Merge from trunk.
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "26339d9571f9485bf34fa6d2ae38fc84")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
184
185 \(fn)" nil nil)
186
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
191
192 \(fn SEQ START &optional END)" nil nil)
193
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197 \(fn TYPE SEQUENCE...)" nil nil)
198
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
201
202 \(fn X Y)" nil nil)
203
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
206
207 \(fn X Y)" nil nil)
208
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
211
212 \(fn X)" nil nil)
213
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
216
217 \(fn SUBLIST LIST)" nil nil)
218
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (defalias 'remprop 'cl-remprop)
246
247 (defalias 'cl-gethash 'gethash)
248
249 (defalias 'cl-puthash 'puthash)
250
251 (defalias 'cl-remhash 'remhash)
252
253 (defalias 'cl-clrhash 'clrhash)
254
255 (defalias 'cl-maphash 'maphash)
256
257 (defalias 'cl-make-hash-table 'make-hash-table)
258
259 (defalias 'cl-hash-table-p 'hash-table-p)
260
261 (defalias 'cl-hash-table-count 'hash-table-count)
262
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
266
267 \(fn FORM &optional ENV)" nil nil)
268
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
271
272 \(fn FORM &optional FULL)" nil nil)
273
274 ;;;***
275 \f
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
281 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283 ;;;;;; do* do loop return-from return block etypecase typecase ecase
284 ;;;;;; case load-time-value eval-when destructuring-bind function*
285 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "cc8cbd8c86e2facbe61986e992e6c508")
286 ;;; Generated autoloads from cl-macs.el
287
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
291
292 \(fn &optional PREFIX)" nil nil)
293
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
297
298 \(fn &optional PREFIX)" nil nil)
299
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
304
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
306
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
311
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
313
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
318
319 \(fn FUNC)" nil (quote macro))
320
321 (autoload 'destructuring-bind "cl-macs" "\
322
323
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
325
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
331
332 \(fn (WHEN...) BODY...)" nil (quote macro))
333
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
337
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
339
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
348
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
350
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
354
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
363
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
365
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
369
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
381
382 \(fn NAME &rest BODY)" nil (quote macro))
383
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
387
388 \(fn &optional RESULT)" nil (quote macro))
389
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
396
397 \(fn NAME &optional RESULT)" nil (quote macro))
398
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
412
413 \(fn CLAUSE...)" nil (quote macro))
414
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
417
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
419
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
429 An implicit nil block is established around the loop.
430
431 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
432
433 (autoload 'dotimes "cl-macs" "\
434 Loop a certain number of times.
435 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
436 to COUNT, exclusive. Then evaluate RESULT to get return value, default
437 nil.
438
439 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
440
441 (autoload 'do-symbols "cl-macs" "\
442 Loop over all symbols.
443 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
444 from OBARRAY.
445
446 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
447
448 (autoload 'do-all-symbols "cl-macs" "\
449
450
451 \(fn SPEC &rest BODY)" nil (quote macro))
452
453 (autoload 'psetq "cl-macs" "\
454 Set SYMs to the values VALs in parallel.
455 This is like `setq', except that all VAL forms are evaluated (in order)
456 before assigning any symbols SYM to the corresponding values.
457
458 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
459
460 (autoload 'progv "cl-macs" "\
461 Bind SYMBOLS to VALUES dynamically in BODY.
462 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
463 Each symbol in the first list is bound to the corresponding value in the
464 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
465 BODY forms are executed and their result is returned. This is much like
466 a `let' form, except that the list of symbols can be computed at run-time.
467
468 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
469
470 (autoload 'flet "cl-macs" "\
471 Make temporary function definitions.
472 This is an analogue of `let' that operates on the function cell of FUNC
473 rather than its value cell. The FORMs are evaluated with the specified
474 function definitions in place, then the definitions are undone (the FUNCs
475 go back to their previous definitions, or lack thereof).
