error: Print 32- and 64-bit integers portably (Bug#8435).
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 /* Note on some machines this defines `vector' as a typedef,
27 so make sure we don't use that name in this file. */
28 #undef vector
29 #define vector *****
30
31 #include "lisp.h"
32 #include "commands.h"
33 #include "character.h"
34 #include "coding.h"
35 #include "buffer.h"
36 #include "keyboard.h"
37 #include "keymap.h"
38 #include "intervals.h"
39 #include "frame.h"
40 #include "window.h"
41 #include "blockinput.h"
42 #ifdef HAVE_MENUS
43 #if defined (HAVE_X_WINDOWS)
44 #include "xterm.h"
45 #endif
46 #endif /* HAVE_MENUS */
47
48 #ifndef NULL
49 #define NULL ((POINTER_TYPE *)0)
50 #endif
51
52 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
53 Lisp_Object Qyes_or_no_p_history;
54 Lisp_Object Qcursor_in_echo_area;
55 Lisp_Object Qwidget_type;
56 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
57
58 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
59
60 #ifndef HAVE_UNISTD_H
61 extern long time ();
62 #endif
63 \f
64 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
65 doc: /* Return the argument unchanged. */)
66 (Lisp_Object arg)
67 {
68 return arg;
69 }
70
71 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
72 doc: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
78 (Lisp_Object limit)
79 {
80 EMACS_INT val;
81 Lisp_Object lispy_val;
82 unsigned long denominator;
83
84 if (EQ (limit, Qt))
85 seed_random (getpid () + time (NULL));
86 if (NATNUMP (limit) && XFASTINT (limit) != 0)
87 {
88 /* Try to take our random number from the higher bits of VAL,
89 not the lower, since (says Gentzel) the low bits of `random'
90 are less random than the higher ones. We do this by using the
91 quotient rather than the remainder. At the high end of the RNG
92 it's possible to get a quotient larger than n; discarding
93 these values eliminates the bias that would otherwise appear
94 when using a large n. */
95 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
96 do
97 val = get_random () / denominator;
98 while (val >= XFASTINT (limit));
99 }
100 else
101 val = get_random ();
102 XSETINT (lispy_val, val);
103 return lispy_val;
104 }
105 \f
106 /* Random data-structure functions */
107
108 DEFUN ("length", Flength, Slength, 1, 1, 0,
109 doc: /* Return the length of vector, list or string SEQUENCE.
110 A byte-code function object is also allowed.
111 If the string contains multibyte characters, this is not necessarily
112 the number of bytes in the string; it is the number of characters.
113 To get the number of bytes, use `string-bytes'. */)
114 (register Lisp_Object sequence)
115 {
116 register Lisp_Object val;
117 register int i;
118
119 if (STRINGP (sequence))
120 XSETFASTINT (val, SCHARS (sequence));
121 else if (VECTORP (sequence))
122 XSETFASTINT (val, ASIZE (sequence));
123 else if (CHAR_TABLE_P (sequence))
124 XSETFASTINT (val, MAX_CHAR);
125 else if (BOOL_VECTOR_P (sequence))
126 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
127 else if (COMPILEDP (sequence))
128 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
129 else if (CONSP (sequence))
130 {
131 i = 0;
132 while (CONSP (sequence))
133 {
134 sequence = XCDR (sequence);
135 ++i;
136
137 if (!CONSP (sequence))
138 break;
139
140 sequence = XCDR (sequence);
141 ++i;
142 QUIT;
143 }
144
145 CHECK_LIST_END (sequence, sequence);
146
147 val = make_number (i);
148 }
149 else if (NILP (sequence))
150 XSETFASTINT (val, 0);
151 else
152 wrong_type_argument (Qsequencep, sequence);
153
154 return val;
155 }
156
157 /* This does not check for quits. That is safe since it must terminate. */
158
159 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
160 doc: /* Return the length of a list, but avoid error or infinite loop.
161 This function never gets an error. If LIST is not really a list,
162 it returns 0. If LIST is circular, it returns a finite value
163 which is at least the number of distinct elements. */)
164 (Lisp_Object list)
165 {
166 Lisp_Object tail, halftail, length;
167 int len = 0;
168
169 /* halftail is used to detect circular lists. */
170 halftail = list;
171 for (tail = list; CONSP (tail); tail = XCDR (tail))
172 {
173 if (EQ (tail, halftail) && len != 0)
174 break;
175 len++;
176 if ((len & 1) == 0)
177 halftail = XCDR (halftail);
178 }
179
180 XSETINT (length, len);
181 return length;
182 }
183
184 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
185 doc: /* Return the number of bytes in STRING.
186 If STRING is multibyte, this may be greater than the length of STRING. */)
187 (Lisp_Object string)
188 {
189 CHECK_STRING (string);
190 return make_number (SBYTES (string));
191 }
192
193 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
194 doc: /* Return t if two strings have identical contents.
195 Case is significant, but text properties are ignored.
196 Symbols are also allowed; their print names are used instead. */)
197 (register Lisp_Object s1, Lisp_Object s2)
198 {
199 if (SYMBOLP (s1))
200 s1 = SYMBOL_NAME (s1);
201 if (SYMBOLP (s2))
202 s2 = SYMBOL_NAME (s2);
203 CHECK_STRING (s1);
204 CHECK_STRING (s2);
205
206 if (SCHARS (s1) != SCHARS (s2)
207 || SBYTES (s1) != SBYTES (s2)
208 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
209 return Qnil;
210 return Qt;
211 }
212
213 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
214 doc: /* Compare the contents of two strings, converting to multibyte if needed.
215 In string STR1, skip the first START1 characters and stop at END1.
216 In string STR2, skip the first START2 characters and stop at END2.
217 END1 and END2 default to the full lengths of the respective strings.
218
219 Case is significant in this comparison if IGNORE-CASE is nil.
220 Unibyte strings are converted to multibyte for comparison.
221
222 The value is t if the strings (or specified portions) match.
223 If string STR1 is less, the value is a negative number N;
224 - 1 - N is the number of characters that match at the beginning.
225 If string STR1 is greater, the value is a positive number N;
226 N - 1 is the number of characters that match at the beginning. */)
227 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
228 {
229 register EMACS_INT end1_char, end2_char;
230 register EMACS_INT i1, i1_byte, i2, i2_byte;
231
232 CHECK_STRING (str1);
233 CHECK_STRING (str2);
234 if (NILP (start1))
235 start1 = make_number (0);
236 if (NILP (start2))
237 start2 = make_number (0);
238 CHECK_NATNUM (start1);
239 CHECK_NATNUM (start2);
240 if (! NILP (end1))
241 CHECK_NATNUM (end1);
242 if (! NILP (end2))
243 CHECK_NATNUM (end2);
244
245 i1 = XINT (start1);
246 i2 = XINT (start2);
247
248 i1_byte = string_char_to_byte (str1, i1);
249 i2_byte = string_char_to_byte (str2, i2);
250
251 end1_char = SCHARS (str1);
252 if (! NILP (end1) && end1_char > XINT (end1))
253 end1_char = XINT (end1);
254
255 end2_char = SCHARS (str2);
256 if (! NILP (end2) && end2_char > XINT (end2))
257 end2_char = XINT (end2);
258
259 while (i1 < end1_char && i2 < end2_char)
260 {
261 /* When we find a mismatch, we must compare the
262 characters, not just the bytes. */
263 int c1, c2;
264
265 if (STRING_MULTIBYTE (str1))
266 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
267 else
268 {
269 c1 = SREF (str1, i1++);
270 MAKE_CHAR_MULTIBYTE (c1);
271 }
272
273 if (STRING_MULTIBYTE (str2))
274 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
275 else
276 {
277 c2 = SREF (str2, i2++);
278 MAKE_CHAR_MULTIBYTE (c2);
279 }
280
281 if (c1 == c2)
282 continue;
283
284 if (! NILP (ignore_case))
285 {
286 Lisp_Object tem;
287
288 tem = Fupcase (make_number (c1));
289 c1 = XINT (tem);
290 tem = Fupcase (make_number (c2));
291 c2 = XINT (tem);
292 }
293
294 if (c1 == c2)
295 continue;
296
297 /* Note that I1 has already been incremented
298 past the character that we are comparing;
299 hence we don't add or subtract 1 here. */
300 if (c1 < c2)
301 return make_number (- i1 + XINT (start1));
302 else
303 return make_number (i1 - XINT (start1));
304 }
305
306 if (i1 < end1_char)
307 return make_number (i1 - XINT (start1) + 1);
308 if (i2 < end2_char)
309 return make_number (- i1 + XINT (start1) - 1);
310
311 return Qt;
312 }
313
314 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
315 doc: /* Return t if first arg string is less than second in lexicographic order.
316 Case is significant.
317 Symbols are also allowed; their print names are used instead. */)
318 (register Lisp_Object s1, Lisp_Object s2)
319 {
320 register EMACS_INT end;
321 register EMACS_INT i1, i1_byte, i2, i2_byte;
322
323 if (SYMBOLP (s1))
324 s1 = SYMBOL_NAME (s1);
325 if (SYMBOLP (s2))
326 s2 = SYMBOL_NAME (s2);
327 CHECK_STRING (s1);
328 CHECK_STRING (s2);
329
330 i1 = i1_byte = i2 = i2_byte = 0;
331
332 end = SCHARS (s1);
333 if (end > SCHARS (s2))
334 end = SCHARS (s2);
335
336 while (i1 < end)
337 {
338 /* When we find a mismatch, we must compare the
339 characters, not just the bytes. */
340 int c1, c2;
341
342 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
343 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
344
345 if (c1 != c2)
346 return c1 < c2 ? Qt : Qnil;
347 }
348 return i1 < SCHARS (s2) ? Qt : Qnil;
349 }
350 \f
351 static Lisp_Object concat (size_t nargs, Lisp_Object *args,
352 enum Lisp_Type target_type, int last_special);
353
354 /* ARGSUSED */
355 Lisp_Object
356 concat2 (Lisp_Object s1, Lisp_Object s2)
357 {
358 Lisp_Object args[2];
359 args[0] = s1;
360 args[1] = s2;
361 return concat (2, args, Lisp_String, 0);
362 }
363
364 /* ARGSUSED */
365 Lisp_Object
366 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
367 {
368 Lisp_Object args[3];
369 args[0] = s1;
370 args[1] = s2;
371 args[2] = s3;
372 return concat (3, args, Lisp_String, 0);
373 }
374
375 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
376 doc: /* Concatenate all the arguments and make the result a list.
377 The result is a list whose elements are the elements of all the arguments.
378 Each argument may be a list, vector or string.
379 The last argument is not copied, just used as the tail of the new list.
380 usage: (append &rest SEQUENCES) */)
381 (size_t nargs, Lisp_Object *args)
382 {
383 return concat (nargs, args, Lisp_Cons, 1);
384 }
385
386 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
387 doc: /* Concatenate all the arguments and make the result a string.
388 The result is a string whose elements are the elements of all the arguments.
389 Each argument may be a string or a list or vector of characters (integers).
390 usage: (concat &rest SEQUENCES) */)
391 (size_t nargs, Lisp_Object *args)
392 {
393 return concat (nargs, args, Lisp_String, 0);
394 }
395
396 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
397 doc: /* Concatenate all the arguments and make the result a vector.
398 The result is a vector whose elements are the elements of all the arguments.
399 Each argument may be a list, vector or string.
400 usage: (vconcat &rest SEQUENCES) */)
401 (size_t nargs, Lisp_Object *args)
402 {
403 return concat (nargs, args, Lisp_Vectorlike, 0);
404 }
405
406
407 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
408 doc: /* Return a copy of a list, vector, string or char-table.
409 The elements of a list or vector are not copied; they are shared
410 with the original. */)
411 (Lisp_Object arg)
412 {
413 if (NILP (arg)) return arg;
414
415 if (CHAR_TABLE_P (arg))
416 {
417 return copy_char_table (arg);
418 }
419
420 if (BOOL_VECTOR_P (arg))
421 {
422 Lisp_Object val;
423 int size_in_chars
424 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
425 / BOOL_VECTOR_BITS_PER_CHAR);
426
427 val = Fmake_bool_vector (Flength (arg), Qnil);
428 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
429 size_in_chars);
430 return val;
431 }
432
433 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
434 wrong_type_argument (Qsequencep, arg);
435
436 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
437 }
438
439 /* This structure holds information of an argument of `concat' that is
440 a string and has text properties to be copied. */
441 struct textprop_rec
442 {
443 int argnum; /* refer to ARGS (arguments of `concat') */
444 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
445 EMACS_INT to; /* refer to VAL (the target string) */
446 };
447
448 static Lisp_Object
449 concat (size_t nargs, Lisp_Object *args,
450 enum Lisp_Type target_type, int last_special)
451 {
452 Lisp_Object val;
453 register Lisp_Object tail;
454 register Lisp_Object this;
455 EMACS_INT toindex;
456 EMACS_INT toindex_byte = 0;
457 register EMACS_INT result_len;
458 register EMACS_INT result_len_byte;
459 register size_t argnum;
460 Lisp_Object last_tail;
461 Lisp_Object prev;
462 int some_multibyte;
463 /* When we make a multibyte string, we can't copy text properties
464 while concatinating each string because the length of resulting
465 string can't be decided until we finish the whole concatination.
466 So, we record strings that have text properties to be copied
467 here, and copy the text properties after the concatination. */
468 struct textprop_rec *textprops = NULL;
469 /* Number of elements in textprops. */
470 int num_textprops = 0;
471 USE_SAFE_ALLOCA;
472
473 tail = Qnil;
474
475 /* In append, the last arg isn't treated like the others */
476 if (last_special && nargs > 0)
477 {
478 nargs--;
479 last_tail = args[nargs];
480 }
481 else
482 last_tail = Qnil;
483
484 /* Check each argument. */
485 for (argnum = 0; argnum < nargs; argnum++)
486 {
487 this = args[argnum];
488 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
489 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
490 wrong_type_argument (Qsequencep, this);
491 }
492
493 /* Compute total length in chars of arguments in RESULT_LEN.
