Merge from trunk.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
52
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
56
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
61
62 #include <fcntl.h>
63
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
67
68 #ifdef DOUG_LEA_MALLOC
69
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
74 #endif
75
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
78
79 #define MMAP_MAX_AREAS 100000000
80
81 #else /* not DOUG_LEA_MALLOC */
82
83 /* The following come from gmalloc.c. */
84
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
127 } \
128 while (0)
129
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
137
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
140
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
144
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
148
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
152
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
154
155 /* Global variables. */
156 struct emacs_globals globals;
157
158 /* Number of bytes of consing done since the last gc. */
159
160 EMACS_INT consing_since_gc;
161
162 /* Similar minimum, computed from Vgc_cons_percentage. */
163
164 EMACS_INT gc_relative_threshold;
165
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
168
169 EMACS_INT memory_full_cons_threshold;
170
171 /* Nonzero during GC. */
172
173 int gc_in_progress;
174
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
178
179 int abort_on_gc;
180
181 /* Number of live and free conses etc. */
182
183 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185 static EMACS_INT total_free_floats, total_floats;
186
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
190
191 static char *spare_memory[7];
192
193 /* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
195
196 #define SPARE_MEMORY (1 << 14)
197
198 /* Number of extra blocks malloc should get when it needs more core. */
199
200 static int malloc_hysteresis;
201
202 /* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
207
208 #ifndef VIRT_ADDR_VARIES
209 static
210 #endif
211 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
212 #define PUREBEG (char *) pure
213
214 /* Pointer to the pure area, and its size. */
215
216 static char *purebeg;
217 static size_t pure_size;
218
219 /* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
221
222 static size_t pure_bytes_used_before_overflow;
223
224 /* Value is non-zero if P points into pure space. */
225
226 #define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
229 && ((PNTR_COMPARISON_TYPE) (P) \
230 >= (PNTR_COMPARISON_TYPE) purebeg))
231
232 /* Index in pure at which next pure Lisp object will be allocated.. */
233
234 static EMACS_INT pure_bytes_used_lisp;
235
236 /* Number of bytes allocated for non-Lisp objects in pure storage. */
237
238 static EMACS_INT pure_bytes_used_non_lisp;
239
240 /* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
242
243 const char *pending_malloc_warning;
244
245 /* Maximum amount of C stack to save when a GC happens. */
246
247 #ifndef MAX_SAVE_STACK
248 #define MAX_SAVE_STACK 16000
249 #endif
250
251 /* Buffer in which we save a copy of the C stack at each GC. */
252
253 #if MAX_SAVE_STACK > 0
254 static char *stack_copy;
255 static size_t stack_copy_size;
256 #endif
257
258 /* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
260
261 static int ignore_warnings;
262
263 static Lisp_Object Qgc_cons_threshold;
264 Lisp_Object Qchar_table_extra_slots;
265
266 /* Hook run after GC has finished. */
267
268 static Lisp_Object Qpost_gc_hook;
269
270 static void mark_buffer (Lisp_Object);
271 static void mark_terminals (void);
272 static void gc_sweep (void);
273 static void mark_glyph_matrix (struct glyph_matrix *);
274 static void mark_face_cache (struct face_cache *);
275
276 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
277 static void refill_memory_reserve (void);
278 #endif
279 static struct Lisp_String *allocate_string (void);
280 static void compact_small_strings (void);
281 static void free_large_strings (void);
282 static void sweep_strings (void);
283 static void free_misc (Lisp_Object);
284
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289 enum mem_type
290 {
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
303 };
304
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
307
308
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
310
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
314
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
318 static Lisp_Object Vdead;
319
320 #ifdef GC_MALLOC_CHECK
321
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
324
325 #endif /* GC_MALLOC_CHECK */
326
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351 struct mem_node
352 {
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
365
366 /* Memory type. */
367 enum mem_type type;
368 };
369
370 /* Base address of stack. Set in main. */
371
372 Lisp_Object *stack_base;
373
374 /* Root of the tree describing allocated Lisp memory. */
375
376 static struct mem_node *mem_root;
377
378 /* Lowest and highest known address in the heap. */
379
380 static void *min_heap_address, *max_heap_address;
381
382 /* Sentinel node of the tree. */
383
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
386
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static inline struct mem_node *mem_find (void *);
407
408
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
412
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
414
415 /* Recording what needs to be marked for gc. */
416
417 struct gcpro *gcprolist;
418
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
421
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
424
425 /* Index of next unused slot in staticvec. */
426
427 static int staticidx = 0;
428
429 static POINTER_TYPE *pure_alloc (size_t, int);
430
431
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
438
439
440 \f
441 /************************************************************************
442 Malloc
443 ************************************************************************/
444
445 /* Function malloc calls this if it finds we are near exhausting storage. */
446
447 void
448 malloc_warning (const char *str)
449 {
450 pending_malloc_warning = str;
451 }
452
453
454 /* Display an already-pending malloc warning. */
455
456 void
457 display_malloc_warning (void)
458 {
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
464 }
465 \f
466 /* Called if we can't allocate relocatable space for a buffer. */
467
468 void
469 buffer_memory_full (EMACS_INT nbytes)
470 {
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
477
478 #ifndef REL_ALLOC
479 memory_full (nbytes);
480 #endif
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 xsignal (Qnil, Vmemory_signal_data);
485 }
486
487
488 #ifndef XMALLOC_OVERRUN_CHECK
489 #define XMALLOC_OVERRUN_CHECK_SIZE 0
490 #else
491
492 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
494
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
501 */
502
503
504 #define XMALLOC_OVERRUN_CHECK_SIZE 16
505
506 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
510
511 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
516
517 /* Macros to insert and extract the block size in the header. */
518
519 #define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
524
525 #define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
530
531
532 /* The call depth in overrun_check functions. For example, this might happen:
533 xmalloc()
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
541 add overhead again, return 10032
542 xmalloc returns 10032.
543
544 (time passes).
545
546 xfree(10032)
547 overrun_check_free(10032)
548 decrease overhed
549 free(10016) <- crash, because 10000 is the original pointer. */
550
551 static int check_depth;
552
553 /* Like malloc, but wraps allocated block with header and trailer. */
554
555 static POINTER_TYPE *
556 overrun_check_malloc (size_t size)
557 {
558 register unsigned char *val;
559 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
560
561 val = (unsigned char *) malloc (size + overhead);
562 if (val && check_depth == 1)
563 {
564 memcpy (val, xmalloc_overrun_check_header,
565 XMALLOC_OVERRUN_CHECK_SIZE - 4);
566 val += XMALLOC_OVERRUN_CHECK_SIZE;
567 XMALLOC_PUT_SIZE(val, size);
568 memcpy (val + size, xmalloc_overrun_check_trailer,
569 XMALLOC_OVERRUN_CHECK_SIZE);
570 }
571 --check_depth;
572 return (POINTER_TYPE *)val;
573 }
574
575
576 /* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
578
579 static POINTER_TYPE *
580 overrun_check_realloc (POINTER_TYPE *block, size_t size)
581 {
582 register unsigned char *val = (unsigned char *) block;
583 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
584
585 if (val
586 && check_depth == 1
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
590 {
591 size_t osize = XMALLOC_GET_SIZE (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 abort ();
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
598 }
599
600 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
601
602 if (val && check_depth == 1)
603 {
604 memcpy (val, xmalloc_overrun_check_header,
605 XMALLOC_OVERRUN_CHECK_SIZE - 4);
606 val += XMALLOC_OVERRUN_CHECK_SIZE;
607 XMALLOC_PUT_SIZE(val, size);
608 memcpy (val + size, xmalloc_overrun_check_trailer,
609 XMALLOC_OVERRUN_CHECK_SIZE);
610 }
611 --check_depth;
612 return (POINTER_TYPE *)val;
613 }
614
615 /* Like free, but checks block for overrun. */
616
617 static void
618 overrun_check_free (POINTER_TYPE *block)
619 {
620 unsigned char *val = (unsigned char *) block;
621
622 ++check_depth;
623 if (val
624 && check_depth == 1
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
628 {
629 size_t osize = XMALLOC_GET_SIZE (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 abort ();
633 #ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val -= XMALLOC_OVERRUN_CHECK_SIZE;
635 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
636 #else
637 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
638 val -= XMALLOC_OVERRUN_CHECK_SIZE;
639 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 #endif
641 }
642
643 free (val);
644 --check_depth;
645 }
646
647 #undef malloc
648 #undef realloc
649 #undef free
650 #define malloc overrun_check_malloc
651 #define realloc overrun_check_realloc
652 #define free overrun_check_free
653 #endif
654
655 #ifdef SYNC_INPUT
656 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658 #define MALLOC_BLOCK_INPUT ((void)0)
659 #define MALLOC_UNBLOCK_INPUT ((void)0)
660 #else
661 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
662 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
663 #endif
664
665 /* Like malloc but check for no memory and block interrupt input.. */
666
667 POINTER_TYPE *
668 xmalloc (size_t size)
669 {
670 register POINTER_TYPE *val;
671
672 MALLOC_BLOCK_INPUT;
673 val = (POINTER_TYPE *) malloc (size);
674 MALLOC_UNBLOCK_INPUT;
675
676 if (!val && size)
677 memory_full (size);
678 return val;
679 }
680
681
682 /* Like realloc but check for no memory and block interrupt input.. */
683
684 POINTER_TYPE *
685 xrealloc (POINTER_TYPE *block, size_t size)
686 {
687 register POINTER_TYPE *val;
688
689 MALLOC_BLOCK_INPUT;
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
692 if (! block)
693 val = (POINTER_TYPE *) malloc (size);
694 else
695 val = (POINTER_TYPE *) realloc (block, size);
696 MALLOC_UNBLOCK_INPUT;
697
698 if (!val && size)
699 memory_full (size);
700 return val;
701 }
702
703
704 /* Like free but block interrupt input. */
705
706 void
707 xfree (POINTER_TYPE *block)
708 {
709 if (!block)
710 return;
711 MALLOC_BLOCK_INPUT;
712 free (block);
713 MALLOC_UNBLOCK_INPUT;
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
717 }
718
719
720 /* Like strdup, but uses xmalloc. */
721
722 char *
723 xstrdup (const char *s)
724 {
725 size_t len = strlen (s) + 1;
726 char *p = (char *) xmalloc (len);
727 memcpy (p, s, len);
728 return p;
729 }
730
731
732 /* Unwind for SAFE_ALLOCA */
733
734 Lisp_Object
735 safe_alloca_unwind (Lisp_Object arg)
736 {
737 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
738
739 p->dogc = 0;
740 xfree (p->pointer);
741 p->pointer = 0;
742 free_misc (arg);
743 return Qnil;
744 }
745
746
747 /* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
750
751 #ifndef USE_LSB_TAG
752 static void *lisp_malloc_loser;
753 #endif
754
755 static POINTER_TYPE *
756 lisp_malloc (size_t nbytes, enum mem_type type)
757 {
758 register void *val;
759
760 MALLOC_BLOCK_INPUT;
761
762 #ifdef GC_MALLOC_CHECK
763 allocated_mem_type = type;
764 #endif
765
766 val = (void *) malloc (nbytes);
767
768 #ifndef USE_LSB_TAG
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val && type != MEM_TYPE_NON_LISP)
773 {
774 Lisp_Object tem;
775 XSETCONS (tem, (char *) val + nbytes - 1);
776 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
777 {
778 lisp_malloc_loser = val;
779 free (val);
780 val = 0;
781 }
782 }
783 #endif
784
785 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
786 if (val && type != MEM_TYPE_NON_LISP)
787 mem_insert (val, (char *) val + nbytes, type);
788 #endif
789
790 MALLOC_UNBLOCK_INPUT;
791 if (!val && nbytes)
792 memory_full (nbytes);
793 return val;
794 }
795
796 /* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
798
799 static void
800 lisp_free (POINTER_TYPE *block)
801 {
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
805 mem_delete (mem_find (block));
806 #endif
807 MALLOC_UNBLOCK_INPUT;
808 }
809
810 /* Allocation of aligned blocks of memory to store Lisp data. */
811 /* The entry point is lisp_align_malloc which returns blocks of at most */
812 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
813
814 /* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
817 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818 #define USE_POSIX_MEMALIGN 1
819 #endif
820
821 /* BLOCK_ALIGN has to be a power of 2. */
822 #define BLOCK_ALIGN (1 << 10)
823
824 /* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
833 nothing else. */
834 #define BLOCK_PADDING 0
835 #define BLOCK_BYTES \
836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
837
838 /* Internal data structures and constants. */
839
840 #define ABLOCKS_SIZE 16
841
842 /* An aligned block of memory. */
843 struct ablock
844 {
845 union
846 {
847 char payload[BLOCK_BYTES];
848 struct ablock *next_free;
849 } x;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
858 real base). */
859 struct ablocks *abase;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
862 #if BLOCK_PADDING
863 char padding[BLOCK_PADDING];
864 #endif
865 };
866
867 /* A bunch of consecutive aligned blocks. */
868 struct ablocks
869 {
870 struct ablock blocks[ABLOCKS_SIZE];
871 };
872
873 /* Size of the block requested from malloc or memalign. */
874 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
875
876 #define ABLOCK_ABASE(block) \
877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
878 ? (struct ablocks *)(block) \
879 : (block)->abase)
880
881 /* Virtual `busy' field. */
882 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
883
884 /* Pointer to the (not necessarily aligned) malloc block. */
885 #ifdef USE_POSIX_MEMALIGN
886 #define ABLOCKS_BASE(abase) (abase)
887 #else
888 #define ABLOCKS_BASE(abase) \
889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
890 #endif
891
892 /* The list of free ablock. */
893 static struct ablock *free_ablock;
894
895 /* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898 static POINTER_TYPE *
899 lisp_align_malloc (size_t nbytes, enum mem_type type)
900 {
901 void *base, *val;
902 struct ablocks *abase;
903
904 eassert (nbytes <= BLOCK_BYTES);
905
906 MALLOC_BLOCK_INPUT;
907
908 #ifdef GC_MALLOC_CHECK
909 allocated_mem_type = type;
910 #endif
911
912 if (!free_ablock)
913 {
914 int i;
915 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
916
917 #ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
920 a dumped Emacs. */
921 mallopt (M_MMAP_MAX, 0);
922 #endif
923
924 #ifdef USE_POSIX_MEMALIGN
925 {
926 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
927 if (err)
928 base = NULL;
929 abase = base;
930 }
931 #else
932 base = malloc (ABLOCKS_BYTES);
933 abase = ALIGN (base, BLOCK_ALIGN);
934 #endif
935
936 if (base == 0)
937 {
938 MALLOC_UNBLOCK_INPUT;
939 memory_full (ABLOCKS_BYTES);
940 }
941
942 aligned = (base == abase);
943 if (!aligned)
944 ((void**)abase)[-1] = base;
945
946 #ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
949 #endif
950
951 #ifndef USE_LSB_TAG
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type != MEM_TYPE_NON_LISP)
956 {
957 Lisp_Object tem;
958 char *end = (char *) base + ABLOCKS_BYTES - 1;
959 XSETCONS (tem, end);
960 if ((char *) XCONS (tem) != end)
961 {
962 lisp_malloc_loser = base;
963 free (base);
964 MALLOC_UNBLOCK_INPUT;
965 memory_full (SIZE_MAX);
966 }
967 }
968 #endif
969
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
973 {
974 abase->blocks[i].abase = abase;
975 abase->blocks[i].x.next_free = free_ablock;
976 free_ablock = &abase->blocks[i];
977 }
978 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
979
980 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
981 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
983 eassert (ABLOCKS_BASE (abase) == base);
984 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
985 }
986
987 abase = ABLOCK_ABASE (free_ablock);
988 ABLOCKS_BUSY (abase) =
989 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
990 val = free_ablock;
991 free_ablock = free_ablock->x.next_free;
992
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 if (type != MEM_TYPE_NON_LISP)
995 mem_insert (val, (char *) val + nbytes, type);
996 #endif
997
998 MALLOC_UNBLOCK_INPUT;
999
1000 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1001 return val;
1002 }
1003
1004 static void
1005 lisp_align_free (POINTER_TYPE *block)
1006 {
1007 struct ablock *ablock = block;
1008 struct ablocks *abase = ABLOCK_ABASE (ablock);
1009
1010 MALLOC_BLOCK_INPUT;
1011 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block));
1013 #endif
1014 /* Put on free list. */
1015 ablock->x.next_free = free_ablock;
1016 free_ablock = ablock;
1017 /* Update busy count. */
1018 ABLOCKS_BUSY (abase) =
1019 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1020
1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1022 { /* All the blocks are free. */
1023 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1024 struct ablock **tem = &free_ablock;
1025 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1026
1027 while (*tem)
1028 {
1029 if (*tem >= (struct ablock *) abase && *tem < atop)
1030 {
1031 i++;
1032 *tem = (*tem)->x.next_free;
1033 }
1034 else
1035 tem = &(*tem)->x.next_free;
1036 }
1037 eassert ((aligned & 1) == aligned);
1038 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1039 #ifdef USE_POSIX_MEMALIGN
1040 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1041 #endif
1042 free (ABLOCKS_BASE (abase));
1043 }
1044 MALLOC_UNBLOCK_INPUT;
1045 }
1046
1047 /* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1049
1050 struct buffer *
1051 allocate_buffer (void)
1052 {
1053 struct buffer *b
1054 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1055 MEM_TYPE_BUFFER);
1056 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1057 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1058 / sizeof (EMACS_INT)));
1059 return b;
1060 }
1061
1062 \f
1063 #ifndef SYSTEM_MALLOC
1064
1065 /* Arranging to disable input signals while we're in malloc.
