*** empty log message ***
[bpt/emacs.git] / lisp / cl.el
1 ;;; cl.el --- Common-Lisp extensions for GNU Emacs Lisp.
2
3 ;; Copyright (C) 1987, 1988, 1989 Free Software Foundation, Inc.
4
5 ;; Author: Cesar Quiroz <quiroz@cs.rochester.edu>
6 ;; Keywords: extensions
7
8 (defvar cl-version "2.0 beta 29 October 1989")
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is distributed in the hope that it will be useful,
13 ;; but WITHOUT ANY WARRANTY. No author or distributor
14 ;; accepts responsibility to anyone for the consequences of using it
15 ;; or for whether it serves any particular purpose or works at all,
16 ;; unless he says so in writing. Refer to the GNU Emacs General Public
17 ;; License for full details.
18
19 ;; Everyone is granted permission to copy, modify and redistribute
20 ;; GNU Emacs, but only under the conditions described in the
21 ;; GNU Emacs General Public License. A copy of this license is
22 ;; supposed to have been given to you along with GNU Emacs so you
23 ;; can know your rights and responsibilities. It should be in a
24 ;; file named COPYING. Among other things, the copyright notice
25 ;; and this notice must be preserved on all copies.
26
27 ;;; Commentary:
28
29 ;;;; These are extensions to Emacs Lisp that provide some form of
30 ;;;; Common Lisp compatibility, beyond what is already built-in
31 ;;;; in Emacs Lisp.
32 ;;;;
33 ;;;; When developing them, I had the code spread among several files.
34 ;;;; This file 'cl.el' is a concatenation of those original files,
35 ;;;; minus some declarations that became redundant. The marks between
36 ;;;; the original files can be found easily, as they are lines that
37 ;;;; begin with four semicolons (as this does). The names of the
38 ;;;; original parts follow the four semicolons in uppercase, those
39 ;;;; names are GLOBAL, SYMBOLS, LISTS, SEQUENCES, CONDITIONALS,
40 ;;;; ITERATIONS, MULTIPLE VALUES, ARITH, SETF and DEFSTRUCT. If you
41 ;;;; add functions to this file, you might want to put them in a place
42 ;;;; that is compatible with the division above (or invent your own
43 ;;;; categories).
44 ;;;;
45 ;;;; To compile this file, make sure you load it first. This is
46 ;;;; because many things are implemented as macros and now that all
47 ;;;; the files are concatenated together one cannot ensure that
48 ;;;; declaration always precedes use.
49 ;;;;
50 \f
51 ;;;; GLOBAL
52 ;;;; This file provides utilities and declarations that are global
53 ;;;; to Common Lisp and so might be used by more than one of the
54 ;;;; other libraries. Especially, I intend to keep here some
55 ;;;; utilities that help parsing/destructuring some difficult calls.
56 ;;;;
57 ;;;;
58 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
59 ;;;; (quiroz@cs.rochester.edu)
60
61 ;;; Too many pieces of the rest of this package use psetq. So it is unwise to
62 ;;; use here anything but plain Emacs Lisp! There is a neater recursive form
63 ;;; for the algorithm that deals with the bodies.
64
65 ;;; Code:
66
67 (defmacro psetq (&rest body)
68 "(psetq {var value }...) => nil
69 Like setq, but all the values are computed before any assignment is made."
70 (let ((length (length body)))
71 (cond ((/= (% length 2) 0)
72 (error "psetq needs an even number of arguments, %d given"
73 length))
74 ((null body)
75 '())
76 (t
77 (list 'prog1 nil
78 (let ((setqs '())
79 (bodyforms (reverse body)))
80 (while bodyforms
81 (let* ((value (car bodyforms))
82 (place (cadr bodyforms)))
83 (setq bodyforms (cddr bodyforms))
84 (if (null setqs)
85 (setq setqs (list 'setq place value))
86 (setq setqs (list 'setq place
87 (list 'prog1 value
88 setqs))))))
89 setqs))))))
90 \f
91 ;;; utilities
92 ;;;
93 ;;; pair-with-newsyms takes a list and returns a list of lists of the
94 ;;; form (newsym form), such that a let* can then bind the evaluation
95 ;;; of the forms to the newsyms. The idea is to guarantee correct
96 ;;; order of evaluation of the subforms of a setf. It also returns a
97 ;;; list of the newsyms generated, in the corresponding order.
98
99 (defun pair-with-newsyms (oldforms)
100 "PAIR-WITH-NEWSYMS OLDFORMS
101 The top-level components of the list oldforms are paired with fresh
102 symbols, the pairings list and the newsyms list are returned."
103 (do ((ptr oldforms (cdr ptr))
104 (bindings '())
105 (newsyms '()))
106 ((endp ptr) (values (nreverse bindings) (nreverse newsyms)))
107 (let ((newsym (gentemp)))
108 (setq bindings (cons (list newsym (car ptr)) bindings))
109 (setq newsyms (cons newsym newsyms)))))
110
111 (defun zip-lists (evens odds)
112 "Merge two lists EVENS and ODDS, taking elts from each list alternatingly.
113 EVENS and ODDS are two lists. ZIP-LISTS constructs a new list, whose
114 even numbered elements (0,2,...) come from EVENS and whose odd numbered
115 elements (1,3,...) come from ODDS.
116 The construction stops when the shorter list is exhausted."
117 (do* ((p0 evens (cdr p0))
118 (p1 odds (cdr p1))
119 (even (car p0) (car p0))
120 (odd (car p1) (car p1))
121 (result '()))
122 ((or (endp p0) (endp p1))
123 (nreverse result))
124 (setq result
125 (cons odd (cons even result)))))
126
127 (defun unzip-list (list)
128 "Extract even and odd elements of LIST into two separate lists.
129 The argument LIST is separated in two strands, the even and the odd
130 numbered elements. Numbering starts with 0, so the first element
131 belongs in EVENS. No check is made that there is an even number of
132 elements to start with."
133 (do* ((ptr list (cddr ptr))
134 (this (car ptr) (car ptr))
135 (next (cadr ptr) (cadr ptr))
136 (evens '())
137 (odds '()))
138 ((endp ptr)
139 (values (nreverse evens) (nreverse odds)))
140 (setq evens (cons this evens))
141 (setq odds (cons next odds))))
142 \f
143 (defun reassemble-argslists (argslists)
144 "(reassemble-argslists ARGSLISTS) => a list of lists
145 ARGSLISTS is a list of sequences. Return a list of lists, the first
146 sublist being all the entries coming from ELT 0 of the original
147 sublists, the next those coming from ELT 1 and so on, until the
148 shortest list is exhausted."
149 (let* ((minlen (apply 'min (mapcar 'length argslists)))
150 (result '()))
151 (dotimes (i minlen (nreverse result))
152 ;; capture all the elements at index i
153 (setq result
154 (cons (mapcar (function (lambda (sublist) (elt sublist i)))
155 argslists)
156 result)))))
157
158 \f
159 ;;; Checking that a list of symbols contains no duplicates is a common
160 ;;; task when checking the legality of some macros. The check for 'eq
161 ;;; pairs can be too expensive, as it is quadratic on the length of
162 ;;; the list. I use a 4-pass, linear, counting approach. It surely
163 ;;; loses on small lists (less than 5 elements?), but should win for
164 ;;; larger lists. The fourth pass could be eliminated.
165 ;;; 10 dec 1986. Emacs Lisp has no REMPROP, so I just eliminated the
166 ;;; 4th pass.
167 (defun duplicate-symbols-p (list)
168 "Find all symbols appearing more than once in LIST.
169 Return a list of all such duplicates; nil if there are no duplicates."
170 (let ((duplicates '()) ;result built here
171 (propname (gensym)) ;we use a fresh property
172 )
173 ;; check validity
174 (unless (and (listp list)
175 (every 'symbolp list))
176 (error "a list of symbols is needed"))
177 ;; pass 1: mark
178 (dolist (x list)
179 (put x propname 0))
180 ;; pass 2: count
181 (dolist (x list)
182 (put x propname (1+ (get x propname))))
183 ;; pass 3: collect
184 (dolist (x list)
185 (if (> (get x propname) 1)
186 (setq duplicates (cons x duplicates))))
187 ;; pass 4: unmark. eliminated.
188 ;; (dolist (x list) (remprop x propname))
189 ;; return result
190 duplicates))
191
192 ;;;; end of cl-global.el
193 \f
194 ;;;; SYMBOLS
195 ;;;; This file provides the gentemp function, which generates fresh
196 ;;;; symbols, plus some other minor Common Lisp symbol tools.
197 ;;;;
198 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
199 ;;;; (quiroz@cs.rochester.edu)
200
201 ;;; Keywords. There are no packages in Emacs Lisp, so this is only a
202 ;;; kludge around to let things be "as if" a keyword package was around.
203
204 (defmacro defkeyword (x &optional docstring)
205 "Make symbol X a keyword (symbol whose value is itself).
206 Optional second arg DOCSTRING is a documentation string for it."
207 (cond ((symbolp x)
208 (list 'defconst x (list 'quote x) docstring))
209 (t
210 (error "`%s' is not a symbol" (prin1-to-string x)))))
211
212 (defun keywordp (sym)
213 "Return t if SYM is a keyword."
214 (if (and (symbolp sym) (char-equal (aref (symbol-name sym) 0) ?\:))
215 ;; looks like one, make sure value is right
216 (set sym sym)
217 nil))
218
219 (defun keyword-of (sym)
220 "Return a keyword that is naturally associated with symbol SYM.
221 If SYM is keyword, the value is SYM.
222 Otherwise it is a keyword whose name is `:' followed by SYM's name."
223 (cond ((keywordp sym)
224 sym)
225 ((symbolp sym)
226 (let ((newsym (intern (concat ":" (symbol-name sym)))))
227 (set newsym newsym)))
228 (t
229 (error "expected a symbol, not `%s'" (prin1-to-string sym)))))
230 \f
231 ;;; Temporary symbols.
232 ;;;
233
234 (defvar *gentemp-index* 0
235 "Integer used by `gentemp' to produce new names.")
236
237 (defvar *gentemp-prefix* "T$$_"
238 "Names generated by `gentemp begin' with this string by default.")
239
240 (defun gentemp (&optional prefix oblist)
241 "Generate a fresh interned symbol.
242 There are two optional arguments, PREFIX and OBLIST. PREFIX is the string
243 that begins the new name, OBLIST is the obarray used to search for old
244 names. The defaults are just right, YOU SHOULD NEVER NEED THESE ARGUMENTS
245 IN YOUR OWN CODE."
246 (if (null prefix)
247 (setq prefix *gentemp-prefix*))
248 (if (null oblist)
249 (setq oblist obarray)) ;default for the intern functions
250 (let ((newsymbol nil)
251 (newname))
252 (while (not newsymbol)
253 (setq newname (concat prefix *gentemp-index*))
254 (setq *gentemp-index* (+ *gentemp-index* 1))
255 (if (not (intern-soft newname oblist))
256 (setq newsymbol (intern newname oblist))))
257 newsymbol))
258 \f
259 (defvar *gensym-index* 0
260 "Integer used by `gensym' to produce new names.")
261
262 (defvar *gensym-prefix* "G$$_"
263 "Names generated by `gensym' begin with this string by default.")
264
265 (defun gensym (&optional prefix)
266 "Generate a fresh uninterned symbol.
267 Optional arg PREFIX is the string that begins the new name. Most people
268 take just the default, except when debugging needs suggest otherwise."
269 (if (null prefix)
270 (setq prefix *gensym-prefix*))
271 (let ((newsymbol nil)
272 (newname ""))
273 (while (not newsymbol)
274 (setq newname (concat prefix *gensym-index*))
275 (setq *gensym-index* (+ *gensym-index* 1))
276 (if (not (intern-soft newname))
277 (setq newsymbol (make-symbol newname))))
278 newsymbol))
279
280 ;;;; end of cl-symbols.el
281 \f
282 ;;;; CONDITIONALS
283 ;;;; This file provides some of the conditional constructs of
284 ;;;; Common Lisp. Total compatibility is again impossible, as the
285 ;;;; 'if' form is different in both languages, so only a good
286 ;;;; approximation is desired.
287 ;;;;
288 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
289 ;;;; (quiroz@cs.rochester.edu)
290
291 ;;; indentation info
292 (put 'case 'lisp-indent-function 1)
293 (put 'ecase 'lisp-indent-function 1)
294 (put 'when 'lisp-indent-function 1)
295 (put 'unless 'lisp-indent-function 1)
296
297 ;;; WHEN and UNLESS
298 ;;; These two forms are simplified ifs, with a single branch.
299
300 (defmacro when (condition &rest body)
301 "(when CONDITION . BODY) => evaluate BODY if CONDITION is true."
302 (list* 'if (list 'not condition) '() body))
303
304 (defmacro unless (condition &rest body)
305 "(unless CONDITION . BODY) => evaluate BODY if CONDITION is false."
306 (list* 'if condition '() body))
307 \f
308 ;;; CASE and ECASE
309 ;;; CASE selects among several clauses, based on the value (evaluated)
310 ;;; of a expression and a list of (unevaluated) key values. ECASE is
311 ;;; the same, but signals an error if no clause is activated.
312
313 (defmacro case (expr &rest cases)
314 "(case EXPR . CASES) => evals EXPR, chooses from CASES on that value.
315 EXPR -> any form
316 CASES -> list of clauses, non empty
317 CLAUSE -> HEAD . BODY
318 HEAD -> t = catch all, must be last clause
319 -> otherwise = same as t
320 -> nil = illegal
321 -> atom = activated if (eql EXPR HEAD)
322 -> list of atoms = activated if (memq EXPR HEAD)
323 BODY -> list of forms, implicit PROGN is built around it.
324 EXPR is evaluated only once."
325 (let* ((newsym (gentemp))
326 (clauses (case-clausify cases newsym)))
327 ;; convert case into a cond inside a let
328 (list 'let
329 (list (list newsym expr))
330 (list* 'cond (nreverse clauses)))))
331
332 (defmacro ecase (expr &rest cases)
333 "(ecase EXPR . CASES) => like `case', but error if no case fits.
334 `t'-clauses are not allowed."
335 (let* ((newsym (gentemp))
336 (clauses (case-clausify cases newsym)))
337 ;; check that no 't clause is present.
338 ;; case-clausify would put one such at the beginning of clauses
339 (if (eq (caar clauses) t)
340 (error "no clause-head should be `t' or `otherwise' for `ecase'"))
341 ;; insert error-catching clause
342 (setq clauses
343 (cons
344 (list 't (list 'error
345 "ecase on %s = %s failed to take any branch"
346 (list 'quote expr)
347 (list 'prin1-to-string newsym)))
348 clauses))
349 ;; generate code as usual
350 (list 'let
351 (list (list newsym expr))
352 (list* 'cond (nreverse clauses)))))
353
354 \f
355 (defun case-clausify (cases newsym)
356 "CASE-CLAUSIFY CASES NEWSYM => clauses for a 'cond'
357 Converts the CASES of a [e]case macro into cond clauses to be
358 evaluated inside a let that binds NEWSYM. Returns the clauses in
359 reverse order."