494 If desired output is a string, also compute length in bytes
495 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
496 whether the result should be a multibyte string. */
497 result_len_byte = 0;
498 result_len = 0;
499 some_multibyte = 0;
500 for (argnum = 0; argnum < nargs; argnum++)
501 {
502 EMACS_INT len;
503 this = args[argnum];
504 len = XFASTINT (Flength (this));
505 if (target_type == Lisp_String)
506 {
507 /* We must count the number of bytes needed in the string
508 as well as the number of characters. */
509 EMACS_INT i;
510 Lisp_Object ch;
511 EMACS_INT this_len_byte;
512
513 if (VECTORP (this) || COMPILEDP (this))
514 for (i = 0; i < len; i++)
515 {
516 ch = AREF (this, i);
517 CHECK_CHARACTER (ch);
518 this_len_byte = CHAR_BYTES (XINT (ch));
519 result_len_byte += this_len_byte;
520 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
521 some_multibyte = 1;
522 }
523 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
524 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
525 else if (CONSP (this))
526 for (; CONSP (this); this = XCDR (this))
527 {
528 ch = XCAR (this);
529 CHECK_CHARACTER (ch);
530 this_len_byte = CHAR_BYTES (XINT (ch));
531 result_len_byte += this_len_byte;
532 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
533 some_multibyte = 1;
534 }
535 else if (STRINGP (this))
536 {
537 if (STRING_MULTIBYTE (this))
538 {
539 some_multibyte = 1;
540 result_len_byte += SBYTES (this);
541 }
542 else
543 result_len_byte += count_size_as_multibyte (SDATA (this),
544 SCHARS (this));
545 }
546 }
547
548 result_len += len;
549 if (result_len < 0)
550 error ("String overflow");
551 }
552
553 if (! some_multibyte)
554 result_len_byte = result_len;
555
556 /* Create the output object. */
557 if (target_type == Lisp_Cons)
558 val = Fmake_list (make_number (result_len), Qnil);
559 else if (target_type == Lisp_Vectorlike)
560 val = Fmake_vector (make_number (result_len), Qnil);
561 else if (some_multibyte)
562 val = make_uninit_multibyte_string (result_len, result_len_byte);
563 else
564 val = make_uninit_string (result_len);
565
566 /* In `append', if all but last arg are nil, return last arg. */
567 if (target_type == Lisp_Cons && EQ (val, Qnil))
568 return last_tail;
569
570 /* Copy the contents of the args into the result. */
571 if (CONSP (val))
572 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
573 else
574 toindex = 0, toindex_byte = 0;
575
576 prev = Qnil;
577 if (STRINGP (val))
578 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
579
580 for (argnum = 0; argnum < nargs; argnum++)
581 {
582 Lisp_Object thislen;
583 EMACS_INT thisleni = 0;
584 register EMACS_INT thisindex = 0;
585 register EMACS_INT thisindex_byte = 0;
586
587 this = args[argnum];
588 if (!CONSP (this))
589 thislen = Flength (this), thisleni = XINT (thislen);
590
591 /* Between strings of the same kind, copy fast. */
592 if (STRINGP (this) && STRINGP (val)
593 && STRING_MULTIBYTE (this) == some_multibyte)
594 {
595 EMACS_INT thislen_byte = SBYTES (this);
596
597 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
598 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
599 {
600 textprops[num_textprops].argnum = argnum;
601 textprops[num_textprops].from = 0;
602 textprops[num_textprops++].to = toindex;
603 }
604 toindex_byte += thislen_byte;
605 toindex += thisleni;
606 }
607 /* Copy a single-byte string to a multibyte string. */
608 else if (STRINGP (this) && STRINGP (val))
609 {
610 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
611 {
612 textprops[num_textprops].argnum = argnum;
613 textprops[num_textprops].from = 0;
614 textprops[num_textprops++].to = toindex;
615 }
616 toindex_byte += copy_text (SDATA (this),
617 SDATA (val) + toindex_byte,
618 SCHARS (this), 0, 1);
619 toindex += thisleni;
620 }
621 else
622 /* Copy element by element. */
623 while (1)
624 {
625 register Lisp_Object elt;
626
627 /* Fetch next element of `this' arg into `elt', or break if
628 `this' is exhausted. */
629 if (NILP (this)) break;
630 if (CONSP (this))
631 elt = XCAR (this), this = XCDR (this);
632 else if (thisindex >= thisleni)
633 break;
634 else if (STRINGP (this))
635 {
636 int c;
637 if (STRING_MULTIBYTE (this))
638 {
639 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
640 thisindex,
641 thisindex_byte);
642 XSETFASTINT (elt, c);
643 }
644 else
645 {
646 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
647 if (some_multibyte
648 && !ASCII_CHAR_P (XINT (elt))
649 && XINT (elt) < 0400)
650 {
651 c = BYTE8_TO_CHAR (XINT (elt));
652 XSETINT (elt, c);
653 }
654 }
655 }
656 else if (BOOL_VECTOR_P (this))
657 {
658 int byte;
659 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
660 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
661 elt = Qt;
662 else
663 elt = Qnil;
664 thisindex++;
665 }
666 else
667 {
668 elt = AREF (this, thisindex);
669 thisindex++;
670 }
671
672 /* Store this element into the result. */
673 if (toindex < 0)
674 {
675 XSETCAR (tail, elt);
676 prev = tail;
677 tail = XCDR (tail);
678 }
679 else if (VECTORP (val))
680 {
681 ASET (val, toindex, elt);
682 toindex++;
683 }
684 else
685 {
686 CHECK_NUMBER (elt);
687 if (some_multibyte)
688 toindex_byte += CHAR_STRING (XINT (elt),
689 SDATA (val) + toindex_byte);
690 else
691 SSET (val, toindex_byte++, XINT (elt));
692 toindex++;
693 }
694 }
695 }
696 if (!NILP (prev))
697 XSETCDR (prev, last_tail);
698
699 if (num_textprops > 0)
700 {
701 Lisp_Object props;
702 EMACS_INT last_to_end = -1;
703
704 for (argnum = 0; argnum < num_textprops; argnum++)
705 {
706 this = args[textprops[argnum].argnum];
707 props = text_property_list (this,
708 make_number (0),
709 make_number (SCHARS (this)),
710 Qnil);
711 /* If successive arguments have properites, be sure that the
712 value of `composition' property be the copy. */
713 if (last_to_end == textprops[argnum].to)
714 make_composition_value_copy (props);
715 add_text_properties_from_list (val, props,
716 make_number (textprops[argnum].to));
717 last_to_end = textprops[argnum].to + SCHARS (this);
718 }
719 }
720
721 SAFE_FREE ();
722 return val;
723 }
724 \f
725 static Lisp_Object string_char_byte_cache_string;
726 static EMACS_INT string_char_byte_cache_charpos;
727 static EMACS_INT string_char_byte_cache_bytepos;
728
729 void
730 clear_string_char_byte_cache (void)
731 {
732 string_char_byte_cache_string = Qnil;
733 }
734
735 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
736
737 EMACS_INT
738 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
739 {
740 EMACS_INT i_byte;
741 EMACS_INT best_below, best_below_byte;
742 EMACS_INT best_above, best_above_byte;
743
744 best_below = best_below_byte = 0;
745 best_above = SCHARS (string);
746 best_above_byte = SBYTES (string);
747 if (best_above == best_above_byte)
748 return char_index;
749
750 if (EQ (string, string_char_byte_cache_string))
751 {
752 if (string_char_byte_cache_charpos < char_index)
753 {
754 best_below = string_char_byte_cache_charpos;
755 best_below_byte = string_char_byte_cache_bytepos;
756 }
757 else
758 {
759 best_above = string_char_byte_cache_charpos;
760 best_above_byte = string_char_byte_cache_bytepos;
761 }
762 }
763
764 if (char_index - best_below < best_above - char_index)
765 {
766 unsigned char *p = SDATA (string) + best_below_byte;
767
768 while (best_below < char_index)
769 {
770 p += BYTES_BY_CHAR_HEAD (*p);
771 best_below++;
772 }
773 i_byte = p - SDATA (string);
774 }
775 else
776 {
777 unsigned char *p = SDATA (string) + best_above_byte;
778
779 while (best_above > char_index)
780 {
781 p--;
782 while (!CHAR_HEAD_P (*p)) p--;
783 best_above--;
784 }
785 i_byte = p - SDATA (string);
786 }
787
788 string_char_byte_cache_bytepos = i_byte;
789 string_char_byte_cache_charpos = char_index;
790 string_char_byte_cache_string = string;
791
792 return i_byte;
793 }
794 \f
795 /* Return the character index corresponding to BYTE_INDEX in STRING. */
796
797 EMACS_INT
798 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
799 {
800 EMACS_INT i, i_byte;
801 EMACS_INT best_below, best_below_byte;
802 EMACS_INT best_above, best_above_byte;
803
804 best_below = best_below_byte = 0;
805 best_above = SCHARS (string);
806 best_above_byte = SBYTES (string);
807 if (best_above == best_above_byte)
808 return byte_index;
809
810 if (EQ (string, string_char_byte_cache_string))
811 {
812 if (string_char_byte_cache_bytepos < byte_index)
813 {
814 best_below = string_char_byte_cache_charpos;
815 best_below_byte = string_char_byte_cache_bytepos;
816 }
817 else
818 {
819 best_above = string_char_byte_cache_charpos;
820 best_above_byte = string_char_byte_cache_bytepos;
821 }
822 }
823
824 if (byte_index - best_below_byte < best_above_byte - byte_index)
825 {
826 unsigned char *p = SDATA (string) + best_below_byte;
827 unsigned char *pend = SDATA (string) + byte_index;
828
829 while (p < pend)
830 {
831 p += BYTES_BY_CHAR_HEAD (*p);
832 best_below++;
833 }
834 i = best_below;
835 i_byte = p - SDATA (string);
836 }
837 else
838 {
839 unsigned char *p = SDATA (string) + best_above_byte;
840 unsigned char *pbeg = SDATA (string) + byte_index;
841
842 while (p > pbeg)
843 {
844 p--;
845 while (!CHAR_HEAD_P (*p)) p--;
846 best_above--;
847 }
848 i = best_above;
849 i_byte = p - SDATA (string);
850 }
851
852 string_char_byte_cache_bytepos = i_byte;
853 string_char_byte_cache_charpos = i;
854 string_char_byte_cache_string = string;
855
856 return i;
857 }
858 \f
859 /* Convert STRING to a multibyte string. */
860
861 static Lisp_Object
862 string_make_multibyte (Lisp_Object string)
863 {
864 unsigned char *buf;
865 EMACS_INT nbytes;
866 Lisp_Object ret;
867 USE_SAFE_ALLOCA;
868
869 if (STRING_MULTIBYTE (string))
870 return string;
871
872 nbytes = count_size_as_multibyte (SDATA (string),
873 SCHARS (string));
874 /* If all the chars are ASCII, they won't need any more bytes
875 once converted. In that case, we can return STRING itself. */
876 if (nbytes == SBYTES (string))
877 return string;
878
879 SAFE_ALLOCA (buf, unsigned char *, nbytes);
880 copy_text (SDATA (string), buf, SBYTES (string),
881 0, 1);
882
883 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
884 SAFE_FREE ();
885
886 return ret;
887 }
888
889
890 /* Convert STRING (if unibyte) to a multibyte string without changing
891 the number of characters. Characters 0200 trough 0237 are
892 converted to eight-bit characters. */
893
894 Lisp_Object
895 string_to_multibyte (Lisp_Object string)
896 {
897 unsigned char *buf;
898 EMACS_INT nbytes;
899 Lisp_Object ret;
900 USE_SAFE_ALLOCA;
901
902 if (STRING_MULTIBYTE (string))
903 return string;
904
905 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
906 /* If all the chars are ASCII, they won't need any more bytes once
907 converted. */
908 if (nbytes == SBYTES (string))
909 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
910
911 SAFE_ALLOCA (buf, unsigned char *, nbytes);
912 memcpy (buf, SDATA (string), SBYTES (string));
913 str_to_multibyte (buf, nbytes, SBYTES (string));
914
915 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
916 SAFE_FREE ();
917
918 return ret;
919 }
920
921
922 /* Convert STRING to a single-byte string. */
923
924 Lisp_Object
925 string_make_unibyte (Lisp_Object string)
926 {
927 EMACS_INT nchars;
928 unsigned char *buf;
929 Lisp_Object ret;
930 USE_SAFE_ALLOCA;
931
932 if (! STRING_MULTIBYTE (string))
933 return string;
934
935 nchars = SCHARS (string);
936
937 SAFE_ALLOCA (buf, unsigned char *, nchars);
938 copy_text (SDATA (string), buf, SBYTES (string),
939 1, 0);
940
941 ret = make_unibyte_string ((char *) buf, nchars);
942 SAFE_FREE ();
943
944 return ret;
945 }
946
947 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
948 1, 1, 0,
949 doc: /* Return the multibyte equivalent of STRING.
950 If STRING is unibyte and contains non-ASCII characters, the function
951 `unibyte-char-to-multibyte' is used to convert each unibyte character
952 to a multibyte character. In this case, the returned string is a
953 newly created string with no text properties. If STRING is multibyte
954 or entirely ASCII, it is returned unchanged. In particular, when
955 STRING is unibyte and entirely ASCII, the returned string is unibyte.
956 \(When the characters are all ASCII, Emacs primitives will treat the
957 string the same way whether it is unibyte or multibyte.) */)
958 (Lisp_Object string)
959 {
960 CHECK_STRING (string);
961
962 return string_make_multibyte (string);
963 }
964
965 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
966 1, 1, 0,
967 doc: /* Return the unibyte equivalent of STRING.
968 Multibyte character codes are converted to unibyte according to
969 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
970 If the lookup in the translation table fails, this function takes just
971 the low 8 bits of each character. */)
972 (Lisp_Object string)
973 {
974 CHECK_STRING (string);
975
976 return string_make_unibyte (string);
977 }
978
979 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
980 1, 1, 0,
981 doc: /* Return a unibyte string with the same individual bytes as STRING.
982 If STRING is unibyte, the result is STRING itself.
983 Otherwise it is a newly created string, with no text properties.
984 If STRING is multibyte and contains a character of charset
985 `eight-bit', it is converted to the corresponding single byte. */)
986 (Lisp_Object string)
987 {
988 CHECK_STRING (string);
989
990 if (STRING_MULTIBYTE (string))
991 {
992 EMACS_INT bytes = SBYTES (string);
993 unsigned char *str = (unsigned char *) xmalloc (bytes);
994
995 memcpy (str, SDATA (string), bytes);
996 bytes = str_as_unibyte (str, bytes);
997 string = make_unibyte_string ((char *) str, bytes);
998 xfree (str);
999 }
1000 return string;
1001 }
1002
1003 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1004 1, 1, 0,
1005 doc: /* Return a multibyte string with the same individual bytes as STRING.
1006 If STRING is multibyte, the result is STRING itself.
1007 Otherwise it is a newly created string, with no text properties.
1008
1009 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1010 part of a correct utf-8 sequence), it is converted to the corresponding
1011 multibyte character of charset `eight-bit'.
1012 See also `string-to-multibyte'.
1013
1014 Beware, this often doesn't really do what you think it does.
1015 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1016 If you're not sure, whether to use `string-as-multibyte' or
1017 `string-to-multibyte', use `string-to-multibyte'. */)
1018 (Lisp_Object string)
1019 {
1020 CHECK_STRING (string);
1021
1022 if (! STRING_MULTIBYTE (string))
1023 {
1024 Lisp_Object new_string;
1025 EMACS_INT nchars, nbytes;
1026
1027 parse_str_as_multibyte (SDATA (string),
1028 SBYTES (string),
1029 &nchars, &nbytes);
1030 new_string = make_uninit_multibyte_string (nchars, nbytes);
1031 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1032 if (nbytes != SBYTES (string))
1033 str_as_multibyte (SDATA (new_string), nbytes,
1034 SBYTES (string), NULL);
1035 string = new_string;
1036 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1037 }
1038 return string;
1039 }
1040
1041 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1042 1, 1, 0,
1043 doc: /* Return a multibyte string with the same individual chars as STRING.
1044 If STRING is multibyte, the result is STRING itself.
1045 Otherwise it is a newly created string, with no text properties.
1046
1047 If STRING is unibyte and contains an 8-bit byte, it is converted to
1048 the corresponding multibyte character of charset `eight-bit'.
1049
1050 This differs from `string-as-multibyte' by converting each byte of a correct
1051 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1052 correct sequence. */)
1053 (Lisp_Object string)
1054 {
1055 CHECK_STRING (string);
1056
1057 return string_to_multibyte (string);
1058 }
1059
1060 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1061 1, 1, 0,
1062 doc: /* Return a unibyte string with the same individual chars as STRING.
1063 If STRING is unibyte, the result is STRING itself.
1064 Otherwise it is a newly created string, with no text properties,
1065 where each `eight-bit' character is converted to the corresponding byte.
1066 If STRING contains a non-ASCII, non-`eight-bit' character,
1067 an error is signaled. */)
1068 (Lisp_Object string)
1069 {
1070 CHECK_STRING (string);
1071
1072 if (STRING_MULTIBYTE (string))
1073 {
1074 EMACS_INT chars = SCHARS (string);
1075 unsigned char *str = (unsigned char *) xmalloc (chars);
1076 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1077
1078 if (converted < chars)
1079 error ("Can't convert the %"pEd"th character to unibyte", converted);
1080 string = make_unibyte_string ((char *) str, chars);
1081 xfree (str);
1082 }
1083 return string;
1084 }
1085
1086 \f
1087 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1088 doc: /* Return a copy of ALIST.
1089 This is an alist which represents the same mapping from objects to objects,
1090 but does not share the alist structure with ALIST.
1091 The objects mapped (cars and cdrs of elements of the alist)
1092 are shared, however.
1093 Elements of ALIST that are not conses are also shared. */)
1094 (Lisp_Object alist)
1095 {
1096 register Lisp_Object tem;
1097
1098 CHECK_LIST (alist);
1099 if (NILP (alist))
1100 return alist;
1101 alist = concat (1, &alist, Lisp_Cons, 0);
1102 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1103 {
1104 register Lisp_Object car;
1105 car = XCAR (tem);
1106
1107 if (CONSP (car))
1108 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1109 }
1110 return alist;
1111 }
1112
1113 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1114 doc: /* Return a new string whose contents are a substring of STRING.
1115 The returned string consists of the characters between index FROM
1116 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1117 zero-indexed: 0 means the first character of STRING. Negative values
1118 are counted from the end of STRING. If TO is nil, the substring runs
1119 to the end of STRING.
1120
1121 The STRING argument may also be a vector. In that case, the return
1122 value is a new vector that contains the elements between index FROM
1123 \(inclusive) and index TO (exclusive) of that vector argument. */)
1124 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1125 {
1126 Lisp_Object res;
1127 EMACS_INT size;
1128 EMACS_INT size_byte = 0;
1129 EMACS_INT from_char, to_char;
1130 EMACS_INT from_byte = 0, to_byte = 0;
1131
1132 CHECK_VECTOR_OR_STRING (string);
1133 CHECK_NUMBER (from);
1134
1135 if (STRINGP (string))
1136 {
1137 size = SCHARS (string);
1138 size_byte = SBYTES (string);
1139 }
1140 else
1141 size = ASIZE (string);
1142
1143 if (NILP (to))
1144 {
1145 to_char = size;
1146 to_byte = size_byte;
1147 }
1148 else
1149 {
1150 CHECK_NUMBER (to);
1151
1152 to_char = XINT (to);
1153 if (to_char < 0)
1154 to_char += size;
1155
1156 if (STRINGP (string))
1157 to_byte = string_char_to_byte (string, to_char);
1158 }
1159
1160 from_char = XINT (from);
1161 if (from_char < 0)
1162 from_char += size;
1163 if (STRINGP (string))
1164 from_byte = string_char_to_byte (string, from_char);
1165
1166 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1167 args_out_of_range_3 (string, make_number (from_char),
1168 make_number (to_char));
1169
1170 if (STRINGP (string))
1171 {
1172 res = make_specified_string (SSDATA (string) + from_byte,
1173 to_char - from_char, to_byte - from_byte,
1174 STRING_MULTIBYTE (string));
1175 copy_text_properties (make_number (from_char), make_number (to_char),
1176 string, make_number (0), res, Qnil);
1177 }
1178 else
1179 res = Fvector (to_char - from_char, &AREF (string, from_char));
1180
1181 return res;
1182 }
1183
1184
1185 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1186 doc: /* Return a substring of STRING, without text properties.
1187 It starts at index FROM and ends before TO.
1188 TO may be nil or omitted; then the substring runs to the end of STRING.
1189 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1190 If FROM or TO is negative, it counts from the end.
1191
1192 With one argument, just copy STRING without its properties. */)
1193 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1194 {
1195 EMACS_INT size, size_byte;
1196 EMACS_INT from_char, to_char;
1197 EMACS_INT from_byte, to_byte;
1198
1199 CHECK_STRING (string);
1200
1201 size = SCHARS (string);
1202 size_byte = SBYTES (string);
1203
1204 if (NILP (from))
1205 from_char = from_byte = 0;
1206 else
1207 {
1208 CHECK_NUMBER (from);
1209 from_char = XINT (from);
1210 if (from_char < 0)
1211 from_char += size;
1212
1213 from_byte = string_char_to_byte (string, from_char);
1214 }
1215
1216 if (NILP (to))
1217 {
1218 to_char = size;
1219 to_byte = size_byte;
1220 }
1221 else
1222 {
1223 CHECK_NUMBER (to);
1224
1225 to_char = XINT (to);
1226 if (to_char < 0)
1227 to_char += size;
1228
1229 to_byte = string_char_to_byte (string, to_char);
1230 }
1231
1232 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1233 args_out_of_range_3 (string, make_number (from_char),
1234 make_number (to_char));
1235
1236 return make_specified_string (SSDATA (string) + from_byte,
1237 to_char - from_char, to_byte - from_byte,
1238 STRING_MULTIBYTE (string));
1239 }
1240
1241 /* Extract a substring of STRING, giving start and end positions
1242 both in characters and in bytes. */
1243
1244 Lisp_Object
1245 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1246 EMACS_INT to, EMACS_INT to_byte)
1247 {
1248 Lisp_Object res;
1249 EMACS_INT size;
1250
1251 CHECK_VECTOR_OR_STRING (string);
1252
1253 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1254
1255 if (!(0 <= from && from <= to && to <= size))
1256 args_out_of_range_3 (string, make_number (from), make_number (to));
1257
1258 if (STRINGP (string))
1259 {
1260 res = make_specified_string (SSDATA (string) + from_byte,
1261 to - from, to_byte - from_byte,
1262 STRING_MULTIBYTE (string));
1263 copy_text_properties (make_number (from), make_number (to),
1264 string, make_number (0), res, Qnil);
1265 }
1266 else
1267 res = Fvector (to - from, &AREF (string, from));
1268
1269 return res;
1270 }
1271 \f
1272 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1273 doc: /* Take cdr N times on LIST, return the result. */)
1274 (Lisp_Object n, Lisp_Object list)
1275 {
1276 register int i, num;
1277 CHECK_NUMBER (n);
1278 num = XINT (n);
1279 for (i = 0; i < num && !NILP (list); i++)
1280 {
1281 QUIT;
1282 CHECK_LIST_CONS (list, list);
1283 list = XCDR (list);
1284 }
1285 return list;
1286 }
1287
1288 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1289 doc: /* Return the Nth element of LIST.