476
477 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
478
479 (autoload 'labels "cl-macs" "\
480 Make temporary function bindings.
481 This is like `flet', except the bindings are lexical instead of dynamic.
482 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
483
484 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
485
486 (autoload 'macrolet "cl-macs" "\
487 Make temporary macro definitions.
488 This is like `flet', but for macros instead of functions.
489
490 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
491
492 (autoload 'symbol-macrolet "cl-macs" "\
493 Make symbol macro definitions.
494 Within the body FORMs, references to the variable NAME will be replaced
495 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
496
497 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
498
499 (autoload 'lexical-let "cl-macs" "\
500 Like `let', but lexically scoped.
501 The main visible difference is that lambdas inside BODY will create
502 lexical closures as in Common Lisp.
503
504 \(fn BINDINGS BODY)" nil (quote macro))
505
506 (autoload 'lexical-let* "cl-macs" "\
507 Like `let*', but lexically scoped.
508 The main visible difference is that lambdas inside BODY, and in
509 successive bindings within BINDINGS, will create lexical closures
510 as in Common Lisp. This is similar to the behavior of `let*' in
511 Common Lisp.
512
513 \(fn BINDINGS BODY)" nil (quote macro))
514
515 (autoload 'multiple-value-bind "cl-macs" "\
516 Collect multiple return values.
517 FORM must return a list; the BODY is then executed with the first N elements
518 of this list bound (`let'-style) to each of the symbols SYM in turn. This
519 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
520 simulate true multiple return values. For compatibility, (values A B C) is
521 a synonym for (list A B C).
522
523 \(fn (SYM...) FORM BODY)" nil (quote macro))
524
525 (autoload 'multiple-value-setq "cl-macs" "\
526 Collect multiple return values.
527 FORM must return a list; the first N elements of this list are stored in
528 each of the symbols SYM in turn. This is analogous to the Common Lisp
529 `multiple-value-setq' macro, using lists to simulate true multiple return
530 values. For compatibility, (values A B C) is a synonym for (list A B C).
531
532 \(fn (SYM...) FORM)" nil (quote macro))
533
534 (autoload 'locally "cl-macs" "\
535
536
537 \(fn &rest BODY)" nil (quote macro))
538
539 (autoload 'the "cl-macs" "\
540
541
542 \(fn TYPE FORM)" nil (quote macro))
543
544 (autoload 'declare "cl-macs" "\
545 Declare SPECS about the current function while compiling.
546 For instance
547
548 (declare (warn 0))
549
550 will turn off byte-compile warnings in the function.
551 See Info node `(cl)Declarations' for details.
552
553 \(fn &rest SPECS)" nil (quote macro))
554
555 (autoload 'define-setf-method "cl-macs" "\
556 Define a `setf' method.
557 This method shows how to handle `setf's to places of the form (NAME ARGS...).
558 The argument forms ARGS are bound according to ARGLIST, as if NAME were
559 going to be expanded as a macro, then the BODY forms are executed and must
560 return a list of five elements: a temporary-variables list, a value-forms
561 list, a store-variables list (of length one), a store-form, and an access-
562 form. See `defsetf' for a simpler way to define most setf-methods.
563
564 \(fn NAME ARGLIST BODY...)" nil (quote macro))
565
566 (autoload 'defsetf "cl-macs" "\
567 Define a `setf' method.
568 This macro is an easy-to-use substitute for `define-setf-method' that works
569 well for simple place forms. In the simple `defsetf' form, `setf's of
570 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
571 calls of the form (FUNC ARGS... VAL). Example:
572
573 (defsetf aref aset)
574
575 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
576 Here, the above `setf' call is expanded by binding the argument forms ARGS
577 according to ARGLIST, binding the value form VAL to STORE, then executing
578 BODY, which must return a Lisp form that does the necessary `setf' operation.
579 Actually, ARGLIST and STORE may be bound to temporary variables which are
580 introduced automatically to preserve proper execution order of the arguments.
581 Example:
582
583 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
584
585 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
586
587 (autoload 'get-setf-method "cl-macs" "\
588 Return a list of five values describing the setf-method for PLACE.
589 PLACE may be any Lisp form which can appear as the PLACE argument to
590 a macro like `setf' or `incf'.
591
592 \(fn PLACE &optional ENV)" nil nil)
593
594 (autoload 'setf "cl-macs" "\
595 Set each PLACE to the value of its VAL.
596 This is a generalized version of `setq'; the PLACEs may be symbolic
597 references such as (car x) or (aref x i), as well as plain symbols.
