons_block
2659 {
2660 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2661 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2662 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2663 struct cons_block *next;
2664 };
2665
2666 #define CONS_MARKED_P(fptr) \
2667 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2668
2669 #define CONS_MARK(fptr) \
2670 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2671
2672 #define CONS_UNMARK(fptr) \
2673 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2674
2675 /* Current cons_block. */
2676
2677 static struct cons_block *cons_block;
2678
2679 /* Index of first unused Lisp_Cons in the current block. */
2680
2681 static int cons_block_index = CONS_BLOCK_SIZE;
2682
2683 /* Free-list of Lisp_Cons structures. */
2684
2685 static struct Lisp_Cons *cons_free_list;
2686
2687 /* Explicitly free a cons cell by putting it on the free-list. */
2688
2689 void
2690 free_cons (struct Lisp_Cons *ptr)
2691 {
2692 ptr->u.chain = cons_free_list;
2693 #if GC_MARK_STACK
2694 CVAR (ptr, car) = Vdead;
2695 #endif
2696 cons_free_list = ptr;
2697 consing_since_gc -= sizeof *ptr;
2698 total_free_conses++;
2699 }
2700
2701 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2702 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2703 (Lisp_Object car, Lisp_Object cdr)
2704 {
2705 register Lisp_Object val;
2706
2707 /* eassert (!handling_signal); */
2708
2709 MALLOC_BLOCK_INPUT;
2710
2711 if (cons_free_list)
2712 {
2713 /* We use the cdr for chaining the free list
2714 so that we won't use the same field that has the mark bit. */
2715 XSETCONS (val, cons_free_list);
2716 cons_free_list = cons_free_list->u.chain;
2717 }
2718 else
2719 {
2720 if (cons_block_index == CONS_BLOCK_SIZE)
2721 {
2722 struct cons_block *new
2723 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2724 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2725 new->next = cons_block;
2726 cons_block = new;
2727 cons_block_index = 0;
2728 total_free_conses += CONS_BLOCK_SIZE;
2729 }
2730 XSETCONS (val, &cons_block->conses[cons_block_index]);
2731 cons_block_index++;
2732 }
2733
2734 MALLOC_UNBLOCK_INPUT;
2735
2736 XSETCAR (val, car);
2737 XSETCDR (val, cdr);
2738 eassert (!CONS_MARKED_P (XCONS (val)));
2739 consing_since_gc += sizeof (struct Lisp_Cons);
2740 total_free_conses--;
2741 cons_cells_consed++;
2742 return val;
2743 }
2744
2745 #ifdef GC_CHECK_CONS_LIST
2746 /* Get an error now if there's any junk in the cons free list. */
2747 void
2748 check_cons_list (void)
2749 {
2750 struct Lisp_Cons *tail = cons_free_list;
2751
2752 while (tail)
2753 tail = tail->u.chain;
2754 }
2755 #endif
2756
2757 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2758
2759 Lisp_Object
2760 list1 (Lisp_Object arg1)
2761 {
2762 return Fcons (arg1, Qnil);
2763 }
2764
2765 Lisp_Object
2766 list2 (Lisp_Object arg1, Lisp_Object arg2)
2767 {
2768 return Fcons (arg1, Fcons (arg2, Qnil));
2769 }
2770
2771
2772 Lisp_Object
2773 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2774 {
2775 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2776 }
2777
2778
2779 Lisp_Object
2780 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2781 {
2782 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2783 }
2784
2785
2786 Lisp_Object
2787 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2788 {
2789 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2790 Fcons (arg5, Qnil)))));
2791 }
2792
2793 /* Make a list of COUNT Lisp_Objects, where ARG is the
2794 first one. Allocate conses from pure space if TYPE
2795 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2796
2797 Lisp_Object
2798 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2799 {
2800 va_list ap;
2801 ptrdiff_t i;
2802 Lisp_Object val, *objp;
2803
2804 /* Change to SAFE_ALLOCA if you hit this eassert. */
2805 eassert (count <= MAX_ALLOCA / word_size);
2806
2807 objp = alloca (count * word_size);
2808 objp[0] = arg;
2809 va_start (ap, arg);
2810 for (i = 1; i < count; i++)
2811 objp[i] = va_arg (ap, Lisp_Object);
2812 va_end (ap);
2813
2814 for (val = Qnil, i = count - 1; i >= 0; i--)
2815 {
2816 if (type == CONSTYPE_PURE)
2817 val = pure_cons (objp[i], val);
2818 else if (type == CONSTYPE_HEAP)
2819 val = Fcons (objp[i], val);
2820 else
2821 abort ();
2822 }
2823 return val;
2824 }
2825
2826 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2827 doc: /* Return a newly created list with specified arguments as elements.
2828 Any number of arguments, even zero arguments, are allowed.
2829 usage: (list &rest OBJECTS) */)
2830 (ptrdiff_t nargs, Lisp_Object *args)
2831 {
2832 register Lisp_Object val;
2833 val = Qnil;
2834
2835 while (nargs > 0)
2836 {
2837 nargs--;
2838 val = Fcons (args[nargs], val);
2839 }
2840 return val;
2841 }
2842
2843
2844 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2845 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2846 (register Lisp_Object length, Lisp_Object init)
2847 {
2848 register Lisp_Object val;
2849 register EMACS_INT size;
2850
2851 CHECK_NATNUM (length);
2852 size = XFASTINT (length);
2853
2854 val = Qnil;
2855 while (size > 0)
2856 {
2857 val = Fcons (init, val);
2858 --size;
2859
2860 if (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879 }
2880 }
2881 }
2882 }
2883
2884 QUIT;
2885 }
2886
2887 return val;
2888 }
2889
2890
2891 \f
2892 /***********************************************************************
2893 Vector Allocation
2894 ***********************************************************************/
2895
2896 /* This value is balanced well enough to avoid too much internal overhead
2897 for the most common cases; it's not required to be a power of two, but
2898 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2899
2900 #define VECTOR_BLOCK_SIZE 4096
2901
2902 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2903 enum
2904 {
2905 roundup_size = COMMON_MULTIPLE (word_size,
2906 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2907 };
2908
2909 /* ROUNDUP_SIZE must be a power of 2. */
2910 verify ((roundup_size & (roundup_size - 1)) == 0);
2911
2912 /* Verify assumptions described above. */
2913 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2914 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2915
2916 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2917
2918 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2919
2920 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2921
2922 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2923
2924 /* Size of the minimal vector allocated from block. */
2925
2926 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2927
2928 /* Size of the largest vector allocated from block. */
2929
2930 #define VBLOCK_BYTES_MAX \
2931 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2932
2933 /* We maintain one free list for each possible block-allocated
2934 vector size, and this is the number of free lists we have. */
2935
2936 #define VECTOR_MAX_FREE_LIST_INDEX \
2937 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2938
2939 /* Common shortcut to advance vector pointer over a block data. */
2940
2941 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2942
2943 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2944
2945 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2946
2947 /* Common shortcut to setup vector on a free list. */
2948
2949 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2950 do { \
2951 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2952 eassert ((nbytes) % roundup_size == 0); \
2953 (index) = VINDEX (nbytes); \
2954 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2955 (v)->header.next.vector = vector_free_lists[index]; \
2956 vector_free_lists[index] = (v); \
2957 total_free_vector_slots += (nbytes) / word_size; \
2958 } while (0)
2959
2960 struct vector_block
2961 {
2962 char data[VECTOR_BLOCK_BYTES];
2963 struct vector_block *next;
2964 };
2965
2966 /* Chain of vector blocks. */
2967
2968 static struct vector_block *vector_blocks;
2969
2970 /* Vector free lists, where NTH item points to a chain of free
2971 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2972
2973 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2974
2975 /* Singly-linked list of large vectors. */
2976
2977 static struct Lisp_Vector *large_vectors;
2978
2979 /* The only vector with 0 slots, allocated from pure space. */
2980
2981 Lisp_Object zero_vector;
2982
2983 /* Number of live vectors. */
2984
2985 static EMACS_INT total_vectors;
2986
2987 /* Total size of live and free vectors, in Lisp_Object units. */
2988
2989 static EMACS_INT total_vector_slots, total_free_vector_slots;
2990
2991 /* Get a new vector block. */
2992
2993 static struct vector_block *
2994 allocate_vector_block (void)
2995 {
2996 struct vector_block *block = xmalloc (sizeof *block);
2997
2998 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2999 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3000 MEM_TYPE_VECTOR_BLOCK);
3001 #endif
3002
3003 block->next = vector_blocks;
3004 vector_blocks = block;
3005 return block;
3006 }
3007
3008 /* Called once to initialize vector allocation. */
3009
3010 static void
3011 init_vectors (void)
3012 {
3013 zero_vector = make_pure_vector (0);
3014 }
3015
3016 /* Allocate vector from a vector block. */
3017
3018 static struct Lisp_Vector *
3019 allocate_vector_from_block (size_t nbytes)
3020 {
3021 struct Lisp_Vector *vector, *rest;
3022 struct vector_block *block;
3023 size_t index, restbytes;
3024
3025 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3026 eassert (nbytes % roundup_size == 0);
3027
3028 /* First, try to allocate from a free list
3029 containing vectors of the requested size. */
3030 index = VINDEX (nbytes);
3031 if (vector_free_lists[index])
3032 {
3033 vector = vector_free_lists[index];
3034 vector_free_lists[index] = vector->header.next.vector;
3035 vector->header.next.nbytes = nbytes;
3036 total_free_vector_slots -= nbytes / word_size;
3037 return vector;
3038 }
3039
3040 /* Next, check free lists containing larger vectors. Since
3041 we will split the result, we should have remaining space
3042 large enough to use for one-slot vector at least. */
3043 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3044 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3045 if (vector_free_lists[index])
3046 {
3047 /* This vector is larger than requested. */
3048 vector = vector_free_lists[index];
3049 vector_free_lists[index] = vector->header.next.vector;
3050 vector->header.next.nbytes = nbytes;
3051 total_free_vector_slots -= nbytes / word_size;
3052
3053 /* Excess bytes are used for the smaller vector,
3054 which should be set on an appropriate free list. */
3055 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3056 eassert (restbytes % roundup_size == 0);
3057 rest = ADVANCE (vector, nbytes);
3058 SETUP_ON_FREE_LIST (rest, restbytes, index);
3059 return vector;
3060 }
3061
3062 /* Finally, need a new vector block. */
3063 block = allocate_vector_block ();
3064
3065 /* New vector will be at the beginning of this block. */
3066 vector = (struct Lisp_Vector *) block->data;
3067 vector->header.next.nbytes = nbytes;
3068
3069 /* If the rest of space from this block is large enough
3070 for one-slot vector at least, set up it on a free list. */
3071 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3072 if (restbytes >= VBLOCK_BYTES_MIN)
3073 {
3074 eassert (restbytes % roundup_size == 0);
3075 rest = ADVANCE (vector, nbytes);
3076 SETUP_ON_FREE_LIST (rest, restbytes, index);
3077 }
3078 return vector;
3079 }
3080
3081 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3082
3083 #define VECTOR_IN_BLOCK(vector, block) \
3084 ((char *) (vector) <= (block)->data \
3085 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3086
3087 /* Number of bytes used by vector-block-allocated object. This is the only
3088 place where we actually use the `nbytes' field of the vector-header.
3089 I.e. we could get rid of the `nbytes' field by computing it based on the
3090 vector-type. */
3091
3092 #define PSEUDOVECTOR_NBYTES(vector) \
3093 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3094 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3095 : vector->header.next.nbytes)
3096
3097 /* Reclaim space used by unmarked vectors. */
3098
3099 static void
3100 sweep_vectors (void)
3101 {
3102 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3103 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3104
3105 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3106 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3107
3108 /* Looking through vector blocks. */
3109
3110 for (block = vector_blocks; block; block = *bprev)
3111 {
3112 int free_this_block = 0;
3113
3114 for (vector = (struct Lisp_Vector *) block->data;
3115 VECTOR_IN_BLOCK (vector, block); vector = next)
3116 {
3117 if (VECTOR_MARKED_P (vector))
3118 {
3119 VECTOR_UNMARK (vector);
3120 total_vectors++;
3121 total_vector_slots += vector->header.next.nbytes / word_size;
3122 next = ADVANCE (vector, vector->header.next.nbytes);
3123 }
3124 else
3125 {
3126 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3127 ptrdiff_t total_bytes = nbytes;
3128
3129 next = ADVANCE (vector, nbytes);
3130
3131 /* While NEXT is not marked, try to coalesce with VECTOR,
3132 thus making VECTOR of the largest possible size. */
3133
3134 while (VECTOR_IN_BLOCK (next, block))
3135 {
3136 if (VECTOR_MARKED_P (next))
3137 break;
3138 nbytes = PSEUDOVECTOR_NBYTES (next);
3139 total_bytes += nbytes;
3140 next = ADVANCE (next, nbytes);
3141 }
3142
3143 eassert (total_bytes % roundup_size == 0);
3144
3145 if (vector == (struct Lisp_Vector *) block->data
3146 && !VECTOR_IN_BLOCK (next, block))
3147 /* This block should be freed because all of it's
3148 space was coalesced into the only free vector. */
3149 free_this_block = 1;
3150 else
3151 {
3152 int tmp;
3153 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3154 }
3155 }
3156 }
3157
3158 if (free_this_block)
3159 {
3160 *bprev = block->next;
3161 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3162 mem_delete (mem_find (block->data));
3163 #endif
3164 xfree (block);
3165 }
3166 else
3167 bprev = &block->next;
3168 }
3169
3170 /* Sweep large vectors. */
3171
3172 for (vector = large_vectors; vector; vector = *vprev)
3173 {
3174 if (VECTOR_MARKED_P (vector))
3175 {
3176 VECTOR_UNMARK (vector);
3177 total_vectors++;
3178 if (vector->header.size & PSEUDOVECTOR_FLAG)
3179 {
3180 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3181
3182 /* All non-bool pseudovectors are small enough to be allocated
3183 from vector blocks. This code should be redesigned if some
3184 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3185 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3186
3187 total_vector_slots
3188 += (bool_header_size
3189 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3190 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3191 }
3192 else
3193 total_vector_slots
3194 += header_size / word_size + vector->header.size;
3195 vprev = &vector->header.next.vector;
3196 }
3197 else
3198 {
3199 *vprev = vector->header.next.vector;
3200 lisp_free (vector);
3201 }
3202 }
3203 }
3204
3205 /* Value is a pointer to a newly allocated Lisp_Vector structure
3206 with room for LEN Lisp_Objects. */
3207
3208 static struct Lisp_Vector *
3209 allocate_vectorlike (ptrdiff_t len)
3210 {
3211 struct Lisp_Vector *p;
3212
3213 MALLOC_BLOCK_INPUT;
3214
3215 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3216 /* eassert (!handling_signal); */
3217
3218 if (len == 0)
3219 p = XVECTOR (zero_vector);
3220 else
3221 {
3222 size_t nbytes = header_size + len * word_size;
3223
3224 #ifdef DOUG_LEA_MALLOC
3225 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3226 because mapped region contents are not preserved in
3227 a dumped Emacs. */
3228 mallopt (M_MMAP_MAX, 0);
3229 #endif
3230
3231 if (nbytes <= VBLOCK_BYTES_MAX)
3232 p = allocate_vector_from_block (vroundup (nbytes));
3233 else
3234 {
3235 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3236 p->header.next.vector = large_vectors;
3237 large_vectors = p;
3238 }
3239
3240 #ifdef DOUG_LEA_MALLOC
3241 /* Back to a reasonable maximum of mmap'ed areas. */
3242 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3243 #endif
3244
3245 consing_since_gc += nbytes;
3246 vector_cells_consed += len;
3247 }
3248
3249 MALLOC_UNBLOCK_INPUT;
3250
3251 return p;
3252 }
3253
3254
3255 /* Allocate a vector with LEN slots. */
3256
3257 struct Lisp_Vector *
3258 allocate_vector (EMACS_INT len)
3259 {
3260 struct Lisp_Vector *v;
3261 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3262
3263 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3264 memory_full (SIZE_MAX);
3265 v = allocate_vectorlike (len);
3266 v->header.size = len;
3267 return v;
3268 }
3269
3270
3271 /* Allocate other vector-like structures. */
3272
3273 struct Lisp_Vector *
3274 allocate_pseudovector (int memlen, int lisplen, int tag)
3275 {
3276 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3277 int i;
3278
3279 /* Only the first lisplen slots will be traced normally by the GC. */
3280 for (i = 0; i < lisplen; ++i)
3281 v->contents[i] = Qnil;
3282
3283 XSETPVECTYPESIZE (v, tag, lisplen);
3284 return v;
3285 }
3286
3287 struct buffer *
3288 allocate_buffer (void)
3289 {
3290 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3291
3292 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3293 - header_size) / word_size);
3294 /* Note that the fields of B are not initialized. */
3295 return b;
3296 }
3297
3298 struct Lisp_Hash_Table *
3299 allocate_hash_table (void)
3300 {
3301 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3302 }
3303
3304 struct window *
3305 allocate_window (void)
3306 {
3307 struct window *w;
3308
3309 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3310 /* Users assumes that non-Lisp data is zeroed. */
3311 memset (&w->current_matrix, 0,
3312 sizeof (*w) - offsetof (struct window, current_matrix));
3313 return w;
3314 }
3315
3316 struct terminal *
3317 allocate_terminal (void)
3318 {
3319 struct terminal *t;
3320
3321 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3322 /* Users assumes that non-Lisp data is zeroed. */
3323 memset (&t->next_terminal, 0,
3324 sizeof (*t) - offsetof (struct terminal, next_terminal));
3325 return t;
3326 }
3327
3328 struct frame *
3329 allocate_frame (void)
3330 {
3331 struct frame *f;
3332
3333 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3334 /* Users assumes that non-Lisp data is zeroed. */
3335 memset (&f->face_cache, 0,
3336 sizeof (*f) - offsetof (struct frame, face_cache));
3337 return f;
3338 }
3339
3340 struct Lisp_Process *
3341 allocate_process (void)
3342 {
3343 struct Lisp_Process *p;
3344
3345 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3346 /* Users assumes that non-Lisp data is zeroed. */
3347 memset (&p->pid, 0,
3348 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3349 return p;
3350 }
3351
3352 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3353 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3354 See also the function `vector'. */)
3355 (register Lisp_Object length, Lisp_Object init)
3356 {
3357 Lisp_Object vector;
3358 register ptrdiff_t sizei;
3359 register ptrdiff_t i;
3360 register struct Lisp_Vector *p;
3361
3362 CHECK_NATNUM (length);
3363
3364 p = allocate_vector (XFASTINT (length));
3365 sizei = XFASTINT (length);
3366 for (i = 0; i < sizei; i++)
3367 p->contents[i] = init;
3368
3369 XSETVECTOR (vector, p);
3370 return vector;
3371 }
3372
3373
3374 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3375 doc: /* Return a newly created vector with specified arguments as elements.
