* fns.c (Fcompare_strings): Doc fix.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 Other values of LIMIT are ignored. */)
70 (Lisp_Object limit)
71 {
72 EMACS_INT val;
73
74 if (EQ (limit, Qt))
75 init_random ();
76 else if (STRINGP (limit))
77 seed_random (SSDATA (limit), SBYTES (limit));
78
79 val = get_random ();
80 if (NATNUMP (limit) && XFASTINT (limit) != 0)
81 val %= XFASTINT (limit);
82 return make_number (val);
83 }
84 \f
85 /* Heuristic on how many iterations of a tight loop can be safely done
86 before it's time to do a QUIT. This must be a power of 2. */
87 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
88
89 /* Random data-structure functions */
90
91 DEFUN ("length", Flength, Slength, 1, 1, 0,
92 doc: /* Return the length of vector, list or string SEQUENCE.
93 A byte-code function object is also allowed.
94 If the string contains multibyte characters, this is not necessarily
95 the number of bytes in the string; it is the number of characters.
96 To get the number of bytes, use `string-bytes'. */)
97 (register Lisp_Object sequence)
98 {
99 register Lisp_Object val;
100
101 if (STRINGP (sequence))
102 XSETFASTINT (val, SCHARS (sequence));
103 else if (VECTORP (sequence))
104 XSETFASTINT (val, ASIZE (sequence));
105 else if (CHAR_TABLE_P (sequence))
106 XSETFASTINT (val, MAX_CHAR);
107 else if (BOOL_VECTOR_P (sequence))
108 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
109 else if (COMPILEDP (sequence))
110 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
111 else if (CONSP (sequence))
112 {
113 EMACS_INT i = 0;
114
115 do
116 {
117 ++i;
118 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
119 {
120 if (MOST_POSITIVE_FIXNUM < i)
121 error ("List too long");
122 QUIT;
123 }
124 sequence = XCDR (sequence);
125 }
126 while (CONSP (sequence));
127
128 CHECK_LIST_END (sequence, sequence);
129
130 val = make_number (i);
131 }
132 else if (NILP (sequence))
133 XSETFASTINT (val, 0);
134 else
135 wrong_type_argument (Qsequencep, sequence);
136
137 return val;
138 }
139
140 /* This does not check for quits. That is safe since it must terminate. */
141
142 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
143 doc: /* Return the length of a list, but avoid error or infinite loop.
144 This function never gets an error. If LIST is not really a list,
145 it returns 0. If LIST is circular, it returns a finite value
146 which is at least the number of distinct elements. */)
147 (Lisp_Object list)
148 {
149 Lisp_Object tail, halftail;
150 double hilen = 0;
151 uintmax_t lolen = 1;
152
153 if (! CONSP (list))
154 return make_number (0);
155
156 /* halftail is used to detect circular lists. */
157 for (tail = halftail = list; ; )
158 {
159 tail = XCDR (tail);
160 if (! CONSP (tail))
161 break;
162 if (EQ (tail, halftail))
163 break;
164 lolen++;
165 if ((lolen & 1) == 0)
166 {
167 halftail = XCDR (halftail);
168 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
169 {
170 QUIT;
171 if (lolen == 0)
172 hilen += UINTMAX_MAX + 1.0;
173 }
174 }
175 }
176
177 /* If the length does not fit into a fixnum, return a float.
178 On all known practical machines this returns an upper bound on
179 the true length. */
180 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
181 }
182
183 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
184 doc: /* Return the number of bytes in STRING.
185 If STRING is multibyte, this may be greater than the length of STRING. */)
186 (Lisp_Object string)
187 {
188 CHECK_STRING (string);
189 return make_number (SBYTES (string));
190 }
191
192 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
193 doc: /* Return t if two strings have identical contents.
194 Case is significant, but text properties are ignored.
195 Symbols are also allowed; their print names are used instead. */)
196 (register Lisp_Object s1, Lisp_Object s2)
197 {
198 if (SYMBOLP (s1))
199 s1 = SYMBOL_NAME (s1);
200 if (SYMBOLP (s2))
201 s2 = SYMBOL_NAME (s2);
202 CHECK_STRING (s1);
203 CHECK_STRING (s2);
204
205 if (SCHARS (s1) != SCHARS (s2)
206 || SBYTES (s1) != SBYTES (s2)
207 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
208 return Qnil;
209 return Qt;
210 }
211
212 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
213 doc: /* Compare the contents of two strings, converting to multibyte if needed.
214 The arguments START1, END1, START2, and END2, if non-nil, are
215 positions specifying which parts of STR1 or STR2 to compare. In
216 string STR1, compare the part between START1 (inclusive) and END1
217 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
218 the string; if END1 is nil, it defaults to the length of the string.
219 Likewise, in string STR2, compare the part between START2 and END2.
220
221 The strings are compared by the numeric values of their characters.
222 For instance, STR1 is "less than" STR2 if its first differing
223 character has a smaller numeric value. If IGNORE-CASE is non-nil,
224 characters are converted to lower-case before comparing them. Unibyte
225 strings are converted to multibyte for comparison.
226
227 The value is t if the strings (or specified portions) match.
228 If string STR1 is less, the value is a negative number N;
229 - 1 - N is the number of characters that match at the beginning.
230 If string STR1 is greater, the value is a positive number N;
231 N - 1 is the number of characters that match at the beginning. */)
232 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
233 {
234 register ptrdiff_t end1_char, end2_char;
235 register ptrdiff_t i1, i1_byte, i2, i2_byte;
236
237 CHECK_STRING (str1);
238 CHECK_STRING (str2);
239 if (NILP (start1))
240 start1 = make_number (0);
241 if (NILP (start2))
242 start2 = make_number (0);
243 CHECK_NATNUM (start1);
244 CHECK_NATNUM (start2);
245 if (! NILP (end1))
246 CHECK_NATNUM (end1);
247 if (! NILP (end2))
248 CHECK_NATNUM (end2);
249
250 end1_char = SCHARS (str1);
251 if (! NILP (end1) && end1_char > XINT (end1))
252 end1_char = XINT (end1);
253 if (end1_char < XINT (start1))
254 args_out_of_range (str1, start1);
255
256 end2_char = SCHARS (str2);
257 if (! NILP (end2) && end2_char > XINT (end2))
258 end2_char = XINT (end2);
259 if (end2_char < XINT (start2))
260 args_out_of_range (str2, start2);
261
262 i1 = XINT (start1);
263 i2 = XINT (start2);
264
265 i1_byte = string_char_to_byte (str1, i1);
266 i2_byte = string_char_to_byte (str2, i2);
267
268 while (i1 < end1_char && i2 < end2_char)
269 {
270 /* When we find a mismatch, we must compare the
271 characters, not just the bytes. */
272 int c1, c2;
273
274 if (STRING_MULTIBYTE (str1))
275 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
276 else
277 {
278 c1 = SREF (str1, i1++);
279 MAKE_CHAR_MULTIBYTE (c1);
280 }
281
282 if (STRING_MULTIBYTE (str2))
283 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
284 else
285 {
286 c2 = SREF (str2, i2++);
287 MAKE_CHAR_MULTIBYTE (c2);
288 }
289
290 if (c1 == c2)
291 continue;
292
293 if (! NILP (ignore_case))
294 {
295 Lisp_Object tem;
296
297 tem = Fupcase (make_number (c1));
298 c1 = XINT (tem);
299 tem = Fupcase (make_number (c2));
300 c2 = XINT (tem);
301 }
302
303 if (c1 == c2)
304 continue;
305
306 /* Note that I1 has already been incremented
307 past the character that we are comparing;
308 hence we don't add or subtract 1 here. */
309 if (c1 < c2)
310 return make_number (- i1 + XINT (start1));
311 else
312 return make_number (i1 - XINT (start1));
313 }
314
315 if (i1 < end1_char)
316 return make_number (i1 - XINT (start1) + 1);
317 if (i2 < end2_char)
318 return make_number (- i1 + XINT (start1) - 1);
319
320 return Qt;
321 }
322
323 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
324 doc: /* Return t if first arg string is less than second in lexicographic order.
325 Case is significant.
326 Symbols are also allowed; their print names are used instead. */)
327 (register Lisp_Object s1, Lisp_Object s2)
328 {
329 register ptrdiff_t end;
330 register ptrdiff_t i1, i1_byte, i2, i2_byte;
331
332 if (SYMBOLP (s1))
333 s1 = SYMBOL_NAME (s1);
334 if (SYMBOLP (s2))
335 s2 = SYMBOL_NAME (s2);
336 CHECK_STRING (s1);
337 CHECK_STRING (s2);
338
339 i1 = i1_byte = i2 = i2_byte = 0;
340
341 end = SCHARS (s1);
342 if (end > SCHARS (s2))
343 end = SCHARS (s2);
344
345 while (i1 < end)
346 {
347 /* When we find a mismatch, we must compare the
348 characters, not just the bytes. */
349 int c1, c2;
350
351 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
352 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
353
354 if (c1 != c2)
355 return c1 < c2 ? Qt : Qnil;
356 }
357 return i1 < SCHARS (s2) ? Qt : Qnil;
358 }
359 \f
360 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
361 enum Lisp_Type target_type, bool last_special);
362
363 /* ARGSUSED */
364 Lisp_Object
365 concat2 (Lisp_Object s1, Lisp_Object s2)
366 {
367 Lisp_Object args[2];
368 args[0] = s1;
369 args[1] = s2;
370 return concat (2, args, Lisp_String, 0);
371 }
372
373 /* ARGSUSED */
374 Lisp_Object
375 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
376 {
377 Lisp_Object args[3];
378 args[0] = s1;
379 args[1] = s2;
380 args[2] = s3;
381 return concat (3, args, Lisp_String, 0);
382 }
383
384 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
385 doc: /* Concatenate all the arguments and make the result a list.
386 The result is a list whose elements are the elements of all the arguments.
387 Each argument may be a list, vector or string.
388 The last argument is not copied, just used as the tail of the new list.
389 usage: (append &rest SEQUENCES) */)
390 (ptrdiff_t nargs, Lisp_Object *args)
391 {
392 return concat (nargs, args, Lisp_Cons, 1);
393 }
394
395 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
396 doc: /* Concatenate all the arguments and make the result a string.
397 The result is a string whose elements are the elements of all the arguments.
398 Each argument may be a string or a list or vector of characters (integers).
399 usage: (concat &rest SEQUENCES) */)
400 (ptrdiff_t nargs, Lisp_Object *args)
401 {
402 return concat (nargs, args, Lisp_String, 0);
403 }
404
405 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
406 doc: /* Concatenate all the arguments and make the result a vector.
407 The result is a vector whose elements are the elements of all the arguments.
408 Each argument may be a list, vector or string.
409 usage: (vconcat &rest SEQUENCES) */)
410 (ptrdiff_t nargs, Lisp_Object *args)
411 {
412 return concat (nargs, args, Lisp_Vectorlike, 0);
413 }
414
415
416 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
417 doc: /* Return a copy of a list, vector, string or char-table.
418 The elements of a list or vector are not copied; they are shared
419 with the original. */)
420 (Lisp_Object arg)
421 {
422 if (NILP (arg)) return arg;
423
424 if (CHAR_TABLE_P (arg))
425 {
426 return copy_char_table (arg);
427 }
428
429 if (BOOL_VECTOR_P (arg))
430 {
431 Lisp_Object val;
432 ptrdiff_t size_in_chars
433 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
434 / BOOL_VECTOR_BITS_PER_CHAR);
435
436 val = Fmake_bool_vector (Flength (arg), Qnil);
437 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
438 size_in_chars);
439 return val;
440 }
441
442 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
443 wrong_type_argument (Qsequencep, arg);
444
445 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
446 }
447
448 /* This structure holds information of an argument of `concat' that is
449 a string and has text properties to be copied. */
450 struct textprop_rec
451 {
452 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
453 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
454 ptrdiff_t to; /* refer to VAL (the target string) */
455 };
456
457 static Lisp_Object
458 concat (ptrdiff_t nargs, Lisp_Object *args,
459 enum Lisp_Type target_type, bool last_special)
460 {
461 Lisp_Object val;
462 Lisp_Object tail;
463 Lisp_Object this;
464 ptrdiff_t toindex;
465 ptrdiff_t toindex_byte = 0;
466 EMACS_INT result_len;
467 EMACS_INT result_len_byte;
468 ptrdiff_t argnum;
469 Lisp_Object last_tail;
470 Lisp_Object prev;
471 bool some_multibyte;
472 /* When we make a multibyte string, we can't copy text properties
473 while concatenating each string because the length of resulting
474 string can't be decided until we finish the whole concatenation.
475 So, we record strings that have text properties to be copied
476 here, and copy the text properties after the concatenation. */
477 struct textprop_rec *textprops = NULL;
478 /* Number of elements in textprops. */
479 ptrdiff_t num_textprops = 0;
480 USE_SAFE_ALLOCA;
481
482 tail = Qnil;
483
484 /* In append, the last arg isn't treated like the others */
485 if (last_special && nargs > 0)
486 {
487 nargs--;
488 last_tail = args[nargs];
489 }
490 else
491 last_tail = Qnil;
492
493 /* Check each argument. */
494 for (argnum = 0; argnum < nargs; argnum++)
495 {
496 this = args[argnum];
497 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
498 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
499 wrong_type_argument (Qsequencep, this);
500 }
501
502 /* Compute total length in chars of arguments in RESULT_LEN.
