* Makefile.in (ns-app): Fix typo that broke build on OS X.
[bpt/emacs.git] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 #define ID_val (some integer preprocessor expression)
40 #if ENUMABLE (ID_val)
41 DEFINE_GDB_SYMBOL_ENUM (ID)
42 #else
43 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
44 # define ID ID_val
45 DEFINE_GDB_SYMBOL_END (ID)
46 #endif
47
48 This hack is for the benefit of compilers that do not make macro
49 definitions visible to the debugger. It's used for symbols that
50 .gdbinit needs, symbols whose values may not fit in 'int' (where an
51 enum would suffice).
52
53 Some GCC versions before GCC 4.2 omit enums in debugging output;
54 see GCC bug 23336. So don't use enums with older GCC. */
55
56 #if !defined __GNUC__ || 4 < __GNUC__ + (2 <= __GNUC_MINOR__)
57 # define ENUMABLE(val) (INT_MIN <= (val) && (val) <= INT_MAX)
58 #else
59 # define ENUMABLE(val) 0
60 #endif
61
62 #define DEFINE_GDB_SYMBOL_ENUM(id) enum { id = id##_val };
63 #if defined MAIN_PROGRAM
64 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) type const id EXTERNALLY_VISIBLE
65 # define DEFINE_GDB_SYMBOL_END(id) = id;
66 #else
67 # define DEFINE_GDB_SYMBOL_BEGIN(type, id)
68 # define DEFINE_GDB_SYMBOL_END(val)
69 #endif
70
71 /* The ubiquitous max and min macros. */
72 #undef min
73 #undef max
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Number of elements in an array. */
78 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
79
80 /* Number of bits in a Lisp_Object tag. */
81 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
82 #define GCTYPEBITS 3
83 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
84
85 /* The number of bits needed in an EMACS_INT over and above the number
86 of bits in a pointer. This is 0 on systems where:
87 1. We can specify multiple-of-8 alignment on static variables.
88 2. We know malloc returns a multiple of 8. */
89 #if (defined alignas \
90 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
91 || defined DARWIN_OS || defined __sun || defined __MINGW32__))
92 # define NONPOINTER_BITS 0
93 #else
94 # define NONPOINTER_BITS GCTYPEBITS
95 #endif
96
97 /* EMACS_INT - signed integer wide enough to hold an Emacs value
98 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
99 pI - printf length modifier for EMACS_INT
100 EMACS_UINT - unsigned variant of EMACS_INT */
101 #ifndef EMACS_INT_MAX
102 # if INTPTR_MAX <= 0
103 # error "INTPTR_MAX misconfigured"
104 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
105 typedef int EMACS_INT;
106 typedef unsigned int EMACS_UINT;
107 # define EMACS_INT_MAX INT_MAX
108 # define pI ""
109 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
110 typedef long int EMACS_INT;
111 typedef unsigned long EMACS_UINT;
112 # define EMACS_INT_MAX LONG_MAX
113 # define pI "l"
114 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
115 In theory this is not safe, but in practice it seems to be OK. */
116 # elif INTPTR_MAX <= LLONG_MAX
117 typedef long long int EMACS_INT;
118 typedef unsigned long long int EMACS_UINT;
119 # define EMACS_INT_MAX LLONG_MAX
120 # define pI "ll"
121 # else
122 # error "INTPTR_MAX too large"
123 # endif
124 #endif
125
126 /* Number of bits to put in each character in the internal representation
127 of bool vectors. This should not vary across implementations. */
128 enum { BOOL_VECTOR_BITS_PER_CHAR =
129 #define BOOL_VECTOR_BITS_PER_CHAR 8
130 BOOL_VECTOR_BITS_PER_CHAR
131 };
132
133 /* An unsigned integer type representing a fixed-length bit sequence,
134 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
135 for speed, but it is unsigned char on weird platforms. */
136 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
137 typedef size_t bits_word;
138 # define BITS_WORD_MAX SIZE_MAX
139 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
140 #else
141 typedef unsigned char bits_word;
142 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
143 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
144 #endif
145 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
146
147 /* Number of bits in some machine integer types. */
148 enum
149 {
150 BITS_PER_CHAR = CHAR_BIT,
151 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
152 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
153 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
154 };
155
156 /* printmax_t and uprintmax_t are types for printing large integers.
157 These are the widest integers that are supported for printing.
158 pMd etc. are conversions for printing them.
159 On C99 hosts, there's no problem, as even the widest integers work.
160 Fall back on EMACS_INT on pre-C99 hosts. */
161 #ifdef PRIdMAX
162 typedef intmax_t printmax_t;
163 typedef uintmax_t uprintmax_t;
164 # define pMd PRIdMAX
165 # define pMu PRIuMAX
166 #else
167 typedef EMACS_INT printmax_t;
168 typedef EMACS_UINT uprintmax_t;
169 # define pMd pI"d"
170 # define pMu pI"u"
171 #endif
172
173 /* Use pD to format ptrdiff_t values, which suffice for indexes into
174 buffers and strings. Emacs never allocates objects larger than
175 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
176 In C99, pD can always be "t"; configure it here for the sake of
177 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
178 #if PTRDIFF_MAX == INT_MAX
179 # define pD ""
180 #elif PTRDIFF_MAX == LONG_MAX
181 # define pD "l"
182 #elif PTRDIFF_MAX == LLONG_MAX
183 # define pD "ll"
184 #else
185 # define pD "t"
186 #endif
187
188 /* Extra internal type checking? */
189
190 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
191 'assume (COND)'. COND should be free of side effects, as it may or
192 may not be evaluated.
193
194 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
195 defined and suppress_checking is false, and does nothing otherwise.
196 Emacs dies if COND is checked and is false. The suppress_checking
197 variable is initialized to 0 in alloc.c. Set it to 1 using a
198 debugger to temporarily disable aborting on detected internal
199 inconsistencies or error conditions.
200
201 In some cases, a good compiler may be able to optimize away the
202 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
203 uses eassert to test STRINGP (x), but a particular use of XSTRING
204 is invoked only after testing that STRINGP (x) is true, making the
205 test redundant.
206
207 eassume is like eassert except that it also causes the compiler to
208 assume that COND is true afterwards, regardless of whether runtime
209 checking is enabled. This can improve performance in some cases,
210 though it can degrade performance in others. It's often suboptimal
211 for COND to call external functions or access volatile storage. */
212
213 #ifndef ENABLE_CHECKING
214 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
215 # define eassume(cond) assume (cond)
216 #else /* ENABLE_CHECKING */
217
218 extern _Noreturn void die (const char *, const char *, int);
219
220 extern bool suppress_checking EXTERNALLY_VISIBLE;
221
222 # define eassert(cond) \
223 (suppress_checking || (cond) \
224 ? (void) 0 \
225 : die (# cond, __FILE__, __LINE__))
226 # define eassume(cond) \
227 (suppress_checking \
228 ? assume (cond) \
229 : (cond) \
230 ? (void) 0 \
231 : die (# cond, __FILE__, __LINE__))
232 #endif /* ENABLE_CHECKING */
233
234 \f
235 /* Use the configure flag --enable-check-lisp-object-type to make
236 Lisp_Object use a struct type instead of the default int. The flag
237 causes CHECK_LISP_OBJECT_TYPE to be defined. */
238
239 /***** Select the tagging scheme. *****/
240 /* The following option controls the tagging scheme:
241 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
242 always 0, and we can thus use them to hold tag bits, without
243 restricting our addressing space.
244
245 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
246 restricting our possible address range.
247
248 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
249 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
250 on the few static Lisp_Objects used: all the defsubr as well
251 as the two special buffers buffer_defaults and buffer_local_symbols. */
252
253 enum Lisp_Bits
254 {
255 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
256 integer constant, for MSVC. */
257 #define GCALIGNMENT 8
258
259 /* Number of bits in a Lisp_Object value, not counting the tag. */
260 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
261
262 /* Number of bits in a Lisp fixnum tag. */
263 INTTYPEBITS = GCTYPEBITS - 1,
264
265 /* Number of bits in a Lisp fixnum value, not counting the tag. */
266 FIXNUM_BITS = VALBITS + 1
267 };
268
269 #if GCALIGNMENT != 1 << GCTYPEBITS
270 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
271 #endif
272
273 /* The maximum value that can be stored in a EMACS_INT, assuming all
274 bits other than the type bits contribute to a nonnegative signed value.
275 This can be used in #if, e.g., '#if VAL_MAX < UINTPTR_MAX' below. */
276 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
277
278 /* Whether the least-significant bits of an EMACS_INT contain the tag.
279 On hosts where pointers-as-ints do not exceed VAL_MAX, USE_LSB_TAG is:
280 a. unnecessary, because the top bits of an EMACS_INT are unused, and
281 b. slower, because it typically requires extra masking.
282 So, USE_LSB_TAG is true only on hosts where it might be useful. */
283 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
284 #define USE_LSB_TAG (EMACS_INT_MAX >> GCTYPEBITS < INTPTR_MAX)
285 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
286
287 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
288 # error "USE_LSB_TAG not supported on this platform; please report this." \
289 "Try 'configure --with-wide-int' to work around the problem."
290 error !;
291 #endif
292
293 #ifndef alignas
294 # define alignas(alignment) /* empty */
295 # if USE_LSB_TAG
296 # error "USE_LSB_TAG requires alignas"
297 # endif
298 #endif
299
300
301 /* Some operations are so commonly executed that they are implemented
302 as macros, not functions, because otherwise runtime performance would
303 suffer too much when compiling with GCC without optimization.
304 There's no need to inline everything, just the operations that
305 would otherwise cause a serious performance problem.
306
307 For each such operation OP, define a macro lisp_h_OP that contains
308 the operation's implementation. That way, OP can be implemented
309 via a macro definition like this:
310
311 #define OP(x) lisp_h_OP (x)
312
313 and/or via a function definition like this:
314
315 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
316
317 which macro-expands to this:
318
319 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
320
321 without worrying about the implementations diverging, since
322 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
323 are intended to be private to this include file, and should not be
324 used elsewhere.
325
326 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
327 functions, once most developers have access to GCC 4.8 or later and
328 can use "gcc -Og" to debug. Maybe in the year 2016. See
329 Bug#11935.
330
331 Commentary for these macros can be found near their corresponding
332 functions, below. */
333
334 #if CHECK_LISP_OBJECT_TYPE
335 # define lisp_h_XLI(o) ((o).i)
336 # define lisp_h_XIL(i) ((Lisp_Object) { i })
337 #else
338 # define lisp_h_XLI(o) (o)
339 # define lisp_h_XIL(i) (i)
340 #endif
341 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
342 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
343 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
344 #define lisp_h_CHECK_TYPE(ok, Qxxxp, x) \
345 ((ok) ? (void) 0 : (void) wrong_type_argument (Qxxxp, x))
346 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
347 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
348 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
349 #define lisp_h_INTEGERP(x) ((XTYPE (x) & ~Lisp_Int1) == 0)
350 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
351 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
352 #define lisp_h_NILP(x) EQ (x, Qnil)
353 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
354 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
355 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
356 #define lisp_h_SYMBOL_VAL(sym) \
357 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
358 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
359 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
360 #define lisp_h_XCAR(c) XCONS (c)->car
361 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
362 #define lisp_h_XCONS(a) \
363 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
364 #define lisp_h_XHASH(a) XUINT (a)
365 #define lisp_h_XPNTR(a) ((void *) (intptr_t) (XLI (a) & VALMASK))
366 #define lisp_h_XSYMBOL(a) \
367 (eassert (SYMBOLP (a)), (struct Lisp_Symbol *) XUNTAG (a, Lisp_Symbol))
368 #ifndef GC_CHECK_CONS_LIST
369 # define lisp_h_check_cons_list() ((void) 0)
370 #endif
371 #if USE_LSB_TAG
372 # define lisp_h_make_number(n) \
373 XIL ((EMACS_INT) ((EMACS_UINT) (n) << INTTYPEBITS))
374 # define lisp_h_XFASTINT(a) XINT (a)
375 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
376 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
377 # define lisp_h_XUNTAG(a, type) ((void *) (XLI (a) - (type)))
378 #endif
379
380 /* When compiling via gcc -O0, define the key operations as macros, as
381 Emacs is too slow otherwise. To disable this optimization, compile
382 with -DINLINING=false. */
383 #if (defined __NO_INLINE__ \
384 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
385 && ! (defined INLINING && ! INLINING))
386 # define XLI(o) lisp_h_XLI (o)
387 # define XIL(i) lisp_h_XIL (i)
388 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
389 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
390 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
391 # define CHECK_TYPE(ok, Qxxxp, x) lisp_h_CHECK_TYPE (ok, Qxxxp, x)
392 # define CONSP(x) lisp_h_CONSP (x)
393 # define EQ(x, y) lisp_h_EQ (x, y)
394 # define FLOATP(x) lisp_h_FLOATP (x)
395 # define INTEGERP(x) lisp_h_INTEGERP (x)
396 # define MARKERP(x) lisp_h_MARKERP (x)
397 # define MISCP(x) lisp_h_MISCP (x)
398 # define NILP(x) lisp_h_NILP (x)
399 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
400 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
401 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
402 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
403 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
404 # define XCAR(c) lisp_h_XCAR (c)
405 # define XCDR(c) lisp_h_XCDR (c)
406 # define XCONS(a) lisp_h_XCONS (a)
407 # define XHASH(a) lisp_h_XHASH (a)
408 # define XPNTR(a) lisp_h_XPNTR (a)
409 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
410 # ifndef GC_CHECK_CONS_LIST
411 # define check_cons_list() lisp_h_check_cons_list ()
412 # endif
413 # if USE_LSB_TAG
414 # define make_number(n) lisp_h_make_number (n)
415 # define XFASTINT(a) lisp_h_XFASTINT (a)
416 # define XINT(a) lisp_h_XINT (a)
417 # define XTYPE(a) lisp_h_XTYPE (a)
418 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
419 # endif
420 #endif
421
422 /* Define NAME as a lisp.h inline function that returns TYPE and has
423 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
424 ARGS should be parenthesized. Implement the function by calling
425 lisp_h_NAME ARGS. */
426 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
427 INLINE type (name) argdecls { return lisp_h_##name args; }
428
429 /* like LISP_MACRO_DEFUN, except NAME returns void. */
430 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
431 INLINE void (name) argdecls { lisp_h_##name args; }
432
433
434 /* Define the fundamental Lisp data structures. */
435
436 /* This is the set of Lisp data types. If you want to define a new
437 data type, read the comments after Lisp_Fwd_Type definition
438 below. */
439
440 /* Lisp integers use 2 tags, to give them one extra bit, thus
441 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
442 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
443 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
444
445 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
446 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
447 vociferously about them. */
448 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
449 || (defined __SUNPRO_C && __STDC__))
450 #define ENUM_BF(TYPE) unsigned int
451 #else
452 #define ENUM_BF(TYPE) enum TYPE
453 #endif
454
455
456 enum Lisp_Type
457 {
458 /* Integer. XINT (obj) is the integer value. */
459 Lisp_Int0 = 0,
460 Lisp_Int1 = USE_LSB_TAG ? 1 << INTTYPEBITS : 1,
461
462 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
463 Lisp_Symbol = 2,
464
465 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
466 whose first member indicates the subtype. */
467 Lisp_Misc = 3,
468
469 /* String. XSTRING (object) points to a struct Lisp_String.
470 The length of the string, and its contents, are stored therein. */
471 Lisp_String = USE_LSB_TAG ? 1 : 1 << INTTYPEBITS,
472
473 /* Vector of Lisp objects, or something resembling it.
474 XVECTOR (object) points to a struct Lisp_Vector, which contains
475 the size and contents. The size field also contains the type
476 information, if it's not a real vector object. */
477 Lisp_Vectorlike = 5,
478
479 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
480 Lisp_Cons = 6,
481
482 Lisp_Float = 7
483 };
484
485 /* This is the set of data types that share a common structure.
486 The first member of the structure is a type code from this set.
487 The enum values are arbitrary, but we'll use large numbers to make it
488 more likely that we'll spot the error if a random word in memory is
489 mistakenly interpreted as a Lisp_Misc. */
490 enum Lisp_Misc_Type
491 {
492 Lisp_Misc_Free = 0x5eab,
493 Lisp_Misc_Marker,
494 Lisp_Misc_Overlay,
495 Lisp_Misc_Save_Value,
496 /* Currently floats are not a misc type,
497 but let's define this in case we want to change that. */
498 Lisp_Misc_Float,
499 /* This is not a type code. It is for range checking. */
500 Lisp_Misc_Limit
501 };
502
503 /* These are the types of forwarding objects used in the value slot
504 of symbols for special built-in variables whose value is stored in
505 C variables. */
506 enum Lisp_Fwd_Type
507 {
508 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
509 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
510 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
511 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
512 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
513 };
514
515 /* If you want to define a new Lisp data type, here are some
516 instructions. See the thread at
517 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
518 for more info.
519
520 First, there are already a couple of Lisp types that can be used if
521 your new type does not need to be exposed to Lisp programs nor
522 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
523 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
524 is suitable for temporarily stashing away pointers and integers in
525 a Lisp object. The latter is useful for vector-like Lisp objects
526 that need to be used as part of other objects, but which are never
527 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
528 an example).
529
530 These two types don't look pretty when printed, so they are
531 unsuitable for Lisp objects that can be exposed to users.
532
533 To define a new data type, add one more Lisp_Misc subtype or one
534 more pseudovector subtype. Pseudovectors are more suitable for
535 objects with several slots that need to support fast random access,
536 while Lisp_Misc types are for everything else. A pseudovector object
537 provides one or more slots for Lisp objects, followed by struct
538 members that are accessible only from C. A Lisp_Misc object is a
539 wrapper for a C struct that can contain anything you like.
540
541 Explicit freeing is discouraged for Lisp objects in general. But if
542 you really need to exploit this, use Lisp_Misc (check free_misc in
543 alloc.c to see why). There is no way to free a vectorlike object.
544
545 To add a new pseudovector type, extend the pvec_type enumeration;
546 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
547
548 For a Lisp_Misc, you will also need to add your entry to union
549 Lisp_Misc (but make sure the first word has the same structure as
550 the others, starting with a 16-bit member of the Lisp_Misc_Type
551 enumeration and a 1-bit GC markbit) and make sure the overall size
552 of the union is not increased by your addition.