1290 N counts from zero. If LIST is not that long, nil is returned. */)
1291 (Lisp_Object n, Lisp_Object list)
1292 {
1293 return Fcar (Fnthcdr (n, list));
1294 }
1295
1296 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1297 doc: /* Return element of SEQUENCE at index N. */)
1298 (register Lisp_Object sequence, Lisp_Object n)
1299 {
1300 CHECK_NUMBER (n);
1301 if (CONSP (sequence) || NILP (sequence))
1302 return Fcar (Fnthcdr (n, sequence));
1303
1304 /* Faref signals a "not array" error, so check here. */
1305 CHECK_ARRAY (sequence, Qsequencep);
1306 return Faref (sequence, n);
1307 }
1308
1309 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1310 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1311 The value is actually the tail of LIST whose car is ELT. */)
1312 (register Lisp_Object elt, Lisp_Object list)
1313 {
1314 register Lisp_Object tail;
1315 for (tail = list; CONSP (tail); tail = XCDR (tail))
1316 {
1317 register Lisp_Object tem;
1318 CHECK_LIST_CONS (tail, list);
1319 tem = XCAR (tail);
1320 if (! NILP (Fequal (elt, tem)))
1321 return tail;
1322 QUIT;
1323 }
1324 return Qnil;
1325 }
1326
1327 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1328 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1329 The value is actually the tail of LIST whose car is ELT. */)
1330 (register Lisp_Object elt, Lisp_Object list)
1331 {
1332 while (1)
1333 {
1334 if (!CONSP (list) || EQ (XCAR (list), elt))
1335 break;
1336
1337 list = XCDR (list);
1338 if (!CONSP (list) || EQ (XCAR (list), elt))
1339 break;
1340
1341 list = XCDR (list);
1342 if (!CONSP (list) || EQ (XCAR (list), elt))
1343 break;
1344
1345 list = XCDR (list);
1346 QUIT;
1347 }
1348
1349 CHECK_LIST (list);
1350 return list;
1351 }
1352
1353 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1354 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1355 The value is actually the tail of LIST whose car is ELT. */)
1356 (register Lisp_Object elt, Lisp_Object list)
1357 {
1358 register Lisp_Object tail;
1359
1360 if (!FLOATP (elt))
1361 return Fmemq (elt, list);
1362
1363 for (tail = list; CONSP (tail); tail = XCDR (tail))
1364 {
1365 register Lisp_Object tem;
1366 CHECK_LIST_CONS (tail, list);
1367 tem = XCAR (tail);
1368 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1369 return tail;
1370 QUIT;
1371 }
1372 return Qnil;
1373 }
1374
1375 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1376 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1377 The value is actually the first element of LIST whose car is KEY.
1378 Elements of LIST that are not conses are ignored. */)
1379 (Lisp_Object key, Lisp_Object list)
1380 {
1381 while (1)
1382 {
1383 if (!CONSP (list)
1384 || (CONSP (XCAR (list))
1385 && EQ (XCAR (XCAR (list)), key)))
1386 break;
1387
1388 list = XCDR (list);
1389 if (!CONSP (list)
1390 || (CONSP (XCAR (list))
1391 && EQ (XCAR (XCAR (list)), key)))
1392 break;
1393
1394 list = XCDR (list);
1395 if (!CONSP (list)
1396 || (CONSP (XCAR (list))
1397 && EQ (XCAR (XCAR (list)), key)))
1398 break;
1399
1400 list = XCDR (list);
1401 QUIT;
1402 }
1403
1404 return CAR (list);
1405 }
1406
1407 /* Like Fassq but never report an error and do not allow quits.
1408 Use only on lists known never to be circular. */
1409
1410 Lisp_Object
1411 assq_no_quit (Lisp_Object key, Lisp_Object list)
1412 {
1413 while (CONSP (list)
1414 && (!CONSP (XCAR (list))
1415 || !EQ (XCAR (XCAR (list)), key)))
1416 list = XCDR (list);
1417
1418 return CAR_SAFE (list);
1419 }
1420
1421 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1422 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1423 The value is actually the first element of LIST whose car equals KEY. */)
1424 (Lisp_Object key, Lisp_Object list)
1425 {
1426 Lisp_Object car;
1427
1428 while (1)
1429 {
1430 if (!CONSP (list)
1431 || (CONSP (XCAR (list))
1432 && (car = XCAR (XCAR (list)),
1433 EQ (car, key) || !NILP (Fequal (car, key)))))
1434 break;
1435
1436 list = XCDR (list);
1437 if (!CONSP (list)
1438 || (CONSP (XCAR (list))
1439 && (car = XCAR (XCAR (list)),
1440 EQ (car, key) || !NILP (Fequal (car, key)))))
1441 break;
1442
1443 list = XCDR (list);
1444 if (!CONSP (list)
1445 || (CONSP (XCAR (list))
1446 && (car = XCAR (XCAR (list)),
1447 EQ (car, key) || !NILP (Fequal (car, key)))))
1448 break;
1449
1450 list = XCDR (list);
1451 QUIT;
1452 }
1453
1454 return CAR (list);
1455 }
1456
1457 /* Like Fassoc but never report an error and do not allow quits.
1458 Use only on lists known never to be circular. */
1459
1460 Lisp_Object
1461 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1462 {
1463 while (CONSP (list)
1464 && (!CONSP (XCAR (list))
1465 || (!EQ (XCAR (XCAR (list)), key)
1466 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1467 list = XCDR (list);
1468
1469 return CONSP (list) ? XCAR (list) : Qnil;
1470 }
1471
1472 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1473 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1474 The value is actually the first element of LIST whose cdr is KEY. */)
1475 (register Lisp_Object key, Lisp_Object list)
1476 {
1477 while (1)
1478 {
1479 if (!CONSP (list)
1480 || (CONSP (XCAR (list))
1481 && EQ (XCDR (XCAR (list)), key)))
1482 break;
1483
1484 list = XCDR (list);
1485 if (!CONSP (list)
1486 || (CONSP (XCAR (list))
1487 && EQ (XCDR (XCAR (list)), key)))
1488 break;
1489
1490 list = XCDR (list);
1491 if (!CONSP (list)
1492 || (CONSP (XCAR (list))
1493 && EQ (XCDR (XCAR (list)), key)))
1494 break;
1495
1496 list = XCDR (list);
1497 QUIT;
1498 }
1499
1500 return CAR (list);
1501 }
1502
1503 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1504 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1505 The value is actually the first element of LIST whose cdr equals KEY. */)
1506 (Lisp_Object key, Lisp_Object list)
1507 {
1508 Lisp_Object cdr;
1509
1510 while (1)
1511 {
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && (cdr = XCDR (XCAR (list)),
1515 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1516 break;
1517
1518 list = XCDR (list);
1519 if (!CONSP (list)
1520 || (CONSP (XCAR (list))
1521 && (cdr = XCDR (XCAR (list)),
1522 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1523 break;
1524
1525 list = XCDR (list);
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && (cdr = XCDR (XCAR (list)),
1529 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1530 break;
1531
1532 list = XCDR (list);
1533 QUIT;
1534 }
1535
1536 return CAR (list);
1537 }
1538 \f
1539 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1540 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1541 The modified LIST is returned. Comparison is done with `eq'.
1542 If the first member of LIST is ELT, there is no way to remove it by side effect;
1543 therefore, write `(setq foo (delq element foo))'
1544 to be sure of changing the value of `foo'. */)
1545 (register Lisp_Object elt, Lisp_Object list)
1546 {
1547 register Lisp_Object tail, prev;
1548 register Lisp_Object tem;
1549
1550 tail = list;
1551 prev = Qnil;
1552 while (!NILP (tail))
1553 {
1554 CHECK_LIST_CONS (tail, list);
1555 tem = XCAR (tail);
1556 if (EQ (elt, tem))
1557 {
1558 if (NILP (prev))
1559 list = XCDR (tail);
1560 else
1561 Fsetcdr (prev, XCDR (tail));
1562 }
1563 else
1564 prev = tail;
1565 tail = XCDR (tail);
1566 QUIT;
1567 }
1568 return list;
1569 }
1570
1571 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1572 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1573 SEQ must be a list, a vector, or a string.
1574 The modified SEQ is returned. Comparison is done with `equal'.
1575 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1576 is not a side effect; it is simply using a different sequence.
1577 Therefore, write `(setq foo (delete element foo))'
1578 to be sure of changing the value of `foo'. */)
1579 (Lisp_Object elt, Lisp_Object seq)
1580 {
1581 if (VECTORP (seq))
1582 {
1583 EMACS_INT i, n;
1584
1585 for (i = n = 0; i < ASIZE (seq); ++i)
1586 if (NILP (Fequal (AREF (seq, i), elt)))
1587 ++n;
1588
1589 if (n != ASIZE (seq))
1590 {
1591 struct Lisp_Vector *p = allocate_vector (n);
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 p->contents[n++] = AREF (seq, i);
1596
1597 XSETVECTOR (seq, p);
1598 }
1599 }
1600 else if (STRINGP (seq))
1601 {
1602 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1603 int c;
1604
1605 for (i = nchars = nbytes = ibyte = 0;
1606 i < SCHARS (seq);
1607 ++i, ibyte += cbytes)
1608 {
1609 if (STRING_MULTIBYTE (seq))
1610 {
1611 c = STRING_CHAR (SDATA (seq) + ibyte);
1612 cbytes = CHAR_BYTES (c);
1613 }
1614 else
1615 {
1616 c = SREF (seq, i);
1617 cbytes = 1;
1618 }
1619
1620 if (!INTEGERP (elt) || c != XINT (elt))
1621 {
1622 ++nchars;
1623 nbytes += cbytes;
1624 }
1625 }
1626
1627 if (nchars != SCHARS (seq))
1628 {
1629 Lisp_Object tem;
1630
1631 tem = make_uninit_multibyte_string (nchars, nbytes);
1632 if (!STRING_MULTIBYTE (seq))
1633 STRING_SET_UNIBYTE (tem);
1634
1635 for (i = nchars = nbytes = ibyte = 0;
1636 i < SCHARS (seq);
1637 ++i, ibyte += cbytes)
1638 {
1639 if (STRING_MULTIBYTE (seq))
1640 {
1641 c = STRING_CHAR (SDATA (seq) + ibyte);
1642 cbytes = CHAR_BYTES (c);
1643 }
1644 else
1645 {
1646 c = SREF (seq, i);
1647 cbytes = 1;
1648 }
1649
1650 if (!INTEGERP (elt) || c != XINT (elt))
1651 {
1652 unsigned char *from = SDATA (seq) + ibyte;
1653 unsigned char *to = SDATA (tem) + nbytes;
1654 EMACS_INT n;
1655
1656 ++nchars;
1657 nbytes += cbytes;
1658
1659 for (n = cbytes; n--; )
1660 *to++ = *from++;
1661 }
1662 }
1663
1664 seq = tem;
1665 }
1666 }
1667 else
1668 {
1669 Lisp_Object tail, prev;
1670
1671 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1672 {
1673 CHECK_LIST_CONS (tail, seq);
1674
1675 if (!NILP (Fequal (elt, XCAR (tail))))
1676 {
1677 if (NILP (prev))
1678 seq = XCDR (tail);
1679 else
1680 Fsetcdr (prev, XCDR (tail));
1681 }
1682 else
1683 prev = tail;
1684 QUIT;
1685 }
1686 }
1687
1688 return seq;
1689 }
1690
1691 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1692 doc: /* Reverse LIST by modifying cdr pointers.
1693 Return the reversed list. */)
1694 (Lisp_Object list)
1695 {
1696 register Lisp_Object prev, tail, next;
1697
1698 if (NILP (list)) return list;
1699 prev = Qnil;
1700 tail = list;
1701 while (!NILP (tail))
1702 {
1703 QUIT;
1704 CHECK_LIST_CONS (tail, list);
1705 next = XCDR (tail);
1706 Fsetcdr (tail, prev);
1707 prev = tail;
1708 tail = next;
1709 }
1710 return prev;
1711 }
1712
1713 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1714 doc: /* Reverse LIST, copying. Return the reversed list.
1715 See also the function `nreverse', which is used more often. */)
1716 (Lisp_Object list)
1717 {
1718 Lisp_Object new;
1719
1720 for (new = Qnil; CONSP (list); list = XCDR (list))
1721 {
1722 QUIT;
1723 new = Fcons (XCAR (list), new);
1724 }
1725 CHECK_LIST_END (list, list);
1726 return new;
1727 }
1728 \f
1729 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1730
1731 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1732 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1733 Returns the sorted list. LIST is modified by side effects.
1734 PREDICATE is called with two elements of LIST, and should return non-nil
1735 if the first element should sort before the second. */)
1736 (Lisp_Object list, Lisp_Object predicate)
1737 {
1738 Lisp_Object front, back;
1739 register Lisp_Object len, tem;
1740 struct gcpro gcpro1, gcpro2;
1741 register int length;
1742
1743 front = list;
1744 len = Flength (list);
1745 length = XINT (len);
1746 if (length < 2)
1747 return list;
1748
1749 XSETINT (len, (length / 2) - 1);
1750 tem = Fnthcdr (len, list);
1751 back = Fcdr (tem);
1752 Fsetcdr (tem, Qnil);
1753
1754 GCPRO2 (front, back);
1755 front = Fsort (front, predicate);
1756 back = Fsort (back, predicate);
1757 UNGCPRO;
1758 return merge (front, back, predicate);
1759 }
1760
1761 Lisp_Object
1762 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1763 {
1764 Lisp_Object value;
1765 register Lisp_Object tail;
1766 Lisp_Object tem;
1767 register Lisp_Object l1, l2;
1768 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1769
1770 l1 = org_l1;
1771 l2 = org_l2;
1772 tail = Qnil;
1773 value = Qnil;
1774
1775 /* It is sufficient to protect org_l1 and org_l2.
1776 When l1 and l2 are updated, we copy the new values
1777 back into the org_ vars. */
1778 GCPRO4 (org_l1, org_l2, pred, value);
1779
1780 while (1)
1781 {
1782 if (NILP (l1))
1783 {
1784 UNGCPRO;
1785 if (NILP (tail))
1786 return l2;
1787 Fsetcdr (tail, l2);
1788 return value;
1789 }
1790 if (NILP (l2))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l1;
1795 Fsetcdr (tail, l1);
1796 return value;
1797 }
1798 tem = call2 (pred, Fcar (l2), Fcar (l1));
1799 if (NILP (tem))
1800 {
1801 tem = l1;
1802 l1 = Fcdr (l1);
1803 org_l1 = l1;
1804 }
1805 else
1806 {
1807 tem = l2;
1808 l2 = Fcdr (l2);
1809 org_l2 = l2;
1810 }
1811 if (NILP (tail))
1812 value = tem;
1813 else
1814 Fsetcdr (tail, tem);
1815 tail = tem;
1816 }
1817 }
1818
1819 \f
1820 /* This does not check for quits. That is safe since it must terminate. */
1821
1822 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1823 doc: /* Extract a value from a property list.
1824 PLIST is a property list, which is a list of the form
1825 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1826 corresponding to the given PROP, or nil if PROP is not one of the
1827 properties on the list. This function never signals an error. */)
1828 (Lisp_Object plist, Lisp_Object prop)
1829 {
1830 Lisp_Object tail, halftail;
1831
1832 /* halftail is used to detect circular lists. */
1833 tail = halftail = plist;
1834 while (CONSP (tail) && CONSP (XCDR (tail)))
1835 {
1836 if (EQ (prop, XCAR (tail)))
1837 return XCAR (XCDR (tail));
1838
1839 tail = XCDR (XCDR (tail));
1840 halftail = XCDR (halftail);
1841 if (EQ (tail, halftail))
1842 break;
1843
1844 #if 0 /* Unsafe version. */
1845 /* This function can be called asynchronously
1846 (setup_coding_system). Don't QUIT in that case. */
1847 if (!interrupt_input_blocked)
1848 QUIT;
1849 #endif
1850 }
1851
1852 return Qnil;
1853 }
1854
1855 DEFUN ("get", Fget, Sget, 2, 2, 0,
1856 doc: /* Return the value of SYMBOL's PROPNAME property.
1857 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1858 (Lisp_Object symbol, Lisp_Object propname)
1859 {
1860 CHECK_SYMBOL (symbol);
1861 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1862 }
1863
1864 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1865 doc: /* Change value in PLIST of PROP to VAL.
1866 PLIST is a property list, which is a list of the form
1867 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1868 If PROP is already a property on the list, its value is set to VAL,
1869 otherwise the new PROP VAL pair is added. The new plist is returned;
1870 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1871 The PLIST is modified by side effects. */)
1872 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1873 {
1874 register Lisp_Object tail, prev;
1875 Lisp_Object newcell;
1876 prev = Qnil;
1877 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1878 tail = XCDR (XCDR (tail)))
1879 {
1880 if (EQ (prop, XCAR (tail)))
1881 {
1882 Fsetcar (XCDR (tail), val);
1883 return plist;
1884 }
1885
1886 prev = tail;
1887 QUIT;
1888 }
1889 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1890 if (NILP (prev))
1891 return newcell;
1892 else
1893 Fsetcdr (XCDR (prev), newcell);
1894 return plist;
1895 }
1896
1897 DEFUN ("put", Fput, Sput, 3, 3, 0,
1898 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1899 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1900 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1901 {
1902 CHECK_SYMBOL (symbol);
1903 XSYMBOL (symbol)->plist
1904 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1905 return value;
1906 }
1907 \f
1908 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1909 doc: /* Extract a value from a property list, comparing with `equal'.