503 If desired output is a string, also compute length in bytes
504 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
505 whether the result should be a multibyte string. */
506 result_len_byte = 0;
507 result_len = 0;
508 some_multibyte = 0;
509 for (argnum = 0; argnum < nargs; argnum++)
510 {
511 EMACS_INT len;
512 this = args[argnum];
513 len = XFASTINT (Flength (this));
514 if (target_type == Lisp_String)
515 {
516 /* We must count the number of bytes needed in the string
517 as well as the number of characters. */
518 ptrdiff_t i;
519 Lisp_Object ch;
520 int c;
521 ptrdiff_t this_len_byte;
522
523 if (VECTORP (this) || COMPILEDP (this))
524 for (i = 0; i < len; i++)
525 {
526 ch = AREF (this, i);
527 CHECK_CHARACTER (ch);
528 c = XFASTINT (ch);
529 this_len_byte = CHAR_BYTES (c);
530 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
531 string_overflow ();
532 result_len_byte += this_len_byte;
533 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
534 some_multibyte = 1;
535 }
536 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
537 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
538 else if (CONSP (this))
539 for (; CONSP (this); this = XCDR (this))
540 {
541 ch = XCAR (this);
542 CHECK_CHARACTER (ch);
543 c = XFASTINT (ch);
544 this_len_byte = CHAR_BYTES (c);
545 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
546 string_overflow ();
547 result_len_byte += this_len_byte;
548 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
549 some_multibyte = 1;
550 }
551 else if (STRINGP (this))
552 {
553 if (STRING_MULTIBYTE (this))
554 {
555 some_multibyte = 1;
556 this_len_byte = SBYTES (this);
557 }
558 else
559 this_len_byte = count_size_as_multibyte (SDATA (this),
560 SCHARS (this));
561 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
562 string_overflow ();
563 result_len_byte += this_len_byte;
564 }
565 }
566
567 result_len += len;
568 if (MOST_POSITIVE_FIXNUM < result_len)
569 memory_full (SIZE_MAX);
570 }
571
572 if (! some_multibyte)
573 result_len_byte = result_len;
574
575 /* Create the output object. */
576 if (target_type == Lisp_Cons)
577 val = Fmake_list (make_number (result_len), Qnil);
578 else if (target_type == Lisp_Vectorlike)
579 val = Fmake_vector (make_number (result_len), Qnil);
580 else if (some_multibyte)
581 val = make_uninit_multibyte_string (result_len, result_len_byte);
582 else
583 val = make_uninit_string (result_len);
584
585 /* In `append', if all but last arg are nil, return last arg. */
586 if (target_type == Lisp_Cons && EQ (val, Qnil))
587 return last_tail;
588
589 /* Copy the contents of the args into the result. */
590 if (CONSP (val))
591 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
592 else
593 toindex = 0, toindex_byte = 0;
594
595 prev = Qnil;
596 if (STRINGP (val))
597 SAFE_NALLOCA (textprops, 1, nargs);
598
599 for (argnum = 0; argnum < nargs; argnum++)
600 {
601 Lisp_Object thislen;
602 ptrdiff_t thisleni = 0;
603 register ptrdiff_t thisindex = 0;
604 register ptrdiff_t thisindex_byte = 0;
605
606 this = args[argnum];
607 if (!CONSP (this))
608 thislen = Flength (this), thisleni = XINT (thislen);
609
610 /* Between strings of the same kind, copy fast. */
611 if (STRINGP (this) && STRINGP (val)
612 && STRING_MULTIBYTE (this) == some_multibyte)
613 {
614 ptrdiff_t thislen_byte = SBYTES (this);
615
616 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
617 if (string_intervals (this))
618 {
619 textprops[num_textprops].argnum = argnum;
620 textprops[num_textprops].from = 0;
621 textprops[num_textprops++].to = toindex;
622 }
623 toindex_byte += thislen_byte;
624 toindex += thisleni;
625 }
626 /* Copy a single-byte string to a multibyte string. */
627 else if (STRINGP (this) && STRINGP (val))
628 {
629 if (string_intervals (this))
630 {
631 textprops[num_textprops].argnum = argnum;
632 textprops[num_textprops].from = 0;
633 textprops[num_textprops++].to = toindex;
634 }
635 toindex_byte += copy_text (SDATA (this),
636 SDATA (val) + toindex_byte,
637 SCHARS (this), 0, 1);
638 toindex += thisleni;
639 }
640 else
641 /* Copy element by element. */
642 while (1)
643 {
644 register Lisp_Object elt;
645
646 /* Fetch next element of `this' arg into `elt', or break if
647 `this' is exhausted. */
648 if (NILP (this)) break;
649 if (CONSP (this))
650 elt = XCAR (this), this = XCDR (this);
651 else if (thisindex >= thisleni)
652 break;
653 else if (STRINGP (this))
654 {
655 int c;
656 if (STRING_MULTIBYTE (this))
657 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
658 thisindex,
659 thisindex_byte);
660 else
661 {
662 c = SREF (this, thisindex); thisindex++;
663 if (some_multibyte && !ASCII_CHAR_P (c))
664 c = BYTE8_TO_CHAR (c);
665 }
666 XSETFASTINT (elt, c);
667 }
668 else if (BOOL_VECTOR_P (this))
669 {
670 int byte;
671 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
672 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
673 elt = Qt;
674 else
675 elt = Qnil;
676 thisindex++;
677 }
678 else
679 {
680 elt = AREF (this, thisindex);
681 thisindex++;
682 }
683
684 /* Store this element into the result. */
685 if (toindex < 0)
686 {
687 XSETCAR (tail, elt);
688 prev = tail;
689 tail = XCDR (tail);
690 }
691 else if (VECTORP (val))
692 {
693 ASET (val, toindex, elt);
694 toindex++;
695 }
696 else
697 {
698 int c;
699 CHECK_CHARACTER (elt);
700 c = XFASTINT (elt);
701 if (some_multibyte)
702 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
703 else
704 SSET (val, toindex_byte++, c);
705 toindex++;
706 }
707 }
708 }
709 if (!NILP (prev))
710 XSETCDR (prev, last_tail);
711
712 if (num_textprops > 0)
713 {
714 Lisp_Object props;
715 ptrdiff_t last_to_end = -1;
716
717 for (argnum = 0; argnum < num_textprops; argnum++)
718 {
719 this = args[textprops[argnum].argnum];
720 props = text_property_list (this,
721 make_number (0),
722 make_number (SCHARS (this)),
723 Qnil);
724 /* If successive arguments have properties, be sure that the
725 value of `composition' property be the copy. */
726 if (last_to_end == textprops[argnum].to)
727 make_composition_value_copy (props);
728 add_text_properties_from_list (val, props,
729 make_number (textprops[argnum].to));
730 last_to_end = textprops[argnum].to + SCHARS (this);
731 }
732 }
733
734 SAFE_FREE ();
735 return val;
736 }
737 \f
738 static Lisp_Object string_char_byte_cache_string;
739 static ptrdiff_t string_char_byte_cache_charpos;
740 static ptrdiff_t string_char_byte_cache_bytepos;
741
742 void
743 clear_string_char_byte_cache (void)
744 {
745 string_char_byte_cache_string = Qnil;
746 }
747
748 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
749
750 ptrdiff_t
751 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
752 {
753 ptrdiff_t i_byte;
754 ptrdiff_t best_below, best_below_byte;
755 ptrdiff_t best_above, best_above_byte;
756
757 best_below = best_below_byte = 0;
758 best_above = SCHARS (string);
759 best_above_byte = SBYTES (string);
760 if (best_above == best_above_byte)
761 return char_index;
762
763 if (EQ (string, string_char_byte_cache_string))
764 {
765 if (string_char_byte_cache_charpos < char_index)
766 {
767 best_below = string_char_byte_cache_charpos;
768 best_below_byte = string_char_byte_cache_bytepos;
769 }
770 else
771 {
772 best_above = string_char_byte_cache_charpos;
773 best_above_byte = string_char_byte_cache_bytepos;
774 }
775 }
776
777 if (char_index - best_below < best_above - char_index)
778 {
779 unsigned char *p = SDATA (string) + best_below_byte;
780
781 while (best_below < char_index)
782 {
783 p += BYTES_BY_CHAR_HEAD (*p);
784 best_below++;
785 }
786 i_byte = p - SDATA (string);
787 }
788 else
789 {
790 unsigned char *p = SDATA (string) + best_above_byte;
791
792 while (best_above > char_index)
793 {
794 p--;
795 while (!CHAR_HEAD_P (*p)) p--;
796 best_above--;
797 }
798 i_byte = p - SDATA (string);
799 }
800
801 string_char_byte_cache_bytepos = i_byte;
802 string_char_byte_cache_charpos = char_index;
803 string_char_byte_cache_string = string;
804
805 return i_byte;
806 }
807 \f
808 /* Return the character index corresponding to BYTE_INDEX in STRING. */
809
810 ptrdiff_t
811 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
812 {
813 ptrdiff_t i, i_byte;
814 ptrdiff_t best_below, best_below_byte;
815 ptrdiff_t best_above, best_above_byte;
816
817 best_below = best_below_byte = 0;
818 best_above = SCHARS (string);
819 best_above_byte = SBYTES (string);
820 if (best_above == best_above_byte)
821 return byte_index;
822
823 if (EQ (string, string_char_byte_cache_string))
824 {
825 if (string_char_byte_cache_bytepos < byte_index)
826 {
827 best_below = string_char_byte_cache_charpos;
828 best_below_byte = string_char_byte_cache_bytepos;
829 }
830 else
831 {
832 best_above = string_char_byte_cache_charpos;
833 best_above_byte = string_char_byte_cache_bytepos;
834 }
835 }
836
837 if (byte_index - best_below_byte < best_above_byte - byte_index)
838 {
839 unsigned char *p = SDATA (string) + best_below_byte;
840 unsigned char *pend = SDATA (string) + byte_index;
841
842 while (p < pend)
843 {
844 p += BYTES_BY_CHAR_HEAD (*p);
845 best_below++;
846 }
847 i = best_below;
848 i_byte = p - SDATA (string);
849 }
850 else
851 {
852 unsigned char *p = SDATA (string) + best_above_byte;
853 unsigned char *pbeg = SDATA (string) + byte_index;
854
855 while (p > pbeg)
856 {
857 p--;
858 while (!CHAR_HEAD_P (*p)) p--;
859 best_above--;
860 }
861 i = best_above;
862 i_byte = p - SDATA (string);
863 }
864
865 string_char_byte_cache_bytepos = i_byte;
866 string_char_byte_cache_charpos = i;
867 string_char_byte_cache_string = string;
868
869 return i;
870 }
871 \f
872 /* Convert STRING to a multibyte string. */
873
874 static Lisp_Object
875 string_make_multibyte (Lisp_Object string)
876 {
877 unsigned char *buf;
878 ptrdiff_t nbytes;
879 Lisp_Object ret;
880 USE_SAFE_ALLOCA;
881
882 if (STRING_MULTIBYTE (string))
883 return string;
884
885 nbytes = count_size_as_multibyte (SDATA (string),
886 SCHARS (string));
887 /* If all the chars are ASCII, they won't need any more bytes
888 once converted. In that case, we can return STRING itself. */
889 if (nbytes == SBYTES (string))
890 return string;
891
892 buf = SAFE_ALLOCA (nbytes);
893 copy_text (SDATA (string), buf, SBYTES (string),
894 0, 1);
895
896 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
897 SAFE_FREE ();
898
899 return ret;
900 }
901
902
903 /* Convert STRING (if unibyte) to a multibyte string without changing
904 the number of characters. Characters 0200 trough 0237 are
905 converted to eight-bit characters. */
906
907 Lisp_Object
908 string_to_multibyte (Lisp_Object string)
909 {
910 unsigned char *buf;
911 ptrdiff_t nbytes;
912 Lisp_Object ret;
913 USE_SAFE_ALLOCA;
914
915 if (STRING_MULTIBYTE (string))
916 return string;
917
918 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
919 /* If all the chars are ASCII, they won't need any more bytes once
920 converted. */
921 if (nbytes == SBYTES (string))
922 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
923
924 buf = SAFE_ALLOCA (nbytes);
925 memcpy (buf, SDATA (string), SBYTES (string));
926 str_to_multibyte (buf, nbytes, SBYTES (string));
927
928 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
929 SAFE_FREE ();
930
931 return ret;
932 }
933
934
935 /* Convert STRING to a single-byte string. */
936
937 Lisp_Object
938 string_make_unibyte (Lisp_Object string)
939 {
940 ptrdiff_t nchars;
941 unsigned char *buf;
942 Lisp_Object ret;
943 USE_SAFE_ALLOCA;
944
945 if (! STRING_MULTIBYTE (string))
946 return string;
947
948 nchars = SCHARS (string);
949
950 buf = SAFE_ALLOCA (nchars);
951 copy_text (SDATA (string), buf, SBYTES (string),
952 1, 0);
953
954 ret = make_unibyte_string ((char *) buf, nchars);
955 SAFE_FREE ();
956
957 return ret;
958 }
959
960 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
961 1, 1, 0,
962 doc: /* Return the multibyte equivalent of STRING.
963 If STRING is unibyte and contains non-ASCII characters, the function
964 `unibyte-char-to-multibyte' is used to convert each unibyte character
965 to a multibyte character. In this case, the returned string is a
966 newly created string with no text properties. If STRING is multibyte
967 or entirely ASCII, it is returned unchanged. In particular, when
968 STRING is unibyte and entirely ASCII, the returned string is unibyte.
969 \(When the characters are all ASCII, Emacs primitives will treat the
970 string the same way whether it is unibyte or multibyte.) */)
971 (Lisp_Object string)
972 {
973 CHECK_STRING (string);
974
975 return string_make_multibyte (string);
976 }
977
978 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
979 1, 1, 0,
980 doc: /* Return the unibyte equivalent of STRING.
981 Multibyte character codes are converted to unibyte according to
982 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
983 If the lookup in the translation table fails, this function takes just
984 the low 8 bits of each character. */)
985 (Lisp_Object string)
986 {
987 CHECK_STRING (string);
988
989 return string_make_unibyte (string);
990 }
991
992 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
993 1, 1, 0,
994 doc: /* Return a unibyte string with the same individual bytes as STRING.
995 If STRING is unibyte, the result is STRING itself.
996 Otherwise it is a newly created string, with no text properties.
997 If STRING is multibyte and contains a character of charset
998 `eight-bit', it is converted to the corresponding single byte. */)
999 (Lisp_Object string)
1000 {
1001 CHECK_STRING (string);
1002
1003 if (STRING_MULTIBYTE (string))
1004 {
1005 ptrdiff_t bytes = SBYTES (string);
1006 unsigned char *str = xmalloc (bytes);
1007
1008 memcpy (str, SDATA (string), bytes);
1009 bytes = str_as_unibyte (str, bytes);
1010 string = make_unibyte_string ((char *) str, bytes);
1011 xfree (str);
1012 }
1013 return string;
1014 }
1015
1016 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1017 1, 1, 0,
1018 doc: /* Return a multibyte string with the same individual bytes as STRING.
1019 If STRING is multibyte, the result is STRING itself.
1020 Otherwise it is a newly created string, with no text properties.
1021
1022 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1023 part of a correct utf-8 sequence), it is converted to the corresponding
1024 multibyte character of charset `eight-bit'.
1025 See also `string-to-multibyte'.
1026
1027 Beware, this often doesn't really do what you think it does.
1028 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1029 If you're not sure, whether to use `string-as-multibyte' or
1030 `string-to-multibyte', use `string-to-multibyte'. */)
1031 (Lisp_Object string)
1032 {
1033 CHECK_STRING (string);
1034
1035 if (! STRING_MULTIBYTE (string))
1036 {
1037 Lisp_Object new_string;
1038 ptrdiff_t nchars, nbytes;
1039
1040 parse_str_as_multibyte (SDATA (string),
1041 SBYTES (string),
1042 &nchars, &nbytes);
1043 new_string = make_uninit_multibyte_string (nchars, nbytes);
1044 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1045 if (nbytes != SBYTES (string))
1046 str_as_multibyte (SDATA (new_string), nbytes,
1047 SBYTES (string), NULL);
1048 string = new_string;
1049 set_string_intervals (string, NULL);
1050 }
1051 return string;
1052 }
1053
1054 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1055 1, 1, 0,
1056 doc: /* Return a multibyte string with the same individual chars as STRING.
1057 If STRING is multibyte, the result is STRING itself.
1058 Otherwise it is a newly created string, with no text properties.
1059
1060 If STRING is unibyte and contains an 8-bit byte, it is converted to
1061 the corresponding multibyte character of charset `eight-bit'.
1062
1063 This differs from `string-as-multibyte' by converting each byte of a correct
1064 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1065 correct sequence. */)
1066 (Lisp_Object string)
1067 {
1068 CHECK_STRING (string);
1069
1070 return string_to_multibyte (string);
1071 }
1072
1073 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1074 1, 1, 0,
1075 doc: /* Return a unibyte string with the same individual chars as STRING.
1076 If STRING is unibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties,
1078 where each `eight-bit' character is converted to the corresponding byte.
1079 If STRING contains a non-ASCII, non-`eight-bit' character,
1080 an error is signaled. */)
1081 (Lisp_Object string)
1082 {
1083 CHECK_STRING (string);
1084
1085 if (STRING_MULTIBYTE (string))
1086 {
1087 ptrdiff_t chars = SCHARS (string);
1088 unsigned char *str = xmalloc (chars);
1089 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1090
1091 if (converted < chars)
1092 error ("Can't convert the %"pD"dth character to unibyte", converted);
1093 string = make_unibyte_string ((char *) str, chars);
1094 xfree (str);
1095 }
1096 return string;
1097 }
1098
1099 \f
1100 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1101 doc: /* Return a copy of ALIST.
1102 This is an alist which represents the same mapping from objects to objects,
1103 but does not share the alist structure with ALIST.
1104 The objects mapped (cars and cdrs of elements of the alist)
1105 are shared, however.
1106 Elements of ALIST that are not conses are also shared. */)
1107 (Lisp_Object alist)
1108 {
1109 register Lisp_Object tem;
1110
1111 CHECK_LIST (alist);
1112 if (NILP (alist))
1113 return alist;
1114 alist = concat (1, &alist, Lisp_Cons, 0);
1115 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1116 {
1117 register Lisp_Object car;
1118 car = XCAR (tem);
1119
1120 if (CONSP (car))
1121 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1122 }
1123 return alist;
1124 }
1125
1126 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1127 doc: /* Return a new string whose contents are a substring of STRING.
1128 The returned string consists of the characters between index FROM
1129 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1130 zero-indexed: 0 means the first character of STRING. Negative values
1131 are counted from the end of STRING. If TO is nil, the substring runs
1132 to the end of STRING.
1133
1134 The STRING argument may also be a vector. In that case, the return
1135 value is a new vector that contains the elements between index FROM
1136 \(inclusive) and index TO (exclusive) of that vector argument. */)
1137 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1138 {
1139 Lisp_Object res;
1140 ptrdiff_t size;
1141 EMACS_INT from_char, to_char;
1142
1143 CHECK_VECTOR_OR_STRING (string);
1144 CHECK_NUMBER (from);
1145
1146 if (STRINGP (string))
1147 size = SCHARS (string);
1148 else
1149 size = ASIZE (string);
1150
1151 if (NILP (to))
1152 to_char = size;
1153 else
1154 {
1155 CHECK_NUMBER (to);
1156
1157 to_char = XINT (to);
1158 if (to_char < 0)
1159 to_char += size;
1160 }
1161
1162 from_char = XINT (from);
1163 if (from_char < 0)
1164 from_char += size;
1165 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1166 args_out_of_range_3 (string, make_number (from_char),
1167 make_number (to_char));
1168
1169 if (STRINGP (string))
1170 {
1171 ptrdiff_t to_byte =
1172 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1173 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1174 res = make_specified_string (SSDATA (string) + from_byte,
1175 to_char - from_char, to_byte - from_byte,
1176 STRING_MULTIBYTE (string));
1177 copy_text_properties (make_number (from_char), make_number (to_char),
1178 string, make_number (0), res, Qnil);
1179 }
1180 else
1181 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1182
1183 return res;
1184 }
1185
1186
1187 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1188 doc: /* Return a substring of STRING, without text properties.
1189 It starts at index FROM and ends before TO.
1190 TO may be nil or omitted; then the substring runs to the end of STRING.
1191 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1192 If FROM or TO is negative, it counts from the end.
1193
1194 With one argument, just copy STRING without its properties. */)
1195 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1196 {
1197 ptrdiff_t size;
1198 EMACS_INT from_char, to_char;
1199 ptrdiff_t from_byte, to_byte;
1200
1201 CHECK_STRING (string);
1202
1203 size = SCHARS (string);
1204
1205 if (NILP (from))
1206 from_char = 0;
1207 else
1208 {
1209 CHECK_NUMBER (from);
1210 from_char = XINT (from);
1211 if (from_char < 0)
1212 from_char += size;
1213 }
1214
1215 if (NILP (to))
1216 to_char = size;
1217 else
1218 {
1219 CHECK_NUMBER (to);
1220 to_char = XINT (to);
1221 if (to_char < 0)
1222 to_char += size;
1223 }
1224
1225 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1226 args_out_of_range_3 (string, make_number (from_char),
1227 make_number (to_char));
1228
1229 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1230 to_byte =
1231 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1232 return make_specified_string (SSDATA (string) + from_byte,
1233 to_char - from_char, to_byte - from_byte,
1234 STRING_MULTIBYTE (string));
1235 }
1236
1237 /* Extract a substring of STRING, giving start and end positions
1238 both in characters and in bytes. */
1239
1240 Lisp_Object
1241 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1242 ptrdiff_t to, ptrdiff_t to_byte)
1243 {
1244 Lisp_Object res;
1245 ptrdiff_t size;
1246
1247 CHECK_VECTOR_OR_STRING (string);
1248
1249 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1250
1251 if (!(0 <= from && from <= to && to <= size))
1252 args_out_of_range_3 (string, make_number (from), make_number (to));
1253
1254 if (STRINGP (string))
1255 {
1256 res = make_specified_string (SSDATA (string) + from_byte,
1257 to - from, to_byte - from_byte,
1258 STRING_MULTIBYTE (string));
1259 copy_text_properties (make_number (from), make_number (to),
1260 string, make_number (0), res, Qnil);
1261 }
1262 else
1263 res = Fvector (to - from, aref_addr (string, from));
1264
1265 return res;
1266 }
1267 \f
1268 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1269 doc: /* Take cdr N times on LIST, return the result. */)
1270 (Lisp_Object n, Lisp_Object list)
1271 {
1272 EMACS_INT i, num;
1273 CHECK_NUMBER (n);
1274 num = XINT (n);
1275 for (i = 0; i < num && !NILP (list); i++)
1276 {
1277 QUIT;
1278 CHECK_LIST_CONS (list, list);
1279 list = XCDR (list);
1280 }
1281 return list;
1282 }
1283
1284 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1285 doc: /* Return the Nth element of LIST.
