Use ASCII tests for character types.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24 #include <setjmp.h>
25
26 #ifdef HAVE_PWD_H
27 #include <pwd.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #ifndef USE_CRT_DLL
62 extern char **environ;
63 #endif
64
65 #define TM_YEAR_BASE 1900
66
67 #ifdef WINDOWSNT
68 extern Lisp_Object w32_get_internal_run_time (void);
69 #endif
70
71 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
72 int, struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75
76 static Lisp_Object Qbuffer_access_fontify_functions;
77
78 /* Symbol for the text property used to mark fields. */
79
80 Lisp_Object Qfield;
81
82 /* A special value for Qfield properties. */
83
84 static Lisp_Object Qboundary;
85
86
87 void
88 init_editfns (void)
89 {
90 const char *user_name;
91 register char *p;
92 struct passwd *pw; /* password entry for the current user */
93 Lisp_Object tem;
94
95 /* Set up system_name even when dumping. */
96 init_system_name ();
97
98 #ifndef CANNOT_DUMP
99 /* Don't bother with this on initial start when just dumping out */
100 if (!initialized)
101 return;
102 #endif /* not CANNOT_DUMP */
103
104 pw = getpwuid (getuid ());
105 #ifdef MSDOS
106 /* We let the real user name default to "root" because that's quite
107 accurate on MSDOG and because it lets Emacs find the init file.
108 (The DVX libraries override the Djgpp libraries here.) */
109 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
110 #else
111 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
112 #endif
113
114 /* Get the effective user name, by consulting environment variables,
115 or the effective uid if those are unset. */
116 user_name = getenv ("LOGNAME");
117 if (!user_name)
118 #ifdef WINDOWSNT
119 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
120 #else /* WINDOWSNT */
121 user_name = getenv ("USER");
122 #endif /* WINDOWSNT */
123 if (!user_name)
124 {
125 pw = getpwuid (geteuid ());
126 user_name = pw ? pw->pw_name : "unknown";
127 }
128 Vuser_login_name = build_string (user_name);
129
130 /* If the user name claimed in the environment vars differs from
131 the real uid, use the claimed name to find the full name. */
132 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
133 if (! NILP (tem))
134 tem = Vuser_login_name;
135 else
136 {
137 uid_t euid = geteuid ();
138 tem = make_fixnum_or_float (euid);
139 }
140 Vuser_full_name = Fuser_full_name (tem);
141
142 p = getenv ("NAME");
143 if (p)
144 Vuser_full_name = build_string (p);
145 else if (NILP (Vuser_full_name))
146 Vuser_full_name = build_string ("unknown");
147
148 #ifdef HAVE_SYS_UTSNAME_H
149 {
150 struct utsname uts;
151 uname (&uts);
152 Voperating_system_release = build_string (uts.release);
153 }
154 #else
155 Voperating_system_release = Qnil;
156 #endif
157 }
158 \f
159 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
160 doc: /* Convert arg CHAR to a string containing that character.
161 usage: (char-to-string CHAR) */)
162 (Lisp_Object character)
163 {
164 int c, len;
165 unsigned char str[MAX_MULTIBYTE_LENGTH];
166
167 CHECK_CHARACTER (character);
168 c = XFASTINT (character);
169
170 len = CHAR_STRING (c, str);
171 return make_string_from_bytes ((char *) str, 1, len);
172 }
173
174 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
175 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
176 (Lisp_Object byte)
177 {
178 unsigned char b;
179 CHECK_NUMBER (byte);
180 if (XINT (byte) < 0 || XINT (byte) > 255)
181 error ("Invalid byte");
182 b = XINT (byte);
183 return make_string_from_bytes ((char *) &b, 1, 1);
184 }
185
186 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
187 doc: /* Return the first character in STRING. */)
188 (register Lisp_Object string)
189 {
190 register Lisp_Object val;
191 CHECK_STRING (string);
192 if (SCHARS (string))
193 {
194 if (STRING_MULTIBYTE (string))
195 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
196 else
197 XSETFASTINT (val, SREF (string, 0));
198 }
199 else
200 XSETFASTINT (val, 0);
201 return val;
202 }
203
204 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
205 doc: /* Return value of point, as an integer.
206 Beginning of buffer is position (point-min). */)
207 (void)
208 {
209 Lisp_Object temp;
210 XSETFASTINT (temp, PT);
211 return temp;
212 }
213
214 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
215 doc: /* Return value of point, as a marker object. */)
216 (void)
217 {
218 return build_marker (current_buffer, PT, PT_BYTE);
219 }
220
221 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
222 doc: /* Set point to POSITION, a number or marker.
223 Beginning of buffer is position (point-min), end is (point-max).
224
225 The return value is POSITION. */)
226 (register Lisp_Object position)
227 {
228 ptrdiff_t pos;
229
230 if (MARKERP (position)
231 && current_buffer == XMARKER (position)->buffer)
232 {
233 pos = marker_position (position);
234 if (pos < BEGV)
235 SET_PT_BOTH (BEGV, BEGV_BYTE);
236 else if (pos > ZV)
237 SET_PT_BOTH (ZV, ZV_BYTE);
238 else
239 SET_PT_BOTH (pos, marker_byte_position (position));
240
241 return position;
242 }
243
244 CHECK_NUMBER_COERCE_MARKER (position);
245
246 pos = clip_to_bounds (BEGV, XINT (position), ZV);
247 SET_PT (pos);
248 return position;
249 }
250
251
252 /* Return the start or end position of the region.
253 BEGINNINGP non-zero means return the start.
254 If there is no region active, signal an error. */
255
256 static Lisp_Object
257 region_limit (int beginningp)
258 {
259 Lisp_Object m;
260
261 if (!NILP (Vtransient_mark_mode)
262 && NILP (Vmark_even_if_inactive)
263 && NILP (BVAR (current_buffer, mark_active)))
264 xsignal0 (Qmark_inactive);
265
266 m = Fmarker_position (BVAR (current_buffer, mark));
267 if (NILP (m))
268 error ("The mark is not set now, so there is no region");
269
270 /* Clip to the current narrowing (bug#11770). */
271 return make_number ((PT < XFASTINT (m)) == (beginningp != 0)
272 ? PT
273 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
274 }
275
276 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
277 doc: /* Return the integer value of point or mark, whichever is smaller. */)
278 (void)
279 {
280 return region_limit (1);
281 }
282
283 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
284 doc: /* Return the integer value of point or mark, whichever is larger. */)
285 (void)
286 {
287 return region_limit (0);
288 }
289
290 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
291 doc: /* Return this buffer's mark, as a marker object.
292 Watch out! Moving this marker changes the mark position.
293 If you set the marker not to point anywhere, the buffer will have no mark. */)
294 (void)
295 {
296 return BVAR (current_buffer, mark);
297 }
298
299 \f
300 /* Find all the overlays in the current buffer that touch position POS.
301 Return the number found, and store them in a vector in VEC
302 of length LEN. */
303
304 static ptrdiff_t
305 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
306 {
307 Lisp_Object overlay, start, end;
308 struct Lisp_Overlay *tail;
309 ptrdiff_t startpos, endpos;
310 ptrdiff_t idx = 0;
311
312 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
313 {
314 XSETMISC (overlay, tail);
315
316 end = OVERLAY_END (overlay);
317 endpos = OVERLAY_POSITION (end);
318 if (endpos < pos)
319 break;
320 start = OVERLAY_START (overlay);
321 startpos = OVERLAY_POSITION (start);
322 if (startpos <= pos)
323 {
324 if (idx < len)
325 vec[idx] = overlay;
326 /* Keep counting overlays even if we can't return them all. */
327 idx++;
328 }
329 }
330
331 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
332 {
333 XSETMISC (overlay, tail);
334
335 start = OVERLAY_START (overlay);
336 startpos = OVERLAY_POSITION (start);
337 if (pos < startpos)
338 break;
339 end = OVERLAY_END (overlay);
340 endpos = OVERLAY_POSITION (end);
341 if (pos <= endpos)
342 {
343 if (idx < len)
344 vec[idx] = overlay;
345 idx++;
346 }
347 }
348
349 return idx;
350 }
351
352 /* Return the value of property PROP, in OBJECT at POSITION.
353 It's the value of PROP that a char inserted at POSITION would get.
354 OBJECT is optional and defaults to the current buffer.
355 If OBJECT is a buffer, then overlay properties are considered as well as
356 text properties.
357 If OBJECT is a window, then that window's buffer is used, but
358 window-specific overlays are considered only if they are associated
359 with OBJECT. */
360 Lisp_Object
361 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
362 {
363 CHECK_NUMBER_COERCE_MARKER (position);
364
365 if (NILP (object))
366 XSETBUFFER (object, current_buffer);
367 else if (WINDOWP (object))
368 object = XWINDOW (object)->buffer;
369
370 if (!BUFFERP (object))
371 /* pos-property only makes sense in buffers right now, since strings
372 have no overlays and no notion of insertion for which stickiness
373 could be obeyed. */
374 return Fget_text_property (position, prop, object);
375 else
376 {
377 EMACS_INT posn = XINT (position);
378 ptrdiff_t noverlays;
379 Lisp_Object *overlay_vec, tem;
380 struct buffer *obuf = current_buffer;
381
382 set_buffer_temp (XBUFFER (object));
383
384 /* First try with room for 40 overlays. */
385 noverlays = 40;
386 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
387 noverlays = overlays_around (posn, overlay_vec, noverlays);
388
389 /* If there are more than 40,
390 make enough space for all, and try again. */
391 if (noverlays > 40)
392 {
393 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
394 noverlays = overlays_around (posn, overlay_vec, noverlays);
395 }
396 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
397
398 set_buffer_temp (obuf);
399
400 /* Now check the overlays in order of decreasing priority. */
401 while (--noverlays >= 0)
402 {
403 Lisp_Object ol = overlay_vec[noverlays];
404 tem = Foverlay_get (ol, prop);
405 if (!NILP (tem))
406 {
407 /* Check the overlay is indeed active at point. */
408 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
409 if ((OVERLAY_POSITION (start) == posn
410 && XMARKER (start)->insertion_type == 1)
411 || (OVERLAY_POSITION (finish) == posn
412 && XMARKER (finish)->insertion_type == 0))
413 ; /* The overlay will not cover a char inserted at point. */
414 else
415 {
416 return tem;
417 }
418 }
419 }
420
421 { /* Now check the text properties. */
422 int stickiness = text_property_stickiness (prop, position, object);
423 if (stickiness > 0)
424 return Fget_text_property (position, prop, object);
425 else if (stickiness < 0
426 && XINT (position) > BUF_BEGV (XBUFFER (object)))
427 return Fget_text_property (make_number (XINT (position) - 1),
428 prop, object);
429 else
430 return Qnil;
431 }
432 }
433 }
434
435 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
436 the value of point is used instead. If BEG or END is null,
437 means don't store the beginning or end of the field.
438
439 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
440 results; they do not effect boundary behavior.
441
442 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
443 position of a field, then the beginning of the previous field is
444 returned instead of the beginning of POS's field (since the end of a
445 field is actually also the beginning of the next input field, this
446 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
447 true case, if two fields are separated by a field with the special
448 value `boundary', and POS lies within it, then the two separated
449 fields are considered to be adjacent, and POS between them, when
450 finding the beginning and ending of the "merged" field.
451
452 Either BEG or END may be 0, in which case the corresponding value
453 is not stored. */
454
455 static void
456 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
457 Lisp_Object beg_limit,
458 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
459 {
460 /* Fields right before and after the point. */
461 Lisp_Object before_field, after_field;
462 /* 1 if POS counts as the start of a field. */
463 int at_field_start = 0;
464 /* 1 if POS counts as the end of a field. */
465 int at_field_end = 0;
466
467 if (NILP (pos))
468 XSETFASTINT (pos, PT);
469 else
470 CHECK_NUMBER_COERCE_MARKER (pos);
471
472 after_field
473 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
474 before_field
475 = (XFASTINT (pos) > BEGV
476 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
477 Qfield, Qnil, NULL)
478 /* Using nil here would be a more obvious choice, but it would
479 fail when the buffer starts with a non-sticky field. */
480 : after_field);
481
482 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
483 and POS is at beginning of a field, which can also be interpreted
484 as the end of the previous field. Note that the case where if
485 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
486 more natural one; then we avoid treating the beginning of a field
487 specially. */
488 if (NILP (merge_at_boundary))
489 {
490 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
491 if (!EQ (field, after_field))
492 at_field_end = 1;
493 if (!EQ (field, before_field))
494 at_field_start = 1;
495 if (NILP (field) && at_field_start && at_field_end)
496 /* If an inserted char would have a nil field while the surrounding
497 text is non-nil, we're probably not looking at a
498 zero-length field, but instead at a non-nil field that's
499 not intended for editing (such as comint's prompts). */
500 at_field_end = at_field_start = 0;
501 }
502
503 /* Note about special `boundary' fields:
504
505 Consider the case where the point (`.') is between the fields `x' and `y':
506
507 xxxx.yyyy
508
509 In this situation, if merge_at_boundary is true, we consider the
510 `x' and `y' fields as forming one big merged field, and so the end
511 of the field is the end of `y'.
512
513 However, if `x' and `y' are separated by a special `boundary' field
514 (a field with a `field' char-property of 'boundary), then we ignore
515 this special field when merging adjacent fields. Here's the same
516 situation, but with a `boundary' field between the `x' and `y' fields:
517
518 xxx.BBBByyyy
519
520 Here, if point is at the end of `x', the beginning of `y', or
521 anywhere in-between (within the `boundary' field), we merge all
522 three fields and consider the beginning as being the beginning of
523 the `x' field, and the end as being the end of the `y' field. */
524
525 if (beg)
526 {
527 if (at_field_start)
528 /* POS is at the edge of a field, and we should consider it as
529 the beginning of the following field. */
530 *beg = XFASTINT (pos);
531 else
532 /* Find the previous field boundary. */
533 {
534 Lisp_Object p = pos;
535 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
536 /* Skip a `boundary' field. */
537 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
538 beg_limit);
539
540 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
541 beg_limit);
542 *beg = NILP (p) ? BEGV : XFASTINT (p);
543 }
544 }
545
546 if (end)
547 {
548 if (at_field_end)
549 /* POS is at the edge of a field, and we should consider it as
550 the end of the previous field. */
551 *end = XFASTINT (pos);
552 else
553 /* Find the next field boundary. */
554 {
555 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
556 /* Skip a `boundary' field. */
557 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
558 end_limit);
559
560 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
561 end_limit);
562 *end = NILP (pos) ? ZV : XFASTINT (pos);
563 }
564 }
565 }
566
567 \f
568 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
569 doc: /* Delete the field surrounding POS.
570 A field is a region of text with the same `field' property.
571 If POS is nil, the value of point is used for POS. */)
572 (Lisp_Object pos)
573 {
574 ptrdiff_t beg, end;
575 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
576 if (beg != end)
577 del_range (beg, end);
578 return Qnil;
579 }
580
581 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
582 doc: /* Return the contents of the field surrounding POS as a string.
583 A field is a region of text with the same `field' property.
584 If POS is nil, the value of point is used for POS. */)
585 (Lisp_Object pos)
586 {
587 ptrdiff_t beg, end;
588 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
589 return make_buffer_string (beg, end, 1);
590 }
591
592 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
593 doc: /* Return the contents of the field around POS, without text properties.
594 A field is a region of text with the same `field' property.
595 If POS is nil, the value of point is used for POS. */)
596 (Lisp_Object pos)
597 {
598 ptrdiff_t beg, end;
599 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
600 return make_buffer_string (beg, end, 0);
601 }
602
603 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
604 doc: /* Return the beginning of the field surrounding POS.
605 A field is a region of text with the same `field' property.
606 If POS is nil, the value of point is used for POS.
607 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
608 field, then the beginning of the *previous* field is returned.
609 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
610 is before LIMIT, then LIMIT will be returned instead. */)
611 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
612 {
613 ptrdiff_t beg;
614 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
615 return make_number (beg);
616 }
617
618 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
619 doc: /* Return the end of the field surrounding POS.
620 A field is a region of text with the same `field' property.
621 If POS is nil, the value of point is used for POS.
622 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
623 then the end of the *following* field is returned.
624 If LIMIT is non-nil, it is a buffer position; if the end of the field
625 is after LIMIT, then LIMIT will be returned instead. */)
626 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
627 {
628 ptrdiff_t end;
629 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
630 return make_number (end);
631 }
632
633 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
634 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
635 A field is a region of text with the same `field' property.
636
637 If NEW-POS is nil, then use the current point instead, and move point
638 to the resulting constrained position, in addition to returning that
639 position.
640
641 If OLD-POS is at the boundary of two fields, then the allowable
642 positions for NEW-POS depends on the value of the optional argument
643 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
644 constrained to the field that has the same `field' char-property
645 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
646 is non-nil, NEW-POS is constrained to the union of the two adjacent
647 fields. Additionally, if two fields are separated by another field with
648 the special value `boundary', then any point within this special field is
649 also considered to be `on the boundary'.
650
651 If the optional argument ONLY-IN-LINE is non-nil and constraining
652 NEW-POS would move it to a different line, NEW-POS is returned
653 unconstrained. This useful for commands that move by line, like
654 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
655 only in the case where they can still move to the right line.
656
657 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
658 a non-nil property of that name, then any field boundaries are ignored.
659
660 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
661 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
662 {
663 /* If non-zero, then the original point, before re-positioning. */
664 ptrdiff_t orig_point = 0;
665 int fwd;
666 Lisp_Object prev_old, prev_new;
667
668 if (NILP (new_pos))
669 /* Use the current point, and afterwards, set it. */
670 {
671 orig_point = PT;
672 XSETFASTINT (new_pos, PT);
673 }
674
675 CHECK_NUMBER_COERCE_MARKER (new_pos);
676 CHECK_NUMBER_COERCE_MARKER (old_pos);
677
678 fwd = (XINT (new_pos) > XINT (old_pos));
679
680 prev_old = make_number (XINT (old_pos) - 1);
681 prev_new = make_number (XINT (new_pos) - 1);
682
683 if (NILP (Vinhibit_field_text_motion)
684 && !EQ (new_pos, old_pos)
685 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
686 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
687 /* To recognize field boundaries, we must also look at the
688 previous positions; we could use `get_pos_property'
689 instead, but in itself that would fail inside non-sticky
690 fields (like comint prompts). */
691 || (XFASTINT (new_pos) > BEGV
692 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
693 || (XFASTINT (old_pos) > BEGV
694 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
695 && (NILP (inhibit_capture_property)
696 /* Field boundaries are again a problem; but now we must
697 decide the case exactly, so we need to call
698 `get_pos_property' as well. */
699 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
700 && (XFASTINT (old_pos) <= BEGV
701 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
702 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
703 /* It is possible that NEW_POS is not within the same field as
704 OLD_POS; try to move NEW_POS so that it is. */
705 {
706 ptrdiff_t shortage;
707 Lisp_Object field_bound;
708
709 if (fwd)
710 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
711 else
712 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
713
714 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
715 other side of NEW_POS, which would mean that NEW_POS is
716 already acceptable, and it's not necessary to constrain it
717 to FIELD_BOUND. */
718 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
719 /* NEW_POS should be constrained, but only if either
720 ONLY_IN_LINE is nil (in which case any constraint is OK),
721 or NEW_POS and FIELD_BOUND are on the same line (in which
722 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
723 && (NILP (only_in_line)
724 /* This is the ONLY_IN_LINE case, check that NEW_POS and
725 FIELD_BOUND are on the same line by seeing whether
726 there's an intervening newline or not. */
727 || (scan_buffer ('\n',
728 XFASTINT (new_pos), XFASTINT (field_bound),
729 fwd ? -1 : 1, &shortage, 1),
730 shortage != 0)))
731 /* Constrain NEW_POS to FIELD_BOUND. */
732 new_pos = field_bound;
733
734 if (orig_point && XFASTINT (new_pos) != orig_point)
735 /* The NEW_POS argument was originally nil, so automatically set PT. */
736 SET_PT (XFASTINT (new_pos));
737 }
738
739 return new_pos;
740 }
741
742 \f
743 DEFUN ("line-beginning-position",
744 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
745 doc: /* Return the character position of the first character on the current line.