1066
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1070 pair; unfortunately, we have no idea what C library functions
1071 might call malloc, so we can't really protect them unless you're
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
1074
1075 #ifndef SYNC_INPUT
1076 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
1078
1079 #ifndef DOUG_LEA_MALLOC
1080 extern void * (*__malloc_hook) (size_t, const void *);
1081 extern void * (*__realloc_hook) (void *, size_t, const void *);
1082 extern void (*__free_hook) (void *, const void *);
1083 /* Else declared in malloc.h, perhaps with an extra arg. */
1084 #endif /* DOUG_LEA_MALLOC */
1085 static void * (*old_malloc_hook) (size_t, const void *);
1086 static void * (*old_realloc_hook) (void *, size_t, const void*);
1087 static void (*old_free_hook) (void*, const void*);
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 # define BYTES_USED (mallinfo ().uordblks)
1091 #else
1092 # define BYTES_USED _bytes_used
1093 #endif
1094
1095 static __malloc_size_t bytes_used_when_reconsidered;
1096
1097 /* Value of _bytes_used, when spare_memory was freed. */
1098
1099 static __malloc_size_t bytes_used_when_full;
1100
1101 /* This function is used as the hook for free to call. */
1102
1103 static void
1104 emacs_blocked_free (void *ptr, const void *ptr2)
1105 {
1106 BLOCK_INPUT_ALLOC;
1107
1108 #ifdef GC_MALLOC_CHECK
1109 if (ptr)
1110 {
1111 struct mem_node *m;
1112
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1115 {
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1119 }
1120 else
1121 {
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1124 }
1125 }
1126 #endif /* GC_MALLOC_CHECK */
1127
1128 __free_hook = old_free_hook;
1129 free (ptr);
1130
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered = BYTES_USED)
1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1142 refill_memory_reserve ();
1143
1144 __free_hook = emacs_blocked_free;
1145 UNBLOCK_INPUT_ALLOC;
1146 }
1147
1148
1149 /* This function is the malloc hook that Emacs uses. */
1150
1151 static void *
1152 emacs_blocked_malloc (size_t size, const void *ptr)
1153 {
1154 void *value;
1155
1156 BLOCK_INPUT_ALLOC;
1157 __malloc_hook = old_malloc_hook;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1161 #else
1162 __malloc_extra_blocks = malloc_hysteresis;
1163 #endif
1164
1165 value = (void *) malloc (size);
1166
1167 #ifdef GC_MALLOC_CHECK
1168 {
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1171 {
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1178 }
1179
1180 if (!dont_register_blocks)
1181 {
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1184 }
1185 }
1186 #endif /* GC_MALLOC_CHECK */
1187
1188 __malloc_hook = emacs_blocked_malloc;
1189 UNBLOCK_INPUT_ALLOC;
1190
1191 /* fprintf (stderr, "%p malloc\n", value); */
1192 return value;
1193 }
1194
1195
1196 /* This function is the realloc hook that Emacs uses. */
1197
1198 static void *
1199 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1200 {
1201 void *value;
1202
1203 BLOCK_INPUT_ALLOC;
1204 __realloc_hook = old_realloc_hook;
1205
1206 #ifdef GC_MALLOC_CHECK
1207 if (ptr)
1208 {
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1211 {
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1216 }
1217
1218 mem_delete (m);
1219 }
1220
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1222
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225 #endif /* GC_MALLOC_CHECK */
1226
1227 value = (void *) realloc (ptr, size);
1228
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1231
1232 {
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1235 {
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1238 }
1239
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1242 }
1243
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1246
1247 __realloc_hook = emacs_blocked_realloc;
1248 UNBLOCK_INPUT_ALLOC;
1249
1250 return value;
1251 }
1252
1253
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1259
1260 void
1261 reset_malloc_hooks ()
1262 {
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
1266 }
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1268
1269
1270 /* Called from main to set up malloc to use our hooks. */
1271
1272 void
1273 uninterrupt_malloc (void)
1274 {
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr;
1278
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1290
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
1293 __free_hook = emacs_blocked_free;
1294
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
1297 __malloc_hook = emacs_blocked_malloc;
1298
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
1301 __realloc_hook = emacs_blocked_realloc;
1302 }
1303
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1306
1307
1308 \f
1309 /***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1312
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1315
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1318
1319 /* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1321
1322 struct interval_block
1323 {
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
1326 struct interval_block *next;
1327 };
1328
1329 /* Current interval block. Its `next' pointer points to older
1330 blocks. */
1331
1332 static struct interval_block *interval_block;
1333
1334 /* Index in interval_block above of the next unused interval
1335 structure. */
1336
1337 static int interval_block_index;
1338
1339 /* Number of free and live intervals. */
1340
1341 static EMACS_INT total_free_intervals, total_intervals;
1342
1343 /* List of free intervals. */
1344
1345 static INTERVAL interval_free_list;
1346
1347
1348 /* Initialize interval allocation. */
1349
1350 static void
1351 init_intervals (void)
1352 {
1353 interval_block = NULL;
1354 interval_block_index = INTERVAL_BLOCK_SIZE;
1355 interval_free_list = 0;
1356 }
1357
1358
1359 /* Return a new interval. */
1360
1361 INTERVAL
1362 make_interval (void)
1363 {
1364 INTERVAL val;
1365
1366 /* eassert (!handling_signal); */
1367
1368 MALLOC_BLOCK_INPUT;
1369
1370 if (interval_free_list)
1371 {
1372 val = interval_free_list;
1373 interval_free_list = INTERVAL_PARENT (interval_free_list);
1374 }
1375 else
1376 {
1377 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1378 {
1379 register struct interval_block *newi;
1380
1381 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1382 MEM_TYPE_NON_LISP);
1383
1384 newi->next = interval_block;
1385 interval_block = newi;
1386 interval_block_index = 0;
1387 }
1388 val = &interval_block->intervals[interval_block_index++];
1389 }
1390
1391 MALLOC_UNBLOCK_INPUT;
1392
1393 consing_since_gc += sizeof (struct interval);
1394 intervals_consed++;
1395 RESET_INTERVAL (val);
1396 val->gcmarkbit = 0;
1397 return val;
1398 }
1399
1400
1401 /* Mark Lisp objects in interval I. */
1402
1403 static void
1404 mark_interval (register INTERVAL i, Lisp_Object dummy)
1405 {
1406 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1407 i->gcmarkbit = 1;
1408 mark_object (i->plist);
1409 }
1410
1411
1412 /* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1414
1415 static void
1416 mark_interval_tree (register INTERVAL tree)
1417 {
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1421
1422 traverse_intervals_noorder (tree, mark_interval, Qnil);
1423 }
1424
1425
1426 /* Mark the interval tree rooted in I. */
1427
1428 #define MARK_INTERVAL_TREE(i) \
1429 do { \
1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1431 mark_interval_tree (i); \
1432 } while (0)
1433
1434
1435 #define UNMARK_BALANCE_INTERVALS(i) \
1436 do { \
1437 if (! NULL_INTERVAL_P (i)) \
1438 (i) = balance_intervals (i); \
1439 } while (0)
1440
1441 \f
1442 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1443 can't create number objects in macros. */
1444 #ifndef make_number
1445 Lisp_Object
1446 make_number (EMACS_INT n)
1447 {
1448 Lisp_Object obj;
1449 obj.s.val = n;
1450 obj.s.type = Lisp_Int;
1451 return obj;
1452 }
1453 #endif
1454 \f
1455 /***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1458
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
1465
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1469
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1474
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1481
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1484
1485 #define SBLOCK_SIZE 8188
1486
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1489
1490 #define LARGE_STRING_BYTES 1024
1491
1492 /* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1494
1495 struct sdata
1496 {
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
1499 contains the string's byte size (the same value that STRING_BYTES
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1502 contents. */
1503 struct Lisp_String *string;
1504
1505 #ifdef GC_CHECK_STRING_BYTES
1506
1507 EMACS_INT nbytes;
1508 unsigned char data[1];
1509
1510 #define SDATA_NBYTES(S) (S)->nbytes
1511 #define SDATA_DATA(S) (S)->data
1512 #define SDATA_SELECTOR(member) member
1513
1514 #else /* not GC_CHECK_STRING_BYTES */
1515
1516 union
1517 {
1518 /* When STRING is non-null. */
1519 unsigned char data[1];
1520
1521 /* When STRING is null. */
1522 EMACS_INT nbytes;
1523 } u;
1524
1525 #define SDATA_NBYTES(S) (S)->u.nbytes
1526 #define SDATA_DATA(S) (S)->u.data
1527 #define SDATA_SELECTOR(member) u.member
1528
1529 #endif /* not GC_CHECK_STRING_BYTES */
1530
1531 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1532 };
1533
1534
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1539
1540 struct sblock
1541 {
1542 /* Next in list. */
1543 struct sblock *next;
1544
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1548
1549 /* Start of data. */
1550 struct sdata first_data;
1551 };
1552
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1555
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1558
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1561
1562 struct string_block
1563 {
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1567 };
1568
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1572
1573 static struct sblock *oldest_sblock, *current_sblock;
1574
1575 /* List of sblocks for large strings. */
1576
1577 static struct sblock *large_sblocks;
1578
1579 /* List of string_block structures. */
1580
1581 static struct string_block *string_blocks;
1582
1583 /* Free-list of Lisp_Strings. */
1584
1585 static struct Lisp_String *string_free_list;
1586
1587 /* Number of live and free Lisp_Strings. */
1588
1589 static EMACS_INT total_strings, total_free_strings;
1590
1591 /* Number of bytes used by live strings. */
1592
1593 static EMACS_INT total_string_size;
1594
1595 /* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1597 free-list. */
1598
1599 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1600
1601 /* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
1605
1606 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1607
1608
1609 #ifdef GC_CHECK_STRING_OVERRUN
1610
1611 /* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
1613 presence of this cookie during GC. */
1614
1615 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1616 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
1618
1619 #else
1620 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1621 #endif
1622
1623 /* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1626
1627 #ifdef GC_CHECK_STRING_BYTES
1628
1629 #define SDATA_SIZE(NBYTES) \
1630 ((SDATA_DATA_OFFSET \
1631 + (NBYTES) + 1 \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1634
1635 #else /* not GC_CHECK_STRING_BYTES */
1636
1637 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1641
1642 #define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1645 ? NBYTES \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1647 + 1 \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1650
1651 #endif /* not GC_CHECK_STRING_BYTES */
1652
1653 /* Extra bytes to allocate for each string. */
1654
1655 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1656
1657 /* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662 #define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1668
1669 /* Initialize string allocation. Called from init_alloc_once. */
1670
1671 static void
1672 init_strings (void)
1673 {
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 }
1681
1682
1683 #ifdef GC_CHECK_STRING_BYTES
1684
1685 static int check_string_bytes_count;
1686
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1691
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1694 {
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703 }
1704
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1706
1707 static void
1708 check_sblock (struct sblock *b)
1709 {
1710 struct sdata *from, *end, *from_end;
1711
1712 end = b->next_free;
1713
1714 for (from = &b->first_data; from < end; from = from_end)
1715 {
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
1718 EMACS_INT nbytes;
1719
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
1724
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
1729
1730 nbytes = SDATA_SIZE (nbytes);
1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1732 }
1733 }
1734
1735
1736 /* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
1740 static void
1741 check_string_bytes (int all_p)
1742 {
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
1752 }
1753
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
1756 }
1757 else
1758 check_sblock (current_sblock);
1759 }
1760
1761 #endif /* GC_CHECK_STRING_BYTES */
1762
1763 #ifdef GC_CHECK_STRING_FREE_LIST
1764
1765 /* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
1768 static void
1769 check_string_free_list (void)
1770 {
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
1777 if ((uintptr_t) s < 1024)
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781 }
1782 #else
1783 #define check_string_free_list()
1784 #endif
1785
1786 /* Return a new Lisp_String. */
1787
1788 static struct Lisp_String *
1789 allocate_string (void)
1790 {
1791 struct Lisp_String *s;
1792
1793 /* eassert (!handling_signal); */
1794
1795 MALLOC_BLOCK_INPUT;
1796
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
1800 {
1801 struct string_block *b;
1802 int i;
1803
1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1805 memset (b, 0, sizeof *b);
1806 b->next = string_blocks;
1807 string_blocks = b;
1808
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1810 {
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1814 }
1815
1816 total_free_strings += STRING_BLOCK_SIZE;
1817 }
1818
1819 check_string_free_list ();
1820
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1824
1825 MALLOC_UNBLOCK_INPUT;
1826
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1829
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1834
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1837 {
1838 if (++check_string_bytes_count == 200)
1839 {
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1842 }
1843 else
1844 check_string_bytes (0);
1845 }
1846 #endif /* GC_CHECK_STRING_BYTES */
1847
1848 return s;
1849 }
1850
1851
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1857
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1861 {
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1865
1866 if (STRING_BYTES_MAX < nbytes)
1867 string_overflow ();
1868
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1874
1875 MALLOC_BLOCK_INPUT;
1876
1877 if (nbytes > LARGE_STRING_BYTES)
1878 {
1879 size_t size = offsetof (struct sblock, first_data) + needed;
1880
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1884 a dumped Emacs.