1910 PLIST is a property list, which is a list of the form
1911 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1912 corresponding to the given PROP, or nil if PROP is not
1913 one of the properties on the list. */)
1914 (Lisp_Object plist, Lisp_Object prop)
1915 {
1916 Lisp_Object tail;
1917
1918 for (tail = plist;
1919 CONSP (tail) && CONSP (XCDR (tail));
1920 tail = XCDR (XCDR (tail)))
1921 {
1922 if (! NILP (Fequal (prop, XCAR (tail))))
1923 return XCAR (XCDR (tail));
1924
1925 QUIT;
1926 }
1927
1928 CHECK_LIST_END (tail, prop);
1929
1930 return Qnil;
1931 }
1932
1933 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1934 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1935 PLIST is a property list, which is a list of the form
1936 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1937 If PROP is already a property on the list, its value is set to VAL,
1938 otherwise the new PROP VAL pair is added. The new plist is returned;
1939 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1940 The PLIST is modified by side effects. */)
1941 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1942 {
1943 register Lisp_Object tail, prev;
1944 Lisp_Object newcell;
1945 prev = Qnil;
1946 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1947 tail = XCDR (XCDR (tail)))
1948 {
1949 if (! NILP (Fequal (prop, XCAR (tail))))
1950 {
1951 Fsetcar (XCDR (tail), val);
1952 return plist;
1953 }
1954
1955 prev = tail;
1956 QUIT;
1957 }
1958 newcell = Fcons (prop, Fcons (val, Qnil));
1959 if (NILP (prev))
1960 return newcell;
1961 else
1962 Fsetcdr (XCDR (prev), newcell);
1963 return plist;
1964 }
1965 \f
1966 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1967 doc: /* Return t if the two args are the same Lisp object.
1968 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1969 (Lisp_Object obj1, Lisp_Object obj2)
1970 {
1971 if (FLOATP (obj1))
1972 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1973 else
1974 return EQ (obj1, obj2) ? Qt : Qnil;
1975 }
1976
1977 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1978 doc: /* Return t if two Lisp objects have similar structure and contents.
1979 They must have the same data type.
1980 Conses are compared by comparing the cars and the cdrs.
1981 Vectors and strings are compared element by element.
1982 Numbers are compared by value, but integers cannot equal floats.
1983 (Use `=' if you want integers and floats to be able to be equal.)
1984 Symbols must match exactly. */)
1985 (register Lisp_Object o1, Lisp_Object o2)
1986 {
1987 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1988 }
1989
1990 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1991 doc: /* Return t if two Lisp objects have similar structure and contents.
1992 This is like `equal' except that it compares the text properties
1993 of strings. (`equal' ignores text properties.) */)
1994 (register Lisp_Object o1, Lisp_Object o2)
1995 {
1996 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1997 }
1998
1999 /* DEPTH is current depth of recursion. Signal an error if it
2000 gets too deep.
2001 PROPS, if non-nil, means compare string text properties too. */
2002
2003 static int
2004 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2005 {
2006 if (depth > 200)
2007 error ("Stack overflow in equal");
2008
2009 tail_recurse:
2010 QUIT;
2011 if (EQ (o1, o2))
2012 return 1;
2013 if (XTYPE (o1) != XTYPE (o2))
2014 return 0;
2015
2016 switch (XTYPE (o1))
2017 {
2018 case Lisp_Float:
2019 {
2020 double d1, d2;
2021
2022 d1 = extract_float (o1);
2023 d2 = extract_float (o2);
2024 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2025 though they are not =. */
2026 return d1 == d2 || (d1 != d1 && d2 != d2);
2027 }
2028
2029 case Lisp_Cons:
2030 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2031 return 0;
2032 o1 = XCDR (o1);
2033 o2 = XCDR (o2);
2034 goto tail_recurse;
2035
2036 case Lisp_Misc:
2037 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2038 return 0;
2039 if (OVERLAYP (o1))
2040 {
2041 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2042 depth + 1, props)
2043 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2044 depth + 1, props))
2045 return 0;
2046 o1 = XOVERLAY (o1)->plist;
2047 o2 = XOVERLAY (o2)->plist;
2048 goto tail_recurse;
2049 }
2050 if (MARKERP (o1))
2051 {
2052 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2053 && (XMARKER (o1)->buffer == 0
2054 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2055 }
2056 break;
2057
2058 case Lisp_Vectorlike:
2059 {
2060 register int i;
2061 EMACS_INT size = ASIZE (o1);
2062 /* Pseudovectors have the type encoded in the size field, so this test
2063 actually checks that the objects have the same type as well as the
2064 same size. */
2065 if (ASIZE (o2) != size)
2066 return 0;
2067 /* Boolvectors are compared much like strings. */
2068 if (BOOL_VECTOR_P (o1))
2069 {
2070 int size_in_chars
2071 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2072 / BOOL_VECTOR_BITS_PER_CHAR);
2073
2074 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2075 return 0;
2076 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2077 size_in_chars))
2078 return 0;
2079 return 1;
2080 }
2081 if (WINDOW_CONFIGURATIONP (o1))
2082 return compare_window_configurations (o1, o2, 0);
2083
2084 /* Aside from them, only true vectors, char-tables, compiled
2085 functions, and fonts (font-spec, font-entity, font-ojbect)
2086 are sensible to compare, so eliminate the others now. */
2087 if (size & PSEUDOVECTOR_FLAG)
2088 {
2089 if (!(size & (PVEC_COMPILED
2090 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2091 return 0;
2092 size &= PSEUDOVECTOR_SIZE_MASK;
2093 }
2094 for (i = 0; i < size; i++)
2095 {
2096 Lisp_Object v1, v2;
2097 v1 = AREF (o1, i);
2098 v2 = AREF (o2, i);
2099 if (!internal_equal (v1, v2, depth + 1, props))
2100 return 0;
2101 }
2102 return 1;
2103 }
2104 break;
2105
2106 case Lisp_String:
2107 if (SCHARS (o1) != SCHARS (o2))
2108 return 0;
2109 if (SBYTES (o1) != SBYTES (o2))
2110 return 0;
2111 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2112 return 0;
2113 if (props && !compare_string_intervals (o1, o2))
2114 return 0;
2115 return 1;
2116
2117 default:
2118 break;
2119 }
2120
2121 return 0;
2122 }
2123 \f
2124
2125 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2126 doc: /* Store each element of ARRAY with ITEM.
2127 ARRAY is a vector, string, char-table, or bool-vector. */)
2128 (Lisp_Object array, Lisp_Object item)
2129 {
2130 register EMACS_INT size, idx;
2131 int charval;
2132
2133 if (VECTORP (array))
2134 {
2135 register Lisp_Object *p = XVECTOR (array)->contents;
2136 size = ASIZE (array);
2137 for (idx = 0; idx < size; idx++)
2138 p[idx] = item;
2139 }
2140 else if (CHAR_TABLE_P (array))
2141 {
2142 int i;
2143
2144 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2145 XCHAR_TABLE (array)->contents[i] = item;
2146 XCHAR_TABLE (array)->defalt = item;
2147 }
2148 else if (STRINGP (array))
2149 {
2150 register unsigned char *p = SDATA (array);
2151 CHECK_NUMBER (item);
2152 charval = XINT (item);
2153 size = SCHARS (array);
2154 if (STRING_MULTIBYTE (array))
2155 {
2156 unsigned char str[MAX_MULTIBYTE_LENGTH];
2157 int len = CHAR_STRING (charval, str);
2158 EMACS_INT size_byte = SBYTES (array);
2159 unsigned char *p1 = p, *endp = p + size_byte;
2160 int i;
2161
2162 if (size != size_byte)
2163 while (p1 < endp)
2164 {
2165 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2166 if (len != this_len)
2167 error ("Attempt to change byte length of a string");
2168 p1 += this_len;
2169 }
2170 for (i = 0; i < size_byte; i++)
2171 *p++ = str[i % len];
2172 }
2173 else
2174 for (idx = 0; idx < size; idx++)
2175 p[idx] = charval;
2176 }
2177 else if (BOOL_VECTOR_P (array))
2178 {
2179 register unsigned char *p = XBOOL_VECTOR (array)->data;
2180 int size_in_chars
2181 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2182 / BOOL_VECTOR_BITS_PER_CHAR);
2183
2184 charval = (! NILP (item) ? -1 : 0);
2185 for (idx = 0; idx < size_in_chars - 1; idx++)
2186 p[idx] = charval;
2187 if (idx < size_in_chars)
2188 {
2189 /* Mask out bits beyond the vector size. */
2190 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2191 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2192 p[idx] = charval;
2193 }
2194 }
2195 else
2196 wrong_type_argument (Qarrayp, array);
2197 return array;
2198 }
2199
2200 DEFUN ("clear-string", Fclear_string, Sclear_string,
2201 1, 1, 0,
2202 doc: /* Clear the contents of STRING.
2203 This makes STRING unibyte and may change its length. */)
2204 (Lisp_Object string)
2205 {
2206 EMACS_INT len;
2207 CHECK_STRING (string);
2208 len = SBYTES (string);
2209 memset (SDATA (string), 0, len);
2210 STRING_SET_CHARS (string, len);
2211 STRING_SET_UNIBYTE (string);
2212 return Qnil;
2213 }
2214 \f
2215 /* ARGSUSED */
2216 Lisp_Object
2217 nconc2 (Lisp_Object s1, Lisp_Object s2)
2218 {
2219 Lisp_Object args[2];
2220 args[0] = s1;
2221 args[1] = s2;
2222 return Fnconc (2, args);
2223 }
2224
2225 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2226 doc: /* Concatenate any number of lists by altering them.
2227 Only the last argument is not altered, and need not be a list.
2228 usage: (nconc &rest LISTS) */)
2229 (size_t nargs, Lisp_Object *args)
2230 {
2231 register size_t argnum;
2232 register Lisp_Object tail, tem, val;
2233
2234 val = tail = Qnil;
2235
2236 for (argnum = 0; argnum < nargs; argnum++)
2237 {
2238 tem = args[argnum];
2239 if (NILP (tem)) continue;
2240
2241 if (NILP (val))
2242 val = tem;
2243
2244 if (argnum + 1 == nargs) break;
2245
2246 CHECK_LIST_CONS (tem, tem);
2247
2248 while (CONSP (tem))
2249 {
2250 tail = tem;
2251 tem = XCDR (tail);
2252 QUIT;
2253 }
2254
2255 tem = args[argnum + 1];
2256 Fsetcdr (tail, tem);
2257 if (NILP (tem))
2258 args[argnum + 1] = tail;
2259 }
2260
2261 return val;
2262 }
2263 \f
2264 /* This is the guts of all mapping functions.
2265 Apply FN to each element of SEQ, one by one,
2266 storing the results into elements of VALS, a C vector of Lisp_Objects.
2267 LENI is the length of VALS, which should also be the length of SEQ. */
2268
2269 static void
2270 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2271 {
2272 register Lisp_Object tail;
2273 Lisp_Object dummy;
2274 register EMACS_INT i;
2275 struct gcpro gcpro1, gcpro2, gcpro3;
2276
2277 if (vals)
2278 {
2279 /* Don't let vals contain any garbage when GC happens. */
2280 for (i = 0; i < leni; i++)
2281 vals[i] = Qnil;
2282
2283 GCPRO3 (dummy, fn, seq);
2284 gcpro1.var = vals;
2285 gcpro1.nvars = leni;
2286 }
2287 else
2288 GCPRO2 (fn, seq);
2289 /* We need not explicitly protect `tail' because it is used only on lists, and
2290 1) lists are not relocated and 2) the list is marked via `seq' so will not
2291 be freed */
2292
2293 if (VECTORP (seq) || COMPILEDP (seq))
2294 {
2295 for (i = 0; i < leni; i++)
2296 {
2297 dummy = call1 (fn, AREF (seq, i));
2298 if (vals)
2299 vals[i] = dummy;
2300 }
2301 }
2302 else if (BOOL_VECTOR_P (seq))
2303 {
2304 for (i = 0; i < leni; i++)
2305 {
2306 int byte;
2307 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2308 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2309 dummy = call1 (fn, dummy);
2310 if (vals)
2311 vals[i] = dummy;
2312 }
2313 }
2314 else if (STRINGP (seq))
2315 {
2316 EMACS_INT i_byte;
2317
2318 for (i = 0, i_byte = 0; i < leni;)
2319 {
2320 int c;
2321 EMACS_INT i_before = i;
2322
2323 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2324 XSETFASTINT (dummy, c);
2325 dummy = call1 (fn, dummy);
2326 if (vals)
2327 vals[i_before] = dummy;
2328 }
2329 }
2330 else /* Must be a list, since Flength did not get an error */
2331 {
2332 tail = seq;
2333 for (i = 0; i < leni && CONSP (tail); i++)
2334 {
2335 dummy = call1 (fn, XCAR (tail));
2336 if (vals)
2337 vals[i] = dummy;
2338 tail = XCDR (tail);
2339 }
2340 }
2341
2342 UNGCPRO;
2343 }
2344
2345 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2346 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2347 In between each pair of results, stick in SEPARATOR. Thus, " " as
2348 SEPARATOR results in spaces between the values returned by FUNCTION.
2349 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2350 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2351 {
2352 Lisp_Object len;
2353 register EMACS_INT leni;
2354 int nargs;
2355 register Lisp_Object *args;
2356 register EMACS_INT i;
2357 struct gcpro gcpro1;
2358 Lisp_Object ret;
2359 USE_SAFE_ALLOCA;
2360
2361 len = Flength (sequence);
2362 if (CHAR_TABLE_P (sequence))
2363 wrong_type_argument (Qlistp, sequence);
2364 leni = XINT (len);
2365 nargs = leni + leni - 1;
2366 if (nargs < 0) return empty_unibyte_string;
2367
2368 SAFE_ALLOCA_LISP (args, nargs);
2369
2370 GCPRO1 (separator);
2371 mapcar1 (leni, args, function, sequence);
2372 UNGCPRO;
2373
2374 for (i = leni - 1; i > 0; i--)
2375 args[i + i] = args[i];
2376
2377 for (i = 1; i < nargs; i += 2)
2378 args[i] = separator;
2379
2380 ret = Fconcat (nargs, args);
2381 SAFE_FREE ();
2382
2383 return ret;
2384 }
2385
2386 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2387 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2388 The result is a list just as long as SEQUENCE.
2389 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2390 (Lisp_Object function, Lisp_Object sequence)
2391 {
2392 register Lisp_Object len;
2393 register EMACS_INT leni;
2394 register Lisp_Object *args;
2395 Lisp_Object ret;
2396 USE_SAFE_ALLOCA;
2397
2398 len = Flength (sequence);
2399 if (CHAR_TABLE_P (sequence))
2400 wrong_type_argument (Qlistp, sequence);
2401 leni = XFASTINT (len);
2402
2403 SAFE_ALLOCA_LISP (args, leni);
2404
2405 mapcar1 (leni, args, function, sequence);
2406
2407 ret = Flist (leni, args);
2408 SAFE_FREE ();
2409
2410 return ret;
2411 }
2412
2413 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2414 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2415 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2416 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2417 (Lisp_Object function, Lisp_Object sequence)
2418 {
2419 register EMACS_INT leni;
2420
2421 leni = XFASTINT (Flength (sequence));
2422 if (CHAR_TABLE_P (sequence))
2423 wrong_type_argument (Qlistp, sequence);
2424 mapcar1 (leni, 0, function, sequence);
2425
2426 return sequence;
2427 }
2428 \f
2429 /* This is how C code calls `yes-or-no-p' and allows the user
2430 to redefined it.
2431
2432 Anything that calls this function must protect from GC! */
2433
2434 Lisp_Object
2435 do_yes_or_no_p (Lisp_Object prompt)
2436 {
2437 return call1 (intern ("yes-or-no-p"), prompt);
2438 }
2439
2440 /* Anything that calls this function must protect from GC! */
2441
2442 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2443 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2444 PROMPT is the string to display to ask the question. It should end in
2445 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2446
2447 The user must confirm the answer with RET, and can edit it until it
2448 has been confirmed.
2449
2450 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2451 is nil, and `use-dialog-box' is non-nil. */)
2452 (Lisp_Object prompt)
2453 {
2454 register Lisp_Object ans;
2455 Lisp_Object args[2];
2456 struct gcpro gcpro1;
2457
2458 CHECK_STRING (prompt);
2459
2460 #ifdef HAVE_MENUS
2461 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2462 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2463 && use_dialog_box
2464 && have_menus_p ())
2465 {
2466 Lisp_Object pane, menu, obj;
2467 redisplay_preserve_echo_area (4);
2468 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2469 Fcons (Fcons (build_string ("No"), Qnil),
2470 Qnil));
2471 GCPRO1 (pane);
2472 menu = Fcons (prompt, pane);
2473 obj = Fx_popup_dialog (Qt, menu, Qnil);
2474 UNGCPRO;
2475 return obj;
2476 }
2477 #endif /* HAVE_MENUS */
2478
2479 args[0] = prompt;
2480 args[1] = build_string ("(yes or no) ");
2481 prompt = Fconcat (2, args);
2482
2483 GCPRO1 (prompt);
2484
2485 while (1)
2486 {
2487 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2488 Qyes_or_no_p_history, Qnil,
2489 Qnil));
2490 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2491 {
2492 UNGCPRO;
2493 return Qt;
2494 }
2495 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2496 {
2497 UNGCPRO;
2498 return Qnil;
2499 }
2500
2501 Fding (Qnil);
2502 Fdiscard_input ();
2503 message ("Please answer yes or no.");
2504 Fsleep_for (make_number (2), Qnil);
2505 }
2506 }
2507 \f
2508 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2509 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2510
2511 Each of the three load averages is multiplied by 100, then converted
2512 to integer.