746 With argument N not nil or 1, move forward N - 1 lines first.
747 If scan reaches end of buffer, return that position.
748
749 The returned position is of the first character in the logical order,
750 i.e. the one that has the smallest character position.
751
752 This function constrains the returned position to the current field
753 unless that would be on a different line than the original,
754 unconstrained result. If N is nil or 1, and a front-sticky field
755 starts at point, the scan stops as soon as it starts. To ignore field
756 boundaries bind `inhibit-field-text-motion' to t.
757
758 This function does not move point. */)
759 (Lisp_Object n)
760 {
761 ptrdiff_t orig, orig_byte, end;
762 ptrdiff_t count = SPECPDL_INDEX ();
763 specbind (Qinhibit_point_motion_hooks, Qt);
764
765 if (NILP (n))
766 XSETFASTINT (n, 1);
767 else
768 CHECK_NUMBER (n);
769
770 orig = PT;
771 orig_byte = PT_BYTE;
772 Fforward_line (make_number (XINT (n) - 1));
773 end = PT;
774
775 SET_PT_BOTH (orig, orig_byte);
776
777 unbind_to (count, Qnil);
778
779 /* Return END constrained to the current input field. */
780 return Fconstrain_to_field (make_number (end), make_number (orig),
781 XINT (n) != 1 ? Qt : Qnil,
782 Qt, Qnil);
783 }
784
785 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
786 doc: /* Return the character position of the last character on the current line.
787 With argument N not nil or 1, move forward N - 1 lines first.
788 If scan reaches end of buffer, return that position.
789
790 The returned position is of the last character in the logical order,
791 i.e. the character whose buffer position is the largest one.
792
793 This function constrains the returned position to the current field
794 unless that would be on a different line than the original,
795 unconstrained result. If N is nil or 1, and a rear-sticky field ends
796 at point, the scan stops as soon as it starts. To ignore field
797 boundaries bind `inhibit-field-text-motion' to t.
798
799 This function does not move point. */)
800 (Lisp_Object n)
801 {
802 ptrdiff_t clipped_n;
803 ptrdiff_t end_pos;
804 ptrdiff_t orig = PT;
805
806 if (NILP (n))
807 XSETFASTINT (n, 1);
808 else
809 CHECK_NUMBER (n);
810
811 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
812 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
813
814 /* Return END_POS constrained to the current input field. */
815 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
816 Qnil, Qt, Qnil);
817 }
818
819 \f
820 Lisp_Object
821 save_excursion_save (void)
822 {
823 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
824 == current_buffer);
825
826 return Fcons (Fpoint_marker (),
827 Fcons (Fcopy_marker (BVAR (current_buffer, mark), Qnil),
828 Fcons (visible ? Qt : Qnil,
829 Fcons (BVAR (current_buffer, mark_active),
830 selected_window))));
831 }
832
833 Lisp_Object
834 save_excursion_restore (Lisp_Object info)
835 {
836 Lisp_Object tem, tem1, omark, nmark;
837 struct gcpro gcpro1, gcpro2, gcpro3;
838 int visible_p;
839
840 tem = Fmarker_buffer (XCAR (info));
841 /* If buffer being returned to is now deleted, avoid error */
842 /* Otherwise could get error here while unwinding to top level
843 and crash */
844 /* In that case, Fmarker_buffer returns nil now. */
845 if (NILP (tem))
846 return Qnil;
847
848 omark = nmark = Qnil;
849 GCPRO3 (info, omark, nmark);
850
851 Fset_buffer (tem);
852
853 /* Point marker. */
854 tem = XCAR (info);
855 Fgoto_char (tem);
856 unchain_marker (XMARKER (tem));
857
858 /* Mark marker. */
859 info = XCDR (info);
860 tem = XCAR (info);
861 omark = Fmarker_position (BVAR (current_buffer, mark));
862 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
863 nmark = Fmarker_position (tem);
864 unchain_marker (XMARKER (tem));
865
866 /* visible */
867 info = XCDR (info);
868 visible_p = !NILP (XCAR (info));
869
870 #if 0 /* We used to make the current buffer visible in the selected window
871 if that was true previously. That avoids some anomalies.
872 But it creates others, and it wasn't documented, and it is simpler
873 and cleaner never to alter the window/buffer connections. */
874 tem1 = Fcar (tem);
875 if (!NILP (tem1)
876 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
877 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
878 #endif /* 0 */
879
880 /* Mark active */
881 info = XCDR (info);
882 tem = XCAR (info);
883 tem1 = BVAR (current_buffer, mark_active);
884 BSET (current_buffer, mark_active, tem);
885
886 /* If mark is active now, and either was not active
887 or was at a different place, run the activate hook. */
888 if (! NILP (tem))
889 {
890 if (! EQ (omark, nmark))
891 {
892 tem = intern ("activate-mark-hook");
893 Frun_hooks (1, &tem);
894 }
895 }
896 /* If mark has ceased to be active, run deactivate hook. */
897 else if (! NILP (tem1))
898 {
899 tem = intern ("deactivate-mark-hook");
900 Frun_hooks (1, &tem);
901 }
902
903 /* If buffer was visible in a window, and a different window was
904 selected, and the old selected window is still showing this
905 buffer, restore point in that window. */
906 tem = XCDR (info);
907 if (visible_p
908 && !EQ (tem, selected_window)
909 && (tem1 = XWINDOW (tem)->buffer,
910 (/* Window is live... */
911 BUFFERP (tem1)
912 /* ...and it shows the current buffer. */
913 && XBUFFER (tem1) == current_buffer)))
914 Fset_window_point (tem, make_number (PT));
915
916 UNGCPRO;
917 return Qnil;
918 }
919
920 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
921 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
922 Executes BODY just like `progn'.
923 The values of point, mark and the current buffer are restored
924 even in case of abnormal exit (throw or error).
925 The state of activation of the mark is also restored.
926
927 This construct does not save `deactivate-mark', and therefore
928 functions that change the buffer will still cause deactivation
929 of the mark at the end of the command. To prevent that, bind
930 `deactivate-mark' with `let'.
931
932 If you only want to save the current buffer but not point nor mark,
933 then just use `save-current-buffer', or even `with-current-buffer'.
934
935 usage: (save-excursion &rest BODY) */)
936 (Lisp_Object args)
937 {
938 register Lisp_Object val;
939 ptrdiff_t count = SPECPDL_INDEX ();
940
941 record_unwind_protect (save_excursion_restore, save_excursion_save ());
942
943 val = Fprogn (args);
944 return unbind_to (count, val);
945 }
946
947 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
948 doc: /* Record which buffer is current; execute BODY; make that buffer current.
949 BODY is executed just like `progn'.
950 usage: (save-current-buffer &rest BODY) */)
951 (Lisp_Object args)
952 {
953 Lisp_Object val;
954 ptrdiff_t count = SPECPDL_INDEX ();
955
956 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
957
958 val = Fprogn (args);
959 return unbind_to (count, val);
960 }
961 \f
962 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
963 doc: /* Return the number of characters in the current buffer.
964 If BUFFER, return the number of characters in that buffer instead. */)
965 (Lisp_Object buffer)
966 {
967 if (NILP (buffer))
968 return make_number (Z - BEG);
969 else
970 {
971 CHECK_BUFFER (buffer);
972 return make_number (BUF_Z (XBUFFER (buffer))
973 - BUF_BEG (XBUFFER (buffer)));
974 }
975 }
976
977 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
978 doc: /* Return the minimum permissible value of point in the current buffer.
979 This is 1, unless narrowing (a buffer restriction) is in effect. */)
980 (void)
981 {
982 Lisp_Object temp;
983 XSETFASTINT (temp, BEGV);
984 return temp;
985 }
986
987 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
988 doc: /* Return a marker to the minimum permissible value of point in this buffer.
989 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
990 (void)
991 {
992 return build_marker (current_buffer, BEGV, BEGV_BYTE);
993 }
994
995 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
996 doc: /* Return the maximum permissible value of point in the current buffer.
997 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
998 is in effect, in which case it is less. */)
999 (void)
1000 {
1001 Lisp_Object temp;
1002 XSETFASTINT (temp, ZV);
1003 return temp;
1004 }
1005
1006 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1007 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1008 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1009 is in effect, in which case it is less. */)
1010 (void)
1011 {
1012 return build_marker (current_buffer, ZV, ZV_BYTE);
1013 }
1014
1015 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1016 doc: /* Return the position of the gap, in the current buffer.
1017 See also `gap-size'. */)
1018 (void)
1019 {
1020 Lisp_Object temp;
1021 XSETFASTINT (temp, GPT);
1022 return temp;
1023 }
1024
1025 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1026 doc: /* Return the size of the current buffer's gap.
1027 See also `gap-position'. */)
1028 (void)
1029 {
1030 Lisp_Object temp;
1031 XSETFASTINT (temp, GAP_SIZE);
1032 return temp;
1033 }
1034
1035 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1036 doc: /* Return the byte position for character position POSITION.
1037 If POSITION is out of range, the value is nil. */)
1038 (Lisp_Object position)
1039 {
1040 CHECK_NUMBER_COERCE_MARKER (position);
1041 if (XINT (position) < BEG || XINT (position) > Z)
1042 return Qnil;
1043 return make_number (CHAR_TO_BYTE (XINT (position)));
1044 }
1045
1046 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1047 doc: /* Return the character position for byte position BYTEPOS.
1048 If BYTEPOS is out of range, the value is nil. */)
1049 (Lisp_Object bytepos)
1050 {
1051 CHECK_NUMBER (bytepos);
1052 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1053 return Qnil;
1054 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1055 }
1056 \f
1057 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1058 doc: /* Return the character following point, as a number.
1059 At the end of the buffer or accessible region, return 0. */)
1060 (void)
1061 {
1062 Lisp_Object temp;
1063 if (PT >= ZV)
1064 XSETFASTINT (temp, 0);
1065 else
1066 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1067 return temp;
1068 }
1069
1070 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1071 doc: /* Return the character preceding point, as a number.
1072 At the beginning of the buffer or accessible region, return 0. */)
1073 (void)
1074 {
1075 Lisp_Object temp;
1076 if (PT <= BEGV)
1077 XSETFASTINT (temp, 0);
1078 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1079 {
1080 ptrdiff_t pos = PT_BYTE;
1081 DEC_POS (pos);
1082 XSETFASTINT (temp, FETCH_CHAR (pos));
1083 }
1084 else
1085 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1086 return temp;
1087 }
1088
1089 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1090 doc: /* Return t if point is at the beginning of the buffer.
1091 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1092 (void)
1093 {
1094 if (PT == BEGV)
1095 return Qt;
1096 return Qnil;
1097 }
1098
1099 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1100 doc: /* Return t if point is at the end of the buffer.
1101 If the buffer is narrowed, this means the end of the narrowed part. */)
1102 (void)
1103 {
1104 if (PT == ZV)
1105 return Qt;
1106 return Qnil;
1107 }
1108
1109 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1110 doc: /* Return t if point is at the beginning of a line. */)
1111 (void)
1112 {
1113 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1114 return Qt;
1115 return Qnil;
1116 }
1117
1118 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1119 doc: /* Return t if point is at the end of a line.
1120 `End of a line' includes point being at the end of the buffer. */)
1121 (void)
1122 {
1123 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1124 return Qt;
1125 return Qnil;
1126 }
1127
1128 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1129 doc: /* Return character in current buffer at position POS.
1130 POS is an integer or a marker and defaults to point.
1131 If POS is out of range, the value is nil. */)
1132 (Lisp_Object pos)
1133 {
1134 register ptrdiff_t pos_byte;
1135
1136 if (NILP (pos))
1137 {
1138 pos_byte = PT_BYTE;
1139 XSETFASTINT (pos, PT);
1140 }
1141
1142 if (MARKERP (pos))
1143 {
1144 pos_byte = marker_byte_position (pos);
1145 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1146 return Qnil;
1147 }
1148 else
1149 {
1150 CHECK_NUMBER_COERCE_MARKER (pos);
1151 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1152 return Qnil;
1153
1154 pos_byte = CHAR_TO_BYTE (XINT (pos));
1155 }
1156
1157 return make_number (FETCH_CHAR (pos_byte));
1158 }
1159
1160 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1161 doc: /* Return character in current buffer preceding position POS.
1162 POS is an integer or a marker and defaults to point.
1163 If POS is out of range, the value is nil. */)
1164 (Lisp_Object pos)
1165 {
1166 register Lisp_Object val;
1167 register ptrdiff_t pos_byte;
1168
1169 if (NILP (pos))
1170 {
1171 pos_byte = PT_BYTE;
1172 XSETFASTINT (pos, PT);
1173 }
1174
1175 if (MARKERP (pos))
1176 {
1177 pos_byte = marker_byte_position (pos);
1178
1179 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1180 return Qnil;
1181 }
1182 else
1183 {
1184 CHECK_NUMBER_COERCE_MARKER (pos);
1185
1186 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1187 return Qnil;
1188
1189 pos_byte = CHAR_TO_BYTE (XINT (pos));
1190 }
1191
1192 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1193 {
1194 DEC_POS (pos_byte);
1195 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1196 }
1197 else
1198 {
1199 pos_byte--;
1200 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1201 }
1202 return val;
1203 }
1204 \f
1205 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1206 doc: /* Return the name under which the user logged in, as a string.
1207 This is based on the effective uid, not the real uid.
1208 Also, if the environment variables LOGNAME or USER are set,
1209 that determines the value of this function.
1210
1211 If optional argument UID is an integer or a float, return the login name
1212 of the user with that uid, or nil if there is no such user. */)
1213 (Lisp_Object uid)
1214 {
1215 struct passwd *pw;
1216 uid_t id;
1217
1218 /* Set up the user name info if we didn't do it before.
1219 (That can happen if Emacs is dumpable
1220 but you decide to run `temacs -l loadup' and not dump. */
1221 if (INTEGERP (Vuser_login_name))
1222 init_editfns ();
1223
1224 if (NILP (uid))
1225 return Vuser_login_name;
1226
1227 CONS_TO_INTEGER (uid, uid_t, id);
1228 BLOCK_INPUT;
1229 pw = getpwuid (id);
1230 UNBLOCK_INPUT;
1231 return (pw ? build_string (pw->pw_name) : Qnil);
1232 }
1233
1234 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1235 0, 0, 0,
1236 doc: /* Return the name of the user's real uid, as a string.
1237 This ignores the environment variables LOGNAME and USER, so it differs from
1238 `user-login-name' when running under `su'. */)
1239 (void)
1240 {
1241 /* Set up the user name info if we didn't do it before.
1242 (That can happen if Emacs is dumpable
1243 but you decide to run `temacs -l loadup' and not dump. */
1244 if (INTEGERP (Vuser_login_name))
1245 init_editfns ();
1246 return Vuser_real_login_name;
1247 }
1248
1249 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1250 doc: /* Return the effective uid of Emacs.
1251 Value is an integer or a float, depending on the value. */)
1252 (void)
1253 {
1254 uid_t euid = geteuid ();
1255 return make_fixnum_or_float (euid);
1256 }
1257
1258 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1259 doc: /* Return the real uid of Emacs.
1260 Value is an integer or a float, depending on the value. */)
1261 (void)
1262 {
1263 uid_t uid = getuid ();
1264 return make_fixnum_or_float (uid);
1265 }
1266
1267 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1268 doc: /* Return the full name of the user logged in, as a string.
1269 If the full name corresponding to Emacs's userid is not known,
1270 return "unknown".
1271
1272 If optional argument UID is an integer or float, return the full name
1273 of the user with that uid, or nil if there is no such user.
1274 If UID is a string, return the full name of the user with that login
1275 name, or nil if there is no such user. */)
1276 (Lisp_Object uid)
1277 {
1278 struct passwd *pw;
1279 register char *p, *q;
1280 Lisp_Object full;
1281
1282 if (NILP (uid))
1283 return Vuser_full_name;
1284 else if (NUMBERP (uid))
1285 {
1286 uid_t u;
1287 CONS_TO_INTEGER (uid, uid_t, u);
1288 BLOCK_INPUT;
1289 pw = getpwuid (u);
1290 UNBLOCK_INPUT;
1291 }
1292 else if (STRINGP (uid))
1293 {
1294 BLOCK_INPUT;
1295 pw = getpwnam (SSDATA (uid));
1296 UNBLOCK_INPUT;
1297 }
1298 else
1299 error ("Invalid UID specification");
1300
1301 if (!pw)
1302 return Qnil;
1303
1304 p = USER_FULL_NAME;
1305 /* Chop off everything after the first comma. */
1306 q = strchr (p, ',');
1307 full = make_string (p, q ? q - p : strlen (p));
1308
1309 #ifdef AMPERSAND_FULL_NAME
1310 p = SSDATA (full);
1311 q = strchr (p, '&');
1312 /* Substitute the login name for the &, upcasing the first character. */
1313 if (q)
1314 {
1315 register char *r;
1316 Lisp_Object login;
1317
1318 login = Fuser_login_name (make_number (pw->pw_uid));
1319 r = alloca (strlen (p) + SCHARS (login) + 1);
1320 memcpy (r, p, q - p);
1321 r[q - p] = 0;
1322 strcat (r, SSDATA (login));
1323 r[q - p] = upcase ((unsigned char) r[q - p]);
1324 strcat (r, q + 1);
1325 full = build_string (r);
1326 }
1327 #endif /* AMPERSAND_FULL_NAME */
1328
1329 return full;
1330 }
1331
1332 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1333 doc: /* Return the host name of the machine you are running on, as a string. */)
1334 (void)
1335 {
1336 return Vsystem_name;
1337 }
1338
1339 const char *
1340 get_system_name (void)
1341 {
1342 if (STRINGP (Vsystem_name))
1343 return SSDATA (Vsystem_name);
1344 else
1345 return "";
1346 }
1347
1348 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1349 doc: /* Return the process ID of Emacs, as a number. */)
1350 (void)
1351 {
1352 pid_t pid = getpid ();
1353 return make_fixnum_or_float (pid);
1354 }
1355
1356 \f
1357
1358 #ifndef TIME_T_MIN
1359 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1360 #endif
1361 #ifndef TIME_T_MAX
1362 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1363 #endif
1364
1365 /* Report that a time value is out of range for Emacs. */
1366 void
1367 time_overflow (void)
1368 {
1369 error ("Specified time is not representable");
1370 }
1371
1372 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1373 static EMACS_INT
1374 hi_time (time_t t)
1375 {
1376 time_t hi = t >> 16;
1377
1378 /* Check for overflow, helping the compiler for common cases where
1379 no runtime check is needed, and taking care not to convert
1380 negative numbers to unsigned before comparing them. */
1381 if (! ((! TYPE_SIGNED (time_t)
1382 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1383 || MOST_NEGATIVE_FIXNUM <= hi)
1384 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1385 || hi <= MOST_POSITIVE_FIXNUM)))
1386 time_overflow ();
1387
1388 return hi;
1389 }
1390
1391 /* Return the bottom 16 bits of the time T. */
1392 static int
1393 lo_time (time_t t)
1394 {
1395 return t & ((1 << 16) - 1);
1396 }
1397
1398 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1399 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1400 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1401 HIGH has the most significant bits of the seconds, while LOW has the
1402 least significant 16 bits. USEC and PSEC are the microsecond and
1403 picosecond counts. */)
1404 (void)
1405 {
1406 return make_lisp_time (current_emacs_time ());
1407 }
1408
1409 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1410 0, 0, 0,
1411 doc: /* Return the current run time used by Emacs.