1885
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX, 0);
1892 #endif
1893
1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1895
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899 #endif
1900
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1905 }
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
1909 < (needed + GC_STRING_EXTRA)))
1910 {
1911 /* Not enough room in the current sblock. */
1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1916
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1922 }
1923 else
1924 b = current_sblock;
1925
1926 data = b->next_free;
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1928
1929 MALLOC_UNBLOCK_INPUT;
1930
1931 data->string = s;
1932 s->data = SDATA_DATA (data);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935 #endif
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy ((char *) data + needed, string_overrun_cookie,
1941 GC_STRING_OVERRUN_COOKIE_SIZE);
1942 #endif
1943
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
1946 in it. */
1947 if (old_data)
1948 {
1949 SDATA_NBYTES (old_data) = old_nbytes;
1950 old_data->string = NULL;
1951 }
1952
1953 consing_since_gc += needed;
1954 }
1955
1956
1957 /* Sweep and compact strings. */
1958
1959 static void
1960 sweep_strings (void)
1961 {
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
1964
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1968
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1971 {
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1974
1975 next = b->next;
1976
1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1978 {
1979 struct Lisp_String *s = b->strings + i;
1980
1981 if (s->data)
1982 {
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1985 {
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
1988
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1991
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1994 }
1995 else
1996 {
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
1999
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
2003 #ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006 #else
2007 data->u.nbytes = GC_STRING_BYTES (s);
2008 #endif
2009 data->string = NULL;
2010
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2014
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2019 }
2020 }
2021 else
2022 {
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2027 }
2028 }
2029
2030 /* Free blocks that contain free Lisp_Strings only, except
2031 the first two of them. */
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2034 {
2035 lisp_free (b);
2036 string_free_list = free_list_before;
2037 }
2038 else
2039 {
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2043 }
2044 }
2045
2046 check_string_free_list ();
2047
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2051
2052 check_string_free_list ();
2053 }
2054
2055
2056 /* Free dead large strings. */
2057
2058 static void
2059 free_large_strings (void)
2060 {
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2063
2064 for (b = large_sblocks; b; b = next)
2065 {
2066 next = b->next;
2067
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2071 {
2072 b->next = live_blocks;
2073 live_blocks = b;
2074 }
2075 }
2076
2077 large_sblocks = live_blocks;
2078 }
2079
2080
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2083
2084 static void
2085 compact_small_strings (void)
2086 {
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2090
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2096
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2101 {
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2104
2105 for (from = &b->first_data; from < end; from = from_end)
2106 {
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2110
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2118
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2123
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2126
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2129
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2136
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2139 {
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2143 {
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2149 }
2150
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2153 {
2154 xassert (tb != b || to < from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2157 }
2158
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2161 }
2162 }
2163 }
2164
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2168 {
2169 next = b->next;
2170 lisp_free (b);
2171 }
2172
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2176 }
2177
2178 void
2179 string_overflow (void)
2180 {
2181 error ("Maximum string size exceeded");
2182 }
2183
2184 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length, Lisp_Object init)
2189 {
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
2192 int c;
2193 EMACS_INT nbytes;
2194
2195 CHECK_NATNUM (length);
2196 CHECK_CHARACTER (init);
2197
2198 c = XFASTINT (init);
2199 if (ASCII_CHAR_P (c))
2200 {
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2205 while (p != end)
2206 *p++ = c;
2207 }
2208 else
2209 {
2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2211 int len = CHAR_STRING (c, str);
2212 EMACS_INT string_len = XINT (length);
2213
2214 if (string_len > STRING_BYTES_MAX / len)
2215 string_overflow ();
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
2218 p = SDATA (val);
2219 end = p + nbytes;
2220 while (p != end)
2221 {
2222 memcpy (p, str, len);
2223 p += len;
2224 }
2225 }
2226
2227 *p = 0;
2228 return val;
2229 }
2230
2231
2232 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length, Lisp_Object init)
2236 {
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2256
2257 p = XBOOL_VECTOR (val);
2258 p->size = XFASTINT (length);
2259
2260 if (length_in_chars)
2261 {
2262 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2263
2264 /* Clear any extraneous bits in the last byte. */
2265 p->data[length_in_chars - 1]
2266 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2267 }
2268
2269 return val;
2270 }
2271
2272
2273 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2276
2277 Lisp_Object
2278 make_string (const char *contents, EMACS_INT nbytes)
2279 {
2280 register Lisp_Object val;
2281 EMACS_INT nchars, multibyte_nbytes;
2282
2283 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2284 &nchars, &multibyte_nbytes);
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2291 return val;
2292 }
2293
2294
2295 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296
2297 Lisp_Object
2298 make_unibyte_string (const char *contents, EMACS_INT length)
2299 {
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
2302 memcpy (SDATA (val), contents, length);
2303 return val;
2304 }
2305
2306
2307 /* Make a multibyte string from NCHARS characters occupying NBYTES
2308 bytes at CONTENTS. */
2309
2310 Lisp_Object
2311 make_multibyte_string (const char *contents,
2312 EMACS_INT nchars, EMACS_INT nbytes)
2313 {
2314 register Lisp_Object val;
2315 val = make_uninit_multibyte_string (nchars, nbytes);
2316 memcpy (SDATA (val), contents, nbytes);
2317 return val;
2318 }
2319
2320
2321 /* Make a string from NCHARS characters occupying NBYTES bytes at
2322 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323
2324 Lisp_Object
2325 make_string_from_bytes (const char *contents,
2326 EMACS_INT nchars, EMACS_INT nbytes)
2327 {
2328 register Lisp_Object val;
2329 val = make_uninit_multibyte_string (nchars, nbytes);
2330 memcpy (SDATA (val), contents, nbytes);
2331 if (SBYTES (val) == SCHARS (val))
2332 STRING_SET_UNIBYTE (val);
2333 return val;
2334 }
2335
2336
2337 /* Make a string from NCHARS characters occupying NBYTES bytes at
2338 CONTENTS. The argument MULTIBYTE controls whether to label the
2339 string as multibyte. If NCHARS is negative, it counts the number of
2340 characters by itself. */
2341
2342 Lisp_Object
2343 make_specified_string (const char *contents,
2344 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2345 {
2346 register Lisp_Object val;
2347
2348 if (nchars < 0)
2349 {
2350 if (multibyte)
2351 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2352 nbytes);
2353 else
2354 nchars = nbytes;
2355 }
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 if (!multibyte)
2359 STRING_SET_UNIBYTE (val);
2360 return val;
2361 }
2362
2363
2364 /* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2366
2367 Lisp_Object
2368 build_string (const char *str)
2369 {
2370 return make_string (str, strlen (str));
2371 }
2372
2373
2374 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2376
2377 Lisp_Object
2378 make_uninit_string (EMACS_INT length)
2379 {
2380 Lisp_Object val;
2381
2382 if (!length)
2383 return empty_unibyte_string;
2384 val = make_uninit_multibyte_string (length, length);
2385 STRING_SET_UNIBYTE (val);
2386 return val;
2387 }
2388
2389
2390 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2392
2393 Lisp_Object
2394 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2395 {
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2398
2399 if (nchars < 0)
2400 abort ();
2401 if (!nbytes)
2402 return empty_multibyte_string;
2403
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2409 }
2410
2411
2412 \f
2413 /***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2416
2417 /* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
2420 any new float cells from the latest float_block. */
2421
2422 #define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427
2428 #define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2432
2433 #define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436
2437 #define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440
2441 #define FLOAT_BLOCK(fptr) \
2442 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2443
2444 #define FLOAT_INDEX(fptr) \
2445 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2446
2447 struct float_block
2448 {
2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2453 };
2454
2455 #define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457
2458 #define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460
2461 #define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463
2464 /* Current float_block. */
2465
2466 static struct float_block *float_block;
2467
2468 /* Index of first unused Lisp_Float in the current float_block. */
2469
2470 static int float_block_index;
2471
2472 /* Free-list of Lisp_Floats. */
2473
2474 static struct Lisp_Float *float_free_list;
2475
2476
2477 /* Initialize float allocation. */
2478
2479 static void
2480 init_float (void)
2481 {
2482 float_block = NULL;
2483 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2484 float_free_list = 0;
2485 }
2486
2487
2488 /* Return a new float object with value FLOAT_VALUE. */
2489
2490 Lisp_Object
2491 make_float (double float_value)
2492 {
2493 register Lisp_Object val;
2494
2495 /* eassert (!handling_signal); */
2496
2497 MALLOC_BLOCK_INPUT;
2498
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
2504 float_free_list = float_free_list->u.chain;
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2514 new->next = float_block;
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 float_block = new;
2517 float_block_index = 0;
2518 }
2519 XSETFLOAT (val, &float_block->floats[float_block_index]);
2520 float_block_index++;
2521 }
2522
2523 MALLOC_UNBLOCK_INPUT;
2524
2525 XFLOAT_INIT (val, float_value);
2526 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2527 consing_since_gc += sizeof (struct Lisp_Float);
2528 floats_consed++;
2529 return val;
2530 }
2531
2532
2533 \f
2534 /***********************************************************************
2535 Cons Allocation
2536 ***********************************************************************/
2537
2538 /* We store cons cells inside of cons_blocks, allocating a new
2539 cons_block with malloc whenever necessary. Cons cells reclaimed by
2540 GC are put on a free list to be reallocated before allocating
2541 any new cons cells from the latest cons_block. */
2542
2543 #define CONS_BLOCK_SIZE \
2544 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2545 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2546
2547 #define CONS_BLOCK(fptr) \
2548 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2549
2550 #define CONS_INDEX(fptr) \
2551 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2552
2553 struct cons_block
2554 {
2555 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2556 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2557 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2558 struct cons_block *next;
2559 };
2560
2561 #define CONS_MARKED_P(fptr) \
2562 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2563
2564 #define CONS_MARK(fptr) \
2565 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2566
2567 #define CONS_UNMARK(fptr) \
2568 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569
2570 /* Current cons_block. */
2571
2572 static struct cons_block *cons_block;
2573
2574 /* Index of first unused Lisp_Cons in the current block. */
2575
2576 static int cons_block_index;
2577
2578 /* Free-list of Lisp_Cons structures. */
2579
2580 static struct Lisp_Cons *cons_free_list;
2581
2582
2583 /* Initialize cons allocation. */
2584
2585 static void
2586 init_cons (void)
2587 {
2588 cons_block = NULL;
2589 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2590 cons_free_list = 0;
2591 }
2592
2593
2594 /* Explicitly free a cons cell by putting it on the free-list. */
2595
2596 void
2597 free_cons (struct Lisp_Cons *ptr)
2598 {
2599 ptr->u.chain = cons_free_list;
2600 #if GC_MARK_STACK
2601 ptr->car = Vdead;
2602 #endif
2603 cons_free_list = ptr;
2604 }
2605
2606 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2607 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2608 (Lisp_Object car, Lisp_Object cdr)
2609 {
2610 register Lisp_Object val;
2611
2612 /* eassert (!handling_signal); */
2613
2614 MALLOC_BLOCK_INPUT;
2615
2616 if (cons_free_list)
2617 {
2618 /* We use the cdr for chaining the free list
2619 so that we won't use the same field that has the mark bit. */
2620 XSETCONS (val, cons_free_list);
2621 cons_free_list = cons_free_list->u.chain;
2622 }
2623 else
2624 {
2625 if (cons_block_index == CONS_BLOCK_SIZE)
2626 {
2627 register struct cons_block *new;
2628 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_CONS);
2630 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2631 new->next = cons_block;
2632 cons_block = new;
2633 cons_block_index = 0;
2634 }
2635 XSETCONS (val, &cons_block->conses[cons_block_index]);
2636 cons_block_index++;
2637 }
2638
2639 MALLOC_UNBLOCK_INPUT;
2640
2641 XSETCAR (val, car);
2642 XSETCDR (val, cdr);
2643 eassert (!CONS_MARKED_P (XCONS (val)));
2644 consing_since_gc += sizeof (struct Lisp_Cons);
2645 cons_cells_consed++;
2646 return val;
2647 }
2648
2649 #ifdef GC_CHECK_CONS_LIST
2650 /* Get an error now if there's any junk in the cons free list. */
2651 void
2652 check_cons_list (void)
2653 {
2654 struct Lisp_Cons *tail = cons_free_list;
2655
2656 while (tail)
2657 tail = tail->u.chain;
2658 }
2659 #endif
2660
2661 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2662
2663 Lisp_Object
2664 list1 (Lisp_Object arg1)
2665 {
2666 return Fcons (arg1, Qnil);
2667 }
2668
2669 Lisp_Object
2670 list2 (Lisp_Object arg1, Lisp_Object arg2)
2671 {
2672 return Fcons (arg1, Fcons (arg2, Qnil));
2673 }
2674
2675
2676 Lisp_Object
2677 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2678 {
2679 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2680 }
2681
2682
2683 Lisp_Object
2684 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2687 }
2688
2689
2690 Lisp_Object
2691 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2694 Fcons (arg5, Qnil)))));
2695 }
2696
2697
2698 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2699 doc: /* Return a newly created list with specified arguments as elements.
2700 Any number of arguments, even zero arguments, are allowed.
2701 usage: (list &rest OBJECTS) */)
2702 (ptrdiff_t nargs, Lisp_Object *args)
2703 {
2704 register Lisp_Object val;
2705 val = Qnil;
2706
2707 while (nargs > 0)
2708 {
2709 nargs--;
2710 val = Fcons (args[nargs], val);
2711 }
2712 return val;
2713 }
2714
2715
2716 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2717 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2718 (register Lisp_Object length, Lisp_Object init)
2719 {
2720 register Lisp_Object val;
2721 register EMACS_INT size;
2722
2723 CHECK_NATNUM (length);
2724 size = XFASTINT (length);
2725
2726 val = Qnil;
2727 while (size > 0)
2728 {
2729 val = Fcons (init, val);
2730 --size;
2731
2732 if (size > 0)
2733 {
2734 val = Fcons (init, val);
2735 --size;
2736
2737 if (size > 0)
2738 {
2739 val = Fcons (init, val);
2740 --size;
2741
2742 if (size > 0)
2743 {
2744 val = Fcons (init, val);
2745 --size;
2746
2747 if (size > 0)
2748 {
2749 val = Fcons (init, val);
2750 --size;
2751 }
2752 }
2753 }
2754 }
2755
2756 QUIT;
2757 }
2758
2759 return val;
2760 }
2761
2762
2763 \f
2764 /***********************************************************************
2765 Vector Allocation
2766 ***********************************************************************/
2767
2768 /* Singly-linked list of all vectors. */
2769
2770 static struct Lisp_Vector *all_vectors;
2771
2772 /* Handy constants for vectorlike objects. */
2773 enum
2774 {
2775 header_size = offsetof (struct Lisp_Vector, contents),
2776 word_size = sizeof (Lisp_Object)
2777 };
2778
2779 /* Value is a pointer to a newly allocated Lisp_Vector structure
2780 with room for LEN Lisp_Objects. */
2781
2782 static struct Lisp_Vector *
2783 allocate_vectorlike (EMACS_INT len)
2784 {
2785 struct Lisp_Vector *p;
2786 size_t nbytes;
2787
2788 MALLOC_BLOCK_INPUT;
2789
2790 #ifdef DOUG_LEA_MALLOC
2791 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2792 because mapped region contents are not preserved in
2793 a dumped Emacs. */
2794 mallopt (M_MMAP_MAX, 0);
2795 #endif
2796
2797 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2798 /* eassert (!handling_signal); */
2799
2800 nbytes = header_size + len * word_size;
2801 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2802
2803 #ifdef DOUG_LEA_MALLOC
2804 /* Back to a reasonable maximum of mmap'ed areas. */
2805 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2806 #endif
2807
2808 consing_since_gc += nbytes;
2809 vector_cells_consed += len;
2810
2811 p->header.next.vector = all_vectors;
2812 all_vectors = p;
2813
2814 MALLOC_UNBLOCK_INPUT;
2815
2816 return p;
2817 }
2818
2819
2820 /* Allocate a vector with LEN slots. */
2821
2822 struct Lisp_Vector *
2823 allocate_vector (EMACS_INT len)
2824 {
2825 struct Lisp_Vector *v;
2826 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2827
2828 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2829 memory_full (SIZE_MAX);
2830 v = allocate_vectorlike (len);
2831 v->header.size = len;
2832 return v;
2833 }
2834
2835
2836 /* Allocate other vector-like structures. */
2837
2838 struct Lisp_Vector *
2839 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2840 {
2841 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2842 int i;
2843
2844 /* Only the first lisplen slots will be traced normally by the GC. */
2845 for (i = 0; i < lisplen; ++i)
2846 v->contents[i] = Qnil;
2847
2848 XSETPVECTYPESIZE (v, tag, lisplen);
2849 return v;
2850 }
2851
2852 struct Lisp_Hash_Table *
2853 allocate_hash_table (void)
2854 {
2855 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2856 }
2857
2858
2859 struct window *
2860 allocate_window (void)
2861 {
2862 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2863 }
2864
2865
2866 struct terminal *
2867 allocate_terminal (void)
2868 {
2869 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2870 next_terminal, PVEC_TERMINAL);
2871 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2872 memset (&t->next_terminal, 0,
2873 (char*) (t + 1) - (char*) &t->next_terminal);
2874
2875 return t;
2876 }
2877
2878 struct frame *
2879 allocate_frame (void)
2880 {
2881 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2882 face_cache, PVEC_FRAME);
2883 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2884 memset (&f->face_cache, 0,
2885 (char *) (f + 1) - (char *) &f->face_cache);
2886 return f;
2887 }
2888
2889
2890 struct Lisp_Process *
2891 allocate_process (void)
2892 {
2893 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2894 }
2895
2896
2897 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2898 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2899 See also the function `vector'. */)
2900 (register Lisp_Object length, Lisp_Object init)
2901 {
2902 Lisp_Object vector;
2903 register EMACS_INT sizei;
2904 register EMACS_INT i;
2905 register struct Lisp_Vector *p;
2906
2907 CHECK_NATNUM (length);
2908 sizei = XFASTINT (length);
2909
2910 p = allocate_vector (sizei);
2911 for (i = 0; i < sizei; i++)
2912 p->contents[i] = init;
2913
2914 XSETVECTOR (vector, p);
2915 return vector;
2916 }
2917
2918
2919 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2920 doc: /* Return a newly created vector with specified arguments as elements.
2921 Any number of arguments, even zero arguments, are allowed.
2922 usage: (vector &rest OBJECTS) */)
2923 (ptrdiff_t nargs, Lisp_Object *args)
2924 {
2925 register Lisp_Object len, val;
2926 ptrdiff_t i;
2927 register struct Lisp_Vector *p;
2928
2929 XSETFASTINT (len, nargs);
2930 val = Fmake_vector (len, Qnil);
2931 p = XVECTOR (val);
2932 for (i = 0; i < nargs; i++)
2933 p->contents[i] = args[i];
2934 return val;
2935 }
2936
2937
2938 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2939 doc: /* Create a byte-code object with specified arguments as elements.
2940 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2941 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2942 and (optional) INTERACTIVE-SPEC.
2943 The first four arguments are required; at most six have any
2944 significance.
2945 The ARGLIST can be either like the one of `lambda', in which case the arguments
2946 will be dynamically bound before executing the byte code, or it can be an
2947 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2948 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2949 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2950 argument to catch the left-over arguments. If such an integer is used, the
2951 arguments will not be dynamically bound but will be instead pushed on the
2952 stack before executing the byte-code.