598 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
599 The return value is the last VAL in the list.
600
601 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
602
603 (autoload 'psetf "cl-macs" "\
604 Set PLACEs to the values VALs in parallel.
605 This is like `setf', except that all VAL forms are evaluated (in order)
606 before assigning any PLACEs to the corresponding values.
607
608 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
609
610 (autoload 'cl-do-pop "cl-macs" "\
611
612
613 \(fn PLACE)" nil nil)
614
615 (autoload 'remf "cl-macs" "\
616 Remove TAG from property list PLACE.
617 PLACE may be a symbol, or any generalized variable allowed by `setf'.
618 The form returns true if TAG was found and removed, nil otherwise.
619
620 \(fn PLACE TAG)" nil (quote macro))
621
622 (autoload 'shiftf "cl-macs" "\
623 Shift left among PLACEs.
624 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
625 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
626
627 \(fn PLACE... VAL)" nil (quote macro))
628
629 (autoload 'rotatef "cl-macs" "\
630 Rotate left among PLACEs.
631 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
632 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
633
634 \(fn PLACE...)" nil (quote macro))
635
636 (autoload 'letf "cl-macs" "\
637 Temporarily bind to PLACEs.
638 This is the analogue of `let', but with generalized variables (in the
639 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
640 VALUE, then the BODY forms are executed. On exit, either normally or
641 because of a `throw' or error, the PLACEs are set back to their original
642 values. Note that this macro is *not* available in Common Lisp.
643 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
644 the PLACE is not modified before executing BODY.
645
646 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
647
648 (autoload 'letf* "cl-macs" "\
649 Temporarily bind to PLACEs.
650 This is the analogue of `let*', but with generalized variables (in the
651 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
652 VALUE, then the BODY forms are executed. On exit, either normally or
653 because of a `throw' or error, the PLACEs are set back to their original
654 values. Note that this macro is *not* available in Common Lisp.
655 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
656 the PLACE is not modified before executing BODY.
657
658 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
659
660 (autoload 'callf "cl-macs" "\
661 Set PLACE to (FUNC PLACE ARGS...).
662 FUNC should be an unquoted function name. PLACE may be a symbol,
663 or any generalized variable allowed by `setf'.
664
665 \(fn FUNC PLACE ARGS...)" nil (quote macro))
666
667 (autoload 'callf2 "cl-macs" "\
668 Set PLACE to (FUNC ARG1 PLACE ARGS...).
669 Like `callf', but PLACE is the second argument of FUNC, not the first.
670
671 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
672
673 (autoload 'define-modify-macro "cl-macs" "\
674 Define a `setf'-like modify macro.
675 If NAME is called, it combines its PLACE argument with the other arguments
676 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
677
678 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
679
680 (autoload 'defstruct "cl-macs" "\
681 Define a struct type.
682 This macro defines a new data type called NAME that stores data
683 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
684 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
685 You can use the accessors to set the corresponding slots, via `setf'.
686
687 NAME may instead take the form (NAME OPTIONS...), where each
688 OPTION is either a single keyword or (KEYWORD VALUE).
689 See Info node `(cl)Structures' for a list of valid keywords.
690
691 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
692 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
693 one keyword is supported, `:read-only'. If this has a non-nil
694 value, that slot cannot be set via `setf'.
695
696 \(fn NAME SLOTS...)" nil (quote macro))
697
698 (autoload 'cl-struct-setf-expander "cl-macs" "\
699
700
701 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
702
703 (autoload 'deftype "cl-macs" "\
704 Define NAME as a new data type.
705 The type name can then be used in `typecase', `check-type', etc.
706
707 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
708
709 (autoload 'typep "cl-macs" "\
710 Check that OBJECT is of type TYPE.
711 TYPE is a Common Lisp-style type specifier.
712
713 \(fn OBJECT TYPE)" nil nil)
714
715 (autoload 'check-type "cl-macs" "\
716 Verify that FORM is of type TYPE; signal an error if not.
717 STRING is an optional description of the desired type.
718
719 \(fn FORM TYPE &optional STRING)" nil (quote macro))
720
721 (autoload 'assert "cl-macs" "\
722 Verify that FORM returns non-nil; signal an error if not.
723 Second arg SHOW-ARGS means to include arguments of FORM in message.
724 Other args STRING and ARGS... are arguments to be passed to `error'.
725 They are not evaluated unless the assertion fails. If STRING is
726 omitted, a default message listing FORM itself is used.