360 (do* ((currentpos cases (cdr currentpos))
361 (nextpos (cdr cases) (cdr nextpos))
362 (curclause (car cases) (car currentpos))
363 (result '()))
364 ((endp currentpos) result)
365 (let ((head (car curclause))
366 (body (cdr curclause)))
367 ;; construct a cond-clause according to the head
368 (cond ((null head)
369 (error "case clauses cannot have null heads: `%s'"
370 (prin1-to-string curclause)))
371 ((or (eq head 't)
372 (eq head 'otherwise))
373 ;; check it is the last clause
374 (if (not (endp nextpos))
375 (error "clause with `t' or `otherwise' head must be last"))
376 ;; accept this clause as a 't' for cond
377 (setq result (cons (cons 't body) result)))
378 ((atom head)
379 (setq result
380 (cons (cons (list 'eql newsym (list 'quote head)) body)
381 result)))
382 ((listp head)
383 (setq result
384 (cons (cons (list 'memq newsym (list 'quote head)) body)
385 result)))
386 (t
387 ;; catch-all for this parser
388 (error "don't know how to parse case clause `%s'"
389 (prin1-to-string head)))))))
390
391 ;;;; end of cl-conditionals.el
392 \f
393 ;;;; ITERATIONS
394 ;;;; This file provides simple iterative macros (a la Common Lisp)
395 ;;;; constructed on the basis of let, let* and while, which are the
396 ;;;; primitive binding/iteration constructs of Emacs Lisp
397 ;;;;
398 ;;;; The Common Lisp iterations use to have a block named nil
399 ;;;; wrapped around them, and allow declarations at the beginning
400 ;;;; of their bodies and you can return a value using (return ...).
401 ;;;; Nothing of the sort exists in Emacs Lisp, so I haven't tried
402 ;;;; to imitate these behaviors.
403 ;;;;
404 ;;;; Other than the above, the semantics of Common Lisp are
405 ;;;; correctly reproduced to the extent this was reasonable.
406 ;;;;
407 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
408 ;;;; (quiroz@cs.rochester.edu)
409
410 ;;; some lisp-indentation information
411 (put 'do 'lisp-indent-function 2)
412 (put 'do* 'lisp-indent-function 2)
413 (put 'dolist 'lisp-indent-function 1)
414 (put 'dotimes 'lisp-indent-function 1)
415 (put 'do-symbols 'lisp-indent-function 1)
416 (put 'do-all-symbols 'lisp-indent-function 1)
417
418 \f
419 (defmacro do (stepforms endforms &rest body)
420 "(do STEPFORMS ENDFORMS . BODY): Iterate BODY, stepping some local
421 variables. STEPFORMS must be a list of symbols or lists. In the second
422 case, the lists must start with a symbol and contain up to two more forms.
423 In the STEPFORMS, a symbol is the same as a (symbol). The other two forms
424 are the initial value (def. NIL) and the form to step (def. itself).
425
426 The values used by initialization and stepping are computed in parallel.
427 The ENDFORMS are a list (CONDITION . ENDBODY). If the CONDITION evaluates
428 to true in any iteration, ENDBODY is evaluated and the last form in it is
429 returned.
430
431 The BODY (which may be empty) is evaluated at every iteration, with the
432 symbols of the STEPFORMS bound to the initial or stepped values."
433
434 ;; check the syntax of the macro
435 (and (check-do-stepforms stepforms)
436 (check-do-endforms endforms))
437 ;; construct emacs-lisp equivalent
438 (let ((initlist (extract-do-inits stepforms))
439 (steplist (extract-do-steps stepforms))
440 (endcond (car endforms))
441 (endbody (cdr endforms)))
442 (cons 'let (cons initlist
443 (cons (cons 'while (cons (list 'not endcond)
444 (append body steplist)))
445 (append endbody))))))
446
447 \f
448 (defmacro do* (stepforms endforms &rest body)
449 "`do*' is to `do' as `let*' is to `let'.
450 STEPFORMS must be a list of symbols or lists. In the second case, the
451 lists must start with a symbol and contain up to two more forms. In the
452 STEPFORMS, a symbol is the same as a (symbol). The other two forms are
453 the initial value (def. NIL) and the form to step (def. itself).
454
455 Initializations and steppings are done in the sequence they are written.
456
457 The ENDFORMS are a list (CONDITION . ENDBODY). If the CONDITION evaluates
458 to true in any iteration, ENDBODY is evaluated and the last form in it is
459 returned.
460
461 The BODY (which may be empty) is evaluated at every iteration, with
462 the symbols of the STEPFORMS bound to the initial or stepped values."
463 ;; check the syntax of the macro
464 (and (check-do-stepforms stepforms)
465 (check-do-endforms endforms))
466 ;; construct emacs-lisp equivalent
467 (let ((initlist (extract-do-inits stepforms))
468 (steplist (extract-do*-steps stepforms))
469 (endcond (car endforms))
470 (endbody (cdr endforms)))
471 (cons 'let* (cons initlist
472 (cons (cons 'while (cons (list 'not endcond)
473 (append body steplist)))
474 (append endbody))))))
475
476 \f
477 ;;; DO and DO* share the syntax checking functions that follow.
478
479 (defun check-do-stepforms (forms)
480 "True if FORMS is a valid stepforms for the do[*] macro (q.v.)"
481 (if (nlistp forms)
482 (error "init/step form for do[*] should be a list, not `%s'"
483 (prin1-to-string forms))
484 (mapcar
485 (function
486 (lambda (entry)
487 (if (not (or (symbolp entry)
488 (and (listp entry)
489 (symbolp (car entry))
490 (< (length entry) 4))))
491 (error "init/step must be %s, not `%s'"
492 "symbol or (symbol [init [step]])"
493 (prin1-to-string entry)))))
494 forms)))
495
496 (defun check-do-endforms (forms)
497 "True if FORMS is a valid endforms for the do[*] macro (q.v.)"
498 (if (nlistp forms)
499 (error "termination form for do macro should be a list, not `%s'"
500 (prin1-to-string forms))))
501
502 (defun extract-do-inits (forms)
503 "Returns a list of the initializations (for do) in FORMS
504 (a stepforms, see the do macro).
505 FORMS is assumed syntactically valid."
506 (mapcar
507 (function
508 (lambda (entry)
509 (cond ((symbolp entry)
510 (list entry nil))
511 ((listp entry)
512 (list (car entry) (cadr entry))))))
513 forms))
514
515 ;;; There used to be a reason to deal with DO differently than with
516 ;;; DO*. The writing of PSETQ has made it largely unnecessary.
517
518 (defun extract-do-steps (forms)
519 "EXTRACT-DO-STEPS FORMS => an s-expr.
520 FORMS is the stepforms part of a DO macro (q.v.). This function constructs
521 an s-expression that does the stepping at the end of an iteration."
522 (list (cons 'psetq (select-stepping-forms forms))))
523
524 (defun extract-do*-steps (forms)
525 "EXTRACT-DO*-STEPS FORMS => an s-expr.
526 FORMS is the stepforms part of a DO* macro (q.v.). This function constructs
527 an s-expression that does the stepping at the end of an iteration."
528 (list (cons 'setq (select-stepping-forms forms))))
529
530 (defun select-stepping-forms (forms)
531 "Separate only the forms that cause stepping."
532 (let ((result '()) ;ends up being (... var form ...)
533 (ptr forms) ;to traverse the forms
534 entry ;to explore each form in turn
535 )
536 (while ptr ;(not (endp entry)) might be safer
537 (setq entry (car ptr))
538 (cond ((and (listp entry) (= (length entry) 3))
539 (setq result (append ;append in reverse order!
540 (list (caddr entry) (car entry))
541 result))))
542 (setq ptr (cdr ptr))) ;step in the list of forms
543 (nreverse result)))
544 \f
545 ;;; Other iterative constructs
546
547 (defmacro dolist (stepform &rest body)
548 "(dolist (VAR LIST [RESULTFORM]) . BODY): do BODY for each elt of LIST.
549 The RESULTFORM defaults to nil. The VAR is bound to successive elements
550 of the value of LIST and remains bound (to the nil value) when the
551 RESULTFORM is evaluated."
552 ;; check sanity
553 (cond
554 ((nlistp stepform)
555 (error "stepform for `dolist' should be (VAR LIST [RESULT]), not `%s'"
556 (prin1-to-string stepform)))
557 ((not (symbolp (car stepform)))
558 (error "first component of stepform should be a symbol, not `%s'"
559 (prin1-to-string (car stepform))))
560 ((> (length stepform) 3)
561 (error "too many components in stepform `%s'"
562 (prin1-to-string stepform))))
563 ;; generate code
564 (let* ((var (car stepform))
565 (listform (cadr stepform))
566 (resultform (caddr stepform)))
567 (list 'progn
568 (list 'mapcar
569 (list 'function
570 (cons 'lambda (cons (list var) body)))
571 listform)
572 (list 'let
573 (list (list var nil))
574 resultform))))
575
576 (defmacro dotimes (stepform &rest body)
577 "(dotimes (VAR COUNTFORM [RESULTFORM]) . BODY): Repeat BODY, counting in VAR.
578 The COUNTFORM should return a positive integer. The VAR is bound to
579 successive integers from 0 to COUNTFORM - 1 and the BODY is repeated for
580 each of them. At the end, the RESULTFORM is evaluated and its value
581 returned. During this last evaluation, the VAR is still bound, and its
582 value is the number of times the iteration occurred. An omitted RESULTFORM
583 defaults to nil."
584 ;; check sanity
585 (cond
586 ((nlistp stepform)
587 (error "stepform for `dotimes' should be (VAR COUNT [RESULT]), not `%s'"
588 (prin1-to-string stepform)))
589 ((not (symbolp (car stepform)))
590 (error "first component of stepform should be a symbol, not `%s'"
591 (prin1-to-string (car stepform))))
592 ((> (length stepform) 3)
593 (error "too many components in stepform `%s'"
594 (prin1-to-string stepform))))
595 ;; generate code
596 (let* ((var (car stepform))
597 (countform (cadr stepform))
598 (resultform (caddr stepform))
599 (newsym (gentemp)))
600 (list
601 'let* (list (list newsym countform))
602 (list*
603 'do*
604 (list (list var 0 (list '+ var 1)))
605 (list (list '>= var newsym) resultform)
606 body))))
607 \f
608 (defmacro do-symbols (stepform &rest body)
609 "(do_symbols (VAR [OBARRAY [RESULTFORM]]) . BODY)
610 The VAR is bound to each of the symbols in OBARRAY (def. obarray) and
611 the BODY is repeatedly performed for each of those bindings. At the
612 end, RESULTFORM (def. nil) is evaluated and its value returned.
613 During this last evaluation, the VAR is still bound and its value is nil.
614 See also the function `mapatoms'."
615 ;; check sanity
616 (cond
617 ((nlistp stepform)
618 (error "stepform for `do-symbols' should be (VAR OBARRAY [RESULT]), not `%s'"
619 (prin1-to-string stepform)))
620 ((not (symbolp (car stepform)))
621 (error "first component of stepform should be a symbol, not `%s'"
622 (prin1-to-string (car stepform))))
623 ((> (length stepform) 3)
624 (error "too many components in stepform `%s'"
625 (prin1-to-string stepform))))
626 ;; generate code
627 (let* ((var (car stepform))
628 (oblist (cadr stepform))
629 (resultform (caddr stepform)))
630 (list 'progn
631 (list 'mapatoms
632 (list 'function
633 (cons 'lambda (cons (list var) body)))
634 oblist)
635 (list 'let
636 (list (list var nil))
637 resultform))))
638
639
640 (defmacro do-all-symbols (stepform &rest body)
641 "(do-all-symbols (VAR [RESULTFORM]) . BODY)
642 Is the same as (do-symbols (VAR obarray RESULTFORM) . BODY)."
643 (list*
644 'do-symbols
645 (list (car stepform) 'obarray (cadr stepform))
646 body))
647 \f
648 (defmacro loop (&rest body)
649 "(loop . BODY) repeats BODY indefinitely and does not return.
650 Normally BODY uses `throw' or `signal' to cause an exit.
651 The forms in BODY should be lists, as non-lists are reserved for new features."
652 ;; check that the body doesn't have atomic forms
653 (if (nlistp body)
654 (error "body of `loop' should be a list of lists or nil")
655 ;; ok, it is a list, check for atomic components
656 (mapcar
657 (function (lambda (component)
658 (if (nlistp component)
659 (error "components of `loop' should be lists"))))
660 body)
661 ;; build the infinite loop
662 (cons 'while (cons 't body))))
663
664 ;;;; end of cl-iterations.el
665 \f
666 ;;;; LISTS
667 ;;;; This file provides some of the lists machinery of Common-Lisp
668 ;;;; in a way compatible with Emacs Lisp. Especially, see the the
669 ;;;; typical c[ad]*r functions.
670 ;;;;
671 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
672 ;;;; (quiroz@cs.rochester.edu)
673
674
675
676 ;;; To make these faster, we define them using defsubst. This directs the
677 ;;; compiler to open-code these functions.
678
679 ;;; Synonyms for list functions
680 (defsubst first (x)
681 "Synonym for `car'"
682 (car x))
683
684 (defsubst second (x)
685 "Return the second element of the list LIST."
686 (nth 1 x))
687
688 (defsubst third (x)
689 "Return the third element of the list LIST."
690 (nth 2 x))
691
692 (defsubst fourth (x)
693 "Return the fourth element of the list LIST."
694 (nth 3 x))
695
696 (defsubst fifth (x)
697 "Return the fifth element of the list LIST."
698 (nth 4 x))
699
700 (defsubst sixth (x)
701 "Return the sixth element of the list LIST."
702 (nth 5 x))
703
704 (defsubst seventh (x)
705 "Return the seventh element of the list LIST."
706 (nth 6 x))
707
708 (defsubst eighth (x)
709 "Return the eighth element of the list LIST."
710 (nth 7 x))
711
712 (defsubst ninth (x)
713 "Return the ninth element of the list LIST."
714 (nth 8 x))
715
716 (defsubst tenth (x)
717 "Return the tenth element of the list LIST."
718 (nth 9 x))
719
720 (defsubst rest (x)
721 "Synonym for `cdr'"
722 (cdr x))
723 \f
724 (defun endp (x)
725 "t if X is nil, nil if X is a cons; error otherwise."
726 (if (listp x)
727 (null x)
728 (error "endp received a non-cons, non-null argument `%s'"
729 (prin1-to-string x))))
730
731 (defun last (x)
732 "Returns the last link in the list LIST."
733 (if (nlistp x)
734 (error "arg to `last' must be a list"))
735 (do ((current-cons x (cdr current-cons))
736 (next-cons (cdr x) (cdr next-cons)))
737 ((endp next-cons) current-cons)))
738
739 (defun list-length (x) ;taken from CLtL sect. 15.2
740 "Returns the length of a non-circular list, or `nil' for a circular one."
741 (do ((n 0) ;counter
742 (fast x (cddr fast)) ;fast pointer, leaps by 2
743 (slow x (cdr slow)) ;slow pointer, leaps by 1
744 (ready nil)) ;indicates termination
745 (ready n)
746 (cond ((endp fast)
747 (setq ready t)) ;return n
748 ((endp (cdr fast))
749 (setq n (+ n 1))
750 (setq ready t)) ;return n+1
751 ((and (eq fast slow) (> n 0))
752 (setq n nil)
753 (setq ready t)) ;return nil
754 (t
755 (setq n (+ n 2)))))) ;just advance counter
756 \f
757 (defun butlast (list &optional n)
758 "Return a new list like LIST but sans the last N elements.
759 N defaults to 1. If the list doesn't have N elements, nil is returned."
760 (if (null n) (setq n 1))
761 (reverse (nthcdr n (reverse list))))
762
763 (defun list* (arg &rest others)
764 "Return a new list containing the first arguments consed onto the last arg.