2513
2514 When USE-FLOATS is non-nil, floats will be used instead of integers.
2515 These floats are not multiplied by 100.
2516
2517 If the 5-minute or 15-minute load averages are not available, return a
2518 shortened list, containing only those averages which are available.
2519
2520 An error is thrown if the load average can't be obtained. In some
2521 cases making it work would require Emacs being installed setuid or
2522 setgid so that it can read kernel information, and that usually isn't
2523 advisable. */)
2524 (Lisp_Object use_floats)
2525 {
2526 double load_ave[3];
2527 int loads = getloadavg (load_ave, 3);
2528 Lisp_Object ret = Qnil;
2529
2530 if (loads < 0)
2531 error ("load-average not implemented for this operating system");
2532
2533 while (loads-- > 0)
2534 {
2535 Lisp_Object load = (NILP (use_floats) ?
2536 make_number ((int) (100.0 * load_ave[loads]))
2537 : make_float (load_ave[loads]));
2538 ret = Fcons (load, ret);
2539 }
2540
2541 return ret;
2542 }
2543 \f
2544 Lisp_Object Qsubfeatures;
2545
2546 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2547 doc: /* Return t if FEATURE is present in this Emacs.
2548
2549 Use this to conditionalize execution of lisp code based on the
2550 presence or absence of Emacs or environment extensions.
2551 Use `provide' to declare that a feature is available. This function
2552 looks at the value of the variable `features'. The optional argument
2553 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2554 (Lisp_Object feature, Lisp_Object subfeature)
2555 {
2556 register Lisp_Object tem;
2557 CHECK_SYMBOL (feature);
2558 tem = Fmemq (feature, Vfeatures);
2559 if (!NILP (tem) && !NILP (subfeature))
2560 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2561 return (NILP (tem)) ? Qnil : Qt;
2562 }
2563
2564 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2565 doc: /* Announce that FEATURE is a feature of the current Emacs.
2566 The optional argument SUBFEATURES should be a list of symbols listing
2567 particular subfeatures supported in this version of FEATURE. */)
2568 (Lisp_Object feature, Lisp_Object subfeatures)
2569 {
2570 register Lisp_Object tem;
2571 CHECK_SYMBOL (feature);
2572 CHECK_LIST (subfeatures);
2573 if (!NILP (Vautoload_queue))
2574 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2575 Vautoload_queue);
2576 tem = Fmemq (feature, Vfeatures);
2577 if (NILP (tem))
2578 Vfeatures = Fcons (feature, Vfeatures);
2579 if (!NILP (subfeatures))
2580 Fput (feature, Qsubfeatures, subfeatures);
2581 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2582
2583 /* Run any load-hooks for this file. */
2584 tem = Fassq (feature, Vafter_load_alist);
2585 if (CONSP (tem))
2586 Fprogn (XCDR (tem));
2587
2588 return feature;
2589 }
2590 \f
2591 /* `require' and its subroutines. */
2592
2593 /* List of features currently being require'd, innermost first. */
2594
2595 static Lisp_Object require_nesting_list;
2596
2597 static Lisp_Object
2598 require_unwind (Lisp_Object old_value)
2599 {
2600 return require_nesting_list = old_value;
2601 }
2602
2603 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2604 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2605 If FEATURE is not a member of the list `features', then the feature
2606 is not loaded; so load the file FILENAME.
2607 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2608 and `load' will try to load this name appended with the suffix `.elc' or
2609 `.el', in that order. The name without appended suffix will not be used.
2610 If the optional third argument NOERROR is non-nil,
2611 then return nil if the file is not found instead of signaling an error.
2612 Normally the return value is FEATURE.
2613 The normal messages at start and end of loading FILENAME are suppressed. */)
2614 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2615 {
2616 register Lisp_Object tem;
2617 struct gcpro gcpro1, gcpro2;
2618 int from_file = load_in_progress;
2619
2620 CHECK_SYMBOL (feature);
2621
2622 /* Record the presence of `require' in this file
2623 even if the feature specified is already loaded.
2624 But not more than once in any file,
2625 and not when we aren't loading or reading from a file. */
2626 if (!from_file)
2627 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2628 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2629 from_file = 1;
2630
2631 if (from_file)
2632 {
2633 tem = Fcons (Qrequire, feature);
2634 if (NILP (Fmember (tem, Vcurrent_load_list)))
2635 LOADHIST_ATTACH (tem);
2636 }
2637 tem = Fmemq (feature, Vfeatures);
2638
2639 if (NILP (tem))
2640 {
2641 int count = SPECPDL_INDEX ();
2642 int nesting = 0;
2643
2644 /* This is to make sure that loadup.el gives a clear picture
2645 of what files are preloaded and when. */
2646 if (! NILP (Vpurify_flag))
2647 error ("(require %s) while preparing to dump",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* A certain amount of recursive `require' is legitimate,
2651 but if we require the same feature recursively 3 times,
2652 signal an error. */
2653 tem = require_nesting_list;
2654 while (! NILP (tem))
2655 {
2656 if (! NILP (Fequal (feature, XCAR (tem))))
2657 nesting++;
2658 tem = XCDR (tem);
2659 }
2660 if (nesting > 3)
2661 error ("Recursive `require' for feature `%s'",
2662 SDATA (SYMBOL_NAME (feature)));
2663
2664 /* Update the list for any nested `require's that occur. */
2665 record_unwind_protect (require_unwind, require_nesting_list);
2666 require_nesting_list = Fcons (feature, require_nesting_list);
2667
2668 /* Value saved here is to be restored into Vautoload_queue */
2669 record_unwind_protect (un_autoload, Vautoload_queue);
2670 Vautoload_queue = Qt;
2671
2672 /* Load the file. */
2673 GCPRO2 (feature, filename);
2674 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2675 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2676 UNGCPRO;
2677
2678 /* If load failed entirely, return nil. */
2679 if (NILP (tem))
2680 return unbind_to (count, Qnil);
2681
2682 tem = Fmemq (feature, Vfeatures);
2683 if (NILP (tem))
2684 error ("Required feature `%s' was not provided",
2685 SDATA (SYMBOL_NAME (feature)));
2686
2687 /* Once loading finishes, don't undo it. */
2688 Vautoload_queue = Qt;
2689 feature = unbind_to (count, feature);
2690 }
2691
2692 return feature;
2693 }
2694 \f
2695 /* Primitives for work of the "widget" library.
2696 In an ideal world, this section would not have been necessary.
2697 However, lisp function calls being as slow as they are, it turns
2698 out that some functions in the widget library (wid-edit.el) are the
2699 bottleneck of Widget operation. Here is their translation to C,
2700 for the sole reason of efficiency. */
2701
2702 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2703 doc: /* Return non-nil if PLIST has the property PROP.
2704 PLIST is a property list, which is a list of the form
2705 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2706 Unlike `plist-get', this allows you to distinguish between a missing
2707 property and a property with the value nil.
2708 The value is actually the tail of PLIST whose car is PROP. */)
2709 (Lisp_Object plist, Lisp_Object prop)
2710 {
2711 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2712 {
2713 QUIT;
2714 plist = XCDR (plist);
2715 plist = CDR (plist);
2716 }
2717 return plist;
2718 }
2719
2720 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2721 doc: /* In WIDGET, set PROPERTY to VALUE.
2722 The value can later be retrieved with `widget-get'. */)
2723 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2724 {
2725 CHECK_CONS (widget);
2726 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2727 return value;
2728 }
2729
2730 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2731 doc: /* In WIDGET, get the value of PROPERTY.
2732 The value could either be specified when the widget was created, or
2733 later with `widget-put'. */)
2734 (Lisp_Object widget, Lisp_Object property)
2735 {
2736 Lisp_Object tmp;
2737
2738 while (1)
2739 {
2740 if (NILP (widget))
2741 return Qnil;
2742 CHECK_CONS (widget);
2743 tmp = Fplist_member (XCDR (widget), property);
2744 if (CONSP (tmp))
2745 {
2746 tmp = XCDR (tmp);
2747 return CAR (tmp);
2748 }
2749 tmp = XCAR (widget);
2750 if (NILP (tmp))
2751 return Qnil;
2752 widget = Fget (tmp, Qwidget_type);
2753 }
2754 }
2755
2756 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2757 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2758 ARGS are passed as extra arguments to the function.
2759 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2760 (size_t nargs, Lisp_Object *args)
2761 {
2762 /* This function can GC. */
2763 Lisp_Object newargs[3];
2764 struct gcpro gcpro1, gcpro2;
2765 Lisp_Object result;
2766
2767 newargs[0] = Fwidget_get (args[0], args[1]);
2768 newargs[1] = args[0];
2769 newargs[2] = Flist (nargs - 2, args + 2);
2770 GCPRO2 (newargs[0], newargs[2]);
2771 result = Fapply (3, newargs);
2772 UNGCPRO;
2773 return result;
2774 }
2775
2776 #ifdef HAVE_LANGINFO_CODESET
2777 #include <langinfo.h>
2778 #endif
2779
2780 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2781 doc: /* Access locale data ITEM for the current C locale, if available.
2782 ITEM should be one of the following:
2783
2784 `codeset', returning the character set as a string (locale item CODESET);
2785
2786 `days', returning a 7-element vector of day names (locale items DAY_n);
2787
2788 `months', returning a 12-element vector of month names (locale items MON_n);
2789
2790 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2791 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2792
2793 If the system can't provide such information through a call to
2794 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2795
2796 See also Info node `(libc)Locales'.
2797
2798 The data read from the system are decoded using `locale-coding-system'. */)
2799 (Lisp_Object item)
2800 {
2801 char *str = NULL;
2802 #ifdef HAVE_LANGINFO_CODESET
2803 Lisp_Object val;
2804 if (EQ (item, Qcodeset))
2805 {
2806 str = nl_langinfo (CODESET);
2807 return build_string (str);
2808 }
2809 #ifdef DAY_1
2810 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2811 {
2812 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2813 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2814 int i;
2815 struct gcpro gcpro1;
2816 GCPRO1 (v);
2817 synchronize_system_time_locale ();
2818 for (i = 0; i < 7; i++)
2819 {
2820 str = nl_langinfo (days[i]);
2821 val = make_unibyte_string (str, strlen (str));
2822 /* Fixme: Is this coding system necessarily right, even if
2823 it is consistent with CODESET? If not, what to do? */
2824 Faset (v, make_number (i),
2825 code_convert_string_norecord (val, Vlocale_coding_system,
2826 0));
2827 }
2828 UNGCPRO;
2829 return v;
2830 }
2831 #endif /* DAY_1 */
2832 #ifdef MON_1
2833 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2834 {
2835 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2836 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2837 MON_8, MON_9, MON_10, MON_11, MON_12};
2838 int i;
2839 struct gcpro gcpro1;
2840 GCPRO1 (v);
2841 synchronize_system_time_locale ();
2842 for (i = 0; i < 12; i++)
2843 {
2844 str = nl_langinfo (months[i]);
2845 val = make_unibyte_string (str, strlen (str));
2846 Faset (v, make_number (i),
2847 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2848 }
2849 UNGCPRO;
2850 return v;
2851 }
2852 #endif /* MON_1 */
2853 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2854 but is in the locale files. This could be used by ps-print. */
2855 #ifdef PAPER_WIDTH
2856 else if (EQ (item, Qpaper))
2857 {
2858 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2859 make_number (nl_langinfo (PAPER_HEIGHT)));
2860 }
2861 #endif /* PAPER_WIDTH */
2862 #endif /* HAVE_LANGINFO_CODESET*/
2863 return Qnil;
2864 }
2865 \f
2866 /* base64 encode/decode functions (RFC 2045).
2867 Based on code from GNU recode. */
2868
2869 #define MIME_LINE_LENGTH 76
2870
2871 #define IS_ASCII(Character) \
2872 ((Character) < 128)
2873 #define IS_BASE64(Character) \
2874 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2875 #define IS_BASE64_IGNORABLE(Character) \
2876 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2877 || (Character) == '\f' || (Character) == '\r')
2878
2879 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2880 character or return retval if there are no characters left to
2881 process. */
2882 #define READ_QUADRUPLET_BYTE(retval) \
2883 do \
2884 { \
2885 if (i == length) \
2886 { \
2887 if (nchars_return) \
2888 *nchars_return = nchars; \
2889 return (retval); \
2890 } \
2891 c = from[i++]; \
2892 } \
2893 while (IS_BASE64_IGNORABLE (c))
2894
2895 /* Table of characters coding the 64 values. */
2896 static const char base64_value_to_char[64] =
2897 {
2898 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2899 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2900 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2901 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2902 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2903 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2904 '8', '9', '+', '/' /* 60-63 */
2905 };
2906
2907 /* Table of base64 values for first 128 characters. */
2908 static const short base64_char_to_value[128] =
2909 {
2910 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2911 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2912 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2914 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2915 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2916 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2917 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2918 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2919 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2920 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2921 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2922 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2923 };
2924
2925 /* The following diagram shows the logical steps by which three octets
2926 get transformed into four base64 characters.
2927
2928 .--------. .--------. .--------.
2929 |aaaaaabb| |bbbbcccc| |ccdddddd|
2930 `--------' `--------' `--------'
2931 6 2 4 4 2 6
2932 .--------+--------+--------+--------.
2933 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2934 `--------+--------+--------+--------'
2935
2936 .--------+--------+--------+--------.
2937 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2938 `--------+--------+--------+--------'
2939
2940 The octets are divided into 6 bit chunks, which are then encoded into
2941 base64 characters. */
2942
2943
2944 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2945 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2946 EMACS_INT *);
2947
2948 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2949 2, 3, "r",
2950 doc: /* Base64-encode the region between BEG and END.
2951 Return the length of the encoded text.
2952 Optional third argument NO-LINE-BREAK means do not break long lines
2953 into shorter lines. */)
2954 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2955 {
2956 char *encoded;
2957 EMACS_INT allength, length;
2958 EMACS_INT ibeg, iend, encoded_length;
2959 EMACS_INT old_pos = PT;
2960 USE_SAFE_ALLOCA;
2961
2962 validate_region (&beg, &end);
2963
2964 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2965 iend = CHAR_TO_BYTE (XFASTINT (end));
2966 move_gap_both (XFASTINT (beg), ibeg);
2967
2968 /* We need to allocate enough room for encoding the text.
2969 We need 33 1/3% more space, plus a newline every 76
2970 characters, and then we round up. */
2971 length = iend - ibeg;
2972 allength = length + length/3 + 1;
2973 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2974
2975 SAFE_ALLOCA (encoded, char *, allength);
2976 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2977 encoded, length, NILP (no_line_break),
2978 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2979 if (encoded_length > allength)
2980 abort ();
2981
2982 if (encoded_length < 0)
2983 {
2984 /* The encoding wasn't possible. */
2985 SAFE_FREE ();
2986 error ("Multibyte character in data for base64 encoding");
2987 }
2988
2989 /* Now we have encoded the region, so we insert the new contents
2990 and delete the old. (Insert first in order to preserve markers.) */
2991 SET_PT_BOTH (XFASTINT (beg), ibeg);
2992 insert (encoded, encoded_length);
2993 SAFE_FREE ();
2994 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2995
2996 /* If point was outside of the region, restore it exactly; else just
2997 move to the beginning of the region. */
2998 if (old_pos >= XFASTINT (end))
2999 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3000 else if (old_pos > XFASTINT (beg))
3001 old_pos = XFASTINT (beg);
3002 SET_PT (old_pos);
3003
3004 /* We return the length of the encoded text. */
3005 return make_number (encoded_length);
3006 }
3007
3008 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3009 1, 2, 0,
3010 doc: /* Base64-encode STRING and return the result.
3011 Optional second argument NO-LINE-BREAK means do not break long lines
3012 into shorter lines. */)
3013 (Lisp_Object string, Lisp_Object no_line_break)
3014 {
3015 EMACS_INT allength, length, encoded_length;
3016 char *encoded;
3017 Lisp_Object encoded_string;
3018 USE_SAFE_ALLOCA;
3019
3020 CHECK_STRING (string);
3021
3022 /* We need to allocate enough room for encoding the text.
3023 We need 33 1/3% more space, plus a newline every 76
3024 characters, and then we round up. */
3025 length = SBYTES (string);
3026 allength = length + length/3 + 1;
3027 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3028
3029 /* We need to allocate enough room for decoding the text. */
3030 SAFE_ALLOCA (encoded, char *, allength);
3031
3032 encoded_length = base64_encode_1 (SSDATA (string),
3033 encoded, length, NILP (no_line_break),
3034 STRING_MULTIBYTE (string));
3035 if (encoded_length > allength)
3036 abort ();
3037
3038 if (encoded_length < 0)
3039 {
3040 /* The encoding wasn't possible. */
3041 SAFE_FREE ();
3042 error ("Multibyte character in data for base64 encoding");
3043 }
3044
3045 encoded_string = make_unibyte_string (encoded, encoded_length);
3046 SAFE_FREE ();
3047
3048 return encoded_string;
3049 }
3050
3051 static EMACS_INT
3052 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3053 int line_break, int multibyte)
3054 {
3055 int counter = 0;
3056 EMACS_INT i = 0;
3057 char *e = to;
3058 int c;
3059 unsigned int value;
3060 int bytes;
3061
3062 while (i < length)
3063 {
3064 if (multibyte)
3065 {
3066 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3067 if (CHAR_BYTE8_P (c))
3068 c = CHAR_TO_BYTE8 (c);
3069 else if (c >= 256)
3070 return -1;
3071 i += bytes;
3072 }
3073 else
3074 c = from[i++];
3075
3076 /* Wrap line every 76 characters. */
3077
3078 if (line_break)
3079 {
3080 if (counter < MIME_LINE_LENGTH / 4)
3081 counter++;
3082 else
3083 {
3084 *e++ = '\n';
3085 counter = 1;
3086 }
3087 }
3088
3089 /* Process first byte of a triplet. */
3090
3091 *e++ = base64_value_to_char[0x3f & c >> 2];
3092 value = (0x03 & c) << 4;
3093
3094 /* Process second byte of a triplet. */
3095
3096 if (i == length)
3097 {
3098 *e++ = base64_value_to_char[value];
3099 *e++ = '=';
3100 *e++ = '=';
3101 break;
3102 }
3103
3104 if (multibyte)
3105 {
3106 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3107 if (CHAR_BYTE8_P (c))
3108 c = CHAR_TO_BYTE8 (c);
3109 else if (c >= 256)
3110 return -1;
3111 i += bytes;
3112 }
3113 else
3114 c = from[i++];
3115
3116 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3117 value = (0x0f & c) << 2;
3118
3119 /* Process third byte of a triplet. */
3120
3121 if (i == length)
3122 {
3123 *e++ = base64_value_to_char[value];
3124 *e++ = '=';
3125 break;
3126 }
3127
3128 if (multibyte)
3129 {
3130 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3131 if (CHAR_BYTE8_P (c))
3132 c = CHAR_TO_BYTE8 (c);
3133 else if (c >= 256)
3134 return -1;
3135 i += bytes;
3136 }
3137 else
3138 c = from[i++];
3139
3140 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3141 *e++ = base64_value_to_char[0x3f & c];
3142 }
3143
3144 return e - to;
3145 }
3146
3147
3148 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3149 2, 2, "r",
3150 doc: /* Base64-decode the region between BEG and END.