1286 N counts from zero. If LIST is not that long, nil is returned. */)
1287 (Lisp_Object n, Lisp_Object list)
1288 {
1289 return Fcar (Fnthcdr (n, list));
1290 }
1291
1292 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1293 doc: /* Return element of SEQUENCE at index N. */)
1294 (register Lisp_Object sequence, Lisp_Object n)
1295 {
1296 CHECK_NUMBER (n);
1297 if (CONSP (sequence) || NILP (sequence))
1298 return Fcar (Fnthcdr (n, sequence));
1299
1300 /* Faref signals a "not array" error, so check here. */
1301 CHECK_ARRAY (sequence, Qsequencep);
1302 return Faref (sequence, n);
1303 }
1304
1305 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1306 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1307 The value is actually the tail of LIST whose car is ELT. */)
1308 (register Lisp_Object elt, Lisp_Object list)
1309 {
1310 register Lisp_Object tail;
1311 for (tail = list; CONSP (tail); tail = XCDR (tail))
1312 {
1313 register Lisp_Object tem;
1314 CHECK_LIST_CONS (tail, list);
1315 tem = XCAR (tail);
1316 if (! NILP (Fequal (elt, tem)))
1317 return tail;
1318 QUIT;
1319 }
1320 return Qnil;
1321 }
1322
1323 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1324 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1325 The value is actually the tail of LIST whose car is ELT. */)
1326 (register Lisp_Object elt, Lisp_Object list)
1327 {
1328 while (1)
1329 {
1330 if (!CONSP (list) || EQ (XCAR (list), elt))
1331 break;
1332
1333 list = XCDR (list);
1334 if (!CONSP (list) || EQ (XCAR (list), elt))
1335 break;
1336
1337 list = XCDR (list);
1338 if (!CONSP (list) || EQ (XCAR (list), elt))
1339 break;
1340
1341 list = XCDR (list);
1342 QUIT;
1343 }
1344
1345 CHECK_LIST (list);
1346 return list;
1347 }
1348
1349 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1350 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1351 The value is actually the tail of LIST whose car is ELT. */)
1352 (register Lisp_Object elt, Lisp_Object list)
1353 {
1354 register Lisp_Object tail;
1355
1356 if (!FLOATP (elt))
1357 return Fmemq (elt, list);
1358
1359 for (tail = list; CONSP (tail); tail = XCDR (tail))
1360 {
1361 register Lisp_Object tem;
1362 CHECK_LIST_CONS (tail, list);
1363 tem = XCAR (tail);
1364 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1365 return tail;
1366 QUIT;
1367 }
1368 return Qnil;
1369 }
1370
1371 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1372 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1373 The value is actually the first element of LIST whose car is KEY.
1374 Elements of LIST that are not conses are ignored. */)
1375 (Lisp_Object key, Lisp_Object list)
1376 {
1377 while (1)
1378 {
1379 if (!CONSP (list)
1380 || (CONSP (XCAR (list))
1381 && EQ (XCAR (XCAR (list)), key)))
1382 break;
1383
1384 list = XCDR (list);
1385 if (!CONSP (list)
1386 || (CONSP (XCAR (list))
1387 && EQ (XCAR (XCAR (list)), key)))
1388 break;
1389
1390 list = XCDR (list);
1391 if (!CONSP (list)
1392 || (CONSP (XCAR (list))
1393 && EQ (XCAR (XCAR (list)), key)))
1394 break;
1395
1396 list = XCDR (list);
1397 QUIT;
1398 }
1399
1400 return CAR (list);
1401 }
1402
1403 /* Like Fassq but never report an error and do not allow quits.
1404 Use only on lists known never to be circular. */
1405
1406 Lisp_Object
1407 assq_no_quit (Lisp_Object key, Lisp_Object list)
1408 {
1409 while (CONSP (list)
1410 && (!CONSP (XCAR (list))
1411 || !EQ (XCAR (XCAR (list)), key)))
1412 list = XCDR (list);
1413
1414 return CAR_SAFE (list);
1415 }
1416
1417 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1418 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1419 The value is actually the first element of LIST whose car equals KEY. */)
1420 (Lisp_Object key, Lisp_Object list)
1421 {
1422 Lisp_Object car;
1423
1424 while (1)
1425 {
1426 if (!CONSP (list)
1427 || (CONSP (XCAR (list))
1428 && (car = XCAR (XCAR (list)),
1429 EQ (car, key) || !NILP (Fequal (car, key)))))
1430 break;
1431
1432 list = XCDR (list);
1433 if (!CONSP (list)
1434 || (CONSP (XCAR (list))
1435 && (car = XCAR (XCAR (list)),
1436 EQ (car, key) || !NILP (Fequal (car, key)))))
1437 break;
1438
1439 list = XCDR (list);
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1445
1446 list = XCDR (list);
1447 QUIT;
1448 }
1449
1450 return CAR (list);
1451 }
1452
1453 /* Like Fassoc but never report an error and do not allow quits.
1454 Use only on lists known never to be circular. */
1455
1456 Lisp_Object
1457 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1458 {
1459 while (CONSP (list)
1460 && (!CONSP (XCAR (list))
1461 || (!EQ (XCAR (XCAR (list)), key)
1462 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1463 list = XCDR (list);
1464
1465 return CONSP (list) ? XCAR (list) : Qnil;
1466 }
1467
1468 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1469 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1470 The value is actually the first element of LIST whose cdr is KEY. */)
1471 (register Lisp_Object key, Lisp_Object list)
1472 {
1473 while (1)
1474 {
1475 if (!CONSP (list)
1476 || (CONSP (XCAR (list))
1477 && EQ (XCDR (XCAR (list)), key)))
1478 break;
1479
1480 list = XCDR (list);
1481 if (!CONSP (list)
1482 || (CONSP (XCAR (list))
1483 && EQ (XCDR (XCAR (list)), key)))
1484 break;
1485
1486 list = XCDR (list);
1487 if (!CONSP (list)
1488 || (CONSP (XCAR (list))
1489 && EQ (XCDR (XCAR (list)), key)))
1490 break;
1491
1492 list = XCDR (list);
1493 QUIT;
1494 }
1495
1496 return CAR (list);
1497 }
1498
1499 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1500 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1501 The value is actually the first element of LIST whose cdr equals KEY. */)
1502 (Lisp_Object key, Lisp_Object list)
1503 {
1504 Lisp_Object cdr;
1505
1506 while (1)
1507 {
1508 if (!CONSP (list)
1509 || (CONSP (XCAR (list))
1510 && (cdr = XCDR (XCAR (list)),
1511 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1512 break;
1513
1514 list = XCDR (list);
1515 if (!CONSP (list)
1516 || (CONSP (XCAR (list))
1517 && (cdr = XCDR (XCAR (list)),
1518 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1519 break;
1520
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1527
1528 list = XCDR (list);
1529 QUIT;
1530 }
1531
1532 return CAR (list);
1533 }
1534 \f
1535 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1536 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1537 More precisely, this function skips any members `eq' to ELT at the
1538 front of LIST, then removes members `eq' to ELT from the remaining
1539 sublist by modifying its list structure, then returns the resulting
1540 list.
1541
1542 Write `(setq foo (delq element foo))' to be sure of correctly changing
1543 the value of a list `foo'. */)
1544 (register Lisp_Object elt, Lisp_Object list)
1545 {
1546 register Lisp_Object tail, prev;
1547 register Lisp_Object tem;
1548
1549 tail = list;
1550 prev = Qnil;
1551 while (!NILP (tail))
1552 {
1553 CHECK_LIST_CONS (tail, list);
1554 tem = XCAR (tail);
1555 if (EQ (elt, tem))
1556 {
1557 if (NILP (prev))
1558 list = XCDR (tail);
1559 else
1560 Fsetcdr (prev, XCDR (tail));
1561 }
1562 else
1563 prev = tail;
1564 tail = XCDR (tail);
1565 QUIT;
1566 }
1567 return list;
1568 }
1569
1570 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1571 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1572 SEQ must be a sequence (i.e. a list, a vector, or a string).
1573 The return value is a sequence of the same type.
1574
1575 If SEQ is a list, this behaves like `delq', except that it compares
1576 with `equal' instead of `eq'. In particular, it may remove elements
1577 by altering the list structure.
1578
1579 If SEQ is not a list, deletion is never performed destructively;
1580 instead this function creates and returns a new vector or string.
1581
1582 Write `(setq foo (delete element foo))' to be sure of correctly
1583 changing the value of a sequence `foo'. */)
1584 (Lisp_Object elt, Lisp_Object seq)
1585 {
1586 if (VECTORP (seq))
1587 {
1588 ptrdiff_t i, n;
1589
1590 for (i = n = 0; i < ASIZE (seq); ++i)
1591 if (NILP (Fequal (AREF (seq, i), elt)))
1592 ++n;
1593
1594 if (n != ASIZE (seq))
1595 {
1596 struct Lisp_Vector *p = allocate_vector (n);
1597
1598 for (i = n = 0; i < ASIZE (seq); ++i)
1599 if (NILP (Fequal (AREF (seq, i), elt)))
1600 p->contents[n++] = AREF (seq, i);
1601
1602 XSETVECTOR (seq, p);
1603 }
1604 }
1605 else if (STRINGP (seq))
1606 {
1607 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1608 int c;
1609
1610 for (i = nchars = nbytes = ibyte = 0;
1611 i < SCHARS (seq);
1612 ++i, ibyte += cbytes)
1613 {
1614 if (STRING_MULTIBYTE (seq))
1615 {
1616 c = STRING_CHAR (SDATA (seq) + ibyte);
1617 cbytes = CHAR_BYTES (c);
1618 }
1619 else
1620 {
1621 c = SREF (seq, i);
1622 cbytes = 1;
1623 }
1624
1625 if (!INTEGERP (elt) || c != XINT (elt))
1626 {
1627 ++nchars;
1628 nbytes += cbytes;
1629 }
1630 }
1631
1632 if (nchars != SCHARS (seq))
1633 {
1634 Lisp_Object tem;
1635
1636 tem = make_uninit_multibyte_string (nchars, nbytes);
1637 if (!STRING_MULTIBYTE (seq))
1638 STRING_SET_UNIBYTE (tem);
1639
1640 for (i = nchars = nbytes = ibyte = 0;
1641 i < SCHARS (seq);
1642 ++i, ibyte += cbytes)
1643 {
1644 if (STRING_MULTIBYTE (seq))
1645 {
1646 c = STRING_CHAR (SDATA (seq) + ibyte);
1647 cbytes = CHAR_BYTES (c);
1648 }
1649 else
1650 {
1651 c = SREF (seq, i);
1652 cbytes = 1;
1653 }
1654
1655 if (!INTEGERP (elt) || c != XINT (elt))
1656 {
1657 unsigned char *from = SDATA (seq) + ibyte;
1658 unsigned char *to = SDATA (tem) + nbytes;
1659 ptrdiff_t n;
1660
1661 ++nchars;
1662 nbytes += cbytes;
1663
1664 for (n = cbytes; n--; )
1665 *to++ = *from++;
1666 }
1667 }
1668
1669 seq = tem;
1670 }
1671 }
1672 else
1673 {
1674 Lisp_Object tail, prev;
1675
1676 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1677 {
1678 CHECK_LIST_CONS (tail, seq);
1679
1680 if (!NILP (Fequal (elt, XCAR (tail))))
1681 {
1682 if (NILP (prev))
1683 seq = XCDR (tail);
1684 else
1685 Fsetcdr (prev, XCDR (tail));
1686 }
1687 else
1688 prev = tail;
1689 QUIT;
1690 }
1691 }
1692
1693 return seq;
1694 }
1695
1696 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1697 doc: /* Reverse LIST by modifying cdr pointers.
1698 Return the reversed list. Expects a properly nil-terminated list. */)
1699 (Lisp_Object list)
1700 {
1701 register Lisp_Object prev, tail, next;
1702
1703 if (NILP (list)) return list;
1704 prev = Qnil;
1705 tail = list;
1706 while (!NILP (tail))
1707 {
1708 QUIT;
1709 CHECK_LIST_CONS (tail, tail);
1710 next = XCDR (tail);
1711 Fsetcdr (tail, prev);
1712 prev = tail;
1713 tail = next;
1714 }
1715 return prev;
1716 }
1717
1718 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1719 doc: /* Reverse LIST, copying. Return the reversed list.
1720 See also the function `nreverse', which is used more often. */)
1721 (Lisp_Object list)
1722 {
1723 Lisp_Object new;
1724
1725 for (new = Qnil; CONSP (list); list = XCDR (list))
1726 {
1727 QUIT;
1728 new = Fcons (XCAR (list), new);
1729 }
1730 CHECK_LIST_END (list, list);
1731 return new;
1732 }
1733 \f
1734 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1735
1736 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1737 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1738 Returns the sorted list. LIST is modified by side effects.
1739 PREDICATE is called with two elements of LIST, and should return non-nil
1740 if the first element should sort before the second. */)
1741 (Lisp_Object list, Lisp_Object predicate)
1742 {
1743 Lisp_Object front, back;
1744 register Lisp_Object len, tem;
1745 struct gcpro gcpro1, gcpro2;
1746 EMACS_INT length;
1747
1748 front = list;
1749 len = Flength (list);
1750 length = XINT (len);
1751 if (length < 2)
1752 return list;
1753
1754 XSETINT (len, (length / 2) - 1);
1755 tem = Fnthcdr (len, list);
1756 back = Fcdr (tem);
1757 Fsetcdr (tem, Qnil);
1758
1759 GCPRO2 (front, back);
1760 front = Fsort (front, predicate);
1761 back = Fsort (back, predicate);
1762 UNGCPRO;
1763 return merge (front, back, predicate);
1764 }
1765
1766 Lisp_Object
1767 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1768 {
1769 Lisp_Object value;
1770 register Lisp_Object tail;
1771 Lisp_Object tem;
1772 register Lisp_Object l1, l2;
1773 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1774
1775 l1 = org_l1;
1776 l2 = org_l2;
1777 tail = Qnil;
1778 value = Qnil;
1779
1780 /* It is sufficient to protect org_l1 and org_l2.
1781 When l1 and l2 are updated, we copy the new values
1782 back into the org_ vars. */
1783 GCPRO4 (org_l1, org_l2, pred, value);
1784
1785 while (1)
1786 {
1787 if (NILP (l1))
1788 {
1789 UNGCPRO;
1790 if (NILP (tail))
1791 return l2;
1792 Fsetcdr (tail, l2);
1793 return value;
1794 }
1795 if (NILP (l2))
1796 {
1797 UNGCPRO;
1798 if (NILP (tail))
1799 return l1;
1800 Fsetcdr (tail, l1);
1801 return value;
1802 }
1803 tem = call2 (pred, Fcar (l2), Fcar (l1));
1804 if (NILP (tem))
1805 {
1806 tem = l1;
1807 l1 = Fcdr (l1);
1808 org_l1 = l1;
1809 }
1810 else
1811 {
1812 tem = l2;
1813 l2 = Fcdr (l2);
1814 org_l2 = l2;
1815 }
1816 if (NILP (tail))
1817 value = tem;
1818 else
1819 Fsetcdr (tail, tem);
1820 tail = tem;
1821 }
1822 }
1823
1824 \f
1825 /* This does not check for quits. That is safe since it must terminate. */
1826
1827 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1828 doc: /* Extract a value from a property list.
1829 PLIST is a property list, which is a list of the form
1830 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1831 corresponding to the given PROP, or nil if PROP is not one of the
1832 properties on the list. This function never signals an error. */)
1833 (Lisp_Object plist, Lisp_Object prop)
1834 {
1835 Lisp_Object tail, halftail;
1836
1837 /* halftail is used to detect circular lists. */
1838 tail = halftail = plist;
1839 while (CONSP (tail) && CONSP (XCDR (tail)))
1840 {
1841 if (EQ (prop, XCAR (tail)))
1842 return XCAR (XCDR (tail));
1843
1844 tail = XCDR (XCDR (tail));
1845 halftail = XCDR (halftail);
1846 if (EQ (tail, halftail))
1847 break;
1848 }
1849
1850 return Qnil;
1851 }
1852
1853 DEFUN ("get", Fget, Sget, 2, 2, 0,
1854 doc: /* Return the value of SYMBOL's PROPNAME property.
1855 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1856 (Lisp_Object symbol, Lisp_Object propname)
1857 {
1858 CHECK_SYMBOL (symbol);
1859 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1860 }
1861
1862 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1863 doc: /* Change value in PLIST of PROP to VAL.
1864 PLIST is a property list, which is a list of the form
1865 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1866 If PROP is already a property on the list, its value is set to VAL,
1867 otherwise the new PROP VAL pair is added. The new plist is returned;
1868 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1869 The PLIST is modified by side effects. */)
1870 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1871 {
1872 register Lisp_Object tail, prev;
1873 Lisp_Object newcell;
1874 prev = Qnil;
1875 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1876 tail = XCDR (XCDR (tail)))
1877 {
1878 if (EQ (prop, XCAR (tail)))
1879 {
1880 Fsetcar (XCDR (tail), val);
1881 return plist;
1882 }
1883
1884 prev = tail;
1885 QUIT;
1886 }
1887 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1888 if (NILP (prev))
1889 return newcell;
1890 else
1891 Fsetcdr (XCDR (prev), newcell);
1892 return plist;
1893 }
1894
1895 DEFUN ("put", Fput, Sput, 3, 3, 0,
1896 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1897 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1898 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1899 {
1900 CHECK_SYMBOL (symbol);
1901 set_symbol_plist
1902 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1903 return value;
1904 }
1905 \f
1906 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1907 doc: /* Extract a value from a property list, comparing with `equal'.
1908 PLIST is a property list, which is a list of the form
1909 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1910 corresponding to the given PROP, or nil if PROP is not
1911 one of the properties on the list. */)
1912 (Lisp_Object plist, Lisp_Object prop)
1913 {
1914 Lisp_Object tail;
1915
1916 for (tail = plist;
1917 CONSP (tail) && CONSP (XCDR (tail));
1918 tail = XCDR (XCDR (tail)))
1919 {
1920 if (! NILP (Fequal (prop, XCAR (tail))))
1921 return XCAR (XCDR (tail));
1922
1923 QUIT;
1924 }
1925
1926 CHECK_LIST_END (tail, prop);
1927
1928 return Qnil;
1929 }
1930
1931 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1932 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1933 PLIST is a property list, which is a list of the form
1934 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1935 If PROP is already a property on the list, its value is set to VAL,
1936 otherwise the new PROP VAL pair is added. The new plist is returned;
1937 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1938 The PLIST is modified by side effects. */)
1939 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1940 {
1941 register Lisp_Object tail, prev;
1942 Lisp_Object newcell;
1943 prev = Qnil;
1944 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1945 tail = XCDR (XCDR (tail)))
1946 {
1947 if (! NILP (Fequal (prop, XCAR (tail))))
1948 {
1949 Fsetcar (XCDR (tail), val);
1950 return plist;
1951 }
1952
1953 prev = tail;
1954 QUIT;
1955 }
1956 newcell = Fcons (prop, Fcons (val, Qnil));
1957 if (NILP (prev))
1958 return newcell;
1959 else
1960 Fsetcdr (XCDR (prev), newcell);
1961 return plist;
1962 }
1963 \f
1964 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1965 doc: /* Return t if the two args are the same Lisp object.