1412 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1413 style as (current-time).
1414
1415 On systems that can't determine the run time, `get-internal-run-time'
1416 does the same thing as `current-time'. */)
1417 (void)
1418 {
1419 #ifdef HAVE_GETRUSAGE
1420 struct rusage usage;
1421 time_t secs;
1422 int usecs;
1423
1424 if (getrusage (RUSAGE_SELF, &usage) < 0)
1425 /* This shouldn't happen. What action is appropriate? */
1426 xsignal0 (Qerror);
1427
1428 /* Sum up user time and system time. */
1429 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1430 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1431 if (usecs >= 1000000)
1432 {
1433 usecs -= 1000000;
1434 secs++;
1435 }
1436 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1437 #else /* ! HAVE_GETRUSAGE */
1438 #ifdef WINDOWSNT
1439 return w32_get_internal_run_time ();
1440 #else /* ! WINDOWSNT */
1441 return Fcurrent_time ();
1442 #endif /* WINDOWSNT */
1443 #endif /* HAVE_GETRUSAGE */
1444 }
1445 \f
1446
1447 /* Make a Lisp list that represents the time T with fraction TAIL. */
1448 static Lisp_Object
1449 make_time_tail (time_t t, Lisp_Object tail)
1450 {
1451 return Fcons (make_number (hi_time (t)),
1452 Fcons (make_number (lo_time (t)), tail));
1453 }
1454
1455 /* Make a Lisp list that represents the system time T. */
1456 static Lisp_Object
1457 make_time (time_t t)
1458 {
1459 return make_time_tail (t, Qnil);
1460 }
1461
1462 /* Make a Lisp list that represents the Emacs time T. T may be an
1463 invalid time, with a slightly negative tv_nsec value such as
1464 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1465 correspondingly negative picosecond count. */
1466 Lisp_Object
1467 make_lisp_time (EMACS_TIME t)
1468 {
1469 int ns = EMACS_NSECS (t);
1470 return make_time_tail (EMACS_SECS (t),
1471 list2 (make_number (ns / 1000),
1472 make_number (ns % 1000 * 1000)));
1473 }
1474
1475 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1476 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1477 Return nonzero if successful. */
1478 static int
1479 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1480 Lisp_Object *plow, Lisp_Object *pusec,
1481 Lisp_Object *ppsec)
1482 {
1483 if (CONSP (specified_time))
1484 {
1485 Lisp_Object low = XCDR (specified_time);
1486 Lisp_Object usec = make_number (0);
1487 Lisp_Object psec = make_number (0);
1488 if (CONSP (low))
1489 {
1490 Lisp_Object low_tail = XCDR (low);
1491 low = XCAR (low);
1492 if (CONSP (low_tail))
1493 {
1494 usec = XCAR (low_tail);
1495 low_tail = XCDR (low_tail);
1496 if (CONSP (low_tail))
1497 psec = XCAR (low_tail);
1498 }
1499 else if (!NILP (low_tail))
1500 usec = low_tail;
1501 }
1502
1503 *phigh = XCAR (specified_time);
1504 *plow = low;
1505 *pusec = usec;
1506 *ppsec = psec;
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1514 list, generate the corresponding time value.
1515
1516 If RESULT is not null, store into *RESULT the converted time;
1517 this can fail if the converted time does not fit into EMACS_TIME.
1518 If *DRESULT is not null, store into *DRESULT the number of
1519 seconds since the start of the POSIX Epoch.
1520
1521 Return nonzero if successful. */
1522 int
1523 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1524 Lisp_Object psec,
1525 EMACS_TIME *result, double *dresult)
1526 {
1527 EMACS_INT hi, lo, us, ps;
1528 if (! (INTEGERP (high) && INTEGERP (low)
1529 && INTEGERP (usec) && INTEGERP (psec)))
1530 return 0;
1531 hi = XINT (high);
1532 lo = XINT (low);
1533 us = XINT (usec);
1534 ps = XINT (psec);
1535
1536 /* Normalize out-of-range lower-order components by carrying
1537 each overflow into the next higher-order component. */
1538 us += ps / 1000000 - (ps % 1000000 < 0);
1539 lo += us / 1000000 - (us % 1000000 < 0);
1540 hi += lo >> 16;
1541 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1542 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1543 lo &= (1 << 16) - 1;
1544
1545 if (result)
1546 {
1547 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1548 && hi <= TIME_T_MAX >> 16)
1549 {
1550 /* Return the greatest representable time that is not greater
1551 than the requested time. */
1552 time_t sec = hi;
1553 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1554 }
1555 else
1556 {
1557 /* Overflow in the highest-order component. */
1558 return 0;
1559 }
1560 }
1561
1562 if (dresult)
1563 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1564
1565 return 1;
1566 }
1567
1568 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1569 If SPECIFIED_TIME is nil, use the current time.
1570
1571 Round the time down to the nearest EMACS_TIME value.
1572 Return seconds since the Epoch.
1573 Signal an error if unsuccessful. */
1574 EMACS_TIME
1575 lisp_time_argument (Lisp_Object specified_time)
1576 {
1577 EMACS_TIME t;
1578 if (NILP (specified_time))
1579 t = current_emacs_time ();
1580 else
1581 {
1582 Lisp_Object high, low, usec, psec;
1583 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1584 && decode_time_components (high, low, usec, psec, &t, 0)))
1585 error ("Invalid time specification");
1586 }
1587 return t;
1588 }
1589
1590 /* Like lisp_time_argument, except decode only the seconds part,
1591 do not allow out-of-range time stamps, do not check the subseconds part,
1592 and always round down. */
1593 static time_t
1594 lisp_seconds_argument (Lisp_Object specified_time)
1595 {
1596 if (NILP (specified_time))
1597 return time (NULL);
1598 else
1599 {
1600 Lisp_Object high, low, usec, psec;
1601 EMACS_TIME t;
1602 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1603 && decode_time_components (high, low, make_number (0),
1604 make_number (0), &t, 0)))
1605 error ("Invalid time specification");
1606 return EMACS_SECS (t);
1607 }
1608 }
1609
1610 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1611 doc: /* Return the current time, as a float number of seconds since the epoch.
1612 If SPECIFIED-TIME is given, it is the time to convert to float
1613 instead of the current time. The argument should have the form
1614 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1615 you can use times from `current-time' and from `file-attributes'.
1616 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1617 considered obsolete.
1618
1619 WARNING: Since the result is floating point, it may not be exact.
1620 If precise time stamps are required, use either `current-time',
1621 or (if you need time as a string) `format-time-string'. */)
1622 (Lisp_Object specified_time)
1623 {
1624 double t;
1625 if (NILP (specified_time))
1626 {
1627 EMACS_TIME now = current_emacs_time ();
1628 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1629 }
1630 else
1631 {
1632 Lisp_Object high, low, usec, psec;
1633 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1634 && decode_time_components (high, low, usec, psec, 0, &t)))
1635 error ("Invalid time specification");
1636 }
1637 return make_float (t);
1638 }
1639
1640 /* Write information into buffer S of size MAXSIZE, according to the
1641 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1642 Default to Universal Time if UT is nonzero, local time otherwise.
1643 Use NS as the number of nanoseconds in the %N directive.
1644 Return the number of bytes written, not including the terminating
1645 '\0'. If S is NULL, nothing will be written anywhere; so to
1646 determine how many bytes would be written, use NULL for S and
1647 ((size_t) -1) for MAXSIZE.
1648
1649 This function behaves like nstrftime, except it allows null
1650 bytes in FORMAT and it does not support nanoseconds. */
1651 static size_t
1652 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1653 size_t format_len, const struct tm *tp, int ut, int ns)
1654 {
1655 size_t total = 0;
1656
1657 /* Loop through all the null-terminated strings in the format
1658 argument. Normally there's just one null-terminated string, but
1659 there can be arbitrarily many, concatenated together, if the
1660 format contains '\0' bytes. nstrftime stops at the first
1661 '\0' byte so we must invoke it separately for each such string. */
1662 for (;;)
1663 {
1664 size_t len;
1665 size_t result;
1666
1667 if (s)
1668 s[0] = '\1';
1669
1670 result = nstrftime (s, maxsize, format, tp, ut, ns);
1671
1672 if (s)
1673 {
1674 if (result == 0 && s[0] != '\0')
1675 return 0;
1676 s += result + 1;
1677 }
1678
1679 maxsize -= result + 1;
1680 total += result;
1681 len = strlen (format);
1682 if (len == format_len)
1683 return total;
1684 total++;
1685 format += len + 1;
1686 format_len -= len + 1;
1687 }
1688 }
1689
1690 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1691 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1692 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1693 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1694 is also still accepted.
1695 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1696 as Universal Time; nil means describe TIME in the local time zone.
1697 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1698 by text that describes the specified date and time in TIME:
1699
1700 %Y is the year, %y within the century, %C the century.
1701 %G is the year corresponding to the ISO week, %g within the century.
1702 %m is the numeric month.
1703 %b and %h are the locale's abbreviated month name, %B the full name.
1704 %d is the day of the month, zero-padded, %e is blank-padded.
1705 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1706 %a is the locale's abbreviated name of the day of week, %A the full name.
1707 %U is the week number starting on Sunday, %W starting on Monday,
1708 %V according to ISO 8601.
1709 %j is the day of the year.
1710
1711 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1712 only blank-padded, %l is like %I blank-padded.
1713 %p is the locale's equivalent of either AM or PM.
1714 %M is the minute.
1715 %S is the second.
1716 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1717 %Z is the time zone name, %z is the numeric form.
1718 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1719
1720 %c is the locale's date and time format.
1721 %x is the locale's "preferred" date format.
1722 %D is like "%m/%d/%y".
1723
1724 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1725 %X is the locale's "preferred" time format.
1726
1727 Finally, %n is a newline, %t is a tab, %% is a literal %.
1728
1729 Certain flags and modifiers are available with some format controls.
1730 The flags are `_', `-', `^' and `#'. For certain characters X,
1731 %_X is like %X, but padded with blanks; %-X is like %X,
1732 but without padding. %^X is like %X, but with all textual
1733 characters up-cased; %#X is like %X, but with letter-case of
1734 all textual characters reversed.
1735 %NX (where N stands for an integer) is like %X,
1736 but takes up at least N (a number) positions.
1737 The modifiers are `E' and `O'. For certain characters X,
1738 %EX is a locale's alternative version of %X;
1739 %OX is like %X, but uses the locale's number symbols.
1740
1741 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1742
1743 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1744 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1745 {
1746 EMACS_TIME t = lisp_time_argument (timeval);
1747 struct tm tm;
1748
1749 CHECK_STRING (format_string);
1750 format_string = code_convert_string_norecord (format_string,
1751 Vlocale_coding_system, 1);
1752 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1753 t, ! NILP (universal), &tm);
1754 }
1755
1756 static Lisp_Object
1757 format_time_string (char const *format, ptrdiff_t formatlen,
1758 EMACS_TIME t, int ut, struct tm *tmp)
1759 {
1760 char buffer[4000];
1761 char *buf = buffer;
1762 ptrdiff_t size = sizeof buffer;
1763 size_t len;
1764 Lisp_Object bufstring;
1765 int ns = EMACS_NSECS (t);
1766 struct tm *tm;
1767 USE_SAFE_ALLOCA;
1768
1769 while (1)
1770 {
1771 time_t *taddr = emacs_secs_addr (&t);
1772 BLOCK_INPUT;
1773
1774 synchronize_system_time_locale ();
1775
1776 tm = ut ? gmtime (taddr) : localtime (taddr);
1777 if (! tm)
1778 {
1779 UNBLOCK_INPUT;
1780 time_overflow ();
1781 }
1782 *tmp = *tm;
1783
1784 buf[0] = '\1';
1785 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1786 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1787 break;
1788
1789 /* Buffer was too small, so make it bigger and try again. */
1790 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1791 UNBLOCK_INPUT;
1792 if (STRING_BYTES_BOUND <= len)
1793 string_overflow ();
1794 size = len + 1;
1795 buf = SAFE_ALLOCA (size);
1796 }
1797
1798 UNBLOCK_INPUT;
1799 bufstring = make_unibyte_string (buf, len);
1800 SAFE_FREE ();
1801 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1802 }
1803
1804 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1805 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1806 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1807 as from `current-time' and `file-attributes', or nil to use the
1808 current time. The obsolete form (HIGH . LOW) is also still accepted.
1809 The list has the following nine members: SEC is an integer between 0
1810 and 60; SEC is 60 for a leap second, which only some operating systems
1811 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1812 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1813 integer between 1 and 12. YEAR is an integer indicating the
1814 four-digit year. DOW is the day of week, an integer between 0 and 6,
1815 where 0 is Sunday. DST is t if daylight saving time is in effect,
1816 otherwise nil. ZONE is an integer indicating the number of seconds
1817 east of Greenwich. (Note that Common Lisp has different meanings for
1818 DOW and ZONE.) */)
1819 (Lisp_Object specified_time)
1820 {
1821 time_t time_spec = lisp_seconds_argument (specified_time);
1822 struct tm save_tm;
1823 struct tm *decoded_time;
1824 Lisp_Object list_args[9];
1825
1826 BLOCK_INPUT;
1827 decoded_time = localtime (&time_spec);
1828 if (decoded_time)
1829 save_tm = *decoded_time;
1830 UNBLOCK_INPUT;
1831 if (! (decoded_time
1832 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1833 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1834 time_overflow ();
1835 XSETFASTINT (list_args[0], save_tm.tm_sec);
1836 XSETFASTINT (list_args[1], save_tm.tm_min);
1837 XSETFASTINT (list_args[2], save_tm.tm_hour);
1838 XSETFASTINT (list_args[3], save_tm.tm_mday);
1839 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1840 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1841 cast below avoids overflow in int arithmetics. */
1842 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1843 XSETFASTINT (list_args[6], save_tm.tm_wday);
1844 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1845
1846 BLOCK_INPUT;
1847 decoded_time = gmtime (&time_spec);
1848 if (decoded_time == 0)
1849 list_args[8] = Qnil;
1850 else
1851 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1852 UNBLOCK_INPUT;
1853 return Flist (9, list_args);
1854 }
1855
1856 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1857 the result is representable as an int. Assume OFFSET is small and
1858 nonnegative. */
1859 static int
1860 check_tm_member (Lisp_Object obj, int offset)
1861 {
1862 EMACS_INT n;
1863 CHECK_NUMBER (obj);
1864 n = XINT (obj);
1865 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1866 time_overflow ();
1867 return n - offset;
1868 }
1869
1870 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1871 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1872 This is the reverse operation of `decode-time', which see.
1873 ZONE defaults to the current time zone rule. This can
1874 be a string or t (as from `set-time-zone-rule'), or it can be a list
1875 \(as from `current-time-zone') or an integer (as from `decode-time')
1876 applied without consideration for daylight saving time.
1877
1878 You can pass more than 7 arguments; then the first six arguments
1879 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1880 The intervening arguments are ignored.
1881 This feature lets (apply 'encode-time (decode-time ...)) work.
1882
1883 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1884 for example, a DAY of 0 means the day preceding the given month.
1885 Year numbers less than 100 are treated just like other year numbers.
1886 If you want them to stand for years in this century, you must do that yourself.
1887
1888 Years before 1970 are not guaranteed to work. On some systems,
1889 year values as low as 1901 do work.
1890
1891 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1892 (ptrdiff_t nargs, Lisp_Object *args)
1893 {
1894 time_t value;
1895 struct tm tm;
1896 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1897
1898 tm.tm_sec = check_tm_member (args[0], 0);
1899 tm.tm_min = check_tm_member (args[1], 0);
1900 tm.tm_hour = check_tm_member (args[2], 0);
1901 tm.tm_mday = check_tm_member (args[3], 0);
1902 tm.tm_mon = check_tm_member (args[4], 1);
1903 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1904 tm.tm_isdst = -1;
1905
1906 if (CONSP (zone))
1907 zone = XCAR (zone);
1908 if (NILP (zone))
1909 {
1910 BLOCK_INPUT;
1911 value = mktime (&tm);
1912 UNBLOCK_INPUT;
1913 }
1914 else
1915 {
1916 char tzbuf[100];
1917 const char *tzstring;
1918 char **oldenv = environ, **newenv;
1919
1920 if (EQ (zone, Qt))
1921 tzstring = "UTC0";
1922 else if (STRINGP (zone))
1923 tzstring = SSDATA (zone);
1924 else if (INTEGERP (zone))
1925 {
1926 EMACS_INT abszone = eabs (XINT (zone));
1927 EMACS_INT zone_hr = abszone / (60*60);
1928 int zone_min = (abszone/60) % 60;
1929 int zone_sec = abszone % 60;
1930 sprintf (tzbuf, "XXX%s%"pI"d:%02d:%02d", "-" + (XINT (zone) < 0),
1931 zone_hr, zone_min, zone_sec);
1932 tzstring = tzbuf;
1933 }
1934 else
1935 error ("Invalid time zone specification");
1936
1937 BLOCK_INPUT;
1938
1939 /* Set TZ before calling mktime; merely adjusting mktime's returned
1940 value doesn't suffice, since that would mishandle leap seconds. */
1941 set_time_zone_rule (tzstring);
1942
1943 value = mktime (&tm);
1944
1945 /* Restore TZ to previous value. */
1946 newenv = environ;
1947 environ = oldenv;
1948 #ifdef LOCALTIME_CACHE
1949 tzset ();
1950 #endif
1951 UNBLOCK_INPUT;
1952
1953 xfree (newenv);
1954 }
1955
1956 if (value == (time_t) -1)
1957 time_overflow ();
1958
1959 return make_time (value);
1960 }
1961
1962 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1963 doc: /* Return the current local time, as a human-readable string.