765 Thus, (list* 1 2 3 '(a b)) returns (1 2 3 a b)."
766 (if (null others)
767 arg
768 (let* ((allargs (cons arg others))
769 (front (butlast allargs))
770 (back (last allargs)))
771 (rplacd (last front) (car back))
772 front)))
773
774 (defun adjoin (item list)
775 "Return a list which contains ITEM but is otherwise like LIST.
776 If ITEM occurs in LIST, the value is LIST. Otherwise it is (cons ITEM LIST).
777 When comparing ITEM against elements, `eql' is used."
778 (if (memq item list)
779 list
780 (cons item list)))
781
782 (defun ldiff (list sublist)
783 "Return a new list like LIST but sans SUBLIST.
784 SUBLIST must be one of the links in LIST; otherwise the value is LIST itself."
785 (do ((result '())
786 (curcons list (cdr curcons)))
787 ((or (endp curcons) (eq curcons sublist))
788 (reverse result))
789 (setq result (cons (car curcons) result))))
790 \f
791 ;;; The popular c[ad]*r functions and other list accessors.
792
793 ;;; To implement this efficiently, we define them using defsubst,
794 ;;; which directs the compiler to open-code these functions.
795
796 (defsubst caar (X)
797 "Return the car of the car of X."
798 (car (car X)))
799
800 (defsubst cadr (X)
801 "Return the car of the cdr of X."
802 (car (cdr X)))
803
804 (defsubst cdar (X)
805 "Return the cdr of the car of X."
806 (cdr (car X)))
807
808 (defsubst cddr (X)
809 "Return the cdr of the cdr of X."
810 (cdr (cdr X)))
811
812 (defsubst caaar (X)
813 "Return the car of the car of the car of X."
814 (car (car (car X))))
815
816 (defsubst caadr (X)
817 "Return the car of the car of the cdr of X."
818 (car (car (cdr X))))
819
820 (defsubst cadar (X)
821 "Return the car of the cdr of the car of X."
822 (car (cdr (car X))))
823
824 (defsubst cdaar (X)
825 "Return the cdr of the car of the car of X."
826 (cdr (car (car X))))
827
828 (defsubst caddr (X)
829 "Return the car of the cdr of the cdr of X."
830 (car (cdr (cdr X))))
831
832 (defsubst cdadr (X)
833 "Return the cdr of the car of the cdr of X."
834 (cdr (car (cdr X))))
835
836 (defsubst cddar (X)
837 "Return the cdr of the cdr of the car of X."
838 (cdr (cdr (car X))))
839
840 (defsubst cdddr (X)
841 "Return the cdr of the cdr of the cdr of X."
842 (cdr (cdr (cdr X))))
843
844 (defsubst caaaar (X)
845 "Return the car of the car of the car of the car of X."
846 (car (car (car (car X)))))
847
848 (defsubst caaadr (X)
849 "Return the car of the car of the car of the cdr of X."
850 (car (car (car (cdr X)))))
851
852 (defsubst caadar (X)
853 "Return the car of the car of the cdr of the car of X."
854 (car (car (cdr (car X)))))
855
856 (defsubst cadaar (X)
857 "Return the car of the cdr of the car of the car of X."
858 (car (cdr (car (car X)))))
859
860 (defsubst cdaaar (X)
861 "Return the cdr of the car of the car of the car of X."
862 (cdr (car (car (car X)))))
863
864 (defsubst caaddr (X)
865 "Return the car of the car of the cdr of the cdr of X."
866 (car (car (cdr (cdr X)))))
867
868 (defsubst cadadr (X)
869 "Return the car of the cdr of the car of the cdr of X."
870 (car (cdr (car (cdr X)))))
871
872 (defsubst cdaadr (X)
873 "Return the cdr of the car of the car of the cdr of X."
874 (cdr (car (car (cdr X)))))
875
876 (defsubst caddar (X)
877 "Return the car of the cdr of the cdr of the car of X."
878 (car (cdr (cdr (car X)))))
879
880 (defsubst cdadar (X)
881 "Return the cdr of the car of the cdr of the car of X."
882 (cdr (car (cdr (car X)))))
883
884 (defsubst cddaar (X)
885 "Return the cdr of the cdr of the car of the car of X."
886 (cdr (cdr (car (car X)))))
887
888 (defsubst cadddr (X)
889 "Return the car of the cdr of the cdr of the cdr of X."
890 (car (cdr (cdr (cdr X)))))
891
892 (defsubst cddadr (X)
893 "Return the cdr of the cdr of the car of the cdr of X."
894 (cdr (cdr (car (cdr X)))))
895
896 (defsubst cdaddr (X)
897 "Return the cdr of the car of the cdr of the cdr of X."
898 (cdr (car (cdr (cdr X)))))
899
900 (defsubst cdddar (X)
901 "Return the cdr of the cdr of the cdr of the car of X."
902 (cdr (cdr (cdr (car X)))))
903
904 (defsubst cddddr (X)
905 "Return the cdr of the cdr of the cdr of the cdr of X."
906 (cdr (cdr (cdr (cdr X)))))
907 \f
908 ;;; some inverses of the accessors are needed for setf purposes
909
910 (defun setnth (n list newval)
911 "Set (nth N LIST) to NEWVAL. Returns NEWVAL."
912 (rplaca (nthcdr n list) newval))
913
914 (defun setnthcdr (n list newval)
915 "(setnthcdr N LIST NEWVAL) => NEWVAL
916 As a side effect, sets the Nth cdr of LIST to NEWVAL."
917 (cond ((< n 0)
918 (error "N must be 0 or greater, not %d" n))
919 ((= n 0)
920 (rplaca list (car newval))
921 (rplacd list (cdr newval))
922 newval)
923 (t
924 (rplacd (nthcdr (- n 1) list) newval))))
925 \f
926 ;;; A-lists machinery
927
928 (defun acons (key item alist)
929 "Return a new alist with KEY paired with ITEM; otherwise like ALIST.
930 Does not copy ALIST."
931 (cons (cons key item) alist))
932
933 (defun pairlis (keys data &optional alist)
934 "Return a new alist with each elt of KEYS paired with an elt of DATA;
935 optional 3rd arg ALIST is nconc'd at the end. KEYS and DATA must
936 have the same length."
937 (unless (= (length keys) (length data))
938 (error "keys and data should be the same length"))
939 (do* ;;collect keys and data in front of alist
940 ((kptr keys (cdr kptr)) ;traverses the keys
941 (dptr data (cdr dptr)) ;traverses the data
942 (key (car kptr) (car kptr)) ;current key
943 (item (car dptr) (car dptr)) ;current data item
944 (result alist))
945 ((endp kptr) result)
946 (setq result (acons key item result))))
947
948 \f
949 ;;;; SEQUENCES
950 ;;;; Emacs Lisp provides many of the 'sequences' functionality of
951 ;;;; Common Lisp. This file provides a few things that were left out.
952 ;;;;
953
954
955 (defkeyword :test "Used to designate positive (selection) tests.")
956 (defkeyword :test-not "Used to designate negative (rejection) tests.")
957 (defkeyword :key "Used to designate component extractions.")
958 (defkeyword :predicate "Used to define matching of sequence components.")
959 (defkeyword :start "Inclusive low index in sequence")
960 (defkeyword :end "Exclusive high index in sequence")
961 (defkeyword :start1 "Inclusive low index in first of two sequences.")
962 (defkeyword :start2 "Inclusive low index in second of two sequences.")
963 (defkeyword :end1 "Exclusive high index in first of two sequences.")
964 (defkeyword :end2 "Exclusive high index in second of two sequences.")
965 (defkeyword :count "Number of elements to affect.")
966 (defkeyword :from-end "T when counting backwards.")
967 \f
968 (defun some (pred seq &rest moreseqs)
969 "Test PREDICATE on each element of SEQUENCE; is it ever non-nil?
970 Extra args are additional sequences; PREDICATE gets one arg from each
971 sequence and we advance down all the sequences together in lock-step.
972 A sequence means either a list or a vector."
973 (let ((args (reassemble-argslists (list* seq moreseqs))))
974 (do* ((ready nil) ;flag: return when t
975 (result nil) ;resulting value
976 (applyval nil) ;result of applying pred once
977 (remaining args
978 (cdr remaining)) ;remaining argument sets
979 (current (car remaining) ;current argument set
980 (car remaining)))
981 ((or ready (endp remaining)) result)
982 (setq applyval (apply pred current))
983 (when applyval
984 (setq ready t)
985 (setq result applyval)))))
986
987 (defun every (pred seq &rest moreseqs)
988 "Test PREDICATE on each element of SEQUENCE; is it always non-nil?
989 Extra args are additional sequences; PREDICATE gets one arg from each
990 sequence and we advance down all the sequences together in lock-step.
991 A sequence means either a list or a vector."
992 (let ((args (reassemble-argslists (list* seq moreseqs))))
993 (do* ((ready nil) ;flag: return when t
994 (result t) ;resulting value
995 (applyval nil) ;result of applying pred once
996 (remaining args
997 (cdr remaining)) ;remaining argument sets
998 (current (car remaining) ;current argument set
999 (car remaining)))
1000 ((or ready (endp remaining)) result)
1001 (setq applyval (apply pred current))
1002 (unless applyval
1003 (setq ready t)
1004 (setq result nil)))))
1005 \f
1006 (defun notany (pred seq &rest moreseqs)
1007 "Test PREDICATE on each element of SEQUENCE; is it always nil?
1008 Extra args are additional sequences; PREDICATE gets one arg from each
1009 sequence and we advance down all the sequences together in lock-step.
1010 A sequence means either a list or a vector."
1011 (let ((args (reassemble-argslists (list* seq moreseqs))))
1012 (do* ((ready nil) ;flag: return when t
1013 (result t) ;resulting value
1014 (applyval nil) ;result of applying pred once
1015 (remaining args
1016 (cdr remaining)) ;remaining argument sets
1017 (current (car remaining) ;current argument set
1018 (car remaining)))
1019 ((or ready (endp remaining)) result)
1020 (setq applyval (apply pred current))
1021 (when applyval
1022 (setq ready t)
1023 (setq result nil)))))
1024
1025 (defun notevery (pred seq &rest moreseqs)
1026 "Test PREDICATE on each element of SEQUENCE; is it sometimes nil?
1027 Extra args are additional sequences; PREDICATE gets one arg from each
1028 sequence and we advance down all the sequences together in lock-step.
1029 A sequence means either a list or a vector."
1030 (let ((args (reassemble-argslists (list* seq moreseqs))))
1031 (do* ((ready nil) ;flag: return when t
1032 (result nil) ;resulting value
1033 (applyval nil) ;result of applying pred once
1034 (remaining args
1035 (cdr remaining)) ;remaining argument sets
1036 (current (car remaining) ;current argument set
1037 (car remaining)))
1038 ((or ready (endp remaining)) result)
1039 (setq applyval (apply pred current))
1040 (unless applyval
1041 (setq ready t)
1042 (setq result t)))))
1043 \f
1044 ;;; More sequence functions that don't need keyword arguments
1045
1046 (defun concatenate (type &rest sequences)
1047 "(concatenate TYPE &rest SEQUENCES) => a sequence
1048 The sequence returned is of type TYPE (must be 'list, 'string, or 'vector) and
1049 contains the concatenation of the elements of all the arguments, in the order
1050 given."
1051 (let ((sequences (append sequences '(()))))
1052 (case type
1053 (list
1054 (apply (function append) sequences))
1055 (string
1056 (apply (function concat) sequences))
1057 (vector
1058 (apply (function vector) (apply (function append) sequences)))
1059 (t
1060 (error "type for concatenate `%s' not 'list, 'string or 'vector"
1061 (prin1-to-string type))))))
1062
1063 (defun map (type function &rest sequences)
1064 "(map TYPE FUNCTION &rest SEQUENCES) => a sequence
1065 The FUNCTION is called on each set of elements from the SEQUENCES \(stopping
1066 when the shortest sequence is terminated\) and the results are possibly
1067 returned in a sequence of type TYPE \(one of 'list, 'vector, 'string, or nil\)
1068 giving NIL for TYPE gets rid of the values."
1069 (if (not (memq type (list 'list 'string 'vector nil)))
1070 (error "type for map `%s' not 'list, 'string, 'vector or nil"
1071 (prin1-to-string type)))
1072 (let ((argslists (reassemble-argslists sequences))
1073 results)
1074 (if (null type)
1075 (while argslists ;don't bother accumulating
1076 (apply function (car argslists))
1077 (setq argslists (cdr argslists)))
1078 (setq results (mapcar (function (lambda (args) (apply function args)))
1079 argslists))
1080 (case type
1081 (list
1082 results)
1083 (string
1084 (funcall (function concat) results))
1085 (vector
1086 (apply (function vector) results))))))
1087 \f
1088 ;;; an inverse of elt is needed for setf purposes
1089
1090 (defun setelt (seq n newval)
1091 "In SEQUENCE, set the Nth element to NEWVAL. Returns NEWVAL.
1092 A sequence means either a list or a vector."
1093 (let ((l (length seq)))
1094 (if (or (< n 0) (>= n l))
1095 (error "N(%d) should be between 0 and %d" n l)
1096 ;; only two cases need be considered valid, as strings are arrays
1097 (cond ((listp seq)
1098 (setnth n seq newval))
1099 ((arrayp seq)
1100 (aset seq n newval))
1101 (t
1102 (error "SEQ should be a sequence, not `%s'"
1103 (prin1-to-string seq)))))))
1104 \f
1105 ;;; Testing with keyword arguments.
1106 ;;;
1107 ;;; Many of the sequence functions use keywords to denote some stylized
1108 ;;; form of selecting entries in a sequence. The involved arguments
1109 ;;; are collected with a &rest marker (as Emacs Lisp doesn't have a &key
1110 ;;; marker), then they are passed to build-klist, who
1111 ;;; constructs an association list. That association list is used to
1112 ;;; test for satisfaction and matching.
1113
1114 ;;; DON'T USE MEMBER, NOR ANY FUNCTION THAT COULD TAKE KEYWORDS HERE!!!
1115
1116 (defun build-klist (argslist acceptable &optional allow-other-keys)
1117 "Decode a keyword argument list ARGSLIST for keywords in ACCEPTABLE.
1118 ARGSLIST is a list, presumably the &rest argument of a call, whose
1119 even numbered elements must be keywords.
1120 ACCEPTABLE is a list of keywords, the only ones that are truly acceptable.
1121 The result is an alist containing the arguments named by the keywords
1122 in ACCEPTABLE, or an error is signalled, if something failed.