1966 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1967 (Lisp_Object obj1, Lisp_Object obj2)
1968 {
1969 if (FLOATP (obj1))
1970 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1971 else
1972 return EQ (obj1, obj2) ? Qt : Qnil;
1973 }
1974
1975 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1976 doc: /* Return t if two Lisp objects have similar structure and contents.
1977 They must have the same data type.
1978 Conses are compared by comparing the cars and the cdrs.
1979 Vectors and strings are compared element by element.
1980 Numbers are compared by value, but integers cannot equal floats.
1981 (Use `=' if you want integers and floats to be able to be equal.)
1982 Symbols must match exactly. */)
1983 (register Lisp_Object o1, Lisp_Object o2)
1984 {
1985 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1986 }
1987
1988 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1989 doc: /* Return t if two Lisp objects have similar structure and contents.
1990 This is like `equal' except that it compares the text properties
1991 of strings. (`equal' ignores text properties.) */)
1992 (register Lisp_Object o1, Lisp_Object o2)
1993 {
1994 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1995 }
1996
1997 /* DEPTH is current depth of recursion. Signal an error if it
1998 gets too deep.
1999 PROPS means compare string text properties too. */
2000
2001 static bool
2002 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2003 {
2004 if (depth > 200)
2005 error ("Stack overflow in equal");
2006
2007 tail_recurse:
2008 QUIT;
2009 if (EQ (o1, o2))
2010 return 1;
2011 if (XTYPE (o1) != XTYPE (o2))
2012 return 0;
2013
2014 switch (XTYPE (o1))
2015 {
2016 case Lisp_Float:
2017 {
2018 double d1, d2;
2019
2020 d1 = extract_float (o1);
2021 d2 = extract_float (o2);
2022 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2023 though they are not =. */
2024 return d1 == d2 || (d1 != d1 && d2 != d2);
2025 }
2026
2027 case Lisp_Cons:
2028 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2029 return 0;
2030 o1 = XCDR (o1);
2031 o2 = XCDR (o2);
2032 goto tail_recurse;
2033
2034 case Lisp_Misc:
2035 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2036 return 0;
2037 if (OVERLAYP (o1))
2038 {
2039 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2040 depth + 1, props)
2041 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2042 depth + 1, props))
2043 return 0;
2044 o1 = XOVERLAY (o1)->plist;
2045 o2 = XOVERLAY (o2)->plist;
2046 goto tail_recurse;
2047 }
2048 if (MARKERP (o1))
2049 {
2050 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2051 && (XMARKER (o1)->buffer == 0
2052 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2053 }
2054 break;
2055
2056 case Lisp_Vectorlike:
2057 {
2058 register int i;
2059 ptrdiff_t size = ASIZE (o1);
2060 /* Pseudovectors have the type encoded in the size field, so this test
2061 actually checks that the objects have the same type as well as the
2062 same size. */
2063 if (ASIZE (o2) != size)
2064 return 0;
2065 /* Boolvectors are compared much like strings. */
2066 if (BOOL_VECTOR_P (o1))
2067 {
2068 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2069 return 0;
2070 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2071 ((XBOOL_VECTOR (o1)->size
2072 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2073 / BOOL_VECTOR_BITS_PER_CHAR)))
2074 return 0;
2075 return 1;
2076 }
2077 if (WINDOW_CONFIGURATIONP (o1))
2078 return compare_window_configurations (o1, o2, 0);
2079
2080 /* Aside from them, only true vectors, char-tables, compiled
2081 functions, and fonts (font-spec, font-entity, font-object)
2082 are sensible to compare, so eliminate the others now. */
2083 if (size & PSEUDOVECTOR_FLAG)
2084 {
2085 if (!(size & ((PVEC_COMPILED | PVEC_CHAR_TABLE
2086 | PVEC_SUB_CHAR_TABLE | PVEC_FONT)
2087 << PSEUDOVECTOR_SIZE_BITS)))
2088 return 0;
2089 size &= PSEUDOVECTOR_SIZE_MASK;
2090 }
2091 for (i = 0; i < size; i++)
2092 {
2093 Lisp_Object v1, v2;
2094 v1 = AREF (o1, i);
2095 v2 = AREF (o2, i);
2096 if (!internal_equal (v1, v2, depth + 1, props))
2097 return 0;
2098 }
2099 return 1;
2100 }
2101 break;
2102
2103 case Lisp_String:
2104 if (SCHARS (o1) != SCHARS (o2))
2105 return 0;
2106 if (SBYTES (o1) != SBYTES (o2))
2107 return 0;
2108 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2109 return 0;
2110 if (props && !compare_string_intervals (o1, o2))
2111 return 0;
2112 return 1;
2113
2114 default:
2115 break;
2116 }
2117
2118 return 0;
2119 }
2120 \f
2121
2122 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2123 doc: /* Store each element of ARRAY with ITEM.
2124 ARRAY is a vector, string, char-table, or bool-vector. */)
2125 (Lisp_Object array, Lisp_Object item)
2126 {
2127 register ptrdiff_t size, idx;
2128
2129 if (VECTORP (array))
2130 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2131 ASET (array, idx, item);
2132 else if (CHAR_TABLE_P (array))
2133 {
2134 int i;
2135
2136 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2137 set_char_table_contents (array, i, item);
2138 set_char_table_defalt (array, item);
2139 }
2140 else if (STRINGP (array))
2141 {
2142 register unsigned char *p = SDATA (array);
2143 int charval;
2144 CHECK_CHARACTER (item);
2145 charval = XFASTINT (item);
2146 size = SCHARS (array);
2147 if (STRING_MULTIBYTE (array))
2148 {
2149 unsigned char str[MAX_MULTIBYTE_LENGTH];
2150 int len = CHAR_STRING (charval, str);
2151 ptrdiff_t size_byte = SBYTES (array);
2152
2153 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2154 || SCHARS (array) * len != size_byte)
2155 error ("Attempt to change byte length of a string");
2156 for (idx = 0; idx < size_byte; idx++)
2157 *p++ = str[idx % len];
2158 }
2159 else
2160 for (idx = 0; idx < size; idx++)
2161 p[idx] = charval;
2162 }
2163 else if (BOOL_VECTOR_P (array))
2164 {
2165 register unsigned char *p = XBOOL_VECTOR (array)->data;
2166 size =
2167 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2168 / BOOL_VECTOR_BITS_PER_CHAR);
2169
2170 if (size)
2171 {
2172 memset (p, ! NILP (item) ? -1 : 0, size);
2173
2174 /* Clear any extraneous bits in the last byte. */
2175 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2176 }
2177 }
2178 else
2179 wrong_type_argument (Qarrayp, array);
2180 return array;
2181 }
2182
2183 DEFUN ("clear-string", Fclear_string, Sclear_string,
2184 1, 1, 0,
2185 doc: /* Clear the contents of STRING.
2186 This makes STRING unibyte and may change its length. */)
2187 (Lisp_Object string)
2188 {
2189 ptrdiff_t len;
2190 CHECK_STRING (string);
2191 len = SBYTES (string);
2192 memset (SDATA (string), 0, len);
2193 STRING_SET_CHARS (string, len);
2194 STRING_SET_UNIBYTE (string);
2195 return Qnil;
2196 }
2197 \f
2198 /* ARGSUSED */
2199 Lisp_Object
2200 nconc2 (Lisp_Object s1, Lisp_Object s2)
2201 {
2202 Lisp_Object args[2];
2203 args[0] = s1;
2204 args[1] = s2;
2205 return Fnconc (2, args);
2206 }
2207
2208 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2209 doc: /* Concatenate any number of lists by altering them.
2210 Only the last argument is not altered, and need not be a list.
2211 usage: (nconc &rest LISTS) */)
2212 (ptrdiff_t nargs, Lisp_Object *args)
2213 {
2214 ptrdiff_t argnum;
2215 register Lisp_Object tail, tem, val;
2216
2217 val = tail = Qnil;
2218
2219 for (argnum = 0; argnum < nargs; argnum++)
2220 {
2221 tem = args[argnum];
2222 if (NILP (tem)) continue;
2223
2224 if (NILP (val))
2225 val = tem;
2226
2227 if (argnum + 1 == nargs) break;
2228
2229 CHECK_LIST_CONS (tem, tem);
2230
2231 while (CONSP (tem))
2232 {
2233 tail = tem;
2234 tem = XCDR (tail);
2235 QUIT;
2236 }
2237
2238 tem = args[argnum + 1];
2239 Fsetcdr (tail, tem);
2240 if (NILP (tem))
2241 args[argnum + 1] = tail;
2242 }
2243
2244 return val;
2245 }
2246 \f
2247 /* This is the guts of all mapping functions.
2248 Apply FN to each element of SEQ, one by one,
2249 storing the results into elements of VALS, a C vector of Lisp_Objects.
2250 LENI is the length of VALS, which should also be the length of SEQ. */
2251
2252 static void
2253 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2254 {
2255 register Lisp_Object tail;
2256 Lisp_Object dummy;
2257 register EMACS_INT i;
2258 struct gcpro gcpro1, gcpro2, gcpro3;
2259
2260 if (vals)
2261 {
2262 /* Don't let vals contain any garbage when GC happens. */
2263 for (i = 0; i < leni; i++)
2264 vals[i] = Qnil;
2265
2266 GCPRO3 (dummy, fn, seq);
2267 gcpro1.var = vals;
2268 gcpro1.nvars = leni;
2269 }
2270 else
2271 GCPRO2 (fn, seq);
2272 /* We need not explicitly protect `tail' because it is used only on lists, and
2273 1) lists are not relocated and 2) the list is marked via `seq' so will not
2274 be freed */
2275
2276 if (VECTORP (seq) || COMPILEDP (seq))
2277 {
2278 for (i = 0; i < leni; i++)
2279 {
2280 dummy = call1 (fn, AREF (seq, i));
2281 if (vals)
2282 vals[i] = dummy;
2283 }
2284 }
2285 else if (BOOL_VECTOR_P (seq))
2286 {
2287 for (i = 0; i < leni; i++)
2288 {
2289 unsigned char byte;
2290 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2291 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2292 dummy = call1 (fn, dummy);
2293 if (vals)
2294 vals[i] = dummy;
2295 }
2296 }
2297 else if (STRINGP (seq))
2298 {
2299 ptrdiff_t i_byte;
2300
2301 for (i = 0, i_byte = 0; i < leni;)
2302 {
2303 int c;
2304 ptrdiff_t i_before = i;
2305
2306 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2307 XSETFASTINT (dummy, c);
2308 dummy = call1 (fn, dummy);
2309 if (vals)
2310 vals[i_before] = dummy;
2311 }
2312 }
2313 else /* Must be a list, since Flength did not get an error */
2314 {
2315 tail = seq;
2316 for (i = 0; i < leni && CONSP (tail); i++)
2317 {
2318 dummy = call1 (fn, XCAR (tail));
2319 if (vals)
2320 vals[i] = dummy;
2321 tail = XCDR (tail);
2322 }
2323 }
2324
2325 UNGCPRO;
2326 }
2327
2328 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2329 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2330 In between each pair of results, stick in SEPARATOR. Thus, " " as
2331 SEPARATOR results in spaces between the values returned by FUNCTION.
2332 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2333 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2334 {
2335 Lisp_Object len;
2336 register EMACS_INT leni;
2337 EMACS_INT nargs;
2338 ptrdiff_t i;
2339 register Lisp_Object *args;
2340 struct gcpro gcpro1;
2341 Lisp_Object ret;
2342 USE_SAFE_ALLOCA;
2343
2344 len = Flength (sequence);
2345 if (CHAR_TABLE_P (sequence))
2346 wrong_type_argument (Qlistp, sequence);
2347 leni = XINT (len);
2348 nargs = leni + leni - 1;
2349 if (nargs < 0) return empty_unibyte_string;
2350
2351 SAFE_ALLOCA_LISP (args, nargs);
2352
2353 GCPRO1 (separator);
2354 mapcar1 (leni, args, function, sequence);
2355 UNGCPRO;
2356
2357 for (i = leni - 1; i > 0; i--)
2358 args[i + i] = args[i];
2359
2360 for (i = 1; i < nargs; i += 2)
2361 args[i] = separator;
2362
2363 ret = Fconcat (nargs, args);
2364 SAFE_FREE ();
2365
2366 return ret;
2367 }
2368
2369 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2370 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2371 The result is a list just as long as SEQUENCE.
2372 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2373 (Lisp_Object function, Lisp_Object sequence)
2374 {
2375 register Lisp_Object len;
2376 register EMACS_INT leni;
2377 register Lisp_Object *args;
2378 Lisp_Object ret;
2379 USE_SAFE_ALLOCA;
2380
2381 len = Flength (sequence);
2382 if (CHAR_TABLE_P (sequence))
2383 wrong_type_argument (Qlistp, sequence);
2384 leni = XFASTINT (len);
2385
2386 SAFE_ALLOCA_LISP (args, leni);
2387
2388 mapcar1 (leni, args, function, sequence);
2389
2390 ret = Flist (leni, args);
2391 SAFE_FREE ();
2392
2393 return ret;
2394 }
2395
2396 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2397 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2398 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2399 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2400 (Lisp_Object function, Lisp_Object sequence)
2401 {
2402 register EMACS_INT leni;
2403
2404 leni = XFASTINT (Flength (sequence));
2405 if (CHAR_TABLE_P (sequence))
2406 wrong_type_argument (Qlistp, sequence);
2407 mapcar1 (leni, 0, function, sequence);
2408
2409 return sequence;
2410 }
2411 \f
2412 /* This is how C code calls `yes-or-no-p' and allows the user
2413 to redefined it.
2414
2415 Anything that calls this function must protect from GC! */
2416
2417 Lisp_Object
2418 do_yes_or_no_p (Lisp_Object prompt)
2419 {
2420 return call1 (intern ("yes-or-no-p"), prompt);
2421 }
2422
2423 /* Anything that calls this function must protect from GC! */
2424
2425 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2426 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2427 PROMPT is the string to display to ask the question. It should end in
2428 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2429
2430 The user must confirm the answer with RET, and can edit it until it
2431 has been confirmed.
2432
2433 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2434 is nil, and `use-dialog-box' is non-nil. */)
2435 (Lisp_Object prompt)
2436 {
2437 register Lisp_Object ans;
2438 Lisp_Object args[2];
2439 struct gcpro gcpro1;
2440
2441 CHECK_STRING (prompt);
2442
2443 #ifdef HAVE_MENUS
2444 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2445 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2446 && use_dialog_box
2447 && have_menus_p ())
2448 {
2449 Lisp_Object pane, menu, obj;
2450 redisplay_preserve_echo_area (4);
2451 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2452 Fcons (Fcons (build_string ("No"), Qnil),
2453 Qnil));
2454 GCPRO1 (pane);
2455 menu = Fcons (prompt, pane);
2456 obj = Fx_popup_dialog (Qt, menu, Qnil);
2457 UNGCPRO;
2458 return obj;
2459 }
2460 #endif /* HAVE_MENUS */
2461
2462 args[0] = prompt;
2463 args[1] = build_string ("(yes or no) ");
2464 prompt = Fconcat (2, args);
2465
2466 GCPRO1 (prompt);
2467
2468 while (1)
2469 {
2470 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2471 Qyes_or_no_p_history, Qnil,
2472 Qnil));
2473 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2474 {
2475 UNGCPRO;
2476 return Qt;
2477 }
2478 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2479 {
2480 UNGCPRO;
2481 return Qnil;
2482 }
2483
2484 Fding (Qnil);
2485 Fdiscard_input ();
2486 message ("Please answer yes or no.");
2487 Fsleep_for (make_number (2), Qnil);
2488 }
2489 }
2490 \f
2491 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2492 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2493
2494 Each of the three load averages is multiplied by 100, then converted
2495 to integer.
2496
2497 When USE-FLOATS is non-nil, floats will be used instead of integers.
2498 These floats are not multiplied by 100.
2499
2500 If the 5-minute or 15-minute load averages are not available, return a
2501 shortened list, containing only those averages which are available.
2502
2503 An error is thrown if the load average can't be obtained. In some
2504 cases making it work would require Emacs being installed setuid or
2505 setgid so that it can read kernel information, and that usually isn't
2506 advisable. */)
2507 (Lisp_Object use_floats)
2508 {
2509 double load_ave[3];
2510 int loads = getloadavg (load_ave, 3);
2511 Lisp_Object ret = Qnil;
2512
2513 if (loads < 0)
2514 error ("load-average not implemented for this operating system");
2515
2516 while (loads-- > 0)
2517 {
2518 Lisp_Object load = (NILP (use_floats)
2519 ? make_number (100.0 * load_ave[loads])
2520 : make_float (load_ave[loads]));
2521 ret = Fcons (load, ret);
2522 }
2523
2524 return ret;
2525 }
2526 \f
2527 static Lisp_Object Qsubfeatures;
2528
2529 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2530 doc: /* Return t if FEATURE is present in this Emacs.
2531
2532 Use this to conditionalize execution of lisp code based on the
2533 presence or absence of Emacs or environment extensions.
2534 Use `provide' to declare that a feature is available. This function
2535 looks at the value of the variable `features'. The optional argument
2536 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2537 (Lisp_Object feature, Lisp_Object subfeature)
2538 {
2539 register Lisp_Object tem;
2540 CHECK_SYMBOL (feature);
2541 tem = Fmemq (feature, Vfeatures);
2542 if (!NILP (tem) && !NILP (subfeature))
2543 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2544 return (NILP (tem)) ? Qnil : Qt;
2545 }
2546
2547 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2548 doc: /* Announce that FEATURE is a feature of the current Emacs.
2549 The optional argument SUBFEATURES should be a list of symbols listing
2550 particular subfeatures supported in this version of FEATURE. */)
2551 (Lisp_Object feature, Lisp_Object subfeatures)
2552 {
2553 register Lisp_Object tem;
2554 CHECK_SYMBOL (feature);
2555 CHECK_LIST (subfeatures);
2556 if (!NILP (Vautoload_queue))
2557 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2558 Vautoload_queue);
2559 tem = Fmemq (feature, Vfeatures);
2560 if (NILP (tem))
2561 Vfeatures = Fcons (feature, Vfeatures);
2562 if (!NILP (subfeatures))
2563 Fput (feature, Qsubfeatures, subfeatures);
2564 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2565
2566 /* Run any load-hooks for this file. */
2567 tem = Fassq (feature, Vafter_load_alist);
2568 if (CONSP (tem))
2569 Fprogn (XCDR (tem));
2570
2571 return feature;
2572 }
2573 \f
2574 /* `require' and its subroutines. */
2575
2576 /* List of features currently being require'd, innermost first. */
2577
2578 static Lisp_Object require_nesting_list;
2579
2580 static Lisp_Object
2581 require_unwind (Lisp_Object old_value)
2582 {
2583 return require_nesting_list = old_value;
2584 }
2585
2586 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2587 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2588 If FEATURE is not a member of the list `features', then the feature
2589 is not loaded; so load the file FILENAME.