1964 Programs can use this function to decode a time,
1965 since the number of columns in each field is fixed
1966 if the year is in the range 1000-9999.
1967 The format is `Sun Sep 16 01:03:52 1973'.
1968 However, see also the functions `decode-time' and `format-time-string'
1969 which provide a much more powerful and general facility.
1970
1971 If SPECIFIED-TIME is given, it is a time to format instead of the
1972 current time. The argument should have the form (HIGH LOW . IGNORED).
1973 Thus, you can use times obtained from `current-time' and from
1974 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1975 but this is considered obsolete. */)
1976 (Lisp_Object specified_time)
1977 {
1978 time_t value = lisp_seconds_argument (specified_time);
1979 struct tm *tm;
1980 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1981 int len IF_LINT (= 0);
1982
1983 /* Convert to a string in ctime format, except without the trailing
1984 newline, and without the 4-digit year limit. Don't use asctime
1985 or ctime, as they might dump core if the year is outside the
1986 range -999 .. 9999. */
1987 BLOCK_INPUT;
1988 tm = localtime (&value);
1989 if (tm)
1990 {
1991 static char const wday_name[][4] =
1992 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
1993 static char const mon_name[][4] =
1994 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1995 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
1996 printmax_t year_base = TM_YEAR_BASE;
1997
1998 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
1999 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2000 tm->tm_hour, tm->tm_min, tm->tm_sec,
2001 tm->tm_year + year_base);
2002 }
2003 UNBLOCK_INPUT;
2004 if (! tm)
2005 time_overflow ();
2006
2007 return make_unibyte_string (buf, len);
2008 }
2009
2010 /* Yield A - B, measured in seconds.
2011 This function is copied from the GNU C Library. */
2012 static int
2013 tm_diff (struct tm *a, struct tm *b)
2014 {
2015 /* Compute intervening leap days correctly even if year is negative.
2016 Take care to avoid int overflow in leap day calculations,
2017 but it's OK to assume that A and B are close to each other. */
2018 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2019 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2020 int a100 = a4 / 25 - (a4 % 25 < 0);
2021 int b100 = b4 / 25 - (b4 % 25 < 0);
2022 int a400 = a100 >> 2;
2023 int b400 = b100 >> 2;
2024 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2025 int years = a->tm_year - b->tm_year;
2026 int days = (365 * years + intervening_leap_days
2027 + (a->tm_yday - b->tm_yday));
2028 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2029 + (a->tm_min - b->tm_min))
2030 + (a->tm_sec - b->tm_sec));
2031 }
2032
2033 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2034 doc: /* Return the offset and name for the local time zone.
2035 This returns a list of the form (OFFSET NAME).
2036 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2037 A negative value means west of Greenwich.
2038 NAME is a string giving the name of the time zone.
2039 If SPECIFIED-TIME is given, the time zone offset is determined from it
2040 instead of using the current time. The argument should have the form
2041 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2042 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2043 have the form (HIGH . LOW), but this is considered obsolete.
2044
2045 Some operating systems cannot provide all this information to Emacs;
2046 in this case, `current-time-zone' returns a list containing nil for
2047 the data it can't find. */)
2048 (Lisp_Object specified_time)
2049 {
2050 EMACS_TIME value;
2051 int offset;
2052 struct tm *t;
2053 struct tm localtm;
2054 Lisp_Object zone_offset, zone_name;
2055
2056 zone_offset = Qnil;
2057 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2058 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2059 BLOCK_INPUT;
2060 t = gmtime (emacs_secs_addr (&value));
2061 if (t)
2062 offset = tm_diff (&localtm, t);
2063 UNBLOCK_INPUT;
2064
2065 if (t)
2066 {
2067 zone_offset = make_number (offset);
2068 if (SCHARS (zone_name) == 0)
2069 {
2070 /* No local time zone name is available; use "+-NNNN" instead. */
2071 int m = offset / 60;
2072 int am = offset < 0 ? - m : m;
2073 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2074 zone_name = make_formatted_string (buf, "%c%02d%02d",
2075 (offset < 0 ? '-' : '+'),
2076 am / 60, am % 60);
2077 }
2078 }
2079
2080 return list2 (zone_offset, zone_name);
2081 }
2082
2083 /* This holds the value of `environ' produced by the previous
2084 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2085 has never been called. */
2086 static char **environbuf;
2087
2088 /* This holds the startup value of the TZ environment variable so it
2089 can be restored if the user calls set-time-zone-rule with a nil
2090 argument. */
2091 static char *initial_tz;
2092
2093 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2094 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2095 If TZ is nil, use implementation-defined default time zone information.
2096 If TZ is t, use Universal Time.
2097
2098 Instead of calling this function, you typically want (setenv "TZ" TZ).
2099 That changes both the environment of the Emacs process and the
2100 variable `process-environment', whereas `set-time-zone-rule' affects
2101 only the former. */)
2102 (Lisp_Object tz)
2103 {
2104 const char *tzstring;
2105 char **old_environbuf;
2106
2107 if (! (NILP (tz) || EQ (tz, Qt)))
2108 CHECK_STRING (tz);
2109
2110 BLOCK_INPUT;
2111
2112 /* When called for the first time, save the original TZ. */
2113 old_environbuf = environbuf;
2114 if (!old_environbuf)
2115 initial_tz = (char *) getenv ("TZ");
2116
2117 if (NILP (tz))
2118 tzstring = initial_tz;
2119 else if (EQ (tz, Qt))
2120 tzstring = "UTC0";
2121 else
2122 tzstring = SSDATA (tz);
2123
2124 set_time_zone_rule (tzstring);
2125 environbuf = environ;
2126
2127 UNBLOCK_INPUT;
2128
2129 xfree (old_environbuf);
2130 return Qnil;
2131 }
2132
2133 #ifdef LOCALTIME_CACHE
2134
2135 /* These two values are known to load tz files in buggy implementations,
2136 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2137 Their values shouldn't matter in non-buggy implementations.
2138 We don't use string literals for these strings,
2139 since if a string in the environment is in readonly
2140 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2141 See Sun bugs 1113095 and 1114114, ``Timezone routines
2142 improperly modify environment''. */
2143
2144 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2145 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2146
2147 #endif
2148
2149 /* Set the local time zone rule to TZSTRING.
2150 This allocates memory into `environ', which it is the caller's
2151 responsibility to free. */
2152
2153 void
2154 set_time_zone_rule (const char *tzstring)
2155 {
2156 ptrdiff_t envptrs;
2157 char **from, **to, **newenv;
2158
2159 /* Make the ENVIRON vector longer with room for TZSTRING. */
2160 for (from = environ; *from; from++)
2161 continue;
2162 envptrs = from - environ + 2;
2163 newenv = to = xmalloc (envptrs * sizeof *newenv
2164 + (tzstring ? strlen (tzstring) + 4 : 0));
2165
2166 /* Add TZSTRING to the end of environ, as a value for TZ. */
2167 if (tzstring)
2168 {
2169 char *t = (char *) (to + envptrs);
2170 strcpy (t, "TZ=");
2171 strcat (t, tzstring);
2172 *to++ = t;
2173 }
2174
2175 /* Copy the old environ vector elements into NEWENV,
2176 but don't copy the TZ variable.
2177 So we have only one definition of TZ, which came from TZSTRING. */
2178 for (from = environ; *from; from++)
2179 if (strncmp (*from, "TZ=", 3) != 0)
2180 *to++ = *from;
2181 *to = 0;
2182
2183 environ = newenv;
2184
2185 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2186 the TZ variable is stored. If we do not have a TZSTRING,
2187 TO points to the vector slot which has the terminating null. */
2188
2189 #ifdef LOCALTIME_CACHE
2190 {
2191 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2192 "US/Pacific" that loads a tz file, then changes to a value like
2193 "XXX0" that does not load a tz file, and then changes back to
2194 its original value, the last change is (incorrectly) ignored.
2195 Also, if TZ changes twice in succession to values that do
2196 not load a tz file, tzset can dump core (see Sun bug#1225179).
2197 The following code works around these bugs. */
2198
2199 if (tzstring)
2200 {
2201 /* Temporarily set TZ to a value that loads a tz file
2202 and that differs from tzstring. */
2203 char *tz = *newenv;
2204 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2205 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2206 tzset ();
2207 *newenv = tz;
2208 }
2209 else
2210 {
2211 /* The implied tzstring is unknown, so temporarily set TZ to
2212 two different values that each load a tz file. */
2213 *to = set_time_zone_rule_tz1;
2214 to[1] = 0;
2215 tzset ();
2216 *to = set_time_zone_rule_tz2;
2217 tzset ();
2218 *to = 0;
2219 }
2220
2221 /* Now TZ has the desired value, and tzset can be invoked safely. */
2222 }
2223
2224 tzset ();
2225 #endif
2226 }
2227 \f
2228 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2229 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2230 type of object is Lisp_String). INHERIT is passed to
2231 INSERT_FROM_STRING_FUNC as the last argument. */
2232
2233 static void
2234 general_insert_function (void (*insert_func)
2235 (const char *, ptrdiff_t),
2236 void (*insert_from_string_func)
2237 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2238 ptrdiff_t, ptrdiff_t, int),
2239 int inherit, ptrdiff_t nargs, Lisp_Object *args)
2240 {
2241 ptrdiff_t argnum;
2242 register Lisp_Object val;
2243
2244 for (argnum = 0; argnum < nargs; argnum++)
2245 {
2246 val = args[argnum];
2247 if (CHARACTERP (val))
2248 {
2249 int c = XFASTINT (val);
2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2251 int len;
2252
2253 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2254 len = CHAR_STRING (c, str);
2255 else
2256 {
2257 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2258 len = 1;
2259 }
2260 (*insert_func) ((char *) str, len);
2261 }
2262 else if (STRINGP (val))
2263 {
2264 (*insert_from_string_func) (val, 0, 0,
2265 SCHARS (val),
2266 SBYTES (val),
2267 inherit);
2268 }
2269 else
2270 wrong_type_argument (Qchar_or_string_p, val);
2271 }
2272 }
2273
2274 void
2275 insert1 (Lisp_Object arg)
2276 {
2277 Finsert (1, &arg);
2278 }
2279
2280
2281 /* Callers passing one argument to Finsert need not gcpro the
2282 argument "array", since the only element of the array will
2283 not be used after calling insert or insert_from_string, so
2284 we don't care if it gets trashed. */
2285
2286 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2287 doc: /* Insert the arguments, either strings or characters, at point.
2288 Point and before-insertion markers move forward to end up
2289 after the inserted text.
2290 Any other markers at the point of insertion remain before the text.
2291
2292 If the current buffer is multibyte, unibyte strings are converted
2293 to multibyte for insertion (see `string-make-multibyte').
2294 If the current buffer is unibyte, multibyte strings are converted
2295 to unibyte for insertion (see `string-make-unibyte').
2296
2297 When operating on binary data, it may be necessary to preserve the
2298 original bytes of a unibyte string when inserting it into a multibyte
2299 buffer; to accomplish this, apply `string-as-multibyte' to the string
2300 and insert the result.
2301
2302 usage: (insert &rest ARGS) */)
2303 (ptrdiff_t nargs, Lisp_Object *args)
2304 {
2305 general_insert_function (insert, insert_from_string, 0, nargs, args);
2306 return Qnil;
2307 }
2308
2309 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2310 0, MANY, 0,
2311 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2312 Point and before-insertion markers move forward to end up
2313 after the inserted text.
2314 Any other markers at the point of insertion remain before the text.
2315
2316 If the current buffer is multibyte, unibyte strings are converted
2317 to multibyte for insertion (see `unibyte-char-to-multibyte').
2318 If the current buffer is unibyte, multibyte strings are converted
2319 to unibyte for insertion.
2320
2321 usage: (insert-and-inherit &rest ARGS) */)
2322 (ptrdiff_t nargs, Lisp_Object *args)
2323 {
2324 general_insert_function (insert_and_inherit, insert_from_string, 1,
2325 nargs, args);
2326 return Qnil;
2327 }
2328
2329 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2330 doc: /* Insert strings or characters at point, relocating markers after the text.
2331 Point and markers move forward to end up after the inserted text.
2332
2333 If the current buffer is multibyte, unibyte strings are converted
2334 to multibyte for insertion (see `unibyte-char-to-multibyte').
2335 If the current buffer is unibyte, multibyte strings are converted
2336 to unibyte for insertion.
2337
2338 usage: (insert-before-markers &rest ARGS) */)
2339 (ptrdiff_t nargs, Lisp_Object *args)
2340 {
2341 general_insert_function (insert_before_markers,
2342 insert_from_string_before_markers, 0,
2343 nargs, args);
2344 return Qnil;
2345 }
2346
2347 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2348 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2349 doc: /* Insert text at point, relocating markers and inheriting properties.
2350 Point and markers move forward to end up after the inserted text.
2351
2352 If the current buffer is multibyte, unibyte strings are converted
2353 to multibyte for insertion (see `unibyte-char-to-multibyte').
2354 If the current buffer is unibyte, multibyte strings are converted
2355 to unibyte for insertion.
2356
2357 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2358 (ptrdiff_t nargs, Lisp_Object *args)
2359 {
2360 general_insert_function (insert_before_markers_and_inherit,
2361 insert_from_string_before_markers, 1,
2362 nargs, args);
2363 return Qnil;
2364 }
2365 \f
2366 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2367 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2368 (prefix-numeric-value current-prefix-arg)\
2369 t))",
2370 doc: /* Insert COUNT copies of CHARACTER.
2371 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2372 of these ways:
2373
2374 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2375 Completion is available; if you type a substring of the name
2376 preceded by an asterisk `*', Emacs shows all names which include
2377 that substring, not necessarily at the beginning of the name.
2378
2379 - As a hexadecimal code point, e.g. 263A. Note that code points in
2380 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2381 the Unicode code space).
2382
2383 - As a code point with a radix specified with #, e.g. #o21430
2384 (octal), #x2318 (hex), or #10r8984 (decimal).
2385
2386 If called interactively, COUNT is given by the prefix argument. If
2387 omitted or nil, it defaults to 1.
2388
2389 Inserting the character(s) relocates point and before-insertion
2390 markers in the same ways as the function `insert'.
2391
2392 The optional third argument INHERIT, if non-nil, says to inherit text
2393 properties from adjoining text, if those properties are sticky. If
2394 called interactively, INHERIT is t. */)
2395 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2396 {
2397 int i, stringlen;
2398 register ptrdiff_t n;
2399 int c, len;
2400 unsigned char str[MAX_MULTIBYTE_LENGTH];
2401 char string[4000];
2402
2403 CHECK_CHARACTER (character);
2404 if (NILP (count))
2405 XSETFASTINT (count, 1);
2406 CHECK_NUMBER (count);
2407 c = XFASTINT (character);
2408
2409 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2410 len = CHAR_STRING (c, str);
2411 else
2412 str[0] = c, len = 1;
2413 if (XINT (count) <= 0)
2414 return Qnil;
2415 if (BUF_BYTES_MAX / len < XINT (count))
2416 buffer_overflow ();
2417 n = XINT (count) * len;
2418 stringlen = min (n, sizeof string - sizeof string % len);
2419 for (i = 0; i < stringlen; i++)
2420 string[i] = str[i % len];
2421 while (n > stringlen)
2422 {
2423 QUIT;
2424 if (!NILP (inherit))
2425 insert_and_inherit (string, stringlen);
2426 else
2427 insert (string, stringlen);
2428 n -= stringlen;
2429 }
2430 if (!NILP (inherit))
2431 insert_and_inherit (string, n);
2432 else
2433 insert (string, n);
2434 return Qnil;
2435 }
2436
2437 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2438 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2439 Both arguments are required.
2440 BYTE is a number of the range 0..255.
2441
2442 If BYTE is 128..255 and the current buffer is multibyte, the
2443 corresponding eight-bit character is inserted.
2444
2445 Point, and before-insertion markers, are relocated as in the function `insert'.
2446 The optional third arg INHERIT, if non-nil, says to inherit text properties
2447 from adjoining text, if those properties are sticky. */)
2448 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2449 {
2450 CHECK_NUMBER (byte);
2451 if (XINT (byte) < 0 || XINT (byte) > 255)
2452 args_out_of_range_3 (byte, make_number (0), make_number (255));
2453 if (XINT (byte) >= 128
2454 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2455 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2456 return Finsert_char (byte, count, inherit);
2457 }
2458
2459 \f
2460 /* Making strings from buffer contents. */
2461
2462 /* Return a Lisp_String containing the text of the current buffer from
2463 START to END. If text properties are in use and the current buffer
2464 has properties in the range specified, the resulting string will also
2465 have them, if PROPS is nonzero.
2466
2467 We don't want to use plain old make_string here, because it calls
2468 make_uninit_string, which can cause the buffer arena to be
2469 compacted. make_string has no way of knowing that the data has
2470 been moved, and thus copies the wrong data into the string. This
2471 doesn't effect most of the other users of make_string, so it should
2472 be left as is. But we should use this function when conjuring
2473 buffer substrings. */
2474
2475 Lisp_Object
2476 make_buffer_string (ptrdiff_t start, ptrdiff_t end, int props)
2477 {
2478 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2479 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2480
2481 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2482 }
2483
2484 /* Return a Lisp_String containing the text of the current buffer from
2485 START / START_BYTE to END / END_BYTE.
2486
2487 If text properties are in use and the current buffer
2488 has properties in the range specified, the resulting string will also
2489 have them, if PROPS is nonzero.
2490
2491 We don't want to use plain old make_string here, because it calls
2492 make_uninit_string, which can cause the buffer arena to be
2493 compacted. make_string has no way of knowing that the data has
2494 been moved, and thus copies the wrong data into the string. This
2495 doesn't effect most of the other users of make_string, so it should
2496 be left as is. But we should use this function when conjuring
2497 buffer substrings. */
2498
2499 Lisp_Object
2500 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2501 ptrdiff_t end, ptrdiff_t end_byte, int props)
2502 {
2503 Lisp_Object result, tem, tem1;
2504
2505 if (start < GPT && GPT < end)
2506 move_gap (start);
2507
2508 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2509 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2510 else
2511 result = make_uninit_string (end - start);
2512 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2513
2514 /* If desired, update and copy the text properties. */
2515 if (props)
2516 {
2517 update_buffer_properties (start, end);
2518
2519 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2520 tem1 = Ftext_properties_at (make_number (start), Qnil);
2521
2522 if (XINT (tem) != end || !NILP (tem1))
2523 copy_intervals_to_string (result, current_buffer, start,
2524 end - start);
2525 }
2526
2527 return result;
2528 }
2529
2530 /* Call Vbuffer_access_fontify_functions for the range START ... END
2531 in the current buffer, if necessary. */
2532
2533 static void
2534 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2535 {
2536 /* If this buffer has some access functions,
2537 call them, specifying the range of the buffer being accessed. */
2538 if (!NILP (Vbuffer_access_fontify_functions))
2539 {
2540 Lisp_Object args[3];
2541 Lisp_Object tem;
2542
2543 args[0] = Qbuffer_access_fontify_functions;
2544 XSETINT (args[1], start);
2545 XSETINT (args[2], end);
2546
2547 /* But don't call them if we can tell that the work
2548 has already been done. */
2549 if (!NILP (Vbuffer_access_fontified_property))
2550 {
2551 tem = Ftext_property_any (args[1], args[2],
2552 Vbuffer_access_fontified_property,
2553 Qnil, Qnil);
2554 if (! NILP (tem))
2555 Frun_hook_with_args (3, args);
2556 }
2557 else
2558 Frun_hook_with_args (3, args);
2559 }
2560 }
2561
2562 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2563 doc: /* Return the contents of part of the current buffer as a string.