3376 Any number of arguments, even zero arguments, are allowed.
3377 usage: (vector &rest OBJECTS) */)
3378 (ptrdiff_t nargs, Lisp_Object *args)
3379 {
3380 register Lisp_Object len, val;
3381 ptrdiff_t i;
3382 register struct Lisp_Vector *p;
3383
3384 XSETFASTINT (len, nargs);
3385 val = Fmake_vector (len, Qnil);
3386 p = XVECTOR (val);
3387 for (i = 0; i < nargs; i++)
3388 p->contents[i] = args[i];
3389 return val;
3390 }
3391
3392 void
3393 make_byte_code (struct Lisp_Vector *v)
3394 {
3395 if (v->header.size > 1 && STRINGP (v->contents[1])
3396 && STRING_MULTIBYTE (v->contents[1]))
3397 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3398 earlier because they produced a raw 8-bit string for byte-code
3399 and now such a byte-code string is loaded as multibyte while
3400 raw 8-bit characters converted to multibyte form. Thus, now we
3401 must convert them back to the original unibyte form. */
3402 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3403 XSETPVECTYPE (v, PVEC_COMPILED);
3404 }
3405
3406 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3407 doc: /* Create a byte-code object with specified arguments as elements.
3408 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3409 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3410 and (optional) INTERACTIVE-SPEC.
3411 The first four arguments are required; at most six have any
3412 significance.
3413 The ARGLIST can be either like the one of `lambda', in which case the arguments
3414 will be dynamically bound before executing the byte code, or it can be an
3415 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3416 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3417 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3418 argument to catch the left-over arguments. If such an integer is used, the
3419 arguments will not be dynamically bound but will be instead pushed on the
3420 stack before executing the byte-code.
3421 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3422 (ptrdiff_t nargs, Lisp_Object *args)
3423 {
3424 register Lisp_Object len, val;
3425 ptrdiff_t i;
3426 register struct Lisp_Vector *p;
3427
3428 /* We used to purecopy everything here, if purify-flga was set. This worked
3429 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3430 dangerous, since make-byte-code is used during execution to build
3431 closures, so any closure built during the preload phase would end up
3432 copied into pure space, including its free variables, which is sometimes
3433 just wasteful and other times plainly wrong (e.g. those free vars may want
3434 to be setcar'd). */
3435
3436 XSETFASTINT (len, nargs);
3437 val = Fmake_vector (len, Qnil);
3438
3439 p = XVECTOR (val);
3440 for (i = 0; i < nargs; i++)
3441 p->contents[i] = args[i];
3442 make_byte_code (p);
3443 XSETCOMPILED (val, p);
3444 return val;
3445 }
3446
3447
3448 \f
3449 /***********************************************************************
3450 Symbol Allocation
3451 ***********************************************************************/
3452
3453 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3454 of the required alignment if LSB tags are used. */
3455
3456 union aligned_Lisp_Symbol
3457 {
3458 struct Lisp_Symbol s;
3459 #if USE_LSB_TAG
3460 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3461 & -(1 << GCTYPEBITS)];
3462 #endif
3463 };
3464
3465 /* Each symbol_block is just under 1020 bytes long, since malloc
3466 really allocates in units of powers of two and uses 4 bytes for its
3467 own overhead. */
3468
3469 #define SYMBOL_BLOCK_SIZE \
3470 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3471
3472 struct symbol_block
3473 {
3474 /* Place `symbols' first, to preserve alignment. */
3475 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3476 struct symbol_block *next;
3477 };
3478
3479 /* Current symbol block and index of first unused Lisp_Symbol
3480 structure in it. */
3481
3482 static struct symbol_block *symbol_block;
3483 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3484
3485 /* List of free symbols. */
3486
3487 static struct Lisp_Symbol *symbol_free_list;
3488
3489 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3490 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3491 Its value and function definition are void, and its property list is nil. */)
3492 (Lisp_Object name)
3493 {
3494 register Lisp_Object val;
3495 register struct Lisp_Symbol *p;
3496
3497 CHECK_STRING (name);
3498
3499 /* eassert (!handling_signal); */
3500
3501 MALLOC_BLOCK_INPUT;
3502
3503 if (symbol_free_list)
3504 {
3505 XSETSYMBOL (val, symbol_free_list);
3506 symbol_free_list = symbol_free_list->next;
3507 }
3508 else
3509 {
3510 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3511 {
3512 struct symbol_block *new
3513 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3514 new->next = symbol_block;
3515 symbol_block = new;
3516 symbol_block_index = 0;
3517 total_free_symbols += SYMBOL_BLOCK_SIZE;
3518 }
3519 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3520 symbol_block_index++;
3521 }
3522
3523 MALLOC_UNBLOCK_INPUT;
3524
3525 p = XSYMBOL (val);
3526 SVAR (p, xname) = name;
3527 SVAR (p, plist) = Qnil;
3528 p->redirect = SYMBOL_PLAINVAL;
3529 SET_SYMBOL_VAL (p, Qunbound);
3530 SVAR (p, function) = Qunbound;
3531 p->next = NULL;
3532 p->gcmarkbit = 0;
3533 p->interned = SYMBOL_UNINTERNED;
3534 p->constant = 0;
3535 p->declared_special = 0;
3536 consing_since_gc += sizeof (struct Lisp_Symbol);
3537 symbols_consed++;
3538 total_free_symbols--;
3539 return val;
3540 }
3541
3542
3543 \f
3544 /***********************************************************************
3545 Marker (Misc) Allocation
3546 ***********************************************************************/
3547
3548 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3549 the required alignment when LSB tags are used. */
3550
3551 union aligned_Lisp_Misc
3552 {
3553 union Lisp_Misc m;
3554 #if USE_LSB_TAG
3555 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3556 & -(1 << GCTYPEBITS)];
3557 #endif
3558 };
3559
3560 /* Allocation of markers and other objects that share that structure.
3561 Works like allocation of conses. */
3562
3563 #define MARKER_BLOCK_SIZE \
3564 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3565
3566 struct marker_block
3567 {
3568 /* Place `markers' first, to preserve alignment. */
3569 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3570 struct marker_block *next;
3571 };
3572
3573 static struct marker_block *marker_block;
3574 static int marker_block_index = MARKER_BLOCK_SIZE;
3575
3576 static union Lisp_Misc *marker_free_list;
3577
3578 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3579
3580 static Lisp_Object
3581 allocate_misc (enum Lisp_Misc_Type type)
3582 {
3583 Lisp_Object val;
3584
3585 /* eassert (!handling_signal); */
3586
3587 MALLOC_BLOCK_INPUT;
3588
3589 if (marker_free_list)
3590 {
3591 XSETMISC (val, marker_free_list);
3592 marker_free_list = marker_free_list->u_free.chain;
3593 }
3594 else
3595 {
3596 if (marker_block_index == MARKER_BLOCK_SIZE)
3597 {
3598 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3599 new->next = marker_block;
3600 marker_block = new;
3601 marker_block_index = 0;
3602 total_free_markers += MARKER_BLOCK_SIZE;
3603 }
3604 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3605 marker_block_index++;
3606 }
3607
3608 MALLOC_UNBLOCK_INPUT;
3609
3610 --total_free_markers;
3611 consing_since_gc += sizeof (union Lisp_Misc);
3612 misc_objects_consed++;
3613 XMISCTYPE (val) = type;
3614 XMISCANY (val)->gcmarkbit = 0;
3615 return val;
3616 }
3617
3618 /* Free a Lisp_Misc object */
3619
3620 static void
3621 free_misc (Lisp_Object misc)
3622 {
3623 XMISCTYPE (misc) = Lisp_Misc_Free;
3624 XMISC (misc)->u_free.chain = marker_free_list;
3625 marker_free_list = XMISC (misc);
3626 consing_since_gc -= sizeof (union Lisp_Misc);
3627 total_free_markers++;
3628 }
3629
3630 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3631 INTEGER. This is used to package C values to call record_unwind_protect.
3632 The unwind function can get the C values back using XSAVE_VALUE. */
3633
3634 Lisp_Object
3635 make_save_value (void *pointer, ptrdiff_t integer)
3636 {
3637 register Lisp_Object val;
3638 register struct Lisp_Save_Value *p;
3639
3640 val = allocate_misc (Lisp_Misc_Save_Value);
3641 p = XSAVE_VALUE (val);
3642 p->pointer = pointer;
3643 p->integer = integer;
3644 p->dogc = 0;
3645 return val;
3646 }
3647
3648 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3649
3650 Lisp_Object
3651 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3652 {
3653 register Lisp_Object overlay;
3654
3655 overlay = allocate_misc (Lisp_Misc_Overlay);
3656 OVERLAY_START (overlay) = start;
3657 OVERLAY_END (overlay) = end;
3658 OVERLAY_PLIST (overlay) = plist;
3659 XOVERLAY (overlay)->next = NULL;
3660 return overlay;
3661 }
3662
3663 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3664 doc: /* Return a newly allocated marker which does not point at any place. */)
3665 (void)
3666 {
3667 register Lisp_Object val;
3668 register struct Lisp_Marker *p;
3669
3670 val = allocate_misc (Lisp_Misc_Marker);
3671 p = XMARKER (val);
3672 p->buffer = 0;
3673 p->bytepos = 0;
3674 p->charpos = 0;
3675 p->next = NULL;
3676 p->insertion_type = 0;
3677 return val;
3678 }
3679
3680 /* Return a newly allocated marker which points into BUF
3681 at character position CHARPOS and byte position BYTEPOS. */
3682
3683 Lisp_Object
3684 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3685 {
3686 Lisp_Object obj;
3687 struct Lisp_Marker *m;
3688
3689 /* No dead buffers here. */
3690 eassert (!NILP (BVAR (buf, name)));
3691
3692 /* Every character is at least one byte. */
3693 eassert (charpos <= bytepos);
3694
3695 obj = allocate_misc (Lisp_Misc_Marker);
3696 m = XMARKER (obj);
3697 m->buffer = buf;
3698 m->charpos = charpos;
3699 m->bytepos = bytepos;
3700 m->insertion_type = 0;
3701 m->next = BUF_MARKERS (buf);
3702 BUF_MARKERS (buf) = m;
3703 return obj;
3704 }
3705
3706 /* Put MARKER back on the free list after using it temporarily. */
3707
3708 void
3709 free_marker (Lisp_Object marker)
3710 {
3711 unchain_marker (XMARKER (marker));
3712 free_misc (marker);
3713 }
3714
3715 \f
3716 /* Return a newly created vector or string with specified arguments as
3717 elements. If all the arguments are characters that can fit
3718 in a string of events, make a string; otherwise, make a vector.