553
554 For a new pseudovector, it's highly desirable to limit the size
555 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
556 Otherwise you will need to change sweep_vectors (also in alloc.c).
557
558 Then you will need to add switch branches in print.c (in
559 print_object, to print your object, and possibly also in
560 print_preprocess) and to alloc.c, to mark your object (in
561 mark_object) and to free it (in gc_sweep). The latter is also the
562 right place to call any code specific to your data type that needs
563 to run when the object is recycled -- e.g., free any additional
564 resources allocated for it that are not Lisp objects. You can even
565 make a pointer to the function that frees the resources a slot in
566 your object -- this way, the same object could be used to represent
567 several disparate C structures. */
568
569 #ifdef CHECK_LISP_OBJECT_TYPE
570
571 typedef struct { EMACS_INT i; } Lisp_Object;
572
573 #define LISP_INITIALLY_ZERO {0}
574
575 #undef CHECK_LISP_OBJECT_TYPE
576 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
577 #else /* CHECK_LISP_OBJECT_TYPE */
578
579 /* If a struct type is not wanted, define Lisp_Object as just a number. */
580
581 typedef EMACS_INT Lisp_Object;
582 #define LISP_INITIALLY_ZERO 0
583 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
584 #endif /* CHECK_LISP_OBJECT_TYPE */
585
586 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
587 At the machine level, these operations are no-ops. */
588 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
589 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
590
591 /* In the size word of a vector, this bit means the vector has been marked. */
592
593 #define ARRAY_MARK_FLAG_val PTRDIFF_MIN
594 #if ENUMABLE (ARRAY_MARK_FLAG_val)
595 DEFINE_GDB_SYMBOL_ENUM (ARRAY_MARK_FLAG)
596 #else
597 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
598 # define ARRAY_MARK_FLAG ARRAY_MARK_FLAG_val
599 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
600 #endif
601
602 /* In the size word of a struct Lisp_Vector, this bit means it's really
603 some other vector-like object. */
604 #define PSEUDOVECTOR_FLAG_val (PTRDIFF_MAX - PTRDIFF_MAX / 2)
605 #if ENUMABLE (PSEUDOVECTOR_FLAG_val)
606 DEFINE_GDB_SYMBOL_ENUM (PSEUDOVECTOR_FLAG)
607 #else
608 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
609 # define PSEUDOVECTOR_FLAG PSEUDOVECTOR_FLAG_val
610 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
611 #endif
612
613 /* In a pseudovector, the size field actually contains a word with one
614 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
615 with PVEC_TYPE_MASK to indicate the actual type. */
616 enum pvec_type
617 {
618 PVEC_NORMAL_VECTOR,
619 PVEC_FREE,
620 PVEC_PROCESS,
621 PVEC_FRAME,
622 PVEC_WINDOW,
623 PVEC_BOOL_VECTOR,
624 PVEC_BUFFER,
625 PVEC_HASH_TABLE,
626 PVEC_TERMINAL,
627 PVEC_WINDOW_CONFIGURATION,
628 PVEC_SUBR,
629 PVEC_OTHER,
630 /* These should be last, check internal_equal to see why. */
631 PVEC_COMPILED,
632 PVEC_CHAR_TABLE,
633 PVEC_SUB_CHAR_TABLE,
634 PVEC_FONT /* Should be last because it's used for range checking. */
635 };
636
637 enum More_Lisp_Bits
638 {
639 /* For convenience, we also store the number of elements in these bits.
640 Note that this size is not necessarily the memory-footprint size, but
641 only the number of Lisp_Object fields (that need to be traced by GC).
642 The distinction is used, e.g., by Lisp_Process, which places extra
643 non-Lisp_Object fields at the end of the structure. */
644 PSEUDOVECTOR_SIZE_BITS = 12,
645 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
646
647 /* To calculate the memory footprint of the pseudovector, it's useful
648 to store the size of non-Lisp area in word_size units here. */
649 PSEUDOVECTOR_REST_BITS = 12,
650 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
651 << PSEUDOVECTOR_SIZE_BITS),
652
653 /* Used to extract pseudovector subtype information. */
654 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
655 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
656 };
657 \f
658 /* These functions extract various sorts of values from a Lisp_Object.
659 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
660 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
661 that cons. */
662
663 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
664 #define VALMASK_val (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
665 #if ENUMABLE (VALMASK_val)
666 DEFINE_GDB_SYMBOL_ENUM (VALMASK)
667 #else
668 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
669 # define VALMASK VALMASK_val
670 DEFINE_GDB_SYMBOL_END (VALMASK)
671 #endif
672
673 /* Largest and smallest representable fixnum values. These are the C
674 values. They are macros for use in static initializers. */
675 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
676 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
677
678 /* Extract the pointer hidden within A. */
679 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
680
681 #if USE_LSB_TAG
682
683 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
684 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
685 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
686 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
687 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
688
689 #else /* ! USE_LSB_TAG */
690
691 /* Although compiled only if ! USE_LSB_TAG, the following functions
692 also work when USE_LSB_TAG; this is to aid future maintenance when
693 the lisp_h_* macros are eventually removed. */
694
695 /* Make a Lisp integer representing the value of the low order
696 bits of N. */
697 INLINE Lisp_Object
698 make_number (EMACS_INT n)
699 {
700 if (USE_LSB_TAG)
701 {
702 EMACS_UINT u = n;
703 n = u << INTTYPEBITS;
704 }
705 else
706 n &= INTMASK;
707 return XIL (n);
708 }
709
710 /* Extract A's value as a signed integer. */
711 INLINE EMACS_INT
712 XINT (Lisp_Object a)
713 {
714 EMACS_INT i = XLI (a);
715 if (! USE_LSB_TAG)
716 {
717 EMACS_UINT u = i;
718 i = u << INTTYPEBITS;
719 }
720 return i >> INTTYPEBITS;
721 }
722
723 /* Like XINT (A), but may be faster. A must be nonnegative.
724 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
725 integers have zero-bits in their tags. */
726 INLINE EMACS_INT
727 XFASTINT (Lisp_Object a)
728 {
729 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a);
730 eassert (0 <= n);
731 return n;
732 }
733
734 /* Extract A's type. */
735 INLINE enum Lisp_Type
736 XTYPE (Lisp_Object a)
737 {
738 EMACS_UINT i = XLI (a);
739 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
740 }
741
742 /* Extract A's pointer value, assuming A's type is TYPE. */
743 INLINE void *
744 XUNTAG (Lisp_Object a, int type)
745 {
746 if (USE_LSB_TAG)
747 {
748 intptr_t i = XLI (a) - type;
749 return (void *) i;
750 }
751 return XPNTR (a);
752 }
753
754 #endif /* ! USE_LSB_TAG */
755
756 /* Extract A's value as an unsigned integer. */
757 INLINE EMACS_UINT
758 XUINT (Lisp_Object a)
759 {
760 EMACS_UINT i = XLI (a);
761 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
762 }
763
764 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
765 right now, but XUINT should only be applied to objects we know are
766 integers. */
767 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
768
769 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
770 INLINE Lisp_Object
771 make_natnum (EMACS_INT n)
772 {
773 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
774 return USE_LSB_TAG ? make_number (n) : XIL (n);
775 }
776
777 /* Return true if X and Y are the same object. */
778 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
779
780 /* Value is true if I doesn't fit into a Lisp fixnum. It is
781 written this way so that it also works if I is of unsigned
782 type or if I is a NaN. */
783
784 #define FIXNUM_OVERFLOW_P(i) \
785 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
786
787 INLINE ptrdiff_t
788 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
789 {
790 return num < lower ? lower : num <= upper ? num : upper;
791 }
792 \f
793 /* Forward declarations. */
794
795 /* Defined in this file. */
796 union Lisp_Fwd;
797 INLINE bool BOOL_VECTOR_P (Lisp_Object);
798 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
799 INLINE bool BUFFERP (Lisp_Object);
800 INLINE bool CHAR_TABLE_P (Lisp_Object);
801 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
802 INLINE bool (CONSP) (Lisp_Object);
803 INLINE bool (FLOATP) (Lisp_Object);
804 INLINE bool functionp (Lisp_Object);
805 INLINE bool (INTEGERP) (Lisp_Object);
806 INLINE bool (MARKERP) (Lisp_Object);
807 INLINE bool (MISCP) (Lisp_Object);
808 INLINE bool (NILP) (Lisp_Object);
809 INLINE bool OVERLAYP (Lisp_Object);
810 INLINE bool PROCESSP (Lisp_Object);
811 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
812 INLINE bool SAVE_VALUEP (Lisp_Object);
813 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
814 Lisp_Object);
815 INLINE bool STRINGP (Lisp_Object);
816 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
817 INLINE bool SUBRP (Lisp_Object);
818 INLINE bool (SYMBOLP) (Lisp_Object);
819 INLINE bool (VECTORLIKEP) (Lisp_Object);
820 INLINE bool WINDOWP (Lisp_Object);
821 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
822
823 /* Defined in chartab.c. */
824 extern Lisp_Object char_table_ref (Lisp_Object, int);
825 extern void char_table_set (Lisp_Object, int, Lisp_Object);
826 extern int char_table_translate (Lisp_Object, int);
827
828 /* Defined in data.c. */
829 extern Lisp_Object Qarrayp, Qbufferp, Qbuffer_or_string_p, Qchar_table_p;
830 extern Lisp_Object Qconsp, Qfloatp, Qintegerp, Qlambda, Qlistp, Qmarkerp, Qnil;
831 extern Lisp_Object Qnumberp, Qstringp, Qsymbolp, Qt, Qvectorp;
832 extern Lisp_Object Qbool_vector_p;
833 extern Lisp_Object Qvector_or_char_table_p, Qwholenump;
834 extern Lisp_Object Qwindow;
835 extern Lisp_Object Ffboundp (Lisp_Object);
836 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
837
838 /* Defined in emacs.c. */
839 extern bool initialized;
840 extern bool might_dump;
841
842 /* Defined in eval.c. */
843 extern Lisp_Object Qautoload;
844
845 /* Defined in floatfns.c. */
846 extern double extract_float (Lisp_Object);
847
848 /* Defined in process.c. */
849 extern Lisp_Object Qprocessp;
850
851 /* Defined in window.c. */
852 extern Lisp_Object Qwindowp;
853
854 /* Defined in xdisp.c. */
855 extern Lisp_Object Qimage;
856 \f
857
858 /* Extract a value or address from a Lisp_Object. */
859
860 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
861
862 INLINE struct Lisp_Vector *
863 XVECTOR (Lisp_Object a)
864 {
865 eassert (VECTORLIKEP (a));
866 return XUNTAG (a, Lisp_Vectorlike);
867 }
868
869 INLINE struct Lisp_String *
870 XSTRING (Lisp_Object a)
871 {
872 eassert (STRINGP (a));
873 return XUNTAG (a, Lisp_String);
874 }
875
876 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
877
878 INLINE struct Lisp_Float *
879 XFLOAT (Lisp_Object a)
880 {
881 eassert (FLOATP (a));
882 return XUNTAG (a, Lisp_Float);
883 }
884
885 /* Pseudovector types. */
886
887 INLINE struct Lisp_Process *
888 XPROCESS (Lisp_Object a)
889 {
890 eassert (PROCESSP (a));
891 return XUNTAG (a, Lisp_Vectorlike);
892 }
893
894 INLINE struct window *
895 XWINDOW (Lisp_Object a)
896 {
897 eassert (WINDOWP (a));
898 return XUNTAG (a, Lisp_Vectorlike);
899 }
900
901 INLINE struct terminal *
902 XTERMINAL (Lisp_Object a)
903 {
904 return XUNTAG (a, Lisp_Vectorlike);
905 }
906
907 INLINE struct Lisp_Subr *
908 XSUBR (Lisp_Object a)
909 {
910 eassert (SUBRP (a));
911 return XUNTAG (a, Lisp_Vectorlike);
912 }
913
914 INLINE struct buffer *
915 XBUFFER (Lisp_Object a)
916 {
917 eassert (BUFFERP (a));
918 return XUNTAG (a, Lisp_Vectorlike);
919 }
920
921 INLINE struct Lisp_Char_Table *
922 XCHAR_TABLE (Lisp_Object a)
923 {
924 eassert (CHAR_TABLE_P (a));
925 return XUNTAG (a, Lisp_Vectorlike);
926 }
927
928 INLINE struct Lisp_Sub_Char_Table *
929 XSUB_CHAR_TABLE (Lisp_Object a)
930 {
931 eassert (SUB_CHAR_TABLE_P (a));
932 return XUNTAG (a, Lisp_Vectorlike);
933 }
934
935 INLINE struct Lisp_Bool_Vector *
936 XBOOL_VECTOR (Lisp_Object a)
937 {
938 eassert (BOOL_VECTOR_P (a));
939 return XUNTAG (a, Lisp_Vectorlike);
940 }
941
942 /* Construct a Lisp_Object from a value or address. */
943
944 INLINE Lisp_Object
945 make_lisp_ptr (void *ptr, enum Lisp_Type type)
946 {
947 EMACS_UINT utype = type;
948 EMACS_UINT typebits = USE_LSB_TAG ? type : utype << VALBITS;
949 Lisp_Object a = XIL (typebits | (uintptr_t) ptr);
950 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
951 return a;
952 }
953
954 INLINE Lisp_Object
955 make_lisp_proc (struct Lisp_Process *p)
956 {
957 return make_lisp_ptr (p, Lisp_Vectorlike);
958 }
959
960 #define XSETINT(a, b) ((a) = make_number (b))
961 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
962 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
963 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
964 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
965 #define XSETSYMBOL(a, b) ((a) = make_lisp_ptr (b, Lisp_Symbol))
966 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
967 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
968
969 /* Pseudovector types. */
970
971 #define XSETPVECTYPE(v, code) \
972 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
973 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
974 ((v)->header.size = (PSEUDOVECTOR_FLAG \
975 | ((code) << PSEUDOVECTOR_AREA_BITS) \
976 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
977 | (lispsize)))
978
979 /* The cast to struct vectorlike_header * avoids aliasing issues. */
980 #define XSETPSEUDOVECTOR(a, b, code) \
981 XSETTYPED_PSEUDOVECTOR (a, b, \
982 (((struct vectorlike_header *) \
983 XUNTAG (a, Lisp_Vectorlike)) \
984 ->size), \
985 code)
986 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
987 (XSETVECTOR (a, b), \
988 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
989 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
990
991 #define XSETWINDOW_CONFIGURATION(a, b) \
992 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
993 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
994 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
995 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
996 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
997 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
998 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
999 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1000 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1001 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1002
1003 /* Type checking. */
1004
1005 LISP_MACRO_DEFUN_VOID (CHECK_TYPE, (int ok, Lisp_Object Qxxxp, Lisp_Object x),
1006 (ok, Qxxxp, x))
1007
1008 /* Deprecated and will be removed soon. */
1009
1010 #define INTERNAL_FIELD(field) field ## _
1011
1012 /* See the macros in intervals.h. */
1013
1014 typedef struct interval *INTERVAL;
1015
1016 struct Lisp_Cons
1017 {
1018 /* Car of this cons cell. */
1019 Lisp_Object car;
1020
1021 union
1022 {
1023 /* Cdr of this cons cell. */
1024 Lisp_Object cdr;
1025
1026 /* Used to chain conses on a free list. */
1027 struct Lisp_Cons *chain;
1028 } u;
1029 };
1030
1031 /* Take the car or cdr of something known to be a cons cell. */
1032 /* The _addr functions shouldn't be used outside of the minimal set
1033 of code that has to know what a cons cell looks like. Other code not
1034 part of the basic lisp implementation should assume that the car and cdr
1035 fields are not accessible. (What if we want to switch to
1036 a copying collector someday? Cached cons cell field addresses may be
1037 invalidated at arbitrary points.) */
1038 INLINE Lisp_Object *
1039 xcar_addr (Lisp_Object c)
1040 {
1041 return &XCONS (c)->car;
1042 }
1043 INLINE Lisp_Object *
1044 xcdr_addr (Lisp_Object c)
1045 {
1046 return &XCONS (c)->u.cdr;
1047 }
1048
1049 /* Use these from normal code. */
1050 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1051 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1052
1053 /* Use these to set the fields of a cons cell.
1054
1055 Note that both arguments may refer to the same object, so 'n'
1056 should not be read after 'c' is first modified. */
1057 INLINE void
1058 XSETCAR (Lisp_Object c, Lisp_Object n)
1059 {
1060 *xcar_addr (c) = n;
1061 }
1062 INLINE void
1063 XSETCDR (Lisp_Object c, Lisp_Object n)
1064 {
1065 *xcdr_addr (c) = n;
1066 }
1067
1068 /* Take the car or cdr of something whose type is not known. */
1069 INLINE Lisp_Object
1070 CAR (Lisp_Object c)
1071 {
1072 return (CONSP (c) ? XCAR (c)
1073 : NILP (c) ? Qnil
1074 : wrong_type_argument (Qlistp, c));
1075 }
1076 INLINE Lisp_Object
1077 CDR (Lisp_Object c)
1078 {
1079 return (CONSP (c) ? XCDR (c)
1080 : NILP (c) ? Qnil
1081 : wrong_type_argument (Qlistp, c));
1082 }
1083
1084 /* Take the car or cdr of something whose type is not known. */
1085 INLINE Lisp_Object
1086 CAR_SAFE (Lisp_Object c)
1087 {
1088 return CONSP (c) ? XCAR (c) : Qnil;
1089 }
1090 INLINE Lisp_Object
1091 CDR_SAFE (Lisp_Object c)
1092 {
1093 return CONSP (c) ? XCDR (c) : Qnil;
1094 }
1095
1096 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1097
1098 struct Lisp_String
1099 {
1100 ptrdiff_t size;
1101 ptrdiff_t size_byte;
1102 INTERVAL intervals; /* Text properties in this string. */
1103 unsigned char *data;
1104 };
1105
1106 /* True if STR is a multibyte string. */
1107 INLINE bool
1108 STRING_MULTIBYTE (Lisp_Object str)
1109 {
1110 return 0 <= XSTRING (str)->size_byte;
1111 }
1112
1113 /* An upper bound on the number of bytes in a Lisp string, not
1114 counting the terminating null. This a tight enough bound to
1115 prevent integer overflow errors that would otherwise occur during
1116 string size calculations. A string cannot contain more bytes than
1117 a fixnum can represent, nor can it be so long that C pointer
1118 arithmetic stops working on the string plus its terminating null.