3151 Return the length of the decoded text.
3152 If the region can't be decoded, signal an error and don't modify the buffer. */)
3153 (Lisp_Object beg, Lisp_Object end)
3154 {
3155 EMACS_INT ibeg, iend, length, allength;
3156 char *decoded;
3157 EMACS_INT old_pos = PT;
3158 EMACS_INT decoded_length;
3159 EMACS_INT inserted_chars;
3160 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3161 USE_SAFE_ALLOCA;
3162
3163 validate_region (&beg, &end);
3164
3165 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3166 iend = CHAR_TO_BYTE (XFASTINT (end));
3167
3168 length = iend - ibeg;
3169
3170 /* We need to allocate enough room for decoding the text. If we are
3171 working on a multibyte buffer, each decoded code may occupy at
3172 most two bytes. */
3173 allength = multibyte ? length * 2 : length;
3174 SAFE_ALLOCA (decoded, char *, allength);
3175
3176 move_gap_both (XFASTINT (beg), ibeg);
3177 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3178 decoded, length,
3179 multibyte, &inserted_chars);
3180 if (decoded_length > allength)
3181 abort ();
3182
3183 if (decoded_length < 0)
3184 {
3185 /* The decoding wasn't possible. */
3186 SAFE_FREE ();
3187 error ("Invalid base64 data");
3188 }
3189
3190 /* Now we have decoded the region, so we insert the new contents
3191 and delete the old. (Insert first in order to preserve markers.) */
3192 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3193 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3194 SAFE_FREE ();
3195
3196 /* Delete the original text. */
3197 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3198 iend + decoded_length, 1);
3199
3200 /* If point was outside of the region, restore it exactly; else just
3201 move to the beginning of the region. */
3202 if (old_pos >= XFASTINT (end))
3203 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3204 else if (old_pos > XFASTINT (beg))
3205 old_pos = XFASTINT (beg);
3206 SET_PT (old_pos > ZV ? ZV : old_pos);
3207
3208 return make_number (inserted_chars);
3209 }
3210
3211 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3212 1, 1, 0,
3213 doc: /* Base64-decode STRING and return the result. */)
3214 (Lisp_Object string)
3215 {
3216 char *decoded;
3217 EMACS_INT length, decoded_length;
3218 Lisp_Object decoded_string;
3219 USE_SAFE_ALLOCA;
3220
3221 CHECK_STRING (string);
3222
3223 length = SBYTES (string);
3224 /* We need to allocate enough room for decoding the text. */
3225 SAFE_ALLOCA (decoded, char *, length);
3226
3227 /* The decoded result should be unibyte. */
3228 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3229 0, NULL);
3230 if (decoded_length > length)
3231 abort ();
3232 else if (decoded_length >= 0)
3233 decoded_string = make_unibyte_string (decoded, decoded_length);
3234 else
3235 decoded_string = Qnil;
3236
3237 SAFE_FREE ();
3238 if (!STRINGP (decoded_string))
3239 error ("Invalid base64 data");
3240
3241 return decoded_string;
3242 }
3243
3244 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3245 MULTIBYTE is nonzero, the decoded result should be in multibyte
3246 form. If NCHARS_RETRUN is not NULL, store the number of produced
3247 characters in *NCHARS_RETURN. */
3248
3249 static EMACS_INT
3250 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3251 int multibyte, EMACS_INT *nchars_return)
3252 {
3253 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3254 char *e = to;
3255 unsigned char c;
3256 unsigned long value;
3257 EMACS_INT nchars = 0;
3258
3259 while (1)
3260 {
3261 /* Process first byte of a quadruplet. */
3262
3263 READ_QUADRUPLET_BYTE (e-to);
3264
3265 if (!IS_BASE64 (c))
3266 return -1;
3267 value = base64_char_to_value[c] << 18;
3268
3269 /* Process second byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value |= base64_char_to_value[c] << 12;
3276
3277 c = (unsigned char) (value >> 16);
3278 if (multibyte && c >= 128)
3279 e += BYTE8_STRING (c, e);
3280 else
3281 *e++ = c;
3282 nchars++;
3283
3284 /* Process third byte of a quadruplet. */
3285
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (c == '=')
3289 {
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (c != '=')
3293 return -1;
3294 continue;
3295 }
3296
3297 if (!IS_BASE64 (c))
3298 return -1;
3299 value |= base64_char_to_value[c] << 6;
3300
3301 c = (unsigned char) (0xff & value >> 8);
3302 if (multibyte && c >= 128)
3303 e += BYTE8_STRING (c, e);
3304 else
3305 *e++ = c;
3306 nchars++;
3307
3308 /* Process fourth byte of a quadruplet. */
3309
3310 READ_QUADRUPLET_BYTE (-1);
3311
3312 if (c == '=')
3313 continue;
3314
3315 if (!IS_BASE64 (c))
3316 return -1;
3317 value |= base64_char_to_value[c];
3318
3319 c = (unsigned char) (0xff & value);
3320 if (multibyte && c >= 128)
3321 e += BYTE8_STRING (c, e);
3322 else
3323 *e++ = c;
3324 nchars++;
3325 }
3326 }
3327
3328
3329 \f
3330 /***********************************************************************
3331 ***** *****
3332 ***** Hash Tables *****
3333 ***** *****
3334 ***********************************************************************/
3335
3336 /* Implemented by gerd@gnu.org. This hash table implementation was
3337 inspired by CMUCL hash tables. */
3338
3339 /* Ideas:
3340
3341 1. For small tables, association lists are probably faster than
3342 hash tables because they have lower overhead.
3343
3344 For uses of hash tables where the O(1) behavior of table
3345 operations is not a requirement, it might therefore be a good idea
3346 not to hash. Instead, we could just do a linear search in the
3347 key_and_value vector of the hash table. This could be done
3348 if a `:linear-search t' argument is given to make-hash-table. */
3349
3350
3351 /* The list of all weak hash tables. Don't staticpro this one. */
3352
3353 struct Lisp_Hash_Table *weak_hash_tables;
3354
3355 /* Various symbols. */
3356
3357 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3358 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3359 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3360
3361 /* Function prototypes. */
3362
3363 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3364 static size_t get_key_arg (Lisp_Object, size_t, Lisp_Object *, char *);
3365 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3366 static int cmpfn_eql (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3367 Lisp_Object, unsigned);
3368 static int cmpfn_equal (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3369 Lisp_Object, unsigned);
3370 static int cmpfn_user_defined (struct Lisp_Hash_Table *, Lisp_Object,
3371 unsigned, Lisp_Object, unsigned);
3372 static unsigned hashfn_eq (struct Lisp_Hash_Table *, Lisp_Object);
3373 static unsigned hashfn_eql (struct Lisp_Hash_Table *, Lisp_Object);
3374 static unsigned hashfn_equal (struct Lisp_Hash_Table *, Lisp_Object);
3375 static unsigned hashfn_user_defined (struct Lisp_Hash_Table *,
3376 Lisp_Object);
3377 static unsigned sxhash_string (unsigned char *, int);
3378 static unsigned sxhash_list (Lisp_Object, int);
3379 static unsigned sxhash_vector (Lisp_Object, int);
3380 static unsigned sxhash_bool_vector (Lisp_Object);
3381 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3382
3383
3384 \f
3385 /***********************************************************************
3386 Utilities
3387 ***********************************************************************/
3388
3389 /* If OBJ is a Lisp hash table, return a pointer to its struct
3390 Lisp_Hash_Table. Otherwise, signal an error. */
3391
3392 static struct Lisp_Hash_Table *
3393 check_hash_table (Lisp_Object obj)
3394 {
3395 CHECK_HASH_TABLE (obj);
3396 return XHASH_TABLE (obj);
3397 }
3398
3399
3400 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3401 number. */
3402
3403 int
3404 next_almost_prime (int n)
3405 {
3406 if (n % 2 == 0)
3407 n += 1;
3408 if (n % 3 == 0)
3409 n += 2;
3410 if (n % 7 == 0)
3411 n += 4;
3412 return n;
3413 }
3414
3415
3416 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3417 which USED[I] is non-zero. If found at index I in ARGS, set
3418 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3419 0. This function is used to extract a keyword/argument pair from
3420 a DEFUN parameter list. */
3421
3422 static size_t
3423 get_key_arg (Lisp_Object key, size_t nargs, Lisp_Object *args, char *used)
3424 {
3425 size_t i;
3426
3427 for (i = 1; i < nargs; i++)
3428 if (!used[i - 1] && EQ (args[i - 1], key))
3429 {
3430 used[i - 1] = 1;
3431 used[i] = 1;
3432 return i;
3433 }
3434
3435 return 0;
3436 }
3437
3438
3439 /* Return a Lisp vector which has the same contents as VEC but has
3440 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3441 vector that are not copied from VEC are set to INIT. */
3442
3443 Lisp_Object
3444 larger_vector (Lisp_Object vec, int new_size, Lisp_Object init)
3445 {
3446 struct Lisp_Vector *v;
3447 int i, old_size;
3448
3449 xassert (VECTORP (vec));
3450 old_size = ASIZE (vec);
3451 xassert (new_size >= old_size);
3452
3453 v = allocate_vector (new_size);
3454 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3455 for (i = old_size; i < new_size; ++i)
3456 v->contents[i] = init;
3457 XSETVECTOR (vec, v);
3458 return vec;
3459 }
3460
3461
3462 /***********************************************************************
3463 Low-level Functions
3464 ***********************************************************************/
3465
3466 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3467 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3468 KEY2 are the same. */
3469
3470 static int
3471 cmpfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3472 {
3473 return (FLOATP (key1)
3474 && FLOATP (key2)
3475 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3476 }
3477
3478
3479 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3480 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3481 KEY2 are the same. */
3482
3483 static int
3484 cmpfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3485 {
3486 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3487 }
3488
3489
3490 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3491 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3492 if KEY1 and KEY2 are the same. */
3493
3494 static int
3495 cmpfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3496 {
3497 if (hash1 == hash2)
3498 {
3499 Lisp_Object args[3];
3500
3501 args[0] = h->user_cmp_function;
3502 args[1] = key1;
3503 args[2] = key2;
3504 return !NILP (Ffuncall (3, args));
3505 }
3506 else
3507 return 0;
3508 }
3509
3510
3511 /* Value is a hash code for KEY for use in hash table H which uses
3512 `eq' to compare keys. The hash code returned is guaranteed to fit
3513 in a Lisp integer. */
3514
3515 static unsigned
3516 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3517 {
3518 unsigned hash = XUINT (key) ^ XTYPE (key);
3519 xassert ((hash & ~INTMASK) == 0);
3520 return hash;
3521 }
3522
3523
3524 /* Value is a hash code for KEY for use in hash table H which uses
3525 `eql' to compare keys. The hash code returned is guaranteed to fit
3526 in a Lisp integer. */
3527
3528 static unsigned
3529 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3530 {
3531 unsigned hash;
3532 if (FLOATP (key))
3533 hash = sxhash (key, 0);
3534 else
3535 hash = XUINT (key) ^ XTYPE (key);
3536 xassert ((hash & ~INTMASK) == 0);
3537 return hash;
3538 }
3539
3540
3541 /* Value is a hash code for KEY for use in hash table H which uses
3542 `equal' to compare keys. The hash code returned is guaranteed to fit
3543 in a Lisp integer. */
3544
3545 static unsigned
3546 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3547 {
3548 unsigned hash = sxhash (key, 0);
3549 xassert ((hash & ~INTMASK) == 0);
3550 return hash;
3551 }
3552
3553
3554 /* Value is a hash code for KEY for use in hash table H which uses as
3555 user-defined function to compare keys. The hash code returned is
3556 guaranteed to fit in a Lisp integer. */
3557
3558 static unsigned
3559 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3560 {
3561 Lisp_Object args[2], hash;
3562
3563 args[0] = h->user_hash_function;
3564 args[1] = key;
3565 hash = Ffuncall (2, args);
3566 if (!INTEGERP (hash))
3567 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3568 return XUINT (hash);
3569 }
3570
3571
3572 /* Create and initialize a new hash table.
3573
3574 TEST specifies the test the hash table will use to compare keys.
3575 It must be either one of the predefined tests `eq', `eql' or
3576 `equal' or a symbol denoting a user-defined test named TEST with
3577 test and hash functions USER_TEST and USER_HASH.
3578
3579 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3580
3581 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3582 new size when it becomes full is computed by adding REHASH_SIZE to
3583 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3584 table's new size is computed by multiplying its old size with
3585 REHASH_SIZE.
3586
3587 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3588 be resized when the ratio of (number of entries in the table) /
3589 (table size) is >= REHASH_THRESHOLD.
3590
3591 WEAK specifies the weakness of the table. If non-nil, it must be
3592 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3593
3594 Lisp_Object
3595 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3596 Lisp_Object rehash_threshold, Lisp_Object weak,
3597 Lisp_Object user_test, Lisp_Object user_hash)
3598 {
3599 struct Lisp_Hash_Table *h;
3600 Lisp_Object table;
3601 int index_size, i, sz;
3602
3603 /* Preconditions. */
3604 xassert (SYMBOLP (test));
3605 xassert (INTEGERP (size) && XINT (size) >= 0);
3606 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3607 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3608 xassert (FLOATP (rehash_threshold)
3609 && XFLOATINT (rehash_threshold) > 0
3610 && XFLOATINT (rehash_threshold) <= 1.0);
3611
3612 if (XFASTINT (size) == 0)
3613 size = make_number (1);
3614
3615 /* Allocate a table and initialize it. */
3616 h = allocate_hash_table ();
3617
3618 /* Initialize hash table slots. */
3619 sz = XFASTINT (size);
3620
3621 h->test = test;
3622 if (EQ (test, Qeql))
3623 {
3624 h->cmpfn = cmpfn_eql;
3625 h->hashfn = hashfn_eql;
3626 }
3627 else if (EQ (test, Qeq))
3628 {
3629 h->cmpfn = NULL;
3630 h->hashfn = hashfn_eq;
3631 }
3632 else if (EQ (test, Qequal))
3633 {
3634 h->cmpfn = cmpfn_equal;
3635 h->hashfn = hashfn_equal;
3636 }
3637 else
3638 {
3639 h->user_cmp_function = user_test;
3640 h->user_hash_function = user_hash;
3641 h->cmpfn = cmpfn_user_defined;
3642 h->hashfn = hashfn_user_defined;
3643 }
3644
3645 h->weak = weak;
3646 h->rehash_threshold = rehash_threshold;
3647 h->rehash_size = rehash_size;
3648 h->count = 0;
3649 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3650 h->hash = Fmake_vector (size, Qnil);
3651 h->next = Fmake_vector (size, Qnil);
3652 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3653 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3654 h->index = Fmake_vector (make_number (index_size), Qnil);
3655
3656 /* Set up the free list. */
3657 for (i = 0; i < sz - 1; ++i)
3658 HASH_NEXT (h, i) = make_number (i + 1);
3659 h->next_free = make_number (0);
3660
3661 XSET_HASH_TABLE (table, h);
3662 xassert (HASH_TABLE_P (table));
3663 xassert (XHASH_TABLE (table) == h);
3664
3665 /* Maybe add this hash table to the list of all weak hash tables. */
3666 if (NILP (h->weak))
3667 h->next_weak = NULL;
3668 else
3669 {
3670 h->next_weak = weak_hash_tables;
3671 weak_hash_tables = h;
3672 }
3673
3674 return table;
3675 }
3676
3677
3678 /* Return a copy of hash table H1. Keys and values are not copied,
3679 only the table itself is. */
3680
3681 static Lisp_Object
3682 copy_hash_table (struct Lisp_Hash_Table *h1)
3683 {
3684 Lisp_Object table;
3685 struct Lisp_Hash_Table *h2;
3686 struct Lisp_Vector *next;
3687
3688 h2 = allocate_hash_table ();
3689 next = h2->vec_next;
3690 memcpy (h2, h1, sizeof *h2);
3691 h2->vec_next = next;
3692 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3693 h2->hash = Fcopy_sequence (h1->hash);
3694 h2->next = Fcopy_sequence (h1->next);
3695 h2->index = Fcopy_sequence (h1->index);
3696 XSET_HASH_TABLE (table, h2);
3697
3698 /* Maybe add this hash table to the list of all weak hash tables. */
3699 if (!NILP (h2->weak))
3700 {
3701 h2->next_weak = weak_hash_tables;
3702 weak_hash_tables = h2;
3703 }
3704
3705 return table;
3706 }
3707
3708
3709 /* Resize hash table H if it's too full. If H cannot be resized
3710 because it's already too large, throw an error. */
3711
3712 static INLINE void
3713 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3714 {
3715 if (NILP (h->next_free))
3716 {
3717 int old_size = HASH_TABLE_SIZE (h);
3718 int i, new_size, index_size;
3719 EMACS_INT nsize;
3720
3721 if (INTEGERP (h->rehash_size))
3722 new_size = old_size + XFASTINT (h->rehash_size);
3723 else
3724 new_size = old_size * XFLOATINT (h->rehash_size);
3725 new_size = max (old_size + 1, new_size);
3726 index_size = next_almost_prime ((int)
3727 (new_size
3728 / XFLOATINT (h->rehash_threshold)));
3729 /* Assignment to EMACS_INT stops GCC whining about limited range
3730 of data type. */
3731 nsize = max (index_size, 2 * new_size);
3732 if (nsize > MOST_POSITIVE_FIXNUM)
3733 error ("Hash table too large to resize");
3734
3735 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3736 h->next = larger_vector (h->next, new_size, Qnil);
3737 h->hash = larger_vector (h->hash, new_size, Qnil);
3738 h->index = Fmake_vector (make_number (index_size), Qnil);
3739
3740 /* Update the free list. Do it so that new entries are added at
3741 the end of the free list. This makes some operations like
3742 maphash faster. */
3743 for (i = old_size; i < new_size - 1; ++i)
3744 HASH_NEXT (h, i) = make_number (i + 1);
3745
3746 if (!NILP (h->next_free))
3747 {
3748 Lisp_Object last, next;
3749
3750 last = h->next_free;
3751 while (next = HASH_NEXT (h, XFASTINT (last)),
3752 !NILP (next))
3753 last = next;
3754
3755 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3756 }
3757 else
3758 XSETFASTINT (h->next_free, old_size);
3759
3760 /* Rehash. */
3761 for (i = 0; i < old_size; ++i)
3762 if (!NILP (HASH_HASH (h, i)))
3763 {
3764 unsigned hash_code = XUINT (HASH_HASH (h, i));
3765 int start_of_bucket = hash_code % ASIZE (h->index);
3766 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3767 HASH_INDEX (h, start_of_bucket) = make_number (i);
3768 }
3769 }
3770 }
3771
3772
3773 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3774 the hash code of KEY. Value is the index of the entry in H
3775 matching KEY, or -1 if not found. */
3776
3777 int
3778 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, unsigned int *hash)
3779 {
3780 unsigned hash_code;
3781 int start_of_bucket;
3782 Lisp_Object idx;
3783
3784 hash_code = h->hashfn (h, key);
3785 if (hash)
3786 *hash = hash_code;
3787
3788 start_of_bucket = hash_code % ASIZE (h->index);
3789 idx = HASH_INDEX (h, start_of_bucket);
3790
3791 /* We need not gcpro idx since it's either an integer or nil. */
3792 while (!NILP (idx))
3793 {
3794 int i = XFASTINT (idx);
3795 if (EQ (key, HASH_KEY (h, i))
3796 || (h->cmpfn
3797 && h->cmpfn (h, key, hash_code,
3798 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3799 break;
3800 idx = HASH_NEXT (h, i);
3801 }
3802
3803 return NILP (idx) ? -1 : XFASTINT (idx);
3804 }
3805
3806
3807 /* Put an entry into hash table H that associates KEY with VALUE.