2590 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2591 and `load' will try to load this name appended with the suffix `.elc' or
2592 `.el', in that order. The name without appended suffix will not be used.
2593 See `get-load-suffixes' for the complete list of suffixes.
2594 If the optional third argument NOERROR is non-nil,
2595 then return nil if the file is not found instead of signaling an error.
2596 Normally the return value is FEATURE.
2597 The normal messages at start and end of loading FILENAME are suppressed. */)
2598 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2599 {
2600 Lisp_Object tem;
2601 struct gcpro gcpro1, gcpro2;
2602 bool from_file = load_in_progress;
2603
2604 CHECK_SYMBOL (feature);
2605
2606 /* Record the presence of `require' in this file
2607 even if the feature specified is already loaded.
2608 But not more than once in any file,
2609 and not when we aren't loading or reading from a file. */
2610 if (!from_file)
2611 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2612 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2613 from_file = 1;
2614
2615 if (from_file)
2616 {
2617 tem = Fcons (Qrequire, feature);
2618 if (NILP (Fmember (tem, Vcurrent_load_list)))
2619 LOADHIST_ATTACH (tem);
2620 }
2621 tem = Fmemq (feature, Vfeatures);
2622
2623 if (NILP (tem))
2624 {
2625 ptrdiff_t count = SPECPDL_INDEX ();
2626 int nesting = 0;
2627
2628 /* This is to make sure that loadup.el gives a clear picture
2629 of what files are preloaded and when. */
2630 if (! NILP (Vpurify_flag))
2631 error ("(require %s) while preparing to dump",
2632 SDATA (SYMBOL_NAME (feature)));
2633
2634 /* A certain amount of recursive `require' is legitimate,
2635 but if we require the same feature recursively 3 times,
2636 signal an error. */
2637 tem = require_nesting_list;
2638 while (! NILP (tem))
2639 {
2640 if (! NILP (Fequal (feature, XCAR (tem))))
2641 nesting++;
2642 tem = XCDR (tem);
2643 }
2644 if (nesting > 3)
2645 error ("Recursive `require' for feature `%s'",
2646 SDATA (SYMBOL_NAME (feature)));
2647
2648 /* Update the list for any nested `require's that occur. */
2649 record_unwind_protect (require_unwind, require_nesting_list);
2650 require_nesting_list = Fcons (feature, require_nesting_list);
2651
2652 /* Value saved here is to be restored into Vautoload_queue */
2653 record_unwind_protect (un_autoload, Vautoload_queue);
2654 Vautoload_queue = Qt;
2655
2656 /* Load the file. */
2657 GCPRO2 (feature, filename);
2658 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2659 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2660 UNGCPRO;
2661
2662 /* If load failed entirely, return nil. */
2663 if (NILP (tem))
2664 return unbind_to (count, Qnil);
2665
2666 tem = Fmemq (feature, Vfeatures);
2667 if (NILP (tem))
2668 error ("Required feature `%s' was not provided",
2669 SDATA (SYMBOL_NAME (feature)));
2670
2671 /* Once loading finishes, don't undo it. */
2672 Vautoload_queue = Qt;
2673 feature = unbind_to (count, feature);
2674 }
2675
2676 return feature;
2677 }
2678 \f
2679 /* Primitives for work of the "widget" library.
2680 In an ideal world, this section would not have been necessary.
2681 However, lisp function calls being as slow as they are, it turns
2682 out that some functions in the widget library (wid-edit.el) are the
2683 bottleneck of Widget operation. Here is their translation to C,
2684 for the sole reason of efficiency. */
2685
2686 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2687 doc: /* Return non-nil if PLIST has the property PROP.
2688 PLIST is a property list, which is a list of the form
2689 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2690 Unlike `plist-get', this allows you to distinguish between a missing
2691 property and a property with the value nil.
2692 The value is actually the tail of PLIST whose car is PROP. */)
2693 (Lisp_Object plist, Lisp_Object prop)
2694 {
2695 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2696 {
2697 QUIT;
2698 plist = XCDR (plist);
2699 plist = CDR (plist);
2700 }
2701 return plist;
2702 }
2703
2704 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2705 doc: /* In WIDGET, set PROPERTY to VALUE.
2706 The value can later be retrieved with `widget-get'. */)
2707 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2708 {
2709 CHECK_CONS (widget);
2710 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2711 return value;
2712 }
2713
2714 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2715 doc: /* In WIDGET, get the value of PROPERTY.
2716 The value could either be specified when the widget was created, or
2717 later with `widget-put'. */)
2718 (Lisp_Object widget, Lisp_Object property)
2719 {
2720 Lisp_Object tmp;
2721
2722 while (1)
2723 {
2724 if (NILP (widget))
2725 return Qnil;
2726 CHECK_CONS (widget);
2727 tmp = Fplist_member (XCDR (widget), property);
2728 if (CONSP (tmp))
2729 {
2730 tmp = XCDR (tmp);
2731 return CAR (tmp);
2732 }
2733 tmp = XCAR (widget);
2734 if (NILP (tmp))
2735 return Qnil;
2736 widget = Fget (tmp, Qwidget_type);
2737 }
2738 }
2739
2740 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2741 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2742 ARGS are passed as extra arguments to the function.
2743 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2744 (ptrdiff_t nargs, Lisp_Object *args)
2745 {
2746 /* This function can GC. */
2747 Lisp_Object newargs[3];
2748 struct gcpro gcpro1, gcpro2;
2749 Lisp_Object result;
2750
2751 newargs[0] = Fwidget_get (args[0], args[1]);
2752 newargs[1] = args[0];
2753 newargs[2] = Flist (nargs - 2, args + 2);
2754 GCPRO2 (newargs[0], newargs[2]);
2755 result = Fapply (3, newargs);
2756 UNGCPRO;
2757 return result;
2758 }
2759
2760 #ifdef HAVE_LANGINFO_CODESET
2761 #include <langinfo.h>
2762 #endif
2763
2764 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2765 doc: /* Access locale data ITEM for the current C locale, if available.
2766 ITEM should be one of the following:
2767
2768 `codeset', returning the character set as a string (locale item CODESET);
2769
2770 `days', returning a 7-element vector of day names (locale items DAY_n);
2771
2772 `months', returning a 12-element vector of month names (locale items MON_n);
2773
2774 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2775 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2776
2777 If the system can't provide such information through a call to
2778 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2779
2780 See also Info node `(libc)Locales'.
2781
2782 The data read from the system are decoded using `locale-coding-system'. */)
2783 (Lisp_Object item)
2784 {
2785 char *str = NULL;
2786 #ifdef HAVE_LANGINFO_CODESET
2787 Lisp_Object val;
2788 if (EQ (item, Qcodeset))
2789 {
2790 str = nl_langinfo (CODESET);
2791 return build_string (str);
2792 }
2793 #ifdef DAY_1
2794 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2795 {
2796 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2797 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2798 int i;
2799 struct gcpro gcpro1;
2800 GCPRO1 (v);
2801 synchronize_system_time_locale ();
2802 for (i = 0; i < 7; i++)
2803 {
2804 str = nl_langinfo (days[i]);
2805 val = build_unibyte_string (str);
2806 /* Fixme: Is this coding system necessarily right, even if
2807 it is consistent with CODESET? If not, what to do? */
2808 Faset (v, make_number (i),
2809 code_convert_string_norecord (val, Vlocale_coding_system,
2810 0));
2811 }
2812 UNGCPRO;
2813 return v;
2814 }
2815 #endif /* DAY_1 */
2816 #ifdef MON_1
2817 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2818 {
2819 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2820 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2821 MON_8, MON_9, MON_10, MON_11, MON_12};
2822 int i;
2823 struct gcpro gcpro1;
2824 GCPRO1 (v);
2825 synchronize_system_time_locale ();
2826 for (i = 0; i < 12; i++)
2827 {
2828 str = nl_langinfo (months[i]);
2829 val = build_unibyte_string (str);
2830 Faset (v, make_number (i),
2831 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2832 }
2833 UNGCPRO;
2834 return v;
2835 }
2836 #endif /* MON_1 */
2837 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2838 but is in the locale files. This could be used by ps-print. */
2839 #ifdef PAPER_WIDTH
2840 else if (EQ (item, Qpaper))
2841 {
2842 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2843 make_number (nl_langinfo (PAPER_HEIGHT)));
2844 }
2845 #endif /* PAPER_WIDTH */
2846 #endif /* HAVE_LANGINFO_CODESET*/
2847 return Qnil;
2848 }
2849 \f
2850 /* base64 encode/decode functions (RFC 2045).
2851 Based on code from GNU recode. */
2852
2853 #define MIME_LINE_LENGTH 76
2854
2855 #define IS_ASCII(Character) \
2856 ((Character) < 128)
2857 #define IS_BASE64(Character) \
2858 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2859 #define IS_BASE64_IGNORABLE(Character) \
2860 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2861 || (Character) == '\f' || (Character) == '\r')
2862
2863 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2864 character or return retval if there are no characters left to
2865 process. */
2866 #define READ_QUADRUPLET_BYTE(retval) \
2867 do \
2868 { \
2869 if (i == length) \
2870 { \
2871 if (nchars_return) \
2872 *nchars_return = nchars; \
2873 return (retval); \
2874 } \
2875 c = from[i++]; \
2876 } \
2877 while (IS_BASE64_IGNORABLE (c))
2878
2879 /* Table of characters coding the 64 values. */
2880 static const char base64_value_to_char[64] =
2881 {
2882 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2883 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2884 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2885 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2886 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2887 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2888 '8', '9', '+', '/' /* 60-63 */
2889 };
2890
2891 /* Table of base64 values for first 128 characters. */
2892 static const short base64_char_to_value[128] =
2893 {
2894 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2898 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2899 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2900 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2901 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2902 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2903 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2904 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2905 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2906 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2907 };
2908
2909 /* The following diagram shows the logical steps by which three octets
2910 get transformed into four base64 characters.
2911
2912 .--------. .--------. .--------.
2913 |aaaaaabb| |bbbbcccc| |ccdddddd|
2914 `--------' `--------' `--------'
2915 6 2 4 4 2 6
2916 .--------+--------+--------+--------.
2917 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2918 `--------+--------+--------+--------'
2919
2920 .--------+--------+--------+--------.
2921 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2922 `--------+--------+--------+--------'
2923
2924 The octets are divided into 6 bit chunks, which are then encoded into
2925 base64 characters. */
2926
2927
2928 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2929 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2930 ptrdiff_t *);
2931
2932 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2933 2, 3, "r",
2934 doc: /* Base64-encode the region between BEG and END.
2935 Return the length of the encoded text.
2936 Optional third argument NO-LINE-BREAK means do not break long lines
2937 into shorter lines. */)
2938 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2939 {
2940 char *encoded;
2941 ptrdiff_t allength, length;
2942 ptrdiff_t ibeg, iend, encoded_length;
2943 ptrdiff_t old_pos = PT;
2944 USE_SAFE_ALLOCA;
2945
2946 validate_region (&beg, &end);
2947
2948 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2949 iend = CHAR_TO_BYTE (XFASTINT (end));
2950 move_gap_both (XFASTINT (beg), ibeg);
2951
2952 /* We need to allocate enough room for encoding the text.
2953 We need 33 1/3% more space, plus a newline every 76
2954 characters, and then we round up. */
2955 length = iend - ibeg;
2956 allength = length + length/3 + 1;
2957 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2958
2959 encoded = SAFE_ALLOCA (allength);
2960 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2961 encoded, length, NILP (no_line_break),
2962 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2963 if (encoded_length > allength)
2964 emacs_abort ();
2965
2966 if (encoded_length < 0)
2967 {
2968 /* The encoding wasn't possible. */
2969 SAFE_FREE ();
2970 error ("Multibyte character in data for base64 encoding");
2971 }
2972
2973 /* Now we have encoded the region, so we insert the new contents
2974 and delete the old. (Insert first in order to preserve markers.) */
2975 SET_PT_BOTH (XFASTINT (beg), ibeg);
2976 insert (encoded, encoded_length);
2977 SAFE_FREE ();
2978 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2979
2980 /* If point was outside of the region, restore it exactly; else just
2981 move to the beginning of the region. */
2982 if (old_pos >= XFASTINT (end))
2983 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2984 else if (old_pos > XFASTINT (beg))
2985 old_pos = XFASTINT (beg);
2986 SET_PT (old_pos);
2987
2988 /* We return the length of the encoded text. */
2989 return make_number (encoded_length);
2990 }
2991
2992 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2993 1, 2, 0,
2994 doc: /* Base64-encode STRING and return the result.
2995 Optional second argument NO-LINE-BREAK means do not break long lines
2996 into shorter lines. */)
2997 (Lisp_Object string, Lisp_Object no_line_break)
2998 {
2999 ptrdiff_t allength, length, encoded_length;
3000 char *encoded;
3001 Lisp_Object encoded_string;
3002 USE_SAFE_ALLOCA;
3003
3004 CHECK_STRING (string);
3005
3006 /* We need to allocate enough room for encoding the text.
3007 We need 33 1/3% more space, plus a newline every 76
3008 characters, and then we round up. */
3009 length = SBYTES (string);
3010 allength = length + length/3 + 1;
3011 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3012
3013 /* We need to allocate enough room for decoding the text. */
3014 encoded = SAFE_ALLOCA (allength);
3015
3016 encoded_length = base64_encode_1 (SSDATA (string),
3017 encoded, length, NILP (no_line_break),
3018 STRING_MULTIBYTE (string));
3019 if (encoded_length > allength)
3020 emacs_abort ();
3021
3022 if (encoded_length < 0)
3023 {
3024 /* The encoding wasn't possible. */
3025 SAFE_FREE ();
3026 error ("Multibyte character in data for base64 encoding");
3027 }
3028
3029 encoded_string = make_unibyte_string (encoded, encoded_length);
3030 SAFE_FREE ();
3031
3032 return encoded_string;
3033 }
3034
3035 static ptrdiff_t
3036 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3037 bool line_break, bool multibyte)
3038 {
3039 int counter = 0;
3040 ptrdiff_t i = 0;
3041 char *e = to;
3042 int c;
3043 unsigned int value;
3044 int bytes;
3045
3046 while (i < length)
3047 {
3048 if (multibyte)
3049 {
3050 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3051 if (CHAR_BYTE8_P (c))
3052 c = CHAR_TO_BYTE8 (c);
3053 else if (c >= 256)
3054 return -1;
3055 i += bytes;
3056 }
3057 else
3058 c = from[i++];
3059
3060 /* Wrap line every 76 characters. */
3061
3062 if (line_break)
3063 {
3064 if (counter < MIME_LINE_LENGTH / 4)
3065 counter++;
3066 else
3067 {
3068 *e++ = '\n';
3069 counter = 1;
3070 }
3071 }
3072
3073 /* Process first byte of a triplet. */
3074
3075 *e++ = base64_value_to_char[0x3f & c >> 2];
3076 value = (0x03 & c) << 4;
3077
3078 /* Process second byte of a triplet. */
3079
3080 if (i == length)
3081 {
3082 *e++ = base64_value_to_char[value];
3083 *e++ = '=';
3084 *e++ = '=';
3085 break;
3086 }
3087
3088 if (multibyte)
3089 {
3090 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3091 if (CHAR_BYTE8_P (c))
3092 c = CHAR_TO_BYTE8 (c);
3093 else if (c >= 256)
3094 return -1;
3095 i += bytes;
3096 }
3097 else
3098 c = from[i++];
3099
3100 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3101 value = (0x0f & c) << 2;
3102
3103 /* Process third byte of a triplet. */
3104
3105 if (i == length)
3106 {
3107 *e++ = base64_value_to_char[value];
3108 *e++ = '=';
3109 break;
3110 }
3111
3112 if (multibyte)
3113 {
3114 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3115 if (CHAR_BYTE8_P (c))
3116 c = CHAR_TO_BYTE8 (c);
3117 else if (c >= 256)
3118 return -1;
3119 i += bytes;
3120 }
3121 else
3122 c = from[i++];
3123
3124 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3125 *e++ = base64_value_to_char[0x3f & c];
3126 }
3127
3128 return e - to;
3129 }
3130
3131
3132 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3133 2, 2, "r",
3134 doc: /* Base64-decode the region between BEG and END.