2953 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2954 (ptrdiff_t nargs, Lisp_Object *args)
2955 {
2956 register Lisp_Object len, val;
2957 ptrdiff_t i;
2958 register struct Lisp_Vector *p;
2959
2960 XSETFASTINT (len, nargs);
2961 if (!NILP (Vpurify_flag))
2962 val = make_pure_vector (nargs);
2963 else
2964 val = Fmake_vector (len, Qnil);
2965
2966 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2967 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2968 earlier because they produced a raw 8-bit string for byte-code
2969 and now such a byte-code string is loaded as multibyte while
2970 raw 8-bit characters converted to multibyte form. Thus, now we
2971 must convert them back to the original unibyte form. */
2972 args[1] = Fstring_as_unibyte (args[1]);
2973
2974 p = XVECTOR (val);
2975 for (i = 0; i < nargs; i++)
2976 {
2977 if (!NILP (Vpurify_flag))
2978 args[i] = Fpurecopy (args[i]);
2979 p->contents[i] = args[i];
2980 }
2981 XSETPVECTYPE (p, PVEC_COMPILED);
2982 XSETCOMPILED (val, p);
2983 return val;
2984 }
2985
2986
2987 \f
2988 /***********************************************************************
2989 Symbol Allocation
2990 ***********************************************************************/
2991
2992 /* Each symbol_block is just under 1020 bytes long, since malloc
2993 really allocates in units of powers of two and uses 4 bytes for its
2994 own overhead. */
2995
2996 #define SYMBOL_BLOCK_SIZE \
2997 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2998
2999 struct symbol_block
3000 {
3001 /* Place `symbols' first, to preserve alignment. */
3002 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3003 struct symbol_block *next;
3004 };
3005
3006 /* Current symbol block and index of first unused Lisp_Symbol
3007 structure in it. */
3008
3009 static struct symbol_block *symbol_block;
3010 static int symbol_block_index;
3011
3012 /* List of free symbols. */
3013
3014 static struct Lisp_Symbol *symbol_free_list;
3015
3016
3017 /* Initialize symbol allocation. */
3018
3019 static void
3020 init_symbol (void)
3021 {
3022 symbol_block = NULL;
3023 symbol_block_index = SYMBOL_BLOCK_SIZE;
3024 symbol_free_list = 0;
3025 }
3026
3027
3028 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3029 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3030 Its value and function definition are void, and its property list is nil. */)
3031 (Lisp_Object name)
3032 {
3033 register Lisp_Object val;
3034 register struct Lisp_Symbol *p;
3035
3036 CHECK_STRING (name);
3037
3038 /* eassert (!handling_signal); */
3039
3040 MALLOC_BLOCK_INPUT;
3041
3042 if (symbol_free_list)
3043 {
3044 XSETSYMBOL (val, symbol_free_list);
3045 symbol_free_list = symbol_free_list->next;
3046 }
3047 else
3048 {
3049 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3050 {
3051 struct symbol_block *new;
3052 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3053 MEM_TYPE_SYMBOL);
3054 new->next = symbol_block;
3055 symbol_block = new;
3056 symbol_block_index = 0;
3057 }
3058 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3059 symbol_block_index++;
3060 }
3061
3062 MALLOC_UNBLOCK_INPUT;
3063
3064 p = XSYMBOL (val);
3065 p->xname = name;
3066 p->plist = Qnil;
3067 p->redirect = SYMBOL_PLAINVAL;
3068 SET_SYMBOL_VAL (p, Qunbound);
3069 p->function = Qunbound;
3070 p->next = NULL;
3071 p->gcmarkbit = 0;
3072 p->interned = SYMBOL_UNINTERNED;
3073 p->constant = 0;
3074 p->declared_special = 0;
3075 consing_since_gc += sizeof (struct Lisp_Symbol);
3076 symbols_consed++;
3077 return val;
3078 }
3079
3080
3081 \f
3082 /***********************************************************************
3083 Marker (Misc) Allocation
3084 ***********************************************************************/
3085
3086 /* Allocation of markers and other objects that share that structure.
3087 Works like allocation of conses. */
3088
3089 #define MARKER_BLOCK_SIZE \
3090 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3091
3092 struct marker_block
3093 {
3094 /* Place `markers' first, to preserve alignment. */
3095 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3096 struct marker_block *next;
3097 };
3098
3099 static struct marker_block *marker_block;
3100 static int marker_block_index;
3101
3102 static union Lisp_Misc *marker_free_list;
3103
3104 static void
3105 init_marker (void)
3106 {
3107 marker_block = NULL;
3108 marker_block_index = MARKER_BLOCK_SIZE;
3109 marker_free_list = 0;
3110 }
3111
3112 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3113
3114 Lisp_Object
3115 allocate_misc (void)
3116 {
3117 Lisp_Object val;
3118
3119 /* eassert (!handling_signal); */
3120
3121 MALLOC_BLOCK_INPUT;
3122
3123 if (marker_free_list)
3124 {
3125 XSETMISC (val, marker_free_list);
3126 marker_free_list = marker_free_list->u_free.chain;
3127 }
3128 else
3129 {
3130 if (marker_block_index == MARKER_BLOCK_SIZE)
3131 {
3132 struct marker_block *new;
3133 new = (struct marker_block *) lisp_malloc (sizeof *new,
3134 MEM_TYPE_MISC);
3135 new->next = marker_block;
3136 marker_block = new;
3137 marker_block_index = 0;
3138 total_free_markers += MARKER_BLOCK_SIZE;
3139 }
3140 XSETMISC (val, &marker_block->markers[marker_block_index]);
3141 marker_block_index++;
3142 }
3143
3144 MALLOC_UNBLOCK_INPUT;
3145
3146 --total_free_markers;
3147 consing_since_gc += sizeof (union Lisp_Misc);
3148 misc_objects_consed++;
3149 XMISCANY (val)->gcmarkbit = 0;
3150 return val;
3151 }
3152
3153 /* Free a Lisp_Misc object */
3154
3155 static void
3156 free_misc (Lisp_Object misc)
3157 {
3158 XMISCTYPE (misc) = Lisp_Misc_Free;
3159 XMISC (misc)->u_free.chain = marker_free_list;
3160 marker_free_list = XMISC (misc);
3161
3162 total_free_markers++;
3163 }
3164
3165 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3166 INTEGER. This is used to package C values to call record_unwind_protect.
3167 The unwind function can get the C values back using XSAVE_VALUE. */
3168
3169 Lisp_Object
3170 make_save_value (void *pointer, ptrdiff_t integer)
3171 {
3172 register Lisp_Object val;
3173 register struct Lisp_Save_Value *p;
3174
3175 val = allocate_misc ();
3176 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3177 p = XSAVE_VALUE (val);
3178 p->pointer = pointer;
3179 p->integer = integer;
3180 p->dogc = 0;
3181 return val;
3182 }
3183
3184 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3185 doc: /* Return a newly allocated marker which does not point at any place. */)
3186 (void)
3187 {
3188 register Lisp_Object val;
3189 register struct Lisp_Marker *p;
3190
3191 val = allocate_misc ();
3192 XMISCTYPE (val) = Lisp_Misc_Marker;
3193 p = XMARKER (val);
3194 p->buffer = 0;
3195 p->bytepos = 0;
3196 p->charpos = 0;
3197 p->next = NULL;
3198 p->insertion_type = 0;
3199 return val;
3200 }
3201
3202 /* Put MARKER back on the free list after using it temporarily. */
3203
3204 void
3205 free_marker (Lisp_Object marker)
3206 {
3207 unchain_marker (XMARKER (marker));
3208 free_misc (marker);
3209 }
3210
3211 \f
3212 /* Return a newly created vector or string with specified arguments as
3213 elements. If all the arguments are characters that can fit
3214 in a string of events, make a string; otherwise, make a vector.
3215
3216 Any number of arguments, even zero arguments, are allowed. */
3217
3218 Lisp_Object
3219 make_event_array (register int nargs, Lisp_Object *args)
3220 {
3221 int i;
3222
3223 for (i = 0; i < nargs; i++)
3224 /* The things that fit in a string
3225 are characters that are in 0...127,
3226 after discarding the meta bit and all the bits above it. */
3227 if (!INTEGERP (args[i])
3228 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3229 return Fvector (nargs, args);
3230
3231 /* Since the loop exited, we know that all the things in it are
3232 characters, so we can make a string. */
3233 {
3234 Lisp_Object result;
3235
3236 result = Fmake_string (make_number (nargs), make_number (0));
3237 for (i = 0; i < nargs; i++)
3238 {
3239 SSET (result, i, XINT (args[i]));
3240 /* Move the meta bit to the right place for a string char. */
3241 if (XINT (args[i]) & CHAR_META)
3242 SSET (result, i, SREF (result, i) | 0x80);
3243 }
3244
3245 return result;
3246 }
3247 }
3248
3249
3250 \f
3251 /************************************************************************
3252 Memory Full Handling
3253 ************************************************************************/
3254
3255
3256 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3257 there may have been size_t overflow so that malloc was never
3258 called, or perhaps malloc was invoked successfully but the
3259 resulting pointer had problems fitting into a tagged EMACS_INT. In
3260 either case this counts as memory being full even though malloc did
3261 not fail. */
3262
3263 void
3264 memory_full (size_t nbytes)
3265 {
3266 /* Do not go into hysterics merely because a large request failed. */
3267 int enough_free_memory = 0;
3268 if (SPARE_MEMORY < nbytes)
3269 {
3270 void *p = malloc (SPARE_MEMORY);
3271 if (p)
3272 {
3273 free (p);
3274 enough_free_memory = 1;
3275 }
3276 }
3277
3278 if (! enough_free_memory)
3279 {
3280 int i;
3281
3282 Vmemory_full = Qt;
3283
3284 memory_full_cons_threshold = sizeof (struct cons_block);
3285
3286 /* The first time we get here, free the spare memory. */
3287 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3288 if (spare_memory[i])
3289 {
3290 if (i == 0)
3291 free (spare_memory[i]);
3292 else if (i >= 1 && i <= 4)
3293 lisp_align_free (spare_memory[i]);
3294 else
3295 lisp_free (spare_memory[i]);
3296 spare_memory[i] = 0;
3297 }
3298
3299 /* Record the space now used. When it decreases substantially,
3300 we can refill the memory reserve. */
3301 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3302 bytes_used_when_full = BYTES_USED;
3303 #endif
3304 }
3305
3306 /* This used to call error, but if we've run out of memory, we could
3307 get infinite recursion trying to build the string. */
3308 xsignal (Qnil, Vmemory_signal_data);
3309 }
3310
3311 /* If we released our reserve (due to running out of memory),
3312 and we have a fair amount free once again,
3313 try to set aside another reserve in case we run out once more.
3314
3315 This is called when a relocatable block is freed in ralloc.c,
3316 and also directly from this file, in case we're not using ralloc.c. */
3317
3318 void
3319 refill_memory_reserve (void)
3320 {
3321 #ifndef SYSTEM_MALLOC
3322 if (spare_memory[0] == 0)
3323 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3324 if (spare_memory[1] == 0)
3325 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[2] == 0)
3328 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[3] == 0)
3331 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3332 MEM_TYPE_CONS);
3333 if (spare_memory[4] == 0)
3334 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3335 MEM_TYPE_CONS);
3336 if (spare_memory[5] == 0)
3337 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3338 MEM_TYPE_STRING);
3339 if (spare_memory[6] == 0)
3340 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3341 MEM_TYPE_STRING);
3342 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3343 Vmemory_full = Qnil;
3344 #endif
3345 }
3346 \f
3347 /************************************************************************
3348 C Stack Marking
3349 ************************************************************************/
3350
3351 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3352
3353 /* Conservative C stack marking requires a method to identify possibly
3354 live Lisp objects given a pointer value. We do this by keeping
3355 track of blocks of Lisp data that are allocated in a red-black tree
3356 (see also the comment of mem_node which is the type of nodes in
3357 that tree). Function lisp_malloc adds information for an allocated
3358 block to the red-black tree with calls to mem_insert, and function
3359 lisp_free removes it with mem_delete. Functions live_string_p etc
3360 call mem_find to lookup information about a given pointer in the
3361 tree, and use that to determine if the pointer points to a Lisp
3362 object or not. */
3363
3364 /* Initialize this part of alloc.c. */
3365
3366 static void
3367 mem_init (void)
3368 {
3369 mem_z.left = mem_z.right = MEM_NIL;
3370 mem_z.parent = NULL;
3371 mem_z.color = MEM_BLACK;
3372 mem_z.start = mem_z.end = NULL;
3373 mem_root = MEM_NIL;
3374 }
3375
3376
3377 /* Value is a pointer to the mem_node containing START. Value is
3378 MEM_NIL if there is no node in the tree containing START. */
3379
3380 static inline struct mem_node *
3381 mem_find (void *start)
3382 {
3383 struct mem_node *p;
3384
3385 if (start < min_heap_address || start > max_heap_address)
3386 return MEM_NIL;
3387
3388 /* Make the search always successful to speed up the loop below. */
3389 mem_z.start = start;
3390 mem_z.end = (char *) start + 1;
3391
3392 p = mem_root;
3393 while (start < p->start || start >= p->end)
3394 p = start < p->start ? p->left : p->right;
3395 return p;
3396 }
3397
3398
3399 /* Insert a new node into the tree for a block of memory with start
3400 address START, end address END, and type TYPE. Value is a
3401 pointer to the node that was inserted. */
3402
3403 static struct mem_node *
3404 mem_insert (void *start, void *end, enum mem_type type)
3405 {
3406 struct mem_node *c, *parent, *x;
3407
3408 if (min_heap_address == NULL || start < min_heap_address)
3409 min_heap_address = start;
3410 if (max_heap_address == NULL || end > max_heap_address)
3411 max_heap_address = end;
3412
3413 /* See where in the tree a node for START belongs. In this
3414 particular application, it shouldn't happen that a node is already
3415 present. For debugging purposes, let's check that. */
3416 c = mem_root;
3417 parent = NULL;
3418
3419 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3420
3421 while (c != MEM_NIL)
3422 {
3423 if (start >= c->start && start < c->end)
3424 abort ();
3425 parent = c;
3426 c = start < c->start ? c->left : c->right;
3427 }
3428
3429 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3430
3431 while (c != MEM_NIL)
3432 {
3433 parent = c;
3434 c = start < c->start ? c->left : c->right;
3435 }
3436
3437 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3438
3439 /* Create a new node. */
3440 #ifdef GC_MALLOC_CHECK
3441 x = (struct mem_node *) _malloc_internal (sizeof *x);
3442 if (x == NULL)
3443 abort ();
3444 #else
3445 x = (struct mem_node *) xmalloc (sizeof *x);
3446 #endif
3447 x->start = start;
3448 x->end = end;
3449 x->type = type;
3450 x->parent = parent;
3451 x->left = x->right = MEM_NIL;
3452 x->color = MEM_RED;
3453
3454 /* Insert it as child of PARENT or install it as root. */
3455 if (parent)
3456 {
3457 if (start < parent->start)
3458 parent->left = x;
3459 else
3460 parent->right = x;
3461 }
3462 else
3463 mem_root = x;
3464
3465 /* Re-establish red-black tree properties. */
3466 mem_insert_fixup (x);
3467
3468 return x;
3469 }
3470
3471
3472 /* Re-establish the red-black properties of the tree, and thereby
3473 balance the tree, after node X has been inserted; X is always red. */
3474
3475 static void
3476 mem_insert_fixup (struct mem_node *x)
3477 {
3478 while (x != mem_root && x->parent->color == MEM_RED)
3479 {
3480 /* X is red and its parent is red. This is a violation of
3481 red-black tree property #3. */
3482
3483 if (x->parent == x->parent->parent->left)
3484 {
3485 /* We're on the left side of our grandparent, and Y is our
3486 "uncle". */
3487 struct mem_node *y = x->parent->parent->right;
3488
3489 if (y->color == MEM_RED)
3490 {
3491 /* Uncle and parent are red but should be black because
3492 X is red. Change the colors accordingly and proceed
3493 with the grandparent. */
3494 x->parent->color = MEM_BLACK;
3495 y->color = MEM_BLACK;
3496 x->parent->parent->color = MEM_RED;
3497 x = x->parent->parent;
3498 }
3499 else
3500 {
3501 /* Parent and uncle have different colors; parent is
3502 red, uncle is black. */
3503 if (x == x->parent->right)
3504 {
3505 x = x->parent;
3506 mem_rotate_left (x);
3507 }
3508
3509 x->parent->color = MEM_BLACK;
3510 x->parent->parent->color = MEM_RED;
3511 mem_rotate_right (x->parent->parent);
3512 }
3513 }
3514 else
3515 {
3516 /* This is the symmetrical case of above. */
3517 struct mem_node *y = x->parent->parent->left;
3518
3519 if (y->color == MEM_RED)
3520 {
3521 x->parent->color = MEM_BLACK;
3522 y->color = MEM_BLACK;
3523 x->parent->parent->color = MEM_RED;
3524 x = x->parent->parent;
3525 }
3526 else
3527 {
3528 if (x == x->parent->left)
3529 {
3530 x = x->parent;
3531 mem_rotate_right (x);
3532 }
3533
3534 x->parent->color = MEM_BLACK;
3535 x->parent->parent->color = MEM_RED;
3536 mem_rotate_left (x->parent->parent);
3537 }
3538 }
3539 }
3540