1123 If the third argument (an optional) is non-nil, other keys are acceptable."
1124 ;; check legality of the arguments, then destructure them
1125 (unless (and (listp argslist)
1126 (evenp (length argslist)))
1127 (error "build-klist: odd number of keyword-args"))
1128 (unless (and (listp acceptable)
1129 (every 'keywordp acceptable))
1130 (error "build-klist: second arg should be a list of keywords"))
1131 (multiple-value-bind
1132 (keywords forms)
1133 (unzip-list argslist)
1134 (unless (every 'keywordp keywords)
1135 (error "build-klist: expected keywords, found `%s'"
1136 (prin1-to-string keywords)))
1137 (unless (or allow-other-keys
1138 (every (function (lambda (keyword)
1139 (memq keyword acceptable)))
1140 keywords))
1141 (error "bad keyword[s]: %s not in %s"
1142 (prin1-to-string (mapcan (function (lambda (keyword)
1143 (if (memq keyword acceptable)
1144 nil
1145 (list keyword))))
1146 keywords))
1147 (prin1-to-string acceptable)))
1148 (do* ;;pick up the pieces
1149 ((auxlist ;auxiliary a-list, may
1150 (pairlis keywords forms)) ;contain repetitions and junk
1151 (ptr acceptable (cdr ptr)) ;pointer in acceptable
1152 (this (car ptr) (car ptr)) ;current acceptable keyword
1153 (auxval nil) ;used to move values around
1154 (alist '())) ;used to build the result
1155 ((endp ptr) alist)
1156 ;; if THIS appears in auxlist, use its value
1157 (when (setq auxval (assq this auxlist))
1158 (setq alist (cons auxval alist))))))
1159
1160
1161 (defun extract-from-klist (klist key &optional default)
1162 "(extract-from-klist KLIST KEY [DEFAULT]) => value of KEY or DEFAULT
1163 Extract value associated with KEY in KLIST (return DEFAULT if nil)."
1164 (let ((retrieved (cdr (assq key klist))))
1165 (or retrieved default)))
1166
1167 (defun keyword-argument-supplied-p (klist key)
1168 "(keyword-argument-supplied-p KLIST KEY) => nil or something
1169 NIL if KEY (a keyword) does not appear in the KLIST."
1170 (assq key klist))
1171
1172 (defun add-to-klist (key item klist)
1173 "(ADD-TO-KLIST KEY ITEM KLIST) => new KLIST
1174 Add association (KEY . ITEM) to KLIST."
1175 (setq klist (acons key item klist)))
1176
1177 (defun elt-satisfies-test-p (item elt klist)
1178 "(elt-satisfies-test-p ITEM ELT KLIST) => t or nil
1179 KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1180 True if the given ITEM and ELT satisfy the test."
1181 (let ((test (extract-from-klist klist :test))
1182 (test-not (extract-from-klist klist :test-not))
1183 (keyfn (extract-from-klist klist :key 'identity)))
1184 (cond (test
1185 (funcall test item (funcall keyfn elt)))
1186 (test-not
1187 (not (funcall test-not item (funcall keyfn elt))))
1188 (t ;should never happen
1189 (error "neither :test nor :test-not in `%s'"
1190 (prin1-to-string klist))))))
1191
1192 (defun elt-satisfies-if-p (item klist)
1193 "(elt-satisfies-if-p ITEM KLIST) => t or nil
1194 True if an -if style function was called and ITEM satisfies the
1195 predicate under :predicate in KLIST."
1196 (let ((predicate (extract-from-klist klist :predicate))
1197 (keyfn (extract-from-klist klist :key 'identity)))
1198 (funcall predicate item (funcall keyfn elt))))
1199
1200 (defun elt-satisfies-if-not-p (item klist)
1201 "(elt-satisfies-if-not-p ITEM KLIST) => t or nil
1202 KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1203 True if an -if-not style function was called and ITEM does not satisfy
1204 the predicate under :predicate in KLIST."
1205 (let ((predicate (extract-from-klist klist :predicate))
1206 (keyfn (extract-from-klist klist :key 'identity)))
1207 (not (funcall predicate item (funcall keyfn elt)))))
1208
1209 (defun elts-match-under-klist-p (e1 e2 klist)
1210 "(elts-match-under-klist-p E1 E2 KLIST) => t or nil
1211 KLIST encodes a keyword-arguments test, as in CH. 14 of CLtL.
1212 True if elements E1 and E2 match under the tests encoded in KLIST."
1213 (let ((test (extract-from-klist klist :test))
1214 (test-not (extract-from-klist klist :test-not))
1215 (keyfn (extract-from-klist klist :key 'identity)))
1216 (if (and test test-not)
1217 (error "both :test and :test-not in `%s'"
1218 (prin1-to-string klist)))
1219 (cond (test
1220 (funcall test (funcall keyfn e1) (funcall keyfn e2)))
1221 (test-not
1222 (not (funcall test-not (funcall keyfn e1) (funcall keyfn e2))))
1223 (t ;should never happen
1224 (error "neither :test nor :test-not in `%s'"
1225 (prin1-to-string klist))))))
1226 \f
1227 ;;; This macro simplifies using keyword args. It is less clumsy than using
1228 ;;; the primitives build-klist, etc... For instance, member could be written
1229 ;;; this way:
1230
1231 ;;; (defun member (item list &rest kargs)
1232 ;;; (with-keyword-args kargs (test test-not (key 'identity))
1233 ;;; ...))
1234
1235 ;;; Suggested by Robert Potter (potter@cs.rochester.edu, 15 Nov 1989)
1236
1237 (defmacro with-keyword-args (keyargslist vardefs &rest body)
1238 "(WITH-KEYWORD-ARGS KEYARGSLIST VARDEFS . BODY)
1239 KEYARGSLIST can be either a symbol or a list of one or two symbols.
1240 In the second case, the second symbol is either T or NIL, indicating whether
1241 keywords other than the mentioned ones are tolerable.
1242
1243 VARDEFS is a list. Each entry is either a VAR (symbol) or matches
1244 \(VAR [DEFAULT [KEYWORD]]). Just giving VAR is the same as giving
1245 \(VAR nil :VAR).
1246
1247 The BODY is executed in an environment where each VAR (a symbol) is bound to
1248 the value present in the KEYARGSLIST provided, or to the DEFAULT. The value
1249 is searched by using the keyword form of VAR (i.e., :VAR) or the optional
1250 keyword if provided.
1251
1252 Notice that this macro doesn't distinguish between a default value given
1253 explicitly by the user and one provided by default. See also the more
1254 primitive functions build-klist, add-to-klist, extract-from-klist,
1255 keyword-argument-supplied-p, elt-satisfies-test-p, elt-satisfies-if-p,
1256 elt-satisfies-if-not-p, elts-match-under-klist-p. They provide more complete,
1257 if clumsier, control over this feature."
1258 (let (allow-other-keys)
1259 (if (listp keyargslist)
1260 (if (> (length keyargslist) 2)
1261 (error
1262 "`%s' should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)"
1263 (prin1-to-string keyargslist))
1264 (setq allow-other-keys (cadr keyargslist)
1265 keyargslist (car keyargslist))
1266 (if (not (and
1267 (symbolp keyargslist)
1268 (memq allow-other-keys '(t nil))))
1269 (error
1270 "first subform should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)"
1271 )))
1272 (if (symbolp keyargslist)
1273 (setq allow-other-keys nil)
1274 (error
1275 "first subform should be SYMBOL, (SYMBOL), or (SYMBOL t-OR-nil)")))
1276 (let (vars defaults keywords forms
1277 (klistname (gensym "KLIST_")))
1278 (mapcar (function (lambda (entry)
1279 (if (symbolp entry) ;defaulty case
1280 (setq entry (list entry nil (keyword-of entry))))
1281 (let* ((l (length entry))
1282 (v (car entry))
1283 (d (cadr entry))
1284 (k (caddr entry)))
1285 (if (or (< l 1) (> l 3))
1286 (error
1287 "`%s' must match (VAR [DEFAULT [KEYWORD]])"
1288 (prin1-to-string entry)))
1289 (if (or (null v) (not (symbolp v)))
1290 (error
1291 "bad variable `%s': must be non-null symbol"
1292 (prin1-to-string v)))
1293 (setq vars (cons v vars))
1294 (setq defaults (cons d defaults))
1295 (if (< l 3)
1296 (setq k (keyword-of v)))
1297 (if (and (= l 3)
1298 (or (null k)
1299 (not (keywordp k))))
1300 (error
1301 "bad keyword `%s'" (prin1-to-string k)))
1302 (setq keywords (cons k keywords))
1303 (setq forms (cons (list v (list 'extract-from-klist
1304 klistname
1305 k
1306 d))
1307 forms)))))
1308 vardefs)
1309 (append
1310 (list 'let* (nconc (list (list klistname
1311 (list 'build-klist keyargslist
1312 (list 'quote keywords)
1313 allow-other-keys)))
1314 (nreverse forms)))
1315 body))))
1316 (put 'with-keyword-args 'lisp-indent-function 1)
1317
1318 \f
1319 ;;; REDUCE
1320 ;;; It is here mostly as an example of how to use KLISTs.
1321 ;;;
1322 ;;; First of all, you need to declare the keywords (done elsewhere in this
1323 ;;; file):
1324 ;;; (defkeyword :from-end "syntax of sequence functions")
1325 ;;; (defkeyword :start "syntax of sequence functions")
1326 ;;; etc...
1327 ;;;
1328 ;;; Then, you capture all the possible keyword arguments with a &rest
1329 ;;; argument. You can pass that list downward again, of course, but
1330 ;;; internally you need to parse it into a KLIST (an alist, really). One uses
1331 ;;; (build-klist REST-ARGS ACCEPTABLE-KEYWORDS [ALLOW-OTHER]). You can then
1332 ;;; test for presence by using (keyword-argument-supplied-p KLIST KEY) and
1333 ;;; extract a value with (extract-from-klist KLIST KEY [DEFAULT]).
1334
1335 (defun reduce (function sequence &rest kargs)
1336 "Apply FUNCTION (a function of two arguments) to succesive pairs of elements
1337 from SEQUENCE. Some keyword arguments are valid after FUNCTION and SEQUENCE:
1338 :from-end If non-nil, process the values backwards
1339 :initial-value If given, prefix it to the SEQUENCE. Suffix, if :from-end
1340 :start Restrict reduction to the subsequence from this index
1341 :end Restrict reduction to the subsequence BEFORE this index.
1342 If the sequence is empty and no :initial-value is given, the FUNCTION is
1343 called on zero (not two) arguments. Otherwise, if there is exactly one
1344 element in the combination of SEQUENCE and the initial value, that element is
1345 returned."
1346 (let* ((klist (build-klist kargs '(:from-end :start :end :initial-value)))
1347 (length (length sequence))
1348 (from-end (extract-from-klist klist :from-end))
1349 (initial-value-given (keyword-argument-supplied-p
1350 klist :initial-value))
1351 (start (extract-from-klist kargs :start 0))
1352 (end (extract-from-klist kargs :end length)))
1353 (setq sequence (cl$subseq-as-list sequence start end))
1354 (if from-end
1355 (setq sequence (reverse sequence)))
1356 (if initial-value-given
1357 (setq sequence (cons (extract-from-klist klist :initial-value)
1358 sequence)))
1359 (if (null sequence)
1360 (funcall function) ;only use of 0 arguments
1361 (let* ((result (car sequence))
1362 (sequence (cdr sequence)))
1363 (while sequence
1364 (setq result (if from-end
1365 (funcall function (car sequence) result)
1366 (funcall function result (car sequence)))
1367 sequence (cdr sequence)))
1368 result))))
1369
1370 (defun cl$subseq-as-list (sequence start end)
1371 "(cl$subseq-as-list SEQUENCE START END) => a list"
1372 (let ((list (append sequence nil))
1373 (length (length sequence))
1374 result)
1375 (if (< start 0)
1376 (error "start should be >= 0, not %d" start))
1377 (if (> end length)
1378 (error "end should be <= %d, not %d" length end))
1379 (if (and (zerop start) (= end length))
1380 list
1381 (let ((i start)
1382 (vector (apply 'vector list)))
1383 (while (/= i end)
1384 (setq result (cons (elt vector i) result))
1385 (setq i (+ i 1)))
1386 (nreverse result)))))
1387
1388 ;;;; end of cl-sequences.el
1389 \f
1390 ;;;; Some functions with keyword arguments
1391 ;;;;
1392 ;;;; Both list and sequence functions are considered here together. This
1393 ;;;; doesn't fit any more with the original split of functions in files.
1394
1395 (defun member (item list &rest kargs)
1396 "Look for ITEM in LIST; return first tail of LIST the car of whose first
1397 cons cell tests the same as ITEM. Admits arguments :key, :test, and :test-not."
1398 (if (null kargs) ;treat this fast for efficiency
1399 (memq item list)
1400 (let* ((klist (build-klist kargs '(:test :test-not :key)))
1401 (test (extract-from-klist klist :test))
1402 (testnot (extract-from-klist klist :test-not))
1403 (key (extract-from-klist klist :key 'identity)))
1404 ;; another workaround allegledly for speed
1405 (if (and (or (eq test 'eq) (eq test 'eql)
1406 (eq test (symbol-function 'eq))
1407 (eq test (symbol-function 'eql)))
1408 (null testnot)
1409 (or (eq key 'identity) ;either by default or so given
1410 (eq key (function identity)) ;could this happen?
1411 (eq key (symbol-function 'identity)) ;sheer paranoia
1412 ))
1413 (memq item list)
1414 (if (and test testnot)
1415 (error ":test and :test-not both specified for member"))
1416 (if (not (or test testnot))
1417 (setq test 'eql))
1418 ;; final hack: remove the indirection through the function names
1419 (if testnot
1420 (if (symbolp testnot)
1421 (setq testnot (symbol-function testnot)))
1422 (if (symbolp test)
1423 (setq test (symbol-function test))))
1424 (if (symbolp key)
1425 (setq key (symbol-function key)))
1426 ;; ok, go for it
1427 (let ((ptr list)
1428 (done nil)
1429 (result '()))
1430 (if testnot
1431 (while (not (or done (endp ptr)))
1432 (cond ((not (funcall testnot item (funcall key (car ptr))))
1433 (setq done t)
1434 (setq result ptr)))
1435 (setq ptr (cdr ptr)))
1436 (while (not (or done (endp ptr)))
1437 (cond ((funcall test item (funcall key (car ptr)))
1438 (setq done t)
1439 (setq result ptr)))
1440 (setq ptr (cdr ptr))))
1441 result)))))
1442 \f
1443 ;;;; MULTIPLE VALUES
1444 ;;;; This package approximates the behavior of the multiple-values
1445 ;;;; forms of Common Lisp.
1446 ;;;;
1447 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1448 ;;;; (quiroz@cs.rochester.edu)
1449
1450 ;;; Lisp indentation information
1451 (put 'multiple-value-bind 'lisp-indent-function 2)
1452 (put 'multiple-value-setq 'lisp-indent-function 2)
1453 (put 'multiple-value-list 'lisp-indent-function nil)
1454 (put 'multiple-value-call 'lisp-indent-function 1)
1455 (put 'multiple-value-prog1 'lisp-indent-function 1)
1456
1457 ;;; Global state of the package is kept here
1458 (defvar *mvalues-values* nil
1459 "Most recently returned multiple-values")
1460 (defvar *mvalues-count* nil
1461 "Count of multiple-values returned, or nil if the mechanism was not used")
1462 \f
1463 ;;; values is the standard multiple-value-return form. Must be the
1464 ;;; last thing evaluated inside a function. If the caller is not
1465 ;;; expecting multiple values, only the first one is passed. (values)
1466 ;;; is the same as no-values returned (unaware callers see nil). The
1467 ;;; alternative (values-list <list>) is just a convenient shorthand
1468 ;;; and complements multiple-value-list.
1469
1470 (defun values (&rest val-forms)
1471 "Produce multiple values (zero or more). Each arg is one value.
1472 See also `multiple-value-bind', which is one way to examine the
1473 multiple values produced by a form. If the containing form or caller
1474 does not check specially to see multiple values, it will see only
1475 the first value."
1476 (setq *mvalues-values* val-forms)
1477 (setq *mvalues-count* (length *mvalues-values*))
1478 (car *mvalues-values*))
1479
1480 (defun values-list (&optional val-forms)
1481 "Produce multiple values (zero or mode). Each element of LIST is one value.