3135 Return the length of the decoded text.
3136 If the region can't be decoded, signal an error and don't modify the buffer. */)
3137 (Lisp_Object beg, Lisp_Object end)
3138 {
3139 ptrdiff_t ibeg, iend, length, allength;
3140 char *decoded;
3141 ptrdiff_t old_pos = PT;
3142 ptrdiff_t decoded_length;
3143 ptrdiff_t inserted_chars;
3144 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3145 USE_SAFE_ALLOCA;
3146
3147 validate_region (&beg, &end);
3148
3149 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3150 iend = CHAR_TO_BYTE (XFASTINT (end));
3151
3152 length = iend - ibeg;
3153
3154 /* We need to allocate enough room for decoding the text. If we are
3155 working on a multibyte buffer, each decoded code may occupy at
3156 most two bytes. */
3157 allength = multibyte ? length * 2 : length;
3158 decoded = SAFE_ALLOCA (allength);
3159
3160 move_gap_both (XFASTINT (beg), ibeg);
3161 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3162 decoded, length,
3163 multibyte, &inserted_chars);
3164 if (decoded_length > allength)
3165 emacs_abort ();
3166
3167 if (decoded_length < 0)
3168 {
3169 /* The decoding wasn't possible. */
3170 SAFE_FREE ();
3171 error ("Invalid base64 data");
3172 }
3173
3174 /* Now we have decoded the region, so we insert the new contents
3175 and delete the old. (Insert first in order to preserve markers.) */
3176 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3177 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3178 SAFE_FREE ();
3179
3180 /* Delete the original text. */
3181 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3182 iend + decoded_length, 1);
3183
3184 /* If point was outside of the region, restore it exactly; else just
3185 move to the beginning of the region. */
3186 if (old_pos >= XFASTINT (end))
3187 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3188 else if (old_pos > XFASTINT (beg))
3189 old_pos = XFASTINT (beg);
3190 SET_PT (old_pos > ZV ? ZV : old_pos);
3191
3192 return make_number (inserted_chars);
3193 }
3194
3195 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3196 1, 1, 0,
3197 doc: /* Base64-decode STRING and return the result. */)
3198 (Lisp_Object string)
3199 {
3200 char *decoded;
3201 ptrdiff_t length, decoded_length;
3202 Lisp_Object decoded_string;
3203 USE_SAFE_ALLOCA;
3204
3205 CHECK_STRING (string);
3206
3207 length = SBYTES (string);
3208 /* We need to allocate enough room for decoding the text. */
3209 decoded = SAFE_ALLOCA (length);
3210
3211 /* The decoded result should be unibyte. */
3212 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3213 0, NULL);
3214 if (decoded_length > length)
3215 emacs_abort ();
3216 else if (decoded_length >= 0)
3217 decoded_string = make_unibyte_string (decoded, decoded_length);
3218 else
3219 decoded_string = Qnil;
3220
3221 SAFE_FREE ();
3222 if (!STRINGP (decoded_string))
3223 error ("Invalid base64 data");
3224
3225 return decoded_string;
3226 }
3227
3228 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3229 MULTIBYTE, the decoded result should be in multibyte
3230 form. If NCHARS_RETURN is not NULL, store the number of produced
3231 characters in *NCHARS_RETURN. */
3232
3233 static ptrdiff_t
3234 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3235 bool multibyte, ptrdiff_t *nchars_return)
3236 {
3237 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3238 char *e = to;
3239 unsigned char c;
3240 unsigned long value;
3241 ptrdiff_t nchars = 0;
3242
3243 while (1)
3244 {
3245 /* Process first byte of a quadruplet. */
3246
3247 READ_QUADRUPLET_BYTE (e-to);
3248
3249 if (!IS_BASE64 (c))
3250 return -1;
3251 value = base64_char_to_value[c] << 18;
3252
3253 /* Process second byte of a quadruplet. */
3254
3255 READ_QUADRUPLET_BYTE (-1);
3256
3257 if (!IS_BASE64 (c))
3258 return -1;
3259 value |= base64_char_to_value[c] << 12;
3260
3261 c = (unsigned char) (value >> 16);
3262 if (multibyte && c >= 128)
3263 e += BYTE8_STRING (c, e);
3264 else
3265 *e++ = c;
3266 nchars++;
3267
3268 /* Process third byte of a quadruplet. */
3269
3270 READ_QUADRUPLET_BYTE (-1);
3271
3272 if (c == '=')
3273 {
3274 READ_QUADRUPLET_BYTE (-1);
3275
3276 if (c != '=')
3277 return -1;
3278 continue;
3279 }
3280
3281 if (!IS_BASE64 (c))
3282 return -1;
3283 value |= base64_char_to_value[c] << 6;
3284
3285 c = (unsigned char) (0xff & value >> 8);
3286 if (multibyte && c >= 128)
3287 e += BYTE8_STRING (c, e);
3288 else
3289 *e++ = c;
3290 nchars++;
3291
3292 /* Process fourth byte of a quadruplet. */
3293
3294 READ_QUADRUPLET_BYTE (-1);
3295
3296 if (c == '=')
3297 continue;
3298
3299 if (!IS_BASE64 (c))
3300 return -1;
3301 value |= base64_char_to_value[c];
3302
3303 c = (unsigned char) (0xff & value);
3304 if (multibyte && c >= 128)
3305 e += BYTE8_STRING (c, e);
3306 else
3307 *e++ = c;
3308 nchars++;
3309 }
3310 }
3311
3312
3313 \f
3314 /***********************************************************************
3315 ***** *****
3316 ***** Hash Tables *****
3317 ***** *****
3318 ***********************************************************************/
3319
3320 /* Implemented by gerd@gnu.org. This hash table implementation was
3321 inspired by CMUCL hash tables. */
3322
3323 /* Ideas:
3324
3325 1. For small tables, association lists are probably faster than
3326 hash tables because they have lower overhead.
3327
3328 For uses of hash tables where the O(1) behavior of table
3329 operations is not a requirement, it might therefore be a good idea
3330 not to hash. Instead, we could just do a linear search in the
3331 key_and_value vector of the hash table. This could be done
3332 if a `:linear-search t' argument is given to make-hash-table. */
3333
3334
3335 /* The list of all weak hash tables. Don't staticpro this one. */
3336
3337 static struct Lisp_Hash_Table *weak_hash_tables;
3338
3339 /* Various symbols. */
3340
3341 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3342 Lisp_Object Qeq, Qeql, Qequal;
3343 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3344 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3345
3346 \f
3347 /***********************************************************************
3348 Utilities
3349 ***********************************************************************/
3350
3351 /* If OBJ is a Lisp hash table, return a pointer to its struct
3352 Lisp_Hash_Table. Otherwise, signal an error. */
3353
3354 static struct Lisp_Hash_Table *
3355 check_hash_table (Lisp_Object obj)
3356 {
3357 CHECK_HASH_TABLE (obj);
3358 return XHASH_TABLE (obj);
3359 }
3360
3361
3362 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3363 number. A number is "almost" a prime number if it is not divisible
3364 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3365
3366 EMACS_INT
3367 next_almost_prime (EMACS_INT n)
3368 {
3369 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3370 for (n |= 1; ; n += 2)
3371 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3372 return n;
3373 }
3374
3375
3376 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3377 which USED[I] is non-zero. If found at index I in ARGS, set
3378 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3379 0. This function is used to extract a keyword/argument pair from
3380 a DEFUN parameter list. */
3381
3382 static ptrdiff_t
3383 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3384 {
3385 ptrdiff_t i;
3386
3387 for (i = 1; i < nargs; i++)
3388 if (!used[i - 1] && EQ (args[i - 1], key))
3389 {
3390 used[i - 1] = 1;
3391 used[i] = 1;
3392 return i;
3393 }
3394
3395 return 0;
3396 }
3397
3398
3399 /* Return a Lisp vector which has the same contents as VEC but has
3400 at least INCR_MIN more entries, where INCR_MIN is positive.
3401 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3402 than NITEMS_MAX. Entries in the resulting
3403 vector that are not copied from VEC are set to nil. */
3404
3405 Lisp_Object
3406 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3407 {
3408 struct Lisp_Vector *v;
3409 ptrdiff_t i, incr, incr_max, old_size, new_size;
3410 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3411 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3412 ? nitems_max : C_language_max);
3413 eassert (VECTORP (vec));
3414 eassert (0 < incr_min && -1 <= nitems_max);
3415 old_size = ASIZE (vec);
3416 incr_max = n_max - old_size;
3417 incr = max (incr_min, min (old_size >> 1, incr_max));
3418 if (incr_max < incr)
3419 memory_full (SIZE_MAX);
3420 new_size = old_size + incr;
3421 v = allocate_vector (new_size);
3422 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3423 for (i = old_size; i < new_size; ++i)
3424 v->contents[i] = Qnil;
3425 XSETVECTOR (vec, v);
3426 return vec;
3427 }
3428
3429
3430 /***********************************************************************
3431 Low-level Functions
3432 ***********************************************************************/
3433
3434 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3435 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3436 KEY2 are the same. */
3437
3438 static bool
3439 cmpfn_eql (struct Lisp_Hash_Table *h,
3440 Lisp_Object key1, EMACS_UINT hash1,
3441 Lisp_Object key2, EMACS_UINT hash2)
3442 {
3443 return (FLOATP (key1)
3444 && FLOATP (key2)
3445 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3446 }
3447
3448
3449 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3450 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3451 KEY2 are the same. */
3452
3453 static bool
3454 cmpfn_equal (struct Lisp_Hash_Table *h,
3455 Lisp_Object key1, EMACS_UINT hash1,
3456 Lisp_Object key2, EMACS_UINT hash2)
3457 {
3458 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3459 }
3460
3461
3462 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3463 HASH2 in hash table H using H->user_cmp_function. Value is true
3464 if KEY1 and KEY2 are the same. */
3465
3466 static bool
3467 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3468 Lisp_Object key1, EMACS_UINT hash1,
3469 Lisp_Object key2, EMACS_UINT hash2)
3470 {
3471 if (hash1 == hash2)
3472 {
3473 Lisp_Object args[3];
3474
3475 args[0] = h->user_cmp_function;
3476 args[1] = key1;
3477 args[2] = key2;
3478 return !NILP (Ffuncall (3, args));
3479 }
3480 else
3481 return 0;
3482 }
3483
3484
3485 /* Value is a hash code for KEY for use in hash table H which uses
3486 `eq' to compare keys. The hash code returned is guaranteed to fit
3487 in a Lisp integer. */
3488
3489 static EMACS_UINT
3490 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3491 {
3492 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3493 eassert ((hash & ~INTMASK) == 0);
3494 return hash;
3495 }
3496
3497
3498 /* Value is a hash code for KEY for use in hash table H which uses
3499 `eql' to compare keys. The hash code returned is guaranteed to fit
3500 in a Lisp integer. */
3501
3502 static EMACS_UINT
3503 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3504 {
3505 EMACS_UINT hash;
3506 if (FLOATP (key))
3507 hash = sxhash (key, 0);
3508 else
3509 hash = XUINT (key) ^ XTYPE (key);
3510 eassert ((hash & ~INTMASK) == 0);
3511 return hash;
3512 }
3513
3514
3515 /* Value is a hash code for KEY for use in hash table H which uses
3516 `equal' to compare keys. The hash code returned is guaranteed to fit
3517 in a Lisp integer. */
3518
3519 static EMACS_UINT
3520 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3521 {
3522 EMACS_UINT hash = sxhash (key, 0);
3523 eassert ((hash & ~INTMASK) == 0);
3524 return hash;
3525 }
3526
3527
3528 /* Value is a hash code for KEY for use in hash table H which uses as
3529 user-defined function to compare keys. The hash code returned is
3530 guaranteed to fit in a Lisp integer. */
3531
3532 static EMACS_UINT
3533 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3534 {
3535 Lisp_Object args[2], hash;
3536
3537 args[0] = h->user_hash_function;
3538 args[1] = key;
3539 hash = Ffuncall (2, args);
3540 if (!INTEGERP (hash))
3541 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3542 return XUINT (hash);
3543 }
3544
3545 /* An upper bound on the size of a hash table index. It must fit in
3546 ptrdiff_t and be a valid Emacs fixnum. */
3547 #define INDEX_SIZE_BOUND \
3548 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3549
3550 /* Create and initialize a new hash table.
3551
3552 TEST specifies the test the hash table will use to compare keys.
3553 It must be either one of the predefined tests `eq', `eql' or
3554 `equal' or a symbol denoting a user-defined test named TEST with
3555 test and hash functions USER_TEST and USER_HASH.
3556
3557 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3558
3559 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3560 new size when it becomes full is computed by adding REHASH_SIZE to
3561 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3562 table's new size is computed by multiplying its old size with
3563 REHASH_SIZE.
3564
3565 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3566 be resized when the ratio of (number of entries in the table) /
3567 (table size) is >= REHASH_THRESHOLD.
3568
3569 WEAK specifies the weakness of the table. If non-nil, it must be
3570 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3571
3572 Lisp_Object
3573 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3574 Lisp_Object rehash_threshold, Lisp_Object weak,
3575 Lisp_Object user_test, Lisp_Object user_hash)
3576 {
3577 struct Lisp_Hash_Table *h;
3578 Lisp_Object table;
3579 EMACS_INT index_size, sz;
3580 ptrdiff_t i;
3581 double index_float;
3582
3583 /* Preconditions. */
3584 eassert (SYMBOLP (test));
3585 eassert (INTEGERP (size) && XINT (size) >= 0);
3586 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3587 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3588 eassert (FLOATP (rehash_threshold)
3589 && 0 < XFLOAT_DATA (rehash_threshold)
3590 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3591
3592 if (XFASTINT (size) == 0)
3593 size = make_number (1);
3594
3595 sz = XFASTINT (size);
3596 index_float = sz / XFLOAT_DATA (rehash_threshold);
3597 index_size = (index_float < INDEX_SIZE_BOUND + 1
3598 ? next_almost_prime (index_float)
3599 : INDEX_SIZE_BOUND + 1);
3600 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3601 error ("Hash table too large");
3602
3603 /* Allocate a table and initialize it. */
3604 h = allocate_hash_table ();
3605
3606 /* Initialize hash table slots. */
3607 h->test = test;
3608 if (EQ (test, Qeql))
3609 {
3610 h->cmpfn = cmpfn_eql;
3611 h->hashfn = hashfn_eql;
3612 }
3613 else if (EQ (test, Qeq))
3614 {
3615 h->cmpfn = NULL;
3616 h->hashfn = hashfn_eq;
3617 }
3618 else if (EQ (test, Qequal))
3619 {
3620 h->cmpfn = cmpfn_equal;
3621 h->hashfn = hashfn_equal;
3622 }
3623 else
3624 {
3625 h->user_cmp_function = user_test;
3626 h->user_hash_function = user_hash;
3627 h->cmpfn = cmpfn_user_defined;
3628 h->hashfn = hashfn_user_defined;
3629 }
3630
3631 h->weak = weak;
3632 h->rehash_threshold = rehash_threshold;
3633 h->rehash_size = rehash_size;
3634 h->count = 0;
3635 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3636 h->hash = Fmake_vector (size, Qnil);
3637 h->next = Fmake_vector (size, Qnil);
3638 h->index = Fmake_vector (make_number (index_size), Qnil);
3639
3640 /* Set up the free list. */
3641 for (i = 0; i < sz - 1; ++i)
3642 set_hash_next_slot (h, i, make_number (i + 1));
3643 h->next_free = make_number (0);
3644
3645 XSET_HASH_TABLE (table, h);
3646 eassert (HASH_TABLE_P (table));
3647 eassert (XHASH_TABLE (table) == h);
3648
3649 /* Maybe add this hash table to the list of all weak hash tables. */
3650 if (NILP (h->weak))
3651 h->next_weak = NULL;
3652 else
3653 {
3654 h->next_weak = weak_hash_tables;
3655 weak_hash_tables = h;
3656 }
3657
3658 return table;
3659 }
3660
3661
3662 /* Return a copy of hash table H1. Keys and values are not copied,
3663 only the table itself is. */
3664
3665 static Lisp_Object
3666 copy_hash_table (struct Lisp_Hash_Table *h1)
3667 {
3668 Lisp_Object table;
3669 struct Lisp_Hash_Table *h2;
3670 struct Lisp_Vector *next;
3671
3672 h2 = allocate_hash_table ();
3673 next = h2->header.next.vector;
3674 *h2 = *h1;
3675 h2->header.next.vector = next;
3676 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3677 h2->hash = Fcopy_sequence (h1->hash);
3678 h2->next = Fcopy_sequence (h1->next);
3679 h2->index = Fcopy_sequence (h1->index);
3680 XSET_HASH_TABLE (table, h2);
3681
3682 /* Maybe add this hash table to the list of all weak hash tables. */
3683 if (!NILP (h2->weak))
3684 {
3685 h2->next_weak = weak_hash_tables;
3686 weak_hash_tables = h2;
3687 }
3688
3689 return table;
3690 }
3691
3692
3693 /* Resize hash table H if it's too full. If H cannot be resized
3694 because it's already too large, throw an error. */
3695
3696 static void
3697 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3698 {
3699 if (NILP (h->next_free))
3700 {
3701 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3702 EMACS_INT new_size, index_size, nsize;
3703 ptrdiff_t i;
3704 double index_float;
3705
3706 if (INTEGERP (h->rehash_size))
3707 new_size = old_size + XFASTINT (h->rehash_size);
3708 else
3709 {
3710 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3711 if (float_new_size < INDEX_SIZE_BOUND + 1)
3712 {
3713 new_size = float_new_size;
3714 if (new_size <= old_size)
3715 new_size = old_size + 1;
3716 }
3717 else
3718 new_size = INDEX_SIZE_BOUND + 1;
3719 }
3720 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3721 index_size = (index_float < INDEX_SIZE_BOUND + 1
3722 ? next_almost_prime (index_float)
3723 : INDEX_SIZE_BOUND + 1);
3724 nsize = max (index_size, 2 * new_size);
3725 if (INDEX_SIZE_BOUND < nsize)
3726 error ("Hash table too large to resize");
3727
3728 #ifdef ENABLE_CHECKING
3729 if (HASH_TABLE_P (Vpurify_flag)
3730 && XHASH_TABLE (Vpurify_flag) == h)
3731 {
3732 Lisp_Object args[2];
3733 args[0] = build_string ("Growing hash table to: %d");
3734 args[1] = make_number (new_size);
3735 Fmessage (2, args);
3736 }
3737 #endif
3738
3739 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3740 2 * (new_size - old_size), -1));
3741 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3742 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3743 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3744
3745 /* Update the free list. Do it so that new entries are added at
3746 the end of the free list. This makes some operations like
3747 maphash faster. */
3748 for (i = old_size; i < new_size - 1; ++i)
3749 set_hash_next_slot (h, i, make_number (i + 1));
3750
3751 if (!NILP (h->next_free))
3752 {
3753 Lisp_Object last, next;
3754
3755 last = h->next_free;
3756 while (next = HASH_NEXT (h, XFASTINT (last)),
3757 !NILP (next))
3758 last = next;
3759
3760 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3761 }
3762 else
3763 XSETFASTINT (h->next_free, old_size);
3764
3765 /* Rehash. */
3766 for (i = 0; i < old_size; ++i)
3767 if (!NILP (HASH_HASH (h, i)))
3768 {
3769 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3770 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3771 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3772 set_hash_index_slot (h, start_of_bucket, make_number (i));
3773 }
3774 }
3775 }
3776
3777
3778 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3779 the hash code of KEY. Value is the index of the entry in H
3780 matching KEY, or -1 if not found. */
3781
3782 ptrdiff_t
3783 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3784 {
3785 EMACS_UINT hash_code;
3786 ptrdiff_t start_of_bucket;
3787 Lisp_Object idx;
3788
3789 hash_code = h->hashfn (h, key);
3790 if (hash)
3791 *hash = hash_code;
3792
3793 start_of_bucket = hash_code % ASIZE (h->index);
3794 idx = HASH_INDEX (h, start_of_bucket);
3795
3796 /* We need not gcpro idx since it's either an integer or nil. */
3797 while (!NILP (idx))
3798 {
3799 ptrdiff_t i = XFASTINT (idx);
3800 if (EQ (key, HASH_KEY (h, i))
3801 || (h->cmpfn
3802 && h->cmpfn (h, key, hash_code,
3803 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3804 break;
3805 idx = HASH_NEXT (h, i);
3806 }
3807
3808 return NILP (idx) ? -1 : XFASTINT (idx);
3809 }
3810
3811
3812 /* Put an entry into hash table H that associates KEY with VALUE.