3719
3720 Any number of arguments, even zero arguments, are allowed. */
3721
3722 Lisp_Object
3723 make_event_array (register int nargs, Lisp_Object *args)
3724 {
3725 int i;
3726
3727 for (i = 0; i < nargs; i++)
3728 /* The things that fit in a string
3729 are characters that are in 0...127,
3730 after discarding the meta bit and all the bits above it. */
3731 if (!INTEGERP (args[i])
3732 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3733 return Fvector (nargs, args);
3734
3735 /* Since the loop exited, we know that all the things in it are
3736 characters, so we can make a string. */
3737 {
3738 Lisp_Object result;
3739
3740 result = Fmake_string (make_number (nargs), make_number (0));
3741 for (i = 0; i < nargs; i++)
3742 {
3743 SSET (result, i, XINT (args[i]));
3744 /* Move the meta bit to the right place for a string char. */
3745 if (XINT (args[i]) & CHAR_META)
3746 SSET (result, i, SREF (result, i) | 0x80);
3747 }
3748
3749 return result;
3750 }
3751 }
3752
3753
3754 \f
3755 /************************************************************************
3756 Memory Full Handling
3757 ************************************************************************/
3758
3759
3760 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3761 there may have been size_t overflow so that malloc was never
3762 called, or perhaps malloc was invoked successfully but the
3763 resulting pointer had problems fitting into a tagged EMACS_INT. In
3764 either case this counts as memory being full even though malloc did
3765 not fail. */
3766
3767 void
3768 memory_full (size_t nbytes)
3769 {
3770 /* Do not go into hysterics merely because a large request failed. */
3771 int enough_free_memory = 0;
3772 if (SPARE_MEMORY < nbytes)
3773 {
3774 void *p;
3775
3776 MALLOC_BLOCK_INPUT;
3777 p = malloc (SPARE_MEMORY);
3778 if (p)
3779 {
3780 free (p);
3781 enough_free_memory = 1;
3782 }
3783 MALLOC_UNBLOCK_INPUT;
3784 }
3785
3786 if (! enough_free_memory)
3787 {
3788 int i;
3789
3790 Vmemory_full = Qt;
3791
3792 memory_full_cons_threshold = sizeof (struct cons_block);
3793
3794 /* The first time we get here, free the spare memory. */
3795 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3796 if (spare_memory[i])
3797 {
3798 if (i == 0)
3799 free (spare_memory[i]);
3800 else if (i >= 1 && i <= 4)
3801 lisp_align_free (spare_memory[i]);
3802 else
3803 lisp_free (spare_memory[i]);
3804 spare_memory[i] = 0;
3805 }
3806
3807 /* Record the space now used. When it decreases substantially,
3808 we can refill the memory reserve. */
3809 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3810 bytes_used_when_full = BYTES_USED;
3811 #endif
3812 }
3813
3814 /* This used to call error, but if we've run out of memory, we could
3815 get infinite recursion trying to build the string. */
3816 xsignal (Qnil, Vmemory_signal_data);
3817 }
3818
3819 /* If we released our reserve (due to running out of memory),
3820 and we have a fair amount free once again,
3821 try to set aside another reserve in case we run out once more.
3822
3823 This is called when a relocatable block is freed in ralloc.c,
3824 and also directly from this file, in case we're not using ralloc.c. */
3825
3826 void
3827 refill_memory_reserve (void)
3828 {
3829 #ifndef SYSTEM_MALLOC
3830 if (spare_memory[0] == 0)
3831 spare_memory[0] = malloc (SPARE_MEMORY);
3832 if (spare_memory[1] == 0)
3833 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3834 MEM_TYPE_CONS);
3835 if (spare_memory[2] == 0)
3836 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3837 MEM_TYPE_CONS);
3838 if (spare_memory[3] == 0)
3839 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3840 MEM_TYPE_CONS);
3841 if (spare_memory[4] == 0)
3842 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3843 MEM_TYPE_CONS);
3844 if (spare_memory[5] == 0)
3845 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3846 MEM_TYPE_STRING);
3847 if (spare_memory[6] == 0)
3848 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3849 MEM_TYPE_STRING);
3850 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3851 Vmemory_full = Qnil;
3852 #endif
3853 }
3854 \f
3855 /************************************************************************
3856 C Stack Marking
3857 ************************************************************************/
3858
3859 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3860
3861 /* Conservative C stack marking requires a method to identify possibly
3862 live Lisp objects given a pointer value. We do this by keeping
3863 track of blocks of Lisp data that are allocated in a red-black tree
3864 (see also the comment of mem_node which is the type of nodes in
3865 that tree). Function lisp_malloc adds information for an allocated
3866 block to the red-black tree with calls to mem_insert, and function
3867 lisp_free removes it with mem_delete. Functions live_string_p etc
3868 call mem_find to lookup information about a given pointer in the
3869 tree, and use that to determine if the pointer points to a Lisp
3870 object or not. */
3871
3872 /* Initialize this part of alloc.c. */
3873
3874 static void
3875 mem_init (void)
3876 {
3877 mem_z.left = mem_z.right = MEM_NIL;
3878 mem_z.parent = NULL;
3879 mem_z.color = MEM_BLACK;
3880 mem_z.start = mem_z.end = NULL;
3881 mem_root = MEM_NIL;
3882 }
3883
3884
3885 /* Value is a pointer to the mem_node containing START. Value is
3886 MEM_NIL if there is no node in the tree containing START. */
3887
3888 static inline struct mem_node *
3889 mem_find (void *start)
3890 {
3891 struct mem_node *p;
3892
3893 if (start < min_heap_address || start > max_heap_address)
3894 return MEM_NIL;
3895
3896 /* Make the search always successful to speed up the loop below. */
3897 mem_z.start = start;
3898 mem_z.end = (char *) start + 1;
3899
3900 p = mem_root;
3901 while (start < p->start || start >= p->end)
3902 p = start < p->start ? p->left : p->right;
3903 return p;
3904 }
3905
3906
3907 /* Insert a new node into the tree for a block of memory with start
3908 address START, end address END, and type TYPE. Value is a
3909 pointer to the node that was inserted. */
3910
3911 static struct mem_node *
3912 mem_insert (void *start, void *end, enum mem_type type)
3913 {
3914 struct mem_node *c, *parent, *x;
3915
3916 if (min_heap_address == NULL || start < min_heap_address)
3917 min_heap_address = start;
3918 if (max_heap_address == NULL || end > max_heap_address)
3919 max_heap_address = end;
3920
3921 /* See where in the tree a node for START belongs. In this
3922 particular application, it shouldn't happen that a node is already
3923 present. For debugging purposes, let's check that. */
3924 c = mem_root;
3925 parent = NULL;
3926
3927 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3928
3929 while (c != MEM_NIL)
3930 {
3931 if (start >= c->start && start < c->end)
3932 abort ();
3933 parent = c;
3934 c = start < c->start ? c->left : c->right;
3935 }
3936
3937 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3938
3939 while (c != MEM_NIL)
3940 {
3941 parent = c;
3942 c = start < c->start ? c->left : c->right;
3943 }
3944
3945 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3946
3947 /* Create a new node. */
3948 #ifdef GC_MALLOC_CHECK
3949 x = _malloc_internal (sizeof *x);
3950 if (x == NULL)
3951 abort ();
3952 #else
3953 x = xmalloc (sizeof *x);
3954 #endif
3955 x->start = start;
3956 x->end = end;
3957 x->type = type;
3958 x->parent = parent;
3959 x->left = x->right = MEM_NIL;
3960 x->color = MEM_RED;
3961
3962 /* Insert it as child of PARENT or install it as root. */
3963 if (parent)
3964 {
3965 if (start < parent->start)
3966 parent->left = x;
3967 else
3968 parent->right = x;
3969 }
3970 else
3971 mem_root = x;
3972
3973 /* Re-establish red-black tree properties. */
3974 mem_insert_fixup (x);
3975
3976 return x;
3977 }
3978
3979
3980 /* Re-establish the red-black properties of the tree, and thereby
3981 balance the tree, after node X has been inserted; X is always red. */
3982
3983 static void
3984 mem_insert_fixup (struct mem_node *x)
3985 {
3986 while (x != mem_root && x->parent->color == MEM_RED)
3987 {
3988 /* X is red and its parent is red. This is a violation of
3989 red-black tree property #3. */
3990
3991 if (x->parent == x->parent->parent->left)
3992 {
3993 /* We're on the left side of our grandparent, and Y is our
3994 "uncle". */
3995 struct mem_node *y = x->parent->parent->right;
3996
3997 if (y->color == MEM_RED)
3998 {
3999 /* Uncle and parent are red but should be black because
4000 X is red. Change the colors accordingly and proceed
4001 with the grandparent. */
4002 x->parent->color = MEM_BLACK;
4003 y->color = MEM_BLACK;
4004 x->parent->parent->color = MEM_RED;
4005 x = x->parent->parent;
4006 }
4007 else
4008 {
4009 /* Parent and uncle have different colors; parent is
4010 red, uncle is black. */
4011 if (x == x->parent->right)
4012 {
4013 x = x->parent;
4014 mem_rotate_left (x);
4015 }
4016
4017 x->parent->color = MEM_BLACK;
4018 x->parent->parent->color = MEM_RED;
4019 mem_rotate_right (x->parent->parent);
4020 }
4021 }
4022 else
4023 {
4024 /* This is the symmetrical case of above. */
4025 struct mem_node *y = x->parent->parent->left;
4026
4027 if (y->color == MEM_RED)
4028 {
4029 x->parent->color = MEM_BLACK;
4030 y->color = MEM_BLACK;
4031 x->parent->parent->color = MEM_RED;
4032 x = x->parent->parent;
4033 }
4034 else
4035 {
4036 if (x == x->parent->left)
4037 {
4038 x = x->parent;
4039 mem_rotate_right (x);
4040 }
4041
4042 x->parent->color = MEM_BLACK;
4043 x->parent->parent->color = MEM_RED;
4044 mem_rotate_left (x->parent->parent);
4045 }
4046 }
4047 }
4048
4049 /* The root may have been changed to red due to the algorithm. Set
4050 it to black so that property #5 is satisfied. */
4051 mem_root->color = MEM_BLACK;
4052 }
4053
4054
4055 /* (x) (y)
4056 / \ / \
4057 a (y) ===> (x) c
4058 / \ / \
4059 b c a b */
4060
4061 static void
4062 mem_rotate_left (struct mem_node *x)
4063 {
4064 struct mem_node *y;
4065
4066 /* Turn y's left sub-tree into x's right sub-tree. */
4067 y = x->right;
4068 x->right = y->left;
4069 if (y->left != MEM_NIL)
4070 y->left->parent = x;
4071
4072 /* Y's parent was x's parent. */
4073 if (y != MEM_NIL)
4074 y->parent = x->parent;
4075
4076 /* Get the parent to point to y instead of x. */
4077 if (x->parent)
4078 {
4079 if (x == x->parent->left)
4080 x->parent->left = y;
4081 else
4082 x->parent->right = y;
4083 }
4084 else
4085 mem_root = y;
4086
4087 /* Put x on y's left. */
4088 y->left = x;
4089 if (x != MEM_NIL)
4090 x->parent = y;
4091 }
4092
4093
4094 /* (x) (Y)
4095 / \ / \
4096 (y) c ===> a (x)
4097 / \ / \
4098 a b b c */
4099
4100 static void
4101 mem_rotate_right (struct mem_node *x)
4102 {
4103 struct mem_node *y = x->left;
4104
4105 x->left = y->right;
4106 if (y->right != MEM_NIL)
4107 y->right->parent = x;
4108
4109 if (y != MEM_NIL)
4110 y->parent = x->parent;
4111 if (x->parent)
4112 {
4113 if (x == x->parent->right)
4114 x->parent->right = y;
4115 else
4116 x->parent->left = y;
4117 }
4118 else
4119 mem_root = y;
4120
4121 y->right = x;
4122 if (x != MEM_NIL)
4123 x->parent = y;
4124 }
4125
4126
4127 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4128
4129 static void
4130 mem_delete (struct mem_node *z)
4131 {
4132 struct mem_node *x, *y;
4133
4134 if (!z || z == MEM_NIL)
4135 return;
4136
4137 if (z->left == MEM_NIL || z->right == MEM_NIL)
4138 y = z;
4139 else
4140 {
4141 y = z->right;
4142 while (y->left != MEM_NIL)
4143 y = y->left;
4144 }
4145
4146 if (y->left != MEM_NIL)
4147 x = y->left;
4148 else
4149 x = y->right;
4150
4151 x->parent = y->parent;
4152 if (y->parent)
4153 {
4154 if (y == y->parent->left)
4155 y->parent->left = x;
4156 else
4157 y->parent->right = x;
4158 }
4159 else
4160 mem_root = x;
4161
4162 if (y != z)
4163 {
4164 z->start = y->start;
4165 z->end = y->end;
4166 z->type = y->type;
4167 }
4168
4169 if (y->color == MEM_BLACK)
4170 mem_delete_fixup (x);
4171
4172 #ifdef GC_MALLOC_CHECK
4173 _free_internal (y);
4174 #else
4175 xfree (y);
4176 #endif
4177 }
4178
4179
4180 /* Re-establish the red-black properties of the tree, after a
4181 deletion. */
4182
4183 static void
4184 mem_delete_fixup (struct mem_node *x)
4185 {
4186 while (x != mem_root && x->color == MEM_BLACK)
4187 {
4188 if (x == x->parent->left)
4189 {
4190 struct mem_node *w = x->parent->right;
4191
4192 if (w->color == MEM_RED)
4193 {
4194 w->color = MEM_BLACK;
4195 x->parent->color = MEM_RED;
4196 mem_rotate_left (x->parent);
4197 w = x->parent->right;
4198 }
4199
4200 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4201 {
4202 w->color = MEM_RED;
4203 x = x->parent;
4204 }
4205 else
4206 {
4207 if (w->right->color == MEM_BLACK)
4208 {
4209 w->left->color = MEM_BLACK;
4210 w->color = MEM_RED;
4211 mem_rotate_right (w);
4212 w = x->parent->right;
4213 }
4214 w->color = x->parent->color;
4215 x->parent->color = MEM_BLACK;
4216 w->right->color = MEM_BLACK;
4217 mem_rotate_left (x->parent);
4218 x = mem_root;
4219 }
4220 }
4221 else
4222 {
4223 struct mem_node *w = x->parent->left;
4224
4225 if (w->color == MEM_RED)
4226 {
4227 w->color = MEM_BLACK;
4228 x->parent->color = MEM_RED;
4229 mem_rotate_right (x->parent);
4230 w = x->parent->left;
4231 }
4232
4233 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4234 {
4235 w->color = MEM_RED;
4236 x = x->parent;
4237 }
4238 else
4239 {
4240 if (w->left->color == MEM_BLACK)
4241 {
4242 w->right->color = MEM_BLACK;
4243 w->color = MEM_RED;
4244 mem_rotate_left (w);
4245 w = x->parent->left;
4246 }
4247
4248 w->color = x->parent->color;
4249 x->parent->color = MEM_BLACK;
4250 w->left->color = MEM_BLACK;
4251 mem_rotate_right (x->parent);
4252 x = mem_root;
4253 }
4254 }
4255 }
4256
4257 x->color = MEM_BLACK;
4258 }
4259
4260
4261 /* Value is non-zero if P is a pointer to a live Lisp string on
4262 the heap. M is a pointer to the mem_block for P. */
4263
4264 static inline int
4265 live_string_p (struct mem_node *m, void *p)
4266 {
4267 if (m->type == MEM_TYPE_STRING)
4268 {
4269 struct string_block *b = (struct string_block *) m->start;
4270 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4271
4272 /* P must point to the start of a Lisp_String structure, and it
4273 must not be on the free-list. */
4274 return (offset >= 0
4275 && offset % sizeof b->strings[0] == 0
4276 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4277 && ((struct Lisp_String *) p)->data != NULL);
4278 }
4279 else
4280 return 0;
4281 }
4282
4283
4284 /* Value is non-zero if P is a pointer to a live Lisp cons on
4285 the heap. M is a pointer to the mem_block for P. */
4286
4287 static inline int
4288 live_cons_p (struct mem_node *m, void *p)
4289 {
4290 if (m->type == MEM_TYPE_CONS)
4291 {
4292 struct cons_block *b = (struct cons_block *) m->start;
4293 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4294
4295 /* P must point to the start of a Lisp_Cons, not be
4296 one of the unused cells in the current cons block,
4297 and not be on the free-list. */
4298 return (offset >= 0
4299 && offset % sizeof b->conses[0] == 0
4300 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4301 && (b != cons_block
4302 || offset / sizeof b->conses[0] < cons_block_index)
4303 && !EQ (CVAR ((struct Lisp_Cons *) p, car), Vdead));
4304 }
4305 else
4306 return 0;
4307 }
4308
4309
4310 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4311 the heap. M is a pointer to the mem_block for P. */
4312
4313 static inline int
4314 live_symbol_p (struct mem_node *m, void *p)
4315 {
4316 if (m->type == MEM_TYPE_SYMBOL)
4317 {
4318 struct symbol_block *b = (struct symbol_block *) m->start;
4319 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4320
4321 /* P must point to the start of a Lisp_Symbol, not be
4322 one of the unused cells in the current symbol block,
4323 and not be on the free-list. */
4324 return (offset >= 0
4325 && offset % sizeof b->symbols[0] == 0
4326 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4327 && (b != symbol_block
4328 || offset / sizeof b->symbols[0] < symbol_block_index)
4329 && !EQ (SVAR (((struct Lisp_Symbol *)p), function), Vdead));
4330 }
4331 else
4332 return 0;
4333 }
4334
4335
4336 /* Value is non-zero if P is a pointer to a live Lisp float on
4337 the heap. M is a pointer to the mem_block for P. */
4338
4339 static inline int
4340 live_float_p (struct mem_node *m, void *p)
4341 {
4342 if (m->type == MEM_TYPE_FLOAT)
4343 {
4344 struct float_block *b = (struct float_block *) m->start;
4345 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4346
4347 /* P must point to the start of a Lisp_Float and not be
4348 one of the unused cells in the current float block. */
4349 return (offset >= 0
4350 && offset % sizeof b->floats[0] == 0
4351 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4352 && (b != float_block
4353 || offset / sizeof b->floats[0] < float_block_index));
4354 }
4355 else
4356 return 0;
4357 }
4358
4359
4360 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4361 the heap. M is a pointer to the mem_block for P. */
4362
4363 static inline int
4364 live_misc_p (struct mem_node *m, void *p)
4365 {
4366 if (m->type == MEM_TYPE_MISC)
4367 {
4368 struct marker_block *b = (struct marker_block *) m->start;
4369 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4370
4371 /* P must point to the start of a Lisp_Misc, not be
4372 one of the unused cells in the current misc block,
4373 and not be on the free-list. */
4374 return (offset >= 0
4375 && offset % sizeof b->markers[0] == 0
4376 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4377 && (b != marker_block
4378 || offset / sizeof b->markers[0] < marker_block_index)
4379 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4380 }
4381 else
4382 return 0;
4383 }
4384
4385
4386 /* Value is non-zero if P is a pointer to a live vector-like object.