1482 This is equivalent to (apply 'values LIST)."
1483 (cond ((nlistp val-forms)
1484 (error "Argument to values-list must be a list, not `%s'"
1485 (prin1-to-string val-forms))))
1486 (setq *mvalues-values* val-forms)
1487 (setq *mvalues-count* (length *mvalues-values*))
1488 (car *mvalues-values*))
1489 \f
1490 ;;; Callers that want to see the multiple values use these macros.
1491
1492 (defmacro multiple-value-list (form)
1493 "Execute FORM and return a list of all the (multiple) values FORM produces.
1494 See `values' and `multiple-value-bind'."
1495 (list 'progn
1496 (list 'setq '*mvalues-count* nil)
1497 (list 'let (list (list 'it '(gensym)))
1498 (list 'set 'it form)
1499 (list 'if '*mvalues-count*
1500 (list 'copy-sequence '*mvalues-values*)
1501 (list 'progn
1502 (list 'setq '*mvalues-count* 1)
1503 (list 'setq '*mvalues-values*
1504 (list 'list (list 'symbol-value 'it)))
1505 (list 'copy-sequence '*mvalues-values*))))))
1506
1507 (defmacro multiple-value-call (function &rest args)
1508 "Call FUNCTION on all the values produced by the remaining arguments.
1509 (multiple-value-call '+ (values 1 2) (values 3 4)) is 10."
1510 (let* ((result (gentemp))
1511 (arg (gentemp)))
1512 (list 'apply (list 'function (eval function))
1513 (list 'let* (list (list result '()))
1514 (list 'dolist (list arg (list 'quote args) result)
1515 (list 'setq result
1516 (list 'append
1517 result
1518 (list 'multiple-value-list
1519 (list 'eval arg)))))))))
1520
1521 (defmacro multiple-value-bind (vars form &rest body)
1522 "Bind VARS to the (multiple) values produced by FORM, then do BODY.
1523 VARS is a list of variables; each is bound to one of FORM's values.
1524 If FORM doesn't make enough values, the extra variables are bound to nil.
1525 (Ordinary forms produce only one value; to produce more, use `values'.)
1526 Extra values are ignored.
1527 BODY (zero or more forms) is executed with the variables bound,
1528 then the bindings are unwound."
1529 (let* ((vals (gentemp)) ;name for intermediate values
1530 (clauses (mv-bind-clausify ;convert into clauses usable
1531 vars vals))) ; in a let form
1532 (list* 'let*
1533 (cons (list vals (list 'multiple-value-list form))
1534 clauses)
1535 body)))
1536 \f
1537 (defmacro multiple-value-setq (vars form)
1538 "Set VARS to the (multiple) values produced by FORM.
1539 VARS is a list of variables; each is set to one of FORM's values.
1540 If FORM doesn't make enough values, the extra variables are set to nil.
1541 (Ordinary forms produce only one value; to produce more, use `values'.)
1542 Extra values are ignored."
1543 (let* ((vals (gentemp)) ;name for intermediate values
1544 (clauses (mv-bind-clausify ;convert into clauses usable
1545 vars vals))) ; in a setq (after append).
1546 (list 'let*
1547 (list (list vals (list 'multiple-value-list form)))
1548 (cons 'setq (apply (function append) clauses)))))
1549
1550 (defmacro multiple-value-prog1 (form &rest body)
1551 "Evaluate FORM, then BODY, then produce the same values FORM produced.
1552 Thus, (multiple-value-prog1 (values 1 2) (foobar)) produces values 1 and 2.
1553 This is like `prog1' except that `prog1' would produce only one value,
1554 which would be the first of FORM's values."
1555 (let* ((heldvalues (gentemp)))
1556 (cons 'let*
1557 (cons (list (list heldvalues (list 'multiple-value-list form)))
1558 (append body (list (list 'values-list heldvalues)))))))
1559
1560 ;;; utility functions
1561 ;;;
1562 ;;; mv-bind-clausify makes the pairs needed to have the variables in
1563 ;;; the variable list correspond with the values returned by the form.
1564 ;;; vals is a fresh symbol that intervenes in all the bindings.
1565
1566 (defun mv-bind-clausify (vars vals)
1567 "MV-BIND-CLAUSIFY VARS VALS => Auxiliary list
1568 Forms a list of pairs `(,(nth i vars) (nth i vals)) for i from 0 to
1569 the length of VARS (a list of symbols). VALS is just a fresh symbol."
1570 (if (or (nlistp vars)
1571 (notevery 'symbolp vars))
1572 (error "expected a list of symbols, not `%s'"
1573 (prin1-to-string vars)))
1574 (let* ((nvars (length vars))
1575 (clauses '()))
1576 (dotimes (n nvars clauses)
1577 (setq clauses (cons (list (nth n vars)
1578 (list 'nth n vals)) clauses)))))
1579
1580 ;;;; end of cl-multiple-values.el
1581 \f
1582 ;;;; ARITH
1583 ;;;; This file provides integer arithmetic extensions. Although
1584 ;;;; Emacs Lisp doesn't really support anything but integers, that
1585 ;;;; has still to be made to look more or less standard.
1586 ;;;;
1587 ;;;;
1588 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1589 ;;;; (quiroz@cs.rochester.edu)
1590
1591
1592 (defun plusp (number)
1593 "True if NUMBER is strictly greater than zero."
1594 (> number 0))
1595
1596 (defun minusp (number)
1597 "True if NUMBER is strictly less than zero."
1598 (< number 0))
1599
1600 (defun oddp (number)
1601 "True if INTEGER is not divisible by 2."
1602 (/= (% number 2) 0))
1603
1604 (defun evenp (number)
1605 "True if INTEGER is divisible by 2."
1606 (= (% number 2) 0))
1607
1608 (defun abs (number)
1609 "Return the absolute value of NUMBER."
1610 (if (< number 0)
1611 (- number)
1612 number))
1613
1614 (defun signum (number)
1615 "Return -1, 0 or 1 according to the sign of NUMBER."
1616 (cond ((< number 0)
1617 -1)
1618 ((> number 0)
1619 1)
1620 (t ;exactly zero
1621 0)))
1622 \f
1623 (defun gcd (&rest integers)
1624 "Return the greatest common divisor of all the arguments.
1625 The arguments must be integers. With no arguments, value is zero."
1626 (let ((howmany (length integers)))
1627 (cond ((= howmany 0)
1628 0)
1629 ((= howmany 1)
1630 (abs (car integers)))
1631 ((> howmany 2)
1632 (apply (function gcd)
1633 (cons (gcd (nth 0 integers) (nth 1 integers))
1634 (nthcdr 2 integers))))
1635 (t ;howmany=2
1636 ;; essentially the euclidean algorithm
1637 (when (zerop (* (nth 0 integers) (nth 1 integers)))
1638 (error "a zero argument is invalid for `gcd'"))
1639 (do* ((absa (abs (nth 0 integers))) ; better to operate only
1640 (absb (abs (nth 1 integers))) ;on positives.
1641 (dd (max absa absb)) ; setup correct order for the
1642 (ds (min absa absb)) ;succesive divisions.
1643 ;; intermediate results
1644 (q 0)
1645 (r 0)
1646 ;; final results
1647 (done nil) ; flag: end of iterations
1648 (result 0)) ; final value
1649 (done result)
1650 (setq q (/ dd ds))
1651 (setq r (% dd ds))
1652 (cond ((zerop r) (setq done t) (setq result ds))
1653 (t (setq dd ds) (setq ds r))))))))
1654
1655 (defun lcm (integer &rest more)
1656 "Return the least common multiple of all the arguments.
1657 The arguments must be integers and there must be at least one of them."
1658 (let ((howmany (length more))
1659 (a integer)
1660 (b (nth 0 more))
1661 prod ; intermediate product
1662 (yetmore (nthcdr 1 more)))
1663 (cond ((zerop howmany)
1664 (abs a))
1665 ((> howmany 1) ; recursive case
1666 (apply (function lcm)
1667 (cons (lcm a b) yetmore)))
1668 (t ; base case, just 2 args
1669 (setq prod (* a b))
1670 (cond
1671 ((zerop prod)
1672 0)
1673 (t
1674 (/ (abs prod) (gcd a b))))))))
1675 \f
1676 (defun isqrt (number)
1677 "Return the integer square root of NUMBER.
1678 NUMBER must not be negative. Result is largest integer less than or
1679 equal to the real square root of the argument."
1680 ;; The method used here is essentially the Newtonian iteration
1681 ;; x[n+1] <- (x[n] + Number/x[n]) / 2
1682 ;; suitably adapted to integer arithmetic.
1683 ;; Thanks to Philippe Schnoebelen <phs@lifia.imag.fr> for suggesting the
1684 ;; termination condition.
1685 (cond ((minusp number)
1686 (error "argument to `isqrt' (%d) must not be negative"
1687 number))
1688 ((zerop number)
1689 0)
1690 (t ;so (>= number 0)
1691 (do* ((approx 1) ;any positive integer will do
1692 (new 0) ;init value irrelevant
1693 (done nil))
1694 (done (if (> (* approx approx) number)
1695 (- approx 1)
1696 approx))
1697 (setq new (/ (+ approx (/ number approx)) 2)
1698 done (or (= new approx) (= new (+ approx 1)))
1699 approx new)))))
1700 \f
1701 (defun floor (number &optional divisor)
1702 "Divide DIVIDEND by DIVISOR, rounding toward minus infinity.
1703 DIVISOR defaults to 1. The remainder is produced as a second value."
1704 (cond
1705 ((and (null divisor) ; trivial case
1706 (numberp number))
1707 (values number 0))
1708 (t ; do the division
1709 (multiple-value-bind
1710 (q r s)
1711 (safe-idiv number divisor)
1712 (cond ((zerop s)
1713 (values 0 0))
1714 ((plusp s)
1715 (values q r))
1716 (t ;opposite-signs case
1717 (if (zerop r)
1718 (values (- q) 0)
1719 (let ((q (- (+ q 1))))
1720 (values q (- number (* q divisor)))))))))))
1721
1722 (defun ceiling (number &optional divisor)
1723 "Divide DIVIDEND by DIVISOR, rounding toward plus infinity.
1724 DIVISOR defaults to 1. The remainder is produced as a second value."
1725 (cond
1726 ((and (null divisor) ; trivial case
1727 (numberp number))
1728 (values number 0))
1729 (t ; do the division
1730 (multiple-value-bind
1731 (q r s)
1732 (safe-idiv number divisor)
1733 (cond ((zerop s)
1734 (values 0 0))
1735 ((plusp s)
1736 (values (+ q 1) (- r divisor)))
1737 (t
1738 (values (- q) (+ number (* q divisor)))))))))
1739 \f
1740 (defun truncate (number &optional divisor)
1741 "Divide DIVIDEND by DIVISOR, rounding toward zero.
1742 DIVISOR defaults to 1. The remainder is produced as a second value."
1743 (cond
1744 ((and (null divisor) ; trivial case
1745 (numberp number))
1746 (values number 0))
1747 (t ; do the division
1748 (multiple-value-bind
1749 (q r s)
1750 (safe-idiv number divisor)
1751 (cond ((zerop s)
1752 (values 0 0))
1753 ((plusp s) ;same as floor
1754 (values q r))
1755 (t ;same as ceiling
1756 (values (- q) (+ number (* q divisor)))))))))
1757
1758 (defun round (number &optional divisor)
1759 "Divide DIVIDEND by DIVISOR, rounding to nearest integer.
1760 DIVISOR defaults to 1. The remainder is produced as a second value."
1761 (cond ((and (null divisor) ; trivial case
1762 (numberp number))
1763 (values number 0))
1764 (t ; do the division
1765 (multiple-value-bind
1766 (q r s)
1767 (safe-idiv number divisor)
1768 (setq r (abs r))
1769 ;; adjust magnitudes first, and then signs
1770 (let ((other-r (- (abs divisor) r)))
1771 (cond ((> r other-r)
1772 (setq q (+ q 1)))
1773 ((and (= r other-r)
1774 (oddp q))
1775 ;; round to even is mandatory
1776 (setq q (+ q 1))))
1777 (setq q (* s q))
1778 (setq r (- number (* q divisor)))
1779 (values q r))))))
1780 \f
1781 (defun mod (number divisor)
1782 "Return remainder of X by Y (rounding quotient toward minus infinity).
1783 That is, the remainder goes with the quotient produced by `floor'."
1784 (multiple-value-bind (q r) (floor number divisor)
1785 r))
1786
1787 (defun rem (number divisor)
1788 "Return remainder of X by Y (rounding quotient toward zero).
1789 That is, the remainder goes with the quotient produced by `truncate'."
1790 (multiple-value-bind (q r) (truncate number divisor)
1791 r))
1792
1793 ;;; internal utilities
1794 ;;;
1795 ;;; safe-idiv performs an integer division with positive numbers only.
1796 ;;; It is known that some machines/compilers implement weird remainder
1797 ;;; computations when working with negatives, so the idea here is to
1798 ;;; make sure we know what is coming back to the caller in all cases.
1799
1800 ;;; Signum computation fixed by mad@math.keio.JUNET (MAEDA Atusi)
1801
1802 (defun safe-idiv (a b)
1803 "SAFE-IDIV A B => Q R S
1804 Q=|A|/|B|, R is the rest, S is the sign of A/B."
1805 (unless (and (numberp a) (numberp b))
1806 (error "arguments to `safe-idiv' must be numbers"))
1807 (when (zerop b)
1808 (error "cannot divide %d by zero" a))
1809 (let* ((absa (abs a))
1810 (absb (abs b))
1811 (q (/ absa absb))
1812 (s (* (signum a) (signum b)))
1813 (r (- a (* (* s q) b))))
1814 (values q r s)))
1815
1816 ;;;; end of cl-arith.el
1817 \f
1818 ;;;; SETF
1819 ;;;; This file provides the setf macro and friends. The purpose has
1820 ;;;; been modest, only the simplest defsetf forms are accepted.
1821 ;;;; Use it and enjoy.
1822 ;;;;
1823 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
1824 ;;;; (quiroz@cs.rochester.edu)
1825
1826
1827 (defkeyword :setf-update-fn
1828 "Property, its value is the function setf must invoke to update a
1829 generalized variable whose access form is a function call of the
1830 symbol that has this property.")
1831
1832 (defkeyword :setf-update-doc
1833 "Property of symbols that have a `defsetf' update function on them,
1834 installed by the `defsetf' from its optional third argument.")
1835 \f
1836 (defmacro setf (&rest pairs)
1837 "Generalized `setq' that can set things other than variable values.
1838 A use of `setf' looks like (setf {PLACE VALUE}...).
1839 The behavior of (setf PLACE VALUE) is to access the generalized variable
1840 at PLACE and store VALUE there. It returns VALUE. If there is more
1841 than one PLACE and VALUE, each PLACE is set from its VALUE before
1842 the next PLACE is evaluated."