3813 HASH is a previously computed hash code of KEY.
3814 Value is the index of the entry in H matching KEY. */
3815
3816 ptrdiff_t
3817 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3818 EMACS_UINT hash)
3819 {
3820 ptrdiff_t start_of_bucket, i;
3821
3822 eassert ((hash & ~INTMASK) == 0);
3823
3824 /* Increment count after resizing because resizing may fail. */
3825 maybe_resize_hash_table (h);
3826 h->count++;
3827
3828 /* Store key/value in the key_and_value vector. */
3829 i = XFASTINT (h->next_free);
3830 h->next_free = HASH_NEXT (h, i);
3831 set_hash_key_slot (h, i, key);
3832 set_hash_value_slot (h, i, value);
3833
3834 /* Remember its hash code. */
3835 set_hash_hash_slot (h, i, make_number (hash));
3836
3837 /* Add new entry to its collision chain. */
3838 start_of_bucket = hash % ASIZE (h->index);
3839 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3840 set_hash_index_slot (h, start_of_bucket, make_number (i));
3841 return i;
3842 }
3843
3844
3845 /* Remove the entry matching KEY from hash table H, if there is one. */
3846
3847 static void
3848 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3849 {
3850 EMACS_UINT hash_code;
3851 ptrdiff_t start_of_bucket;
3852 Lisp_Object idx, prev;
3853
3854 hash_code = h->hashfn (h, key);
3855 start_of_bucket = hash_code % ASIZE (h->index);
3856 idx = HASH_INDEX (h, start_of_bucket);
3857 prev = Qnil;
3858
3859 /* We need not gcpro idx, prev since they're either integers or nil. */
3860 while (!NILP (idx))
3861 {
3862 ptrdiff_t i = XFASTINT (idx);
3863
3864 if (EQ (key, HASH_KEY (h, i))
3865 || (h->cmpfn
3866 && h->cmpfn (h, key, hash_code,
3867 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3868 {
3869 /* Take entry out of collision chain. */
3870 if (NILP (prev))
3871 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3872 else
3873 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3874
3875 /* Clear slots in key_and_value and add the slots to
3876 the free list. */
3877 set_hash_key_slot (h, i, Qnil);
3878 set_hash_value_slot (h, i, Qnil);
3879 set_hash_hash_slot (h, i, Qnil);
3880 set_hash_next_slot (h, i, h->next_free);
3881 h->next_free = make_number (i);
3882 h->count--;
3883 eassert (h->count >= 0);
3884 break;
3885 }
3886 else
3887 {
3888 prev = idx;
3889 idx = HASH_NEXT (h, i);
3890 }
3891 }
3892 }
3893
3894
3895 /* Clear hash table H. */
3896
3897 static void
3898 hash_clear (struct Lisp_Hash_Table *h)
3899 {
3900 if (h->count > 0)
3901 {
3902 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3903
3904 for (i = 0; i < size; ++i)
3905 {
3906 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3907 set_hash_key_slot (h, i, Qnil);
3908 set_hash_value_slot (h, i, Qnil);
3909 set_hash_hash_slot (h, i, Qnil);
3910 }
3911
3912 for (i = 0; i < ASIZE (h->index); ++i)
3913 ASET (h->index, i, Qnil);
3914
3915 h->next_free = make_number (0);
3916 h->count = 0;
3917 }
3918 }
3919
3920
3921 \f
3922 /************************************************************************
3923 Weak Hash Tables
3924 ************************************************************************/
3925
3926 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3927 entries from the table that don't survive the current GC.
3928 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3929 true if anything was marked. */
3930
3931 static bool
3932 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3933 {
3934 ptrdiff_t bucket, n;
3935 bool marked;
3936
3937 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3938 marked = 0;
3939
3940 for (bucket = 0; bucket < n; ++bucket)
3941 {
3942 Lisp_Object idx, next, prev;
3943
3944 /* Follow collision chain, removing entries that
3945 don't survive this garbage collection. */
3946 prev = Qnil;
3947 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3948 {
3949 ptrdiff_t i = XFASTINT (idx);
3950 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3951 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3952 bool remove_p;
3953
3954 if (EQ (h->weak, Qkey))
3955 remove_p = !key_known_to_survive_p;
3956 else if (EQ (h->weak, Qvalue))
3957 remove_p = !value_known_to_survive_p;
3958 else if (EQ (h->weak, Qkey_or_value))
3959 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3960 else if (EQ (h->weak, Qkey_and_value))
3961 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3962 else
3963 emacs_abort ();
3964
3965 next = HASH_NEXT (h, i);
3966
3967 if (remove_entries_p)
3968 {
3969 if (remove_p)
3970 {
3971 /* Take out of collision chain. */
3972 if (NILP (prev))
3973 set_hash_index_slot (h, bucket, next);
3974 else
3975 set_hash_next_slot (h, XFASTINT (prev), next);
3976
3977 /* Add to free list. */
3978 set_hash_next_slot (h, i, h->next_free);
3979 h->next_free = idx;
3980
3981 /* Clear key, value, and hash. */
3982 set_hash_key_slot (h, i, Qnil);
3983 set_hash_value_slot (h, i, Qnil);
3984 set_hash_hash_slot (h, i, Qnil);
3985
3986 h->count--;
3987 }
3988 else
3989 {
3990 prev = idx;
3991 }
3992 }
3993 else
3994 {
3995 if (!remove_p)
3996 {
3997 /* Make sure key and value survive. */
3998 if (!key_known_to_survive_p)
3999 {
4000 mark_object (HASH_KEY (h, i));
4001 marked = 1;
4002 }
4003
4004 if (!value_known_to_survive_p)
4005 {
4006 mark_object (HASH_VALUE (h, i));
4007 marked = 1;
4008 }
4009 }
4010 }
4011 }
4012 }
4013
4014 return marked;
4015 }
4016
4017 /* Remove elements from weak hash tables that don't survive the
4018 current garbage collection. Remove weak tables that don't survive
4019 from Vweak_hash_tables. Called from gc_sweep. */
4020
4021 void
4022 sweep_weak_hash_tables (void)
4023 {
4024 struct Lisp_Hash_Table *h, *used, *next;
4025 bool marked;
4026
4027 /* Mark all keys and values that are in use. Keep on marking until
4028 there is no more change. This is necessary for cases like
4029 value-weak table A containing an entry X -> Y, where Y is used in a
4030 key-weak table B, Z -> Y. If B comes after A in the list of weak
4031 tables, X -> Y might be removed from A, although when looking at B
4032 one finds that it shouldn't. */
4033 do
4034 {
4035 marked = 0;
4036 for (h = weak_hash_tables; h; h = h->next_weak)
4037 {
4038 if (h->header.size & ARRAY_MARK_FLAG)
4039 marked |= sweep_weak_table (h, 0);
4040 }
4041 }
4042 while (marked);
4043
4044 /* Remove tables and entries that aren't used. */
4045 for (h = weak_hash_tables, used = NULL; h; h = next)
4046 {
4047 next = h->next_weak;
4048
4049 if (h->header.size & ARRAY_MARK_FLAG)
4050 {
4051 /* TABLE is marked as used. Sweep its contents. */
4052 if (h->count > 0)
4053 sweep_weak_table (h, 1);
4054
4055 /* Add table to the list of used weak hash tables. */
4056 h->next_weak = used;
4057 used = h;
4058 }
4059 }
4060
4061 weak_hash_tables = used;
4062 }
4063
4064
4065 \f
4066 /***********************************************************************
4067 Hash Code Computation
4068 ***********************************************************************/
4069
4070 /* Maximum depth up to which to dive into Lisp structures. */
4071
4072 #define SXHASH_MAX_DEPTH 3
4073
4074 /* Maximum length up to which to take list and vector elements into
4075 account. */
4076
4077 #define SXHASH_MAX_LEN 7
4078
4079 /* Combine two integers X and Y for hashing. The result might not fit
4080 into a Lisp integer. */
4081
4082 #define SXHASH_COMBINE(X, Y) \
4083 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4084 + (EMACS_UINT) (Y))
4085
4086 /* Hash X, returning a value that fits into a Lisp integer. */
4087 #define SXHASH_REDUCE(X) \
4088 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4089
4090 /* Return a hash for string PTR which has length LEN. The hash value
4091 can be any EMACS_UINT value. */
4092
4093 EMACS_UINT
4094 hash_string (char const *ptr, ptrdiff_t len)
4095 {
4096 char const *p = ptr;
4097 char const *end = p + len;
4098 unsigned char c;
4099 EMACS_UINT hash = 0;
4100
4101 while (p != end)
4102 {
4103 c = *p++;
4104 hash = SXHASH_COMBINE (hash, c);
4105 }
4106
4107 return hash;
4108 }
4109
4110 /* Return a hash for string PTR which has length LEN. The hash
4111 code returned is guaranteed to fit in a Lisp integer. */
4112
4113 static EMACS_UINT
4114 sxhash_string (char const *ptr, ptrdiff_t len)
4115 {
4116 EMACS_UINT hash = hash_string (ptr, len);
4117 return SXHASH_REDUCE (hash);
4118 }
4119
4120 /* Return a hash for the floating point value VAL. */
4121
4122 static EMACS_INT
4123 sxhash_float (double val)
4124 {
4125 EMACS_UINT hash = 0;
4126 enum {
4127 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4128 + (sizeof val % sizeof hash != 0))
4129 };
4130 union {
4131 double val;
4132 EMACS_UINT word[WORDS_PER_DOUBLE];
4133 } u;
4134 int i;
4135 u.val = val;
4136 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4137 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4138 hash = SXHASH_COMBINE (hash, u.word[i]);
4139 return SXHASH_REDUCE (hash);
4140 }
4141
4142 /* Return a hash for list LIST. DEPTH is the current depth in the
4143 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4144
4145 static EMACS_UINT
4146 sxhash_list (Lisp_Object list, int depth)
4147 {
4148 EMACS_UINT hash = 0;
4149 int i;
4150
4151 if (depth < SXHASH_MAX_DEPTH)
4152 for (i = 0;
4153 CONSP (list) && i < SXHASH_MAX_LEN;
4154 list = XCDR (list), ++i)
4155 {
4156 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4157 hash = SXHASH_COMBINE (hash, hash2);
4158 }
4159
4160 if (!NILP (list))
4161 {
4162 EMACS_UINT hash2 = sxhash (list, depth + 1);
4163 hash = SXHASH_COMBINE (hash, hash2);
4164 }
4165
4166 return SXHASH_REDUCE (hash);
4167 }
4168
4169
4170 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4171 the Lisp structure. */
4172
4173 static EMACS_UINT
4174 sxhash_vector (Lisp_Object vec, int depth)
4175 {
4176 EMACS_UINT hash = ASIZE (vec);
4177 int i, n;
4178
4179 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4180 for (i = 0; i < n; ++i)
4181 {
4182 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4183 hash = SXHASH_COMBINE (hash, hash2);
4184 }
4185
4186 return SXHASH_REDUCE (hash);
4187 }
4188
4189 /* Return a hash for bool-vector VECTOR. */
4190
4191 static EMACS_UINT
4192 sxhash_bool_vector (Lisp_Object vec)
4193 {
4194 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4195 int i, n;
4196
4197 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4198 for (i = 0; i < n; ++i)
4199 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4200
4201 return SXHASH_REDUCE (hash);
4202 }
4203
4204
4205 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4206 structure. Value is an unsigned integer clipped to INTMASK. */
4207
4208 EMACS_UINT
4209 sxhash (Lisp_Object obj, int depth)
4210 {
4211 EMACS_UINT hash;
4212
4213 if (depth > SXHASH_MAX_DEPTH)
4214 return 0;
4215
4216 switch (XTYPE (obj))
4217 {
4218 case_Lisp_Int:
4219 hash = XUINT (obj);
4220 break;
4221
4222 case Lisp_Misc:
4223 hash = XUINT (obj);
4224 break;
4225
4226 case Lisp_Symbol:
4227 obj = SYMBOL_NAME (obj);
4228 /* Fall through. */
4229
4230 case Lisp_String:
4231 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4232 break;
4233
4234 /* This can be everything from a vector to an overlay. */
4235 case Lisp_Vectorlike:
4236 if (VECTORP (obj))
4237 /* According to the CL HyperSpec, two arrays are equal only if
4238 they are `eq', except for strings and bit-vectors. In
4239 Emacs, this works differently. We have to compare element
4240 by element. */
4241 hash = sxhash_vector (obj, depth);
4242 else if (BOOL_VECTOR_P (obj))
4243 hash = sxhash_bool_vector (obj);
4244 else
4245 /* Others are `equal' if they are `eq', so let's take their
4246 address as hash. */
4247 hash = XUINT (obj);
4248 break;
4249
4250 case Lisp_Cons:
4251 hash = sxhash_list (obj, depth);
4252 break;
4253
4254 case Lisp_Float:
4255 hash = sxhash_float (XFLOAT_DATA (obj));
4256 break;
4257
4258 default:
4259 emacs_abort ();
4260 }
4261
4262 return hash;
4263 }
4264
4265
4266 \f
4267 /***********************************************************************
4268 Lisp Interface
4269 ***********************************************************************/
4270
4271
4272 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4273 doc: /* Compute a hash code for OBJ and return it as integer. */)
4274 (Lisp_Object obj)
4275 {
4276 EMACS_UINT hash = sxhash (obj, 0);
4277 return make_number (hash);
4278 }
4279
4280
4281 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4282 doc: /* Create and return a new hash table.
4283
4284 Arguments are specified as keyword/argument pairs. The following
4285 arguments are defined:
4286
4287 :test TEST -- TEST must be a symbol that specifies how to compare
4288 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4289 `equal'. User-supplied test and hash functions can be specified via
4290 `define-hash-table-test'.
4291
4292 :size SIZE -- A hint as to how many elements will be put in the table.
4293 Default is 65.
4294
4295 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4296 fills up. If REHASH-SIZE is an integer, increase the size by that
4297 amount. If it is a float, it must be > 1.0, and the new size is the
4298 old size multiplied by that factor. Default is 1.5.
4299
4300 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4301 Resize the hash table when the ratio (number of entries / table size)
4302 is greater than or equal to THRESHOLD. Default is 0.8.
4303
4304 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4305 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4306 returned is a weak table. Key/value pairs are removed from a weak
4307 hash table when there are no non-weak references pointing to their
4308 key, value, one of key or value, or both key and value, depending on
4309 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4310 is nil.
4311
4312 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4313 (ptrdiff_t nargs, Lisp_Object *args)
4314 {
4315 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4316 Lisp_Object user_test, user_hash;
4317 char *used;
4318 ptrdiff_t i;
4319
4320 /* The vector `used' is used to keep track of arguments that
4321 have been consumed. */
4322 used = alloca (nargs * sizeof *used);
4323 memset (used, 0, nargs * sizeof *used);
4324
4325 /* See if there's a `:test TEST' among the arguments. */
4326 i = get_key_arg (QCtest, nargs, args, used);
4327 test = i ? args[i] : Qeql;
4328 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4329 {
4330 /* See if it is a user-defined test. */
4331 Lisp_Object prop;
4332
4333 prop = Fget (test, Qhash_table_test);
4334 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4335 signal_error ("Invalid hash table test", test);
4336 user_test = XCAR (prop);
4337 user_hash = XCAR (XCDR (prop));
4338 }
4339 else
4340 user_test = user_hash = Qnil;
4341
4342 /* See if there's a `:size SIZE' argument. */
4343 i = get_key_arg (QCsize, nargs, args, used);
4344 size = i ? args[i] : Qnil;
4345 if (NILP (size))
4346 size = make_number (DEFAULT_HASH_SIZE);
4347 else if (!INTEGERP (size) || XINT (size) < 0)
4348 signal_error ("Invalid hash table size", size);
4349
4350 /* Look for `:rehash-size SIZE'. */
4351 i = get_key_arg (QCrehash_size, nargs, args, used);
4352 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4353 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4354 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4355 signal_error ("Invalid hash table rehash size", rehash_size);
4356
4357 /* Look for `:rehash-threshold THRESHOLD'. */
4358 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4359 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4360 if (! (FLOATP (rehash_threshold)
4361 && 0 < XFLOAT_DATA (rehash_threshold)
4362 && XFLOAT_DATA (rehash_threshold) <= 1))
4363 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4364
4365 /* Look for `:weakness WEAK'. */
4366 i = get_key_arg (QCweakness, nargs, args, used);
4367 weak = i ? args[i] : Qnil;
4368 if (EQ (weak, Qt))
4369 weak = Qkey_and_value;
4370 if (!NILP (weak)
4371 && !EQ (weak, Qkey)
4372 && !EQ (weak, Qvalue)
4373 && !EQ (weak, Qkey_or_value)
4374 && !EQ (weak, Qkey_and_value))
4375 signal_error ("Invalid hash table weakness", weak);
4376
4377 /* Now, all args should have been used up, or there's a problem. */
4378 for (i = 0; i < nargs; ++i)
4379 if (!used[i])
4380 signal_error ("Invalid argument list", args[i]);
4381
4382 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4383 user_test, user_hash);
4384 }
4385
4386
4387 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4388 doc: /* Return a copy of hash table TABLE. */)
4389 (Lisp_Object table)
4390 {
4391 return copy_hash_table (check_hash_table (table));
4392 }
4393
4394
4395 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4396 doc: /* Return the number of elements in TABLE. */)
4397 (Lisp_Object table)
4398 {
4399 return make_number (check_hash_table (table)->count);
4400 }
4401
4402
4403 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4404 Shash_table_rehash_size, 1, 1, 0,
4405 doc: /* Return the current rehash size of TABLE. */)
4406 (Lisp_Object table)
4407 {
4408 return check_hash_table (table)->rehash_size;
4409 }
4410
4411
4412 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4413 Shash_table_rehash_threshold, 1, 1, 0,
4414 doc: /* Return the current rehash threshold of TABLE. */)
4415 (Lisp_Object table)
4416 {
4417 return check_hash_table (table)->rehash_threshold;
4418 }
4419
4420
4421 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4422 doc: /* Return the size of TABLE.