1119 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1120 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1121 would expose alloc.c internal details that we'd rather keep
1122 private.
1123
1124 This is a macro for use in static initializers. The cast to
1125 ptrdiff_t ensures that the macro is signed. */
1126 #define STRING_BYTES_BOUND \
1127 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1128
1129 /* Mark STR as a unibyte string. */
1130 #define STRING_SET_UNIBYTE(STR) \
1131 do { \
1132 if (EQ (STR, empty_multibyte_string)) \
1133 (STR) = empty_unibyte_string; \
1134 else \
1135 XSTRING (STR)->size_byte = -1; \
1136 } while (false)
1137
1138 /* Mark STR as a multibyte string. Assure that STR contains only
1139 ASCII characters in advance. */
1140 #define STRING_SET_MULTIBYTE(STR) \
1141 do { \
1142 if (EQ (STR, empty_unibyte_string)) \
1143 (STR) = empty_multibyte_string; \
1144 else \
1145 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1146 } while (false)
1147
1148 /* Convenience functions for dealing with Lisp strings. */
1149
1150 INLINE unsigned char *
1151 SDATA (Lisp_Object string)
1152 {
1153 return XSTRING (string)->data;
1154 }
1155 INLINE char *
1156 SSDATA (Lisp_Object string)
1157 {
1158 /* Avoid "differ in sign" warnings. */
1159 return (char *) SDATA (string);
1160 }
1161 INLINE unsigned char
1162 SREF (Lisp_Object string, ptrdiff_t index)
1163 {
1164 return SDATA (string)[index];
1165 }
1166 INLINE void
1167 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1168 {
1169 SDATA (string)[index] = new;
1170 }
1171 INLINE ptrdiff_t
1172 SCHARS (Lisp_Object string)
1173 {
1174 return XSTRING (string)->size;
1175 }
1176
1177 #ifdef GC_CHECK_STRING_BYTES
1178 extern ptrdiff_t string_bytes (struct Lisp_String *);
1179 #endif
1180 INLINE ptrdiff_t
1181 STRING_BYTES (struct Lisp_String *s)
1182 {
1183 #ifdef GC_CHECK_STRING_BYTES
1184 return string_bytes (s);
1185 #else
1186 return s->size_byte < 0 ? s->size : s->size_byte;
1187 #endif
1188 }
1189
1190 INLINE ptrdiff_t
1191 SBYTES (Lisp_Object string)
1192 {
1193 return STRING_BYTES (XSTRING (string));
1194 }
1195 INLINE void
1196 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1197 {
1198 XSTRING (string)->size = newsize;
1199 }
1200 INLINE void
1201 STRING_COPYIN (Lisp_Object string, ptrdiff_t index, char const *new,
1202 ptrdiff_t count)
1203 {
1204 memcpy (SDATA (string) + index, new, count);
1205 }
1206
1207 /* Header of vector-like objects. This documents the layout constraints on
1208 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1209 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1210 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1211 because when two such pointers potentially alias, a compiler won't
1212 incorrectly reorder loads and stores to their size fields. See
1213 Bug#8546. */
1214 struct vectorlike_header
1215 {
1216 /* The only field contains various pieces of information:
1217 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1218 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1219 vector (0) or a pseudovector (1).
1220 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1221 of slots) of the vector.
1222 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1223 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1224 - b) number of Lisp_Objects slots at the beginning of the object
1225 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1226 traced by the GC;
1227 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1228 measured in word_size units. Rest fields may also include
1229 Lisp_Objects, but these objects usually needs some special treatment
1230 during GC.
1231 There are some exceptions. For PVEC_FREE, b) is always zero. For
1232 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1233 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1234 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1235 ptrdiff_t size;
1236 };
1237
1238 /* A regular vector is just a header plus an array of Lisp_Objects. */
1239
1240 struct Lisp_Vector
1241 {
1242 struct vectorlike_header header;
1243 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1244 };
1245
1246 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1247 enum
1248 {
1249 ALIGNOF_STRUCT_LISP_VECTOR
1250 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1251 };
1252
1253 /* A boolvector is a kind of vectorlike, with contents like a string. */
1254
1255 struct Lisp_Bool_Vector
1256 {
1257 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1258 just the subtype information. */
1259 struct vectorlike_header header;
1260 /* This is the size in bits. */
1261 EMACS_INT size;
1262 /* The actual bits, packed into bytes.
1263 Zeros fill out the last word if needed.
1264 The bits are in little-endian order in the bytes, and
1265 the bytes are in little-endian order in the words. */
1266 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1267 };
1268
1269 INLINE EMACS_INT
1270 bool_vector_size (Lisp_Object a)
1271 {
1272 EMACS_INT size = XBOOL_VECTOR (a)->size;
1273 eassume (0 <= size);
1274 return size;
1275 }
1276
1277 INLINE bits_word *
1278 bool_vector_data (Lisp_Object a)
1279 {
1280 return XBOOL_VECTOR (a)->data;
1281 }
1282
1283 INLINE unsigned char *
1284 bool_vector_uchar_data (Lisp_Object a)
1285 {
1286 return (unsigned char *) bool_vector_data (a);
1287 }
1288
1289 /* The number of data words and bytes in a bool vector with SIZE bits. */
1290
1291 INLINE EMACS_INT
1292 bool_vector_words (EMACS_INT size)
1293 {
1294 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1295 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1296 }
1297
1298 INLINE EMACS_INT
1299 bool_vector_bytes (EMACS_INT size)
1300 {
1301 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1302 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1303 }
1304
1305 /* True if A's Ith bit is set. */
1306
1307 INLINE bool
1308 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1309 {
1310 eassume (0 <= i && i < bool_vector_size (a));
1311 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1312 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1313 }
1314
1315 INLINE Lisp_Object
1316 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1317 {
1318 return bool_vector_bitref (a, i) ? Qt : Qnil;
1319 }
1320
1321 /* Set A's Ith bit to B. */
1322
1323 INLINE void
1324 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1325 {
1326 unsigned char *addr;
1327
1328 eassume (0 <= i && i < bool_vector_size (a));
1329 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1330
1331 if (b)
1332 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1333 else
1334 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1335 }
1336
1337 /* Some handy constants for calculating sizes
1338 and offsets, mostly of vectorlike objects. */
1339
1340 enum
1341 {
1342 header_size = offsetof (struct Lisp_Vector, contents),
1343 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1344 word_size = sizeof (Lisp_Object)
1345 };
1346
1347 /* Conveniences for dealing with Lisp arrays. */
1348
1349 INLINE Lisp_Object
1350 AREF (Lisp_Object array, ptrdiff_t idx)
1351 {
1352 return XVECTOR (array)->contents[idx];
1353 }
1354
1355 INLINE Lisp_Object *
1356 aref_addr (Lisp_Object array, ptrdiff_t idx)
1357 {
1358 return & XVECTOR (array)->contents[idx];
1359 }
1360
1361 INLINE ptrdiff_t
1362 ASIZE (Lisp_Object array)
1363 {
1364 return XVECTOR (array)->header.size;
1365 }
1366
1367 INLINE void
1368 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1369 {
1370 eassert (0 <= idx && idx < ASIZE (array));
1371 XVECTOR (array)->contents[idx] = val;
1372 }
1373
1374 INLINE void
1375 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1376 {
1377 /* Like ASET, but also can be used in the garbage collector:
1378 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1379 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1380 XVECTOR (array)->contents[idx] = val;
1381 }
1382
1383 /* If a struct is made to look like a vector, this macro returns the length
1384 of the shortest vector that would hold that struct. */
1385
1386 #define VECSIZE(type) \
1387 ((sizeof (type) - header_size + word_size - 1) / word_size)
1388
1389 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1390 at the end and we need to compute the number of Lisp_Object fields (the
1391 ones that the GC needs to trace). */
1392
1393 #define PSEUDOVECSIZE(type, nonlispfield) \
1394 ((offsetof (type, nonlispfield) - header_size) / word_size)
1395
1396 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1397 should be integer expressions. This is not the same as
1398 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1399 returns true. For efficiency, prefer plain unsigned comparison if A
1400 and B's sizes both fit (after integer promotion). */
1401 #define UNSIGNED_CMP(a, op, b) \
1402 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1403 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1404 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1405
1406 /* True iff C is an ASCII character. */
1407 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1408
1409 /* A char-table is a kind of vectorlike, with contents are like a
1410 vector but with a few other slots. For some purposes, it makes
1411 sense to handle a char-table with type struct Lisp_Vector. An
1412 element of a char table can be any Lisp objects, but if it is a sub
1413 char-table, we treat it a table that contains information of a
1414 specific range of characters. A sub char-table has the same
1415 structure as a vector. A sub char table appears only in an element
1416 of a char-table, and there's no way to access it directly from
1417 Emacs Lisp program. */
1418
1419 enum CHARTAB_SIZE_BITS
1420 {
1421 CHARTAB_SIZE_BITS_0 = 6,
1422 CHARTAB_SIZE_BITS_1 = 4,
1423 CHARTAB_SIZE_BITS_2 = 5,
1424 CHARTAB_SIZE_BITS_3 = 7
1425 };
1426
1427 extern const int chartab_size[4];
1428
1429 struct Lisp_Char_Table
1430 {
1431 /* HEADER.SIZE is the vector's size field, which also holds the
1432 pseudovector type information. It holds the size, too.
1433 The size counts the defalt, parent, purpose, ascii,
1434 contents, and extras slots. */
1435 struct vectorlike_header header;
1436
1437 /* This holds a default value,
1438 which is used whenever the value for a specific character is nil. */
1439 Lisp_Object defalt;
1440
1441 /* This points to another char table, which we inherit from when the
1442 value for a specific character is nil. The `defalt' slot takes
1443 precedence over this. */
1444 Lisp_Object parent;
1445
1446 /* This is a symbol which says what kind of use this char-table is
1447 meant for. */
1448 Lisp_Object purpose;
1449
1450 /* The bottom sub char-table for characters of the range 0..127. It
1451 is nil if none of ASCII character has a specific value. */
1452 Lisp_Object ascii;
1453
1454 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1455
1456 /* These hold additional data. It is a vector. */
1457 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 struct Lisp_Sub_Char_Table
1461 {
1462 /* HEADER.SIZE is the vector's size field, which also holds the
1463 pseudovector type information. It holds the size, too. */
1464 struct vectorlike_header header;
1465
1466 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1467 char-table of depth 1 contains 16 elements, and each element
1468 covers 4096 (128*32) characters. A sub char-table of depth 2
1469 contains 32 elements, and each element covers 128 characters. A
1470 sub char-table of depth 3 contains 128 elements, and each element
1471 is for one character. */
1472 Lisp_Object depth;
1473
1474 /* Minimum character covered by the sub char-table. */
1475 Lisp_Object min_char;
1476
1477 /* Use set_sub_char_table_contents to set this. */
1478 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1479 };
1480
1481 INLINE Lisp_Object
1482 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1483 {
1484 struct Lisp_Char_Table *tbl = NULL;
1485 Lisp_Object val;
1486 do
1487 {
1488 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1489 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1490 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1491 if (NILP (val))
1492 val = tbl->defalt;
1493 }
1494 while (NILP (val) && ! NILP (tbl->parent));
1495
1496 return val;
1497 }
1498
1499 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1500 characters. Do not check validity of CT. */
1501 INLINE Lisp_Object
1502 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1503 {
1504 return (ASCII_CHAR_P (idx)
1505 ? CHAR_TABLE_REF_ASCII (ct, idx)
1506 : char_table_ref (ct, idx));
1507 }
1508
1509 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1510 8-bit European characters. Do not check validity of CT. */
1511 INLINE void
1512 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1513 {
1514 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1515 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1516 else
1517 char_table_set (ct, idx, val);
1518 }
1519
1520 /* This structure describes a built-in function.
1521 It is generated by the DEFUN macro only.
1522 defsubr makes it into a Lisp object. */
1523
1524 struct Lisp_Subr
1525 {
1526 struct vectorlike_header header;
1527 union {
1528 Lisp_Object (*a0) (void);
1529 Lisp_Object (*a1) (Lisp_Object);
1530 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1531 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1532 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1533 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1534 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1535 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1536 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1537 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1538 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1539 } function;
1540 short min_args, max_args;
1541 const char *symbol_name;
1542 const char *intspec;
1543 const char *doc;
1544 };
1545
1546 /* This is the number of slots that every char table must have. This
1547 counts the ordinary slots and the top, defalt, parent, and purpose
1548 slots. */
1549 enum CHAR_TABLE_STANDARD_SLOTS
1550 {
1551 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras)
1552 };
1553
1554 /* Return the number of "extra" slots in the char table CT. */
1555
1556 INLINE int
1557 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1558 {
1559 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1560 - CHAR_TABLE_STANDARD_SLOTS);
1561 }
1562
1563 \f
1564 /***********************************************************************
1565 Symbols
1566 ***********************************************************************/
1567
1568 /* Interned state of a symbol. */
1569
1570 enum symbol_interned
1571 {
1572 SYMBOL_UNINTERNED = 0,
1573 SYMBOL_INTERNED = 1,
1574 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
1575 };
1576
1577 enum symbol_redirect
1578 {
1579 SYMBOL_PLAINVAL = 4,
1580 SYMBOL_VARALIAS = 1,
1581 SYMBOL_LOCALIZED = 2,
1582 SYMBOL_FORWARDED = 3
1583 };
1584
1585 struct Lisp_Symbol
1586 {
1587 bool_bf gcmarkbit : 1;
1588
1589 /* Indicates where the value can be found:
1590 0 : it's a plain var, the value is in the `value' field.
1591 1 : it's a varalias, the value is really in the `alias' symbol.
1592 2 : it's a localized var, the value is in the `blv' object.
1593 3 : it's a forwarding variable, the value is in `forward'. */
1594 ENUM_BF (symbol_redirect) redirect : 3;
1595
1596 /* Non-zero means symbol is constant, i.e. changing its value
1597 should signal an error. If the value is 3, then the var
1598 can be changed, but only by `defconst'. */
1599 unsigned constant : 2;
1600
1601 /* Interned state of the symbol. This is an enumerator from
1602 enum symbol_interned. */
1603 unsigned interned : 2;
1604
1605 /* True means that this variable has been explicitly declared
1606 special (with `defvar' etc), and shouldn't be lexically bound. */
1607 bool_bf declared_special : 1;
1608
1609 /* True if pointed to from purespace and hence can't be GC'd. */
1610 bool_bf pinned : 1;
1611
1612 /* The symbol's name, as a Lisp string. */
1613 Lisp_Object name;
1614
1615 /* Value of the symbol or Qunbound if unbound. Which alternative of the
1616 union is used depends on the `redirect' field above. */
1617 union {
1618 Lisp_Object value;
1619 struct Lisp_Symbol *alias;
1620 struct Lisp_Buffer_Local_Value *blv;
1621 union Lisp_Fwd *fwd;
1622 } val;
1623
1624 /* Function value of the symbol or Qnil if not fboundp. */
1625 Lisp_Object function;
1626
1627 /* The symbol's property list. */
1628 Lisp_Object plist;
1629
1630 /* Next symbol in obarray bucket, if the symbol is interned. */
1631 struct Lisp_Symbol *next;
1632 };
1633
1634 /* Value is name of symbol. */
1635
1636 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1637
1638 INLINE struct Lisp_Symbol *
1639 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1640 {
1641 eassert (sym->redirect == SYMBOL_VARALIAS);
1642 return sym->val.alias;
1643 }
1644 INLINE struct Lisp_Buffer_Local_Value *
1645 SYMBOL_BLV (struct Lisp_Symbol *sym)
1646 {
1647 eassert (sym->redirect == SYMBOL_LOCALIZED);
1648 return sym->val.blv;
1649 }
1650 INLINE union Lisp_Fwd *
1651 SYMBOL_FWD (struct Lisp_Symbol *sym)
1652 {
1653 eassert (sym->redirect == SYMBOL_FORWARDED);
1654 return sym->val.fwd;
1655 }
1656
1657 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1658 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1659
1660 INLINE void
1661 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1662 {
1663 eassert (sym->redirect == SYMBOL_VARALIAS);
1664 sym->val.alias = v;
1665 }
1666 INLINE void
1667 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1668 {
1669 eassert (sym->redirect == SYMBOL_LOCALIZED);
1670 sym->val.blv = v;
1671 }
1672 INLINE void
1673 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1674 {
1675 eassert (sym->redirect == SYMBOL_FORWARDED);
1676 sym->val.fwd = v;
1677 }
1678
1679 INLINE Lisp_Object
1680 SYMBOL_NAME (Lisp_Object sym)
1681 {
1682 return XSYMBOL (sym)->name;
1683 }
1684
1685 /* Value is true if SYM is an interned symbol. */
1686
1687 INLINE bool
1688 SYMBOL_INTERNED_P (Lisp_Object sym)
1689 {
1690 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1691 }
1692
1693 /* Value is true if SYM is interned in initial_obarray. */
1694
1695 INLINE bool
1696 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1697 {
1698 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1699 }
1700
1701 /* Value is non-zero if symbol is considered a constant, i.e. its
1702 value cannot be changed (there is an exception for keyword symbols,
1703 whose value can be set to the keyword symbol itself). */
1704
1705 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1706
1707 #define DEFSYM(sym, name) \
1708 do { (sym) = intern_c_string ((name)); staticpro (&(sym)); } while (false)
1709
1710 \f
1711 /***********************************************************************
1712 Hash Tables
1713 ***********************************************************************/
1714
1715 /* The structure of a Lisp hash table. */
1716
1717 struct hash_table_test
1718 {
1719 /* Name of the function used to compare keys. */
1720 Lisp_Object name;
1721
1722 /* User-supplied hash function, or nil. */
1723 Lisp_Object user_hash_function;
1724
1725 /* User-supplied key comparison function, or nil. */
1726 Lisp_Object user_cmp_function;
1727
1728 /* C function to compare two keys. */
1729 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1730
1731 /* C function to compute hash code. */
1732 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1733 };
1734
1735 struct Lisp_Hash_Table
1736 {
1737 /* This is for Lisp; the hash table code does not refer to it. */
1738 struct vectorlike_header header;
1739
1740 /* Nil if table is non-weak. Otherwise a symbol describing the
1741 weakness of the table. */
1742 Lisp_Object weak;
1743
1744 /* When the table is resized, and this is an integer, compute the
1745 new size by adding this to the old size. If a float, compute the
1746 new size by multiplying the old size with this factor. */
1747 Lisp_Object rehash_size;
1748
1749 /* Resize hash table when number of entries/ table size is >= this
1750 ratio, a float. */
1751 Lisp_Object rehash_threshold;
1752
1753 /* Vector of hash codes. If hash[I] is nil, this means that the
1754 I-th entry is unused. */
1755 Lisp_Object hash;
1756
1757 /* Vector used to chain entries. If entry I is free, next[I] is the
1758 entry number of the next free item. If entry I is non-free,
1759 next[I] is the index of the next entry in the collision chain. */
1760 Lisp_Object next;
1761
1762 /* Index of first free entry in free list. */
1763 Lisp_Object next_free;
1764
1765 /* Bucket vector. A non-nil entry is the index of the first item in
1766 a collision chain. This vector's size can be larger than the
1767 hash table size to reduce collisions. */
1768 Lisp_Object index;
1769
1770 /* Only the fields above are traced normally by the GC. The ones below
1771 `count' are special and are either ignored by the GC or traced in
1772 a special way (e.g. because of weakness). */
1773
1774 /* Number of key/value entries in the table. */
1775 ptrdiff_t count;
1776
1777 /* Vector of keys and values. The key of item I is found at index
1778 2 * I, the value is found at index 2 * I + 1.