4387 M is a pointer to the mem_block for P. */
4388
4389 static inline int
4390 live_vector_p (struct mem_node *m, void *p)
4391 {
4392 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4393 {
4394 /* This memory node corresponds to a vector block. */
4395 struct vector_block *block = (struct vector_block *) m->start;
4396 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4397
4398 /* P is in the block's allocation range. Scan the block
4399 up to P and see whether P points to the start of some
4400 vector which is not on a free list. FIXME: check whether
4401 some allocation patterns (probably a lot of short vectors)
4402 may cause a substantial overhead of this loop. */
4403 while (VECTOR_IN_BLOCK (vector, block)
4404 && vector <= (struct Lisp_Vector *) p)
4405 {
4406 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4407 vector = ADVANCE (vector, (vector->header.size
4408 & PSEUDOVECTOR_SIZE_MASK));
4409 else if (vector == p)
4410 return 1;
4411 else
4412 vector = ADVANCE (vector, vector->header.next.nbytes);
4413 }
4414 }
4415 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4416 /* This memory node corresponds to a large vector. */
4417 return 1;
4418 return 0;
4419 }
4420
4421
4422 /* Value is non-zero if P is a pointer to a live buffer. M is a
4423 pointer to the mem_block for P. */
4424
4425 static inline int
4426 live_buffer_p (struct mem_node *m, void *p)
4427 {
4428 /* P must point to the start of the block, and the buffer
4429 must not have been killed. */
4430 return (m->type == MEM_TYPE_BUFFER
4431 && p == m->start
4432 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4433 }
4434
4435 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4436
4437 #if GC_MARK_STACK
4438
4439 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4440
4441 /* Array of objects that are kept alive because the C stack contains
4442 a pattern that looks like a reference to them . */
4443
4444 #define MAX_ZOMBIES 10
4445 static Lisp_Object zombies[MAX_ZOMBIES];
4446
4447 /* Number of zombie objects. */
4448
4449 static EMACS_INT nzombies;
4450
4451 /* Number of garbage collections. */
4452
4453 static EMACS_INT ngcs;
4454
4455 /* Average percentage of zombies per collection. */
4456
4457 static double avg_zombies;
4458
4459 /* Max. number of live and zombie objects. */
4460
4461 static EMACS_INT max_live, max_zombies;
4462
4463 /* Average number of live objects per GC. */
4464
4465 static double avg_live;
4466
4467 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4468 doc: /* Show information about live and zombie objects. */)
4469 (void)
4470 {
4471 Lisp_Object args[8], zombie_list = Qnil;
4472 EMACS_INT i;
4473 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4474 zombie_list = Fcons (zombies[i], zombie_list);
4475 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4476 args[1] = make_number (ngcs);
4477 args[2] = make_float (avg_live);
4478 args[3] = make_float (avg_zombies);
4479 args[4] = make_float (avg_zombies / avg_live / 100);
4480 args[5] = make_number (max_live);
4481 args[6] = make_number (max_zombies);
4482 args[7] = zombie_list;
4483 return Fmessage (8, args);
4484 }
4485
4486 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4487
4488
4489 /* Mark OBJ if we can prove it's a Lisp_Object. */
4490
4491 static inline void
4492 mark_maybe_object (Lisp_Object obj)
4493 {
4494 void *po;
4495 struct mem_node *m;
4496
4497 if (INTEGERP (obj))
4498 return;
4499
4500 po = (void *) XPNTR (obj);
4501 m = mem_find (po);
4502
4503 if (m != MEM_NIL)
4504 {
4505 int mark_p = 0;
4506
4507 switch (XTYPE (obj))
4508 {
4509 case Lisp_String:
4510 mark_p = (live_string_p (m, po)
4511 && !STRING_MARKED_P ((struct Lisp_String *) po));
4512 break;
4513
4514 case Lisp_Cons:
4515 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4516 break;
4517
4518 case Lisp_Symbol:
4519 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4520 break;
4521
4522 case Lisp_Float:
4523 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4524 break;
4525
4526 case Lisp_Vectorlike:
4527 /* Note: can't check BUFFERP before we know it's a
4528 buffer because checking that dereferences the pointer
4529 PO which might point anywhere. */
4530 if (live_vector_p (m, po))
4531 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4532 else if (live_buffer_p (m, po))
4533 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4534 break;
4535
4536 case Lisp_Misc:
4537 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4538 break;
4539
4540 default:
4541 break;
4542 }
4543
4544 if (mark_p)
4545 {
4546 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4547 if (nzombies < MAX_ZOMBIES)
4548 zombies[nzombies] = obj;
4549 ++nzombies;
4550 #endif
4551 mark_object (obj);
4552 }
4553 }
4554 }
4555
4556
4557 /* If P points to Lisp data, mark that as live if it isn't already
4558 marked. */
4559
4560 static inline void
4561 mark_maybe_pointer (void *p)
4562 {
4563 struct mem_node *m;
4564
4565 /* Quickly rule out some values which can't point to Lisp data.
4566 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4567 Otherwise, assume that Lisp data is aligned on even addresses. */
4568 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4569 return;
4570
4571 m = mem_find (p);
4572 if (m != MEM_NIL)
4573 {
4574 Lisp_Object obj = Qnil;
4575
4576 switch (m->type)
4577 {
4578 case MEM_TYPE_NON_LISP:
4579 /* Nothing to do; not a pointer to Lisp memory. */
4580 break;
4581
4582 case MEM_TYPE_BUFFER:
4583 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4584 XSETVECTOR (obj, p);
4585 break;
4586
4587 case MEM_TYPE_CONS:
4588 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4589 XSETCONS (obj, p);
4590 break;
4591
4592 case MEM_TYPE_STRING:
4593 if (live_string_p (m, p)
4594 && !STRING_MARKED_P ((struct Lisp_String *) p))
4595 XSETSTRING (obj, p);
4596 break;
4597
4598 case MEM_TYPE_MISC:
4599 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4600 XSETMISC (obj, p);
4601 break;
4602
4603 case MEM_TYPE_SYMBOL:
4604 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4605 XSETSYMBOL (obj, p);
4606 break;
4607
4608 case MEM_TYPE_FLOAT:
4609 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4610 XSETFLOAT (obj, p);
4611 break;
4612
4613 case MEM_TYPE_VECTORLIKE:
4614 case MEM_TYPE_VECTOR_BLOCK:
4615 if (live_vector_p (m, p))
4616 {
4617 Lisp_Object tem;
4618 XSETVECTOR (tem, p);
4619 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4620 obj = tem;
4621 }
4622 break;
4623
4624 default:
4625 abort ();
4626 }
4627
4628 if (!NILP (obj))
4629 mark_object (obj);
4630 }
4631 }
4632
4633
4634 /* Alignment of pointer values. Use alignof, as it sometimes returns
4635 a smaller alignment than GCC's __alignof__ and mark_memory might
4636 miss objects if __alignof__ were used. */
4637 #define GC_POINTER_ALIGNMENT alignof (void *)
4638
4639 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4640 not suffice, which is the typical case. A host where a Lisp_Object is
4641 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4642 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4643 suffice to widen it to to a Lisp_Object and check it that way. */
4644 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4645 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4646 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4647 nor mark_maybe_object can follow the pointers. This should not occur on
4648 any practical porting target. */
4649 # error "MSB type bits straddle pointer-word boundaries"
4650 # endif
4651 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4652 pointer words that hold pointers ORed with type bits. */
4653 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4654 #else
4655 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4656 words that hold unmodified pointers. */
4657 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4658 #endif
4659
4660 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4661 or END+OFFSET..START. */
4662
4663 static void
4664 mark_memory (void *start, void *end)
4665 #if defined (__clang__) && defined (__has_feature)
4666 #if __has_feature(address_sanitizer)
4667 /* Do not allow -faddress-sanitizer to check this function, since it
4668 crosses the function stack boundary, and thus would yield many
4669 false positives. */
4670 __attribute__((no_address_safety_analysis))
4671 #endif
4672 #endif
4673 {
4674 void **pp;
4675 int i;
4676
4677 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4678 nzombies = 0;
4679 #endif
4680
4681 /* Make START the pointer to the start of the memory region,
4682 if it isn't already. */
4683 if (end < start)
4684 {
4685 void *tem = start;
4686 start = end;
4687 end = tem;
4688 }
4689
4690 /* Mark Lisp data pointed to. This is necessary because, in some
4691 situations, the C compiler optimizes Lisp objects away, so that
4692 only a pointer to them remains. Example:
4693
4694 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4695 ()
4696 {
4697 Lisp_Object obj = build_string ("test");
4698 struct Lisp_String *s = XSTRING (obj);
4699 Fgarbage_collect ();
4700 fprintf (stderr, "test `%s'\n", s->data);
4701 return Qnil;
4702 }
4703
4704 Here, `obj' isn't really used, and the compiler optimizes it
4705 away. The only reference to the life string is through the
4706 pointer `s'. */
4707
4708 for (pp = start; (void *) pp < end; pp++)
4709 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4710 {
4711 void *p = *(void **) ((char *) pp + i);
4712 mark_maybe_pointer (p);
4713 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4714 mark_maybe_object (XIL ((intptr_t) p));
4715 }
4716 }
4717
4718 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4719 the GCC system configuration. In gcc 3.2, the only systems for
4720 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4721 by others?) and ns32k-pc532-min. */
4722
4723 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4724
4725 static int setjmp_tested_p, longjmps_done;
4726
4727 #define SETJMP_WILL_LIKELY_WORK "\
4728 \n\
4729 Emacs garbage collector has been changed to use conservative stack\n\
4730 marking. Emacs has determined that the method it uses to do the\n\
4731 marking will likely work on your system, but this isn't sure.\n\
4732 \n\
4733 If you are a system-programmer, or can get the help of a local wizard\n\
4734 who is, please take a look at the function mark_stack in alloc.c, and\n\
4735 verify that the methods used are appropriate for your system.\n\
4736 \n\
4737 Please mail the result to <emacs-devel@gnu.org>.\n\
4738 "
4739
4740 #define SETJMP_WILL_NOT_WORK "\
4741 \n\
4742 Emacs garbage collector has been changed to use conservative stack\n\
4743 marking. Emacs has determined that the default method it uses to do the\n\
4744 marking will not work on your system. We will need a system-dependent\n\
4745 solution for your system.\n\
4746 \n\
4747 Please take a look at the function mark_stack in alloc.c, and\n\
4748 try to find a way to make it work on your system.\n\
4749 \n\
4750 Note that you may get false negatives, depending on the compiler.\n\
4751 In particular, you need to use -O with GCC for this test.\n\
4752 \n\
4753 Please mail the result to <emacs-devel@gnu.org>.\n\
4754 "
4755
4756
4757 /* Perform a quick check if it looks like setjmp saves registers in a
4758 jmp_buf. Print a message to stderr saying so. When this test
4759 succeeds, this is _not_ a proof that setjmp is sufficient for
4760 conservative stack marking. Only the sources or a disassembly
4761 can prove that. */
4762
4763 static void
4764 test_setjmp (void)
4765 {
4766 char buf[10];
4767 register int x;
4768 jmp_buf jbuf;
4769 int result = 0;
4770
4771 /* Arrange for X to be put in a register. */
4772 sprintf (buf, "1");
4773 x = strlen (buf);
4774 x = 2 * x - 1;
4775
4776 setjmp (jbuf);
4777 if (longjmps_done == 1)
4778 {
4779 /* Came here after the longjmp at the end of the function.
4780
4781 If x == 1, the longjmp has restored the register to its
4782 value before the setjmp, and we can hope that setjmp
4783 saves all such registers in the jmp_buf, although that
4784 isn't sure.
4785
4786 For other values of X, either something really strange is
4787 taking place, or the setjmp just didn't save the register. */
4788
4789 if (x == 1)
4790 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4791 else
4792 {
4793 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4794 exit (1);
4795 }
4796 }
4797
4798 ++longjmps_done;
4799 x = 2;
4800 if (longjmps_done == 1)
4801 longjmp (jbuf, 1);
4802 }
4803
4804 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4805
4806
4807 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4808
4809 /* Abort if anything GCPRO'd doesn't survive the GC. */
4810
4811 static void
4812 check_gcpros (void)
4813 {
4814 struct gcpro *p;
4815 ptrdiff_t i;
4816
4817 for (p = gcprolist; p; p = p->next)
4818 for (i = 0; i < p->nvars; ++i)
4819 if (!survives_gc_p (p->var[i]))
4820 /* FIXME: It's not necessarily a bug. It might just be that the
4821 GCPRO is unnecessary or should release the object sooner. */
4822 abort ();
4823 }
4824
4825 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4826
4827 static void
4828 dump_zombies (void)
4829 {
4830 int i;
4831
4832 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4833 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4834 {
4835 fprintf (stderr, " %d = ", i);
4836 debug_print (zombies[i]);
4837 }
4838 }
4839
4840 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4841
4842
4843 /* Mark live Lisp objects on the C stack.