727
728 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
729
730 (autoload 'define-compiler-macro "cl-macs" "\
731 Define a compiler-only macro.
732 This is like `defmacro', but macro expansion occurs only if the call to
733 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
734 for optimizing the way calls to FUNC are compiled; the form returned by
735 BODY should do the same thing as a call to the normal function called
736 FUNC, though possibly more efficiently. Note that, like regular macros,
737 compiler macros are expanded repeatedly until no further expansions are
738 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
739 original function call alone by declaring an initial `&whole foo' parameter
740 and then returning foo.
741
742 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
743
744 (autoload 'compiler-macroexpand "cl-macs" "\
745
746
747 \(fn FORM)" nil nil)
748
749 (autoload 'defsubst* "cl-macs" "\
750 Define NAME as a function.
751 Like `defun', except the function is automatically declared `inline',
752 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
753 surrounded by (block NAME ...).
754
755 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
756
757 ;;;***
758 \f
759 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
760 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
761 ;;;;;; nset-difference set-difference nintersection intersection
762 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
763 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
764 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
765 ;;;;;; count position-if-not position-if position find-if-not find-if
766 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
767 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
768 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
769 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "df375ddc313f0c1c262cacab5cffd3e4")
770 ;;; Generated autoloads from cl-seq.el
771
772 (autoload 'reduce "cl-seq" "\
773 Reduce two-argument FUNCTION across SEQ.
774
775 Keywords supported: :start :end :from-end :initial-value :key
776
777 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
778
779 (autoload 'fill "cl-seq" "\
780 Fill the elements of SEQ with ITEM.
781
782 Keywords supported: :start :end
783
784 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
785
786 (autoload 'replace "cl-seq" "\
787 Replace the elements of SEQ1 with the elements of SEQ2.
788 SEQ1 is destructively modified, then returned.
789
790 Keywords supported: :start1 :end1 :start2 :end2
791
792 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
793
794 (autoload 'remove* "cl-seq" "\
795 Remove all occurrences of ITEM in SEQ.
796 This is a non-destructive function; it makes a copy of SEQ if necessary
797 to avoid corrupting the original SEQ.
798
799 Keywords supported: :test :test-not :key :count :start :end :from-end
800
801 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
802
803 (autoload 'remove-if "cl-seq" "\
804 Remove all items satisfying PREDICATE in SEQ.
805 This is a non-destructive function; it makes a copy of SEQ if necessary
806 to avoid corrupting the original SEQ.
807
808 Keywords supported: :key :count :start :end :from-end
809
810 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
811
812 (autoload 'remove-if-not "cl-seq" "\
813 Remove all items not satisfying PREDICATE in SEQ.
814 This is a non-destructive function; it makes a copy of SEQ if necessary
815 to avoid corrupting the original SEQ.
816
817 Keywords supported: :key :count :start :end :from-end
818
819 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
820
821 (autoload 'delete* "cl-seq" "\
822 Remove all occurrences of ITEM in SEQ.
823 This is a destructive function; it reuses the storage of SEQ whenever possible.
824
825 Keywords supported: :test :test-not :key :count :start :end :from-end
826
827 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
828
829 (autoload 'delete-if "cl-seq" "\
830 Remove all items satisfying PREDICATE in SEQ.
831 This is a destructive function; it reuses the storage of SEQ whenever possible.
832
833 Keywords supported: :key :count :start :end :from-end
834
835 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
836
837 (autoload 'delete-if-not "cl-seq" "\
838 Remove all items not satisfying PREDICATE in SEQ.
839 This is a destructive function; it reuses the storage of SEQ whenever possible.
840
841 Keywords supported: :key :count :start :end :from-end
842
843 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
844
845 (autoload 'remove-duplicates "cl-seq" "\
846 Return a copy of SEQ with all duplicate elements removed.
847
848 Keywords supported: :test :test-not :key :start :end :from-end
849
850 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
851
852 (autoload 'delete-duplicates "cl-seq" "\
853 Remove all duplicate elements from SEQ (destructively).
854
855 Keywords supported: :test :test-not :key :start :end :from-end
856
857 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
858
859 (autoload 'substitute "cl-seq" "\
860 Substitute NEW for OLD in SEQ.
861 This is a non-destructive function; it makes a copy of SEQ if necessary
862 to avoid corrupting the original SEQ.