3541 /* The root may have been changed to red due to the algorithm. Set
3542 it to black so that property #5 is satisfied. */
3543 mem_root->color = MEM_BLACK;
3544 }
3545
3546
3547 /* (x) (y)
3548 / \ / \
3549 a (y) ===> (x) c
3550 / \ / \
3551 b c a b */
3552
3553 static void
3554 mem_rotate_left (struct mem_node *x)
3555 {
3556 struct mem_node *y;
3557
3558 /* Turn y's left sub-tree into x's right sub-tree. */
3559 y = x->right;
3560 x->right = y->left;
3561 if (y->left != MEM_NIL)
3562 y->left->parent = x;
3563
3564 /* Y's parent was x's parent. */
3565 if (y != MEM_NIL)
3566 y->parent = x->parent;
3567
3568 /* Get the parent to point to y instead of x. */
3569 if (x->parent)
3570 {
3571 if (x == x->parent->left)
3572 x->parent->left = y;
3573 else
3574 x->parent->right = y;
3575 }
3576 else
3577 mem_root = y;
3578
3579 /* Put x on y's left. */
3580 y->left = x;
3581 if (x != MEM_NIL)
3582 x->parent = y;
3583 }
3584
3585
3586 /* (x) (Y)
3587 / \ / \
3588 (y) c ===> a (x)
3589 / \ / \
3590 a b b c */
3591
3592 static void
3593 mem_rotate_right (struct mem_node *x)
3594 {
3595 struct mem_node *y = x->left;
3596
3597 x->left = y->right;
3598 if (y->right != MEM_NIL)
3599 y->right->parent = x;
3600
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603 if (x->parent)
3604 {
3605 if (x == x->parent->right)
3606 x->parent->right = y;
3607 else
3608 x->parent->left = y;
3609 }
3610 else
3611 mem_root = y;
3612
3613 y->right = x;
3614 if (x != MEM_NIL)
3615 x->parent = y;
3616 }
3617
3618
3619 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3620
3621 static void
3622 mem_delete (struct mem_node *z)
3623 {
3624 struct mem_node *x, *y;
3625
3626 if (!z || z == MEM_NIL)
3627 return;
3628
3629 if (z->left == MEM_NIL || z->right == MEM_NIL)
3630 y = z;
3631 else
3632 {
3633 y = z->right;
3634 while (y->left != MEM_NIL)
3635 y = y->left;
3636 }
3637
3638 if (y->left != MEM_NIL)
3639 x = y->left;
3640 else
3641 x = y->right;
3642
3643 x->parent = y->parent;
3644 if (y->parent)
3645 {
3646 if (y == y->parent->left)
3647 y->parent->left = x;
3648 else
3649 y->parent->right = x;
3650 }
3651 else
3652 mem_root = x;
3653
3654 if (y != z)
3655 {
3656 z->start = y->start;
3657 z->end = y->end;
3658 z->type = y->type;
3659 }
3660
3661 if (y->color == MEM_BLACK)
3662 mem_delete_fixup (x);
3663
3664 #ifdef GC_MALLOC_CHECK
3665 _free_internal (y);
3666 #else
3667 xfree (y);
3668 #endif
3669 }
3670
3671
3672 /* Re-establish the red-black properties of the tree, after a
3673 deletion. */
3674
3675 static void
3676 mem_delete_fixup (struct mem_node *x)
3677 {
3678 while (x != mem_root && x->color == MEM_BLACK)
3679 {
3680 if (x == x->parent->left)
3681 {
3682 struct mem_node *w = x->parent->right;
3683
3684 if (w->color == MEM_RED)
3685 {
3686 w->color = MEM_BLACK;
3687 x->parent->color = MEM_RED;
3688 mem_rotate_left (x->parent);
3689 w = x->parent->right;
3690 }
3691
3692 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3693 {
3694 w->color = MEM_RED;
3695 x = x->parent;
3696 }
3697 else
3698 {
3699 if (w->right->color == MEM_BLACK)
3700 {
3701 w->left->color = MEM_BLACK;
3702 w->color = MEM_RED;
3703 mem_rotate_right (w);
3704 w = x->parent->right;
3705 }
3706 w->color = x->parent->color;
3707 x->parent->color = MEM_BLACK;
3708 w->right->color = MEM_BLACK;
3709 mem_rotate_left (x->parent);
3710 x = mem_root;
3711 }
3712 }
3713 else
3714 {
3715 struct mem_node *w = x->parent->left;
3716
3717 if (w->color == MEM_RED)
3718 {
3719 w->color = MEM_BLACK;
3720 x->parent->color = MEM_RED;
3721 mem_rotate_right (x->parent);
3722 w = x->parent->left;
3723 }
3724
3725 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3726 {
3727 w->color = MEM_RED;
3728 x = x->parent;
3729 }
3730 else
3731 {
3732 if (w->left->color == MEM_BLACK)
3733 {
3734 w->right->color = MEM_BLACK;
3735 w->color = MEM_RED;
3736 mem_rotate_left (w);
3737 w = x->parent->left;
3738 }
3739
3740 w->color = x->parent->color;
3741 x->parent->color = MEM_BLACK;
3742 w->left->color = MEM_BLACK;
3743 mem_rotate_right (x->parent);
3744 x = mem_root;
3745 }
3746 }
3747 }
3748
3749 x->color = MEM_BLACK;
3750 }
3751
3752
3753 /* Value is non-zero if P is a pointer to a live Lisp string on
3754 the heap. M is a pointer to the mem_block for P. */
3755
3756 static inline int
3757 live_string_p (struct mem_node *m, void *p)
3758 {
3759 if (m->type == MEM_TYPE_STRING)
3760 {
3761 struct string_block *b = (struct string_block *) m->start;
3762 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3763
3764 /* P must point to the start of a Lisp_String structure, and it
3765 must not be on the free-list. */
3766 return (offset >= 0
3767 && offset % sizeof b->strings[0] == 0
3768 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3769 && ((struct Lisp_String *) p)->data != NULL);
3770 }
3771 else
3772 return 0;
3773 }
3774
3775
3776 /* Value is non-zero if P is a pointer to a live Lisp cons on
3777 the heap. M is a pointer to the mem_block for P. */
3778
3779 static inline int
3780 live_cons_p (struct mem_node *m, void *p)
3781 {
3782 if (m->type == MEM_TYPE_CONS)
3783 {
3784 struct cons_block *b = (struct cons_block *) m->start;
3785 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3786
3787 /* P must point to the start of a Lisp_Cons, not be
3788 one of the unused cells in the current cons block,
3789 and not be on the free-list. */
3790 return (offset >= 0
3791 && offset % sizeof b->conses[0] == 0
3792 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3793 && (b != cons_block
3794 || offset / sizeof b->conses[0] < cons_block_index)
3795 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3796 }
3797 else
3798 return 0;
3799 }
3800
3801
3802 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3803 the heap. M is a pointer to the mem_block for P. */
3804
3805 static inline int
3806 live_symbol_p (struct mem_node *m, void *p)
3807 {
3808 if (m->type == MEM_TYPE_SYMBOL)
3809 {
3810 struct symbol_block *b = (struct symbol_block *) m->start;
3811 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3812
3813 /* P must point to the start of a Lisp_Symbol, not be
3814 one of the unused cells in the current symbol block,
3815 and not be on the free-list. */
3816 return (offset >= 0
3817 && offset % sizeof b->symbols[0] == 0
3818 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3819 && (b != symbol_block
3820 || offset / sizeof b->symbols[0] < symbol_block_index)
3821 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3822 }
3823 else
3824 return 0;
3825 }
3826
3827
3828 /* Value is non-zero if P is a pointer to a live Lisp float on
3829 the heap. M is a pointer to the mem_block for P. */
3830
3831 static inline int
3832 live_float_p (struct mem_node *m, void *p)
3833 {
3834 if (m->type == MEM_TYPE_FLOAT)
3835 {
3836 struct float_block *b = (struct float_block *) m->start;
3837 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3838
3839 /* P must point to the start of a Lisp_Float and not be
3840 one of the unused cells in the current float block. */
3841 return (offset >= 0
3842 && offset % sizeof b->floats[0] == 0
3843 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3844 && (b != float_block
3845 || offset / sizeof b->floats[0] < float_block_index));
3846 }
3847 else
3848 return 0;
3849 }
3850
3851
3852 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3853 the heap. M is a pointer to the mem_block for P. */
3854
3855 static inline int
3856 live_misc_p (struct mem_node *m, void *p)
3857 {
3858 if (m->type == MEM_TYPE_MISC)
3859 {
3860 struct marker_block *b = (struct marker_block *) m->start;
3861 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3862
3863 /* P must point to the start of a Lisp_Misc, not be
3864 one of the unused cells in the current misc block,
3865 and not be on the free-list. */
3866 return (offset >= 0
3867 && offset % sizeof b->markers[0] == 0
3868 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3869 && (b != marker_block
3870 || offset / sizeof b->markers[0] < marker_block_index)
3871 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3872 }
3873 else
3874 return 0;
3875 }
3876
3877
3878 /* Value is non-zero if P is a pointer to a live vector-like object.
3879 M is a pointer to the mem_block for P. */
3880
3881 static inline int
3882 live_vector_p (struct mem_node *m, void *p)
3883 {
3884 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3885 }
3886
3887
3888 /* Value is non-zero if P is a pointer to a live buffer. M is a
3889 pointer to the mem_block for P. */
3890
3891 static inline int
3892 live_buffer_p (struct mem_node *m, void *p)
3893 {
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
3898 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3899 }
3900
3901 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3902
3903 #if GC_MARK_STACK
3904
3905 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3906
3907 /* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3909
3910 #define MAX_ZOMBIES 10
3911 static Lisp_Object zombies[MAX_ZOMBIES];
3912
3913 /* Number of zombie objects. */
3914
3915 static EMACS_INT nzombies;
3916
3917 /* Number of garbage collections. */
3918
3919 static EMACS_INT ngcs;
3920
3921 /* Average percentage of zombies per collection. */
3922
3923 static double avg_zombies;
3924
3925 /* Max. number of live and zombie objects. */
3926
3927 static EMACS_INT max_live, max_zombies;
3928
3929 /* Average number of live objects per GC. */
3930
3931 static double avg_live;
3932
3933 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3934 doc: /* Show information about live and zombie objects. */)
3935 (void)
3936 {
3937 Lisp_Object args[8], zombie_list = Qnil;
3938 EMACS_INT i;
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
3950 }
3951
3952 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953
3954
3955 /* Mark OBJ if we can prove it's a Lisp_Object. */
3956
3957 static inline void
3958 mark_maybe_object (Lisp_Object obj)
3959 {
3960 void *po;
3961 struct mem_node *m;
3962
3963 if (INTEGERP (obj))
3964 return;
3965
3966 po = (void *) XPNTR (obj);
3967 m = mem_find (po);
3968
3969 if (m != MEM_NIL)
3970 {
3971 int mark_p = 0;
3972
3973 switch (XTYPE (obj))
3974 {
3975 case Lisp_String:
3976 mark_p = (live_string_p (m, po)
3977 && !STRING_MARKED_P ((struct Lisp_String *) po));
3978 break;
3979
3980 case Lisp_Cons:
3981 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3982 break;
3983
3984 case Lisp_Symbol:
3985 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3986 break;
3987
3988 case Lisp_Float:
3989 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3990 break;
3991
3992 case Lisp_Vectorlike:
3993 /* Note: can't check BUFFERP before we know it's a
3994 buffer because checking that dereferences the pointer
3995 PO which might point anywhere. */
3996 if (live_vector_p (m, po))
3997 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3998 else if (live_buffer_p (m, po))
3999 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4000 break;
4001
4002 case Lisp_Misc:
4003 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4004 break;
4005
4006 default:
4007 break;
4008 }
4009
4010 if (mark_p)
4011 {
4012 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4013 if (nzombies < MAX_ZOMBIES)
4014 zombies[nzombies] = obj;
4015 ++nzombies;
4016 #endif
4017 mark_object (obj);
4018 }
4019 }
4020 }
4021
4022
4023 /* If P points to Lisp data, mark that as live if it isn't already
4024 marked. */
4025
4026 static inline void
4027 mark_maybe_pointer (void *p)
4028 {
4029 struct mem_node *m;
4030
4031 /* Quickly rule out some values which can't point to Lisp data. */
4032 if ((intptr_t) p %
4033 #ifdef USE_LSB_TAG
4034 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4035 #else
4036 2 /* We assume that Lisp data is aligned on even addresses. */
4037 #endif
4038 )
4039 return;
4040
4041 m = mem_find (p);
4042 if (m != MEM_NIL)
4043 {
4044 Lisp_Object obj = Qnil;
4045
4046 switch (m->type)
4047 {
4048 case MEM_TYPE_NON_LISP:
4049 /* Nothing to do; not a pointer to Lisp memory. */
4050 break;
4051
4052 case MEM_TYPE_BUFFER:
4053 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4054 XSETVECTOR (obj, p);
4055 break;
4056
4057 case MEM_TYPE_CONS:
4058 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4059 XSETCONS (obj, p);
4060 break;
4061
4062 case MEM_TYPE_STRING:
4063 if (live_string_p (m, p)
4064 && !STRING_MARKED_P ((struct Lisp_String *) p))
4065 XSETSTRING (obj, p);
4066 break;
4067
4068 case MEM_TYPE_MISC:
4069 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4070 XSETMISC (obj, p);
4071 break;
4072
4073 case MEM_TYPE_SYMBOL:
4074 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4075 XSETSYMBOL (obj, p);
4076 break;
4077
4078 case MEM_TYPE_FLOAT:
4079 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4080 XSETFLOAT (obj, p);
4081 break;
4082
4083 case MEM_TYPE_VECTORLIKE:
4084 if (live_vector_p (m, p))
4085 {
4086 Lisp_Object tem;
4087 XSETVECTOR (tem, p);
4088 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4089 obj = tem;
4090 }
4091 break;
4092
4093 default:
4094 abort ();
4095 }
4096
4097 if (!NILP (obj))
4098 mark_object (obj);
4099 }
4100 }
4101
4102
4103 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4104 or END+OFFSET..START. */
4105
4106 static void
4107 mark_memory (void *start, void *end, int offset)
4108 {
4109 Lisp_Object *p;
4110 void **pp;
4111
4112 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4113 nzombies = 0;
4114 #endif
4115
4116 /* Make START the pointer to the start of the memory region,
4117 if it isn't already. */
4118 if (end < start)
4119 {
4120 void *tem = start;
4121 start = end;
4122 end = tem;
4123 }
4124
4125 /* Mark Lisp_Objects. */
4126 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4127 mark_maybe_object (*p);
4128
4129 /* Mark Lisp data pointed to. This is necessary because, in some
4130 situations, the C compiler optimizes Lisp objects away, so that
4131 only a pointer to them remains. Example:
4132
4133 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4134 ()
4135 {
4136 Lisp_Object obj = build_string ("test");
4137 struct Lisp_String *s = XSTRING (obj);
4138 Fgarbage_collect ();
4139 fprintf (stderr, "test `%s'\n", s->data);
4140 return Qnil;
4141 }
4142
4143 Here, `obj' isn't really used, and the compiler optimizes it
4144 away. The only reference to the life string is through the
4145 pointer `s'. */
4146
4147 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4148 mark_maybe_pointer (*pp);
4149 }
4150
4151 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4152 the GCC system configuration. In gcc 3.2, the only systems for
4153 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4154 by others?) and ns32k-pc532-min. */
4155
4156 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4157
4158 static int setjmp_tested_p, longjmps_done;
4159
4160 #define SETJMP_WILL_LIKELY_WORK "\
4161 \n\
4162 Emacs garbage collector has been changed to use conservative stack\n\
4163 marking. Emacs has determined that the method it uses to do the\n\
4164 marking will likely work on your system, but this isn't sure.\n\
4165 \n\
4166 If you are a system-programmer, or can get the help of a local wizard\n\
4167 who is, please take a look at the function mark_stack in alloc.c, and\n\
4168 verify that the methods used are appropriate for your system.\n\
4169 \n\
4170 Please mail the result to <emacs-devel@gnu.org>.\n\
4171 "
4172
4173 #define SETJMP_WILL_NOT_WORK "\
4174 \n\
4175 Emacs garbage collector has been changed to use conservative stack\n\
4176 marking. Emacs has determined that the default method it uses to do the\n\
4177 marking will not work on your system. We will need a system-dependent\n\
4178 solution for your system.\n\
4179 \n\
4180 Please take a look at the function mark_stack in alloc.c, and\n\
4181 try to find a way to make it work on your system.\n\
4182 \n\
4183 Note that you may get false negatives, depending on the compiler.\n\
4184 In particular, you need to use -O with GCC for this test.\n\
4185 \n\
4186 Please mail the result to <emacs-devel@gnu.org>.\n\
4187 "
4188
4189
4190 /* Perform a quick check if it looks like setjmp saves registers in a
4191 jmp_buf. Print a message to stderr saying so. When this test
4192 succeeds, this is _not_ a proof that setjmp is sufficient for
4193 conservative stack marking. Only the sources or a disassembly
4194 can prove that. */
4195
4196 static void
4197 test_setjmp (void)
4198 {
4199 char buf[10];
4200 register int x;
4201 jmp_buf jbuf;
4202 int result = 0;
4203
4204 /* Arrange for X to be put in a register. */
4205 sprintf (buf, "1");
4206 x = strlen (buf);
4207 x = 2 * x - 1;
4208
4209 setjmp (jbuf);
4210 if (longjmps_done == 1)
4211 {
4212 /* Came here after the longjmp at the end of the function.