4844
4845 There are several system-dependent problems to consider when
4846 porting this to new architectures:
4847
4848 Processor Registers
4849
4850 We have to mark Lisp objects in CPU registers that can hold local
4851 variables or are used to pass parameters.
4852
4853 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4854 something that either saves relevant registers on the stack, or
4855 calls mark_maybe_object passing it each register's contents.
4856
4857 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4858 implementation assumes that calling setjmp saves registers we need
4859 to see in a jmp_buf which itself lies on the stack. This doesn't
4860 have to be true! It must be verified for each system, possibly
4861 by taking a look at the source code of setjmp.
4862
4863 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4864 can use it as a machine independent method to store all registers
4865 to the stack. In this case the macros described in the previous
4866 two paragraphs are not used.
4867
4868 Stack Layout
4869
4870 Architectures differ in the way their processor stack is organized.
4871 For example, the stack might look like this
4872
4873 +----------------+
4874 | Lisp_Object | size = 4
4875 +----------------+
4876 | something else | size = 2
4877 +----------------+
4878 | Lisp_Object | size = 4
4879 +----------------+
4880 | ... |
4881
4882 In such a case, not every Lisp_Object will be aligned equally. To
4883 find all Lisp_Object on the stack it won't be sufficient to walk
4884 the stack in steps of 4 bytes. Instead, two passes will be
4885 necessary, one starting at the start of the stack, and a second
4886 pass starting at the start of the stack + 2. Likewise, if the
4887 minimal alignment of Lisp_Objects on the stack is 1, four passes
4888 would be necessary, each one starting with one byte more offset
4889 from the stack start. */
4890
4891 static void
4892 mark_stack (void)
4893 {
4894 void *end;
4895
4896 #ifdef HAVE___BUILTIN_UNWIND_INIT
4897 /* Force callee-saved registers and register windows onto the stack.
4898 This is the preferred method if available, obviating the need for
4899 machine dependent methods. */
4900 __builtin_unwind_init ();
4901 end = &end;
4902 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4903 #ifndef GC_SAVE_REGISTERS_ON_STACK
4904 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4905 union aligned_jmpbuf {
4906 Lisp_Object o;
4907 jmp_buf j;
4908 } j;
4909 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4910 #endif
4911 /* This trick flushes the register windows so that all the state of
4912 the process is contained in the stack. */
4913 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4914 needed on ia64 too. See mach_dep.c, where it also says inline
4915 assembler doesn't work with relevant proprietary compilers. */
4916 #ifdef __sparc__
4917 #if defined (__sparc64__) && defined (__FreeBSD__)
4918 /* FreeBSD does not have a ta 3 handler. */
4919 asm ("flushw");
4920 #else
4921 asm ("ta 3");
4922 #endif
4923 #endif
4924
4925 /* Save registers that we need to see on the stack. We need to see
4926 registers used to hold register variables and registers used to
4927 pass parameters. */
4928 #ifdef GC_SAVE_REGISTERS_ON_STACK
4929 GC_SAVE_REGISTERS_ON_STACK (end);
4930 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4931
4932 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4933 setjmp will definitely work, test it
4934 and print a message with the result
4935 of the test. */
4936 if (!setjmp_tested_p)
4937 {
4938 setjmp_tested_p = 1;
4939 test_setjmp ();
4940 }
4941 #endif /* GC_SETJMP_WORKS */
4942
4943 setjmp (j.j);
4944 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4945 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4946 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4947
4948 /* This assumes that the stack is a contiguous region in memory. If
4949 that's not the case, something has to be done here to iterate
4950 over the stack segments. */
4951 mark_memory (stack_base, end);
4952
4953 /* Allow for marking a secondary stack, like the register stack on the
4954 ia64. */
4955 #ifdef GC_MARK_SECONDARY_STACK
4956 GC_MARK_SECONDARY_STACK ();
4957 #endif
4958
4959 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4960 check_gcpros ();
4961 #endif
4962 }
4963
4964 #endif /* GC_MARK_STACK != 0 */
4965
4966
4967 /* Determine whether it is safe to access memory at address P. */
4968 static int
4969 valid_pointer_p (void *p)
4970 {
4971 #ifdef WINDOWSNT
4972 return w32_valid_pointer_p (p, 16);
4973 #else
4974 int fd[2];
4975
4976 /* Obviously, we cannot just access it (we would SEGV trying), so we
4977 trick the o/s to tell us whether p is a valid pointer.
4978 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4979 not validate p in that case. */
4980
4981 if (pipe (fd) == 0)
4982 {
4983 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4984 emacs_close (fd[1]);
4985 emacs_close (fd[0]);
4986 return valid;
4987 }
4988
4989 return -1;
4990 #endif
4991 }
4992
4993 /* Return 1 if OBJ is a valid lisp object.
4994 Return 0 if OBJ is NOT a valid lisp object.
4995 Return -1 if we cannot validate OBJ.
4996 This function can be quite slow,
4997 so it should only be used in code for manual debugging. */
4998
4999 int
5000 valid_lisp_object_p (Lisp_Object obj)
5001 {
5002 void *p;
5003 #if GC_MARK_STACK
5004 struct mem_node *m;
5005 #endif
5006
5007 if (INTEGERP (obj))
5008 return 1;
5009
5010 p = (void *) XPNTR (obj);
5011 if (PURE_POINTER_P (p))
5012 return 1;
5013
5014 #if !GC_MARK_STACK
5015 return valid_pointer_p (p);
5016 #else
5017
5018 m = mem_find (p);
5019
5020 if (m == MEM_NIL)
5021 {
5022 int valid = valid_pointer_p (p);
5023 if (valid <= 0)
5024 return valid;
5025
5026 if (SUBRP (obj))
5027 return 1;
5028
5029 return 0;
5030 }
5031
5032 switch (m->type)
5033 {
5034 case MEM_TYPE_NON_LISP:
5035 return 0;
5036
5037 case MEM_TYPE_BUFFER:
5038 return live_buffer_p (m, p);
5039
5040 case MEM_TYPE_CONS:
5041 return live_cons_p (m, p);
5042
5043 case MEM_TYPE_STRING:
5044 return live_string_p (m, p);
5045
5046 case MEM_TYPE_MISC:
5047 return live_misc_p (m, p);
5048
5049 case MEM_TYPE_SYMBOL:
5050 return live_symbol_p (m, p);
5051
5052 case MEM_TYPE_FLOAT:
5053 return live_float_p (m, p);
5054
5055 case MEM_TYPE_VECTORLIKE:
5056 case MEM_TYPE_VECTOR_BLOCK:
5057 return live_vector_p (m, p);
5058
5059 default:
5060 break;
5061 }
5062
5063 return 0;
5064 #endif
5065 }
5066
5067
5068
5069 \f
5070 /***********************************************************************
5071 Pure Storage Management
5072 ***********************************************************************/
5073
5074 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5075 pointer to it. TYPE is the Lisp type for which the memory is
5076 allocated. TYPE < 0 means it's not used for a Lisp object. */
5077
5078 static void *
5079 pure_alloc (size_t size, int type)
5080 {
5081 void *result;
5082 #if USE_LSB_TAG
5083 size_t alignment = (1 << GCTYPEBITS);
5084 #else
5085 size_t alignment = alignof (EMACS_INT);
5086
5087 /* Give Lisp_Floats an extra alignment. */
5088 if (type == Lisp_Float)
5089 alignment = alignof (struct Lisp_Float);
5090 #endif
5091
5092 again:
5093 if (type >= 0)
5094 {
5095 /* Allocate space for a Lisp object from the beginning of the free
5096 space with taking account of alignment. */
5097 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5098 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5099 }
5100 else
5101 {
5102 /* Allocate space for a non-Lisp object from the end of the free
5103 space. */
5104 pure_bytes_used_non_lisp += size;
5105 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5106 }
5107 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5108
5109 if (pure_bytes_used <= pure_size)
5110 return result;
5111
5112 /* Don't allocate a large amount here,
5113 because it might get mmap'd and then its address
5114 might not be usable. */
5115 purebeg = xmalloc (10000);
5116 pure_size = 10000;
5117 pure_bytes_used_before_overflow += pure_bytes_used - size;
5118 pure_bytes_used = 0;
5119 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5120 goto again;
5121 }
5122
5123
5124 /* Print a warning if PURESIZE is too small. */
5125
5126 void
5127 check_pure_size (void)
5128 {
5129 if (pure_bytes_used_before_overflow)
5130 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5131 " bytes needed)"),
5132 pure_bytes_used + pure_bytes_used_before_overflow);
5133 }
5134
5135
5136 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5137 the non-Lisp data pool of the pure storage, and return its start
5138 address. Return NULL if not found. */
5139
5140 static char *
5141 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5142 {
5143 int i;
5144 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5145 const unsigned char *p;
5146 char *non_lisp_beg;
5147
5148 if (pure_bytes_used_non_lisp <= nbytes)
5149 return NULL;
5150
5151 /* Set up the Boyer-Moore table. */
5152 skip = nbytes + 1;
5153 for (i = 0; i < 256; i++)
5154 bm_skip[i] = skip;
5155
5156 p = (const unsigned char *) data;
5157 while (--skip > 0)
5158 bm_skip[*p++] = skip;
5159
5160 last_char_skip = bm_skip['\0'];
5161
5162 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5163 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5164
5165 /* See the comments in the function `boyer_moore' (search.c) for the
5166 use of `infinity'. */
5167 infinity = pure_bytes_used_non_lisp + 1;
5168 bm_skip['\0'] = infinity;
5169
5170 p = (const unsigned char *) non_lisp_beg + nbytes;
5171 start = 0;
5172 do
5173 {
5174 /* Check the last character (== '\0'). */
5175 do
5176 {
5177 start += bm_skip[*(p + start)];
5178 }
5179 while (start <= start_max);
5180
5181 if (start < infinity)
5182 /* Couldn't find the last character. */
5183 return NULL;
5184
5185 /* No less than `infinity' means we could find the last
5186 character at `p[start - infinity]'. */
5187 start -= infinity;
5188
5189 /* Check the remaining characters. */
5190 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5191 /* Found. */
5192 return non_lisp_beg + start;
5193
5194 start += last_char_skip;
5195 }
5196 while (start <= start_max);
5197
5198 return NULL;
5199 }
5200
5201
5202 /* Return a string allocated in pure space. DATA is a buffer holding
5203 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5204 non-zero means make the result string multibyte.
5205
5206 Must get an error if pure storage is full, since if it cannot hold
5207 a large string it may be able to hold conses that point to that
5208 string; then the string is not protected from gc. */
5209
5210 Lisp_Object
5211 make_pure_string (const char *data,
5212 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5213 {
5214 Lisp_Object string;
5215 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5216 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5217 if (s->data == NULL)
5218 {
5219 s->data = pure_alloc (nbytes + 1, -1);
5220 memcpy (s->data, data, nbytes);
5221 s->data[nbytes] = '\0';
5222 }
5223 s->size = nchars;
5224 s->size_byte = multibyte ? nbytes : -1;
5225 s->intervals = NULL_INTERVAL;
5226 XSETSTRING (string, s);
5227 return string;
5228 }
5229
5230 /* Return a string allocated in pure space. Do not
5231 allocate the string data, just point to DATA. */
5232
5233 Lisp_Object
5234 make_pure_c_string (const char *data, ptrdiff_t nchars)
5235 {
5236 Lisp_Object string;
5237 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5238 s->size = nchars;
5239 s->size_byte = -1;
5240 s->data = (unsigned char *) data;
5241 s->intervals = NULL_INTERVAL;
5242 XSETSTRING (string, s);
5243 return string;
5244 }
5245
5246 /* Return a cons allocated from pure space. Give it pure copies
5247 of CAR as car and CDR as cdr. */
5248
5249 Lisp_Object
5250 pure_cons (Lisp_Object car, Lisp_Object cdr)
5251 {
5252 Lisp_Object new;
5253 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5254 XSETCONS (new, p);
5255 XSETCAR (new, Fpurecopy (car));
5256 XSETCDR (new, Fpurecopy (cdr));
5257 return new;
5258 }
5259
5260
5261 /* Value is a float object with value NUM allocated from pure space. */
5262
5263 static Lisp_Object
5264 make_pure_float (double num)
5265 {
5266 Lisp_Object new;
5267 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5268 XSETFLOAT (new, p);
5269 XFLOAT_INIT (new, num);
5270 return new;
5271 }
5272
5273
5274 /* Return a vector with room for LEN Lisp_Objects allocated from
5275 pure space. */
5276
5277 static Lisp_Object
5278 make_pure_vector (ptrdiff_t len)
5279 {
5280 Lisp_Object new;
5281 size_t size = header_size + len * word_size;
5282 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5283 XSETVECTOR (new, p);
5284 XVECTOR (new)->header.size = len;
5285 return new;
5286 }
5287
5288
5289 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5290 doc: /* Make a copy of object OBJ in pure storage.
5291 Recursively copies contents of vectors and cons cells.
5292 Does not copy symbols. Copies strings without text properties. */)
5293 (register Lisp_Object obj)
5294 {
5295 if (NILP (Vpurify_flag))
5296 return obj;
5297
5298 if (PURE_POINTER_P (XPNTR (obj)))
5299 return obj;
5300
5301 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5302 {
5303 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5304 if (!NILP (tmp))
5305 return tmp;
5306 }
5307
5308 if (CONSP (obj))
5309 obj = pure_cons (XCAR (obj), XCDR (obj));
5310 else if (FLOATP (obj))
5311 obj = make_pure_float (XFLOAT_DATA (obj));
5312 else if (STRINGP (obj))
5313 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5314 SBYTES (obj),
5315 STRING_MULTIBYTE (obj));
5316 else if (COMPILEDP (obj) || VECTORP (obj))
5317 {
5318 register struct Lisp_Vector *vec;
5319 register ptrdiff_t i;
5320 ptrdiff_t size;
5321
5322 size = ASIZE (obj);
5323 if (size & PSEUDOVECTOR_FLAG)
5324 size &= PSEUDOVECTOR_SIZE_MASK;
5325 vec = XVECTOR (make_pure_vector (size));
5326 for (i = 0; i < size; i++)
5327 vec->contents[i] = Fpurecopy (AREF (obj, i));
5328 if (COMPILEDP (obj))
5329 {
5330 XSETPVECTYPE (vec, PVEC_COMPILED);
5331 XSETCOMPILED (obj, vec);
5332 }
5333 else
5334 XSETVECTOR (obj, vec);
5335 }
5336 else if (MARKERP (obj))
5337 error ("Attempt to copy a marker to pure storage");
5338 else
5339 /* Not purified, don't hash-cons. */
5340 return obj;
5341
5342 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5343 Fputhash (obj, obj, Vpurify_flag);
5344
5345 return obj;
5346 }
5347
5348
5349 \f
5350 /***********************************************************************
5351 Protection from GC
5352 ***********************************************************************/
5353
5354 /* Put an entry in staticvec, pointing at the variable with address
5355 VARADDRESS. */
5356
5357 void
5358 staticpro (Lisp_Object *varaddress)
5359 {
5360 staticvec[staticidx++] = varaddress;
5361 if (staticidx >= NSTATICS)
5362 abort ();
5363 }
5364
5365 \f
5366 /***********************************************************************
5367 Protection from GC
5368 ***********************************************************************/
5369
5370 /* Temporarily prevent garbage collection. */
5371
5372 ptrdiff_t
5373 inhibit_garbage_collection (void)
5374 {
5375 ptrdiff_t count = SPECPDL_INDEX ();
5376
5377 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5378 return count;
5379 }
5380
5381 /* Used to avoid possible overflows when
5382 converting from C to Lisp integers. */
5383
5384 static inline Lisp_Object
5385 bounded_number (EMACS_INT number)
5386 {
5387 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5388 }
5389
5390 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5391 doc: /* Reclaim storage for Lisp objects no longer needed.