863
864 Keywords supported: :test :test-not :key :count :start :end :from-end
865
866 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
867
868 (autoload 'substitute-if "cl-seq" "\
869 Substitute NEW for all items satisfying PREDICATE in SEQ.
870 This is a non-destructive function; it makes a copy of SEQ if necessary
871 to avoid corrupting the original SEQ.
872
873 Keywords supported: :key :count :start :end :from-end
874
875 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
876
877 (autoload 'substitute-if-not "cl-seq" "\
878 Substitute NEW for all items not satisfying PREDICATE in SEQ.
879 This is a non-destructive function; it makes a copy of SEQ if necessary
880 to avoid corrupting the original SEQ.
881
882 Keywords supported: :key :count :start :end :from-end
883
884 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
885
886 (autoload 'nsubstitute "cl-seq" "\
887 Substitute NEW for OLD in SEQ.
888 This is a destructive function; it reuses the storage of SEQ whenever possible.
889
890 Keywords supported: :test :test-not :key :count :start :end :from-end
891
892 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
893
894 (autoload 'nsubstitute-if "cl-seq" "\
895 Substitute NEW for all items satisfying PREDICATE in SEQ.
896 This is a destructive function; it reuses the storage of SEQ whenever possible.
897
898 Keywords supported: :key :count :start :end :from-end
899
900 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
901
902 (autoload 'nsubstitute-if-not "cl-seq" "\
903 Substitute NEW for all items not satisfying PREDICATE in SEQ.
904 This is a destructive function; it reuses the storage of SEQ whenever possible.
905
906 Keywords supported: :key :count :start :end :from-end
907
908 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
909
910 (autoload 'find "cl-seq" "\
911 Find the first occurrence of ITEM in SEQ.
912 Return the matching ITEM, or nil if not found.
913
914 Keywords supported: :test :test-not :key :start :end :from-end
915
916 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
917
918 (autoload 'find-if "cl-seq" "\
919 Find the first item satisfying PREDICATE in SEQ.
920 Return the matching item, or nil if not found.
921
922 Keywords supported: :key :start :end :from-end
923
924 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
925
926 (autoload 'find-if-not "cl-seq" "\
927 Find the first item not satisfying PREDICATE in SEQ.
928 Return the matching item, or nil if not found.
929
930 Keywords supported: :key :start :end :from-end
931
932 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
933
934 (autoload 'position "cl-seq" "\
935 Find the first occurrence of ITEM in SEQ.
936 Return the index of the matching item, or nil if not found.
937
938 Keywords supported: :test :test-not :key :start :end :from-end
939
940 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
941
942 (autoload 'position-if "cl-seq" "\
943 Find the first item satisfying PREDICATE in SEQ.
944 Return the index of the matching item, or nil if not found.
945
946 Keywords supported: :key :start :end :from-end
947
948 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
949
950 (autoload 'position-if-not "cl-seq" "\
951 Find the first item not satisfying PREDICATE in SEQ.
952 Return the index of the matching item, or nil if not found.
953
954 Keywords supported: :key :start :end :from-end
955
956 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
957
958 (autoload 'count "cl-seq" "\
959 Count the number of occurrences of ITEM in SEQ.
960
961 Keywords supported: :test :test-not :key :start :end
962
963 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
964
965 (autoload 'count-if "cl-seq" "\
966 Count the number of items satisfying PREDICATE in SEQ.
967
968 Keywords supported: :key :start :end
969
970 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
971
972 (autoload 'count-if-not "cl-seq" "\
973 Count the number of items not satisfying PREDICATE in SEQ.
974
975 Keywords supported: :key :start :end
976
977 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
978
979 (autoload 'mismatch "cl-seq" "\
980 Compare SEQ1 with SEQ2, return index of first mismatching element.
981 Return nil if the sequences match. If one sequence is a prefix of the
982 other, the return value indicates the end of the shorter sequence.