1843 (let ((nforms (length pairs)))
1844 ;; check the number of subforms
1845 (cond ((/= (% nforms 2) 0)
1846 (error "odd number of arguments to `setf'"))
1847 ((= nforms 0)
1848 nil)
1849 ((> nforms 2)
1850 ;; this is the recursive case
1851 (cons 'progn
1852 (do* ;collect the place-value pairs
1853 ((args pairs (cddr args))
1854 (place (car args) (car args))
1855 (value (cadr args) (cadr args))
1856 (result '()))
1857 ((endp args) (nreverse result))
1858 (setq result
1859 (cons (list 'setf place value)
1860 result)))))
1861 (t ;i.e., nforms=2
1862 ;; this is the base case (SETF PLACE VALUE)
1863 (let* ((place (car pairs))
1864 (value (cadr pairs))
1865 (head nil)
1866 (updatefn nil))
1867 ;; dispatch on the type of the PLACE
1868 (cond ((symbolp place)
1869 (list 'setq place value))
1870 ((and (listp place)
1871 (setq head (car place))
1872 (symbolp head)
1873 (setq updatefn (get head :setf-update-fn)))
1874 (if (or (and (consp updatefn) (eq (car updatefn) 'lambda))
1875 (and (symbolp updatefn)
1876 (fboundp updatefn)
1877 (let ((defn (symbol-function updatefn)))
1878 (or (subrp defn)
1879 (and (consp defn)
1880 (eq (car defn) 'lambda))))))
1881 (cons updatefn (append (cdr place) (list value)))
1882 (multiple-value-bind
1883 (bindings newsyms)
1884 (pair-with-newsyms (append (cdr place) (list value)))
1885 ;; this let gets new symbols to ensure adequate
1886 ;; order of evaluation of the subforms.
1887 (list 'let
1888 bindings
1889 (cons updatefn newsyms)))))
1890 (t
1891 (error "no `setf' update-function for `%s'"
1892 (prin1-to-string place)))))))))
1893 \f
1894 (defmacro defsetf (accessfn updatefn &optional docstring)
1895 "Define how `setf' works on a certain kind of generalized variable.
1896 A use of `defsetf' looks like (defsetf ACCESSFN UPDATEFN [DOCSTRING]).
1897 ACCESSFN is a symbol. UPDATEFN is a function or macro which takes
1898 one more argument than ACCESSFN does. DEFSETF defines the translation
1899 of (SETF (ACCESFN . ARGS) NEWVAL) to be a form like (UPDATEFN ARGS... NEWVAL).
1900 The function UPDATEFN must return its last arg, after performing the
1901 updating called for."
1902 ;; reject ill-formed requests. too bad one can't test for functionp
1903 ;; or macrop.
1904 (when (not (symbolp accessfn))
1905 (error "first argument of `defsetf' must be a symbol, not `%s'"
1906 (prin1-to-string accessfn)))
1907 ;; update properties
1908 (list 'progn
1909 (list 'put (list 'quote accessfn)
1910 :setf-update-fn (list 'function updatefn))
1911 (list 'put (list 'quote accessfn) :setf-update-doc docstring)
1912 ;; any better thing to return?
1913 (list 'quote accessfn)))
1914 \f
1915 ;;; This section provides the "default" setfs for Common-Emacs-Lisp
1916 ;;; The user will not normally add anything to this, although
1917 ;;; defstruct will introduce new ones as a matter of fact.
1918 ;;;
1919 ;;; Apply is a special case. The Common Lisp
1920 ;;; standard makes the case of apply be useful when the user writes
1921 ;;; something like (apply #'name ...), Emacs Lisp doesn't have the #
1922 ;;; stuff, but it has (function ...). Notice that V18 includes a new
1923 ;;; apply: this file is compatible with V18 and pre-V18 Emacses.
1924
1925 ;;; INCOMPATIBILITY: the SETF macro evaluates its arguments in the
1926 ;;; (correct) left to right sequence *before* checking for apply
1927 ;;; methods (which should really be an special case inside setf). Due
1928 ;;; to this, the lambda expression defsetf'd to apply will succeed in
1929 ;;; applying the right function even if the name was not quoted, but
1930 ;;; computed! That extension is not Common Lisp (nor is particularly
1931 ;;; useful, I think).
1932
1933 (defsetf apply
1934 (lambda (&rest args)
1935 ;; dissasemble the calling form
1936 ;; "(((quote fn) x1 x2 ... xn) val)" (function instead of quote, too)
1937 (let* ((fnform (car args)) ;functional form
1938 (applyargs (append ;arguments "to apply fnform"
1939 (apply 'list* (butlast (cdr args)))
1940 (last args)))
1941 (newupdater nil)) ; its update-fn, if any
1942 (if (and (symbolp fnform)
1943 (setq newupdater (get fnform :setf-update-fn)))
1944 (apply newupdater applyargs)
1945 (error "can't `setf' to `%s'"
1946 (prin1-to-string fnform)))))
1947 "`apply' is a special case for `setf'")
1948
1949 \f
1950 (defsetf aref
1951 aset
1952 "`setf' inversion for `aref'")
1953
1954 (defsetf nth
1955 setnth
1956 "`setf' inversion for `nth'")
1957
1958 (defsetf nthcdr
1959 setnthcdr
1960 "`setf' inversion for `nthcdr'")
1961
1962 (defsetf elt
1963 setelt
1964 "`setf' inversion for `elt'")
1965
1966 (defsetf first
1967 (lambda (list val) (setnth 0 list val))
1968 "`setf' inversion for `first'")
1969
1970 (defsetf second
1971 (lambda (list val) (setnth 1 list val))
1972 "`setf' inversion for `second'")
1973
1974 (defsetf third
1975 (lambda (list val) (setnth 2 list val))
1976 "`setf' inversion for `third'")
1977
1978 (defsetf fourth
1979 (lambda (list val) (setnth 3 list val))
1980 "`setf' inversion for `fourth'")
1981
1982 (defsetf fifth
1983 (lambda (list val) (setnth 4 list val))
1984 "`setf' inversion for `fifth'")
1985
1986 (defsetf sixth
1987 (lambda (list val) (setnth 5 list val))
1988 "`setf' inversion for `sixth'")
1989
1990 (defsetf seventh
1991 (lambda (list val) (setnth 6 list val))
1992 "`setf' inversion for `seventh'")
1993 \f
1994 (defsetf eighth
1995 (lambda (list val) (setnth 7 list val))
1996 "`setf' inversion for `eighth'")
1997
1998 (defsetf ninth
1999 (lambda (list val) (setnth 8 list val))
2000 "`setf' inversion for `ninth'")
2001
2002 (defsetf tenth
2003 (lambda (list val) (setnth 9 list val))
2004 "`setf' inversion for `tenth'")
2005
2006 (defsetf rest
2007 (lambda (list val) (setcdr list val))
2008 "`setf' inversion for `rest'")
2009
2010 (defsetf car setcar "Replace the car of a cons")
2011
2012 (defsetf cdr setcdr "Replace the cdr of a cons")
2013
2014 (defsetf caar
2015 (lambda (list val) (setcar (nth 0 list) val))
2016 "`setf' inversion for `caar'")
2017
2018 (defsetf cadr
2019 (lambda (list val) (setcar (cdr list) val))
2020 "`setf' inversion for `cadr'")
2021
2022 (defsetf cdar
2023 (lambda (list val) (setcdr (car list) val))
2024 "`setf' inversion for `cdar'")
2025
2026 (defsetf cddr
2027 (lambda (list val) (setcdr (cdr list) val))
2028 "`setf' inversion for `cddr'")
2029
2030 (defsetf caaar
2031 (lambda (list val) (setcar (caar list) val))
2032 "`setf' inversion for `caaar'")
2033
2034 (defsetf caadr
2035 (lambda (list val) (setcar (cadr list) val))
2036 "`setf' inversion for `caadr'")
2037
2038 (defsetf cadar
2039 (lambda (list val) (setcar (cdar list) val))
2040 "`setf' inversion for `cadar'")
2041 \f
2042 (defsetf cdaar
2043 (lambda (list val) (setcdr (caar list) val))
2044 "`setf' inversion for `cdaar'")
2045
2046 (defsetf caddr
2047 (lambda (list val) (setcar (cddr list) val))
2048 "`setf' inversion for `caddr'")
2049
2050 (defsetf cdadr
2051 (lambda (list val) (setcdr (cadr list) val))
2052 "`setf' inversion for `cdadr'")
2053
2054 (defsetf cddar
2055 (lambda (list val) (setcdr (cdar list) val))
2056 "`setf' inversion for `cddar'")
2057
2058 (defsetf cdddr
2059 (lambda (list val) (setcdr (cddr list) val))
2060 "`setf' inversion for `cdddr'")
2061
2062 (defsetf caaaar
2063 (lambda (list val) (setcar (caaar list) val))
2064 "`setf' inversion for `caaaar'")
2065
2066 (defsetf caaadr
2067 (lambda (list val) (setcar (caadr list) val))
2068 "`setf' inversion for `caaadr'")
2069
2070 (defsetf caadar
2071 (lambda (list val) (setcar (cadar list) val))
2072 "`setf' inversion for `caadar'")
2073
2074 (defsetf cadaar
2075 (lambda (list val) (setcar (cdaar list) val))
2076 "`setf' inversion for `cadaar'")
2077
2078 (defsetf cdaaar
2079 (lambda (list val) (setcdr (caar list) val))
2080 "`setf' inversion for `cdaaar'")
2081
2082 (defsetf caaddr
2083 (lambda (list val) (setcar (caddr list) val))
2084 "`setf' inversion for `caaddr'")
2085 \f
2086 (defsetf cadadr
2087 (lambda (list val) (setcar (cdadr list) val))
2088 "`setf' inversion for `cadadr'")
2089
2090 (defsetf cdaadr
2091 (lambda (list val) (setcdr (caadr list) val))
2092 "`setf' inversion for `cdaadr'")
2093
2094 (defsetf caddar
2095 (lambda (list val) (setcar (cddar list) val))
2096 "`setf' inversion for `caddar'")
2097
2098 (defsetf cdadar
2099 (lambda (list val) (setcdr (cadar list) val))
2100 "`setf' inversion for `cdadar'")
2101
2102 (defsetf cddaar
2103 (lambda (list val) (setcdr (cdaar list) val))
2104 "`setf' inversion for `cddaar'")
2105
2106 (defsetf cadddr
2107 (lambda (list val) (setcar (cdddr list) val))
2108 "`setf' inversion for `cadddr'")
2109
2110 (defsetf cddadr
2111 (lambda (list val) (setcdr (cdadr list) val))
2112 "`setf' inversion for `cddadr'")
2113
2114 (defsetf cdaddr
2115 (lambda (list val) (setcdr (caddr list) val))
2116 "`setf' inversion for `cdaddr'")
2117
2118 (defsetf cdddar
2119 (lambda (list val) (setcdr (cddar list) val))
2120 "`setf' inversion for `cdddar'")
2121
2122 (defsetf cddddr
2123 (lambda (list val) (setcdr (cddr list) val))
2124 "`setf' inversion for `cddddr'")
2125
2126 (defsetf get put "`setf' inversion for `get' is `put'")
2127
2128 (defsetf symbol-function fset
2129 "`setf' inversion for `symbol-function' is `fset'")
2130
2131 (defsetf symbol-plist setplist
2132 "`setf' inversion for `symbol-plist' is `setplist'")
2133
2134 (defsetf symbol-value set
2135 "`setf' inversion for `symbol-value' is `set'")
2136
2137 (defsetf point goto-char
2138 "To set (point) to N, use (goto-char N)")
2139
2140 ;; how about defsetfing other Emacs forms?
2141 \f
2142 ;;; Modify macros
2143 ;;;
2144 ;;; It could be nice to implement define-modify-macro, but I don't
2145 ;;; think it really pays.
2146
2147 (defmacro incf (ref &optional delta)
2148 "(incf REF [DELTA]) -> increment the g.v. REF by DELTA (default 1)"
2149 (if (null delta)
2150 (setq delta 1))
2151 (list 'setf ref (list '+ ref delta)))
2152
2153 (defmacro decf (ref &optional delta)
2154 "(decf REF [DELTA]) -> decrement the g.v. REF by DELTA (default 1)"
2155 (if (null delta)
2156 (setq delta 1))
2157 (list 'setf ref (list '- ref delta)))
2158
2159 (defmacro push (item ref)
2160 "(push ITEM REF) -> cons ITEM at the head of the g.v. REF (a list)"
2161 (list 'setf ref (list 'cons item ref)))
2162
2163 (defmacro pushnew (item ref)
2164 "(pushnew ITEM REF): adjoin ITEM at the head of the g.v. REF (a list)"
2165 (list 'setf ref (list 'adjoin item ref)))
2166
2167 (defmacro pop (ref)
2168 "(pop REF) -> (prog1 (car REF) (setf REF (cdr REF)))"
2169 (let ((listname (gensym)))
2170 (list 'let (list (list listname ref))
2171 (list 'prog1
2172 (list 'car listname)
2173 (list 'setf ref (list 'cdr listname))))))
2174 \f
2175 ;;; PSETF
2176 ;;;
2177 ;;; Psetf is the generalized variable equivalent of psetq. The right
2178 ;;; hand sides are evaluated and assigned (via setf) to the left hand
2179 ;;; sides. The evaluations are done in an environment where they
2180 ;;; appear to occur in parallel.
2181
2182 (defmacro psetf (&rest body)
2183 "(psetf {var value }...) => nil
2184 Like setf, but all the values are computed before any assignment is made."
2185 (let ((length (length body)))
2186 (cond ((/= (% length 2) 0)
2187 (error "psetf needs an even number of arguments, %d given"
2188 length))
2189 ((null body)
2190 '())
2191 (t
2192 (list 'prog1 nil
2193 (let ((setfs '())
2194 (bodyforms (reverse body)))
2195 (while bodyforms
2196 (let* ((value (car bodyforms))
2197 (place (cadr bodyforms)))
2198 (setq bodyforms (cddr bodyforms))
2199 (if (null setfs)
2200 (setq setfs (list 'setf place value))
2201 (setq setfs (list 'setf place
2202 (list 'prog1 value
2203 setfs))))))
2204 setfs))))))
2205 \f
2206 ;;; SHIFTF and ROTATEF
2207 ;;;
2208
2209 (defmacro shiftf (&rest forms)
2210 "(shiftf PLACE1 PLACE2... NEWVALUE)
2211 Set PLACE1 to PLACE2, PLACE2 to PLACE3...
2212 Each PLACE is set to the old value of the following PLACE,
2213 and the last PLACE is set to the value NEWVALUE.
2214 Returns the old value of PLACE1."
2215 (unless (> (length forms) 1)
2216 (error "`shiftf' needs more than one argument"))
2217 (let ((places (butlast forms))
2218 (newvalue (car (last forms))))
2219 ;; the places are accessed to fresh symbols
2220 (multiple-value-bind
2221 (bindings newsyms)
2222 (pair-with-newsyms places)
2223 (list 'let bindings
2224 (cons 'setf
2225 (zip-lists places
2226 (append (cdr newsyms) (list newvalue))))
2227 (car newsyms)))))
2228
2229 (defmacro rotatef (&rest places)
2230 "(rotatef PLACE...) sets each PLACE to the old value of the following PLACE.
2231 The last PLACE is set to the old value of the first PLACE.
2232 Thus, the values rotate through the PLACEs. Returns nil."
2233 (if (null places)
2234 nil
2235 (multiple-value-bind
2236 (bindings newsyms)
2237 (pair-with-newsyms places)
2238 (list
2239 'let bindings
2240 (cons 'setf
2241 (zip-lists places
2242 (append (cdr newsyms) (list (car newsyms)))))
2243 nil))))
2244 \f
2245 ;;;; STRUCTS
2246 ;;;; This file provides the structures mechanism. See the
2247 ;;;; documentation for Common-Lisp's defstruct. Mine doesn't
2248 ;;;; implement all the functionality of the standard, although some
2249 ;;;; more could be grafted if so desired. More details along with
2250 ;;;; the code.