4213
4214 If x == 1, the longjmp has restored the register to its
4215 value before the setjmp, and we can hope that setjmp
4216 saves all such registers in the jmp_buf, although that
4217 isn't sure.
4218
4219 For other values of X, either something really strange is
4220 taking place, or the setjmp just didn't save the register. */
4221
4222 if (x == 1)
4223 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4224 else
4225 {
4226 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4227 exit (1);
4228 }
4229 }
4230
4231 ++longjmps_done;
4232 x = 2;
4233 if (longjmps_done == 1)
4234 longjmp (jbuf, 1);
4235 }
4236
4237 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4238
4239
4240 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4241
4242 /* Abort if anything GCPRO'd doesn't survive the GC. */
4243
4244 static void
4245 check_gcpros (void)
4246 {
4247 struct gcpro *p;
4248 ptrdiff_t i;
4249
4250 for (p = gcprolist; p; p = p->next)
4251 for (i = 0; i < p->nvars; ++i)
4252 if (!survives_gc_p (p->var[i]))
4253 /* FIXME: It's not necessarily a bug. It might just be that the
4254 GCPRO is unnecessary or should release the object sooner. */
4255 abort ();
4256 }
4257
4258 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4259
4260 static void
4261 dump_zombies (void)
4262 {
4263 int i;
4264
4265 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
4266 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4267 {
4268 fprintf (stderr, " %d = ", i);
4269 debug_print (zombies[i]);
4270 }
4271 }
4272
4273 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4274
4275
4276 /* Mark live Lisp objects on the C stack.
4277
4278 There are several system-dependent problems to consider when
4279 porting this to new architectures:
4280
4281 Processor Registers
4282
4283 We have to mark Lisp objects in CPU registers that can hold local
4284 variables or are used to pass parameters.
4285
4286 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4287 something that either saves relevant registers on the stack, or
4288 calls mark_maybe_object passing it each register's contents.
4289
4290 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4291 implementation assumes that calling setjmp saves registers we need
4292 to see in a jmp_buf which itself lies on the stack. This doesn't
4293 have to be true! It must be verified for each system, possibly
4294 by taking a look at the source code of setjmp.
4295
4296 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4297 can use it as a machine independent method to store all registers
4298 to the stack. In this case the macros described in the previous
4299 two paragraphs are not used.
4300
4301 Stack Layout
4302
4303 Architectures differ in the way their processor stack is organized.
4304 For example, the stack might look like this
4305
4306 +----------------+
4307 | Lisp_Object | size = 4
4308 +----------------+
4309 | something else | size = 2
4310 +----------------+
4311 | Lisp_Object | size = 4
4312 +----------------+
4313 | ... |
4314
4315 In such a case, not every Lisp_Object will be aligned equally. To
4316 find all Lisp_Object on the stack it won't be sufficient to walk
4317 the stack in steps of 4 bytes. Instead, two passes will be
4318 necessary, one starting at the start of the stack, and a second
4319 pass starting at the start of the stack + 2. Likewise, if the
4320 minimal alignment of Lisp_Objects on the stack is 1, four passes
4321 would be necessary, each one starting with one byte more offset
4322 from the stack start.
4323
4324 The current code assumes by default that Lisp_Objects are aligned
4325 equally on the stack. */
4326
4327 static void
4328 mark_stack (void)
4329 {
4330 int i;
4331 void *end;
4332
4333 #ifdef HAVE___BUILTIN_UNWIND_INIT
4334 /* Force callee-saved registers and register windows onto the stack.
4335 This is the preferred method if available, obviating the need for
4336 machine dependent methods. */
4337 __builtin_unwind_init ();
4338 end = &end;
4339 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4340 #ifndef GC_SAVE_REGISTERS_ON_STACK
4341 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4342 union aligned_jmpbuf {
4343 Lisp_Object o;
4344 jmp_buf j;
4345 } j;
4346 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4347 #endif
4348 /* This trick flushes the register windows so that all the state of
4349 the process is contained in the stack. */
4350 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4351 needed on ia64 too. See mach_dep.c, where it also says inline
4352 assembler doesn't work with relevant proprietary compilers. */
4353 #ifdef __sparc__
4354 #if defined (__sparc64__) && defined (__FreeBSD__)
4355 /* FreeBSD does not have a ta 3 handler. */
4356 asm ("flushw");
4357 #else
4358 asm ("ta 3");
4359 #endif
4360 #endif
4361
4362 /* Save registers that we need to see on the stack. We need to see
4363 registers used to hold register variables and registers used to
4364 pass parameters. */
4365 #ifdef GC_SAVE_REGISTERS_ON_STACK
4366 GC_SAVE_REGISTERS_ON_STACK (end);
4367 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4368
4369 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4370 setjmp will definitely work, test it
4371 and print a message with the result
4372 of the test. */
4373 if (!setjmp_tested_p)
4374 {
4375 setjmp_tested_p = 1;
4376 test_setjmp ();
4377 }
4378 #endif /* GC_SETJMP_WORKS */
4379
4380 setjmp (j.j);
4381 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4382 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4383 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4384
4385 /* This assumes that the stack is a contiguous region in memory. If
4386 that's not the case, something has to be done here to iterate
4387 over the stack segments. */
4388 #ifndef GC_LISP_OBJECT_ALIGNMENT
4389 #ifdef __GNUC__
4390 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4391 #else
4392 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4393 #endif
4394 #endif
4395 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4396 mark_memory (stack_base, end, i);
4397 /* Allow for marking a secondary stack, like the register stack on the
4398 ia64. */
4399 #ifdef GC_MARK_SECONDARY_STACK
4400 GC_MARK_SECONDARY_STACK ();
4401 #endif
4402
4403 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4404 check_gcpros ();
4405 #endif
4406 }
4407
4408 #endif /* GC_MARK_STACK != 0 */
4409
4410
4411 /* Determine whether it is safe to access memory at address P. */
4412 static int
4413 valid_pointer_p (void *p)
4414 {
4415 #ifdef WINDOWSNT
4416 return w32_valid_pointer_p (p, 16);
4417 #else
4418 int fd;
4419
4420 /* Obviously, we cannot just access it (we would SEGV trying), so we
4421 trick the o/s to tell us whether p is a valid pointer.
4422 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4423 not validate p in that case. */
4424
4425 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4426 {
4427 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4428 emacs_close (fd);
4429 unlink ("__Valid__Lisp__Object__");
4430 return valid;
4431 }
4432
4433 return -1;
4434 #endif
4435 }
4436
4437 /* Return 1 if OBJ is a valid lisp object.
4438 Return 0 if OBJ is NOT a valid lisp object.
4439 Return -1 if we cannot validate OBJ.
4440 This function can be quite slow,
4441 so it should only be used in code for manual debugging. */
4442
4443 int
4444 valid_lisp_object_p (Lisp_Object obj)
4445 {
4446 void *p;
4447 #if GC_MARK_STACK
4448 struct mem_node *m;
4449 #endif
4450
4451 if (INTEGERP (obj))
4452 return 1;
4453
4454 p = (void *) XPNTR (obj);
4455 if (PURE_POINTER_P (p))
4456 return 1;
4457
4458 #if !GC_MARK_STACK
4459 return valid_pointer_p (p);
4460 #else
4461
4462 m = mem_find (p);
4463
4464 if (m == MEM_NIL)
4465 {
4466 int valid = valid_pointer_p (p);
4467 if (valid <= 0)
4468 return valid;
4469
4470 if (SUBRP (obj))
4471 return 1;
4472
4473 return 0;
4474 }
4475
4476 switch (m->type)
4477 {
4478 case MEM_TYPE_NON_LISP:
4479 return 0;
4480
4481 case MEM_TYPE_BUFFER:
4482 return live_buffer_p (m, p);
4483
4484 case MEM_TYPE_CONS:
4485 return live_cons_p (m, p);
4486
4487 case MEM_TYPE_STRING:
4488 return live_string_p (m, p);
4489
4490 case MEM_TYPE_MISC:
4491 return live_misc_p (m, p);
4492
4493 case MEM_TYPE_SYMBOL:
4494 return live_symbol_p (m, p);
4495
4496 case MEM_TYPE_FLOAT:
4497 return live_float_p (m, p);
4498
4499 case MEM_TYPE_VECTORLIKE:
4500 return live_vector_p (m, p);
4501
4502 default:
4503 break;
4504 }
4505
4506 return 0;
4507 #endif
4508 }
4509
4510
4511
4512 \f
4513 /***********************************************************************
4514 Pure Storage Management
4515 ***********************************************************************/
4516
4517 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4518 pointer to it. TYPE is the Lisp type for which the memory is
4519 allocated. TYPE < 0 means it's not used for a Lisp object. */
4520
4521 static POINTER_TYPE *
4522 pure_alloc (size_t size, int type)
4523 {
4524 POINTER_TYPE *result;
4525 #ifdef USE_LSB_TAG
4526 size_t alignment = (1 << GCTYPEBITS);
4527 #else
4528 size_t alignment = sizeof (EMACS_INT);
4529
4530 /* Give Lisp_Floats an extra alignment. */
4531 if (type == Lisp_Float)
4532 {
4533 #if defined __GNUC__ && __GNUC__ >= 2
4534 alignment = __alignof (struct Lisp_Float);
4535 #else
4536 alignment = sizeof (struct Lisp_Float);
4537 #endif
4538 }
4539 #endif
4540
4541 again:
4542 if (type >= 0)
4543 {
4544 /* Allocate space for a Lisp object from the beginning of the free
4545 space with taking account of alignment. */
4546 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4547 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4548 }
4549 else
4550 {
4551 /* Allocate space for a non-Lisp object from the end of the free
4552 space. */
4553 pure_bytes_used_non_lisp += size;
4554 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4555 }
4556 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4557
4558 if (pure_bytes_used <= pure_size)
4559 return result;
4560
4561 /* Don't allocate a large amount here,
4562 because it might get mmap'd and then its address
4563 might not be usable. */
4564 purebeg = (char *) xmalloc (10000);
4565 pure_size = 10000;
4566 pure_bytes_used_before_overflow += pure_bytes_used - size;
4567 pure_bytes_used = 0;
4568 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4569 goto again;
4570 }
4571
4572
4573 /* Print a warning if PURESIZE is too small. */
4574
4575 void
4576 check_pure_size (void)
4577 {
4578 if (pure_bytes_used_before_overflow)
4579 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4580 " bytes needed)"),
4581 pure_bytes_used + pure_bytes_used_before_overflow);
4582 }
4583
4584
4585 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4586 the non-Lisp data pool of the pure storage, and return its start
4587 address. Return NULL if not found. */
4588
4589 static char *
4590 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4591 {
4592 int i;
4593 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4594 const unsigned char *p;
4595 char *non_lisp_beg;
4596
4597 if (pure_bytes_used_non_lisp < nbytes + 1)
4598 return NULL;
4599
4600 /* Set up the Boyer-Moore table. */
4601 skip = nbytes + 1;
4602 for (i = 0; i < 256; i++)
4603 bm_skip[i] = skip;
4604
4605 p = (const unsigned char *) data;
4606 while (--skip > 0)
4607 bm_skip[*p++] = skip;
4608
4609 last_char_skip = bm_skip['\0'];
4610
4611 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4612 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4613
4614 /* See the comments in the function `boyer_moore' (search.c) for the
4615 use of `infinity'. */
4616 infinity = pure_bytes_used_non_lisp + 1;
4617 bm_skip['\0'] = infinity;
4618
4619 p = (const unsigned char *) non_lisp_beg + nbytes;
4620 start = 0;
4621 do
4622 {
4623 /* Check the last character (== '\0'). */
4624 do
4625 {
4626 start += bm_skip[*(p + start)];
4627 }
4628 while (start <= start_max);
4629
4630 if (start < infinity)
4631 /* Couldn't find the last character. */
4632 return NULL;
4633
4634 /* No less than `infinity' means we could find the last
4635 character at `p[start - infinity]'. */
4636 start -= infinity;
4637
4638 /* Check the remaining characters. */
4639 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4640 /* Found. */
4641 return non_lisp_beg + start;
4642
4643 start += last_char_skip;
4644 }
4645 while (start <= start_max);
4646
4647 return NULL;
4648 }
4649
4650
4651 /* Return a string allocated in pure space. DATA is a buffer holding
4652 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4653 non-zero means make the result string multibyte.
4654
4655 Must get an error if pure storage is full, since if it cannot hold
4656 a large string it may be able to hold conses that point to that
4657 string; then the string is not protected from gc. */
4658
4659 Lisp_Object
4660 make_pure_string (const char *data,
4661 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4662 {
4663 Lisp_Object string;
4664 struct Lisp_String *s;
4665
4666 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4667 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4668 if (s->data == NULL)
4669 {
4670 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4671 memcpy (s->data, data, nbytes);
4672 s->data[nbytes] = '\0';
4673 }
4674 s->size = nchars;
4675 s->size_byte = multibyte ? nbytes : -1;
4676 s->intervals = NULL_INTERVAL;
4677 XSETSTRING (string, s);
4678 return string;
4679 }
4680
4681 /* Return a string a string allocated in pure space. Do not allocate
4682 the string data, just point to DATA. */
4683
4684 Lisp_Object
4685 make_pure_c_string (const char *data)
4686 {
4687 Lisp_Object string;
4688 struct Lisp_String *s;
4689 EMACS_INT nchars = strlen (data);
4690
4691 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4692 s->size = nchars;
4693 s->size_byte = -1;
4694 s->data = (unsigned char *) data;
4695 s->intervals = NULL_INTERVAL;
4696 XSETSTRING (string, s);
4697 return string;
4698 }
4699
4700 /* Return a cons allocated from pure space. Give it pure copies
4701 of CAR as car and CDR as cdr. */
4702
4703 Lisp_Object
4704 pure_cons (Lisp_Object car, Lisp_Object cdr)
4705 {
4706 register Lisp_Object new;
4707 struct Lisp_Cons *p;
4708
4709 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4710 XSETCONS (new, p);
4711 XSETCAR (new, Fpurecopy (car));
4712 XSETCDR (new, Fpurecopy (cdr));
4713 return new;
4714 }
4715
4716
4717 /* Value is a float object with value NUM allocated from pure space. */
4718
4719 static Lisp_Object
4720 make_pure_float (double num)
4721 {
4722 register Lisp_Object new;
4723 struct Lisp_Float *p;
4724
4725 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4726 XSETFLOAT (new, p);
4727 XFLOAT_INIT (new, num);
4728 return new;
4729 }
4730
4731
4732 /* Return a vector with room for LEN Lisp_Objects allocated from
4733 pure space. */
4734
4735 Lisp_Object
4736 make_pure_vector (EMACS_INT len)
4737 {
4738 Lisp_Object new;
4739 struct Lisp_Vector *p;
4740 size_t size = (offsetof (struct Lisp_Vector, contents)
4741 + len * sizeof (Lisp_Object));
4742
4743 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4744 XSETVECTOR (new, p);
4745 XVECTOR (new)->header.size = len;
4746 return new;
4747 }
4748
4749
4750 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4751 doc: /* Make a copy of object OBJ in pure storage.