983
984 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
985
986 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
987
988 (autoload 'search "cl-seq" "\
989 Search for SEQ1 as a subsequence of SEQ2.
990 Return the index of the leftmost element of the first match found;
991 return nil if there are no matches.
992
993 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
994
995 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
996
997 (autoload 'sort* "cl-seq" "\
998 Sort the argument SEQ according to PREDICATE.
999 This is a destructive function; it reuses the storage of SEQ if possible.
1000
1001 Keywords supported: :key
1002
1003 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1004
1005 (autoload 'stable-sort "cl-seq" "\
1006 Sort the argument SEQ stably according to PREDICATE.
1007 This is a destructive function; it reuses the storage of SEQ if possible.
1008
1009 Keywords supported: :key
1010
1011 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1012
1013 (autoload 'merge "cl-seq" "\
1014 Destructively merge the two sequences to produce a new sequence.
1015 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1016 sequences, and PREDICATE is a `less-than' predicate on the elements.
1017
1018 Keywords supported: :key
1019
1020 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1021
1022 (autoload 'member* "cl-seq" "\
1023 Find the first occurrence of ITEM in LIST.
1024 Return the sublist of LIST whose car is ITEM.
1025
1026 Keywords supported: :test :test-not :key
1027
1028 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1029
1030 (autoload 'member-if "cl-seq" "\
1031 Find the first item satisfying PREDICATE in LIST.
1032 Return the sublist of LIST whose car matches.
1033
1034 Keywords supported: :key
1035
1036 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1037
1038 (autoload 'member-if-not "cl-seq" "\
1039 Find the first item not satisfying PREDICATE in LIST.
1040 Return the sublist of LIST whose car matches.
1041
1042 Keywords supported: :key
1043
1044 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1045
1046 (autoload 'cl-adjoin "cl-seq" "\
1047 Not documented
1048
1049 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1050
1051 (autoload 'assoc* "cl-seq" "\
1052 Find the first item whose car matches ITEM in LIST.
1053
1054 Keywords supported: :test :test-not :key
1055
1056 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1057
1058 (autoload 'assoc-if "cl-seq" "\
1059 Find the first item whose car satisfies PREDICATE in LIST.
1060
1061 Keywords supported: :key
1062
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1064
1065 (autoload 'assoc-if-not "cl-seq" "\
1066 Find the first item whose car does not satisfy PREDICATE in LIST.
1067
1068 Keywords supported: :key
1069
1070 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1071
1072 (autoload 'rassoc* "cl-seq" "\
1073 Find the first item whose cdr matches ITEM in LIST.
1074
1075 Keywords supported: :test :test-not :key
1076
1077 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1078
1079 (autoload 'rassoc-if "cl-seq" "\
1080 Find the first item whose cdr satisfies PREDICATE in LIST.
1081
1082 Keywords supported: :key
1083
1084 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1085
1086 (autoload 'rassoc-if-not "cl-seq" "\
1087 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1088
1089 Keywords supported: :key
1090
1091 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1092
1093 (autoload 'union "cl-seq" "\
1094 Combine LIST1 and LIST2 using a set-union operation.
1095 The resulting list contains all items that appear in either LIST1 or LIST2.
1096 This is a non-destructive function; it makes a copy of the data if necessary
1097 to avoid corrupting the original LIST1 and LIST2.
1098
1099 Keywords supported: :test :test-not :key
1100
1101 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1102
1103 (autoload 'nunion "cl-seq" "\
1104 Combine LIST1 and LIST2 using a set-union operation.
1105 The resulting list contains all items that appear in either LIST1 or LIST2.
1106 This is a destructive function; it reuses the storage of LIST1 and LIST2
1107 whenever possible.
1108
1109 Keywords supported: :test :test-not :key
1110
1111 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1112
1113 (autoload 'intersection "cl-seq" "\
1114 Combine LIST1 and LIST2 using a set-intersection operation.
1115 The resulting list contains all items that appear in both LIST1 and LIST2.
1116 This is a non-destructive function; it makes a copy of the data if necessary
1117 to avoid corrupting the original LIST1 and LIST2.