2564 The two arguments START and END are character positions;
2565 they can be in either order.
2566 The string returned is multibyte if the buffer is multibyte.
2567
2568 This function copies the text properties of that part of the buffer
2569 into the result string; if you don't want the text properties,
2570 use `buffer-substring-no-properties' instead. */)
2571 (Lisp_Object start, Lisp_Object end)
2572 {
2573 register ptrdiff_t b, e;
2574
2575 validate_region (&start, &end);
2576 b = XINT (start);
2577 e = XINT (end);
2578
2579 return make_buffer_string (b, e, 1);
2580 }
2581
2582 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2583 Sbuffer_substring_no_properties, 2, 2, 0,
2584 doc: /* Return the characters of part of the buffer, without the text properties.
2585 The two arguments START and END are character positions;
2586 they can be in either order. */)
2587 (Lisp_Object start, Lisp_Object end)
2588 {
2589 register ptrdiff_t b, e;
2590
2591 validate_region (&start, &end);
2592 b = XINT (start);
2593 e = XINT (end);
2594
2595 return make_buffer_string (b, e, 0);
2596 }
2597
2598 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2599 doc: /* Return the contents of the current buffer as a string.
2600 If narrowing is in effect, this function returns only the visible part
2601 of the buffer. */)
2602 (void)
2603 {
2604 return make_buffer_string (BEGV, ZV, 1);
2605 }
2606
2607 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2608 1, 3, 0,
2609 doc: /* Insert before point a substring of the contents of BUFFER.
2610 BUFFER may be a buffer or a buffer name.
2611 Arguments START and END are character positions specifying the substring.
2612 They default to the values of (point-min) and (point-max) in BUFFER. */)
2613 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2614 {
2615 register EMACS_INT b, e, temp;
2616 register struct buffer *bp, *obuf;
2617 Lisp_Object buf;
2618
2619 buf = Fget_buffer (buffer);
2620 if (NILP (buf))
2621 nsberror (buffer);
2622 bp = XBUFFER (buf);
2623 if (NILP (BVAR (bp, name)))
2624 error ("Selecting deleted buffer");
2625
2626 if (NILP (start))
2627 b = BUF_BEGV (bp);
2628 else
2629 {
2630 CHECK_NUMBER_COERCE_MARKER (start);
2631 b = XINT (start);
2632 }
2633 if (NILP (end))
2634 e = BUF_ZV (bp);
2635 else
2636 {
2637 CHECK_NUMBER_COERCE_MARKER (end);
2638 e = XINT (end);
2639 }
2640
2641 if (b > e)
2642 temp = b, b = e, e = temp;
2643
2644 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2645 args_out_of_range (start, end);
2646
2647 obuf = current_buffer;
2648 set_buffer_internal_1 (bp);
2649 update_buffer_properties (b, e);
2650 set_buffer_internal_1 (obuf);
2651
2652 insert_from_buffer (bp, b, e - b, 0);
2653 return Qnil;
2654 }
2655
2656 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2657 6, 6, 0,
2658 doc: /* Compare two substrings of two buffers; return result as number.
2659 the value is -N if first string is less after N-1 chars,
2660 +N if first string is greater after N-1 chars, or 0 if strings match.
2661 Each substring is represented as three arguments: BUFFER, START and END.
2662 That makes six args in all, three for each substring.
2663
2664 The value of `case-fold-search' in the current buffer
2665 determines whether case is significant or ignored. */)
2666 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2667 {
2668 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2669 register struct buffer *bp1, *bp2;
2670 register Lisp_Object trt
2671 = (!NILP (BVAR (current_buffer, case_fold_search))
2672 ? BVAR (current_buffer, case_canon_table) : Qnil);
2673 ptrdiff_t chars = 0;
2674 ptrdiff_t i1, i2, i1_byte, i2_byte;
2675
2676 /* Find the first buffer and its substring. */
2677
2678 if (NILP (buffer1))
2679 bp1 = current_buffer;
2680 else
2681 {
2682 Lisp_Object buf1;
2683 buf1 = Fget_buffer (buffer1);
2684 if (NILP (buf1))
2685 nsberror (buffer1);
2686 bp1 = XBUFFER (buf1);
2687 if (NILP (BVAR (bp1, name)))
2688 error ("Selecting deleted buffer");
2689 }
2690
2691 if (NILP (start1))
2692 begp1 = BUF_BEGV (bp1);
2693 else
2694 {
2695 CHECK_NUMBER_COERCE_MARKER (start1);
2696 begp1 = XINT (start1);
2697 }
2698 if (NILP (end1))
2699 endp1 = BUF_ZV (bp1);
2700 else
2701 {
2702 CHECK_NUMBER_COERCE_MARKER (end1);
2703 endp1 = XINT (end1);
2704 }
2705
2706 if (begp1 > endp1)
2707 temp = begp1, begp1 = endp1, endp1 = temp;
2708
2709 if (!(BUF_BEGV (bp1) <= begp1
2710 && begp1 <= endp1
2711 && endp1 <= BUF_ZV (bp1)))
2712 args_out_of_range (start1, end1);
2713
2714 /* Likewise for second substring. */
2715
2716 if (NILP (buffer2))
2717 bp2 = current_buffer;
2718 else
2719 {
2720 Lisp_Object buf2;
2721 buf2 = Fget_buffer (buffer2);
2722 if (NILP (buf2))
2723 nsberror (buffer2);
2724 bp2 = XBUFFER (buf2);
2725 if (NILP (BVAR (bp2, name)))
2726 error ("Selecting deleted buffer");
2727 }
2728
2729 if (NILP (start2))
2730 begp2 = BUF_BEGV (bp2);
2731 else
2732 {
2733 CHECK_NUMBER_COERCE_MARKER (start2);
2734 begp2 = XINT (start2);
2735 }
2736 if (NILP (end2))
2737 endp2 = BUF_ZV (bp2);
2738 else
2739 {
2740 CHECK_NUMBER_COERCE_MARKER (end2);
2741 endp2 = XINT (end2);
2742 }
2743
2744 if (begp2 > endp2)
2745 temp = begp2, begp2 = endp2, endp2 = temp;
2746
2747 if (!(BUF_BEGV (bp2) <= begp2
2748 && begp2 <= endp2
2749 && endp2 <= BUF_ZV (bp2)))
2750 args_out_of_range (start2, end2);
2751
2752 i1 = begp1;
2753 i2 = begp2;
2754 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2755 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2756
2757 while (i1 < endp1 && i2 < endp2)
2758 {
2759 /* When we find a mismatch, we must compare the
2760 characters, not just the bytes. */
2761 int c1, c2;
2762
2763 QUIT;
2764
2765 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2766 {
2767 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2768 BUF_INC_POS (bp1, i1_byte);
2769 i1++;
2770 }
2771 else
2772 {
2773 c1 = BUF_FETCH_BYTE (bp1, i1);
2774 MAKE_CHAR_MULTIBYTE (c1);
2775 i1++;
2776 }
2777
2778 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2779 {
2780 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2781 BUF_INC_POS (bp2, i2_byte);
2782 i2++;
2783 }
2784 else
2785 {
2786 c2 = BUF_FETCH_BYTE (bp2, i2);
2787 MAKE_CHAR_MULTIBYTE (c2);
2788 i2++;
2789 }
2790
2791 if (!NILP (trt))
2792 {
2793 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2794 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2795 }
2796 if (c1 < c2)
2797 return make_number (- 1 - chars);
2798 if (c1 > c2)
2799 return make_number (chars + 1);
2800
2801 chars++;
2802 }
2803
2804 /* The strings match as far as they go.
2805 If one is shorter, that one is less. */
2806 if (chars < endp1 - begp1)
2807 return make_number (chars + 1);
2808 else if (chars < endp2 - begp2)
2809 return make_number (- chars - 1);
2810
2811 /* Same length too => they are equal. */
2812 return make_number (0);
2813 }
2814 \f
2815 static Lisp_Object
2816 subst_char_in_region_unwind (Lisp_Object arg)
2817 {
2818 return BSET (current_buffer, undo_list, arg);
2819 }
2820
2821 static Lisp_Object
2822 subst_char_in_region_unwind_1 (Lisp_Object arg)
2823 {
2824 return BSET (current_buffer, filename, arg);
2825 }
2826
2827 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2828 Ssubst_char_in_region, 4, 5, 0,
2829 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2830 If optional arg NOUNDO is non-nil, don't record this change for undo
2831 and don't mark the buffer as really changed.
2832 Both characters must have the same length of multi-byte form. */)
2833 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2834 {
2835 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2836 /* Keep track of the first change in the buffer:
2837 if 0 we haven't found it yet.
2838 if < 0 we've found it and we've run the before-change-function.
2839 if > 0 we've actually performed it and the value is its position. */
2840 ptrdiff_t changed = 0;
2841 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2842 unsigned char *p;
2843 ptrdiff_t count = SPECPDL_INDEX ();
2844 #define COMBINING_NO 0
2845 #define COMBINING_BEFORE 1
2846 #define COMBINING_AFTER 2
2847 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2848 int maybe_byte_combining = COMBINING_NO;
2849 ptrdiff_t last_changed = 0;
2850 int multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2851 int fromc, toc;
2852
2853 restart:
2854
2855 validate_region (&start, &end);
2856 CHECK_CHARACTER (fromchar);
2857 CHECK_CHARACTER (tochar);
2858 fromc = XFASTINT (fromchar);
2859 toc = XFASTINT (tochar);
2860
2861 if (multibyte_p)
2862 {
2863 len = CHAR_STRING (fromc, fromstr);
2864 if (CHAR_STRING (toc, tostr) != len)
2865 error ("Characters in `subst-char-in-region' have different byte-lengths");
2866 if (!ASCII_BYTE_P (*tostr))
2867 {
2868 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2869 complete multibyte character, it may be combined with the
2870 after bytes. If it is in the range 0xA0..0xFF, it may be
2871 combined with the before and after bytes. */
2872 if (!CHAR_HEAD_P (*tostr))
2873 maybe_byte_combining = COMBINING_BOTH;
2874 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2875 maybe_byte_combining = COMBINING_AFTER;
2876 }
2877 }
2878 else
2879 {
2880 len = 1;
2881 fromstr[0] = fromc;
2882 tostr[0] = toc;
2883 }
2884
2885 pos = XINT (start);
2886 pos_byte = CHAR_TO_BYTE (pos);
2887 stop = CHAR_TO_BYTE (XINT (end));
2888 end_byte = stop;
2889
2890 /* If we don't want undo, turn off putting stuff on the list.
2891 That's faster than getting rid of things,
2892 and it prevents even the entry for a first change.
2893 Also inhibit locking the file. */
2894 if (!changed && !NILP (noundo))
2895 {
2896 record_unwind_protect (subst_char_in_region_unwind,
2897 BVAR (current_buffer, undo_list));
2898 BSET (current_buffer, undo_list, Qt);
2899 /* Don't do file-locking. */
2900 record_unwind_protect (subst_char_in_region_unwind_1,
2901 BVAR (current_buffer, filename));
2902 BSET (current_buffer, filename, Qnil);
2903 }
2904
2905 if (pos_byte < GPT_BYTE)
2906 stop = min (stop, GPT_BYTE);
2907 while (1)
2908 {
2909 ptrdiff_t pos_byte_next = pos_byte;
2910
2911 if (pos_byte >= stop)
2912 {
2913 if (pos_byte >= end_byte) break;
2914 stop = end_byte;
2915 }
2916 p = BYTE_POS_ADDR (pos_byte);
2917 if (multibyte_p)
2918 INC_POS (pos_byte_next);
2919 else
2920 ++pos_byte_next;
2921 if (pos_byte_next - pos_byte == len
2922 && p[0] == fromstr[0]
2923 && (len == 1
2924 || (p[1] == fromstr[1]
2925 && (len == 2 || (p[2] == fromstr[2]
2926 && (len == 3 || p[3] == fromstr[3]))))))
2927 {
2928 if (changed < 0)
2929 /* We've already seen this and run the before-change-function;
2930 this time we only need to record the actual position. */
2931 changed = pos;
2932 else if (!changed)
2933 {
2934 changed = -1;
2935 modify_region (current_buffer, pos, XINT (end), 0);
2936
2937 if (! NILP (noundo))
2938 {
2939 if (MODIFF - 1 == SAVE_MODIFF)
2940 SAVE_MODIFF++;
2941 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2942 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2943 }
2944
2945 /* The before-change-function may have moved the gap
2946 or even modified the buffer so we should start over. */
2947 goto restart;
2948 }
2949
2950 /* Take care of the case where the new character
2951 combines with neighboring bytes. */
2952 if (maybe_byte_combining
2953 && (maybe_byte_combining == COMBINING_AFTER
2954 ? (pos_byte_next < Z_BYTE
2955 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2956 : ((pos_byte_next < Z_BYTE
2957 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2958 || (pos_byte > BEG_BYTE
2959 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2960 {
2961 Lisp_Object tem, string;
2962
2963 struct gcpro gcpro1;
2964
2965 tem = BVAR (current_buffer, undo_list);
2966 GCPRO1 (tem);
2967
2968 /* Make a multibyte string containing this single character. */
2969 string = make_multibyte_string ((char *) tostr, 1, len);
2970 /* replace_range is less efficient, because it moves the gap,
2971 but it handles combining correctly. */
2972 replace_range (pos, pos + 1, string,
2973 0, 0, 1);
2974 pos_byte_next = CHAR_TO_BYTE (pos);
2975 if (pos_byte_next > pos_byte)
2976 /* Before combining happened. We should not increment
2977 POS. So, to cancel the later increment of POS,
2978 decrease it now. */
2979 pos--;
2980 else
2981 INC_POS (pos_byte_next);
2982
2983 if (! NILP (noundo))
2984 BSET (current_buffer, undo_list, tem);
2985
2986 UNGCPRO;
2987 }
2988 else
2989 {
2990 if (NILP (noundo))
2991 record_change (pos, 1);
2992 for (i = 0; i < len; i++) *p++ = tostr[i];
2993 }
2994 last_changed = pos + 1;
2995 }
2996 pos_byte = pos_byte_next;
2997 pos++;
2998 }
2999
3000 if (changed > 0)
3001 {
3002 signal_after_change (changed,
3003 last_changed - changed, last_changed - changed);
3004 update_compositions (changed, last_changed, CHECK_ALL);
3005 }
3006
3007 unbind_to (count, Qnil);
3008 return Qnil;
3009 }
3010
3011
3012 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3013 Lisp_Object);
3014
3015 /* Helper function for Ftranslate_region_internal.
3016
3017 Check if a character sequence at POS (POS_BYTE) matches an element
3018 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3019 element is found, return it. Otherwise return Qnil. */
3020
3021 static Lisp_Object
3022 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3023 Lisp_Object val)
3024 {
3025 int buf_size = 16, buf_used = 0;
3026 int *buf = alloca (sizeof (int) * buf_size);
3027
3028 for (; CONSP (val); val = XCDR (val))
3029 {
3030 Lisp_Object elt;
3031 ptrdiff_t len, i;
3032
3033 elt = XCAR (val);
3034 if (! CONSP (elt))
3035 continue;
3036 elt = XCAR (elt);
3037 if (! VECTORP (elt))
3038 continue;
3039 len = ASIZE (elt);
3040 if (len <= end - pos)
3041 {
3042 for (i = 0; i < len; i++)
3043 {
3044 if (buf_used <= i)
3045 {
3046 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3047 int len1;
3048
3049 if (buf_used == buf_size)
3050 {
3051 int *newbuf;
3052
3053 buf_size += 16;
3054 newbuf = alloca (sizeof (int) * buf_size);
3055 memcpy (newbuf, buf, sizeof (int) * buf_used);
3056 buf = newbuf;
3057 }
3058 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3059 pos_byte += len1;
3060 }
3061 if (XINT (AREF (elt, i)) != buf[i])
3062 break;
3063 }
3064 if (i == len)
3065 return XCAR (val);
3066 }
3067 }
3068 return Qnil;
3069 }
3070
3071
3072 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3073 Stranslate_region_internal, 3, 3, 0,
3074 doc: /* Internal use only.
3075 From START to END, translate characters according to TABLE.
3076 TABLE is a string or a char-table; the Nth character in it is the
3077 mapping for the character with code N.
3078 It returns the number of characters changed. */)
3079 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3080 {
3081 register unsigned char *tt; /* Trans table. */
3082 register int nc; /* New character. */
3083 int cnt; /* Number of changes made. */
3084 ptrdiff_t size; /* Size of translate table. */
3085 ptrdiff_t pos, pos_byte, end_pos;
3086 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3087 int string_multibyte IF_LINT (= 0);
3088
3089 validate_region (&start, &end);
3090 if (CHAR_TABLE_P (table))
3091 {
3092 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3093 error ("Not a translation table");
3094 size = MAX_CHAR;
3095 tt = NULL;
3096 }
3097 else
3098 {
3099 CHECK_STRING (table);
3100
3101 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3102 table = string_make_unibyte (table);
3103 string_multibyte = SCHARS (table) < SBYTES (table);
3104 size = SBYTES (table);
3105 tt = SDATA (table);
3106 }
3107
3108 pos = XINT (start);
3109 pos_byte = CHAR_TO_BYTE (pos);
3110 end_pos = XINT (end);
3111 modify_region (current_buffer, pos, end_pos, 0);
3112
3113 cnt = 0;
3114 for (; pos < end_pos; )
3115 {
3116 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3117 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3118 int len, str_len;
3119 int oc;
3120 Lisp_Object val;
3121
3122 if (multibyte)
3123 oc = STRING_CHAR_AND_LENGTH (p, len);
3124 else
3125 oc = *p, len = 1;
3126 if (oc < size)
3127 {
3128 if (tt)
3129 {
3130 /* Reload as signal_after_change in last iteration may GC. */
3131 tt = SDATA (table);
3132 if (string_multibyte)
3133 {
3134 str = tt + string_char_to_byte (table, oc);
3135 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3136 }
3137 else
3138 {
3139 nc = tt[oc];
3140 if (! ASCII_BYTE_P (nc) && multibyte)
3141 {
3142 str_len = BYTE8_STRING (nc, buf);
3143 str = buf;
3144 }
3145 else
3146 {
3147 str_len = 1;
3148 str = tt + oc;
3149 }
3150 }
3151 }
3152 else
3153 {
3154 nc = oc;
3155 val = CHAR_TABLE_REF (table, oc);
3156 if (CHARACTERP (val))
3157 {
3158 nc = XFASTINT (val);
3159 str_len = CHAR_STRING (nc, buf);
3160 str = buf;
3161 }
3162 else if (VECTORP (val) || (CONSP (val)))
3163 {
3164 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3165 where TO is TO-CHAR or [TO-CHAR ...]. */
3166 nc = -1;
3167 }
3168 }
3169
3170 if (nc != oc && nc >= 0)
3171 {
3172 /* Simple one char to one char translation. */
3173 if (len != str_len)
3174 {
3175 Lisp_Object string;
3176
3177 /* This is less efficient, because it moves the gap,
3178 but it should handle multibyte characters correctly. */
3179 string = make_multibyte_string ((char *) str, 1, str_len);
3180 replace_range (pos, pos + 1, string, 1, 0, 1);
3181 len = str_len;
3182 }
3183 else
3184 {
3185 record_change (pos, 1);
3186 while (str_len-- > 0)
3187 *p++ = *str++;
3188 signal_after_change (pos, 1, 1);
3189 update_compositions (pos, pos + 1, CHECK_BORDER);
3190 }
3191 ++cnt;
3192 }
3193 else if (nc < 0)
3194 {
3195 Lisp_Object string;
3196
3197 if (CONSP (val))
3198 {
3199 val = check_translation (pos, pos_byte, end_pos, val);
3200 if (NILP (val))
3201 {
3202 pos_byte += len;
3203 pos++;
3204 continue;
3205 }
3206 /* VAL is ([FROM-CHAR ...] . TO). */
3207 len = ASIZE (XCAR (val));
3208 val = XCDR (val);
3209 }
3210 else
3211 len = 1;
3212
3213 if (VECTORP (val))
3214 {
3215 string = Fconcat (1, &val);
3216 }
3217 else
3218 {
3219 string = Fmake_string (make_number (1), val);
3220 }
3221 replace_range (pos, pos + len, string, 1, 0, 1);
3222 pos_byte += SBYTES (string);
3223 pos += SCHARS (string);
3224 cnt += SCHARS (string);
3225 end_pos += SCHARS (string) - len;
3226 continue;
3227 }
3228 }
3229 pos_byte += len;
3230 pos++;
3231 }
3232
3233 return make_number (cnt);
3234 }
3235
3236 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3237 doc: /* Delete the text between START and END.