5392 Garbage collection happens automatically if you cons more than
5393 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5394 `garbage-collect' normally returns a list with info on amount of space in use,
5395 where each entry has the form (NAME SIZE USED FREE), where:
5396 - NAME is a symbol describing the kind of objects this entry represents,
5397 - SIZE is the number of bytes used by each one,
5398 - USED is the number of those objects that were found live in the heap,
5399 - FREE is the number of those objects that are not live but that Emacs
5400 keeps around for future allocations (maybe because it does not know how
5401 to return them to the OS).
5402 However, if there was overflow in pure space, `garbage-collect'
5403 returns nil, because real GC can't be done.
5404 See Info node `(elisp)Garbage Collection'. */)
5405 (void)
5406 {
5407 register struct specbinding *bind;
5408 register struct buffer *nextb;
5409 char stack_top_variable;
5410 ptrdiff_t i;
5411 int message_p;
5412 Lisp_Object total[11];
5413 ptrdiff_t count = SPECPDL_INDEX ();
5414 EMACS_TIME start;
5415
5416 if (abort_on_gc)
5417 abort ();
5418
5419 /* Can't GC if pure storage overflowed because we can't determine
5420 if something is a pure object or not. */
5421 if (pure_bytes_used_before_overflow)
5422 return Qnil;
5423
5424 check_cons_list ();
5425
5426 /* Don't keep undo information around forever.
5427 Do this early on, so it is no problem if the user quits. */
5428 FOR_EACH_BUFFER (nextb)
5429 compact_buffer (nextb);
5430
5431 start = current_emacs_time ();
5432
5433 /* In case user calls debug_print during GC,
5434 don't let that cause a recursive GC. */
5435 consing_since_gc = 0;
5436
5437 /* Save what's currently displayed in the echo area. */
5438 message_p = push_message ();
5439 record_unwind_protect (pop_message_unwind, Qnil);
5440
5441 /* Save a copy of the contents of the stack, for debugging. */
5442 #if MAX_SAVE_STACK > 0
5443 if (NILP (Vpurify_flag))
5444 {
5445 char *stack;
5446 ptrdiff_t stack_size;
5447 if (&stack_top_variable < stack_bottom)
5448 {
5449 stack = &stack_top_variable;
5450 stack_size = stack_bottom - &stack_top_variable;
5451 }
5452 else
5453 {
5454 stack = stack_bottom;
5455 stack_size = &stack_top_variable - stack_bottom;
5456 }
5457 if (stack_size <= MAX_SAVE_STACK)
5458 {
5459 if (stack_copy_size < stack_size)
5460 {
5461 stack_copy = xrealloc (stack_copy, stack_size);
5462 stack_copy_size = stack_size;
5463 }
5464 memcpy (stack_copy, stack, stack_size);
5465 }
5466 }
5467 #endif /* MAX_SAVE_STACK > 0 */
5468
5469 if (garbage_collection_messages)
5470 message1_nolog ("Garbage collecting...");
5471
5472 BLOCK_INPUT;
5473
5474 shrink_regexp_cache ();
5475
5476 gc_in_progress = 1;
5477
5478 /* Mark all the special slots that serve as the roots of accessibility. */
5479
5480 for (i = 0; i < staticidx; i++)
5481 mark_object (*staticvec[i]);
5482
5483 for (bind = specpdl; bind != specpdl_ptr; bind++)
5484 {
5485 mark_object (bind->symbol);
5486 mark_object (bind->old_value);
5487 }
5488 mark_terminals ();
5489 mark_kboards ();
5490 mark_ttys ();
5491
5492 #ifdef USE_GTK
5493 {
5494 extern void xg_mark_data (void);
5495 xg_mark_data ();
5496 }
5497 #endif
5498
5499 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5500 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5501 mark_stack ();
5502 #else
5503 {
5504 register struct gcpro *tail;
5505 for (tail = gcprolist; tail; tail = tail->next)
5506 for (i = 0; i < tail->nvars; i++)
5507 mark_object (tail->var[i]);
5508 }
5509 mark_byte_stack ();
5510 {
5511 struct catchtag *catch;
5512 struct handler *handler;
5513
5514 for (catch = catchlist; catch; catch = catch->next)
5515 {
5516 mark_object (catch->tag);
5517 mark_object (catch->val);
5518 }
5519 for (handler = handlerlist; handler; handler = handler->next)
5520 {
5521 mark_object (handler->handler);
5522 mark_object (handler->var);
5523 }
5524 }
5525 mark_backtrace ();
5526 #endif
5527
5528 #ifdef HAVE_WINDOW_SYSTEM
5529 mark_fringe_data ();
5530 #endif
5531
5532 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5533 mark_stack ();
5534 #endif
5535
5536 /* Everything is now marked, except for the things that require special
5537 finalization, i.e. the undo_list.
5538 Look thru every buffer's undo list
5539 for elements that update markers that were not marked,
5540 and delete them. */
5541 FOR_EACH_BUFFER (nextb)
5542 {
5543 /* If a buffer's undo list is Qt, that means that undo is
5544 turned off in that buffer. Calling truncate_undo_list on
5545 Qt tends to return NULL, which effectively turns undo back on.
5546 So don't call truncate_undo_list if undo_list is Qt. */
5547 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5548 {
5549 Lisp_Object tail, prev;
5550 tail = nextb->INTERNAL_FIELD (undo_list);
5551 prev = Qnil;
5552 while (CONSP (tail))
5553 {
5554 if (CONSP (XCAR (tail))
5555 && MARKERP (XCAR (XCAR (tail)))
5556 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5557 {
5558 if (NILP (prev))
5559 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5560 else
5561 {
5562 tail = XCDR (tail);
5563 XSETCDR (prev, tail);
5564 }
5565 }
5566 else
5567 {
5568 prev = tail;
5569 tail = XCDR (tail);
5570 }
5571 }
5572 }
5573 /* Now that we have stripped the elements that need not be in the
5574 undo_list any more, we can finally mark the list. */
5575 mark_object (nextb->INTERNAL_FIELD (undo_list));
5576 }
5577
5578 gc_sweep ();
5579
5580 /* Clear the mark bits that we set in certain root slots. */
5581
5582 unmark_byte_stack ();
5583 VECTOR_UNMARK (&buffer_defaults);
5584 VECTOR_UNMARK (&buffer_local_symbols);
5585
5586 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5587 dump_zombies ();
5588 #endif
5589
5590 UNBLOCK_INPUT;
5591
5592 check_cons_list ();
5593
5594 gc_in_progress = 0;
5595
5596 consing_since_gc = 0;
5597 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5598 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5599
5600 gc_relative_threshold = 0;
5601 if (FLOATP (Vgc_cons_percentage))
5602 { /* Set gc_cons_combined_threshold. */
5603 double tot = 0;
5604
5605 tot += total_conses * sizeof (struct Lisp_Cons);
5606 tot += total_symbols * sizeof (struct Lisp_Symbol);
5607 tot += total_markers * sizeof (union Lisp_Misc);
5608 tot += total_string_bytes;
5609 tot += total_vector_slots * word_size;
5610 tot += total_floats * sizeof (struct Lisp_Float);
5611 tot += total_intervals * sizeof (struct interval);
5612 tot += total_strings * sizeof (struct Lisp_String);
5613
5614 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5615 if (0 < tot)
5616 {
5617 if (tot < TYPE_MAXIMUM (EMACS_INT))
5618 gc_relative_threshold = tot;
5619 else
5620 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5621 }
5622 }
5623
5624 if (garbage_collection_messages)
5625 {
5626 if (message_p || minibuf_level > 0)
5627 restore_message ();
5628 else
5629 message1_nolog ("Garbage collecting...done");
5630 }
5631
5632 unbind_to (count, Qnil);
5633
5634 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5635 bounded_number (total_conses),
5636 bounded_number (total_free_conses));
5637
5638 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5639 bounded_number (total_symbols),
5640 bounded_number (total_free_symbols));
5641
5642 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5643 bounded_number (total_markers),
5644 bounded_number (total_free_markers));
5645
5646 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5647 bounded_number (total_strings),
5648 bounded_number (total_free_strings));
5649
5650 total[4] = list3 (Qstring_bytes, make_number (1),
5651 bounded_number (total_string_bytes));
5652
5653 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5654 bounded_number (total_vectors));
5655
5656 total[6] = list4 (Qvector_slots, make_number (word_size),
5657 bounded_number (total_vector_slots),
5658 bounded_number (total_free_vector_slots));
5659
5660 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5661 bounded_number (total_floats),
5662 bounded_number (total_free_floats));
5663
5664 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5665 bounded_number (total_intervals),
5666 bounded_number (total_free_intervals));
5667
5668 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5669 bounded_number (total_buffers));
5670
5671 total[10] = list4 (Qheap, make_number (1024),
5672 #ifdef DOUG_LEA_MALLOC
5673 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5674 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5675 #else
5676 Qnil, Qnil
5677 #endif
5678 );
5679
5680 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5681 {
5682 /* Compute average percentage of zombies. */
5683 double nlive =
5684 (total_conses + total_symbols + total_markers + total_strings
5685 + total_vectors + total_floats + total_intervals + total_buffers);
5686
5687 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5688 max_live = max (nlive, max_live);
5689 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5690 max_zombies = max (nzombies, max_zombies);
5691 ++ngcs;
5692 }
5693 #endif
5694
5695 if (!NILP (Vpost_gc_hook))
5696 {
5697 ptrdiff_t gc_count = inhibit_garbage_collection ();
5698 safe_run_hooks (Qpost_gc_hook);
5699 unbind_to (gc_count, Qnil);
5700 }
5701
5702 /* Accumulate statistics. */
5703 if (FLOATP (Vgc_elapsed))
5704 {
5705 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5706 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5707 + EMACS_TIME_TO_DOUBLE (since_start));
5708 }
5709
5710 gcs_done++;
5711
5712 return Flist (sizeof total / sizeof *total, total);
5713 }
5714
5715
5716 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5717 only interesting objects referenced from glyphs are strings. */
5718
5719 static void
5720 mark_glyph_matrix (struct glyph_matrix *matrix)
5721 {
5722 struct glyph_row *row = matrix->rows;
5723 struct glyph_row *end = row + matrix->nrows;
5724
5725 for (; row < end; ++row)
5726 if (row->enabled_p)
5727 {
5728 int area;
5729 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5730 {
5731 struct glyph *glyph = row->glyphs[area];
5732 struct glyph *end_glyph = glyph + row->used[area];
5733
5734 for (; glyph < end_glyph; ++glyph)
5735 if (STRINGP (glyph->object)
5736 && !STRING_MARKED_P (XSTRING (glyph->object)))
5737 mark_object (glyph->object);
5738 }
5739 }
5740 }
5741
5742
5743 /* Mark Lisp faces in the face cache C. */
5744
5745 static void
5746 mark_face_cache (struct face_cache *c)
5747 {
5748 if (c)
5749 {
5750 int i, j;
5751 for (i = 0; i < c->used; ++i)
5752 {
5753 struct face *face = FACE_FROM_ID (c->f, i);
5754
5755 if (face)
5756 {
5757 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5758 mark_object (face->lface[j]);
5759 }
5760 }
5761 }
5762 }
5763
5764
5765 \f
5766 /* Mark reference to a Lisp_Object.
5767 If the object referred to has not been seen yet, recursively mark
5768 all the references contained in it. */
5769
5770 #define LAST_MARKED_SIZE 500
5771 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5772 static int last_marked_index;
5773
5774 /* For debugging--call abort when we cdr down this many
5775 links of a list, in mark_object. In debugging,
5776 the call to abort will hit a breakpoint.
5777 Normally this is zero and the check never goes off. */
5778 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5779
5780 static void
5781 mark_vectorlike (struct Lisp_Vector *ptr)
5782 {
5783 ptrdiff_t size = ptr->header.size;
5784 ptrdiff_t i;
5785
5786 eassert (!VECTOR_MARKED_P (ptr));
5787 VECTOR_MARK (ptr); /* Else mark it. */
5788 if (size & PSEUDOVECTOR_FLAG)
5789 size &= PSEUDOVECTOR_SIZE_MASK;
5790
5791 /* Note that this size is not the memory-footprint size, but only
5792 the number of Lisp_Object fields that we should trace.