3808 HASH is a previously computed hash code of KEY.
3809 Value is the index of the entry in H matching KEY. */
3810
3811 int
3812 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value, unsigned int hash)
3813 {
3814 int start_of_bucket, i;
3815
3816 xassert ((hash & ~INTMASK) == 0);
3817
3818 /* Increment count after resizing because resizing may fail. */
3819 maybe_resize_hash_table (h);
3820 h->count++;
3821
3822 /* Store key/value in the key_and_value vector. */
3823 i = XFASTINT (h->next_free);
3824 h->next_free = HASH_NEXT (h, i);
3825 HASH_KEY (h, i) = key;
3826 HASH_VALUE (h, i) = value;
3827
3828 /* Remember its hash code. */
3829 HASH_HASH (h, i) = make_number (hash);
3830
3831 /* Add new entry to its collision chain. */
3832 start_of_bucket = hash % ASIZE (h->index);
3833 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3834 HASH_INDEX (h, start_of_bucket) = make_number (i);
3835 return i;
3836 }
3837
3838
3839 /* Remove the entry matching KEY from hash table H, if there is one. */
3840
3841 static void
3842 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3843 {
3844 unsigned hash_code;
3845 int start_of_bucket;
3846 Lisp_Object idx, prev;
3847
3848 hash_code = h->hashfn (h, key);
3849 start_of_bucket = hash_code % ASIZE (h->index);
3850 idx = HASH_INDEX (h, start_of_bucket);
3851 prev = Qnil;
3852
3853 /* We need not gcpro idx, prev since they're either integers or nil. */
3854 while (!NILP (idx))
3855 {
3856 int i = XFASTINT (idx);
3857
3858 if (EQ (key, HASH_KEY (h, i))
3859 || (h->cmpfn
3860 && h->cmpfn (h, key, hash_code,
3861 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3862 {
3863 /* Take entry out of collision chain. */
3864 if (NILP (prev))
3865 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3866 else
3867 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3868
3869 /* Clear slots in key_and_value and add the slots to
3870 the free list. */
3871 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3872 HASH_NEXT (h, i) = h->next_free;
3873 h->next_free = make_number (i);
3874 h->count--;
3875 xassert (h->count >= 0);
3876 break;
3877 }
3878 else
3879 {
3880 prev = idx;
3881 idx = HASH_NEXT (h, i);
3882 }
3883 }
3884 }
3885
3886
3887 /* Clear hash table H. */
3888
3889 static void
3890 hash_clear (struct Lisp_Hash_Table *h)
3891 {
3892 if (h->count > 0)
3893 {
3894 int i, size = HASH_TABLE_SIZE (h);
3895
3896 for (i = 0; i < size; ++i)
3897 {
3898 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3899 HASH_KEY (h, i) = Qnil;
3900 HASH_VALUE (h, i) = Qnil;
3901 HASH_HASH (h, i) = Qnil;
3902 }
3903
3904 for (i = 0; i < ASIZE (h->index); ++i)
3905 ASET (h->index, i, Qnil);
3906
3907 h->next_free = make_number (0);
3908 h->count = 0;
3909 }
3910 }
3911
3912
3913 \f
3914 /************************************************************************
3915 Weak Hash Tables
3916 ************************************************************************/
3917
3918 void
3919 init_weak_hash_tables (void)
3920 {
3921 weak_hash_tables = NULL;
3922 }
3923
3924 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3925 entries from the table that don't survive the current GC.
3926 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3927 non-zero if anything was marked. */
3928
3929 static int
3930 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3931 {
3932 int bucket, n, marked;
3933
3934 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3935 marked = 0;
3936
3937 for (bucket = 0; bucket < n; ++bucket)
3938 {
3939 Lisp_Object idx, next, prev;
3940
3941 /* Follow collision chain, removing entries that
3942 don't survive this garbage collection. */
3943 prev = Qnil;
3944 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3945 {
3946 int i = XFASTINT (idx);
3947 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3948 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3949 int remove_p;
3950
3951 if (EQ (h->weak, Qkey))
3952 remove_p = !key_known_to_survive_p;
3953 else if (EQ (h->weak, Qvalue))
3954 remove_p = !value_known_to_survive_p;
3955 else if (EQ (h->weak, Qkey_or_value))
3956 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3957 else if (EQ (h->weak, Qkey_and_value))
3958 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3959 else
3960 abort ();
3961
3962 next = HASH_NEXT (h, i);
3963
3964 if (remove_entries_p)
3965 {
3966 if (remove_p)
3967 {
3968 /* Take out of collision chain. */
3969 if (NILP (prev))
3970 HASH_INDEX (h, bucket) = next;
3971 else
3972 HASH_NEXT (h, XFASTINT (prev)) = next;
3973
3974 /* Add to free list. */
3975 HASH_NEXT (h, i) = h->next_free;
3976 h->next_free = idx;
3977
3978 /* Clear key, value, and hash. */
3979 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3980 HASH_HASH (h, i) = Qnil;
3981
3982 h->count--;
3983 }
3984 else
3985 {
3986 prev = idx;
3987 }
3988 }
3989 else
3990 {
3991 if (!remove_p)
3992 {
3993 /* Make sure key and value survive. */
3994 if (!key_known_to_survive_p)
3995 {
3996 mark_object (HASH_KEY (h, i));
3997 marked = 1;
3998 }
3999
4000 if (!value_known_to_survive_p)
4001 {
4002 mark_object (HASH_VALUE (h, i));
4003 marked = 1;
4004 }
4005 }
4006 }
4007 }
4008 }
4009
4010 return marked;
4011 }
4012
4013 /* Remove elements from weak hash tables that don't survive the
4014 current garbage collection. Remove weak tables that don't survive
4015 from Vweak_hash_tables. Called from gc_sweep. */
4016
4017 void
4018 sweep_weak_hash_tables (void)
4019 {
4020 struct Lisp_Hash_Table *h, *used, *next;
4021 int marked;
4022
4023 /* Mark all keys and values that are in use. Keep on marking until
4024 there is no more change. This is necessary for cases like
4025 value-weak table A containing an entry X -> Y, where Y is used in a
4026 key-weak table B, Z -> Y. If B comes after A in the list of weak
4027 tables, X -> Y might be removed from A, although when looking at B
4028 one finds that it shouldn't. */
4029 do
4030 {
4031 marked = 0;
4032 for (h = weak_hash_tables; h; h = h->next_weak)
4033 {
4034 if (h->size & ARRAY_MARK_FLAG)
4035 marked |= sweep_weak_table (h, 0);
4036 }
4037 }
4038 while (marked);
4039
4040 /* Remove tables and entries that aren't used. */
4041 for (h = weak_hash_tables, used = NULL; h; h = next)
4042 {
4043 next = h->next_weak;
4044
4045 if (h->size & ARRAY_MARK_FLAG)
4046 {
4047 /* TABLE is marked as used. Sweep its contents. */
4048 if (h->count > 0)
4049 sweep_weak_table (h, 1);
4050
4051 /* Add table to the list of used weak hash tables. */
4052 h->next_weak = used;
4053 used = h;
4054 }
4055 }
4056
4057 weak_hash_tables = used;
4058 }
4059
4060
4061 \f
4062 /***********************************************************************
4063 Hash Code Computation
4064 ***********************************************************************/
4065
4066 /* Maximum depth up to which to dive into Lisp structures. */
4067
4068 #define SXHASH_MAX_DEPTH 3
4069
4070 /* Maximum length up to which to take list and vector elements into
4071 account. */
4072
4073 #define SXHASH_MAX_LEN 7
4074
4075 /* Combine two integers X and Y for hashing. */
4076
4077 #define SXHASH_COMBINE(X, Y) \
4078 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4079 + (unsigned)(Y))
4080
4081
4082 /* Return a hash for string PTR which has length LEN. The hash
4083 code returned is guaranteed to fit in a Lisp integer. */
4084
4085 static unsigned
4086 sxhash_string (unsigned char *ptr, int len)
4087 {
4088 unsigned char *p = ptr;
4089 unsigned char *end = p + len;
4090 unsigned char c;
4091 unsigned hash = 0;
4092
4093 while (p != end)
4094 {
4095 c = *p++;
4096 if (c >= 0140)
4097 c -= 40;
4098 hash = ((hash << 4) + (hash >> 28) + c);
4099 }
4100
4101 return hash & INTMASK;
4102 }
4103
4104
4105 /* Return a hash for list LIST. DEPTH is the current depth in the
4106 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4107
4108 static unsigned
4109 sxhash_list (Lisp_Object list, int depth)
4110 {
4111 unsigned hash = 0;
4112 int i;
4113
4114 if (depth < SXHASH_MAX_DEPTH)
4115 for (i = 0;
4116 CONSP (list) && i < SXHASH_MAX_LEN;
4117 list = XCDR (list), ++i)
4118 {
4119 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4120 hash = SXHASH_COMBINE (hash, hash2);
4121 }
4122
4123 if (!NILP (list))
4124 {
4125 unsigned hash2 = sxhash (list, depth + 1);
4126 hash = SXHASH_COMBINE (hash, hash2);
4127 }
4128
4129 return hash;
4130 }
4131
4132
4133 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4134 the Lisp structure. */
4135
4136 static unsigned
4137 sxhash_vector (Lisp_Object vec, int depth)
4138 {
4139 unsigned hash = ASIZE (vec);
4140 int i, n;
4141
4142 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4143 for (i = 0; i < n; ++i)
4144 {
4145 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4146 hash = SXHASH_COMBINE (hash, hash2);
4147 }
4148
4149 return hash;
4150 }
4151
4152
4153 /* Return a hash for bool-vector VECTOR. */
4154
4155 static unsigned
4156 sxhash_bool_vector (Lisp_Object vec)
4157 {
4158 unsigned hash = XBOOL_VECTOR (vec)->size;
4159 int i, n;
4160
4161 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4162 for (i = 0; i < n; ++i)
4163 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4164
4165 return hash;
4166 }
4167
4168
4169 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4170 structure. Value is an unsigned integer clipped to INTMASK. */
4171
4172 unsigned
4173 sxhash (Lisp_Object obj, int depth)
4174 {
4175 unsigned hash;
4176
4177 if (depth > SXHASH_MAX_DEPTH)
4178 return 0;
4179
4180 switch (XTYPE (obj))
4181 {
4182 case_Lisp_Int:
4183 hash = XUINT (obj);
4184 break;
4185
4186 case Lisp_Misc:
4187 hash = XUINT (obj);
4188 break;
4189
4190 case Lisp_Symbol:
4191 obj = SYMBOL_NAME (obj);
4192 /* Fall through. */
4193
4194 case Lisp_String:
4195 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4196 break;
4197
4198 /* This can be everything from a vector to an overlay. */
4199 case Lisp_Vectorlike:
4200 if (VECTORP (obj))
4201 /* According to the CL HyperSpec, two arrays are equal only if
4202 they are `eq', except for strings and bit-vectors. In
4203 Emacs, this works differently. We have to compare element
4204 by element. */
4205 hash = sxhash_vector (obj, depth);
4206 else if (BOOL_VECTOR_P (obj))
4207 hash = sxhash_bool_vector (obj);
4208 else
4209 /* Others are `equal' if they are `eq', so let's take their
4210 address as hash. */
4211 hash = XUINT (obj);
4212 break;
4213
4214 case Lisp_Cons:
4215 hash = sxhash_list (obj, depth);
4216 break;
4217
4218 case Lisp_Float:
4219 {
4220 double val = XFLOAT_DATA (obj);
4221 unsigned char *p = (unsigned char *) &val;
4222 size_t i;
4223 for (hash = 0, i = 0; i < sizeof val; i++)
4224 hash = SXHASH_COMBINE (hash, p[i]);
4225 break;
4226 }
4227
4228 default:
4229 abort ();
4230 }
4231
4232 return hash & INTMASK;
4233 }
4234
4235
4236 \f
4237 /***********************************************************************
4238 Lisp Interface
4239 ***********************************************************************/
4240
4241
4242 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4243 doc: /* Compute a hash code for OBJ and return it as integer. */)
4244 (Lisp_Object obj)
4245 {
4246 unsigned hash = sxhash (obj, 0);
4247 return make_number (hash);
4248 }
4249
4250
4251 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4252 doc: /* Create and return a new hash table.
4253
4254 Arguments are specified as keyword/argument pairs. The following
4255 arguments are defined:
4256
4257 :test TEST -- TEST must be a symbol that specifies how to compare
4258 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4259 `equal'. User-supplied test and hash functions can be specified via
4260 `define-hash-table-test'.
4261
4262 :size SIZE -- A hint as to how many elements will be put in the table.
4263 Default is 65.
4264
4265 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4266 fills up. If REHASH-SIZE is an integer, increase the size by that
4267 amount. If it is a float, it must be > 1.0, and the new size is the
4268 old size multiplied by that factor. Default is 1.5.
4269
4270 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4271 Resize the hash table when the ratio (number of entries / table size)
4272 is greater than or equal to THRESHOLD. Default is 0.8.
4273
4274 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4275 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4276 returned is a weak table. Key/value pairs are removed from a weak
4277 hash table when there are no non-weak references pointing to their
4278 key, value, one of key or value, or both key and value, depending on
4279 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4280 is nil.
4281
4282 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4283 (size_t nargs, Lisp_Object *args)
4284 {
4285 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4286 Lisp_Object user_test, user_hash;
4287 char *used;
4288 size_t i;
4289
4290 /* The vector `used' is used to keep track of arguments that
4291 have been consumed. */
4292 used = (char *) alloca (nargs * sizeof *used);
4293 memset (used, 0, nargs * sizeof *used);
4294
4295 /* See if there's a `:test TEST' among the arguments. */
4296 i = get_key_arg (QCtest, nargs, args, used);
4297 test = i ? args[i] : Qeql;
4298 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4299 {
4300 /* See if it is a user-defined test. */
4301 Lisp_Object prop;
4302
4303 prop = Fget (test, Qhash_table_test);
4304 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4305 signal_error ("Invalid hash table test", test);
4306 user_test = XCAR (prop);
4307 user_hash = XCAR (XCDR (prop));
4308 }
4309 else
4310 user_test = user_hash = Qnil;
4311
4312 /* See if there's a `:size SIZE' argument. */
4313 i = get_key_arg (QCsize, nargs, args, used);
4314 size = i ? args[i] : Qnil;
4315 if (NILP (size))
4316 size = make_number (DEFAULT_HASH_SIZE);
4317 else if (!INTEGERP (size) || XINT (size) < 0)
4318 signal_error ("Invalid hash table size", size);
4319
4320 /* Look for `:rehash-size SIZE'. */
4321 i = get_key_arg (QCrehash_size, nargs, args, used);
4322 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4323 if (!NUMBERP (rehash_size)
4324 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4325 || XFLOATINT (rehash_size) <= 1.0)
4326 signal_error ("Invalid hash table rehash size", rehash_size);
4327
4328 /* Look for `:rehash-threshold THRESHOLD'. */
4329 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4330 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4331 if (!FLOATP (rehash_threshold)
4332 || XFLOATINT (rehash_threshold) <= 0.0
4333 || XFLOATINT (rehash_threshold) > 1.0)
4334 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4335
4336 /* Look for `:weakness WEAK'. */
4337 i = get_key_arg (QCweakness, nargs, args, used);
4338 weak = i ? args[i] : Qnil;
4339 if (EQ (weak, Qt))
4340 weak = Qkey_and_value;
4341 if (!NILP (weak)
4342 && !EQ (weak, Qkey)
4343 && !EQ (weak, Qvalue)
4344 && !EQ (weak, Qkey_or_value)
4345 && !EQ (weak, Qkey_and_value))
4346 signal_error ("Invalid hash table weakness", weak);
4347
4348 /* Now, all args should have been used up, or there's a problem. */
4349 for (i = 0; i < nargs; ++i)
4350 if (!used[i])
4351 signal_error ("Invalid argument list", args[i]);
4352
4353 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4354 user_test, user_hash);
4355 }
4356
4357
4358 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4359 doc: /* Return a copy of hash table TABLE. */)
4360 (Lisp_Object table)
4361 {
4362 return copy_hash_table (check_hash_table (table));
4363 }
4364
4365
4366 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4367 doc: /* Return the number of elements in TABLE. */)
4368 (Lisp_Object table)
4369 {
4370 return make_number (check_hash_table (table)->count);
4371 }
4372
4373
4374 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4375 Shash_table_rehash_size, 1, 1, 0,
4376 doc: /* Return the current rehash size of TABLE. */)
4377 (Lisp_Object table)
4378 {
4379 return check_hash_table (table)->rehash_size;
4380 }
4381
4382
4383 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4384 Shash_table_rehash_threshold, 1, 1, 0,
4385 doc: /* Return the current rehash threshold of TABLE. */)
4386 (Lisp_Object table)
4387 {
4388 return check_hash_table (table)->rehash_threshold;
4389 }
4390
4391
4392 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4393 doc: /* Return the size of TABLE.