1779 This is gc_marked specially if the table is weak. */
1780 Lisp_Object key_and_value;
1781
1782 /* The comparison and hash functions. */
1783 struct hash_table_test test;
1784
1785 /* Next weak hash table if this is a weak hash table. The head
1786 of the list is in weak_hash_tables. */
1787 struct Lisp_Hash_Table *next_weak;
1788 };
1789
1790
1791 INLINE struct Lisp_Hash_Table *
1792 XHASH_TABLE (Lisp_Object a)
1793 {
1794 return XUNTAG (a, Lisp_Vectorlike);
1795 }
1796
1797 #define XSET_HASH_TABLE(VAR, PTR) \
1798 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1799
1800 INLINE bool
1801 HASH_TABLE_P (Lisp_Object a)
1802 {
1803 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1804 }
1805
1806 /* Value is the key part of entry IDX in hash table H. */
1807 INLINE Lisp_Object
1808 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1809 {
1810 return AREF (h->key_and_value, 2 * idx);
1811 }
1812
1813 /* Value is the value part of entry IDX in hash table H. */
1814 INLINE Lisp_Object
1815 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1816 {
1817 return AREF (h->key_and_value, 2 * idx + 1);
1818 }
1819
1820 /* Value is the index of the next entry following the one at IDX
1821 in hash table H. */
1822 INLINE Lisp_Object
1823 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1824 {
1825 return AREF (h->next, idx);
1826 }
1827
1828 /* Value is the hash code computed for entry IDX in hash table H. */
1829 INLINE Lisp_Object
1830 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1831 {
1832 return AREF (h->hash, idx);
1833 }
1834
1835 /* Value is the index of the element in hash table H that is the
1836 start of the collision list at index IDX in the index vector of H. */
1837 INLINE Lisp_Object
1838 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1839 {
1840 return AREF (h->index, idx);
1841 }
1842
1843 /* Value is the size of hash table H. */
1844 INLINE ptrdiff_t
1845 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1846 {
1847 return ASIZE (h->next);
1848 }
1849
1850 /* Default size for hash tables if not specified. */
1851
1852 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1853
1854 /* Default threshold specifying when to resize a hash table. The
1855 value gives the ratio of current entries in the hash table and the
1856 size of the hash table. */
1857
1858 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1859
1860 /* Default factor by which to increase the size of a hash table. */
1861
1862 static double const DEFAULT_REHASH_SIZE = 1.5;
1863
1864 /* Combine two integers X and Y for hashing. The result might not fit
1865 into a Lisp integer. */
1866
1867 INLINE EMACS_UINT
1868 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1869 {
1870 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1871 }
1872
1873 /* Hash X, returning a value that fits into a fixnum. */
1874
1875 INLINE EMACS_UINT
1876 SXHASH_REDUCE (EMACS_UINT x)
1877 {
1878 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1879 }
1880
1881 /* These structures are used for various misc types. */
1882
1883 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1884 {
1885 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1886 bool_bf gcmarkbit : 1;
1887 unsigned spacer : 15;
1888 };
1889
1890 struct Lisp_Marker
1891 {
1892 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1893 bool_bf gcmarkbit : 1;
1894 unsigned spacer : 13;
1895 /* This flag is temporarily used in the functions
1896 decode/encode_coding_object to record that the marker position
1897 must be adjusted after the conversion. */
1898 bool_bf need_adjustment : 1;
1899 /* True means normal insertion at the marker's position
1900 leaves the marker after the inserted text. */
1901 bool_bf insertion_type : 1;
1902 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1903 Note: a chain of markers can contain markers pointing into different
1904 buffers (the chain is per buffer_text rather than per buffer, so it's
1905 shared between indirect buffers). */
1906 /* This is used for (other than NULL-checking):
1907 - Fmarker_buffer
1908 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1909 - unchain_marker: to find the list from which to unchain.
1910 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1911 */
1912 struct buffer *buffer;
1913
1914 /* The remaining fields are meaningless in a marker that
1915 does not point anywhere. */
1916
1917 /* For markers that point somewhere,
1918 this is used to chain of all the markers in a given buffer. */
1919 /* We could remove it and use an array in buffer_text instead.
1920 That would also allow to preserve it ordered. */
1921 struct Lisp_Marker *next;
1922 /* This is the char position where the marker points. */
1923 ptrdiff_t charpos;
1924 /* This is the byte position.
1925 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
1926 used to implement the functionality of markers, but rather to (ab)use
1927 markers as a cache for char<->byte mappings). */
1928 ptrdiff_t bytepos;
1929 };
1930
1931 /* START and END are markers in the overlay's buffer, and
1932 PLIST is the overlay's property list. */
1933 struct Lisp_Overlay
1934 /* An overlay's real data content is:
1935 - plist
1936 - buffer (really there are two buffer pointers, one per marker,
1937 and both points to the same buffer)
1938 - insertion type of both ends (per-marker fields)
1939 - start & start byte (of start marker)
1940 - end & end byte (of end marker)
1941 - next (singly linked list of overlays)
1942 - next fields of start and end markers (singly linked list of markers).
1943 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
1944 */
1945 {
1946 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
1947 bool_bf gcmarkbit : 1;
1948 unsigned spacer : 15;
1949 struct Lisp_Overlay *next;
1950 Lisp_Object start;
1951 Lisp_Object end;
1952 Lisp_Object plist;
1953 };
1954
1955 /* Types of data which may be saved in a Lisp_Save_Value. */
1956
1957 enum
1958 {
1959 SAVE_UNUSED,
1960 SAVE_INTEGER,
1961 SAVE_FUNCPOINTER,
1962 SAVE_POINTER,
1963 SAVE_OBJECT
1964 };
1965
1966 /* Number of bits needed to store one of the above values. */
1967 enum { SAVE_SLOT_BITS = 3 };
1968
1969 /* Number of slots in a save value where save_type is nonzero. */
1970 enum { SAVE_VALUE_SLOTS = 4 };
1971
1972 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
1973
1974 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
1975
1976 enum Lisp_Save_Type
1977 {
1978 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1979 SAVE_TYPE_INT_INT_INT
1980 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
1981 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
1982 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
1983 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
1984 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
1985 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
1986 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
1987 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
1988 SAVE_TYPE_FUNCPTR_PTR_OBJ
1989 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
1990
1991 /* This has an extra bit indicating it's raw memory. */
1992 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
1993 };
1994
1995 /* Special object used to hold a different values for later use.
1996
1997 This is mostly used to package C integers and pointers to call
1998 record_unwind_protect when two or more values need to be saved.
1999 For example:
2000
2001 ...
2002 struct my_data *md = get_my_data ();
2003 ptrdiff_t mi = get_my_integer ();
2004 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2005 ...
2006
2007 Lisp_Object my_unwind (Lisp_Object arg)
2008 {
2009 struct my_data *md = XSAVE_POINTER (arg, 0);
2010 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2011 ...
2012 }
2013
2014 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2015 saved objects and raise eassert if type of the saved object doesn't match
2016 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2017 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2018 slot 0 is a pointer. */
2019
2020 typedef void (*voidfuncptr) (void);
2021
2022 struct Lisp_Save_Value
2023 {
2024 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2025 bool_bf gcmarkbit : 1;
2026 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2027
2028 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2029 V's data entries are determined by V->save_type. E.g., if
2030 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2031 V->data[1] is an integer, and V's other data entries are unused.
2032
2033 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2034 a memory area containing V->data[1].integer potential Lisp_Objects. */
2035 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2036 union {
2037 void *pointer;
2038 voidfuncptr funcpointer;
2039 ptrdiff_t integer;
2040 Lisp_Object object;
2041 } data[SAVE_VALUE_SLOTS];
2042 };
2043
2044 /* Return the type of V's Nth saved value. */
2045 INLINE int
2046 save_type (struct Lisp_Save_Value *v, int n)
2047 {
2048 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2049 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2050 }
2051
2052 /* Get and set the Nth saved pointer. */
2053
2054 INLINE void *
2055 XSAVE_POINTER (Lisp_Object obj, int n)
2056 {
2057 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2058 return XSAVE_VALUE (obj)->data[n].pointer;
2059 }
2060 INLINE void
2061 set_save_pointer (Lisp_Object obj, int n, void *val)
2062 {
2063 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2064 XSAVE_VALUE (obj)->data[n].pointer = val;
2065 }
2066 INLINE voidfuncptr
2067 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2068 {
2069 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2070 return XSAVE_VALUE (obj)->data[n].funcpointer;
2071 }
2072
2073 /* Likewise for the saved integer. */
2074
2075 INLINE ptrdiff_t
2076 XSAVE_INTEGER (Lisp_Object obj, int n)
2077 {
2078 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2079 return XSAVE_VALUE (obj)->data[n].integer;
2080 }
2081 INLINE void
2082 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2083 {
2084 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2085 XSAVE_VALUE (obj)->data[n].integer = val;
2086 }
2087
2088 /* Extract Nth saved object. */
2089
2090 INLINE Lisp_Object
2091 XSAVE_OBJECT (Lisp_Object obj, int n)
2092 {
2093 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2094 return XSAVE_VALUE (obj)->data[n].object;
2095 }
2096
2097 /* A miscellaneous object, when it's on the free list. */
2098 struct Lisp_Free
2099 {
2100 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2101 bool_bf gcmarkbit : 1;
2102 unsigned spacer : 15;
2103 union Lisp_Misc *chain;
2104 };
2105
2106 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2107 It uses one of these struct subtypes to get the type field. */
2108
2109 union Lisp_Misc
2110 {
2111 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2112 struct Lisp_Free u_free;
2113 struct Lisp_Marker u_marker;
2114 struct Lisp_Overlay u_overlay;
2115 struct Lisp_Save_Value u_save_value;
2116 };
2117
2118 INLINE union Lisp_Misc *
2119 XMISC (Lisp_Object a)
2120 {
2121 return XUNTAG (a, Lisp_Misc);
2122 }
2123
2124 INLINE struct Lisp_Misc_Any *
2125 XMISCANY (Lisp_Object a)
2126 {
2127 eassert (MISCP (a));
2128 return & XMISC (a)->u_any;
2129 }
2130
2131 INLINE enum Lisp_Misc_Type
2132 XMISCTYPE (Lisp_Object a)
2133 {
2134 return XMISCANY (a)->type;
2135 }
2136
2137 INLINE struct Lisp_Marker *
2138 XMARKER (Lisp_Object a)
2139 {
2140 eassert (MARKERP (a));
2141 return & XMISC (a)->u_marker;
2142 }
2143
2144 INLINE struct Lisp_Overlay *
2145 XOVERLAY (Lisp_Object a)
2146 {
2147 eassert (OVERLAYP (a));
2148 return & XMISC (a)->u_overlay;
2149 }
2150
2151 INLINE struct Lisp_Save_Value *
2152 XSAVE_VALUE (Lisp_Object a)
2153 {
2154 eassert (SAVE_VALUEP (a));
2155 return & XMISC (a)->u_save_value;
2156 }
2157 \f
2158 /* Forwarding pointer to an int variable.
2159 This is allowed only in the value cell of a symbol,
2160 and it means that the symbol's value really lives in the
2161 specified int variable. */
2162 struct Lisp_Intfwd
2163 {
2164 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2165 EMACS_INT *intvar;
2166 };
2167
2168 /* Boolean forwarding pointer to an int variable.
2169 This is like Lisp_Intfwd except that the ostensible
2170 "value" of the symbol is t if the bool variable is true,
2171 nil if it is false. */
2172 struct Lisp_Boolfwd
2173 {
2174 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2175 bool *boolvar;
2176 };
2177
2178 /* Forwarding pointer to a Lisp_Object variable.
2179 This is allowed only in the value cell of a symbol,
2180 and it means that the symbol's value really lives in the
2181 specified variable. */
2182 struct Lisp_Objfwd
2183 {
2184 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2185 Lisp_Object *objvar;
2186 };
2187
2188 /* Like Lisp_Objfwd except that value lives in a slot in the
2189 current buffer. Value is byte index of slot within buffer. */
2190 struct Lisp_Buffer_Objfwd
2191 {
2192 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2193 int offset;
2194 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2195 Lisp_Object predicate;
2196 };
2197
2198 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2199 the symbol has buffer-local or frame-local bindings. (Exception:
2200 some buffer-local variables are built-in, with their values stored
2201 in the buffer structure itself. They are handled differently,
2202 using struct Lisp_Buffer_Objfwd.)
2203
2204 The `realvalue' slot holds the variable's current value, or a
2205 forwarding pointer to where that value is kept. This value is the
2206 one that corresponds to the loaded binding. To read or set the
2207 variable, you must first make sure the right binding is loaded;
2208 then you can access the value in (or through) `realvalue'.
2209
2210 `buffer' and `frame' are the buffer and frame for which the loaded
2211 binding was found. If those have changed, to make sure the right
2212 binding is loaded it is necessary to find which binding goes with
2213 the current buffer and selected frame, then load it. To load it,
2214 first unload the previous binding, then copy the value of the new
2215 binding into `realvalue' (or through it). Also update
2216 LOADED-BINDING to point to the newly loaded binding.
2217
2218 `local_if_set' indicates that merely setting the variable creates a
2219 local binding for the current buffer. Otherwise the latter, setting
2220 the variable does not do that; only make-local-variable does that. */
2221
2222 struct Lisp_Buffer_Local_Value
2223 {
2224 /* True means that merely setting the variable creates a local
2225 binding for the current buffer. */
2226 bool_bf local_if_set : 1;
2227 /* True means this variable can have frame-local bindings, otherwise, it is
2228 can have buffer-local bindings. The two cannot be combined. */
2229 bool_bf frame_local : 1;
2230 /* True means that the binding now loaded was found.
2231 Presumably equivalent to (defcell!=valcell). */
2232 bool_bf found : 1;
2233 /* If non-NULL, a forwarding to the C var where it should also be set. */
2234 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2235 /* The buffer or frame for which the loaded binding was found. */
2236 Lisp_Object where;
2237 /* A cons cell that holds the default value. It has the form
2238 (SYMBOL . DEFAULT-VALUE). */
2239 Lisp_Object defcell;
2240 /* The cons cell from `where's parameter alist.
2241 It always has the form (SYMBOL . VALUE)
2242 Note that if `forward' is non-nil, VALUE may be out of date.
2243 Also if the currently loaded binding is the default binding, then
2244 this is `eq'ual to defcell. */
2245 Lisp_Object valcell;
2246 };
2247
2248 /* Like Lisp_Objfwd except that value lives in a slot in the
2249 current kboard. */
2250 struct Lisp_Kboard_Objfwd
2251 {
2252 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2253 int offset;
2254 };
2255
2256 union Lisp_Fwd
2257 {
2258 struct Lisp_Intfwd u_intfwd;
2259 struct Lisp_Boolfwd u_boolfwd;
2260 struct Lisp_Objfwd u_objfwd;
2261 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2262 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2263 };
2264
2265 INLINE enum Lisp_Fwd_Type
2266 XFWDTYPE (union Lisp_Fwd *a)
2267 {
2268 return a->u_intfwd.type;
2269 }
2270
2271 INLINE struct Lisp_Buffer_Objfwd *
2272 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2273 {
2274 eassert (BUFFER_OBJFWDP (a));
2275 return &a->u_buffer_objfwd;
2276 }
2277 \f
2278 /* Lisp floating point type. */
2279 struct Lisp_Float
2280 {
2281 union
2282 {
2283 double data;
2284 struct Lisp_Float *chain;
2285 } u;
2286 };
2287
2288 INLINE double
2289 XFLOAT_DATA (Lisp_Object f)
2290 {
2291 return XFLOAT (f)->u.data;
2292 }
2293
2294 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2295 representations, have infinities and NaNs, and do not trap on
2296 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2297 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2298 wanted here, but is not quite right because Emacs does not require
2299 all the features of C11 Annex F (and does not require C11 at all,
2300 for that matter). */
2301 enum
2302 {
2303 IEEE_FLOATING_POINT
2304 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2305 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2306 };
2307
2308 /* A character, declared with the following typedef, is a member
2309 of some character set associated with the current buffer. */
2310 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2311 #define _UCHAR_T
2312 typedef unsigned char UCHAR;
2313 #endif
2314
2315 /* Meanings of slots in a Lisp_Compiled: */
2316
2317 enum Lisp_Compiled
2318 {
2319 COMPILED_ARGLIST = 0,
2320 COMPILED_BYTECODE = 1,
2321 COMPILED_CONSTANTS = 2,
2322 COMPILED_STACK_DEPTH = 3,
2323 COMPILED_DOC_STRING = 4,
2324 COMPILED_INTERACTIVE = 5
2325 };
2326
2327 /* Flag bits in a character. These also get used in termhooks.h.