5793 The distinction is used e.g. by Lisp_Process which places extra
5794 non-Lisp_Object fields at the end of the structure... */
5795 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5796 mark_object (ptr->contents[i]);
5797 }
5798
5799 /* Like mark_vectorlike but optimized for char-tables (and
5800 sub-char-tables) assuming that the contents are mostly integers or
5801 symbols. */
5802
5803 static void
5804 mark_char_table (struct Lisp_Vector *ptr)
5805 {
5806 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5807 int i;
5808
5809 eassert (!VECTOR_MARKED_P (ptr));
5810 VECTOR_MARK (ptr);
5811 for (i = 0; i < size; i++)
5812 {
5813 Lisp_Object val = ptr->contents[i];
5814
5815 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5816 continue;
5817 if (SUB_CHAR_TABLE_P (val))
5818 {
5819 if (! VECTOR_MARKED_P (XVECTOR (val)))
5820 mark_char_table (XVECTOR (val));
5821 }
5822 else
5823 mark_object (val);
5824 }
5825 }
5826
5827 /* Mark the chain of overlays starting at PTR. */
5828
5829 static void
5830 mark_overlay (struct Lisp_Overlay *ptr)
5831 {
5832 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5833 {
5834 ptr->gcmarkbit = 1;
5835 mark_object (MVAR (ptr, start));
5836 mark_object (MVAR (ptr, end));
5837 mark_object (MVAR (ptr, plist));
5838 }
5839 }
5840
5841 /* Mark Lisp_Objects and special pointers in BUFFER. */
5842
5843 static void
5844 mark_buffer (struct buffer *buffer)
5845 {
5846 /* This is handled much like other pseudovectors... */
5847 mark_vectorlike ((struct Lisp_Vector *) buffer);
5848
5849 /* ...but there are some buffer-specific things. */
5850
5851 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5852
5853 /* For now, we just don't mark the undo_list. It's done later in
5854 a special way just before the sweep phase, and after stripping
5855 some of its elements that are not needed any more. */
5856
5857 mark_overlay (buffer->overlays_before);
5858 mark_overlay (buffer->overlays_after);
5859
5860 /* If this is an indirect buffer, mark its base buffer. */
5861 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5862 mark_buffer (buffer->base_buffer);
5863 }
5864
5865 /* Determine type of generic Lisp_Object and mark it accordingly. */
5866
5867 void
5868 mark_object (Lisp_Object arg)
5869 {
5870 register Lisp_Object obj = arg;
5871 #ifdef GC_CHECK_MARKED_OBJECTS
5872 void *po;
5873 struct mem_node *m;
5874 #endif
5875 ptrdiff_t cdr_count = 0;
5876
5877 loop:
5878
5879 if (PURE_POINTER_P (XPNTR (obj)))
5880 return;
5881
5882 last_marked[last_marked_index++] = obj;
5883 if (last_marked_index == LAST_MARKED_SIZE)
5884 last_marked_index = 0;
5885
5886 /* Perform some sanity checks on the objects marked here. Abort if
5887 we encounter an object we know is bogus. This increases GC time
5888 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5889 #ifdef GC_CHECK_MARKED_OBJECTS
5890
5891 po = (void *) XPNTR (obj);
5892
5893 /* Check that the object pointed to by PO is known to be a Lisp
5894 structure allocated from the heap. */
5895 #define CHECK_ALLOCATED() \
5896 do { \
5897 m = mem_find (po); \
5898 if (m == MEM_NIL) \
5899 abort (); \
5900 } while (0)
5901
5902 /* Check that the object pointed to by PO is live, using predicate
5903 function LIVEP. */
5904 #define CHECK_LIVE(LIVEP) \
5905 do { \
5906 if (!LIVEP (m, po)) \
5907 abort (); \
5908 } while (0)
5909
5910 /* Check both of the above conditions. */
5911 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5912 do { \
5913 CHECK_ALLOCATED (); \
5914 CHECK_LIVE (LIVEP); \
5915 } while (0) \
5916
5917 #else /* not GC_CHECK_MARKED_OBJECTS */
5918
5919 #define CHECK_LIVE(LIVEP) (void) 0
5920 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5921
5922 #endif /* not GC_CHECK_MARKED_OBJECTS */
5923
5924 switch (XTYPE (obj))
5925 {
5926 case Lisp_String:
5927 {
5928 register struct Lisp_String *ptr = XSTRING (obj);
5929 if (STRING_MARKED_P (ptr))
5930 break;
5931 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5932 MARK_STRING (ptr);
5933 MARK_INTERVAL_TREE (ptr->intervals);
5934 #ifdef GC_CHECK_STRING_BYTES
5935 /* Check that the string size recorded in the string is the
5936 same as the one recorded in the sdata structure. */
5937 string_bytes (ptr);
5938 #endif /* GC_CHECK_STRING_BYTES */
5939 }
5940 break;
5941
5942 case Lisp_Vectorlike:
5943 {
5944 register struct Lisp_Vector *ptr = XVECTOR (obj);
5945 register ptrdiff_t pvectype;
5946
5947 if (VECTOR_MARKED_P (ptr))
5948 break;
5949
5950 #ifdef GC_CHECK_MARKED_OBJECTS
5951 m = mem_find (po);
5952 if (m == MEM_NIL && !SUBRP (obj)
5953 && po != &buffer_defaults
5954 && po != &buffer_local_symbols)
5955 abort ();
5956 #endif /* GC_CHECK_MARKED_OBJECTS */
5957
5958 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5959 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5960 >> PSEUDOVECTOR_SIZE_BITS);
5961 else
5962 pvectype = 0;
5963
5964 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5965 CHECK_LIVE (live_vector_p);
5966
5967 switch (pvectype)
5968 {
5969 case PVEC_BUFFER:
5970 #ifdef GC_CHECK_MARKED_OBJECTS
5971 if (po != &buffer_defaults && po != &buffer_local_symbols)
5972 {
5973 struct buffer *b;
5974 FOR_EACH_BUFFER (b)
5975 if (b == po)
5976 break;
5977 if (b == NULL)
5978 abort ();
5979 }
5980 #endif /* GC_CHECK_MARKED_OBJECTS */
5981 mark_buffer ((struct buffer *) ptr);
5982 break;
5983
5984 case PVEC_COMPILED:
5985 { /* We could treat this just like a vector, but it is better
5986 to save the COMPILED_CONSTANTS element for last and avoid
5987 recursion there. */
5988 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5989 int i;
5990
5991 VECTOR_MARK (ptr);
5992 for (i = 0; i < size; i++)
5993 if (i != COMPILED_CONSTANTS)
5994 mark_object (ptr->contents[i]);
5995 if (size > COMPILED_CONSTANTS)
5996 {
5997 obj = ptr->contents[COMPILED_CONSTANTS];
5998 goto loop;
5999 }
6000 }
6001 break;
6002
6003 case PVEC_FRAME:
6004 {
6005 mark_vectorlike (ptr);
6006 mark_face_cache (((struct frame *) ptr)->face_cache);
6007 }
6008 break;
6009
6010 case PVEC_WINDOW:
6011 {
6012 struct window *w = (struct window *) ptr;
6013
6014 mark_vectorlike (ptr);
6015 /* Mark glyphs for leaf windows. Marking window
6016 matrices is sufficient because frame matrices
6017 use the same glyph memory. */
6018 if (NILP (WVAR (w, hchild)) && NILP (WVAR (w, vchild))
6019 && w->current_matrix)
6020 {
6021 mark_glyph_matrix (w->current_matrix);
6022 mark_glyph_matrix (w->desired_matrix);
6023 }
6024 }
6025 break;
6026
6027 case PVEC_HASH_TABLE:
6028 {
6029 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6030
6031 mark_vectorlike (ptr);
6032 /* If hash table is not weak, mark all keys and values.
6033 For weak tables, mark only the vector. */
6034 if (NILP (h->weak))
6035 mark_object (h->key_and_value);
6036 else
6037 VECTOR_MARK (XVECTOR (h->key_and_value));
6038 }
6039 break;
6040
6041 case PVEC_CHAR_TABLE:
6042 mark_char_table (ptr);
6043 break;
6044
6045 case PVEC_BOOL_VECTOR:
6046 /* No Lisp_Objects to mark in a bool vector. */
6047 VECTOR_MARK (ptr);
6048 break;
6049
6050 case PVEC_SUBR:
6051 break;
6052
6053 case PVEC_FREE:
6054 abort ();
6055
6056 default:
6057 mark_vectorlike (ptr);
6058 }
6059 }
6060 break;
6061
6062 case Lisp_Symbol:
6063 {
6064 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6065 struct Lisp_Symbol *ptrx;
6066
6067 if (ptr->gcmarkbit)
6068 break;
6069 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6070 ptr->gcmarkbit = 1;
6071 mark_object (SVAR (ptr, function));
6072 mark_object (SVAR (ptr, plist));
6073 switch (ptr->redirect)
6074 {
6075 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6076 case SYMBOL_VARALIAS:
6077 {
6078 Lisp_Object tem;
6079 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6080 mark_object (tem);
6081 break;
6082 }
6083 case SYMBOL_LOCALIZED:
6084 {
6085 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6086 /* If the value is forwarded to a buffer or keyboard field,
6087 these are marked when we see the corresponding object.
6088 And if it's forwarded to a C variable, either it's not
6089 a Lisp_Object var, or it's staticpro'd already. */
6090 mark_object (blv->where);
6091 mark_object (blv->valcell);
6092 mark_object (blv->defcell);
6093 break;
6094 }
6095 case SYMBOL_FORWARDED:
6096 /* If the value is forwarded to a buffer or keyboard field,
6097 these are marked when we see the corresponding object.
6098 And if it's forwarded to a C variable, either it's not
6099 a Lisp_Object var, or it's staticpro'd already. */
6100 break;
6101 default: abort ();
6102 }
6103 if (!PURE_POINTER_P (XSTRING (SVAR (ptr, xname))))
6104 MARK_STRING (XSTRING (SVAR (ptr, xname)));
6105 MARK_INTERVAL_TREE (STRING_INTERVALS (SVAR (ptr, xname)));
6106
6107 ptr = ptr->next;
6108 if (ptr)
6109 {
6110 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6111 XSETSYMBOL (obj, ptrx);
6112 goto loop;
6113 }
6114 }
6115 break;
6116
6117 case Lisp_Misc:
6118 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6119
6120 if (XMISCANY (obj)->gcmarkbit)
6121 break;
6122
6123 switch (XMISCTYPE (obj))
6124 {
6125 case Lisp_Misc_Marker:
6126 /* DO NOT mark thru the marker's chain.
6127 The buffer's markers chain does not preserve markers from gc;
6128 instead, markers are removed from the chain when freed by gc. */
6129 XMISCANY (obj)->gcmarkbit = 1;
6130 break;
6131
6132 case Lisp_Misc_Save_Value:
6133 XMISCANY (obj)->gcmarkbit = 1;
6134 #if GC_MARK_STACK
6135 {
6136 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6137 /* If DOGC is set, POINTER is the address of a memory
6138 area containing INTEGER potential Lisp_Objects. */
6139 if (ptr->dogc)
6140 {
6141 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6142 ptrdiff_t nelt;
6143 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6144 mark_maybe_object (*p);
6145 }
6146 }
6147 #endif
6148 break;
6149
6150 case Lisp_Misc_Overlay:
6151 mark_overlay (XOVERLAY (obj));
6152 break;
6153
6154 default:
6155 abort ();
6156 }
6157 break;
6158
6159 case Lisp_Cons:
6160 {
6161 register struct Lisp_Cons *ptr = XCONS (obj);
6162 if (CONS_MARKED_P (ptr))
6163 break;
6164 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6165 CONS_MARK (ptr);
6166 /* If the cdr is nil, avoid recursion for the car. */
6167 if (EQ (CVAR (ptr, u.cdr), Qnil))
6168 {
6169 obj = CVAR (ptr, car);
6170 cdr_count = 0;
6171 goto loop;
6172 }
6173 mark_object (CVAR (ptr, car));
6174 obj = CVAR (ptr, u.cdr);
6175 cdr_count++;
6176 if (cdr_count == mark_object_loop_halt)
6177 abort ();
6178 goto loop;
6179 }
6180
6181 case Lisp_Float:
6182 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6183 FLOAT_MARK (XFLOAT (obj));
6184 break;
6185
6186 case_Lisp_Int:
6187 break;
6188
6189 default:
6190 abort ();
6191 }
6192
6193 #undef CHECK_LIVE
6194 #undef CHECK_ALLOCATED
6195 #undef CHECK_ALLOCATED_AND_LIVE
6196 }
6197 /* Mark the Lisp pointers in the terminal objects.
6198 Called by Fgarbage_collect. */
6199
6200 static void
6201 mark_terminals (void)
6202 {
6203 struct terminal *t;
6204 for (t = terminal_list; t; t = t->next_terminal)
6205 {
6206 eassert (t->name != NULL);
6207 #ifdef HAVE_WINDOW_SYSTEM
6208 /* If a terminal object is reachable from a stacpro'ed object,
6209 it might have been marked already. Make sure the image cache
6210 gets marked. */
6211 mark_image_cache (t->image_cache);
6212 #endif /* HAVE_WINDOW_SYSTEM */
6213 if (!VECTOR_MARKED_P (t))
6214 mark_vectorlike ((struct Lisp_Vector *)t);
6215 }
6216 }
6217
6218
6219
6220 /* Value is non-zero if OBJ will survive the current GC because it's
6221 either marked or does not need to be marked to survive. */
6222
6223 int
6224 survives_gc_p (Lisp_Object obj)
6225 {
6226 int survives_p;
6227
6228 switch (XTYPE (obj))
6229 {
6230 case_Lisp_Int:
6231 survives_p = 1;
6232 break;
6233
6234 case Lisp_Symbol:
6235 survives_p = XSYMBOL (obj)->gcmarkbit;
6236 break;
6237
6238 case Lisp_Misc:
6239 survives_p = XMISCANY (obj)->gcmarkbit;
6240 break;
6241
6242 case Lisp_String:
6243 survives_p = STRING_MARKED_P (XSTRING (obj));
6244 break;
6245
6246 case Lisp_Vectorlike:
6247 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6248 break;
6249
6250 case Lisp_Cons:
6251 survives_p = CONS_MARKED_P (XCONS (obj));
6252 break;
6253
6254 case Lisp_Float:
6255 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6256 break;
6257
6258 default:
6259 abort ();
6260 }
6261
6262 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6263 }
6264
6265
6266 \f
6267 /* Sweep: find all structures not marked, and free them. */
6268
6269 static void
6270 gc_sweep (void)
6271 {
6272 /* Remove or mark entries in weak hash tables.
6273 This must be done before any object is unmarked. */
6274 sweep_weak_hash_tables ();
6275
6276 sweep_strings ();
6277 check_string_bytes (!noninteractive);
6278
6279 /* Put all unmarked conses on free list */
6280 {
6281 register struct cons_block *cblk;
6282 struct cons_block **cprev = &cons_block;
6283 register int lim = cons_block_index;
6284 EMACS_INT num_free = 0, num_used = 0;
6285
6286 cons_free_list = 0;
6287
6288 for (cblk = cons_block; cblk; cblk = *cprev)
6289 {
6290 register int i = 0;
6291 int this_free = 0;
6292 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6293
6294 /* Scan the mark bits an int at a time. */
6295 for (i = 0; i < ilim; i++)
6296 {
6297 if (cblk->gcmarkbits[i] == -1)
6298 {
6299 /* Fast path - all cons cells for this int are marked. */
6300 cblk->gcmarkbits[i] = 0;
6301 num_used += BITS_PER_INT;
6302 }
6303 else
6304 {
6305 /* Some cons cells for this int are not marked.