4752 Recursively copies contents of vectors and cons cells.
4753 Does not copy symbols. Copies strings without text properties. */)
4754 (register Lisp_Object obj)
4755 {
4756 if (NILP (Vpurify_flag))
4757 return obj;
4758
4759 if (PURE_POINTER_P (XPNTR (obj)))
4760 return obj;
4761
4762 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4763 {
4764 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4765 if (!NILP (tmp))
4766 return tmp;
4767 }
4768
4769 if (CONSP (obj))
4770 obj = pure_cons (XCAR (obj), XCDR (obj));
4771 else if (FLOATP (obj))
4772 obj = make_pure_float (XFLOAT_DATA (obj));
4773 else if (STRINGP (obj))
4774 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4775 SBYTES (obj),
4776 STRING_MULTIBYTE (obj));
4777 else if (COMPILEDP (obj) || VECTORP (obj))
4778 {
4779 register struct Lisp_Vector *vec;
4780 register EMACS_INT i;
4781 EMACS_INT size;
4782
4783 size = ASIZE (obj);
4784 if (size & PSEUDOVECTOR_FLAG)
4785 size &= PSEUDOVECTOR_SIZE_MASK;
4786 vec = XVECTOR (make_pure_vector (size));
4787 for (i = 0; i < size; i++)
4788 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4789 if (COMPILEDP (obj))
4790 {
4791 XSETPVECTYPE (vec, PVEC_COMPILED);
4792 XSETCOMPILED (obj, vec);
4793 }
4794 else
4795 XSETVECTOR (obj, vec);
4796 }
4797 else if (MARKERP (obj))
4798 error ("Attempt to copy a marker to pure storage");
4799 else
4800 /* Not purified, don't hash-cons. */
4801 return obj;
4802
4803 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4804 Fputhash (obj, obj, Vpurify_flag);
4805
4806 return obj;
4807 }
4808
4809
4810 \f
4811 /***********************************************************************
4812 Protection from GC
4813 ***********************************************************************/
4814
4815 /* Put an entry in staticvec, pointing at the variable with address
4816 VARADDRESS. */
4817
4818 void
4819 staticpro (Lisp_Object *varaddress)
4820 {
4821 staticvec[staticidx++] = varaddress;
4822 if (staticidx >= NSTATICS)
4823 abort ();
4824 }
4825
4826 \f
4827 /***********************************************************************
4828 Protection from GC
4829 ***********************************************************************/
4830
4831 /* Temporarily prevent garbage collection. */
4832
4833 int
4834 inhibit_garbage_collection (void)
4835 {
4836 int count = SPECPDL_INDEX ();
4837
4838 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4839 return count;
4840 }
4841
4842
4843 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4844 doc: /* Reclaim storage for Lisp objects no longer needed.
4845 Garbage collection happens automatically if you cons more than
4846 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847 `garbage-collect' normally returns a list with info on amount of space in use:
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
4852 However, if there was overflow in pure space, `garbage-collect'
4853 returns nil, because real GC can't be done. */)
4854 (void)
4855 {
4856 register struct specbinding *bind;
4857 char stack_top_variable;
4858 ptrdiff_t i;
4859 int message_p;
4860 Lisp_Object total[8];
4861 int count = SPECPDL_INDEX ();
4862 EMACS_TIME t1, t2, t3;
4863
4864 if (abort_on_gc)
4865 abort ();
4866
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4871
4872 CHECK_CONS_LIST ();
4873
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4876 {
4877 register struct buffer *nextb = all_buffers;
4878
4879 while (nextb)
4880 {
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4886 truncate_undo_list (nextb);
4887
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4890 && ! nextb->text->inhibit_shrinking)
4891 {
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4896
4897 if (nextb->text->gap_size > size)
4898 {
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4903 }
4904 }
4905
4906 nextb = nextb->header.next.buffer;
4907 }
4908 }
4909
4910 EMACS_GET_TIME (t1);
4911
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4915
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
4918 record_unwind_protect (pop_message_unwind, Qnil);
4919
4920 /* Save a copy of the contents of the stack, for debugging. */
4921 #if MAX_SAVE_STACK > 0
4922 if (NILP (Vpurify_flag))
4923 {
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
4927 {
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4930 }
4931 else
4932 {
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4935 }
4936 if (stack_size <= MAX_SAVE_STACK)
4937 {
4938 if (stack_copy_size < stack_size)
4939 {
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
4942 }
4943 memcpy (stack_copy, stack, stack_size);
4944 }
4945 }
4946 #endif /* MAX_SAVE_STACK > 0 */
4947
4948 if (garbage_collection_messages)
4949 message1_nolog ("Garbage collecting...");
4950
4951 BLOCK_INPUT;
4952
4953 shrink_regexp_cache ();
4954
4955 gc_in_progress = 1;
4956
4957 /* clear_marks (); */
4958
4959 /* Mark all the special slots that serve as the roots of accessibility. */
4960
4961 for (i = 0; i < staticidx; i++)
4962 mark_object (*staticvec[i]);
4963
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4965 {
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4968 }
4969 mark_terminals ();
4970 mark_kboards ();
4971 mark_ttys ();
4972
4973 #ifdef USE_GTK
4974 {
4975 extern void xg_mark_data (void);
4976 xg_mark_data ();
4977 }
4978 #endif
4979
4980 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983 #else
4984 {
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
4988 mark_object (tail->var[i]);
4989 }
4990 mark_byte_stack ();
4991 {
4992 struct catchtag *catch;
4993 struct handler *handler;
4994
4995 for (catch = catchlist; catch; catch = catch->next)
4996 {
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
4999 }
5000 for (handler = handlerlist; handler; handler = handler->next)
5001 {
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
5004 }
5005 }
5006 mark_backtrace ();
5007 #endif
5008
5009 #ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011 #endif
5012
5013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015 #endif
5016
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
5020 for elements that update markers that were not marked,
5021 and delete them. */
5022 {
5023 register struct buffer *nextb = all_buffers;
5024
5025 while (nextb)
5026 {
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5032 {
5033 Lisp_Object tail, prev;
5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5035 prev = Qnil;
5036 while (CONSP (tail))
5037 {
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5041 {
5042 if (NILP (prev))
5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5044 else
5045 {
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5048 }
5049 }
5050 else
5051 {
5052 prev = tail;
5053 tail = XCDR (tail);
5054 }
5055 }
5056 }
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5060
5061 nextb = nextb->header.next.buffer;
5062 }
5063 }
5064
5065 gc_sweep ();
5066
5067 /* Clear the mark bits that we set in certain root slots. */
5068
5069 unmark_byte_stack ();
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
5072
5073 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075 #endif
5076
5077 UNBLOCK_INPUT;
5078
5079 CHECK_CONS_LIST ();
5080
5081 /* clear_marks (); */
5082 gc_in_progress = 0;
5083
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5087
5088 gc_relative_threshold = 0;
5089 if (FLOATP (Vgc_cons_percentage))
5090 { /* Set gc_cons_combined_threshold. */
5091 double tot = 0;
5092
5093 tot += total_conses * sizeof (struct Lisp_Cons);
5094 tot += total_symbols * sizeof (struct Lisp_Symbol);
5095 tot += total_markers * sizeof (union Lisp_Misc);
5096 tot += total_string_size;
5097 tot += total_vector_size * sizeof (Lisp_Object);
5098 tot += total_floats * sizeof (struct Lisp_Float);
5099 tot += total_intervals * sizeof (struct interval);
5100 tot += total_strings * sizeof (struct Lisp_String);
5101
5102 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5103 if (0 < tot)
5104 {
5105 if (tot < TYPE_MAXIMUM (EMACS_INT))
5106 gc_relative_threshold = tot;
5107 else
5108 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5109 }
5110 }
5111
5112 if (garbage_collection_messages)
5113 {
5114 if (message_p || minibuf_level > 0)
5115 restore_message ();
5116 else
5117 message1_nolog ("Garbage collecting...done");
5118 }
5119
5120 unbind_to (count, Qnil);
5121
5122 total[0] = Fcons (make_number (total_conses),
5123 make_number (total_free_conses));
5124 total[1] = Fcons (make_number (total_symbols),
5125 make_number (total_free_symbols));
5126 total[2] = Fcons (make_number (total_markers),
5127 make_number (total_free_markers));
5128 total[3] = make_number (total_string_size);
5129 total[4] = make_number (total_vector_size);
5130 total[5] = Fcons (make_number (total_floats),
5131 make_number (total_free_floats));
5132 total[6] = Fcons (make_number (total_intervals),
5133 make_number (total_free_intervals));
5134 total[7] = Fcons (make_number (total_strings),
5135 make_number (total_free_strings));
5136
5137 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5138 {
5139 /* Compute average percentage of zombies. */
5140 double nlive = 0;
5141
5142 for (i = 0; i < 7; ++i)
5143 if (CONSP (total[i]))
5144 nlive += XFASTINT (XCAR (total[i]));
5145
5146 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5147 max_live = max (nlive, max_live);
5148 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5149 max_zombies = max (nzombies, max_zombies);
5150 ++ngcs;
5151 }
5152 #endif
5153
5154 if (!NILP (Vpost_gc_hook))
5155 {
5156 int gc_count = inhibit_garbage_collection ();
5157 safe_run_hooks (Qpost_gc_hook);
5158 unbind_to (gc_count, Qnil);
5159 }
5160
5161 /* Accumulate statistics. */
5162 EMACS_GET_TIME (t2);
5163 EMACS_SUB_TIME (t3, t2, t1);
5164 if (FLOATP (Vgc_elapsed))
5165 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5166 EMACS_SECS (t3) +
5167 EMACS_USECS (t3) * 1.0e-6);
5168 gcs_done++;
5169
5170 return Flist (sizeof total / sizeof *total, total);
5171 }
5172
5173
5174 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5175 only interesting objects referenced from glyphs are strings. */
5176
5177 static void
5178 mark_glyph_matrix (struct glyph_matrix *matrix)
5179 {
5180 struct glyph_row *row = matrix->rows;
5181 struct glyph_row *end = row + matrix->nrows;
5182
5183 for (; row < end; ++row)
5184 if (row->enabled_p)
5185 {
5186 int area;
5187 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5188 {
5189 struct glyph *glyph = row->glyphs[area];
5190 struct glyph *end_glyph = glyph + row->used[area];
5191
5192 for (; glyph < end_glyph; ++glyph)
5193 if (STRINGP (glyph->object)
5194 && !STRING_MARKED_P (XSTRING (glyph->object)))
5195 mark_object (glyph->object);
5196 }
5197 }
5198 }
5199
5200
5201 /* Mark Lisp faces in the face cache C. */
5202
5203 static void
5204 mark_face_cache (struct face_cache *c)
5205 {
5206 if (c)
5207 {
5208 int i, j;
5209 for (i = 0; i < c->used; ++i)
5210 {
5211 struct face *face = FACE_FROM_ID (c->f, i);
5212
5213 if (face)
5214 {
5215 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5216 mark_object (face->lface[j]);
5217 }
5218 }
5219 }
5220 }
5221
5222
5223 \f
5224 /* Mark reference to a Lisp_Object.
5225 If the object referred to has not been seen yet, recursively mark
5226 all the references contained in it. */
5227
5228 #define LAST_MARKED_SIZE 500
5229 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5230 static int last_marked_index;
5231
5232 /* For debugging--call abort when we cdr down this many
5233 links of a list, in mark_object. In debugging,
5234 the call to abort will hit a breakpoint.
5235 Normally this is zero and the check never goes off. */
5236 static size_t mark_object_loop_halt;
5237
5238 static void
5239 mark_vectorlike (struct Lisp_Vector *ptr)
5240 {
5241 EMACS_INT size = ptr->header.size;
5242 EMACS_INT i;
5243
5244 eassert (!VECTOR_MARKED_P (ptr));
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 if (size & PSEUDOVECTOR_FLAG)
5247 size &= PSEUDOVECTOR_SIZE_MASK;
5248
5249 /* Note that this size is not the memory-footprint size, but only
5250 the number of Lisp_Object fields that we should trace.
5251 The distinction is used e.g. by Lisp_Process which places extra
5252 non-Lisp_Object fields at the end of the structure. */
5253 for (i = 0; i < size; i++) /* and then mark its elements */
5254 mark_object (ptr->contents[i]);
5255 }
5256
5257 /* Like mark_vectorlike but optimized for char-tables (and
5258 sub-char-tables) assuming that the contents are mostly integers or
5259 symbols. */
5260
5261 static void
5262 mark_char_table (struct Lisp_Vector *ptr)
5263 {
5264 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5265 int i;
5266
5267 eassert (!VECTOR_MARKED_P (ptr));
5268 VECTOR_MARK (ptr);
5269 for (i = 0; i < size; i++)
5270 {
5271 Lisp_Object val = ptr->contents[i];
5272
5273 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5274 continue;
5275 if (SUB_CHAR_TABLE_P (val))
5276 {
5277 if (! VECTOR_MARKED_P (XVECTOR (val)))
5278 mark_char_table (XVECTOR (val));
5279 }
5280 else
5281 mark_object (val);
5282 }
5283 }
5284
5285 void
5286 mark_object (Lisp_Object arg)
5287 {
5288 register Lisp_Object obj = arg;
5289 #ifdef GC_CHECK_MARKED_OBJECTS
5290 void *po;
5291 struct mem_node *m;
5292 #endif
5293 size_t cdr_count = 0;
5294
5295 loop:
5296
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return;
5299
5300 last_marked[last_marked_index++] = obj;
5301 if (last_marked_index == LAST_MARKED_SIZE)
5302 last_marked_index = 0;
5303
5304 /* Perform some sanity checks on the objects marked here. Abort if
5305 we encounter an object we know is bogus. This increases GC time
5306 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5307 #ifdef GC_CHECK_MARKED_OBJECTS
5308
5309 po = (void *) XPNTR (obj);
5310
5311 /* Check that the object pointed to by PO is known to be a Lisp
5312 structure allocated from the heap. */
5313 #define CHECK_ALLOCATED() \
5314 do { \
5315 m = mem_find (po); \
5316 if (m == MEM_NIL) \
5317 abort (); \
5318 } while (0)
5319
5320 /* Check that the object pointed to by PO is live, using predicate
5321 function LIVEP. */
5322 #define CHECK_LIVE(LIVEP) \
5323 do { \
5324 if (!LIVEP (m, po)) \
5325 abort (); \
5326 } while (0)
5327
5328 /* Check both of the above conditions. */
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5330 do { \
5331 CHECK_ALLOCATED (); \
5332 CHECK_LIVE (LIVEP); \
5333 } while (0) \
5334
5335 #else /* not GC_CHECK_MARKED_OBJECTS */
5336
5337 #define CHECK_LIVE(LIVEP) (void) 0
5338 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5339
5340 #endif /* not GC_CHECK_MARKED_OBJECTS */
5341
5342 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5343 {
5344 case Lisp_String:
5345 {
5346 register struct Lisp_String *ptr = XSTRING (obj);
5347 if (STRING_MARKED_P (ptr))
5348 break;
5349 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5350 MARK_INTERVAL_TREE (ptr->intervals);
5351 MARK_STRING (ptr);
5352 #ifdef GC_CHECK_STRING_BYTES
5353 /* Check that the string size recorded in the string is the
5354 same as the one recorded in the sdata structure. */
5355 CHECK_STRING_BYTES (ptr);
5356 #endif /* GC_CHECK_STRING_BYTES */
5357 }
5358 break;
5359
5360 case Lisp_Vectorlike:
5361 if (VECTOR_MARKED_P (XVECTOR (obj)))
5362 break;
5363 #ifdef GC_CHECK_MARKED_OBJECTS
5364 m = mem_find (po);
5365 if (m == MEM_NIL && !SUBRP (obj)
5366 && po != &buffer_defaults
5367 && po != &buffer_local_symbols)
5368 abort ();
5369 #endif /* GC_CHECK_MARKED_OBJECTS */
5370
5371 if (BUFFERP (obj))
5372 {
5373 #ifdef GC_CHECK_MARKED_OBJECTS
5374 if (po != &buffer_defaults && po != &buffer_local_symbols)
5375 {
5376 struct buffer *b;
5377 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5378 ;
5379 if (b == NULL)
5380 abort ();
5381 }
5382 #endif /* GC_CHECK_MARKED_OBJECTS */
5383 mark_buffer (obj);
5384 }
5385 else if (SUBRP (obj))
5386 break;
5387 else if (COMPILEDP (obj))
5388 /* We could treat this just like a vector, but it is better to
5389 save the COMPILED_CONSTANTS element for last and avoid
5390 recursion there. */
5391 {
5392 register struct Lisp_Vector *ptr = XVECTOR (obj);
5393 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5394 int i;
5395
5396 CHECK_LIVE (live_vector_p);
5397 VECTOR_MARK (ptr); /* Else mark it */
5398 for (i = 0; i < size; i++) /* and then mark its elements */
5399 {
5400 if (i != COMPILED_CONSTANTS)
5401 mark_object (ptr->contents[i]);
5402 }
5403 obj = ptr->contents[COMPILED_CONSTANTS];
5404 goto loop;
5405 }
5406 else if (FRAMEP (obj))
5407 {
5408 register struct frame *ptr = XFRAME (obj);
5409 mark_vectorlike (XVECTOR (obj));
5410 mark_face_cache (ptr->face_cache);
5411 }
5412 else if (WINDOWP (obj))
5413 {
5414 register struct Lisp_Vector *ptr = XVECTOR (obj);
5415 struct window *w = XWINDOW (obj);
5416 mark_vectorlike (ptr);
5417 /* Mark glyphs for leaf windows. Marking window matrices is
5418 sufficient because frame matrices use the same glyph
5419 memory. */
5420 if (NILP (w->hchild)
5421 && NILP (w->vchild)
5422 && w->current_matrix)
5423 {
5424 mark_glyph_matrix (w->current_matrix);
5425 mark_glyph_matrix (w->desired_matrix);
5426 }
5427 }
5428 else if (HASH_TABLE_P (obj))
5429 {
5430 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5431 mark_vectorlike ((struct Lisp_Vector *)h);
5432 /* If hash table is not weak, mark all keys and values.