2328 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2329 (MUlti-Lingual Emacs) might need 22 bits for the character value
2330 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2331 enum char_bits
2332 {
2333 CHAR_ALT = 0x0400000,
2334 CHAR_SUPER = 0x0800000,
2335 CHAR_HYPER = 0x1000000,
2336 CHAR_SHIFT = 0x2000000,
2337 CHAR_CTL = 0x4000000,
2338 CHAR_META = 0x8000000,
2339
2340 CHAR_MODIFIER_MASK =
2341 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2342
2343 /* Actually, the current Emacs uses 22 bits for the character value
2344 itself. */
2345 CHARACTERBITS = 22
2346 };
2347 \f
2348 /* Data type checking. */
2349
2350 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2351
2352 INLINE bool
2353 NUMBERP (Lisp_Object x)
2354 {
2355 return INTEGERP (x) || FLOATP (x);
2356 }
2357 INLINE bool
2358 NATNUMP (Lisp_Object x)
2359 {
2360 return INTEGERP (x) && 0 <= XINT (x);
2361 }
2362
2363 INLINE bool
2364 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2365 {
2366 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2367 }
2368
2369 #define TYPE_RANGED_INTEGERP(type, x) \
2370 (INTEGERP (x) \
2371 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2372 && XINT (x) <= TYPE_MAXIMUM (type))
2373
2374 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2375 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2376 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2377 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2378 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2379 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2380 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2381
2382 INLINE bool
2383 STRINGP (Lisp_Object x)
2384 {
2385 return XTYPE (x) == Lisp_String;
2386 }
2387 INLINE bool
2388 VECTORP (Lisp_Object x)
2389 {
2390 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2391 }
2392 INLINE bool
2393 OVERLAYP (Lisp_Object x)
2394 {
2395 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2396 }
2397 INLINE bool
2398 SAVE_VALUEP (Lisp_Object x)
2399 {
2400 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2401 }
2402
2403 INLINE bool
2404 AUTOLOADP (Lisp_Object x)
2405 {
2406 return CONSP (x) && EQ (Qautoload, XCAR (x));
2407 }
2408
2409 INLINE bool
2410 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2411 {
2412 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2413 }
2414
2415 INLINE bool
2416 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2417 {
2418 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2419 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2420 }
2421
2422 /* True if A is a pseudovector whose code is CODE. */
2423 INLINE bool
2424 PSEUDOVECTORP (Lisp_Object a, int code)
2425 {
2426 if (! VECTORLIKEP (a))
2427 return false;
2428 else
2429 {
2430 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2431 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2432 return PSEUDOVECTOR_TYPEP (h, code);
2433 }
2434 }
2435
2436
2437 /* Test for specific pseudovector types. */
2438
2439 INLINE bool
2440 WINDOW_CONFIGURATIONP (Lisp_Object a)
2441 {
2442 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2443 }
2444
2445 INLINE bool
2446 PROCESSP (Lisp_Object a)
2447 {
2448 return PSEUDOVECTORP (a, PVEC_PROCESS);
2449 }
2450
2451 INLINE bool
2452 WINDOWP (Lisp_Object a)
2453 {
2454 return PSEUDOVECTORP (a, PVEC_WINDOW);
2455 }
2456
2457 INLINE bool
2458 TERMINALP (Lisp_Object a)
2459 {
2460 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2461 }
2462
2463 INLINE bool
2464 SUBRP (Lisp_Object a)
2465 {
2466 return PSEUDOVECTORP (a, PVEC_SUBR);
2467 }
2468
2469 INLINE bool
2470 COMPILEDP (Lisp_Object a)
2471 {
2472 return PSEUDOVECTORP (a, PVEC_COMPILED);
2473 }
2474
2475 INLINE bool
2476 BUFFERP (Lisp_Object a)
2477 {
2478 return PSEUDOVECTORP (a, PVEC_BUFFER);
2479 }
2480
2481 INLINE bool
2482 CHAR_TABLE_P (Lisp_Object a)
2483 {
2484 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2485 }
2486
2487 INLINE bool
2488 SUB_CHAR_TABLE_P (Lisp_Object a)
2489 {
2490 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2491 }
2492
2493 INLINE bool
2494 BOOL_VECTOR_P (Lisp_Object a)
2495 {
2496 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2497 }
2498
2499 INLINE bool
2500 FRAMEP (Lisp_Object a)
2501 {
2502 return PSEUDOVECTORP (a, PVEC_FRAME);
2503 }
2504
2505 /* Test for image (image . spec) */
2506 INLINE bool
2507 IMAGEP (Lisp_Object x)
2508 {
2509 return CONSP (x) && EQ (XCAR (x), Qimage);
2510 }
2511
2512 /* Array types. */
2513 INLINE bool
2514 ARRAYP (Lisp_Object x)
2515 {
2516 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2517 }
2518 \f
2519 INLINE void
2520 CHECK_LIST (Lisp_Object x)
2521 {
2522 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2523 }
2524
2525 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2526 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2527 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2528
2529 INLINE void
2530 CHECK_STRING (Lisp_Object x)
2531 {
2532 CHECK_TYPE (STRINGP (x), Qstringp, x);
2533 }
2534 INLINE void
2535 CHECK_STRING_CAR (Lisp_Object x)
2536 {
2537 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2538 }
2539 INLINE void
2540 CHECK_CONS (Lisp_Object x)
2541 {
2542 CHECK_TYPE (CONSP (x), Qconsp, x);
2543 }
2544 INLINE void
2545 CHECK_VECTOR (Lisp_Object x)
2546 {
2547 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2548 }
2549 INLINE void
2550 CHECK_BOOL_VECTOR (Lisp_Object x)
2551 {
2552 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2553 }
2554 INLINE void
2555 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2556 {
2557 CHECK_TYPE (VECTORP (x) || STRINGP (x), Qarrayp, x);
2558 }
2559 INLINE void
2560 CHECK_ARRAY (Lisp_Object x, Lisp_Object Qxxxp)
2561 {
2562 CHECK_TYPE (ARRAYP (x), Qxxxp, x);
2563 }
2564 INLINE void
2565 CHECK_BUFFER (Lisp_Object x)
2566 {
2567 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2568 }
2569 INLINE void
2570 CHECK_WINDOW (Lisp_Object x)
2571 {
2572 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2573 }
2574 #ifdef subprocesses
2575 INLINE void
2576 CHECK_PROCESS (Lisp_Object x)
2577 {
2578 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2579 }
2580 #endif
2581 INLINE void
2582 CHECK_NATNUM (Lisp_Object x)
2583 {
2584 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2585 }
2586
2587 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2588 do { \
2589 CHECK_NUMBER (x); \
2590 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2591 args_out_of_range_3 \
2592 (x, \
2593 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2594 ? MOST_NEGATIVE_FIXNUM \
2595 : (lo)), \
2596 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2597 } while (false)
2598 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2599 do { \
2600 if (TYPE_SIGNED (type)) \
2601 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2602 else \
2603 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2604 } while (false)
2605
2606 #define CHECK_NUMBER_COERCE_MARKER(x) \
2607 do { \
2608 if (MARKERP ((x))) \
2609 XSETFASTINT (x, marker_position (x)); \
2610 else \
2611 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2612 } while (false)
2613
2614 INLINE double
2615 XFLOATINT (Lisp_Object n)
2616 {
2617 return extract_float (n);
2618 }
2619
2620 INLINE void
2621 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2622 {
2623 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2624 }
2625
2626 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2627 do { \
2628 if (MARKERP (x)) \
2629 XSETFASTINT (x, marker_position (x)); \
2630 else \
2631 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2632 } while (false)
2633
2634 /* Since we can't assign directly to the CAR or CDR fields of a cons
2635 cell, use these when checking that those fields contain numbers. */
2636 INLINE void
2637 CHECK_NUMBER_CAR (Lisp_Object x)
2638 {
2639 Lisp_Object tmp = XCAR (x);
2640 CHECK_NUMBER (tmp);
2641 XSETCAR (x, tmp);
2642 }
2643
2644 INLINE void
2645 CHECK_NUMBER_CDR (Lisp_Object x)
2646 {
2647 Lisp_Object tmp = XCDR (x);
2648 CHECK_NUMBER (tmp);
2649 XSETCDR (x, tmp);
2650 }
2651 \f
2652 /* Define a built-in function for calling from Lisp.
2653 `lname' should be the name to give the function in Lisp,
2654 as a null-terminated C string.
2655 `fnname' should be the name of the function in C.
2656 By convention, it starts with F.
2657 `sname' should be the name for the C constant structure
2658 that records information on this function for internal use.
2659 By convention, it should be the same as `fnname' but with S instead of F.
2660 It's too bad that C macros can't compute this from `fnname'.
2661 `minargs' should be a number, the minimum number of arguments allowed.
2662 `maxargs' should be a number, the maximum number of arguments allowed,
2663 or else MANY or UNEVALLED.
2664 MANY means pass a vector of evaluated arguments,
2665 in the form of an integer number-of-arguments
2666 followed by the address of a vector of Lisp_Objects
2667 which contains the argument values.
2668 UNEVALLED means pass the list of unevaluated arguments
2669 `intspec' says how interactive arguments are to be fetched.
2670 If the string starts with a `(', `intspec' is evaluated and the resulting
2671 list is the list of arguments.
2672 If it's a string that doesn't start with `(', the value should follow
2673 the one of the doc string for `interactive'.
2674 A null string means call interactively with no arguments.
2675 `doc' is documentation for the user. */
2676
2677 /* This version of DEFUN declares a function prototype with the right
2678 arguments, so we can catch errors with maxargs at compile-time. */
2679 #ifdef _MSC_VER
2680 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2681 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2682 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2683 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2684 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2685 { (Lisp_Object (__cdecl *)(void))fnname }, \
2686 minargs, maxargs, lname, intspec, 0}; \
2687 Lisp_Object fnname
2688 #else /* not _MSC_VER */
2689 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2690 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2691 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2692 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2693 { .a ## maxargs = fnname }, \
2694 minargs, maxargs, lname, intspec, 0}; \
2695 Lisp_Object fnname
2696 #endif
2697
2698 /* Note that the weird token-substitution semantics of ANSI C makes
2699 this work for MANY and UNEVALLED. */
2700 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
2701 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
2702 #define DEFUN_ARGS_0 (void)
2703 #define DEFUN_ARGS_1 (Lisp_Object)
2704 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
2705 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
2706 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2707 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2708 Lisp_Object)
2709 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2710 Lisp_Object, Lisp_Object)
2711 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2712 Lisp_Object, Lisp_Object, Lisp_Object)
2713 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
2714 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
2715
2716 /* True if OBJ is a Lisp function. */
2717 INLINE bool
2718 FUNCTIONP (Lisp_Object obj)
2719 {
2720 return functionp (obj);
2721 }
2722
2723 /* defsubr (Sname);
2724 is how we define the symbol for function `name' at start-up time. */
2725 extern void defsubr (struct Lisp_Subr *);
2726
2727 enum maxargs
2728 {
2729 MANY = -2,
2730 UNEVALLED = -1
2731 };
2732
2733 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2734 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2735 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2736 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2737 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2738
2739 /* Macros we use to define forwarded Lisp variables.
2740 These are used in the syms_of_FILENAME functions.
2741
2742 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2743 lisp variable is actually a field in `struct emacs_globals'. The
2744 field's name begins with "f_", which is a convention enforced by
2745 these macros. Each such global has a corresponding #define in
2746 globals.h; the plain name should be used in the code.
2747
2748 E.g., the global "cons_cells_consed" is declared as "int
2749 f_cons_cells_consed" in globals.h, but there is a define:
2750
2751 #define cons_cells_consed globals.f_cons_cells_consed
2752
2753 All C code uses the `cons_cells_consed' name. This is all done
2754 this way to support indirection for multi-threaded Emacs. */
2755
2756 #define DEFVAR_LISP(lname, vname, doc) \
2757 do { \
2758 static struct Lisp_Objfwd o_fwd; \
2759 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2760 } while (false)
2761 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2762 do { \
2763 static struct Lisp_Objfwd o_fwd; \
2764 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2765 } while (false)
2766 #define DEFVAR_BOOL(lname, vname, doc) \
2767 do { \
2768 static struct Lisp_Boolfwd b_fwd; \
2769 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2770 } while (false)
2771 #define DEFVAR_INT(lname, vname, doc) \
2772 do { \
2773 static struct Lisp_Intfwd i_fwd; \
2774 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2775 } while (false)
2776
2777 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2778 do { \
2779 static struct Lisp_Objfwd o_fwd; \
2780 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2781 } while (false)
2782
2783 #define DEFVAR_KBOARD(lname, vname, doc) \
2784 do { \
2785 static struct Lisp_Kboard_Objfwd ko_fwd; \
2786 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2787 } while (false)
2788 \f
2789 /* Save and restore the instruction and environment pointers,
2790 without affecting the signal mask. */
2791
2792 #ifdef HAVE__SETJMP
2793 typedef jmp_buf sys_jmp_buf;
2794 # define sys_setjmp(j) _setjmp (j)
2795 # define sys_longjmp(j, v) _longjmp (j, v)
2796 #elif defined HAVE_SIGSETJMP
2797 typedef sigjmp_buf sys_jmp_buf;
2798 # define sys_setjmp(j) sigsetjmp (j, 0)
2799 # define sys_longjmp(j, v) siglongjmp (j, v)
2800 #else
2801 /* A platform that uses neither _longjmp nor siglongjmp; assume
2802 longjmp does not affect the sigmask. */
2803 typedef jmp_buf sys_jmp_buf;
2804 # define sys_setjmp(j) setjmp (j)
2805 # define sys_longjmp(j, v) longjmp (j, v)
2806 #endif
2807
2808 \f
2809 /* Elisp uses several stacks:
2810 - the C stack.
2811 - the bytecode stack: used internally by the bytecode interpreter.
2812 Allocated from the C stack.
2813 - The specpdl stack: keeps track of active unwind-protect and
2814 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2815 managed stack.
2816 - The handler stack: keeps track of active catch tags and condition-case
2817 handlers. Allocated in a manually managed stack implemented by a
2818 doubly-linked list allocated via xmalloc and never freed. */
2819
2820 /* Structure for recording Lisp call stack for backtrace purposes. */
2821
2822 /* The special binding stack holds the outer values of variables while
2823 they are bound by a function application or a let form, stores the
2824 code to be executed for unwind-protect forms.
2825
2826 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2827 used all over the place, needs to be fast, and needs to know the size of
2828 union specbinding. But only eval.c should access it. */
2829
2830 enum specbind_tag {
2831 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2832 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2833 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2834 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2835 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2836 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2837 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2838 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2839 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2840 };
2841
2842 union specbinding
2843 {
2844 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2845 struct {
2846 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2847 void (*func) (Lisp_Object);
2848 Lisp_Object arg;
2849 } unwind;
2850 struct {
2851 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2852 void (*func) (void *);
2853 void *arg;
2854 } unwind_ptr;
2855 struct {
2856 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2857 void (*func) (int);
2858 int arg;
2859 } unwind_int;
2860 struct {
2861 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2862 void (*func) (void);
2863 } unwind_void;
2864 struct {
2865 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2866 /* `where' is not used in the case of SPECPDL_LET. */
2867 Lisp_Object symbol, old_value, where;
2868 } let;
2869 struct {
2870 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2871 bool_bf debug_on_exit : 1;
2872 Lisp_Object function;
2873 Lisp_Object *args;
2874 ptrdiff_t nargs;
2875 } bt;
2876 };
2877
2878 extern union specbinding *specpdl;
2879 extern union specbinding *specpdl_ptr;
2880 extern ptrdiff_t specpdl_size;
2881
2882 INLINE ptrdiff_t
2883 SPECPDL_INDEX (void)
2884 {
2885 return specpdl_ptr - specpdl;
2886 }
2887
2888 /* This structure helps implement the `catch/throw' and `condition-case/signal'
2889 control structures. A struct handler contains all the information needed to
2890 restore the state of the interpreter after a non-local jump.
2891
2892 handler structures are chained together in a doubly linked list; the `next'
2893 member points to the next outer catchtag and the `nextfree' member points in
2894 the other direction to the next inner element (which is typically the next
2895 free element since we mostly use it on the deepest handler).
2896
2897 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
2898 member is TAG, and then unbinds to it. The `val' member is used to
2899 hold VAL while the stack is unwound; `val' is returned as the value
2900 of the catch form.
2901
2902 All the other members are concerned with restoring the interpreter
2903 state.
2904
2905 Members are volatile if their values need to survive _longjmp when
2906 a 'struct handler' is a local variable. */
2907
2908 enum handlertype { CATCHER, CONDITION_CASE };
2909
2910 struct handler
2911 {
2912 enum handlertype type;
2913 Lisp_Object tag_or_ch;
2914 Lisp_Object val;
2915 struct handler *next;
2916 struct handler *nextfree;
2917
2918 /* The bytecode interpreter can have several handlers active at the same
2919 time, so when we longjmp to one of them, it needs to know which handler
2920 this was and what was the corresponding internal state. This is stored
2921 here, and when we longjmp we make sure that handlerlist points to the
2922 proper handler. */
2923 Lisp_Object *bytecode_top;
2924 int bytecode_dest;
2925
2926 /* Most global vars are reset to their value via the specpdl mechanism,
2927 but a few others are handled by storing their value here. */
2928 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
2929 struct gcpro *gcpro;
2930 #endif
2931 sys_jmp_buf jmp;
2932 EMACS_INT lisp_eval_depth;
2933 ptrdiff_t pdlcount;
2934 int poll_suppress_count;
2935 int interrupt_input_blocked;
2936 struct byte_stack *byte_stack;
2937 };
2938
2939 /* Fill in the components of c, and put it on the list. */
2940 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
2941 if (handlerlist->nextfree) \
2942 (c) = handlerlist->nextfree; \
2943 else \
2944 { \
2945 (c) = xmalloc (sizeof (struct handler)); \
2946 (c)->nextfree = NULL; \
2947 handlerlist->nextfree = (c); \
2948 } \
2949 (c)->type = (handlertype); \
2950 (c)->tag_or_ch = (tag_ch_val); \
2951 (c)->val = Qnil; \
2952 (c)->next = handlerlist; \
2953 (c)->lisp_eval_depth = lisp_eval_depth; \
2954 (c)->pdlcount = SPECPDL_INDEX (); \
2955 (c)->poll_suppress_count = poll_suppress_count; \
2956 (c)->interrupt_input_blocked = interrupt_input_blocked;\
2957 (c)->gcpro = gcprolist; \
2958 (c)->byte_stack = byte_stack_list; \
2959 handlerlist = (c);
2960
2961
2962 extern Lisp_Object memory_signal_data;
2963
2964 /* An address near the bottom of the stack.
2965 Tells GC how to save a copy of the stack. */
2966 extern char *stack_bottom;
2967
2968 /* Check quit-flag and quit if it is non-nil.