1118
1119 Keywords supported: :test :test-not :key
1120
1121 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1122
1123 (autoload 'nintersection "cl-seq" "\
1124 Combine LIST1 and LIST2 using a set-intersection operation.
1125 The resulting list contains all items that appear in both LIST1 and LIST2.
1126 This is a destructive function; it reuses the storage of LIST1 and LIST2
1127 whenever possible.
1128
1129 Keywords supported: :test :test-not :key
1130
1131 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1132
1133 (autoload 'set-difference "cl-seq" "\
1134 Combine LIST1 and LIST2 using a set-difference operation.
1135 The resulting list contains all items that appear in LIST1 but not LIST2.
1136 This is a non-destructive function; it makes a copy of the data if necessary
1137 to avoid corrupting the original LIST1 and LIST2.
1138
1139 Keywords supported: :test :test-not :key
1140
1141 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1142
1143 (autoload 'nset-difference "cl-seq" "\
1144 Combine LIST1 and LIST2 using a set-difference operation.
1145 The resulting list contains all items that appear in LIST1 but not LIST2.
1146 This is a destructive function; it reuses the storage of LIST1 and LIST2
1147 whenever possible.
1148
1149 Keywords supported: :test :test-not :key
1150
1151 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1152
1153 (autoload 'set-exclusive-or "cl-seq" "\
1154 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1155 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1156 This is a non-destructive function; it makes a copy of the data if necessary
1157 to avoid corrupting the original LIST1 and LIST2.
1158
1159 Keywords supported: :test :test-not :key
1160
1161 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1162
1163 (autoload 'nset-exclusive-or "cl-seq" "\
1164 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1165 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1166 This is a destructive function; it reuses the storage of LIST1 and LIST2
1167 whenever possible.
1168
1169 Keywords supported: :test :test-not :key
1170
1171 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1172
1173 (autoload 'subsetp "cl-seq" "\
1174 Return true if LIST1 is a subset of LIST2.
1175 I.e., if every element of LIST1 also appears in LIST2.
1176
1177 Keywords supported: :test :test-not :key
1178
1179 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1180
1181 (autoload 'subst-if "cl-seq" "\
1182 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1183 Return a copy of TREE with all matching elements replaced by NEW.
1184
1185 Keywords supported: :key
1186
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1188
1189 (autoload 'subst-if-not "cl-seq" "\
1190 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1191 Return a copy of TREE with all non-matching elements replaced by NEW.
1192
1193 Keywords supported: :key
1194
1195 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1196
1197 (autoload 'nsubst "cl-seq" "\
1198 Substitute NEW for OLD everywhere in TREE (destructively).
1199 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1200 to `setcar').
1201
1202 Keywords supported: :test :test-not :key
1203
1204 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1205
1206 (autoload 'nsubst-if "cl-seq" "\
1207 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1208 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1209
1210 Keywords supported: :key
1211
1212 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1213
1214 (autoload 'nsubst-if-not "cl-seq" "\
1215 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1216 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1217
1218 Keywords supported: :key
1219
1220 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1221
1222 (autoload 'sublis "cl-seq" "\
1223 Perform substitutions indicated by ALIST in TREE (non-destructively).
1224 Return a copy of TREE with all matching elements replaced.
1225
1226 Keywords supported: :test :test-not :key
1227
1228 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1229
1230 (autoload 'nsublis "cl-seq" "\
1231 Perform substitutions indicated by ALIST in TREE (destructively).
1232 Any matching element of TREE is changed via a call to `setcar'.
1233
1234 Keywords supported: :test :test-not :key
1235
1236 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1237
1238 (autoload 'tree-equal "cl-seq" "\
1239 Return t if trees TREE1 and TREE2 have `eql' leaves.
1240 Atoms are compared by `eql'; cons cells are compared recursively.
1241
1242 Keywords supported: :test :test-not :key
1243
1244 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1245
1246 ;;;***
1247 \f
1248 ;; Local Variables:
1249 ;; version-control: never
1250 ;; no-byte-compile: t
1251 ;; no-update-autoloads: t
1252 ;; coding: utf-8
1253 ;; End:
1254 ;;; cl-loaddefs.el ends here