2251 ;;;;
2252 ;;;;
2253 ;;;; Cesar Quiroz @ UofR DofCSc - Dec. 1986
2254 ;;;; (quiroz@cs.rochester.edu)
2255
2256
2257 (defkeyword :include "Syntax of `defstruct'")
2258 (defkeyword :named "Syntax of `defstruct'")
2259 (defkeyword :conc-name "Syntax of `defstruct'")
2260 (defkeyword :copier "Syntax of `defstruct'")
2261 (defkeyword :predicate "Syntax of `defstruct'")
2262 (defkeyword :print-function "Syntax of `defstruct'")
2263 (defkeyword :type "Syntax of `defstruct'")
2264 (defkeyword :initial-offset "Syntax of `defstruct'")
2265
2266 (defkeyword :structure-doc "Documentation string for a structure.")
2267 (defkeyword :structure-slotsn "Number of slots in structure")
2268 (defkeyword :structure-slots "List of the slot's names")
2269 (defkeyword :structure-indices "List of (KEYWORD-NAME . INDEX)")
2270 (defkeyword :structure-initforms "List of (KEYWORD-NAME . INITFORM)")
2271 (defkeyword :structure-includes
2272 "() or list of a symbol, that this struct includes")
2273 (defkeyword :structure-included-in
2274 "List of the structs that include this")
2275
2276 \f
2277 (defmacro defstruct (&rest args)
2278 "(defstruct NAME [DOC-STRING] . SLOTS) define NAME as structure type.
2279 NAME must be a symbol, the name of the new structure. It could also
2280 be a list (NAME . OPTIONS).
2281
2282 Each option is either a symbol, or a list of a keyword symbol taken from the
2283 list \{:conc-name, :copier, :constructor, :predicate, :include,
2284 :print-function, :type, :initial-offset\}. The meanings of these are as in
2285 CLtL, except that no BOA-constructors are provided, and the options
2286 \{:print-fuction, :type, :initial-offset\} are ignored quietly. All these
2287 structs are named, in the sense that their names can be used for type
2288 discrimination.
2289
2290 The DOC-STRING is established as the `structure-doc' property of NAME.
2291
2292 The SLOTS are one or more of the following:
2293 SYMBOL -- meaning the SYMBOL is the name of a SLOT of NAME
2294 list of SYMBOL and VALUE -- meaning that VALUE is the initial value of
2295 the slot.
2296 `defstruct' defines functions `make-NAME', `NAME-p', `copy-NAME' for the
2297 structure, and functions with the same name as the slots to access
2298 them. `setf' of the accessors sets their values."
2299 (multiple-value-bind
2300 (name options docstring slotsn slots initlist)
2301 (parse$defstruct$args args)
2302 ;; Names for the member functions come from the options. The
2303 ;; slots* stuff collects info about the slots declared explicitly.
2304 (multiple-value-bind
2305 (conc-name constructor copier predicate
2306 moreslotsn moreslots moreinits included)
2307 (parse$defstruct$options name options slots)
2308 ;; The moreslots* stuff refers to slots gained as a consequence
2309 ;; of (:include clauses). -- Oct 89: Only one :include tolerated
2310 (when (and (numberp moreslotsn)
2311 (> moreslotsn 0))
2312 (setf slotsn (+ slotsn moreslotsn))
2313 (setf slots (append moreslots slots))
2314 (setf initlist (append moreinits initlist)))
2315 (unless (> slotsn 0)
2316 (error "%s needs at least one slot"
2317 (prin1-to-string name)))
2318 (let ((dups (duplicate-symbols-p slots)))
2319 (when dups
2320 (error "`%s' are duplicates"
2321 (prin1-to-string dups))))
2322 (setq initlist (simplify$inits slots initlist))
2323 (let (properties functions keywords accessors alterators returned)
2324 ;; compute properties of NAME
2325 (setq properties
2326 (append
2327 (list
2328 (list 'put (list 'quote name) :structure-doc
2329 docstring)
2330 (list 'put (list 'quote name) :structure-slotsn
2331 slotsn)
2332 (list 'put (list 'quote name) :structure-slots
2333 (list 'quote slots))
2334 (list 'put (list 'quote name) :structure-initforms
2335 (list 'quote initlist))
2336 (list 'put (list 'quote name) :structure-indices
2337 (list 'quote (extract$indices initlist))))
2338 ;; If this definition :includes another defstruct,
2339 ;; modify both property lists.
2340 (cond (included
2341 (list
2342 (list 'put
2343 (list 'quote name)
2344 :structure-includes
2345 (list 'quote included))
2346 (list 'pushnew
2347 (list 'quote name)
2348 (list 'get (list 'quote (car included))
2349 :structure-included-in))))
2350 (t
2351 (list
2352 (let ((old (gensym)))
2353 (list 'let
2354 (list (list old
2355 (list 'car
2356 (list 'get
2357 (list 'quote name)
2358 :structure-includes))))
2359 (list 'when old
2360 (list 'put
2361 old
2362 :structure-included-in
2363 (list 'delq
2364 (list 'quote name)
2365 ;; careful with destructive
2366 ;;manipulation!
2367 (list
2368 'append
2369 (list
2370 'get
2371 old
2372 :structure-included-in)
2373 '())
2374 )))))
2375 (list 'put
2376 (list 'quote name)
2377 :structure-includes
2378 '()))))
2379 ;; If this definition used to be :included in another, warn
2380 ;; that things make break. On the other hand, the redefinition
2381 ;; may be trivial, so don't call it an error.
2382 (let ((old (gensym)))
2383 (list
2384 (list 'let
2385 (list (list old (list 'get
2386 (list 'quote name)
2387 :structure-included-in)))
2388 (list 'when old
2389 (list 'message
2390 "`%s' redefined. Should redefine `%s'?"
2391 (list 'quote name)
2392 (list 'prin1-to-string old))))))))
2393
2394 ;; Compute functions associated with NAME. This is not
2395 ;; handling BOA constructors yet, but here would be the place.
2396 (setq functions
2397 (list
2398 (list 'fset (list 'quote constructor)
2399 (list 'function
2400 (list 'lambda (list '&rest 'args)
2401 (list 'make$structure$instance
2402 (list 'quote name)
2403 'args))))
2404 (list 'fset (list 'quote copier)
2405 (list 'function
2406 (list 'lambda (list 'struct)
2407 (list 'copy-sequence 'struct))))
2408 (let ((typetag (gensym)))
2409 (list 'fset (list 'quote predicate)
2410 (list
2411 'function
2412 (list
2413 'lambda (list 'thing)
2414 (list 'and
2415 (list 'vectorp 'thing)
2416 (list 'let
2417 (list (list typetag
2418 (list 'elt 'thing 0)))
2419 (list 'or
2420 (list
2421 'and
2422 (list 'eq
2423 typetag
2424 (list 'quote name))
2425 (list '=
2426 (list 'length 'thing)
2427 (1+ slotsn)))
2428 (list
2429 'memq
2430 typetag
2431 (list 'get
2432 (list 'quote name)
2433 :structure-included-in))))))
2434 )))))
2435 ;; compute accessors for NAME's slots
2436 (multiple-value-setq
2437 (accessors alterators keywords)
2438 (build$accessors$for name conc-name predicate slots slotsn))
2439 ;; generate returned value -- not defined by the standard
2440 (setq returned
2441 (list
2442 (cons 'vector
2443 (mapcar
2444 '(lambda (x) (list 'quote x))
2445 (cons name slots)))))
2446 ;; generate code
2447 (cons 'progn
2448 (nconc properties functions keywords
2449 accessors alterators returned))))))
2450 \f
2451 (defun parse$defstruct$args (args)
2452 "(parse$defstruct$args ARGS) => NAME OPTIONS DOCSTRING SLOTSN SLOTS INITLIST
2453 NAME=symbol, OPTIONS=list of, DOCSTRING=string, SLOTSN=count of slots,
2454 SLOTS=list of their names, INITLIST=alist (keyword . initform)."
2455 (let (name ;args=(symbol...) or ((symbol...)...)
2456 options ;args=((symbol . options) ...)
2457 (docstring "") ;args=(head docstring . slotargs)
2458 slotargs ;second or third cdr of args
2459 (slotsn 0) ;number of slots
2460 (slots '()) ;list of slot names
2461 (initlist '())) ;list of (slot keyword . initform)
2462 ;; extract name and options
2463 (cond ((symbolp (car args)) ;simple name
2464 (setq name (car args)
2465 options '()))
2466 ((and (listp (car args)) ;(name . options)
2467 (symbolp (caar args)))
2468 (setq name (caar args)
2469 options (cdar args)))
2470 (t
2471 (error "first arg to `defstruct' must be symbol or (symbol ...)")))
2472 (setq slotargs (cdr args))
2473 ;; is there a docstring?
2474 (when (stringp (car slotargs))
2475 (setq docstring (car slotargs)
2476 slotargs (cdr slotargs)))
2477 ;; now for the slots
2478 (multiple-value-bind
2479 (slotsn slots initlist)
2480 (process$slots slotargs)
2481 (values name options docstring slotsn slots initlist))))
2482 \f
2483 (defun process$slots (slots)
2484 "(process$slots SLOTS) => SLOTSN SLOTSLIST INITLIST
2485 Converts a list of symbols or lists of symbol and form into the last 3
2486 values returned by PARSE$DEFSTRUCT$ARGS."
2487 (let ((slotsn (length slots)) ;number of slots
2488 slotslist ;(slot1 slot2 ...)
2489 initlist) ;((:slot1 . init1) ...)
2490 (do*
2491 ((ptr slots (cdr ptr))
2492 (this (car ptr) (car ptr)))
2493 ((endp ptr))
2494 (cond ((symbolp this)
2495 (setq slotslist (cons this slotslist))
2496 (setq initlist (acons (keyword-of this) nil initlist)))
2497 ((and (listp this)
2498 (symbolp (car this)))
2499 (let ((name (car this))
2500 (form (cadr this)))
2501 ;; this silently ignores any slot options. bad...
2502 (setq slotslist (cons name slotslist))
2503 (setq initlist (acons (keyword-of name) form initlist))))
2504 (t
2505 (error "slot should be symbol or (symbol ...), not `%s'"
2506 (prin1-to-string this)))))
2507 (values slotsn (nreverse slotslist) (nreverse initlist))))
2508 \f
2509 (defun parse$defstruct$options (name options slots)
2510 "(parse$defstruct$options name OPTIONS SLOTS) => many values
2511 A defstruct named NAME, with options list OPTIONS, has already slots SLOTS.
2512 Parse the OPTIONS and return the updated form of the struct's slots and other
2513 information. The values returned are:
2514
2515 CONC-NAME is the string to use as prefix/suffix in the methods,
2516 CONST is the name of the official constructor,
2517 COPIER is the name of the structure copier,
2518 PRED is the name of the type predicate,
2519 MORESLOTSN is the number of slots added by :include,
2520 MORESLOTS is the list of slots added by :include,
2521 MOREINITS is the list of initialization forms added by :include,
2522 INCLUDED is nil, or the list of the symbol added by :include"
2523 (let* ((namestring (symbol-name name))
2524 ;; to build the return values
2525 (conc-name (concat namestring "-"))
2526 (const (intern (concat "make-" namestring)))
2527 (copier (intern (concat "copy-" namestring)))
2528 (pred (intern (concat namestring "-p")))
2529 (moreslotsn 0)
2530 (moreslots '())
2531 (moreinits '())
2532 ;; auxiliaries
2533 option-head ;When an option is not a plain
2534 option-second ; keyword, it must be a list of
2535 option-rest ; the form (head second . rest)
2536 these-slotsn ;When :include is found, the
2537 these-slots ; info about the included
2538 these-inits ; structure is added here.
2539 included ;NIL or (list INCLUDED)
2540 )
2541 ;; Values above are the defaults. Now we read the options themselves
2542 (dolist (option options)
2543 ;; 2 cases arise, as options must be a keyword or a list
2544 (cond
2545 ((keywordp option)
2546 (case option
2547 (:named
2548 ) ;ignore silently
2549 (t
2550 (error "can't recognize option `%s'"
2551 (prin1-to-string option)))))
2552 ((and (listp option)
2553 (keywordp (setq option-head (car option))))
2554 (setq option-second (second option))
2555 (setq option-rest (nthcdr 2 option))
2556 (case option-head
2557 (:conc-name
2558 (setq conc-name
2559 (cond
2560 ((stringp option-second)
2561 option-second)
2562 ((null option-second)
2563 "")
2564 (t
2565 (error "`%s' is invalid as `conc-name'"
2566 (prin1-to-string option-second))))))
2567 (:copier
2568 (setq copier
2569 (cond
2570 ((and (symbolp option-second)
2571 (null option-rest))
2572 option-second)
2573 (t
2574 (error "can't recognize option `%s'"
2575 (prin1-to-string option))))))
2576 \f
2577 (:constructor ;no BOA-constructors allowed
2578 (setq const
2579 (cond
2580 ((and (symbolp option-second)
2581 (null option-rest))
2582 option-second)
2583 (t
2584 (error "can't recognize option `%s'"
2585 (prin1-to-string option))))))
2586 (:predicate
2587 (setq pred
2588 (cond
2589 ((and (symbolp option-second)
2590 (null option-rest))
2591 option-second)
2592 (t
2593 (error "can't recognize option `%s'"
2594 (prin1-to-string option))))))
2595 (:include
2596 (unless (symbolp option-second)
2597 (error "arg to `:include' should be a symbol, not `%s'"
2598 (prin1-to-string option-second)))
2599 (setq these-slotsn (get option-second :structure-slotsn)
2600 these-slots (get option-second :structure-slots)
2601 these-inits (get option-second :structure-initforms))
2602 (unless (and (numberp these-slotsn)
2603 (> these-slotsn 0))
2604 (error "`%s' is not a valid structure"
2605 (prin1-to-string option-second)))
2606 (if included
2607 (error "`%s' already includes `%s', can't include `%s' too"
2608 name (car included) option-second)
2609 (push option-second included))
2610 (multiple-value-bind
2611 (xtra-slotsn xtra-slots xtra-inits)
2612 (process$slots option-rest)
2613 (when (> xtra-slotsn 0)
2614 (dolist (xslot xtra-slots)
2615 (unless (memq xslot these-slots)
2616 (error "`%s' is not a slot of `%s'"
2617 (prin1-to-string xslot)
2618 (prin1-to-string option-second))))
2619 (setq these-inits (append xtra-inits these-inits)))
2620 (setq moreslotsn (+ moreslotsn these-slotsn))
2621 (setq moreslots (append these-slots moreslots))
2622 (setq moreinits (append these-inits moreinits))))
2623 ((:print-function :type :initial-offset)
2624 ) ;ignore silently
2625 (t
2626 (error "can't recognize option `%s'"
2627 (prin1-to-string option)))))
2628 (t
2629 (error "can't recognize option `%s'"
2630 (prin1-to-string option)))))
2631 ;; Return values found
2632 (values conc-name const copier pred
2633 moreslotsn moreslots moreinits
2634 included)))
2635 \f
2636 (defun simplify$inits (slots initlist)
2637 "(simplify$inits SLOTS INITLIST) => new INITLIST
2638 Removes from INITLIST - an ALIST - any shadowed bindings."
2639 (let ((result '()) ;built here
2640 key ;from the slot
2641 )
2642 (dolist (slot slots)
2643 (setq key (keyword-of slot))
2644 (setq result (acons key (cdr (assoc key initlist)) result)))
2645 (nreverse result)))
2646
2647 (defun extract$indices (initlist)
2648 "(extract$indices INITLIST) => indices list
2649 Kludge. From a list of pairs (keyword . form) build a list of pairs
2650 of the form (keyword . position in list from 0). Useful to precompute
2651 some of the work of MAKE$STRUCTURE$INSTANCE."