2969 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
2970 So the program needs to do QUIT at times when it is safe to quit.
2971 Every loop that might run for a long time or might not exit
2972 ought to do QUIT at least once, at a safe place.
2973 Unless that is impossible, of course.
2974 But it is very desirable to avoid creating loops where QUIT is impossible.
2975
2976 Exception: if you set immediate_quit to true,
2977 then the handler that responds to the C-g does the quit itself.
2978 This is a good thing to do around a loop that has no side effects
2979 and (in particular) cannot call arbitrary Lisp code.
2980
2981 If quit-flag is set to `kill-emacs' the SIGINT handler has received
2982 a request to exit Emacs when it is safe to do. */
2983
2984 extern void process_pending_signals (void);
2985 extern bool volatile pending_signals;
2986
2987 extern void process_quit_flag (void);
2988 #define QUIT \
2989 do { \
2990 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
2991 process_quit_flag (); \
2992 else if (pending_signals) \
2993 process_pending_signals (); \
2994 } while (false)
2995
2996
2997 /* True if ought to quit now. */
2998
2999 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3000 \f
3001 extern Lisp_Object Vascii_downcase_table;
3002 extern Lisp_Object Vascii_canon_table;
3003 \f
3004 /* Structure for recording stack slots that need marking. */
3005
3006 /* This is a chain of structures, each of which points at a Lisp_Object
3007 variable whose value should be marked in garbage collection.
3008 Normally every link of the chain is an automatic variable of a function,
3009 and its `val' points to some argument or local variable of the function.
3010 On exit to the function, the chain is set back to the value it had on entry.
3011 This way, no link remains in the chain when the stack frame containing the
3012 link disappears.
3013
3014 Every function that can call Feval must protect in this fashion all
3015 Lisp_Object variables whose contents will be used again. */
3016
3017 extern struct gcpro *gcprolist;
3018
3019 struct gcpro
3020 {
3021 struct gcpro *next;
3022
3023 /* Address of first protected variable. */
3024 volatile Lisp_Object *var;
3025
3026 /* Number of consecutive protected variables. */
3027 ptrdiff_t nvars;
3028
3029 #ifdef DEBUG_GCPRO
3030 int level;
3031 #endif
3032 };
3033
3034 /* Values of GC_MARK_STACK during compilation:
3035
3036 0 Use GCPRO as before
3037 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3038 2 Mark the stack, and check that everything GCPRO'd is
3039 marked.
3040 3 Mark using GCPRO's, mark stack last, and count how many
3041 dead objects are kept alive.
3042
3043 Formerly, method 0 was used. Currently, method 1 is used unless
3044 otherwise specified by hand when building, e.g.,
3045 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3046 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3047
3048 #define GC_USE_GCPROS_AS_BEFORE 0
3049 #define GC_MAKE_GCPROS_NOOPS 1
3050 #define GC_MARK_STACK_CHECK_GCPROS 2
3051 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3052
3053 #ifndef GC_MARK_STACK
3054 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3055 #endif
3056
3057 /* Whether we do the stack marking manually. */
3058 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3059 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3060
3061
3062 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3063
3064 /* Do something silly with gcproN vars just so gcc shuts up. */
3065 /* You get warnings from MIPSPro... */
3066
3067 #define GCPRO1(varname) ((void) gcpro1)
3068 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3069 #define GCPRO3(varname1, varname2, varname3) \
3070 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3071 #define GCPRO4(varname1, varname2, varname3, varname4) \
3072 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3073 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3074 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3075 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3076 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3077 (void) gcpro1)
3078 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3079 #define UNGCPRO ((void) 0)
3080
3081 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3082
3083 #ifndef DEBUG_GCPRO
3084
3085 #define GCPRO1(varname) \
3086 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3087 gcprolist = &gcpro1; }
3088
3089 #define GCPRO2(varname1, varname2) \
3090 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3091 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3092 gcprolist = &gcpro2; }
3093
3094 #define GCPRO3(varname1, varname2, varname3) \
3095 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3096 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3097 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3098 gcprolist = &gcpro3; }
3099
3100 #define GCPRO4(varname1, varname2, varname3, varname4) \
3101 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3102 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3103 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3104 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3105 gcprolist = &gcpro4; }
3106
3107 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3108 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3109 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3110 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3111 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3112 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3113 gcprolist = &gcpro5; }
3114
3115 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3116 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3117 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3118 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3119 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3120 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3121 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3122 gcprolist = &gcpro6; }
3123
3124 #define GCPRO7(a, b, c, d, e, f, g) \
3125 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3126 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3127 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3128 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3129 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3130 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3131 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3132 gcprolist = &gcpro7; }
3133
3134 #define UNGCPRO (gcprolist = gcpro1.next)
3135
3136 #else
3137
3138 extern int gcpro_level;
3139
3140 #define GCPRO1(varname) \
3141 {gcpro1.next = gcprolist; gcpro1.var = &varname; gcpro1.nvars = 1; \
3142 gcpro1.level = gcpro_level++; \
3143 gcprolist = &gcpro1; }
3144
3145 #define GCPRO2(varname1, varname2) \
3146 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3147 gcpro1.level = gcpro_level; \
3148 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3149 gcpro2.level = gcpro_level++; \
3150 gcprolist = &gcpro2; }
3151
3152 #define GCPRO3(varname1, varname2, varname3) \
3153 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3154 gcpro1.level = gcpro_level; \
3155 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3156 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3157 gcpro3.level = gcpro_level++; \
3158 gcprolist = &gcpro3; }
3159
3160 #define GCPRO4(varname1, varname2, varname3, varname4) \
3161 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3162 gcpro1.level = gcpro_level; \
3163 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3164 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3165 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3166 gcpro4.level = gcpro_level++; \
3167 gcprolist = &gcpro4; }
3168
3169 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3170 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3171 gcpro1.level = gcpro_level; \
3172 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3173 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3174 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3175 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3176 gcpro5.level = gcpro_level++; \
3177 gcprolist = &gcpro5; }
3178
3179 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3180 {gcpro1.next = gcprolist; gcpro1.var = &varname1; gcpro1.nvars = 1; \
3181 gcpro1.level = gcpro_level; \
3182 gcpro2.next = &gcpro1; gcpro2.var = &varname2; gcpro2.nvars = 1; \
3183 gcpro3.next = &gcpro2; gcpro3.var = &varname3; gcpro3.nvars = 1; \
3184 gcpro4.next = &gcpro3; gcpro4.var = &varname4; gcpro4.nvars = 1; \
3185 gcpro5.next = &gcpro4; gcpro5.var = &varname5; gcpro5.nvars = 1; \
3186 gcpro6.next = &gcpro5; gcpro6.var = &varname6; gcpro6.nvars = 1; \
3187 gcpro6.level = gcpro_level++; \
3188 gcprolist = &gcpro6; }
3189
3190 #define GCPRO7(a, b, c, d, e, f, g) \
3191 {gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3192 gcpro1.level = gcpro_level; \
3193 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3194 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3195 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3196 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3197 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3198 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3199 gcpro7.level = gcpro_level++; \
3200 gcprolist = &gcpro7; }
3201
3202 #define UNGCPRO \
3203 (--gcpro_level != gcpro1.level \
3204 ? emacs_abort () \
3205 : (void) (gcprolist = gcpro1.next))
3206
3207 #endif /* DEBUG_GCPRO */
3208 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3209
3210
3211 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3212 #define RETURN_UNGCPRO(expr) \
3213 do \
3214 { \
3215 Lisp_Object ret_ungc_val; \
3216 ret_ungc_val = (expr); \
3217 UNGCPRO; \
3218 return ret_ungc_val; \
3219 } \
3220 while (false)
3221
3222 /* Call staticpro (&var) to protect static variable `var'. */
3223
3224 void staticpro (Lisp_Object *);
3225 \f
3226 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
3227 meaning as in the DEFUN macro, and is used to construct a prototype. */
3228 /* We can use the same trick as in the DEFUN macro to generate the
3229 appropriate prototype. */
3230 #define EXFUN(fnname, maxargs) \
3231 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
3232
3233 #include "globals.h"
3234
3235 /* Forward declarations for prototypes. */
3236 struct window;
3237 struct frame;
3238
3239 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3240
3241 INLINE void
3242 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3243 {
3244 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3245 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3246 }
3247
3248 /* Functions to modify hash tables. */
3249
3250 INLINE void
3251 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3252 {
3253 gc_aset (h->key_and_value, 2 * idx, val);
3254 }
3255
3256 INLINE void
3257 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3258 {
3259 gc_aset (h->key_and_value, 2 * idx + 1, val);
3260 }
3261
3262 /* Use these functions to set Lisp_Object
3263 or pointer slots of struct Lisp_Symbol. */
3264
3265 INLINE void
3266 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3267 {
3268 XSYMBOL (sym)->function = function;
3269 }
3270
3271 INLINE void
3272 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3273 {
3274 XSYMBOL (sym)->plist = plist;
3275 }
3276
3277 INLINE void
3278 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3279 {
3280 XSYMBOL (sym)->next = next;
3281 }
3282
3283 /* Buffer-local (also frame-local) variable access functions. */
3284
3285 INLINE int
3286 blv_found (struct Lisp_Buffer_Local_Value *blv)
3287 {
3288 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3289 return blv->found;
3290 }
3291
3292 /* Set overlay's property list. */
3293
3294 INLINE void
3295 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3296 {
3297 XOVERLAY (overlay)->plist = plist;
3298 }
3299
3300 /* Get text properties of S. */
3301
3302 INLINE INTERVAL
3303 string_intervals (Lisp_Object s)
3304 {
3305 return XSTRING (s)->intervals;
3306 }
3307
3308 /* Set text properties of S to I. */
3309
3310 INLINE void
3311 set_string_intervals (Lisp_Object s, INTERVAL i)
3312 {
3313 XSTRING (s)->intervals = i;
3314 }
3315
3316 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3317 of setting slots directly. */
3318
3319 INLINE void
3320 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3321 {
3322 XCHAR_TABLE (table)->defalt = val;
3323 }
3324 INLINE void
3325 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3326 {
3327 XCHAR_TABLE (table)->purpose = val;
3328 }
3329
3330 /* Set different slots in (sub)character tables. */
3331
3332 INLINE void
3333 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3334 {
3335 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3336 XCHAR_TABLE (table)->extras[idx] = val;
3337 }
3338
3339 INLINE void
3340 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3341 {
3342 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3343 XCHAR_TABLE (table)->contents[idx] = val;
3344 }
3345
3346 INLINE void
3347 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3348 {
3349 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3350 }
3351
3352 /* Defined in data.c. */
3353 extern Lisp_Object Qnil, Qt, Qquote, Qlambda, Qunbound;
3354 extern Lisp_Object Qerror_conditions, Qerror_message, Qtop_level;
3355 extern Lisp_Object Qerror, Qquit, Qargs_out_of_range;
3356 extern Lisp_Object Qvoid_variable, Qvoid_function;
3357 extern Lisp_Object Qinvalid_read_syntax;
3358 extern Lisp_Object Qinvalid_function, Qwrong_number_of_arguments, Qno_catch;
3359 extern Lisp_Object Quser_error, Qend_of_file, Qarith_error, Qmark_inactive;
3360 extern Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only;
3361 extern Lisp_Object Qtext_read_only;
3362 extern Lisp_Object Qinteractive_form;
3363 extern Lisp_Object Qcircular_list;
3364 extern Lisp_Object Qintegerp, Qwholenump, Qsymbolp, Qlistp, Qconsp;
3365 extern Lisp_Object Qstringp, Qarrayp, Qsequencep, Qbufferp;
3366 extern Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qvectorp;
3367 extern Lisp_Object Qbuffer_or_string_p;
3368 extern Lisp_Object Qfboundp;
3369 extern Lisp_Object Qchar_table_p, Qvector_or_char_table_p;
3370
3371 extern Lisp_Object Qcdr;
3372
3373 extern Lisp_Object Qrange_error, Qoverflow_error;
3374
3375 extern Lisp_Object Qfloatp;
3376 extern Lisp_Object Qnumberp, Qnumber_or_marker_p;
3377
3378 extern Lisp_Object Qbuffer, Qinteger, Qsymbol;
3379
3380 extern Lisp_Object Qfont_spec, Qfont_entity, Qfont_object;
3381
3382 EXFUN (Fbyteorder, 0) ATTRIBUTE_CONST;
3383
3384 /* Defined in data.c. */
3385 extern Lisp_Object indirect_function (Lisp_Object);
3386 extern Lisp_Object find_symbol_value (Lisp_Object);
3387 enum Arith_Comparison {
3388 ARITH_EQUAL,
3389 ARITH_NOTEQUAL,
3390 ARITH_LESS,
3391 ARITH_GRTR,
3392 ARITH_LESS_OR_EQUAL,
3393 ARITH_GRTR_OR_EQUAL
3394 };
3395 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3396 enum Arith_Comparison comparison);
3397
3398 /* Convert the integer I to an Emacs representation, either the integer
3399 itself, or a cons of two or three integers, or if all else fails a float.