3238 If called interactively, delete the region between point and mark.
3239 This command deletes buffer text without modifying the kill ring. */)
3240 (Lisp_Object start, Lisp_Object end)
3241 {
3242 validate_region (&start, &end);
3243 del_range (XINT (start), XINT (end));
3244 return Qnil;
3245 }
3246
3247 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3248 Sdelete_and_extract_region, 2, 2, 0,
3249 doc: /* Delete the text between START and END and return it. */)
3250 (Lisp_Object start, Lisp_Object end)
3251 {
3252 validate_region (&start, &end);
3253 if (XINT (start) == XINT (end))
3254 return empty_unibyte_string;
3255 return del_range_1 (XINT (start), XINT (end), 1, 1);
3256 }
3257 \f
3258 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3259 doc: /* Remove restrictions (narrowing) from current buffer.
3260 This allows the buffer's full text to be seen and edited. */)
3261 (void)
3262 {
3263 if (BEG != BEGV || Z != ZV)
3264 current_buffer->clip_changed = 1;
3265 BEGV = BEG;
3266 BEGV_BYTE = BEG_BYTE;
3267 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3268 /* Changing the buffer bounds invalidates any recorded current column. */
3269 invalidate_current_column ();
3270 return Qnil;
3271 }
3272
3273 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3274 doc: /* Restrict editing in this buffer to the current region.
3275 The rest of the text becomes temporarily invisible and untouchable
3276 but is not deleted; if you save the buffer in a file, the invisible
3277 text is included in the file. \\[widen] makes all visible again.
3278 See also `save-restriction'.
3279
3280 When calling from a program, pass two arguments; positions (integers
3281 or markers) bounding the text that should remain visible. */)
3282 (register Lisp_Object start, Lisp_Object end)
3283 {
3284 CHECK_NUMBER_COERCE_MARKER (start);
3285 CHECK_NUMBER_COERCE_MARKER (end);
3286
3287 if (XINT (start) > XINT (end))
3288 {
3289 Lisp_Object tem;
3290 tem = start; start = end; end = tem;
3291 }
3292
3293 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3294 args_out_of_range (start, end);
3295
3296 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3297 current_buffer->clip_changed = 1;
3298
3299 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3300 SET_BUF_ZV (current_buffer, XFASTINT (end));
3301 if (PT < XFASTINT (start))
3302 SET_PT (XFASTINT (start));
3303 if (PT > XFASTINT (end))
3304 SET_PT (XFASTINT (end));
3305 /* Changing the buffer bounds invalidates any recorded current column. */
3306 invalidate_current_column ();
3307 return Qnil;
3308 }
3309
3310 Lisp_Object
3311 save_restriction_save (void)
3312 {
3313 if (BEGV == BEG && ZV == Z)
3314 /* The common case that the buffer isn't narrowed.
3315 We return just the buffer object, which save_restriction_restore
3316 recognizes as meaning `no restriction'. */
3317 return Fcurrent_buffer ();
3318 else
3319 /* We have to save a restriction, so return a pair of markers, one
3320 for the beginning and one for the end. */
3321 {
3322 Lisp_Object beg, end;
3323
3324 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3325 end = build_marker (current_buffer, ZV, ZV_BYTE);
3326
3327 /* END must move forward if text is inserted at its exact location. */
3328 XMARKER (end)->insertion_type = 1;
3329
3330 return Fcons (beg, end);
3331 }
3332 }
3333
3334 Lisp_Object
3335 save_restriction_restore (Lisp_Object data)
3336 {
3337 struct buffer *cur = NULL;
3338 struct buffer *buf = (CONSP (data)
3339 ? XMARKER (XCAR (data))->buffer
3340 : XBUFFER (data));
3341
3342 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3343 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3344 is the case if it is or has an indirect buffer), then make
3345 sure it is current before we update BEGV, so
3346 set_buffer_internal takes care of managing those markers. */
3347 cur = current_buffer;
3348 set_buffer_internal (buf);
3349 }
3350
3351 if (CONSP (data))
3352 /* A pair of marks bounding a saved restriction. */
3353 {
3354 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3355 struct Lisp_Marker *end = XMARKER (XCDR (data));
3356 eassert (buf == end->buffer);
3357
3358 if (buf /* Verify marker still points to a buffer. */
3359 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3360 /* The restriction has changed from the saved one, so restore
3361 the saved restriction. */
3362 {
3363 ptrdiff_t pt = BUF_PT (buf);
3364
3365 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3366 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3367
3368 if (pt < beg->charpos || pt > end->charpos)
3369 /* The point is outside the new visible range, move it inside. */
3370 SET_BUF_PT_BOTH (buf,
3371 clip_to_bounds (beg->charpos, pt, end->charpos),
3372 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3373 end->bytepos));
3374
3375 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3376 }
3377 /* These aren't needed anymore, so don't wait for GC. */
3378 free_marker (XCAR (data));
3379 free_marker (XCDR (data));
3380 free_cons (XCONS (data));
3381 }
3382 else
3383 /* A buffer, which means that there was no old restriction. */
3384 {
3385 if (buf /* Verify marker still points to a buffer. */
3386 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3387 /* The buffer has been narrowed, get rid of the narrowing. */
3388 {
3389 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3390 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3391
3392 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3393 }
3394 }
3395
3396 /* Changing the buffer bounds invalidates any recorded current column. */
3397 invalidate_current_column ();
3398
3399 if (cur)
3400 set_buffer_internal (cur);
3401
3402 return Qnil;
3403 }
3404
3405 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3406 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3407 The buffer's restrictions make parts of the beginning and end invisible.
3408 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3409 This special form, `save-restriction', saves the current buffer's restrictions
3410 when it is entered, and restores them when it is exited.
3411 So any `narrow-to-region' within BODY lasts only until the end of the form.
3412 The old restrictions settings are restored
3413 even in case of abnormal exit (throw or error).
3414
3415 The value returned is the value of the last form in BODY.
3416
3417 Note: if you are using both `save-excursion' and `save-restriction',
3418 use `save-excursion' outermost:
3419 (save-excursion (save-restriction ...))
3420
3421 usage: (save-restriction &rest BODY) */)
3422 (Lisp_Object body)
3423 {
3424 register Lisp_Object val;
3425 ptrdiff_t count = SPECPDL_INDEX ();
3426
3427 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3428 val = Fprogn (body);
3429 return unbind_to (count, val);
3430 }
3431 \f
3432 /* Buffer for the most recent text displayed by Fmessage_box. */
3433 static char *message_text;
3434
3435 /* Allocated length of that buffer. */
3436 static ptrdiff_t message_length;
3437
3438 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3439 doc: /* Display a message at the bottom of the screen.
3440 The message also goes into the `*Messages*' buffer.
3441 \(In keyboard macros, that's all it does.)
3442 Return the message.
3443
3444 The first argument is a format control string, and the rest are data
3445 to be formatted under control of the string. See `format' for details.
3446
3447 Note: Use (message "%s" VALUE) to print the value of expressions and
3448 variables to avoid accidentally interpreting `%' as format specifiers.
3449
3450 If the first argument is nil or the empty string, the function clears
3451 any existing message; this lets the minibuffer contents show. See
3452 also `current-message'.
3453
3454 usage: (message FORMAT-STRING &rest ARGS) */)
3455 (ptrdiff_t nargs, Lisp_Object *args)
3456 {
3457 if (NILP (args[0])
3458 || (STRINGP (args[0])
3459 && SBYTES (args[0]) == 0))
3460 {
3461 message (0);
3462 return args[0];
3463 }
3464 else
3465 {
3466 register Lisp_Object val;
3467 val = Fformat (nargs, args);
3468 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3469 return val;
3470 }
3471 }
3472
3473 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3474 doc: /* Display a message, in a dialog box if possible.
3475 If a dialog box is not available, use the echo area.
3476 The first argument is a format control string, and the rest are data
3477 to be formatted under control of the string. See `format' for details.
3478
3479 If the first argument is nil or the empty string, clear any existing
3480 message; let the minibuffer contents show.
3481
3482 usage: (message-box FORMAT-STRING &rest ARGS) */)
3483 (ptrdiff_t nargs, Lisp_Object *args)
3484 {
3485 if (NILP (args[0]))
3486 {
3487 message (0);
3488 return Qnil;
3489 }
3490 else
3491 {
3492 register Lisp_Object val;
3493 val = Fformat (nargs, args);
3494 #ifdef HAVE_MENUS
3495 /* The MS-DOS frames support popup menus even though they are
3496 not FRAME_WINDOW_P. */
3497 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3498 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3499 {
3500 Lisp_Object pane, menu;
3501 struct gcpro gcpro1;
3502 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3503 GCPRO1 (pane);
3504 menu = Fcons (val, pane);
3505 Fx_popup_dialog (Qt, menu, Qt);
3506 UNGCPRO;
3507 return val;
3508 }
3509 #endif /* HAVE_MENUS */
3510 /* Copy the data so that it won't move when we GC. */
3511 if (SBYTES (val) > message_length)
3512 {
3513 ptrdiff_t new_length = SBYTES (val) + 80;
3514 message_text = xrealloc (message_text, new_length);
3515 message_length = new_length;
3516 }
3517 memcpy (message_text, SDATA (val), SBYTES (val));
3518 message2 (message_text, SBYTES (val),
3519 STRING_MULTIBYTE (val));
3520 return val;
3521 }
3522 }
3523
3524 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3525 doc: /* Display a message in a dialog box or in the echo area.
3526 If this command was invoked with the mouse, use a dialog box if
3527 `use-dialog-box' is non-nil.
3528 Otherwise, use the echo area.
3529 The first argument is a format control string, and the rest are data
3530 to be formatted under control of the string. See `format' for details.
3531
3532 If the first argument is nil or the empty string, clear any existing
3533 message; let the minibuffer contents show.
3534
3535 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3536 (ptrdiff_t nargs, Lisp_Object *args)
3537 {
3538 #ifdef HAVE_MENUS
3539 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3540 && use_dialog_box)
3541 return Fmessage_box (nargs, args);
3542 #endif
3543 return Fmessage (nargs, args);
3544 }
3545
3546 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3547 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3548 (void)
3549 {
3550 return current_message ();
3551 }
3552
3553
3554 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3555 doc: /* Return a copy of STRING with text properties added.
3556 First argument is the string to copy.
3557 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3558 properties to add to the result.
3559 usage: (propertize STRING &rest PROPERTIES) */)
3560 (ptrdiff_t nargs, Lisp_Object *args)
3561 {
3562 Lisp_Object properties, string;
3563 struct gcpro gcpro1, gcpro2;
3564 ptrdiff_t i;
3565
3566 /* Number of args must be odd. */
3567 if ((nargs & 1) == 0)
3568 error ("Wrong number of arguments");
3569
3570 properties = string = Qnil;
3571 GCPRO2 (properties, string);
3572
3573 /* First argument must be a string. */
3574 CHECK_STRING (args[0]);
3575 string = Fcopy_sequence (args[0]);
3576
3577 for (i = 1; i < nargs; i += 2)
3578 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3579
3580 Fadd_text_properties (make_number (0),
3581 make_number (SCHARS (string)),
3582 properties, string);
3583 RETURN_UNGCPRO (string);
3584 }
3585
3586 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3587 doc: /* Format a string out of a format-string and arguments.
3588 The first argument is a format control string.
3589 The other arguments are substituted into it to make the result, a string.
3590
3591 The format control string may contain %-sequences meaning to substitute
3592 the next available argument:
3593
3594 %s means print a string argument. Actually, prints any object, with `princ'.
3595 %d means print as number in decimal (%o octal, %x hex).
3596 %X is like %x, but uses upper case.
3597 %e means print a number in exponential notation.
3598 %f means print a number in decimal-point notation.
3599 %g means print a number in exponential notation
3600 or decimal-point notation, whichever uses fewer characters.
3601 %c means print a number as a single character.
3602 %S means print any object as an s-expression (using `prin1').
3603
3604 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3605 Use %% to put a single % into the output.
3606
3607 A %-sequence may contain optional flag, width, and precision
3608 specifiers, as follows:
3609
3610 %<flags><width><precision>character
3611
3612 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3613
3614 The + flag character inserts a + before any positive number, while a
3615 space inserts a space before any positive number; these flags only
3616 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3617 The - and 0 flags affect the width specifier, as described below.
3618
3619 The # flag means to use an alternate display form for %o, %x, %X, %e,
3620 %f, and %g sequences: for %o, it ensures that the result begins with
3621 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3622 for %e, %f, and %g, it causes a decimal point to be included even if
3623 the precision is zero.
3624
3625 The width specifier supplies a lower limit for the length of the
3626 printed representation. The padding, if any, normally goes on the
3627 left, but it goes on the right if the - flag is present. The padding
3628 character is normally a space, but it is 0 if the 0 flag is present.
3629 The 0 flag is ignored if the - flag is present, or the format sequence
3630 is something other than %d, %e, %f, and %g.
3631
3632 For %e, %f, and %g sequences, the number after the "." in the
3633 precision specifier says how many decimal places to show; if zero, the
3634 decimal point itself is omitted. For %s and %S, the precision
3635 specifier truncates the string to the given width.
3636
3637 usage: (format STRING &rest OBJECTS) */)
3638 (ptrdiff_t nargs, Lisp_Object *args)
3639 {
3640 ptrdiff_t n; /* The number of the next arg to substitute */
3641 char initial_buffer[4000];
3642 char *buf = initial_buffer;
3643 ptrdiff_t bufsize = sizeof initial_buffer;
3644 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3645 char *p;
3646 Lisp_Object buf_save_value IF_LINT (= {0});
3647 register char *format, *end, *format_start;
3648 ptrdiff_t formatlen, nchars;
3649 /* Nonzero if the format is multibyte. */
3650 int multibyte_format = 0;
3651 /* Nonzero if the output should be a multibyte string,
3652 which is true if any of the inputs is one. */
3653 int multibyte = 0;
3654 /* When we make a multibyte string, we must pay attention to the
3655 byte combining problem, i.e., a byte may be combined with a
3656 multibyte character of the previous string. This flag tells if we
3657 must consider such a situation or not. */
3658 int maybe_combine_byte;
3659 Lisp_Object val;
3660 int arg_intervals = 0;
3661 USE_SAFE_ALLOCA;
3662
3663 /* discarded[I] is 1 if byte I of the format
3664 string was not copied into the output.
3665 It is 2 if byte I was not the first byte of its character. */
3666 char *discarded;
3667
3668 /* Each element records, for one argument,
3669 the start and end bytepos in the output string,
3670 whether the argument has been converted to string (e.g., due to "%S"),
3671 and whether the argument is a string with intervals.
3672 info[0] is unused. Unused elements have -1 for start. */
3673 struct info
3674 {
3675 ptrdiff_t start, end;
3676 int converted_to_string;
3677 int intervals;
3678 } *info = 0;
3679
3680 /* It should not be necessary to GCPRO ARGS, because
3681 the caller in the interpreter should take care of that. */
3682
3683 CHECK_STRING (args[0]);
3684 format_start = SSDATA (args[0]);
3685 formatlen = SBYTES (args[0]);
3686
3687 /* Allocate the info and discarded tables. */
3688 {
3689 ptrdiff_t i;
3690 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3691 memory_full (SIZE_MAX);
3692 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3693 discarded = (char *) &info[nargs + 1];
3694 for (i = 0; i < nargs + 1; i++)
3695 {
3696 info[i].start = -1;
3697 info[i].intervals = info[i].converted_to_string = 0;
3698 }
3699 memset (discarded, 0, formatlen);
3700 }
3701
3702 /* Try to determine whether the result should be multibyte.
3703 This is not always right; sometimes the result needs to be multibyte
3704 because of an object that we will pass through prin1,
3705 and in that case, we won't know it here. */
3706 multibyte_format = STRING_MULTIBYTE (args[0]);
3707 multibyte = multibyte_format;
3708 for (n = 1; !multibyte && n < nargs; n++)
3709 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3710 multibyte = 1;
3711
3712 /* If we start out planning a unibyte result,
3713 then discover it has to be multibyte, we jump back to retry. */
3714 retry:
3715
3716 p = buf;
3717 nchars = 0;
3718 n = 0;
3719
3720 /* Scan the format and store result in BUF. */
3721 format = format_start;
3722 end = format + formatlen;
3723 maybe_combine_byte = 0;
3724
3725 while (format != end)
3726 {
3727 /* The values of N and FORMAT when the loop body is entered. */
3728 ptrdiff_t n0 = n;
3729 char *format0 = format;
3730
3731 /* Bytes needed to represent the output of this conversion. */
3732 ptrdiff_t convbytes;
3733
3734 if (*format == '%')
3735 {
3736 /* General format specifications look like
3737
3738 '%' [flags] [field-width] [precision] format
3739
3740 where
3741
3742 flags ::= [-+0# ]+
3743 field-width ::= [0-9]+
3744 precision ::= '.' [0-9]*
3745
3746 If a field-width is specified, it specifies to which width
3747 the output should be padded with blanks, if the output
3748 string is shorter than field-width.