4394 The size can be used as an argument to `make-hash-table' to create
4395 a hash table than can hold as many elements as TABLE holds
4396 without need for resizing. */)
4397 (Lisp_Object table)
4398 {
4399 struct Lisp_Hash_Table *h = check_hash_table (table);
4400 return make_number (HASH_TABLE_SIZE (h));
4401 }
4402
4403
4404 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4405 doc: /* Return the test TABLE uses. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->test;
4409 }
4410
4411
4412 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4413 1, 1, 0,
4414 doc: /* Return the weakness of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->weak;
4418 }
4419
4420
4421 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4422 doc: /* Return t if OBJ is a Lisp hash table object. */)
4423 (Lisp_Object obj)
4424 {
4425 return HASH_TABLE_P (obj) ? Qt : Qnil;
4426 }
4427
4428
4429 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4430 doc: /* Clear hash table TABLE and return it. */)
4431 (Lisp_Object table)
4432 {
4433 hash_clear (check_hash_table (table));
4434 /* Be compatible with XEmacs. */
4435 return table;
4436 }
4437
4438
4439 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4440 doc: /* Look up KEY in TABLE and return its associated value.
4441 If KEY is not found, return DFLT which defaults to nil. */)
4442 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4443 {
4444 struct Lisp_Hash_Table *h = check_hash_table (table);
4445 int i = hash_lookup (h, key, NULL);
4446 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4447 }
4448
4449
4450 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4451 doc: /* Associate KEY with VALUE in hash table TABLE.
4452 If KEY is already present in table, replace its current value with
4453 VALUE. */)
4454 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4455 {
4456 struct Lisp_Hash_Table *h = check_hash_table (table);
4457 int i;
4458 unsigned hash;
4459
4460 i = hash_lookup (h, key, &hash);
4461 if (i >= 0)
4462 HASH_VALUE (h, i) = value;
4463 else
4464 hash_put (h, key, value, hash);
4465
4466 return value;
4467 }
4468
4469
4470 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4471 doc: /* Remove KEY from TABLE. */)
4472 (Lisp_Object key, Lisp_Object table)
4473 {
4474 struct Lisp_Hash_Table *h = check_hash_table (table);
4475 hash_remove_from_table (h, key);
4476 return Qnil;
4477 }
4478
4479
4480 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4481 doc: /* Call FUNCTION for all entries in hash table TABLE.
4482 FUNCTION is called with two arguments, KEY and VALUE. */)
4483 (Lisp_Object function, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 Lisp_Object args[3];
4487 int i;
4488
4489 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4490 if (!NILP (HASH_HASH (h, i)))
4491 {
4492 args[0] = function;
4493 args[1] = HASH_KEY (h, i);
4494 args[2] = HASH_VALUE (h, i);
4495 Ffuncall (3, args);
4496 }
4497
4498 return Qnil;
4499 }
4500
4501
4502 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4503 Sdefine_hash_table_test, 3, 3, 0,
4504 doc: /* Define a new hash table test with name NAME, a symbol.
4505
4506 In hash tables created with NAME specified as test, use TEST to
4507 compare keys, and HASH for computing hash codes of keys.
4508
4509 TEST must be a function taking two arguments and returning non-nil if
4510 both arguments are the same. HASH must be a function taking one
4511 argument and return an integer that is the hash code of the argument.
4512 Hash code computation should use the whole value range of integers,
4513 including negative integers. */)
4514 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4515 {
4516 return Fput (name, Qhash_table_test, list2 (test, hash));
4517 }
4518
4519
4520 \f
4521 /************************************************************************
4522 MD5
4523 ************************************************************************/
4524
4525 #include "md5.h"
4526
4527 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4528 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4529
4530 A message digest is a cryptographic checksum of a document, and the
4531 algorithm to calculate it is defined in RFC 1321.
4532
4533 The two optional arguments START and END are character positions
4534 specifying for which part of OBJECT the message digest should be
4535 computed. If nil or omitted, the digest is computed for the whole
4536 OBJECT.
4537
4538 The MD5 message digest is computed from the result of encoding the
4539 text in a coding system, not directly from the internal Emacs form of
4540 the text. The optional fourth argument CODING-SYSTEM specifies which
4541 coding system to encode the text with. It should be the same coding
4542 system that you used or will use when actually writing the text into a
4543 file.
4544
4545 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4546 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4547 system would be chosen by default for writing this text into a file.
4548
4549 If OBJECT is a string, the most preferred coding system (see the
4550 command `prefer-coding-system') is used.
4551
4552 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4553 guesswork fails. Normally, an error is signaled in such case. */)
4554 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4555 {
4556 unsigned char digest[16];
4557 char value[33];
4558 int i;
4559 EMACS_INT size;
4560 EMACS_INT size_byte = 0;
4561 EMACS_INT start_char = 0, end_char = 0;
4562 EMACS_INT start_byte = 0, end_byte = 0;
4563 register EMACS_INT b, e;
4564 register struct buffer *bp;
4565 EMACS_INT temp;
4566
4567 if (STRINGP (object))
4568 {
4569 if (NILP (coding_system))
4570 {
4571 /* Decide the coding-system to encode the data with. */
4572
4573 if (STRING_MULTIBYTE (object))
4574 /* use default, we can't guess correct value */
4575 coding_system = preferred_coding_system ();
4576 else
4577 coding_system = Qraw_text;
4578 }
4579
4580 if (NILP (Fcoding_system_p (coding_system)))
4581 {
4582 /* Invalid coding system. */
4583
4584 if (!NILP (noerror))
4585 coding_system = Qraw_text;
4586 else
4587 xsignal1 (Qcoding_system_error, coding_system);
4588 }
4589
4590 if (STRING_MULTIBYTE (object))
4591 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4592
4593 size = SCHARS (object);
4594 size_byte = SBYTES (object);
4595
4596 if (!NILP (start))
4597 {
4598 CHECK_NUMBER (start);
4599
4600 start_char = XINT (start);
4601
4602 if (start_char < 0)
4603 start_char += size;
4604
4605 start_byte = string_char_to_byte (object, start_char);
4606 }
4607
4608 if (NILP (end))
4609 {
4610 end_char = size;
4611 end_byte = size_byte;
4612 }
4613 else
4614 {
4615 CHECK_NUMBER (end);
4616
4617 end_char = XINT (end);
4618
4619 if (end_char < 0)
4620 end_char += size;
4621
4622 end_byte = string_char_to_byte (object, end_char);
4623 }
4624
4625 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4626 args_out_of_range_3 (object, make_number (start_char),
4627 make_number (end_char));
4628 }
4629 else
4630 {
4631 struct buffer *prev = current_buffer;
4632
4633 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4634
4635 CHECK_BUFFER (object);
4636
4637 bp = XBUFFER (object);
4638 if (bp != current_buffer)
4639 set_buffer_internal (bp);
4640
4641 if (NILP (start))
4642 b = BEGV;
4643 else
4644 {
4645 CHECK_NUMBER_COERCE_MARKER (start);
4646 b = XINT (start);
4647 }
4648
4649 if (NILP (end))
4650 e = ZV;
4651 else
4652 {
4653 CHECK_NUMBER_COERCE_MARKER (end);
4654 e = XINT (end);
4655 }
4656
4657 if (b > e)
4658 temp = b, b = e, e = temp;
4659
4660 if (!(BEGV <= b && e <= ZV))
4661 args_out_of_range (start, end);
4662
4663 if (NILP (coding_system))
4664 {
4665 /* Decide the coding-system to encode the data with.
4666 See fileio.c:Fwrite-region */
4667
4668 if (!NILP (Vcoding_system_for_write))
4669 coding_system = Vcoding_system_for_write;
4670 else
4671 {
4672 int force_raw_text = 0;
4673
4674 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4675 if (NILP (coding_system)
4676 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4677 {
4678 coding_system = Qnil;
4679 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4680 force_raw_text = 1;
4681 }
4682
4683 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4684 {
4685 /* Check file-coding-system-alist. */
4686 Lisp_Object args[4], val;
4687
4688 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4689 args[3] = Fbuffer_file_name(object);
4690 val = Ffind_operation_coding_system (4, args);
4691 if (CONSP (val) && !NILP (XCDR (val)))
4692 coding_system = XCDR (val);
4693 }
4694
4695 if (NILP (coding_system)
4696 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4697 {
4698 /* If we still have not decided a coding system, use the
4699 default value of buffer-file-coding-system. */
4700 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4701 }
4702
4703 if (!force_raw_text
4704 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4705 /* Confirm that VAL can surely encode the current region. */
4706 coding_system = call4 (Vselect_safe_coding_system_function,
4707 make_number (b), make_number (e),
4708 coding_system, Qnil);
4709
4710 if (force_raw_text)
4711 coding_system = Qraw_text;
4712 }
4713
4714 if (NILP (Fcoding_system_p (coding_system)))
4715 {
4716 /* Invalid coding system. */
4717
4718 if (!NILP (noerror))
4719 coding_system = Qraw_text;
4720 else
4721 xsignal1 (Qcoding_system_error, coding_system);
4722 }
4723 }
4724
4725 object = make_buffer_string (b, e, 0);
4726 if (prev != current_buffer)
4727 set_buffer_internal (prev);
4728 /* Discard the unwind protect for recovering the current
4729 buffer. */
4730 specpdl_ptr--;
4731
4732 if (STRING_MULTIBYTE (object))
4733 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4734 }
4735
4736 md5_buffer (SSDATA (object) + start_byte,
4737 SBYTES (object) - (size_byte - end_byte),
4738 digest);
4739
4740 for (i = 0; i < 16; i++)
4741 sprintf (&value[2 * i], "%02x", digest[i]);
4742 value[32] = '\0';
4743
4744 return make_string (value, 32);
4745 }
4746
4747 \f
4748 void
4749 syms_of_fns (void)
4750 {
4751 /* Hash table stuff. */
4752 Qhash_table_p = intern_c_string ("hash-table-p");
4753 staticpro (&Qhash_table_p);
4754 Qeq = intern_c_string ("eq");
4755 staticpro (&Qeq);
4756 Qeql = intern_c_string ("eql");
4757 staticpro (&Qeql);
4758 Qequal = intern_c_string ("equal");
4759 staticpro (&Qequal);
4760 QCtest = intern_c_string (":test");
4761 staticpro (&QCtest);
4762 QCsize = intern_c_string (":size");
4763 staticpro (&QCsize);
4764 QCrehash_size = intern_c_string (":rehash-size");
4765 staticpro (&QCrehash_size);
4766 QCrehash_threshold = intern_c_string (":rehash-threshold");
4767 staticpro (&QCrehash_threshold);
4768 QCweakness = intern_c_string (":weakness");
4769 staticpro (&QCweakness);
4770 Qkey = intern_c_string ("key");
4771 staticpro (&Qkey);
4772 Qvalue = intern_c_string ("value");
4773 staticpro (&Qvalue);
4774 Qhash_table_test = intern_c_string ("hash-table-test");
4775 staticpro (&Qhash_table_test);
4776 Qkey_or_value = intern_c_string ("key-or-value");
4777 staticpro (&Qkey_or_value);
4778 Qkey_and_value = intern_c_string ("key-and-value");
4779 staticpro (&Qkey_and_value);
4780
4781 defsubr (&Ssxhash);
4782 defsubr (&Smake_hash_table);
4783 defsubr (&Scopy_hash_table);
4784 defsubr (&Shash_table_count);
4785 defsubr (&Shash_table_rehash_size);
4786 defsubr (&Shash_table_rehash_threshold);
4787 defsubr (&Shash_table_size);
4788 defsubr (&Shash_table_test);
4789 defsubr (&Shash_table_weakness);
4790 defsubr (&Shash_table_p);
4791 defsubr (&Sclrhash);
4792 defsubr (&Sgethash);
4793 defsubr (&Sputhash);
4794 defsubr (&Sremhash);
4795 defsubr (&Smaphash);
4796 defsubr (&Sdefine_hash_table_test);
4797
4798 Qstring_lessp = intern_c_string ("string-lessp");
4799 staticpro (&Qstring_lessp);
4800 Qprovide = intern_c_string ("provide");
4801 staticpro (&Qprovide);
4802 Qrequire = intern_c_string ("require");
4803 staticpro (&Qrequire);
4804 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4805 staticpro (&Qyes_or_no_p_history);
4806 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4807 staticpro (&Qcursor_in_echo_area);
4808 Qwidget_type = intern_c_string ("widget-type");
4809 staticpro (&Qwidget_type);
4810
4811 staticpro (&string_char_byte_cache_string);
4812 string_char_byte_cache_string = Qnil;
4813
4814 require_nesting_list = Qnil;
4815 staticpro (&require_nesting_list);
4816
4817 Fset (Qyes_or_no_p_history, Qnil);
4818
4819 DEFVAR_LISP ("features", Vfeatures,
4820 doc: /* A list of symbols which are the features of the executing Emacs.
4821 Used by `featurep' and `require', and altered by `provide'. */);
4822 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4823 Qsubfeatures = intern_c_string ("subfeatures");
4824 staticpro (&Qsubfeatures);
4825
4826 #ifdef HAVE_LANGINFO_CODESET
4827 Qcodeset = intern_c_string ("codeset");
4828 staticpro (&Qcodeset);
4829 Qdays = intern_c_string ("days");
4830 staticpro (&Qdays);
4831 Qmonths = intern_c_string ("months");
4832 staticpro (&Qmonths);
4833 Qpaper = intern_c_string ("paper");
4834 staticpro (&Qpaper);
4835 #endif /* HAVE_LANGINFO_CODESET */
4836
4837 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4838 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4839 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4840 invoked by mouse clicks and mouse menu items.
4841
4842 On some platforms, file selection dialogs are also enabled if this is
4843 non-nil. */);
4844 use_dialog_box = 1;
4845
4846 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4847 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4848 This applies to commands from menus and tool bar buttons even when
4849 they are initiated from the keyboard. If `use-dialog-box' is nil,
4850 that disables the use of a file dialog, regardless of the value of
4851 this variable. */);
4852 use_file_dialog = 1;
4853
4854 defsubr (&Sidentity);
4855 defsubr (&Srandom);
4856 defsubr (&Slength);
4857 defsubr (&Ssafe_length);
4858 defsubr (&Sstring_bytes);
4859 defsubr (&Sstring_equal);
4860 defsubr (&Scompare_strings);
4861 defsubr (&Sstring_lessp);
4862 defsubr (&Sappend);
4863 defsubr (&Sconcat);
4864 defsubr (&Svconcat);
4865 defsubr (&Scopy_sequence);
4866 defsubr (&Sstring_make_multibyte);
4867 defsubr (&Sstring_make_unibyte);
4868 defsubr (&Sstring_as_multibyte);
4869 defsubr (&Sstring_as_unibyte);
4870 defsubr (&Sstring_to_multibyte);
4871 defsubr (&Sstring_to_unibyte);
4872 defsubr (&Scopy_alist);
4873 defsubr (&Ssubstring);
4874 defsubr (&Ssubstring_no_properties);
4875 defsubr (&Snthcdr);
4876 defsubr (&Snth);
4877 defsubr (&Selt);
4878 defsubr (&Smember);
4879 defsubr (&Smemq);
4880 defsubr (&Smemql);
4881 defsubr (&Sassq);
4882 defsubr (&Sassoc);
4883 defsubr (&Srassq);
4884 defsubr (&Srassoc);
4885 defsubr (&Sdelq);
4886 defsubr (&Sdelete);
4887 defsubr (&Snreverse);
4888 defsubr (&Sreverse);
4889 defsubr (&Ssort);
4890 defsubr (&Splist_get);
4891 defsubr (&Sget);
4892 defsubr (&Splist_put);
4893 defsubr (&Sput);
4894 defsubr (&Slax_plist_get);
4895 defsubr (&Slax_plist_put);
4896 defsubr (&Seql);
4897 defsubr (&Sequal);
4898 defsubr (&Sequal_including_properties);
4899 defsubr (&Sfillarray);
4900 defsubr (&Sclear_string);
4901 defsubr (&Snconc);
4902 defsubr (&Smapcar);
4903 defsubr (&Smapc);
4904 defsubr (&Smapconcat);
4905 defsubr (&Syes_or_no_p);
4906 defsubr (&Sload_average);
4907 defsubr (&Sfeaturep);
4908 defsubr (&Srequire);
4909 defsubr (&Sprovide);
4910 defsubr (&Splist_member);
4911 defsubr (&Swidget_put);
4912 defsubr (&Swidget_get);
4913 defsubr (&Swidget_apply);
4914 defsubr (&Sbase64_encode_region);
4915 defsubr (&Sbase64_decode_region);
4916 defsubr (&Sbase64_encode_string);
4917 defsubr (&Sbase64_decode_string);
4918 defsubr (&Smd5);
4919 defsubr (&Slocale_info);
4920 }
4921
4922
4923 void
4924 init_fns (void)
4925 {
4926 }