3400 I should not have side effects. */
3401 #define INTEGER_TO_CONS(i) \
3402 (! FIXNUM_OVERFLOW_P (i) \
3403 ? make_number (i) \
3404 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3405 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3406 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3407 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3408 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3409 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3410 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3411 ? Fcons (make_number ((i) >> 16 >> 24), \
3412 Fcons (make_number ((i) >> 16 & 0xffffff), \
3413 make_number ((i) & 0xffff))) \
3414 : make_float (i))
3415
3416 /* Convert the Emacs representation CONS back to an integer of type
3417 TYPE, storing the result the variable VAR. Signal an error if CONS
3418 is not a valid representation or is out of range for TYPE. */
3419 #define CONS_TO_INTEGER(cons, type, var) \
3420 (TYPE_SIGNED (type) \
3421 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3422 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3423 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3424 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3425
3426 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3427 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3428 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3429 Lisp_Object);
3430 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
3431 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3432 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3433 extern void syms_of_data (void);
3434 extern void swap_in_global_binding (struct Lisp_Symbol *);
3435
3436 /* Defined in cmds.c */
3437 extern void syms_of_cmds (void);
3438 extern void keys_of_cmds (void);
3439
3440 /* Defined in coding.c. */
3441 extern Lisp_Object Qcharset;
3442 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3443 ptrdiff_t, bool, bool, Lisp_Object);
3444 extern void init_coding (void);
3445 extern void init_coding_once (void);
3446 extern void syms_of_coding (void);
3447
3448 /* Defined in character.c. */
3449 EXFUN (Fmax_char, 0) ATTRIBUTE_CONST;
3450 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3451 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3452 extern int multibyte_char_to_unibyte (int) ATTRIBUTE_CONST;
3453 extern int multibyte_char_to_unibyte_safe (int) ATTRIBUTE_CONST;
3454 extern void syms_of_character (void);
3455
3456 /* Defined in charset.c. */
3457 extern void init_charset (void);
3458 extern void init_charset_once (void);
3459 extern void syms_of_charset (void);
3460 /* Structure forward declarations. */
3461 struct charset;
3462
3463 /* Defined in composite.c. */
3464 extern void syms_of_composite (void);
3465
3466 /* Defined in syntax.c. */
3467 extern void init_syntax_once (void);
3468 extern void syms_of_syntax (void);
3469
3470 /* Defined in fns.c. */
3471 extern Lisp_Object QCrehash_size, QCrehash_threshold;
3472 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3473 EXFUN (Fidentity, 1) ATTRIBUTE_CONST;
3474 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3475 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3476 extern void sweep_weak_hash_tables (void);
3477 extern Lisp_Object Qcursor_in_echo_area;
3478 extern Lisp_Object Qstring_lessp;
3479 extern Lisp_Object QCsize, QCtest, QCweakness, Qequal, Qeq;
3480 EMACS_UINT hash_string (char const *, ptrdiff_t);
3481 EMACS_UINT sxhash (Lisp_Object, int);
3482 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3483 Lisp_Object, Lisp_Object);
3484 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3485 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3486 EMACS_UINT);
3487 extern struct hash_table_test hashtest_eql, hashtest_equal;
3488
3489 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3490 ptrdiff_t, ptrdiff_t);
3491 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3492 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3493 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3494 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3495 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3496 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3497 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3498 extern void clear_string_char_byte_cache (void);
3499 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3500 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3501 extern Lisp_Object string_to_multibyte (Lisp_Object);
3502 extern Lisp_Object string_make_unibyte (Lisp_Object);
3503 extern void syms_of_fns (void);
3504
3505 /* Defined in floatfns.c. */
3506 extern double extract_float (Lisp_Object);
3507 extern void syms_of_floatfns (void);
3508 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3509
3510 /* Defined in fringe.c. */
3511 extern void syms_of_fringe (void);
3512 extern void init_fringe (void);
3513 #ifdef HAVE_WINDOW_SYSTEM
3514 extern void mark_fringe_data (void);
3515 extern void init_fringe_once (void);
3516 #endif /* HAVE_WINDOW_SYSTEM */
3517
3518 /* Defined in image.c. */
3519 extern Lisp_Object QCascent, QCmargin, QCrelief;
3520 extern Lisp_Object QCconversion;
3521 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3522 extern void reset_image_types (void);
3523 extern void syms_of_image (void);
3524
3525 /* Defined in insdel.c. */
3526 extern Lisp_Object Qinhibit_modification_hooks;
3527 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3528 extern _Noreturn void buffer_overflow (void);
3529 extern void make_gap (ptrdiff_t);
3530 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3531 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3532 ptrdiff_t, bool, bool);
3533 extern int count_combining_before (const unsigned char *,
3534 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3535 extern int count_combining_after (const unsigned char *,
3536 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3537 extern void insert (const char *, ptrdiff_t);
3538 extern void insert_and_inherit (const char *, ptrdiff_t);
3539 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3540 bool, bool, bool);
3541 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3542 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3543 ptrdiff_t, ptrdiff_t, bool);
3544 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3545 extern void insert_char (int);
3546 extern void insert_string (const char *);
3547 extern void insert_before_markers (const char *, ptrdiff_t);
3548 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3549 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3550 ptrdiff_t, ptrdiff_t,
3551 ptrdiff_t, bool);
3552 extern void del_range (ptrdiff_t, ptrdiff_t);
3553 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3554 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3555 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3556 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3557 ptrdiff_t, ptrdiff_t, bool);
3558 extern void modify_text (ptrdiff_t, ptrdiff_t);
3559 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3560 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3561 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3562 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3563 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3564 ptrdiff_t, ptrdiff_t);
3565 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3566 ptrdiff_t, ptrdiff_t);
3567 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3568 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3569 const char *, ptrdiff_t, ptrdiff_t, bool);
3570 extern void syms_of_insdel (void);
3571
3572 /* Defined in dispnew.c. */
3573 #if (defined PROFILING \
3574 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3575 _Noreturn void __executable_start (void);
3576 #endif
3577 extern Lisp_Object Vwindow_system;
3578 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3579 extern void init_display (void);
3580 extern void syms_of_display (void);
3581
3582 /* Defined in xdisp.c. */
3583 extern Lisp_Object Qinhibit_point_motion_hooks;
3584 extern Lisp_Object Qinhibit_redisplay, Qdisplay;
3585 extern Lisp_Object Qmenu_bar_update_hook;
3586 extern Lisp_Object Qwindow_scroll_functions;
3587 extern Lisp_Object Qoverriding_local_map, Qoverriding_terminal_local_map;
3588 extern Lisp_Object Qimage, Qtext, Qboth, Qboth_horiz, Qtext_image_horiz;
3589 extern Lisp_Object Qspace, Qcenter, QCalign_to;
3590 extern Lisp_Object Qbar, Qhbar, Qbox, Qhollow;
3591 extern Lisp_Object Qleft_margin, Qright_margin;
3592 extern Lisp_Object QCdata, QCfile;
3593 extern Lisp_Object QCmap;
3594 extern Lisp_Object Qrisky_local_variable;
3595 extern bool noninteractive_need_newline;
3596 extern Lisp_Object echo_area_buffer[2];
3597 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3598 extern void check_message_stack (void);
3599 extern void setup_echo_area_for_printing (int);
3600 extern bool push_message (void);
3601 extern void pop_message_unwind (void);
3602 extern Lisp_Object restore_message_unwind (Lisp_Object);
3603 extern void restore_message (void);
3604 extern Lisp_Object current_message (void);
3605 extern void clear_message (bool, bool);
3606 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3607 extern void message1 (const char *);
3608 extern void message1_nolog (const char *);
3609 extern void message3 (Lisp_Object);
3610 extern void message3_nolog (Lisp_Object);
3611 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3612 extern void message_with_string (const char *, Lisp_Object, int);
3613 extern void message_log_maybe_newline (void);
3614 extern void update_echo_area (void);
3615 extern void truncate_echo_area (ptrdiff_t);
3616 extern void redisplay (void);
3617 extern void redisplay_preserve_echo_area (int);
3618
3619 void set_frame_cursor_types (struct frame *, Lisp_Object);
3620 extern void syms_of_xdisp (void);
3621 extern void init_xdisp (void);
3622 extern Lisp_Object safe_eval (Lisp_Object);
3623 extern int pos_visible_p (struct window *, ptrdiff_t, int *,
3624 int *, int *, int *, int *, int *);
3625
3626 /* Defined in xsettings.c. */
3627 extern void syms_of_xsettings (void);
3628
3629 /* Defined in vm-limit.c. */
3630 extern void memory_warnings (void *, void (*warnfun) (const char *));
3631
3632 /* Defined in alloc.c. */
3633 extern void check_pure_size (void);
3634 extern void free_misc (Lisp_Object);
3635 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3636 extern void malloc_warning (const char *);
3637 extern _Noreturn void memory_full (size_t);
3638 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3639 extern bool survives_gc_p (Lisp_Object);
3640 extern void mark_object (Lisp_Object);
3641 #if defined REL_ALLOC && !defined SYSTEM_MALLOC
3642 extern void refill_memory_reserve (void);
3643 #endif
3644 extern const char *pending_malloc_warning;
3645 extern Lisp_Object zero_vector;
3646 extern Lisp_Object *stack_base;
3647 extern EMACS_INT consing_since_gc;
3648 extern EMACS_INT gc_relative_threshold;
3649 extern EMACS_INT memory_full_cons_threshold;
3650 extern Lisp_Object list1 (Lisp_Object);
3651 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3652 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3653 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3654 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3655 Lisp_Object);
3656 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3657 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3658
3659 /* Build a frequently used 2/3/4-integer lists. */
3660
3661 INLINE Lisp_Object
3662 list2i (EMACS_INT x, EMACS_INT y)
3663 {
3664 return list2 (make_number (x), make_number (y));
3665 }
3666
3667 INLINE Lisp_Object
3668 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3669 {
3670 return list3 (make_number (x), make_number (y), make_number (w));
3671 }
3672
3673 INLINE Lisp_Object
3674 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3675 {
3676 return list4 (make_number (x), make_number (y),
3677 make_number (w), make_number (h));
3678 }
3679
3680 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3681 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3682 extern _Noreturn void string_overflow (void);
3683 extern Lisp_Object make_string (const char *, ptrdiff_t);
3684 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3685 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3686 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3687
3688 /* Make unibyte string from C string when the length isn't known. */
3689
3690 INLINE Lisp_Object
3691 build_unibyte_string (const char *str)
3692 {
3693 return make_unibyte_string (str, strlen (str));
3694 }
3695
3696 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3697 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3698 extern Lisp_Object make_uninit_string (EMACS_INT);
3699 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3700 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3701 extern Lisp_Object make_specified_string (const char *,
3702 ptrdiff_t, ptrdiff_t, bool);
3703 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3704 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3705
3706 /* Make a string allocated in pure space, use STR as string data. */
3707
3708 INLINE Lisp_Object
3709 build_pure_c_string (const char *str)
3710 {
3711 return make_pure_c_string (str, strlen (str));
3712 }
3713
3714 /* Make a string from the data at STR, treating it as multibyte if the
3715 data warrants. */
3716
3717 INLINE Lisp_Object
3718 build_string (const char *str)
3719 {
3720 return make_string (str, strlen (str));
3721 }
3722
3723 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3724 extern void make_byte_code (struct Lisp_Vector *);
3725 extern Lisp_Object Qautomatic_gc;
3726 extern Lisp_Object Qchar_table_extra_slots;
3727 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3728
3729 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3730 be sure that GC cannot happen until the vector is completely
3731 initialized. E.g. the following code is likely to crash:
3732
3733 v = make_uninit_vector (3);
3734 ASET (v, 0, obj0);
3735 ASET (v, 1, Ffunction_can_gc ());
3736 ASET (v, 2, obj1); */
3737
3738 INLINE Lisp_Object
3739 make_uninit_vector (ptrdiff_t size)
3740 {
3741 Lisp_Object v;
3742 struct Lisp_Vector *p;
3743
3744 p = allocate_vector (size);
3745 XSETVECTOR (v, p);
3746 return v;
3747 }
3748
3749 extern struct Lisp_Vector *allocate_pseudovector (int, int, enum pvec_type);
3750 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
3751 ((typ*) \
3752 allocate_pseudovector \
3753 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
3754 extern struct Lisp_Hash_Table *allocate_hash_table (void);
3755 extern struct window *allocate_window (void);
3756 extern struct frame *allocate_frame (void);
3757 extern struct Lisp_Process *allocate_process (void);
3758 extern struct terminal *allocate_terminal (void);
3759 extern bool gc_in_progress;
3760 extern bool abort_on_gc;
3761 extern Lisp_Object make_float (double);
3762 extern void display_malloc_warning (void);
3763 extern ptrdiff_t inhibit_garbage_collection (void);
3764 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3765 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3766 Lisp_Object, Lisp_Object);
3767 extern Lisp_Object make_save_ptr (void *);
3768 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3769 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3770 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3771 Lisp_Object);
3772 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3773 extern void free_save_value (Lisp_Object);
3774 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3775 extern void free_marker (Lisp_Object);
3776 extern void free_cons (struct Lisp_Cons *);
3777 extern void init_alloc_once (void);
3778 extern void init_alloc (void);
3779 extern void syms_of_alloc (void);
3780 extern struct buffer * allocate_buffer (void);
3781 extern int valid_lisp_object_p (Lisp_Object);
3782 extern int relocatable_string_data_p (const char *);
3783 #ifdef GC_CHECK_CONS_LIST
3784 extern void check_cons_list (void);
3785 #else
3786 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3787 #endif
3788
3789 #ifdef REL_ALLOC
3790 /* Defined in ralloc.c. */
3791 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3792 extern void r_alloc_free (void **);
3793 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3794 extern void r_alloc_reset_variable (void **, void **);
3795 extern void r_alloc_inhibit_buffer_relocation (int);
3796 #endif
3797
3798 /* Defined in chartab.c. */
3799 extern Lisp_Object copy_char_table (Lisp_Object);
3800 extern Lisp_Object char_table_ref (Lisp_Object, int);
3801 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3802 int *, int *);
3803 extern void char_table_set (Lisp_Object, int, Lisp_Object);
3804 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3805 extern int char_table_translate (Lisp_Object, int);
3806 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3807 Lisp_Object),
3808 Lisp_Object, Lisp_Object, Lisp_Object);
3809 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3810 Lisp_Object, Lisp_Object,
3811 Lisp_Object, struct charset *,
3812 unsigned, unsigned);
3813 extern Lisp_Object uniprop_table (Lisp_Object);
3814 extern void syms_of_chartab (void);
3815
3816 /* Defined in print.c. */
3817 extern Lisp_Object Vprin1_to_string_buffer;
3818 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3819 extern Lisp_Object Qstandard_output;
3820 extern Lisp_Object Qexternal_debugging_output;
3821 extern void temp_output_buffer_setup (const char *);
3822 extern int print_level;
3823 extern Lisp_Object Qprint_escape_newlines;
3824 extern void write_string (const char *, int);
3825 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3826 Lisp_Object);
3827 extern Lisp_Object internal_with_output_to_temp_buffer
3828 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3829 #define FLOAT_TO_STRING_BUFSIZE 350
3830 extern int float_to_string (char *, double);
3831 extern void init_print_once (void);
3832 extern void syms_of_print (void);
3833
3834 /* Defined in doprnt.c. */
3835 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3836 va_list);
3837 extern ptrdiff_t esprintf (char *, char const *, ...)
3838 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3839 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3840 char const *, ...)
3841 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3842 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3843 char const *, va_list)
3844 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3845
3846 /* Defined in lread.c. */
3847 extern Lisp_Object Qvariable_documentation, Qstandard_input;
3848 extern Lisp_Object Qbackquote, Qcomma, Qcomma_at, Qcomma_dot, Qfunction;
3849 extern Lisp_Object Qlexical_binding;
3850 extern Lisp_Object check_obarray (Lisp_Object);
3851 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3852 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3853 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3854 INLINE void
3855 LOADHIST_ATTACH (Lisp_Object x)
3856 {
3857 if (initialized)
3858 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3859 }
3860 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3861 Lisp_Object *, Lisp_Object, bool);
3862 extern Lisp_Object string_to_number (char const *, int, bool);
3863 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3864 Lisp_Object);
3865 extern void dir_warning (const char *, Lisp_Object);
3866 extern void init_obarray (void);
3867 extern void init_lread (void);
3868 extern void syms_of_lread (void);
3869
3870 INLINE Lisp_Object
3871 intern (const char *str)
3872 {
3873 return intern_1 (str, strlen (str));
3874 }
3875
3876 INLINE Lisp_Object
3877 intern_c_string (const char *str)
3878 {
3879 return intern_c_string_1 (str, strlen (str));
3880 }
3881
3882 /* Defined in eval.c. */
3883 extern Lisp_Object Qautoload, Qexit, Qinteractive, Qcommandp, Qmacro;
3884 extern Lisp_Object Qinhibit_quit, Qinternal_interpreter_environment, Qclosure;
3885 extern Lisp_Object Qand_rest;
3886 extern Lisp_Object Vautoload_queue;
3887 extern Lisp_Object Vsignaling_function;
3888 extern Lisp_Object inhibit_lisp_code;
3889 extern struct handler *handlerlist;
3890
3891 /* To run a normal hook, use the appropriate function from the list below.
3892 The calling convention:
3893
3894 if (!NILP (Vrun_hooks))
3895 call1 (Vrun_hooks, Qmy_funny_hook);
3896
3897 should no longer be used. */
3898 extern Lisp_Object Vrun_hooks;
3899 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3900 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3901 Lisp_Object (*funcall)
3902 (ptrdiff_t nargs, Lisp_Object *args));
3903 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3904 extern _Noreturn void xsignal0 (Lisp_Object);
3905 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3906 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3907 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3908 Lisp_Object);
3909 extern _Noreturn void signal_error (const char *, Lisp_Object);
3910 extern Lisp_Object eval_sub (Lisp_Object form);
3911 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3912 extern Lisp_Object call0 (Lisp_Object);
3913 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3914 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3915 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3916 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3917 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3918 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3919 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3920 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3921 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3922 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3923 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3924 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3925 extern Lisp_Object internal_condition_case_n
3926 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3927 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3928 extern void specbind (Lisp_Object, Lisp_Object);
3929 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3930 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3931 extern void record_unwind_protect_int (void (*) (int), int);
3932 extern void record_unwind_protect_void (void (*) (void));
3933 extern void record_unwind_protect_nothing (void);
3934 extern void clear_unwind_protect (ptrdiff_t);
3935 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3936 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3937 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3938 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3939 extern _Noreturn void verror (const char *, va_list)
3940 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3941 extern void un_autoload (Lisp_Object);
3942 extern Lisp_Object call_debugger (Lisp_Object arg);
3943 extern void init_eval_once (void);
3944 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3945 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3946 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3947 extern void init_eval (void);