3749
3750 If precision is specified, it specifies the number of
3751 digits to print after the '.' for floats, or the max.
3752 number of chars to print from a string. */
3753
3754 int minus_flag = 0;
3755 int plus_flag = 0;
3756 int space_flag = 0;
3757 int sharp_flag = 0;
3758 int zero_flag = 0;
3759 ptrdiff_t field_width;
3760 int precision_given;
3761 uintmax_t precision = UINTMAX_MAX;
3762 char *num_end;
3763 char conversion;
3764
3765 while (1)
3766 {
3767 switch (*++format)
3768 {
3769 case '-': minus_flag = 1; continue;
3770 case '+': plus_flag = 1; continue;
3771 case ' ': space_flag = 1; continue;
3772 case '#': sharp_flag = 1; continue;
3773 case '0': zero_flag = 1; continue;
3774 }
3775 break;
3776 }
3777
3778 /* Ignore flags when sprintf ignores them. */
3779 space_flag &= ~ plus_flag;
3780 zero_flag &= ~ minus_flag;
3781
3782 {
3783 uintmax_t w = strtoumax (format, &num_end, 10);
3784 if (max_bufsize <= w)
3785 string_overflow ();
3786 field_width = w;
3787 }
3788 precision_given = *num_end == '.';
3789 if (precision_given)
3790 precision = strtoumax (num_end + 1, &num_end, 10);
3791 format = num_end;
3792
3793 if (format == end)
3794 error ("Format string ends in middle of format specifier");
3795
3796 memset (&discarded[format0 - format_start], 1, format - format0);
3797 conversion = *format;
3798 if (conversion == '%')
3799 goto copy_char;
3800 discarded[format - format_start] = 1;
3801 format++;
3802
3803 ++n;
3804 if (! (n < nargs))
3805 error ("Not enough arguments for format string");
3806
3807 /* For 'S', prin1 the argument, and then treat like 's'.
3808 For 's', princ any argument that is not a string or
3809 symbol. But don't do this conversion twice, which might
3810 happen after retrying. */
3811 if ((conversion == 'S'
3812 || (conversion == 's'
3813 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3814 {
3815 if (! info[n].converted_to_string)
3816 {
3817 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3818 args[n] = Fprin1_to_string (args[n], noescape);
3819 info[n].converted_to_string = 1;
3820 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3821 {
3822 multibyte = 1;
3823 goto retry;
3824 }
3825 }
3826 conversion = 's';
3827 }
3828 else if (conversion == 'c')
3829 {
3830 if (FLOATP (args[n]))
3831 {
3832 double d = XFLOAT_DATA (args[n]);
3833 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3834 }
3835
3836 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3837 {
3838 if (!multibyte)
3839 {
3840 multibyte = 1;
3841 goto retry;
3842 }
3843 args[n] = Fchar_to_string (args[n]);
3844 info[n].converted_to_string = 1;
3845 }
3846
3847 if (info[n].converted_to_string)
3848 conversion = 's';
3849 zero_flag = 0;
3850 }
3851
3852 if (SYMBOLP (args[n]))
3853 {
3854 args[n] = SYMBOL_NAME (args[n]);
3855 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3856 {
3857 multibyte = 1;
3858 goto retry;
3859 }
3860 }
3861
3862 if (conversion == 's')
3863 {
3864 /* handle case (precision[n] >= 0) */
3865
3866 ptrdiff_t width, padding, nbytes;
3867 ptrdiff_t nchars_string;
3868
3869 ptrdiff_t prec = -1;
3870 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3871 prec = precision;
3872
3873 /* lisp_string_width ignores a precision of 0, but GNU
3874 libc functions print 0 characters when the precision
3875 is 0. Imitate libc behavior here. Changing
3876 lisp_string_width is the right thing, and will be
3877 done, but meanwhile we work with it. */
3878
3879 if (prec == 0)
3880 width = nchars_string = nbytes = 0;
3881 else
3882 {
3883 ptrdiff_t nch, nby;
3884 width = lisp_string_width (args[n], prec, &nch, &nby);
3885 if (prec < 0)
3886 {
3887 nchars_string = SCHARS (args[n]);
3888 nbytes = SBYTES (args[n]);
3889 }
3890 else
3891 {
3892 nchars_string = nch;
3893 nbytes = nby;
3894 }
3895 }
3896
3897 convbytes = nbytes;
3898 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3899 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3900
3901 padding = width < field_width ? field_width - width : 0;
3902
3903 if (max_bufsize - padding <= convbytes)
3904 string_overflow ();
3905 convbytes += padding;
3906 if (convbytes <= buf + bufsize - p)
3907 {
3908 if (! minus_flag)
3909 {
3910 memset (p, ' ', padding);
3911 p += padding;
3912 nchars += padding;
3913 }
3914
3915 if (p > buf
3916 && multibyte
3917 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3918 && STRING_MULTIBYTE (args[n])
3919 && !CHAR_HEAD_P (SREF (args[n], 0)))
3920 maybe_combine_byte = 1;
3921
3922 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3923 nbytes,
3924 STRING_MULTIBYTE (args[n]), multibyte);
3925
3926 info[n].start = nchars;
3927 nchars += nchars_string;
3928 info[n].end = nchars;
3929
3930 if (minus_flag)
3931 {
3932 memset (p, ' ', padding);
3933 p += padding;
3934 nchars += padding;
3935 }
3936
3937 /* If this argument has text properties, record where
3938 in the result string it appears. */
3939 if (string_get_intervals (args[n]))
3940 info[n].intervals = arg_intervals = 1;
3941
3942 continue;
3943 }
3944 }
3945 else if (! (conversion == 'c' || conversion == 'd'
3946 || conversion == 'e' || conversion == 'f'
3947 || conversion == 'g' || conversion == 'i'
3948 || conversion == 'o' || conversion == 'x'
3949 || conversion == 'X'))
3950 error ("Invalid format operation %%%c",
3951 STRING_CHAR ((unsigned char *) format - 1));
3952 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3953 error ("Format specifier doesn't match argument type");
3954 else
3955 {
3956 enum
3957 {
3958 /* Maximum precision for a %f conversion such that the
3959 trailing output digit might be nonzero. Any precision
3960 larger than this will not yield useful information. */
3961 USEFUL_PRECISION_MAX =
3962 ((1 - DBL_MIN_EXP)
3963 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3964 : FLT_RADIX == 16 ? 4
3965 : -1)),
3966
3967 /* Maximum number of bytes generated by any format, if
3968 precision is no more than USEFUL_PRECISION_MAX.
3969 On all practical hosts, %f is the worst case. */
3970 SPRINTF_BUFSIZE =
3971 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3972
3973 /* Length of pM (that is, of pMd without the
3974 trailing "d"). */
3975 pMlen = sizeof pMd - 2
3976 };
3977 verify (0 < USEFUL_PRECISION_MAX);
3978
3979 int prec;
3980 ptrdiff_t padding, sprintf_bytes;
3981 uintmax_t excess_precision, numwidth;
3982 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3983
3984 char sprintf_buf[SPRINTF_BUFSIZE];
3985
3986 /* Copy of conversion specification, modified somewhat.
3987 At most three flags F can be specified at once. */
3988 char convspec[sizeof "%FFF.*d" + pMlen];
3989
3990 /* Avoid undefined behavior in underlying sprintf. */
3991 if (conversion == 'd' || conversion == 'i')
3992 sharp_flag = 0;
3993
3994 /* Create the copy of the conversion specification, with
3995 any width and precision removed, with ".*" inserted,
3996 and with pM inserted for integer formats. */
3997 {
3998 char *f = convspec;
3999 *f++ = '%';
4000 *f = '-'; f += minus_flag;
4001 *f = '+'; f += plus_flag;
4002 *f = ' '; f += space_flag;
4003 *f = '#'; f += sharp_flag;
4004 *f = '0'; f += zero_flag;
4005 *f++ = '.';
4006 *f++ = '*';
4007 if (conversion == 'd' || conversion == 'i'
4008 || conversion == 'o' || conversion == 'x'
4009 || conversion == 'X')
4010 {
4011 memcpy (f, pMd, pMlen);
4012 f += pMlen;
4013 zero_flag &= ~ precision_given;
4014 }
4015 *f++ = conversion;
4016 *f = '\0';
4017 }
4018
4019 prec = -1;
4020 if (precision_given)
4021 prec = min (precision, USEFUL_PRECISION_MAX);
4022
4023 /* Use sprintf to format this number into sprintf_buf. Omit
4024 padding and excess precision, though, because sprintf limits
4025 output length to INT_MAX.
4026
4027 There are four types of conversion: double, unsigned
4028 char (passed as int), wide signed int, and wide
4029 unsigned int. Treat them separately because the
4030 sprintf ABI is sensitive to which type is passed. Be
4031 careful about integer overflow, NaNs, infinities, and
4032 conversions; for example, the min and max macros are
4033 not suitable here. */
4034 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4035 {
4036 double x = (INTEGERP (args[n])
4037 ? XINT (args[n])
4038 : XFLOAT_DATA (args[n]));
4039 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4040 }
4041 else if (conversion == 'c')
4042 {
4043 /* Don't use sprintf here, as it might mishandle prec. */
4044 sprintf_buf[0] = XINT (args[n]);
4045 sprintf_bytes = prec != 0;
4046 }
4047 else if (conversion == 'd')
4048 {
4049 /* For float, maybe we should use "%1.0f"
4050 instead so it also works for values outside
4051 the integer range. */
4052 printmax_t x;
4053 if (INTEGERP (args[n]))
4054 x = XINT (args[n]);
4055 else
4056 {
4057 double d = XFLOAT_DATA (args[n]);
4058 if (d < 0)
4059 {
4060 x = TYPE_MINIMUM (printmax_t);
4061 if (x < d)
4062 x = d;
4063 }
4064 else
4065 {
4066 x = TYPE_MAXIMUM (printmax_t);
4067 if (d < x)
4068 x = d;
4069 }
4070 }
4071 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4072 }
4073 else
4074 {
4075 /* Don't sign-extend for octal or hex printing. */
4076 uprintmax_t x;
4077 if (INTEGERP (args[n]))
4078 x = XUINT (args[n]);
4079 else
4080 {
4081 double d = XFLOAT_DATA (args[n]);
4082 if (d < 0)
4083 x = 0;
4084 else
4085 {
4086 x = TYPE_MAXIMUM (uprintmax_t);
4087 if (d < x)
4088 x = d;
4089 }
4090 }
4091 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4092 }
4093
4094 /* Now the length of the formatted item is known, except it omits
4095 padding and excess precision. Deal with excess precision
4096 first. This happens only when the format specifies
4097 ridiculously large precision. */
4098 excess_precision = precision - prec;
4099 if (excess_precision)
4100 {
4101 if (conversion == 'e' || conversion == 'f'
4102 || conversion == 'g')
4103 {
4104 if ((conversion == 'g' && ! sharp_flag)
4105 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4106 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4107 excess_precision = 0;
4108 else
4109 {
4110 if (conversion == 'g')
4111 {
4112 char *dot = strchr (sprintf_buf, '.');
4113 if (!dot)
4114 excess_precision = 0;
4115 }
4116 }
4117 trailing_zeros = excess_precision;
4118 }
4119 else
4120 leading_zeros = excess_precision;
4121 }
4122
4123 /* Compute the total bytes needed for this item, including
4124 excess precision and padding. */
4125 numwidth = sprintf_bytes + excess_precision;
4126 padding = numwidth < field_width ? field_width - numwidth : 0;
4127 if (max_bufsize - sprintf_bytes <= excess_precision
4128 || max_bufsize - padding <= numwidth)
4129 string_overflow ();
4130 convbytes = numwidth + padding;
4131
4132 if (convbytes <= buf + bufsize - p)
4133 {
4134 /* Copy the formatted item from sprintf_buf into buf,
4135 inserting padding and excess-precision zeros. */
4136
4137 char *src = sprintf_buf;
4138 char src0 = src[0];
4139 int exponent_bytes = 0;
4140 int signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4141 int significand_bytes;
4142 if (zero_flag
4143 && ((src[signedp] >= '0' && src[signedp] <= '9')
4144 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4145 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4146 {
4147 leading_zeros += padding;
4148 padding = 0;
4149 }
4150
4151 if (excess_precision
4152 && (conversion == 'e' || conversion == 'g'))
4153 {
4154 char *e = strchr (src, 'e');
4155 if (e)
4156 exponent_bytes = src + sprintf_bytes - e;
4157 }
4158
4159 if (! minus_flag)
4160 {
4161 memset (p, ' ', padding);
4162 p += padding;
4163 nchars += padding;
4164 }
4165
4166 *p = src0;
4167 src += signedp;
4168 p += signedp;
4169 memset (p, '0', leading_zeros);
4170 p += leading_zeros;
4171 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4172 memcpy (p, src, significand_bytes);
4173 p += significand_bytes;
4174 src += significand_bytes;
4175 memset (p, '0', trailing_zeros);
4176 p += trailing_zeros;
4177 memcpy (p, src, exponent_bytes);
4178 p += exponent_bytes;
4179
4180 info[n].start = nchars;
4181 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4182 info[n].end = nchars;
4183
4184 if (minus_flag)
4185 {
4186 memset (p, ' ', padding);
4187 p += padding;
4188 nchars += padding;
4189 }
4190
4191 continue;
4192 }
4193 }
4194 }
4195 else
4196 copy_char:
4197 {
4198 /* Copy a single character from format to buf. */
4199
4200 char *src = format;
4201 unsigned char str[MAX_MULTIBYTE_LENGTH];
4202
4203 if (multibyte_format)
4204 {
4205 /* Copy a whole multibyte character. */
4206 if (p > buf
4207 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4208 && !CHAR_HEAD_P (*format))
4209 maybe_combine_byte = 1;
4210
4211 do
4212 format++;
4213 while (! CHAR_HEAD_P (*format));
4214
4215 convbytes = format - src;
4216 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4217 }
4218 else
4219 {
4220 unsigned char uc = *format++;
4221 if (! multibyte || ASCII_BYTE_P (uc))
4222 convbytes = 1;
4223 else
4224 {
4225 int c = BYTE8_TO_CHAR (uc);
4226 convbytes = CHAR_STRING (c, str);
4227 src = (char *) str;
4228 }
4229 }
4230
4231 if (convbytes <= buf + bufsize - p)
4232 {
4233 memcpy (p, src, convbytes);
4234 p += convbytes;
4235 nchars++;
4236 continue;
4237 }
4238 }
4239
4240 /* There wasn't enough room to store this conversion or single
4241 character. CONVBYTES says how much room is needed. Allocate
4242 enough room (and then some) and do it again. */
4243 {
4244 ptrdiff_t used = p - buf;
4245
4246 if (max_bufsize - used < convbytes)
4247 string_overflow ();
4248 bufsize = used + convbytes;
4249 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4250
4251 if (buf == initial_buffer)
4252 {
4253 buf = xmalloc (bufsize);
4254 sa_must_free = 1;
4255 buf_save_value = make_save_value (buf, 0);
4256 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4257 memcpy (buf, initial_buffer, used);
4258 }
4259 else
4260 XSAVE_VALUE (buf_save_value)->pointer = buf = xrealloc (buf, bufsize);
4261
4262 p = buf + used;
4263 }
4264
4265 format = format0;
4266 n = n0;
4267 }
4268
4269 if (bufsize < p - buf)
4270 abort ();
4271
4272 if (maybe_combine_byte)
4273 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4274 val = make_specified_string (buf, nchars, p - buf, multibyte);
4275
4276 /* If we allocated BUF with malloc, free it too. */
4277 SAFE_FREE ();
4278
4279 /* If the format string has text properties, or any of the string
4280 arguments has text properties, set up text properties of the
4281 result string. */
4282
4283 if (string_get_intervals (args[0]) || arg_intervals)
4284 {
4285 Lisp_Object len, new_len, props;
4286 struct gcpro gcpro1;
4287
4288 /* Add text properties from the format string. */
4289 len = make_number (SCHARS (args[0]));
4290 props = text_property_list (args[0], make_number (0), len, Qnil);
4291 GCPRO1 (props);
4292
4293 if (CONSP (props))
4294 {
4295 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4296 ptrdiff_t argn = 1;
4297 Lisp_Object list;
4298
4299 /* Adjust the bounds of each text property
4300 to the proper start and end in the output string. */
4301
4302 /* Put the positions in PROPS in increasing order, so that
4303 we can do (effectively) one scan through the position
4304 space of the format string. */
4305 props = Fnreverse (props);
4306
4307 /* BYTEPOS is the byte position in the format string,
4308 POSITION is the untranslated char position in it,
4309 TRANSLATED is the translated char position in BUF,
4310 and ARGN is the number of the next arg we will come to. */
4311 for (list = props; CONSP (list); list = XCDR (list))
4312 {
4313 Lisp_Object item;
4314 ptrdiff_t pos;
4315
4316 item = XCAR (list);
4317
4318 /* First adjust the property start position. */
4319 pos = XINT (XCAR (item));
4320
4321 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4322 up to this position. */
4323 for (; position < pos; bytepos++)
4324 {
4325 if (! discarded[bytepos])
4326 position++, translated++;
4327 else if (discarded[bytepos] == 1)
4328 {
4329 position++;
4330 if (translated == info[argn].start)
4331 {
4332 translated += info[argn].end - info[argn].start;
4333 argn++;
4334 }
4335 }
4336 }
4337
4338 XSETCAR (item, make_number (translated));
4339
4340 /* Likewise adjust the property end position. */
4341 pos = XINT (XCAR (XCDR (item)));
4342
4343 for (; position < pos; bytepos++)
4344 {
4345 if (! discarded[bytepos])
4346 position++, translated++;
4347 else if (discarded[bytepos] == 1)
4348 {
4349 position++;
4350 if (translated == info[argn].start)
4351 {
4352 translated += info[argn].end - info[argn].start;
4353 argn++;
4354 }
4355 }
4356 }
4357
4358 XSETCAR (XCDR (item), make_number (translated));
4359 }
4360
4361 add_text_properties_from_list (val, props, make_number (0));
4362 }
4363
4364 /* Add text properties from arguments. */
4365 if (arg_intervals)
4366 for (n = 1; n < nargs; ++n)
4367 if (info[n].intervals)
4368 {
4369 len = make_number (SCHARS (args[n]));
4370 new_len = make_number (info[n].end - info[n].start);
4371 props = text_property_list (args[n], make_number (0), len, Qnil);
4372 props = extend_property_ranges (props, new_len);
4373 /* If successive arguments have properties, be sure that
4374 the value of `composition' property be the copy. */
4375 if (n > 1 && info[n - 1].end)
4376 make_composition_value_copy (props);
4377 add_text_properties_from_list (val, props,
4378 make_number (info[n].start));
4379 }
4380
4381 UNGCPRO;
4382 }
4383
4384 return val;
4385 }
4386
4387 Lisp_Object
4388 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4389 {
4390 Lisp_Object args[3];
4391 args[0] = build_string (string1);
4392 args[1] = arg0;
4393 args[2] = arg1;
4394 return Fformat (3, args);
4395 }
4396 \f
4397 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4398 doc: /* Return t if two characters match, optionally ignoring case.