2652 (let ((result '())
2653 (index 0))
2654 (dolist (entry initlist (nreverse result))
2655 (setq result (acons (car entry) index result)
2656 index (+ index 1)))))
2657 \f
2658 (defun build$accessors$for (name conc-name predicate slots slotsn)
2659 "(build$accessors$for NAME PREDICATE SLOTS SLOTSN) => FSETS DEFSETFS KWDS
2660 Generate the code for accesors and defsetfs of a structure called
2661 NAME, whose slots are SLOTS. Also, establishes the keywords for the
2662 slots names."
2663 (do ((i 0 (1+ i))
2664 (accessors '())
2665 (alterators '())
2666 (keywords '())
2667 (canonic "")) ;slot name with conc-name prepended
2668 ((>= i slotsn)
2669 (values
2670 (nreverse accessors) (nreverse alterators) (nreverse keywords)))
2671 (setq canonic (intern (concat conc-name (symbol-name (nth i slots)))))
2672 (setq accessors
2673 (cons
2674 (list 'fset (list 'quote canonic)
2675 (list 'function
2676 (list 'lambda (list 'object)
2677 (list 'cond
2678 (list (list predicate 'object)
2679 (list 'aref 'object (1+ i)))
2680 (list 't
2681 (list 'error
2682 "`%s' is not a struct %s"
2683 (list 'prin1-to-string
2684 'object)
2685 (list 'prin1-to-string
2686 (list 'quote
2687 name))))))))
2688 accessors))
2689 (setq alterators
2690 (cons
2691 (list 'defsetf canonic
2692 (list 'lambda (list 'object 'newval)
2693 (list 'cond
2694 (list (list predicate 'object)
2695 (list 'aset 'object (1+ i) 'newval))
2696 (list 't
2697 (list 'error
2698 "`%s' not a `%s'"
2699 (list 'prin1-to-string
2700 'object)
2701 (list 'prin1-to-string
2702 (list 'quote
2703 name)))))))
2704 alterators))
2705 (setq keywords
2706 (cons (list 'defkeyword (keyword-of (nth i slots)))
2707 keywords))))
2708 \f
2709 (defun make$structure$instance (name args)
2710 "(make$structure$instance NAME ARGS) => new struct NAME
2711 A struct of type NAME is created, some slots might be initialized
2712 according to ARGS (the &rest argument of MAKE-name)."
2713 (unless (symbolp name)
2714 (error "`%s' is not a possible name for a structure"
2715 (prin1-to-string name)))
2716 (let ((initforms (get name :structure-initforms))
2717 (slotsn (get name :structure-slotsn))
2718 (indices (get name :structure-indices))
2719 initalist ;pairlis'd on initforms
2720 initializers ;definitive initializers
2721 )
2722 ;; check sanity of the request
2723 (unless (and (numberp slotsn)
2724 (> slotsn 0))
2725 (error "`%s' is not a defined structure"
2726 (prin1-to-string name)))
2727 (unless (evenp (length args))
2728 (error "slot initializers `%s' not of even length"
2729 (prin1-to-string args)))
2730 ;; analyze the initializers provided by the call
2731 (multiple-value-bind
2732 (speckwds specvals) ;keywords and values given
2733 (unzip-list args) ; by the user
2734 ;; check that all the arguments are introduced by keywords
2735 (unless (every (function keywordp) speckwds)
2736 (error "all of the names in `%s' should be keywords"
2737 (prin1-to-string speckwds)))
2738 ;; check that all the keywords are known
2739 (dolist (kwd speckwds)
2740 (unless (numberp (cdr (assoc kwd indices)))
2741 (error "`%s' is not a valid slot name for %s"
2742 (prin1-to-string kwd) (prin1-to-string name))))
2743 ;; update initforms
2744 (setq initalist
2745 (pairlis speckwds
2746 (do* ;;protect values from further evaluation
2747 ((ptr specvals (cdr ptr))
2748 (val (car ptr) (car ptr))
2749 (result '()))
2750 ((endp ptr) (nreverse result))
2751 (setq result
2752 (cons (list 'quote val)
2753 result)))
2754 (copy-sequence initforms)))
2755 ;; compute definitive initializers
2756 (setq initializers
2757 (do* ;;gather the values of the most definitive forms
2758 ((ptr indices (cdr ptr))
2759 (key (caar ptr) (caar ptr))
2760 (result '()))
2761 ((endp ptr) (nreverse result))
2762 (setq result
2763 (cons (eval (cdr (assoc key initalist))) result))))
2764 ;; do real initialization
2765 (apply (function vector)
2766 (cons name initializers)))))
2767
2768 ;;;; end of cl-structs.el
2769 \f
2770 ;;; For lisp-interaction mode, so that multiple values can be seen when passed
2771 ;;; back. Lies every now and then...
2772
2773 (defvar - nil "form currently under evaluation")
2774 (defvar + nil "previous -")
2775 (defvar ++ nil "previous +")
2776 (defvar +++ nil "previous ++")
2777 (defvar / nil "list of values returned by +")
2778 (defvar // nil "list of values returned by ++")
2779 (defvar /// nil "list of values returned by +++")
2780 (defvar * nil "(first) value of +")
2781 (defvar ** nil "(first) value of ++")
2782 (defvar *** nil "(first) value of +++")
2783
2784 (defun cl-eval-print-last-sexp ()
2785 "Evaluate sexp before point; print value\(s\) into current buffer.
2786 If the evaled form returns multiple values, they are shown one to a line.
2787 The variables -, +, ++, +++, *, **, ***, /, //, /// have their usual meaning.
2788
2789 It clears the multiple-value passing mechanism, and does not pass back
2790 multiple values. Use this only if you are debugging cl.el and understand well
2791 how the multiple-value stuff works, because it can be fooled into believing
2792 that multiple values have been returned when they actually haven't, for
2793 instance
2794 \(identity \(values nil 1\)\)
2795 However, even when this fails, you can trust the first printed value to be
2796 \(one of\) the returned value\(s\)."
2797 (interactive)
2798 ;; top level call, can reset mvalues
2799 (setq *mvalues-count* nil
2800 *mvalues-values* nil)
2801 (setq - (car (read-from-string
2802 (buffer-substring
2803 (let ((stab (syntax-table)))
2804 (unwind-protect
2805 (save-excursion
2806 (set-syntax-table emacs-lisp-mode-syntax-table)
2807 (forward-sexp -1)
2808 (point))
2809 (set-syntax-table stab)))
2810 (point)))))
2811 (setq *** **
2812 ** *
2813 * (eval -))
2814 (setq /// //
2815 // /
2816 / *mvalues-values*)
2817 (setq +++ ++
2818 ++ +
2819 + -)
2820 (cond ((or (null *mvalues-count*) ;mvalues mechanism not used
2821 (not (eq * (car *mvalues-values*))))
2822 (print * (current-buffer)))
2823 ((null /) ;no values returned
2824 (terpri (current-buffer)))
2825 (t ;more than zero mvalues
2826 (terpri (current-buffer))
2827 (mapcar (function (lambda (value)
2828 (prin1 value (current-buffer))
2829 (terpri (current-buffer))))
2830 /)))
2831 (setq *mvalues-count* nil ;make sure
2832 *mvalues-values* nil))
2833 \f
2834 ;;;; More LISTS functions
2835 ;;;;
2836
2837 ;;; Some mapping functions on lists, commonly useful.
2838 ;;; They take no extra sequences, to go along with Emacs Lisp's MAPCAR.
2839
2840 (defun mapc (function list)
2841 "(MAPC FUNCTION LIST) => LIST
2842 Apply FUNCTION to each element of LIST, return LIST.
2843 Like mapcar, but called only for effect."
2844 (let ((args list))
2845 (while args
2846 (funcall function (car args))
2847 (setq args (cdr args))))
2848 list)
2849
2850 (defun maplist (function list)
2851 "(MAPLIST FUNCTION LIST) => list'ed results of FUNCTION on cdrs of LIST
2852 Apply FUNCTION to successive sublists of LIST, return the list of the results"
2853 (let ((args list)
2854 results '())
2855 (while args
2856 (setq results (cons (funcall function args) results)
2857 args (cdr args)))
2858 (nreverse results)))
2859
2860 (defun mapl (function list)
2861 "(MAPL FUNCTION LIST) => LIST
2862 Apply FUNCTION to successive cdrs of LIST, return LIST.
2863 Like maplist, but called only for effect."
2864 (let ((args list))
2865 (while args
2866 (funcall function args)
2867 (setq args (cdr args)))
2868 list))
2869
2870 (defun mapcan (function list)
2871 "(MAPCAN FUNCTION LIST) => nconc'd results of FUNCTION on LIST
2872 Apply FUNCTION to each element of LIST, nconc the results.
2873 Beware: nconc destroys its first argument! See copy-list."
2874 (let ((args list)
2875 (results '()))
2876 (while args
2877 (setq results (nconc (funcall function (car args)) results)
2878 args (cdr args)))
2879 (nreverse results)))
2880
2881 (defun mapcon (function list)
2882 "(MAPCON FUNCTION LIST) => nconc'd results of FUNCTION on cdrs of LIST
2883 Apply FUNCTION to successive sublists of LIST, nconc the results.
2884 Beware: nconc destroys its first argument! See copy-list."
2885 (let ((args list)
2886 (results '()))
2887 (while args
2888 (setq results (nconc (funcall function args) results)
2889 args (cdr args)))
2890 (nreverse results)))
2891
2892 ;;; Copiers
2893
2894 (defun copy-list (list)
2895 "Build a copy of LIST"
2896 (append list '()))
2897
2898 (defun copy-tree (tree)
2899 "Build a copy of the tree of conses TREE
2900 The argument is a tree of conses, it is recursively copied down to
2901 non conses. Circularity and sharing of substructure are not
2902 necessarily preserved."
2903 (if (consp tree)
2904 (cons (copy-tree (car tree))
2905 (copy-tree (cdr tree)))
2906 tree))
2907
2908 ;;; reversals, and destructive manipulations of a list's spine
2909
2910 (defun revappend (x y)
2911 "does what (append (reverse X) Y) would, only faster"
2912 (if (endp x)
2913 y
2914 (revappend (cdr x) (cons (car x) y))))
2915
2916 (defun nreconc (x y)
2917 "does (nconc (nreverse X) Y) would, only faster
2918 Destructive on X, be careful."
2919 (if (endp x)
2920 y
2921 ;; reuse the first cons of x, making it point to y
2922 (nreconc (cdr x) (prog1 x (rplacd x y)))))
2923
2924 (defun nbutlast (list &optional n)
2925 "Side-effected LIST truncated N+1 conses from the end.
2926 This is the destructive version of BUTLAST. Returns () and does not
2927 modify the LIST argument if the length of the list is not at least N."
2928 (when (null n) (setf n 1))
2929 (let ((length (list-length list)))
2930 (cond ((null length)
2931 list)
2932 ((< length n)
2933 '())
2934 (t
2935 (setnthcdr (- length n) list nil)
2936 list))))
2937 \f
2938 ;;; Substitutions
2939
2940 (defun subst (new old tree)
2941 "NEW replaces OLD in a copy of TREE
2942 Uses eql for the test."
2943 (subst-if new (function (lambda (x) (eql x old))) tree))
2944
2945 (defun subst-if-not (new test tree)
2946 "NEW replaces any subtree or leaf that fails TEST in a copy of TREE"
2947 ;; (subst-if new (function (lambda (x) (not (funcall test x)))) tree)
2948 (cond ((not (funcall test tree))
2949 new)
2950 ((atom tree)
2951 tree)
2952 (t ;no match so far
2953 (let ((head (subst-if-not new test (car tree)))
2954 (tail (subst-if-not new test (cdr tree))))
2955 ;; If nothing changed, return originals. Else use the new
2956 ;; components to assemble a new tree.
2957 (if (and (eql head (car tree))
2958 (eql tail (cdr tree)))
2959 tree
2960 (cons head tail))))))
2961
2962 (defun subst-if (new test tree)
2963 "NEW replaces any subtree or leaf that satisfies TEST in a copy of TREE"
2964 (cond ((funcall test tree)
2965 new)
2966 ((atom tree)
2967 tree)
2968 (t ;no match so far
2969 (let ((head (subst-if new test (car tree)))
2970 (tail (subst-if new test (cdr tree))))
2971 ;; If nothing changed, return originals. Else use the new
2972 ;; components to assemble a new tree.
2973 (if (and (eql head (car tree))
2974 (eql tail (cdr tree)))
2975 tree
2976 (cons head tail))))))
2977
2978 (defun sublis (alist tree)
2979 "Use association list ALIST to modify a copy of TREE
2980 If a subtree or leaf of TREE is a key in ALIST, it is replaced by the
2981 associated value. Not exactly Common Lisp, but close in spirit and
2982 compatible with the native Emacs Lisp ASSOC, which uses EQUAL."
2983 (let ((toplevel (assoc tree alist)))
2984 (cond (toplevel ;Bingo at top
2985 (cdr toplevel))
2986 ((atom tree) ;Give up on this
2987 tree)
2988 (t
2989 (let ((head (sublis alist (car tree)))
2990 (tail (sublis alist (cdr tree))))
2991 (if (and (eql head (car tree))
2992 (eql tail (cdr tree)))
2993 tree
2994 (cons head tail)))))))
2995
2996 (defun member-if (predicate list)
2997 "PREDICATE is applied to the members of LIST. As soon as one of them
2998 returns true, that tail of the list if returned. Else NIL."
2999 (catch 'found-member-if
3000 (while (not (endp list))
3001 (if (funcall predicate (car list))
3002 (throw 'found-member-if list)
3003 (setq list (cdr list))))
3004 nil))
3005
3006 (defun member-if-not (predicate list)
3007 "PREDICATE is applied to the members of LIST. As soon as one of them
3008 returns false, that tail of the list if returned. Else NIL."
3009 (catch 'found-member-if-not
3010 (while (not (endp list))
3011 (if (funcall predicate (car list))
3012 (setq list (cdr list))
3013 (throw 'found-member-if-not list)))
3014 nil))
3015
3016 (defun tailp (sublist list)
3017 "(tailp SUBLIST LIST) => True if SUBLIST is a sublist of LIST."
3018 (catch 'tailp-found
3019 (while (not (endp list))
3020 (if (eq sublist list)
3021 (throw 'tailp-found t)
3022 (setq list (cdr list))))
3023 nil))
3024 \f
3025 ;;; Suggestion of phr%widow.Berkeley.EDU@lilac.berkeley.edu
3026
3027 (defmacro declare (&rest decls)
3028 "Ignore a Common-Lisp declaration."
3029 "declarations are ignored in this implementation")
3030
3031 (defun proclaim (&rest decls)
3032 "Ignore a Common-Lisp proclamation."
3033 "declarations are ignored in this implementation")
3034
3035 (defmacro the (type form)
3036 "(the TYPE FORM) macroexpands to FORM
3037 No checking is even attempted. This is just for compatibility with
3038 Common-Lisp codes."
3039 form)
3040
3041 (provide 'cl)
3042
3043 ;;; cl.el ends here