3948 extern void syms_of_eval (void);
3949 extern void unwind_body (Lisp_Object);
3950 extern void record_in_backtrace (Lisp_Object function,
3951 Lisp_Object *args, ptrdiff_t nargs);
3952 extern void mark_specpdl (void);
3953 extern void get_backtrace (Lisp_Object array);
3954 Lisp_Object backtrace_top_function (void);
3955 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3956 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3957
3958
3959 /* Defined in editfns.c. */
3960 extern Lisp_Object Qfield;
3961 extern void insert1 (Lisp_Object);
3962 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
3963 extern Lisp_Object save_excursion_save (void);
3964 extern Lisp_Object save_restriction_save (void);
3965 extern void save_excursion_restore (Lisp_Object);
3966 extern void save_restriction_restore (Lisp_Object);
3967 extern _Noreturn void time_overflow (void);
3968 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3969 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3970 ptrdiff_t, bool);
3971 extern void init_editfns (void);
3972 extern void syms_of_editfns (void);
3973 extern void set_time_zone_rule (const char *);
3974
3975 /* Defined in buffer.c. */
3976 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3977 extern _Noreturn void nsberror (Lisp_Object);
3978 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3979 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3980 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3981 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3982 Lisp_Object, Lisp_Object, Lisp_Object);
3983 extern bool overlay_touches_p (ptrdiff_t);
3984 extern Lisp_Object other_buffer_safely (Lisp_Object);
3985 extern Lisp_Object get_truename_buffer (Lisp_Object);
3986 extern void init_buffer_once (void);
3987 extern void init_buffer (int);
3988 extern void syms_of_buffer (void);
3989 extern void keys_of_buffer (void);
3990
3991 /* Defined in marker.c. */
3992
3993 extern ptrdiff_t marker_position (Lisp_Object);
3994 extern ptrdiff_t marker_byte_position (Lisp_Object);
3995 extern void clear_charpos_cache (struct buffer *);
3996 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3997 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3998 extern void unchain_marker (struct Lisp_Marker *marker);
3999 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4000 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4001 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4002 ptrdiff_t, ptrdiff_t);
4003 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4004 extern void syms_of_marker (void);
4005
4006 /* Defined in fileio.c. */
4007
4008 extern Lisp_Object Qfile_error;
4009 extern Lisp_Object Qfile_notify_error;
4010 extern Lisp_Object Qfile_exists_p;
4011 extern Lisp_Object Qfile_directory_p;
4012 extern Lisp_Object Qinsert_file_contents;
4013 extern Lisp_Object Qfile_name_history;
4014 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4015 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4016 Lisp_Object, Lisp_Object, Lisp_Object,
4017 Lisp_Object, int);
4018 EXFUN (Fread_file_name, 6); /* Not a normal DEFUN. */
4019 extern void close_file_unwind (int);
4020 extern void fclose_unwind (void *);
4021 extern void restore_point_unwind (Lisp_Object);
4022 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4023 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4024 extern bool internal_delete_file (Lisp_Object);
4025 extern Lisp_Object emacs_readlinkat (int, const char *);
4026 extern bool file_directory_p (const char *);
4027 extern bool file_accessible_directory_p (const char *);
4028 extern void init_fileio (void);
4029 extern void syms_of_fileio (void);
4030 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4031 extern Lisp_Object Qdelete_file;
4032
4033 /* Defined in search.c. */
4034 extern void shrink_regexp_cache (void);
4035 extern void restore_search_regs (void);
4036 extern void record_unwind_save_match_data (void);
4037 struct re_registers;
4038 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4039 struct re_registers *,
4040 Lisp_Object, bool, bool);
4041 extern ptrdiff_t fast_string_match (Lisp_Object, Lisp_Object);
4042 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4043 ptrdiff_t);
4044 extern ptrdiff_t fast_string_match_ignore_case (Lisp_Object, Lisp_Object);
4045 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4046 ptrdiff_t, ptrdiff_t, Lisp_Object);
4047 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4048 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4049 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4050 ptrdiff_t, bool);
4051 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4052 ptrdiff_t, ptrdiff_t *);
4053 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4054 ptrdiff_t, ptrdiff_t *);
4055 extern void syms_of_search (void);
4056 extern void clear_regexp_cache (void);
4057
4058 /* Defined in minibuf.c. */
4059
4060 extern Lisp_Object Qcompletion_ignore_case;
4061 extern Lisp_Object Vminibuffer_list;
4062 extern Lisp_Object last_minibuf_string;
4063 extern Lisp_Object get_minibuffer (EMACS_INT);
4064 extern void init_minibuf_once (void);
4065 extern void syms_of_minibuf (void);
4066
4067 /* Defined in callint.c. */
4068
4069 extern Lisp_Object Qminus, Qplus;
4070 extern Lisp_Object Qprogn;
4071 extern Lisp_Object Qwhen;
4072 extern Lisp_Object Qmouse_leave_buffer_hook;
4073 extern void syms_of_callint (void);
4074
4075 /* Defined in casefiddle.c. */
4076
4077 extern Lisp_Object Qidentity;
4078 extern void syms_of_casefiddle (void);
4079 extern void keys_of_casefiddle (void);
4080
4081 /* Defined in casetab.c. */
4082
4083 extern void init_casetab_once (void);
4084 extern void syms_of_casetab (void);
4085
4086 /* Defined in keyboard.c. */
4087
4088 extern Lisp_Object echo_message_buffer;
4089 extern struct kboard *echo_kboard;
4090 extern void cancel_echoing (void);
4091 extern Lisp_Object Qdisabled, QCfilter;
4092 extern Lisp_Object Qup, Qdown, Qbottom;
4093 extern Lisp_Object Qtop;
4094 extern Lisp_Object last_undo_boundary;
4095 extern bool input_pending;
4096 extern Lisp_Object menu_bar_items (Lisp_Object);
4097 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4098 extern void discard_mouse_events (void);
4099 #ifdef USABLE_SIGIO
4100 void handle_input_available_signal (int);
4101 #endif
4102 extern Lisp_Object pending_funcalls;
4103 extern bool detect_input_pending (void);
4104 extern bool detect_input_pending_ignore_squeezables (void);
4105 extern bool detect_input_pending_run_timers (bool);
4106 extern void safe_run_hooks (Lisp_Object);
4107 extern void cmd_error_internal (Lisp_Object, const char *);
4108 extern Lisp_Object command_loop_1 (void);
4109 extern Lisp_Object read_menu_command (void);
4110 extern Lisp_Object recursive_edit_1 (void);
4111 extern void record_auto_save (void);
4112 extern void force_auto_save_soon (void);
4113 extern void init_keyboard (void);
4114 extern void syms_of_keyboard (void);
4115 extern void keys_of_keyboard (void);
4116
4117 /* Defined in indent.c. */
4118 extern ptrdiff_t current_column (void);
4119 extern void invalidate_current_column (void);
4120 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4121 extern void syms_of_indent (void);
4122
4123 /* Defined in frame.c. */
4124 extern Lisp_Object Qonly, Qnone;
4125 extern Lisp_Object Qvisible;
4126 extern void set_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4127 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4128 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4129 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4130 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4131 extern void frames_discard_buffer (Lisp_Object);
4132 extern void syms_of_frame (void);
4133
4134 /* Defined in emacs.c. */
4135 extern char **initial_argv;
4136 extern int initial_argc;
4137 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4138 extern bool display_arg;
4139 #endif
4140 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4141 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4142 extern Lisp_Object Qfile_name_handler_alist;
4143 extern _Noreturn void terminate_due_to_signal (int, int);
4144 extern Lisp_Object Qkill_emacs;
4145 #ifdef WINDOWSNT
4146 extern Lisp_Object Vlibrary_cache;
4147 #endif
4148 #if HAVE_SETLOCALE
4149 void fixup_locale (void);
4150 void synchronize_system_messages_locale (void);
4151 void synchronize_system_time_locale (void);
4152 #else
4153 INLINE void fixup_locale (void) {}
4154 INLINE void synchronize_system_messages_locale (void) {}
4155 INLINE void synchronize_system_time_locale (void) {}
4156 #endif
4157 extern void shut_down_emacs (int, Lisp_Object);
4158
4159 /* True means don't do interactive redisplay and don't change tty modes. */
4160 extern bool noninteractive;
4161
4162 /* True means remove site-lisp directories from load-path. */
4163 extern bool no_site_lisp;
4164
4165 /* Pipe used to send exit notification to the daemon parent at
4166 startup. */
4167 extern int daemon_pipe[2];
4168 #define IS_DAEMON (daemon_pipe[1] != 0)
4169
4170 /* True if handling a fatal error already. */
4171 extern bool fatal_error_in_progress;
4172
4173 /* True means don't do use window-system-specific display code. */
4174 extern bool inhibit_window_system;
4175 /* True means that a filter or a sentinel is running. */
4176 extern bool running_asynch_code;
4177
4178 /* Defined in process.c. */
4179 extern Lisp_Object QCtype, Qlocal;
4180 extern void kill_buffer_processes (Lisp_Object);
4181 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4182 struct Lisp_Process *, int);
4183 /* Max value for the first argument of wait_reading_process_output. */
4184 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4185 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4186 The bug merely causes a bogus warning, but the warning is annoying. */
4187 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4188 #else
4189 # define WAIT_READING_MAX INTMAX_MAX
4190 #endif
4191 extern void add_keyboard_wait_descriptor (int);
4192 extern void delete_keyboard_wait_descriptor (int);
4193 #ifdef HAVE_GPM
4194 extern void add_gpm_wait_descriptor (int);
4195 extern void delete_gpm_wait_descriptor (int);
4196 #endif
4197 extern void init_process_emacs (void);
4198 extern void syms_of_process (void);
4199 extern void setup_process_coding_systems (Lisp_Object);
4200
4201 /* Defined in callproc.c. */
4202 #ifndef DOS_NT
4203 _Noreturn
4204 #endif
4205 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4206 extern void init_callproc_1 (void);
4207 extern void init_callproc (void);
4208 extern void set_initial_environment (void);
4209 extern void syms_of_callproc (void);
4210
4211 /* Defined in doc.c. */
4212 extern Lisp_Object Qfunction_documentation;
4213 extern Lisp_Object read_doc_string (Lisp_Object);
4214 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4215 extern void syms_of_doc (void);
4216 extern int read_bytecode_char (bool);
4217
4218 /* Defined in bytecode.c. */
4219 extern void syms_of_bytecode (void);
4220 extern struct byte_stack *byte_stack_list;
4221 #if BYTE_MARK_STACK
4222 extern void mark_byte_stack (void);
4223 #endif
4224 extern void unmark_byte_stack (void);
4225 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4226 Lisp_Object, ptrdiff_t, Lisp_Object *);
4227
4228 /* Defined in macros.c. */
4229 extern void init_macros (void);
4230 extern void syms_of_macros (void);
4231
4232 /* Defined in undo.c. */
4233 extern Lisp_Object Qapply;
4234 extern Lisp_Object Qinhibit_read_only;
4235 extern void truncate_undo_list (struct buffer *);
4236 extern void record_insert (ptrdiff_t, ptrdiff_t);
4237 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4238 extern void record_first_change (void);
4239 extern void record_change (ptrdiff_t, ptrdiff_t);
4240 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4241 Lisp_Object, Lisp_Object,
4242 Lisp_Object);
4243 extern void syms_of_undo (void);
4244 /* Defined in textprop.c. */
4245 extern Lisp_Object Qfont, Qmouse_face;
4246 extern Lisp_Object Qinsert_in_front_hooks, Qinsert_behind_hooks;
4247 extern Lisp_Object Qfront_sticky, Qrear_nonsticky;
4248 extern Lisp_Object Qminibuffer_prompt;
4249
4250 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4251
4252 /* Defined in menu.c. */
4253 extern void syms_of_menu (void);
4254
4255 /* Defined in xmenu.c. */
4256 extern void syms_of_xmenu (void);
4257
4258 /* Defined in termchar.h. */
4259 struct tty_display_info;
4260
4261 /* Defined in termhooks.h. */
4262 struct terminal;
4263
4264 /* Defined in sysdep.c. */
4265 #ifndef HAVE_GET_CURRENT_DIR_NAME
4266 extern char *get_current_dir_name (void);
4267 #endif
4268 extern void stuff_char (char c);
4269 extern void init_foreground_group (void);
4270 extern void init_sigio (int);
4271 extern void sys_subshell (void);
4272 extern void sys_suspend (void);
4273 extern void discard_tty_input (void);
4274 extern void init_sys_modes (struct tty_display_info *);
4275 extern void reset_sys_modes (struct tty_display_info *);
4276 extern void init_all_sys_modes (void);
4277 extern void reset_all_sys_modes (void);
4278 extern void child_setup_tty (int);
4279 extern void setup_pty (int);
4280 extern int set_window_size (int, int, int);
4281 extern EMACS_INT get_random (void);
4282 extern void seed_random (void *, ptrdiff_t);
4283 extern void init_random (void);
4284 extern void emacs_backtrace (int);
4285 extern _Noreturn void emacs_abort (void) NO_INLINE;
4286 extern int emacs_open (const char *, int, int);
4287 extern int emacs_pipe (int[2]);
4288 extern int emacs_close (int);
4289 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4290 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4291 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4292 extern void emacs_perror (char const *);
4293
4294 extern void unlock_all_files (void);
4295 extern void lock_file (Lisp_Object);
4296 extern void unlock_file (Lisp_Object);
4297 extern void unlock_buffer (struct buffer *);
4298 extern void syms_of_filelock (void);
4299
4300 /* Defined in sound.c. */
4301 extern void syms_of_sound (void);
4302
4303 /* Defined in category.c. */
4304 extern void init_category_once (void);
4305 extern Lisp_Object char_category_set (int);
4306 extern void syms_of_category (void);
4307
4308 /* Defined in ccl.c. */
4309 extern void syms_of_ccl (void);
4310
4311 /* Defined in dired.c. */
4312 extern void syms_of_dired (void);
4313 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4314 Lisp_Object, Lisp_Object,
4315 bool, Lisp_Object);
4316
4317 /* Defined in term.c. */
4318 extern int *char_ins_del_vector;
4319 extern void syms_of_term (void);
4320 extern _Noreturn void fatal (const char *msgid, ...)
4321 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4322
4323 /* Defined in terminal.c. */
4324 extern void syms_of_terminal (void);
4325
4326 /* Defined in font.c. */
4327 extern void syms_of_font (void);
4328 extern void init_font (void);
4329
4330 #ifdef HAVE_WINDOW_SYSTEM
4331 /* Defined in fontset.c. */
4332 extern void syms_of_fontset (void);
4333
4334 /* Defined in xfns.c, w32fns.c, or macfns.c. */
4335 extern Lisp_Object Qfont_param;
4336 #endif
4337
4338 /* Defined in gfilenotify.c */
4339 #ifdef HAVE_GFILENOTIFY
4340 extern void globals_of_gfilenotify (void);
4341 extern void syms_of_gfilenotify (void);
4342 #endif
4343
4344 /* Defined in inotify.c */
4345 #ifdef HAVE_INOTIFY
4346 extern void syms_of_inotify (void);
4347 #endif
4348
4349 #ifdef HAVE_W32NOTIFY
4350 /* Defined on w32notify.c. */
4351 extern void syms_of_w32notify (void);
4352 #endif
4353
4354 /* Defined in xfaces.c. */
4355 extern Lisp_Object Qdefault, Qtool_bar, Qfringe;
4356 extern Lisp_Object Qheader_line, Qscroll_bar, Qcursor;
4357 extern Lisp_Object Qmode_line_inactive;
4358 extern Lisp_Object Qface;
4359 extern Lisp_Object Qnormal;
4360 extern Lisp_Object QCfamily, QCweight, QCslant;
4361 extern Lisp_Object QCheight, QCname, QCwidth, QCforeground, QCbackground;
4362 extern Lisp_Object Qextra_light, Qlight, Qsemi_light, Qsemi_bold;
4363 extern Lisp_Object Qbold, Qextra_bold, Qultra_bold;
4364 extern Lisp_Object Qoblique, Qitalic;
4365 extern Lisp_Object Vface_alternative_font_family_alist;
4366 extern Lisp_Object Vface_alternative_font_registry_alist;
4367 extern void syms_of_xfaces (void);
4368
4369 #ifdef HAVE_X_WINDOWS
4370 /* Defined in xfns.c. */
4371 extern void syms_of_xfns (void);
4372
4373 /* Defined in xsmfns.c. */
4374 extern void syms_of_xsmfns (void);
4375
4376 /* Defined in xselect.c. */
4377 extern void syms_of_xselect (void);
4378
4379 /* Defined in xterm.c. */
4380 extern void syms_of_xterm (void);
4381 #endif /* HAVE_X_WINDOWS */
4382
4383 #ifdef HAVE_WINDOW_SYSTEM
4384 /* Defined in xterm.c, nsterm.m, w32term.c. */
4385 extern char *x_get_keysym_name (int);
4386 #endif /* HAVE_WINDOW_SYSTEM */
4387
4388 #ifdef HAVE_LIBXML2
4389 /* Defined in xml.c. */
4390 extern void syms_of_xml (void);
4391 extern void xml_cleanup_parser (void);
4392 #endif
4393
4394 #ifdef HAVE_ZLIB
4395 /* Defined in decompress.c. */
4396 extern void syms_of_decompress (void);
4397 #endif
4398
4399 #ifdef HAVE_DBUS
4400 /* Defined in dbusbind.c. */
4401 void syms_of_dbusbind (void);
4402 #endif
4403
4404
4405 /* Defined in profiler.c. */
4406 extern bool profiler_memory_running;
4407 extern void malloc_probe (size_t);
4408 extern void syms_of_profiler (void);
4409
4410
4411 #ifdef DOS_NT
4412 /* Defined in msdos.c, w32.c. */
4413 extern char *emacs_root_dir (void);
4414 #endif /* DOS_NT */
4415 \f
4416 /* True means Emacs has already been initialized.
4417 Used during startup to detect startup of dumped Emacs. */
4418 extern bool initialized;
4419
4420 /* True means ^G can quit instantly. */
4421 extern bool immediate_quit;
4422
4423 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4424 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4425 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4426 extern void xfree (void *);
4427 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4428 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4429 ATTRIBUTE_ALLOC_SIZE ((2,3));
4430 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4431
4432 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4433 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4434 extern void dupstring (char **, char const *);
4435 extern void xputenv (const char *);
4436
4437 extern char *egetenv (const char *);
4438
4439 /* Copy Lisp string to temporary (allocated on stack) C string. */
4440
4441 #define xlispstrdupa(string) \
4442 memcpy (alloca (SBYTES (string) + 1), \
4443 SSDATA (string), SBYTES (string) + 1)
4444
4445 /* Set up the name of the machine we're running on. */
4446 extern void init_system_name (void);
4447
4448 /* Return the absolute value of X. X should be a signed integer
4449 expression without side effects, and X's absolute value should not
4450 exceed the maximum for its promoted type. This is called 'eabs'
4451 because 'abs' is reserved by the C standard. */
4452 #define eabs(x) ((x) < 0 ? -(x) : (x))
4453
4454 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4455 fixnum. */
4456
4457 #define make_fixnum_or_float(val) \
4458 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4459
4460 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4461 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4462
4463 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4464
4465 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4466
4467 #define USE_SAFE_ALLOCA \
4468 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4469
4470 /* SAFE_ALLOCA allocates a simple buffer. */
4471
4472 #define SAFE_ALLOCA(size) ((size) < MAX_ALLOCA \
4473 ? alloca (size) \
4474 : (sa_must_free = true, record_xmalloc (size)))
4475
4476 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4477 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4478 positive. The code is tuned for MULTIPLIER being a constant. */
4479
4480 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4481 do { \
4482 if ((nitems) <= MAX_ALLOCA / sizeof *(buf) / (multiplier)) \
4483 (buf) = alloca (sizeof *(buf) * (multiplier) * (nitems)); \
4484 else \
4485 { \
4486 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4487 sa_must_free = true; \
4488 record_unwind_protect_ptr (xfree, buf); \
4489 } \
4490 } while (false)
4491
4492 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4493
4494 #define SAFE_FREE() \
4495 do { \
4496 if (sa_must_free) { \
4497 sa_must_free = false; \
4498 unbind_to (sa_count, Qnil); \
4499 } \
4500 } while (false)
4501
4502
4503 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4504
4505 #define SAFE_ALLOCA_LISP(buf, nelt) \
4506 do { \
4507 if ((nelt) < MAX_ALLOCA / word_size) \
4508 (buf) = alloca ((nelt) * word_size); \
4509 else if ((nelt) < min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4510 { \
4511 Lisp_Object arg_; \
4512 (buf) = xmalloc ((nelt) * word_size); \
4513 arg_ = make_save_memory (buf, nelt); \
4514 sa_must_free = true; \
4515 record_unwind_protect (free_save_value, arg_); \
4516 } \
4517 else \
4518 memory_full (SIZE_MAX); \
4519 } while (false)
4520
4521 /* Loop over all tails of a list, checking for cycles.
4522 FIXME: Make tortoise and n internal declarations.
4523 FIXME: Unroll the loop body so we don't need `n'. */
4524 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4525 for ((tortoise) = (hare) = (list), (n) = true; \
4526 CONSP (hare); \
4527 (hare = XCDR (hare), (n) = !(n), \
4528 ((n) \
4529 ? (EQ (hare, tortoise) \
4530 ? xsignal1 (Qcircular_list, list) \
4531 : (void) 0) \
4532 /* Move tortoise before the next iteration, in case */ \
4533 /* the next iteration does an Fsetcdr. */ \
4534 : (void) ((tortoise) = XCDR (tortoise)))))
4535
4536 /* Do a `for' loop over alist values. */
4537
4538 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4539 for ((list_var) = (head_var); \
4540 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4541 (list_var) = XCDR (list_var))
4542
4543 /* Check whether it's time for GC, and run it if so. */
4544
4545 INLINE void
4546 maybe_gc (void)
4547 {
4548 if ((consing_since_gc > gc_cons_threshold
4549 && consing_since_gc > gc_relative_threshold)
4550 || (!NILP (Vmemory_full)
4551 && consing_since_gc > memory_full_cons_threshold))
4552 Fgarbage_collect ();
4553 }
4554
4555 INLINE bool
4556 functionp (Lisp_Object object)
4557 {
4558 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4559 {
4560 object = Findirect_function (object, Qt);
4561
4562 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4563 {
4564 /* Autoloaded symbols are functions, except if they load
4565 macros or keymaps. */
4566 int i;
4567 for (i = 0; i < 4 && CONSP (object); i++)
4568 object = XCDR (object);
4569
4570 return ! (CONSP (object) && !NILP (XCAR (object)));
4571 }
4572 }
4573
4574 if (SUBRP (object))
4575 return XSUBR (object)->max_args != UNEVALLED;
4576 else if (COMPILEDP (object))
4577 return true;
4578 else if (CONSP (object))
4579 {
4580 Lisp_Object car = XCAR (object);
4581 return EQ (car, Qlambda) || EQ (car, Qclosure);
4582 }
4583 else
4584 return false;
4585 }
4586
4587 INLINE_HEADER_END
4588
4589 #endif /* EMACS_LISP_H */