4423 The size can be used as an argument to `make-hash-table' to create
4424 a hash table than can hold as many elements as TABLE holds
4425 without need for resizing. */)
4426 (Lisp_Object table)
4427 {
4428 struct Lisp_Hash_Table *h = check_hash_table (table);
4429 return make_number (HASH_TABLE_SIZE (h));
4430 }
4431
4432
4433 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4434 doc: /* Return the test TABLE uses. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->test;
4438 }
4439
4440
4441 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4442 1, 1, 0,
4443 doc: /* Return the weakness of TABLE. */)
4444 (Lisp_Object table)
4445 {
4446 return check_hash_table (table)->weak;
4447 }
4448
4449
4450 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4451 doc: /* Return t if OBJ is a Lisp hash table object. */)
4452 (Lisp_Object obj)
4453 {
4454 return HASH_TABLE_P (obj) ? Qt : Qnil;
4455 }
4456
4457
4458 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4459 doc: /* Clear hash table TABLE and return it. */)
4460 (Lisp_Object table)
4461 {
4462 hash_clear (check_hash_table (table));
4463 /* Be compatible with XEmacs. */
4464 return table;
4465 }
4466
4467
4468 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4469 doc: /* Look up KEY in TABLE and return its associated value.
4470 If KEY is not found, return DFLT which defaults to nil. */)
4471 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4472 {
4473 struct Lisp_Hash_Table *h = check_hash_table (table);
4474 ptrdiff_t i = hash_lookup (h, key, NULL);
4475 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4476 }
4477
4478
4479 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4480 doc: /* Associate KEY with VALUE in hash table TABLE.
4481 If KEY is already present in table, replace its current value with
4482 VALUE. In any case, return VALUE. */)
4483 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4484 {
4485 struct Lisp_Hash_Table *h = check_hash_table (table);
4486 ptrdiff_t i;
4487 EMACS_UINT hash;
4488
4489 i = hash_lookup (h, key, &hash);
4490 if (i >= 0)
4491 set_hash_value_slot (h, i, value);
4492 else
4493 hash_put (h, key, value, hash);
4494
4495 return value;
4496 }
4497
4498
4499 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4500 doc: /* Remove KEY from TABLE. */)
4501 (Lisp_Object key, Lisp_Object table)
4502 {
4503 struct Lisp_Hash_Table *h = check_hash_table (table);
4504 hash_remove_from_table (h, key);
4505 return Qnil;
4506 }
4507
4508
4509 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4510 doc: /* Call FUNCTION for all entries in hash table TABLE.
4511 FUNCTION is called with two arguments, KEY and VALUE. */)
4512 (Lisp_Object function, Lisp_Object table)
4513 {
4514 struct Lisp_Hash_Table *h = check_hash_table (table);
4515 Lisp_Object args[3];
4516 ptrdiff_t i;
4517
4518 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4519 if (!NILP (HASH_HASH (h, i)))
4520 {
4521 args[0] = function;
4522 args[1] = HASH_KEY (h, i);
4523 args[2] = HASH_VALUE (h, i);
4524 Ffuncall (3, args);
4525 }
4526
4527 return Qnil;
4528 }
4529
4530
4531 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4532 Sdefine_hash_table_test, 3, 3, 0,
4533 doc: /* Define a new hash table test with name NAME, a symbol.
4534
4535 In hash tables created with NAME specified as test, use TEST to
4536 compare keys, and HASH for computing hash codes of keys.
4537
4538 TEST must be a function taking two arguments and returning non-nil if
4539 both arguments are the same. HASH must be a function taking one
4540 argument and return an integer that is the hash code of the argument.
4541 Hash code computation should use the whole value range of integers,
4542 including negative integers. */)
4543 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4544 {
4545 return Fput (name, Qhash_table_test, list2 (test, hash));
4546 }
4547
4548
4549 \f
4550 /************************************************************************
4551 MD5, SHA-1, and SHA-2
4552 ************************************************************************/
4553
4554 #include "md5.h"
4555 #include "sha1.h"
4556 #include "sha256.h"
4557 #include "sha512.h"
4558
4559 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4560
4561 static Lisp_Object
4562 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4563 {
4564 int i;
4565 ptrdiff_t size;
4566 EMACS_INT start_char = 0, end_char = 0;
4567 ptrdiff_t start_byte, end_byte;
4568 register EMACS_INT b, e;
4569 register struct buffer *bp;
4570 EMACS_INT temp;
4571 int digest_size;
4572 void *(*hash_func) (const char *, size_t, void *);
4573 Lisp_Object digest;
4574
4575 CHECK_SYMBOL (algorithm);
4576
4577 if (STRINGP (object))
4578 {
4579 if (NILP (coding_system))
4580 {
4581 /* Decide the coding-system to encode the data with. */
4582
4583 if (STRING_MULTIBYTE (object))
4584 /* use default, we can't guess correct value */
4585 coding_system = preferred_coding_system ();
4586 else
4587 coding_system = Qraw_text;
4588 }
4589
4590 if (NILP (Fcoding_system_p (coding_system)))
4591 {
4592 /* Invalid coding system. */
4593
4594 if (!NILP (noerror))
4595 coding_system = Qraw_text;
4596 else
4597 xsignal1 (Qcoding_system_error, coding_system);
4598 }
4599
4600 if (STRING_MULTIBYTE (object))
4601 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4602
4603 size = SCHARS (object);
4604
4605 if (!NILP (start))
4606 {
4607 CHECK_NUMBER (start);
4608
4609 start_char = XINT (start);
4610
4611 if (start_char < 0)
4612 start_char += size;
4613 }
4614
4615 if (NILP (end))
4616 end_char = size;
4617 else
4618 {
4619 CHECK_NUMBER (end);
4620
4621 end_char = XINT (end);
4622
4623 if (end_char < 0)
4624 end_char += size;
4625 }
4626
4627 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4628 args_out_of_range_3 (object, make_number (start_char),
4629 make_number (end_char));
4630
4631 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4632 end_byte =
4633 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4634 }
4635 else
4636 {
4637 struct buffer *prev = current_buffer;
4638
4639 record_unwind_current_buffer ();
4640
4641 CHECK_BUFFER (object);
4642
4643 bp = XBUFFER (object);
4644 set_buffer_internal (bp);
4645
4646 if (NILP (start))
4647 b = BEGV;
4648 else
4649 {
4650 CHECK_NUMBER_COERCE_MARKER (start);
4651 b = XINT (start);
4652 }
4653
4654 if (NILP (end))
4655 e = ZV;
4656 else
4657 {
4658 CHECK_NUMBER_COERCE_MARKER (end);
4659 e = XINT (end);
4660 }
4661
4662 if (b > e)
4663 temp = b, b = e, e = temp;
4664
4665 if (!(BEGV <= b && e <= ZV))
4666 args_out_of_range (start, end);
4667
4668 if (NILP (coding_system))
4669 {
4670 /* Decide the coding-system to encode the data with.
4671 See fileio.c:Fwrite-region */
4672
4673 if (!NILP (Vcoding_system_for_write))
4674 coding_system = Vcoding_system_for_write;
4675 else
4676 {
4677 bool force_raw_text = 0;
4678
4679 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4680 if (NILP (coding_system)
4681 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4682 {
4683 coding_system = Qnil;
4684 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4685 force_raw_text = 1;
4686 }
4687
4688 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4689 {
4690 /* Check file-coding-system-alist. */
4691 Lisp_Object args[4], val;
4692
4693 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4694 args[3] = Fbuffer_file_name (object);
4695 val = Ffind_operation_coding_system (4, args);
4696 if (CONSP (val) && !NILP (XCDR (val)))
4697 coding_system = XCDR (val);
4698 }
4699
4700 if (NILP (coding_system)
4701 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4702 {
4703 /* If we still have not decided a coding system, use the
4704 default value of buffer-file-coding-system. */
4705 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4706 }
4707
4708 if (!force_raw_text
4709 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4710 /* Confirm that VAL can surely encode the current region. */
4711 coding_system = call4 (Vselect_safe_coding_system_function,
4712 make_number (b), make_number (e),
4713 coding_system, Qnil);
4714
4715 if (force_raw_text)
4716 coding_system = Qraw_text;
4717 }
4718
4719 if (NILP (Fcoding_system_p (coding_system)))
4720 {
4721 /* Invalid coding system. */
4722
4723 if (!NILP (noerror))
4724 coding_system = Qraw_text;
4725 else
4726 xsignal1 (Qcoding_system_error, coding_system);
4727 }
4728 }
4729
4730 object = make_buffer_string (b, e, 0);
4731 set_buffer_internal (prev);
4732 /* Discard the unwind protect for recovering the current
4733 buffer. */
4734 specpdl_ptr--;
4735
4736 if (STRING_MULTIBYTE (object))
4737 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4738 start_byte = 0;
4739 end_byte = SBYTES (object);
4740 }
4741
4742 if (EQ (algorithm, Qmd5))
4743 {
4744 digest_size = MD5_DIGEST_SIZE;
4745 hash_func = md5_buffer;
4746 }
4747 else if (EQ (algorithm, Qsha1))
4748 {
4749 digest_size = SHA1_DIGEST_SIZE;
4750 hash_func = sha1_buffer;
4751 }
4752 else if (EQ (algorithm, Qsha224))
4753 {
4754 digest_size = SHA224_DIGEST_SIZE;
4755 hash_func = sha224_buffer;
4756 }
4757 else if (EQ (algorithm, Qsha256))
4758 {
4759 digest_size = SHA256_DIGEST_SIZE;
4760 hash_func = sha256_buffer;
4761 }
4762 else if (EQ (algorithm, Qsha384))
4763 {
4764 digest_size = SHA384_DIGEST_SIZE;
4765 hash_func = sha384_buffer;
4766 }
4767 else if (EQ (algorithm, Qsha512))
4768 {
4769 digest_size = SHA512_DIGEST_SIZE;
4770 hash_func = sha512_buffer;
4771 }
4772 else
4773 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4774
4775 /* allocate 2 x digest_size so that it can be re-used to hold the
4776 hexified value */
4777 digest = make_uninit_string (digest_size * 2);
4778
4779 hash_func (SSDATA (object) + start_byte,
4780 end_byte - start_byte,
4781 SSDATA (digest));
4782
4783 if (NILP (binary))
4784 {
4785 unsigned char *p = SDATA (digest);
4786 for (i = digest_size - 1; i >= 0; i--)
4787 {
4788 static char const hexdigit[16] = "0123456789abcdef";
4789 int p_i = p[i];
4790 p[2 * i] = hexdigit[p_i >> 4];
4791 p[2 * i + 1] = hexdigit[p_i & 0xf];
4792 }
4793 return digest;
4794 }
4795 else
4796 return make_unibyte_string (SSDATA (digest), digest_size);
4797 }
4798
4799 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4800 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4801
4802 A message digest is a cryptographic checksum of a document, and the
4803 algorithm to calculate it is defined in RFC 1321.
4804
4805 The two optional arguments START and END are character positions
4806 specifying for which part of OBJECT the message digest should be
4807 computed. If nil or omitted, the digest is computed for the whole
4808 OBJECT.
4809
4810 The MD5 message digest is computed from the result of encoding the
4811 text in a coding system, not directly from the internal Emacs form of
4812 the text. The optional fourth argument CODING-SYSTEM specifies which
4813 coding system to encode the text with. It should be the same coding
4814 system that you used or will use when actually writing the text into a
4815 file.
4816
4817 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4818 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4819 system would be chosen by default for writing this text into a file.
4820
4821 If OBJECT is a string, the most preferred coding system (see the
4822 command `prefer-coding-system') is used.
4823
4824 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4825 guesswork fails. Normally, an error is signaled in such case. */)
4826 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4827 {
4828 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4829 }
4830
4831 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4832 doc: /* Return the secure hash of OBJECT, a buffer or string.
4833 ALGORITHM is a symbol specifying the hash to use:
4834 md5, sha1, sha224, sha256, sha384 or sha512.
4835
4836 The two optional arguments START and END are positions specifying for
4837 which part of OBJECT to compute the hash. If nil or omitted, uses the
4838 whole OBJECT.
4839
4840 If BINARY is non-nil, returns a string in binary form. */)
4841 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4842 {
4843 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4844 }
4845 \f
4846 void
4847 syms_of_fns (void)
4848 {
4849 DEFSYM (Qmd5, "md5");
4850 DEFSYM (Qsha1, "sha1");
4851 DEFSYM (Qsha224, "sha224");
4852 DEFSYM (Qsha256, "sha256");
4853 DEFSYM (Qsha384, "sha384");
4854 DEFSYM (Qsha512, "sha512");
4855
4856 /* Hash table stuff. */
4857 DEFSYM (Qhash_table_p, "hash-table-p");
4858 DEFSYM (Qeq, "eq");
4859 DEFSYM (Qeql, "eql");
4860 DEFSYM (Qequal, "equal");
4861 DEFSYM (QCtest, ":test");
4862 DEFSYM (QCsize, ":size");
4863 DEFSYM (QCrehash_size, ":rehash-size");
4864 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4865 DEFSYM (QCweakness, ":weakness");
4866 DEFSYM (Qkey, "key");
4867 DEFSYM (Qvalue, "value");
4868 DEFSYM (Qhash_table_test, "hash-table-test");
4869 DEFSYM (Qkey_or_value, "key-or-value");
4870 DEFSYM (Qkey_and_value, "key-and-value");
4871
4872 defsubr (&Ssxhash);
4873 defsubr (&Smake_hash_table);
4874 defsubr (&Scopy_hash_table);
4875 defsubr (&Shash_table_count);
4876 defsubr (&Shash_table_rehash_size);
4877 defsubr (&Shash_table_rehash_threshold);
4878 defsubr (&Shash_table_size);
4879 defsubr (&Shash_table_test);
4880 defsubr (&Shash_table_weakness);
4881 defsubr (&Shash_table_p);
4882 defsubr (&Sclrhash);
4883 defsubr (&Sgethash);
4884 defsubr (&Sputhash);
4885 defsubr (&Sremhash);
4886 defsubr (&Smaphash);
4887 defsubr (&Sdefine_hash_table_test);
4888
4889 DEFSYM (Qstring_lessp, "string-lessp");
4890 DEFSYM (Qprovide, "provide");
4891 DEFSYM (Qrequire, "require");
4892 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4893 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4894 DEFSYM (Qwidget_type, "widget-type");
4895
4896 staticpro (&string_char_byte_cache_string);
4897 string_char_byte_cache_string = Qnil;
4898
4899 require_nesting_list = Qnil;
4900 staticpro (&require_nesting_list);
4901
4902 Fset (Qyes_or_no_p_history, Qnil);
4903
4904 DEFVAR_LISP ("features", Vfeatures,
4905 doc: /* A list of symbols which are the features of the executing Emacs.
4906 Used by `featurep' and `require', and altered by `provide'. */);
4907 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4908 DEFSYM (Qsubfeatures, "subfeatures");
4909
4910 #ifdef HAVE_LANGINFO_CODESET
4911 DEFSYM (Qcodeset, "codeset");
4912 DEFSYM (Qdays, "days");
4913 DEFSYM (Qmonths, "months");
4914 DEFSYM (Qpaper, "paper");
4915 #endif /* HAVE_LANGINFO_CODESET */
4916
4917 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4918 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4919 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4920 invoked by mouse clicks and mouse menu items.
4921
4922 On some platforms, file selection dialogs are also enabled if this is
4923 non-nil. */);
4924 use_dialog_box = 1;
4925
4926 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4927 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4928 This applies to commands from menus and tool bar buttons even when
4929 they are initiated from the keyboard. If `use-dialog-box' is nil,
4930 that disables the use of a file dialog, regardless of the value of
4931 this variable. */);
4932 use_file_dialog = 1;
4933
4934 defsubr (&Sidentity);
4935 defsubr (&Srandom);
4936 defsubr (&Slength);
4937 defsubr (&Ssafe_length);
4938 defsubr (&Sstring_bytes);
4939 defsubr (&Sstring_equal);
4940 defsubr (&Scompare_strings);
4941 defsubr (&Sstring_lessp);
4942 defsubr (&Sappend);
4943 defsubr (&Sconcat);
4944 defsubr (&Svconcat);
4945 defsubr (&Scopy_sequence);
4946 defsubr (&Sstring_make_multibyte);
4947 defsubr (&Sstring_make_unibyte);
4948 defsubr (&Sstring_as_multibyte);
4949 defsubr (&Sstring_as_unibyte);
4950 defsubr (&Sstring_to_multibyte);
4951 defsubr (&Sstring_to_unibyte);
4952 defsubr (&Scopy_alist);
4953 defsubr (&Ssubstring);
4954 defsubr (&Ssubstring_no_properties);
4955 defsubr (&Snthcdr);
4956 defsubr (&Snth);
4957 defsubr (&Selt);
4958 defsubr (&Smember);
4959 defsubr (&Smemq);
4960 defsubr (&Smemql);
4961 defsubr (&Sassq);
4962 defsubr (&Sassoc);
4963 defsubr (&Srassq);
4964 defsubr (&Srassoc);
4965 defsubr (&Sdelq);
4966 defsubr (&Sdelete);
4967 defsubr (&Snreverse);
4968 defsubr (&Sreverse);
4969 defsubr (&Ssort);
4970 defsubr (&Splist_get);
4971 defsubr (&Sget);
4972 defsubr (&Splist_put);
4973 defsubr (&Sput);
4974 defsubr (&Slax_plist_get);
4975 defsubr (&Slax_plist_put);
4976 defsubr (&Seql);
4977 defsubr (&Sequal);
4978 defsubr (&Sequal_including_properties);
4979 defsubr (&Sfillarray);
4980 defsubr (&Sclear_string);
4981 defsubr (&Snconc);
4982 defsubr (&Smapcar);
4983 defsubr (&Smapc);
4984 defsubr (&Smapconcat);
4985 defsubr (&Syes_or_no_p);
4986 defsubr (&Sload_average);
4987 defsubr (&Sfeaturep);
4988 defsubr (&Srequire);
4989 defsubr (&Sprovide);
4990 defsubr (&Splist_member);
4991 defsubr (&Swidget_put);
4992 defsubr (&Swidget_get);
4993 defsubr (&Swidget_apply);
4994 defsubr (&Sbase64_encode_region);
4995 defsubr (&Sbase64_decode_region);
4996 defsubr (&Sbase64_encode_string);
4997 defsubr (&Sbase64_decode_string);
4998 defsubr (&Smd5);
4999 defsubr (&Ssecure_hash);
5000 defsubr (&Slocale_info);
5001 }