6306 Find which ones, and free them. */
6307 int start, pos, stop;
6308
6309 start = i * BITS_PER_INT;
6310 stop = lim - start;
6311 if (stop > BITS_PER_INT)
6312 stop = BITS_PER_INT;
6313 stop += start;
6314
6315 for (pos = start; pos < stop; pos++)
6316 {
6317 if (!CONS_MARKED_P (&cblk->conses[pos]))
6318 {
6319 this_free++;
6320 cblk->conses[pos].u.chain = cons_free_list;
6321 cons_free_list = &cblk->conses[pos];
6322 #if GC_MARK_STACK
6323 CVAR (cons_free_list, car) = Vdead;
6324 #endif
6325 }
6326 else
6327 {
6328 num_used++;
6329 CONS_UNMARK (&cblk->conses[pos]);
6330 }
6331 }
6332 }
6333 }
6334
6335 lim = CONS_BLOCK_SIZE;
6336 /* If this block contains only free conses and we have already
6337 seen more than two blocks worth of free conses then deallocate
6338 this block. */
6339 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6340 {
6341 *cprev = cblk->next;
6342 /* Unhook from the free list. */
6343 cons_free_list = cblk->conses[0].u.chain;
6344 lisp_align_free (cblk);
6345 }
6346 else
6347 {
6348 num_free += this_free;
6349 cprev = &cblk->next;
6350 }
6351 }
6352 total_conses = num_used;
6353 total_free_conses = num_free;
6354 }
6355
6356 /* Put all unmarked floats on free list */
6357 {
6358 register struct float_block *fblk;
6359 struct float_block **fprev = &float_block;
6360 register int lim = float_block_index;
6361 EMACS_INT num_free = 0, num_used = 0;
6362
6363 float_free_list = 0;
6364
6365 for (fblk = float_block; fblk; fblk = *fprev)
6366 {
6367 register int i;
6368 int this_free = 0;
6369 for (i = 0; i < lim; i++)
6370 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6371 {
6372 this_free++;
6373 fblk->floats[i].u.chain = float_free_list;
6374 float_free_list = &fblk->floats[i];
6375 }
6376 else
6377 {
6378 num_used++;
6379 FLOAT_UNMARK (&fblk->floats[i]);
6380 }
6381 lim = FLOAT_BLOCK_SIZE;
6382 /* If this block contains only free floats and we have already
6383 seen more than two blocks worth of free floats then deallocate
6384 this block. */
6385 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6386 {
6387 *fprev = fblk->next;
6388 /* Unhook from the free list. */
6389 float_free_list = fblk->floats[0].u.chain;
6390 lisp_align_free (fblk);
6391 }
6392 else
6393 {
6394 num_free += this_free;
6395 fprev = &fblk->next;
6396 }
6397 }
6398 total_floats = num_used;
6399 total_free_floats = num_free;
6400 }
6401
6402 /* Put all unmarked intervals on free list */
6403 {
6404 register struct interval_block *iblk;
6405 struct interval_block **iprev = &interval_block;
6406 register int lim = interval_block_index;
6407 EMACS_INT num_free = 0, num_used = 0;
6408
6409 interval_free_list = 0;
6410
6411 for (iblk = interval_block; iblk; iblk = *iprev)
6412 {
6413 register int i;
6414 int this_free = 0;
6415
6416 for (i = 0; i < lim; i++)
6417 {
6418 if (!iblk->intervals[i].gcmarkbit)
6419 {
6420 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6421 interval_free_list = &iblk->intervals[i];
6422 this_free++;
6423 }
6424 else
6425 {
6426 num_used++;
6427 iblk->intervals[i].gcmarkbit = 0;
6428 }
6429 }
6430 lim = INTERVAL_BLOCK_SIZE;
6431 /* If this block contains only free intervals and we have already
6432 seen more than two blocks worth of free intervals then
6433 deallocate this block. */
6434 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6435 {
6436 *iprev = iblk->next;
6437 /* Unhook from the free list. */
6438 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6439 lisp_free (iblk);
6440 }
6441 else
6442 {
6443 num_free += this_free;
6444 iprev = &iblk->next;
6445 }
6446 }
6447 total_intervals = num_used;
6448 total_free_intervals = num_free;
6449 }
6450
6451 /* Put all unmarked symbols on free list */
6452 {
6453 register struct symbol_block *sblk;
6454 struct symbol_block **sprev = &symbol_block;
6455 register int lim = symbol_block_index;
6456 EMACS_INT num_free = 0, num_used = 0;
6457
6458 symbol_free_list = NULL;
6459
6460 for (sblk = symbol_block; sblk; sblk = *sprev)
6461 {
6462 int this_free = 0;
6463 union aligned_Lisp_Symbol *sym = sblk->symbols;
6464 union aligned_Lisp_Symbol *end = sym + lim;
6465
6466 for (; sym < end; ++sym)
6467 {
6468 /* Check if the symbol was created during loadup. In such a case
6469 it might be pointed to by pure bytecode which we don't trace,
6470 so we conservatively assume that it is live. */
6471 int pure_p = PURE_POINTER_P (XSTRING (sym->s.INTERNAL_FIELD (xname)));
6472
6473 if (!sym->s.gcmarkbit && !pure_p)
6474 {
6475 if (sym->s.redirect == SYMBOL_LOCALIZED)
6476 xfree (SYMBOL_BLV (&sym->s));
6477 sym->s.next = symbol_free_list;
6478 symbol_free_list = &sym->s;
6479 #if GC_MARK_STACK
6480 SVAR (symbol_free_list, function) = Vdead;
6481 #endif
6482 ++this_free;
6483 }
6484 else
6485 {
6486 ++num_used;
6487 if (!pure_p)
6488 UNMARK_STRING (XSTRING (sym->s.INTERNAL_FIELD (xname)));
6489 sym->s.gcmarkbit = 0;
6490 }
6491 }
6492
6493 lim = SYMBOL_BLOCK_SIZE;
6494 /* If this block contains only free symbols and we have already
6495 seen more than two blocks worth of free symbols then deallocate
6496 this block. */
6497 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6498 {
6499 *sprev = sblk->next;
6500 /* Unhook from the free list. */
6501 symbol_free_list = sblk->symbols[0].s.next;
6502 lisp_free (sblk);
6503 }
6504 else
6505 {
6506 num_free += this_free;
6507 sprev = &sblk->next;
6508 }
6509 }
6510 total_symbols = num_used;
6511 total_free_symbols = num_free;
6512 }
6513
6514 /* Put all unmarked misc's on free list.
6515 For a marker, first unchain it from the buffer it points into. */
6516 {
6517 register struct marker_block *mblk;
6518 struct marker_block **mprev = &marker_block;
6519 register int lim = marker_block_index;
6520 EMACS_INT num_free = 0, num_used = 0;
6521
6522 marker_free_list = 0;
6523
6524 for (mblk = marker_block; mblk; mblk = *mprev)
6525 {
6526 register int i;
6527 int this_free = 0;
6528
6529 for (i = 0; i < lim; i++)
6530 {
6531 if (!mblk->markers[i].m.u_any.gcmarkbit)
6532 {
6533 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6534 unchain_marker (&mblk->markers[i].m.u_marker);
6535 /* Set the type of the freed object to Lisp_Misc_Free.
6536 We could leave the type alone, since nobody checks it,
6537 but this might catch bugs faster. */
6538 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6539 mblk->markers[i].m.u_free.chain = marker_free_list;
6540 marker_free_list = &mblk->markers[i].m;
6541 this_free++;
6542 }
6543 else
6544 {
6545 num_used++;
6546 mblk->markers[i].m.u_any.gcmarkbit = 0;
6547 }
6548 }
6549 lim = MARKER_BLOCK_SIZE;
6550 /* If this block contains only free markers and we have already
6551 seen more than two blocks worth of free markers then deallocate
6552 this block. */
6553 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6554 {
6555 *mprev = mblk->next;
6556 /* Unhook from the free list. */
6557 marker_free_list = mblk->markers[0].m.u_free.chain;
6558 lisp_free (mblk);
6559 }
6560 else
6561 {
6562 num_free += this_free;
6563 mprev = &mblk->next;
6564 }
6565 }
6566
6567 total_markers = num_used;
6568 total_free_markers = num_free;
6569 }
6570
6571 /* Free all unmarked buffers */
6572 {
6573 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6574
6575 total_buffers = 0;
6576 while (buffer)
6577 if (!VECTOR_MARKED_P (buffer))
6578 {
6579 if (prev)
6580 prev->header.next = buffer->header.next;
6581 else
6582 all_buffers = buffer->header.next.buffer;
6583 next = buffer->header.next.buffer;
6584 lisp_free (buffer);
6585 buffer = next;
6586 }
6587 else
6588 {
6589 VECTOR_UNMARK (buffer);
6590 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6591 total_buffers++;
6592 prev = buffer, buffer = buffer->header.next.buffer;
6593 }
6594 }
6595
6596 sweep_vectors ();
6597 check_string_bytes (!noninteractive);
6598 }
6599
6600
6601
6602 \f
6603 /* Debugging aids. */
6604
6605 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6606 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6607 This may be helpful in debugging Emacs's memory usage.
6608 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6609 (void)
6610 {
6611 Lisp_Object end;
6612
6613 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6614
6615 return end;
6616 }
6617
6618 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6619 doc: /* Return a list of counters that measure how much consing there has been.
6620 Each of these counters increments for a certain kind of object.
6621 The counters wrap around from the largest positive integer to zero.
6622 Garbage collection does not decrease them.
6623 The elements of the value are as follows:
6624 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6625 All are in units of 1 = one object consed
6626 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6627 objects consed.
6628 MISCS include overlays, markers, and some internal types.
6629 Frames, windows, buffers, and subprocesses count as vectors
6630 (but the contents of a buffer's text do not count here). */)
6631 (void)
6632 {
6633 return listn (CONSTYPE_HEAP, 8,
6634 bounded_number (cons_cells_consed),
6635 bounded_number (floats_consed),
6636 bounded_number (vector_cells_consed),
6637 bounded_number (symbols_consed),
6638 bounded_number (string_chars_consed),
6639 bounded_number (misc_objects_consed),
6640 bounded_number (intervals_consed),
6641 bounded_number (strings_consed));
6642 }
6643
6644 /* Find at most FIND_MAX symbols which have OBJ as their value or
6645 function. This is used in gdbinit's `xwhichsymbols' command. */
6646
6647 Lisp_Object
6648 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6649 {
6650 struct symbol_block *sblk;
6651 ptrdiff_t gc_count = inhibit_garbage_collection ();
6652 Lisp_Object found = Qnil;
6653
6654 if (! DEADP (obj))
6655 {
6656 for (sblk = symbol_block; sblk; sblk = sblk->next)
6657 {
6658 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6659 int bn;
6660
6661 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6662 {
6663 struct Lisp_Symbol *sym = &aligned_sym->s;
6664 Lisp_Object val;
6665 Lisp_Object tem;
6666
6667 if (sblk == symbol_block && bn >= symbol_block_index)
6668 break;
6669
6670 XSETSYMBOL (tem, sym);
6671 val = find_symbol_value (tem);
6672 if (EQ (val, obj)
6673 || EQ (SVAR (sym, function), obj)
6674 || (!NILP (SVAR (sym, function))
6675 && COMPILEDP (SVAR (sym, function))
6676 && EQ (AREF (SVAR (sym, function), COMPILED_BYTECODE), obj))
6677 || (!NILP (val)
6678 && COMPILEDP (val)
6679 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6680 {
6681 found = Fcons (tem, found);
6682 if (--find_max == 0)
6683 goto out;
6684 }
6685 }
6686 }
6687 }
6688
6689 out:
6690 unbind_to (gc_count, Qnil);
6691 return found;
6692 }
6693
6694 #ifdef ENABLE_CHECKING
6695 int suppress_checking;
6696
6697 void
6698 die (const char *msg, const char *file, int line)
6699 {
6700 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6701 file, line, msg);
6702 abort ();
6703 }
6704 #endif
6705 \f
6706 /* Initialization */
6707
6708 void
6709 init_alloc_once (void)
6710 {
6711 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6712 purebeg = PUREBEG;
6713 pure_size = PURESIZE;
6714
6715 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6716 mem_init ();
6717 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6718 #endif
6719
6720 #ifdef DOUG_LEA_MALLOC
6721 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6722 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6723 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6724 #endif
6725 init_strings ();
6726 init_vectors ();
6727
6728 #ifdef REL_ALLOC
6729 malloc_hysteresis = 32;
6730 #else
6731 malloc_hysteresis = 0;
6732 #endif
6733
6734 refill_memory_reserve ();
6735 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6736 }
6737
6738 void
6739 init_alloc (void)
6740 {
6741 gcprolist = 0;
6742 byte_stack_list = 0;
6743 #if GC_MARK_STACK
6744 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6745 setjmp_tested_p = longjmps_done = 0;
6746 #endif
6747 #endif
6748 Vgc_elapsed = make_float (0.0);
6749 gcs_done = 0;
6750 }
6751
6752 void
6753 syms_of_alloc (void)
6754 {
6755 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6756 doc: /* Number of bytes of consing between garbage collections.
6757 Garbage collection can happen automatically once this many bytes have been
6758 allocated since the last garbage collection. All data types count.
6759
6760 Garbage collection happens automatically only when `eval' is called.
6761
6762 By binding this temporarily to a large number, you can effectively
6763 prevent garbage collection during a part of the program.
6764 See also `gc-cons-percentage'. */);
6765
6766 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6767 doc: /* Portion of the heap used for allocation.
6768 Garbage collection can happen automatically once this portion of the heap
6769 has been allocated since the last garbage collection.
6770 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6771 Vgc_cons_percentage = make_float (0.1);
6772
6773 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6774 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6775
6776 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6777 doc: /* Number of cons cells that have been consed so far. */);
6778
6779 DEFVAR_INT ("floats-consed", floats_consed,
6780 doc: /* Number of floats that have been consed so far. */);
6781
6782 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6783 doc: /* Number of vector cells that have been consed so far. */);
6784
6785 DEFVAR_INT ("symbols-consed", symbols_consed,
6786 doc: /* Number of symbols that have been consed so far. */);
6787
6788 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6789 doc: /* Number of string characters that have been consed so far. */);
6790
6791 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6792 doc: /* Number of miscellaneous objects that have been consed so far.
6793 These include markers and overlays, plus certain objects not visible
6794 to users. */);
6795
6796 DEFVAR_INT ("intervals-consed", intervals_consed,
6797 doc: /* Number of intervals that have been consed so far. */);
6798
6799 DEFVAR_INT ("strings-consed", strings_consed,
6800 doc: /* Number of strings that have been consed so far. */);
6801
6802 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6803 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6804 This means that certain objects should be allocated in shared (pure) space.
6805 It can also be set to a hash-table, in which case this table is used to
6806 do hash-consing of the objects allocated to pure space. */);
6807
6808 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6809 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6810 garbage_collection_messages = 0;
6811
6812 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6813 doc: /* Hook run after garbage collection has finished. */);
6814 Vpost_gc_hook = Qnil;
6815 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6816
6817 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6818 doc: /* Precomputed `signal' argument for memory-full error. */);
6819 /* We build this in advance because if we wait until we need it, we might
6820 not be able to allocate the memory to hold it. */
6821 Vmemory_signal_data
6822 = listn (CONSTYPE_PURE, 2, Qerror,
6823 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6824
6825 DEFVAR_LISP ("memory-full", Vmemory_full,
6826 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6827 Vmemory_full = Qnil;
6828
6829 DEFSYM (Qstring_bytes, "string-bytes");
6830 DEFSYM (Qvector_slots, "vector-slots");
6831 DEFSYM (Qheap, "heap");
6832
6833 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6834 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6835
6836 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6837 doc: /* Accumulated time elapsed in garbage collections.
6838 The time is in seconds as a floating point value. */);
6839 DEFVAR_INT ("gcs-done", gcs_done,
6840 doc: /* Accumulated number of garbage collections done. */);
6841
6842 defsubr (&Scons);
6843 defsubr (&Slist);
6844 defsubr (&Svector);
6845 defsubr (&Smake_byte_code);
6846 defsubr (&Smake_list);
6847 defsubr (&Smake_vector);
6848 defsubr (&Smake_string);
6849 defsubr (&Smake_bool_vector);
6850 defsubr (&Smake_symbol);
6851 defsubr (&Smake_marker);
6852 defsubr (&Spurecopy);
6853 defsubr (&Sgarbage_collect);
6854 defsubr (&Smemory_limit);
6855 defsubr (&Smemory_use_counts);
6856
6857 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6858 defsubr (&Sgc_status);
6859 #endif
6860 }
6861
6862 /* When compiled with GCC, GDB might say "No enum type named
6863 pvec_type" if we don't have at least one symbol with that type, and
6864 then xbacktrace could fail. Similarly for the other enums and
6865 their values. */
6866 union
6867 {
6868 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6869 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6870 enum char_bits char_bits;
6871 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6872 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6873 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6874 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6875 enum Lisp_Bits Lisp_Bits;
6876 enum Lisp_Compiled Lisp_Compiled;
6877 enum maxargs maxargs;
6878 enum MAX_ALLOCA MAX_ALLOCA;
6879 enum More_Lisp_Bits More_Lisp_Bits;
6880 enum pvec_type pvec_type;
6881 #if USE_LSB_TAG
6882 enum lsb_bits lsb_bits;
6883 #endif
6884 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};