4399 Both arguments must be characters (i.e. integers).
4400 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4401 (register Lisp_Object c1, Lisp_Object c2)
4402 {
4403 int i1, i2;
4404 /* Check they're chars, not just integers, otherwise we could get array
4405 bounds violations in downcase. */
4406 CHECK_CHARACTER (c1);
4407 CHECK_CHARACTER (c2);
4408
4409 if (XINT (c1) == XINT (c2))
4410 return Qt;
4411 if (NILP (BVAR (current_buffer, case_fold_search)))
4412 return Qnil;
4413
4414 i1 = XFASTINT (c1);
4415 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4416 && ! ASCII_CHAR_P (i1))
4417 {
4418 MAKE_CHAR_MULTIBYTE (i1);
4419 }
4420 i2 = XFASTINT (c2);
4421 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4422 && ! ASCII_CHAR_P (i2))
4423 {
4424 MAKE_CHAR_MULTIBYTE (i2);
4425 }
4426 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4427 }
4428 \f
4429 /* Transpose the markers in two regions of the current buffer, and
4430 adjust the ones between them if necessary (i.e.: if the regions
4431 differ in size).
4432
4433 START1, END1 are the character positions of the first region.
4434 START1_BYTE, END1_BYTE are the byte positions.
4435 START2, END2 are the character positions of the second region.
4436 START2_BYTE, END2_BYTE are the byte positions.
4437
4438 Traverses the entire marker list of the buffer to do so, adding an
4439 appropriate amount to some, subtracting from some, and leaving the
4440 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4441
4442 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4443
4444 static void
4445 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4446 ptrdiff_t start2, ptrdiff_t end2,
4447 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4448 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4449 {
4450 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4451 register struct Lisp_Marker *marker;
4452
4453 /* Update point as if it were a marker. */
4454 if (PT < start1)
4455 ;
4456 else if (PT < end1)
4457 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4458 PT_BYTE + (end2_byte - end1_byte));
4459 else if (PT < start2)
4460 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4461 (PT_BYTE + (end2_byte - start2_byte)
4462 - (end1_byte - start1_byte)));
4463 else if (PT < end2)
4464 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4465 PT_BYTE - (start2_byte - start1_byte));
4466
4467 /* We used to adjust the endpoints here to account for the gap, but that
4468 isn't good enough. Even if we assume the caller has tried to move the
4469 gap out of our way, it might still be at start1 exactly, for example;
4470 and that places it `inside' the interval, for our purposes. The amount
4471 of adjustment is nontrivial if there's a `denormalized' marker whose
4472 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4473 the dirty work to Fmarker_position, below. */
4474
4475 /* The difference between the region's lengths */
4476 diff = (end2 - start2) - (end1 - start1);
4477 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4478
4479 /* For shifting each marker in a region by the length of the other
4480 region plus the distance between the regions. */
4481 amt1 = (end2 - start2) + (start2 - end1);
4482 amt2 = (end1 - start1) + (start2 - end1);
4483 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4484 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4485
4486 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4487 {
4488 mpos = marker->bytepos;
4489 if (mpos >= start1_byte && mpos < end2_byte)
4490 {
4491 if (mpos < end1_byte)
4492 mpos += amt1_byte;
4493 else if (mpos < start2_byte)
4494 mpos += diff_byte;
4495 else
4496 mpos -= amt2_byte;
4497 marker->bytepos = mpos;
4498 }
4499 mpos = marker->charpos;
4500 if (mpos >= start1 && mpos < end2)
4501 {
4502 if (mpos < end1)
4503 mpos += amt1;
4504 else if (mpos < start2)
4505 mpos += diff;
4506 else
4507 mpos -= amt2;
4508 }
4509 marker->charpos = mpos;
4510 }
4511 }
4512
4513 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4514 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4515 The regions should not be overlapping, because the size of the buffer is
4516 never changed in a transposition.
4517
4518 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4519 any markers that happen to be located in the regions.
4520
4521 Transposing beyond buffer boundaries is an error. */)
4522 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4523 {
4524 register ptrdiff_t start1, end1, start2, end2;
4525 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte;
4526 ptrdiff_t gap, len1, len_mid, len2;
4527 unsigned char *start1_addr, *start2_addr, *temp;
4528
4529 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4530 Lisp_Object buf;
4531
4532 XSETBUFFER (buf, current_buffer);
4533 cur_intv = buffer_get_intervals (current_buffer);
4534
4535 validate_region (&startr1, &endr1);
4536 validate_region (&startr2, &endr2);
4537
4538 start1 = XFASTINT (startr1);
4539 end1 = XFASTINT (endr1);
4540 start2 = XFASTINT (startr2);
4541 end2 = XFASTINT (endr2);
4542 gap = GPT;
4543
4544 /* Swap the regions if they're reversed. */
4545 if (start2 < end1)
4546 {
4547 register ptrdiff_t glumph = start1;
4548 start1 = start2;
4549 start2 = glumph;
4550 glumph = end1;
4551 end1 = end2;
4552 end2 = glumph;
4553 }
4554
4555 len1 = end1 - start1;
4556 len2 = end2 - start2;
4557
4558 if (start2 < end1)
4559 error ("Transposed regions overlap");
4560 /* Nothing to change for adjacent regions with one being empty */
4561 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4562 return Qnil;
4563
4564 /* The possibilities are:
4565 1. Adjacent (contiguous) regions, or separate but equal regions
4566 (no, really equal, in this case!), or
4567 2. Separate regions of unequal size.
4568
4569 The worst case is usually No. 2. It means that (aside from
4570 potential need for getting the gap out of the way), there also
4571 needs to be a shifting of the text between the two regions. So
4572 if they are spread far apart, we are that much slower... sigh. */
4573
4574 /* It must be pointed out that the really studly thing to do would
4575 be not to move the gap at all, but to leave it in place and work
4576 around it if necessary. This would be extremely efficient,
4577 especially considering that people are likely to do
4578 transpositions near where they are working interactively, which
4579 is exactly where the gap would be found. However, such code
4580 would be much harder to write and to read. So, if you are
4581 reading this comment and are feeling squirrely, by all means have
4582 a go! I just didn't feel like doing it, so I will simply move
4583 the gap the minimum distance to get it out of the way, and then
4584 deal with an unbroken array. */
4585
4586 /* Make sure the gap won't interfere, by moving it out of the text
4587 we will operate on. */
4588 if (start1 < gap && gap < end2)
4589 {
4590 if (gap - start1 < end2 - gap)
4591 move_gap (start1);
4592 else
4593 move_gap (end2);
4594 }
4595
4596 start1_byte = CHAR_TO_BYTE (start1);
4597 start2_byte = CHAR_TO_BYTE (start2);
4598 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4599 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4600
4601 #ifdef BYTE_COMBINING_DEBUG
4602 if (end1 == start2)
4603 {
4604 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4605 len2_byte, start1, start1_byte)
4606 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4607 len1_byte, end2, start2_byte + len2_byte)
4608 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4609 len1_byte, end2, start2_byte + len2_byte))
4610 abort ();
4611 }
4612 else
4613 {
4614 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4615 len2_byte, start1, start1_byte)
4616 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4617 len1_byte, start2, start2_byte)
4618 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4619 len2_byte, end1, start1_byte + len1_byte)
4620 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4621 len1_byte, end2, start2_byte + len2_byte))
4622 abort ();
4623 }
4624 #endif
4625
4626 /* Hmmm... how about checking to see if the gap is large
4627 enough to use as the temporary storage? That would avoid an
4628 allocation... interesting. Later, don't fool with it now. */
4629
4630 /* Working without memmove, for portability (sigh), so must be
4631 careful of overlapping subsections of the array... */
4632
4633 if (end1 == start2) /* adjacent regions */
4634 {
4635 modify_region (current_buffer, start1, end2, 0);
4636 record_change (start1, len1 + len2);
4637
4638 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4639 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4640 /* Don't use Fset_text_properties: that can cause GC, which can
4641 clobber objects stored in the tmp_intervals. */
4642 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4643 if (tmp_interval3)
4644 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4645
4646 /* First region smaller than second. */
4647 if (len1_byte < len2_byte)
4648 {
4649 USE_SAFE_ALLOCA;
4650
4651 temp = SAFE_ALLOCA (len2_byte);
4652
4653 /* Don't precompute these addresses. We have to compute them
4654 at the last minute, because the relocating allocator might
4655 have moved the buffer around during the xmalloc. */
4656 start1_addr = BYTE_POS_ADDR (start1_byte);
4657 start2_addr = BYTE_POS_ADDR (start2_byte);
4658
4659 memcpy (temp, start2_addr, len2_byte);
4660 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4661 memcpy (start1_addr, temp, len2_byte);
4662 SAFE_FREE ();
4663 }
4664 else
4665 /* First region not smaller than second. */
4666 {
4667 USE_SAFE_ALLOCA;
4668
4669 temp = SAFE_ALLOCA (len1_byte);
4670 start1_addr = BYTE_POS_ADDR (start1_byte);
4671 start2_addr = BYTE_POS_ADDR (start2_byte);
4672 memcpy (temp, start1_addr, len1_byte);
4673 memcpy (start1_addr, start2_addr, len2_byte);
4674 memcpy (start1_addr + len2_byte, temp, len1_byte);
4675 SAFE_FREE ();
4676 }
4677 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4678 len1, current_buffer, 0);
4679 graft_intervals_into_buffer (tmp_interval2, start1,
4680 len2, current_buffer, 0);
4681 update_compositions (start1, start1 + len2, CHECK_BORDER);
4682 update_compositions (start1 + len2, end2, CHECK_TAIL);
4683 }
4684 /* Non-adjacent regions, because end1 != start2, bleagh... */
4685 else
4686 {
4687 len_mid = start2_byte - (start1_byte + len1_byte);
4688
4689 if (len1_byte == len2_byte)
4690 /* Regions are same size, though, how nice. */
4691 {
4692 USE_SAFE_ALLOCA;
4693
4694 modify_region (current_buffer, start1, end1, 0);
4695 modify_region (current_buffer, start2, end2, 0);
4696 record_change (start1, len1);
4697 record_change (start2, len2);
4698 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4699 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4700
4701 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4702 if (tmp_interval3)
4703 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4704
4705 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4706 if (tmp_interval3)
4707 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4708
4709 temp = SAFE_ALLOCA (len1_byte);
4710 start1_addr = BYTE_POS_ADDR (start1_byte);
4711 start2_addr = BYTE_POS_ADDR (start2_byte);
4712 memcpy (temp, start1_addr, len1_byte);
4713 memcpy (start1_addr, start2_addr, len2_byte);
4714 memcpy (start2_addr, temp, len1_byte);
4715 SAFE_FREE ();
4716
4717 graft_intervals_into_buffer (tmp_interval1, start2,
4718 len1, current_buffer, 0);
4719 graft_intervals_into_buffer (tmp_interval2, start1,
4720 len2, current_buffer, 0);
4721 }
4722
4723 else if (len1_byte < len2_byte) /* Second region larger than first */
4724 /* Non-adjacent & unequal size, area between must also be shifted. */
4725 {
4726 USE_SAFE_ALLOCA;
4727
4728 modify_region (current_buffer, start1, end2, 0);
4729 record_change (start1, (end2 - start1));
4730 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4731 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4732 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4733
4734 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4735 if (tmp_interval3)
4736 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4737
4738 /* holds region 2 */
4739 temp = SAFE_ALLOCA (len2_byte);
4740 start1_addr = BYTE_POS_ADDR (start1_byte);
4741 start2_addr = BYTE_POS_ADDR (start2_byte);
4742 memcpy (temp, start2_addr, len2_byte);
4743 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4744 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4745 memcpy (start1_addr, temp, len2_byte);
4746 SAFE_FREE ();
4747
4748 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4749 len1, current_buffer, 0);
4750 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4751 len_mid, current_buffer, 0);
4752 graft_intervals_into_buffer (tmp_interval2, start1,
4753 len2, current_buffer, 0);
4754 }
4755 else
4756 /* Second region smaller than first. */
4757 {
4758 USE_SAFE_ALLOCA;
4759
4760 record_change (start1, (end2 - start1));
4761 modify_region (current_buffer, start1, end2, 0);
4762
4763 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4764 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4765 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4766
4767 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4768 if (tmp_interval3)
4769 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4770
4771 /* holds region 1 */
4772 temp = SAFE_ALLOCA (len1_byte);
4773 start1_addr = BYTE_POS_ADDR (start1_byte);
4774 start2_addr = BYTE_POS_ADDR (start2_byte);
4775 memcpy (temp, start1_addr, len1_byte);
4776 memcpy (start1_addr, start2_addr, len2_byte);
4777 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4778 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4779 SAFE_FREE ();
4780
4781 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4782 len1, current_buffer, 0);
4783 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4784 len_mid, current_buffer, 0);
4785 graft_intervals_into_buffer (tmp_interval2, start1,
4786 len2, current_buffer, 0);
4787 }
4788
4789 update_compositions (start1, start1 + len2, CHECK_BORDER);
4790 update_compositions (end2 - len1, end2, CHECK_BORDER);
4791 }
4792
4793 /* When doing multiple transpositions, it might be nice
4794 to optimize this. Perhaps the markers in any one buffer
4795 should be organized in some sorted data tree. */
4796 if (NILP (leave_markers))
4797 {
4798 transpose_markers (start1, end1, start2, end2,
4799 start1_byte, start1_byte + len1_byte,
4800 start2_byte, start2_byte + len2_byte);
4801 fix_start_end_in_overlays (start1, end2);
4802 }
4803
4804 signal_after_change (start1, end2 - start1, end2 - start1);
4805 return Qnil;
4806 }
4807
4808 \f
4809 void
4810 syms_of_editfns (void)
4811 {
4812 environbuf = 0;
4813 initial_tz = 0;
4814
4815 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4816
4817 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4818 doc: /* Non-nil means text motion commands don't notice fields. */);
4819 Vinhibit_field_text_motion = Qnil;
4820
4821 DEFVAR_LISP ("buffer-access-fontify-functions",
4822 Vbuffer_access_fontify_functions,
4823 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4824 Each function is called with two arguments which specify the range
4825 of the buffer being accessed. */);
4826 Vbuffer_access_fontify_functions = Qnil;
4827
4828 {
4829 Lisp_Object obuf;
4830 obuf = Fcurrent_buffer ();
4831 /* Do this here, because init_buffer_once is too early--it won't work. */
4832 Fset_buffer (Vprin1_to_string_buffer);
4833 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4834 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4835 Qnil);
4836 Fset_buffer (obuf);
4837 }
4838
4839 DEFVAR_LISP ("buffer-access-fontified-property",
4840 Vbuffer_access_fontified_property,
4841 doc: /* Property which (if non-nil) indicates text has been fontified.
4842 `buffer-substring' need not call the `buffer-access-fontify-functions'
4843 functions if all the text being accessed has this property. */);
4844 Vbuffer_access_fontified_property = Qnil;
4845
4846 DEFVAR_LISP ("system-name", Vsystem_name,
4847 doc: /* The host name of the machine Emacs is running on. */);
4848
4849 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4850 doc: /* The full name of the user logged in. */);
4851
4852 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4853 doc: /* The user's name, taken from environment variables if possible. */);
4854
4855 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4856 doc: /* The user's name, based upon the real uid only. */);
4857
4858 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4859 doc: /* The release of the operating system Emacs is running on. */);
4860
4861 defsubr (&Spropertize);
4862 defsubr (&Schar_equal);
4863 defsubr (&Sgoto_char);
4864 defsubr (&Sstring_to_char);
4865 defsubr (&Schar_to_string);
4866 defsubr (&Sbyte_to_string);
4867 defsubr (&Sbuffer_substring);
4868 defsubr (&Sbuffer_substring_no_properties);
4869 defsubr (&Sbuffer_string);
4870
4871 defsubr (&Spoint_marker);
4872 defsubr (&Smark_marker);
4873 defsubr (&Spoint);
4874 defsubr (&Sregion_beginning);
4875 defsubr (&Sregion_end);
4876
4877 DEFSYM (Qfield, "field");
4878 DEFSYM (Qboundary, "boundary");
4879 defsubr (&Sfield_beginning);
4880 defsubr (&Sfield_end);
4881 defsubr (&Sfield_string);
4882 defsubr (&Sfield_string_no_properties);
4883 defsubr (&Sdelete_field);
4884 defsubr (&Sconstrain_to_field);
4885
4886 defsubr (&Sline_beginning_position);
4887 defsubr (&Sline_end_position);
4888
4889 /* defsubr (&Smark); */
4890 /* defsubr (&Sset_mark); */
4891 defsubr (&Ssave_excursion);
4892 defsubr (&Ssave_current_buffer);
4893
4894 defsubr (&Sbufsize);
4895 defsubr (&Spoint_max);
4896 defsubr (&Spoint_min);
4897 defsubr (&Spoint_min_marker);
4898 defsubr (&Spoint_max_marker);
4899 defsubr (&Sgap_position);
4900 defsubr (&Sgap_size);
4901 defsubr (&Sposition_bytes);
4902 defsubr (&Sbyte_to_position);
4903
4904 defsubr (&Sbobp);
4905 defsubr (&Seobp);
4906 defsubr (&Sbolp);
4907 defsubr (&Seolp);
4908 defsubr (&Sfollowing_char);
4909 defsubr (&Sprevious_char);
4910 defsubr (&Schar_after);
4911 defsubr (&Schar_before);
4912 defsubr (&Sinsert);
4913 defsubr (&Sinsert_before_markers);
4914 defsubr (&Sinsert_and_inherit);
4915 defsubr (&Sinsert_and_inherit_before_markers);
4916 defsubr (&Sinsert_char);
4917 defsubr (&Sinsert_byte);
4918
4919 defsubr (&Suser_login_name);
4920 defsubr (&Suser_real_login_name);
4921 defsubr (&Suser_uid);
4922 defsubr (&Suser_real_uid);
4923 defsubr (&Suser_full_name);
4924 defsubr (&Semacs_pid);
4925 defsubr (&Scurrent_time);
4926 defsubr (&Sget_internal_run_time);
4927 defsubr (&Sformat_time_string);
4928 defsubr (&Sfloat_time);
4929 defsubr (&Sdecode_time);
4930 defsubr (&Sencode_time);
4931 defsubr (&Scurrent_time_string);
4932 defsubr (&Scurrent_time_zone);
4933 defsubr (&Sset_time_zone_rule);
4934 defsubr (&Ssystem_name);
4935 defsubr (&Smessage);
4936 defsubr (&Smessage_box);
4937 defsubr (&Smessage_or_box);
4938 defsubr (&Scurrent_message);
4939 defsubr (&Sformat);
4940
4941 defsubr (&Sinsert_buffer_substring);
4942 defsubr (&Scompare_buffer_substrings);
4943 defsubr (&Ssubst_char_in_region);
4944 defsubr (&Stranslate_region_internal);
4945 defsubr (&Sdelete_region);
4946 defsubr (&Sdelete_and_extract_region);
4947 defsubr (&Swiden);
4948 defsubr (&Snarrow_to_region);
4949 defsubr (&Ssave_restriction);
4950 defsubr (&Stranspose_regions);
4951 }