5433 For weak tables, mark only the vector. */
5434 if (NILP (h->weak))
5435 mark_object (h->key_and_value);
5436 else
5437 VECTOR_MARK (XVECTOR (h->key_and_value));
5438 }
5439 else if (CHAR_TABLE_P (obj))
5440 mark_char_table (XVECTOR (obj));
5441 else
5442 mark_vectorlike (XVECTOR (obj));
5443 break;
5444
5445 case Lisp_Symbol:
5446 {
5447 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5448 struct Lisp_Symbol *ptrx;
5449
5450 if (ptr->gcmarkbit)
5451 break;
5452 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5453 ptr->gcmarkbit = 1;
5454 mark_object (ptr->function);
5455 mark_object (ptr->plist);
5456 switch (ptr->redirect)
5457 {
5458 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5459 case SYMBOL_VARALIAS:
5460 {
5461 Lisp_Object tem;
5462 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5463 mark_object (tem);
5464 break;
5465 }
5466 case SYMBOL_LOCALIZED:
5467 {
5468 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5469 /* If the value is forwarded to a buffer or keyboard field,
5470 these are marked when we see the corresponding object.
5471 And if it's forwarded to a C variable, either it's not
5472 a Lisp_Object var, or it's staticpro'd already. */
5473 mark_object (blv->where);
5474 mark_object (blv->valcell);
5475 mark_object (blv->defcell);
5476 break;
5477 }
5478 case SYMBOL_FORWARDED:
5479 /* If the value is forwarded to a buffer or keyboard field,
5480 these are marked when we see the corresponding object.
5481 And if it's forwarded to a C variable, either it's not
5482 a Lisp_Object var, or it's staticpro'd already. */
5483 break;
5484 default: abort ();
5485 }
5486 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5487 MARK_STRING (XSTRING (ptr->xname));
5488 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5489
5490 ptr = ptr->next;
5491 if (ptr)
5492 {
5493 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5494 XSETSYMBOL (obj, ptrx);
5495 goto loop;
5496 }
5497 }
5498 break;
5499
5500 case Lisp_Misc:
5501 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5502 if (XMISCANY (obj)->gcmarkbit)
5503 break;
5504 XMISCANY (obj)->gcmarkbit = 1;
5505
5506 switch (XMISCTYPE (obj))
5507 {
5508
5509 case Lisp_Misc_Marker:
5510 /* DO NOT mark thru the marker's chain.
5511 The buffer's markers chain does not preserve markers from gc;
5512 instead, markers are removed from the chain when freed by gc. */
5513 break;
5514
5515 case Lisp_Misc_Save_Value:
5516 #if GC_MARK_STACK
5517 {
5518 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5519 /* If DOGC is set, POINTER is the address of a memory
5520 area containing INTEGER potential Lisp_Objects. */
5521 if (ptr->dogc)
5522 {
5523 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5524 ptrdiff_t nelt;
5525 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5526 mark_maybe_object (*p);
5527 }
5528 }
5529 #endif
5530 break;
5531
5532 case Lisp_Misc_Overlay:
5533 {
5534 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5535 mark_object (ptr->start);
5536 mark_object (ptr->end);
5537 mark_object (ptr->plist);
5538 if (ptr->next)
5539 {
5540 XSETMISC (obj, ptr->next);
5541 goto loop;
5542 }
5543 }
5544 break;
5545
5546 default:
5547 abort ();
5548 }
5549 break;
5550
5551 case Lisp_Cons:
5552 {
5553 register struct Lisp_Cons *ptr = XCONS (obj);
5554 if (CONS_MARKED_P (ptr))
5555 break;
5556 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5557 CONS_MARK (ptr);
5558 /* If the cdr is nil, avoid recursion for the car. */
5559 if (EQ (ptr->u.cdr, Qnil))
5560 {
5561 obj = ptr->car;
5562 cdr_count = 0;
5563 goto loop;
5564 }
5565 mark_object (ptr->car);
5566 obj = ptr->u.cdr;
5567 cdr_count++;
5568 if (cdr_count == mark_object_loop_halt)
5569 abort ();
5570 goto loop;
5571 }
5572
5573 case Lisp_Float:
5574 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5575 FLOAT_MARK (XFLOAT (obj));
5576 break;
5577
5578 case_Lisp_Int:
5579 break;
5580
5581 default:
5582 abort ();
5583 }
5584
5585 #undef CHECK_LIVE
5586 #undef CHECK_ALLOCATED
5587 #undef CHECK_ALLOCATED_AND_LIVE
5588 }
5589
5590 /* Mark the pointers in a buffer structure. */
5591
5592 static void
5593 mark_buffer (Lisp_Object buf)
5594 {
5595 register struct buffer *buffer = XBUFFER (buf);
5596 register Lisp_Object *ptr, tmp;
5597 Lisp_Object base_buffer;
5598
5599 eassert (!VECTOR_MARKED_P (buffer));
5600 VECTOR_MARK (buffer);
5601
5602 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5603
5604 /* For now, we just don't mark the undo_list. It's done later in
5605 a special way just before the sweep phase, and after stripping
5606 some of its elements that are not needed any more. */
5607
5608 if (buffer->overlays_before)
5609 {
5610 XSETMISC (tmp, buffer->overlays_before);
5611 mark_object (tmp);
5612 }
5613 if (buffer->overlays_after)
5614 {
5615 XSETMISC (tmp, buffer->overlays_after);
5616 mark_object (tmp);
5617 }
5618
5619 /* buffer-local Lisp variables start at `undo_list',
5620 tho only the ones from `name' on are GC'd normally. */
5621 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5622 ptr <= &PER_BUFFER_VALUE (buffer,
5623 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
5624 ptr++)
5625 mark_object (*ptr);
5626
5627 /* If this is an indirect buffer, mark its base buffer. */
5628 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5629 {
5630 XSETBUFFER (base_buffer, buffer->base_buffer);
5631 mark_buffer (base_buffer);
5632 }
5633 }
5634
5635 /* Mark the Lisp pointers in the terminal objects.
5636 Called by the Fgarbage_collector. */
5637
5638 static void
5639 mark_terminals (void)
5640 {
5641 struct terminal *t;
5642 for (t = terminal_list; t; t = t->next_terminal)
5643 {
5644 eassert (t->name != NULL);
5645 #ifdef HAVE_WINDOW_SYSTEM
5646 /* If a terminal object is reachable from a stacpro'ed object,
5647 it might have been marked already. Make sure the image cache
5648 gets marked. */
5649 mark_image_cache (t->image_cache);
5650 #endif /* HAVE_WINDOW_SYSTEM */
5651 if (!VECTOR_MARKED_P (t))
5652 mark_vectorlike ((struct Lisp_Vector *)t);
5653 }
5654 }
5655
5656
5657
5658 /* Value is non-zero if OBJ will survive the current GC because it's
5659 either marked or does not need to be marked to survive. */
5660
5661 int
5662 survives_gc_p (Lisp_Object obj)
5663 {
5664 int survives_p;
5665
5666 switch (XTYPE (obj))
5667 {
5668 case_Lisp_Int:
5669 survives_p = 1;
5670 break;
5671
5672 case Lisp_Symbol:
5673 survives_p = XSYMBOL (obj)->gcmarkbit;
5674 break;
5675
5676 case Lisp_Misc:
5677 survives_p = XMISCANY (obj)->gcmarkbit;
5678 break;
5679
5680 case Lisp_String:
5681 survives_p = STRING_MARKED_P (XSTRING (obj));
5682 break;
5683
5684 case Lisp_Vectorlike:
5685 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5686 break;
5687
5688 case Lisp_Cons:
5689 survives_p = CONS_MARKED_P (XCONS (obj));
5690 break;
5691
5692 case Lisp_Float:
5693 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5694 break;
5695
5696 default:
5697 abort ();
5698 }
5699
5700 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5701 }
5702
5703
5704 \f
5705 /* Sweep: find all structures not marked, and free them. */
5706
5707 static void
5708 gc_sweep (void)
5709 {
5710 /* Remove or mark entries in weak hash tables.
5711 This must be done before any object is unmarked. */
5712 sweep_weak_hash_tables ();
5713
5714 sweep_strings ();
5715 #ifdef GC_CHECK_STRING_BYTES
5716 if (!noninteractive)
5717 check_string_bytes (1);
5718 #endif
5719
5720 /* Put all unmarked conses on free list */
5721 {
5722 register struct cons_block *cblk;
5723 struct cons_block **cprev = &cons_block;
5724 register int lim = cons_block_index;
5725 EMACS_INT num_free = 0, num_used = 0;
5726
5727 cons_free_list = 0;
5728
5729 for (cblk = cons_block; cblk; cblk = *cprev)
5730 {
5731 register int i = 0;
5732 int this_free = 0;
5733 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5734
5735 /* Scan the mark bits an int at a time. */
5736 for (i = 0; i <= ilim; i++)
5737 {
5738 if (cblk->gcmarkbits[i] == -1)
5739 {
5740 /* Fast path - all cons cells for this int are marked. */
5741 cblk->gcmarkbits[i] = 0;
5742 num_used += BITS_PER_INT;
5743 }
5744 else
5745 {
5746 /* Some cons cells for this int are not marked.
5747 Find which ones, and free them. */
5748 int start, pos, stop;
5749
5750 start = i * BITS_PER_INT;
5751 stop = lim - start;
5752 if (stop > BITS_PER_INT)
5753 stop = BITS_PER_INT;
5754 stop += start;
5755
5756 for (pos = start; pos < stop; pos++)
5757 {
5758 if (!CONS_MARKED_P (&cblk->conses[pos]))
5759 {
5760 this_free++;
5761 cblk->conses[pos].u.chain = cons_free_list;
5762 cons_free_list = &cblk->conses[pos];
5763 #if GC_MARK_STACK
5764 cons_free_list->car = Vdead;
5765 #endif
5766 }
5767 else
5768 {
5769 num_used++;
5770 CONS_UNMARK (&cblk->conses[pos]);
5771 }
5772 }
5773 }
5774 }
5775
5776 lim = CONS_BLOCK_SIZE;
5777 /* If this block contains only free conses and we have already
5778 seen more than two blocks worth of free conses then deallocate
5779 this block. */
5780 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5781 {
5782 *cprev = cblk->next;
5783 /* Unhook from the free list. */
5784 cons_free_list = cblk->conses[0].u.chain;
5785 lisp_align_free (cblk);
5786 }
5787 else
5788 {
5789 num_free += this_free;
5790 cprev = &cblk->next;
5791 }
5792 }
5793 total_conses = num_used;
5794 total_free_conses = num_free;
5795 }
5796
5797 /* Put all unmarked floats on free list */
5798 {
5799 register struct float_block *fblk;
5800 struct float_block **fprev = &float_block;
5801 register int lim = float_block_index;
5802 EMACS_INT num_free = 0, num_used = 0;
5803
5804 float_free_list = 0;
5805
5806 for (fblk = float_block; fblk; fblk = *fprev)
5807 {
5808 register int i;
5809 int this_free = 0;
5810 for (i = 0; i < lim; i++)
5811 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5812 {
5813 this_free++;
5814 fblk->floats[i].u.chain = float_free_list;
5815 float_free_list = &fblk->floats[i];
5816 }
5817 else
5818 {
5819 num_used++;
5820 FLOAT_UNMARK (&fblk->floats[i]);
5821 }
5822 lim = FLOAT_BLOCK_SIZE;
5823 /* If this block contains only free floats and we have already
5824 seen more than two blocks worth of free floats then deallocate
5825 this block. */
5826 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5827 {
5828 *fprev = fblk->next;
5829 /* Unhook from the free list. */
5830 float_free_list = fblk->floats[0].u.chain;
5831 lisp_align_free (fblk);
5832 }
5833 else
5834 {
5835 num_free += this_free;
5836 fprev = &fblk->next;
5837 }
5838 }
5839 total_floats = num_used;
5840 total_free_floats = num_free;
5841 }
5842
5843 /* Put all unmarked intervals on free list */
5844 {
5845 register struct interval_block *iblk;
5846 struct interval_block **iprev = &interval_block;
5847 register int lim = interval_block_index;
5848 EMACS_INT num_free = 0, num_used = 0;
5849
5850 interval_free_list = 0;
5851
5852 for (iblk = interval_block; iblk; iblk = *iprev)
5853 {
5854 register int i;
5855 int this_free = 0;
5856
5857 for (i = 0; i < lim; i++)
5858 {
5859 if (!iblk->intervals[i].gcmarkbit)
5860 {
5861 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5862 interval_free_list = &iblk->intervals[i];
5863 this_free++;
5864 }
5865 else
5866 {
5867 num_used++;
5868 iblk->intervals[i].gcmarkbit = 0;
5869 }
5870 }
5871 lim = INTERVAL_BLOCK_SIZE;
5872 /* If this block contains only free intervals and we have already
5873 seen more than two blocks worth of free intervals then
5874 deallocate this block. */
5875 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5876 {
5877 *iprev = iblk->next;
5878 /* Unhook from the free list. */
5879 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5880 lisp_free (iblk);
5881 }
5882 else
5883 {
5884 num_free += this_free;
5885 iprev = &iblk->next;
5886 }
5887 }
5888 total_intervals = num_used;
5889 total_free_intervals = num_free;
5890 }
5891
5892 /* Put all unmarked symbols on free list */
5893 {
5894 register struct symbol_block *sblk;
5895 struct symbol_block **sprev = &symbol_block;
5896 register int lim = symbol_block_index;
5897 EMACS_INT num_free = 0, num_used = 0;
5898
5899 symbol_free_list = NULL;
5900
5901 for (sblk = symbol_block; sblk; sblk = *sprev)
5902 {
5903 int this_free = 0;
5904 struct Lisp_Symbol *sym = sblk->symbols;
5905 struct Lisp_Symbol *end = sym + lim;
5906
5907 for (; sym < end; ++sym)
5908 {
5909 /* Check if the symbol was created during loadup. In such a case
5910 it might be pointed to by pure bytecode which we don't trace,
5911 so we conservatively assume that it is live. */
5912 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5913
5914 if (!sym->gcmarkbit && !pure_p)
5915 {
5916 if (sym->redirect == SYMBOL_LOCALIZED)
5917 xfree (SYMBOL_BLV (sym));
5918 sym->next = symbol_free_list;
5919 symbol_free_list = sym;
5920 #if GC_MARK_STACK
5921 symbol_free_list->function = Vdead;
5922 #endif
5923 ++this_free;
5924 }
5925 else
5926 {
5927 ++num_used;
5928 if (!pure_p)
5929 UNMARK_STRING (XSTRING (sym->xname));
5930 sym->gcmarkbit = 0;
5931 }
5932 }
5933
5934 lim = SYMBOL_BLOCK_SIZE;
5935 /* If this block contains only free symbols and we have already
5936 seen more than two blocks worth of free symbols then deallocate
5937 this block. */
5938 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5939 {
5940 *sprev = sblk->next;
5941 /* Unhook from the free list. */
5942 symbol_free_list = sblk->symbols[0].next;
5943 lisp_free (sblk);
5944 }
5945 else
5946 {
5947 num_free += this_free;
5948 sprev = &sblk->next;
5949 }
5950 }
5951 total_symbols = num_used;
5952 total_free_symbols = num_free;
5953 }
5954
5955 /* Put all unmarked misc's on free list.
5956 For a marker, first unchain it from the buffer it points into. */
5957 {
5958 register struct marker_block *mblk;
5959 struct marker_block **mprev = &marker_block;
5960 register int lim = marker_block_index;
5961 EMACS_INT num_free = 0, num_used = 0;
5962
5963 marker_free_list = 0;
5964
5965 for (mblk = marker_block; mblk; mblk = *mprev)
5966 {
5967 register int i;
5968 int this_free = 0;
5969
5970 for (i = 0; i < lim; i++)
5971 {
5972 if (!mblk->markers[i].u_any.gcmarkbit)
5973 {
5974 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5975 unchain_marker (&mblk->markers[i].u_marker);
5976 /* Set the type of the freed object to Lisp_Misc_Free.
5977 We could leave the type alone, since nobody checks it,
5978 but this might catch bugs faster. */
5979 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5980 mblk->markers[i].u_free.chain = marker_free_list;
5981 marker_free_list = &mblk->markers[i];
5982 this_free++;
5983 }
5984 else
5985 {
5986 num_used++;
5987 mblk->markers[i].u_any.gcmarkbit = 0;
5988 }
5989 }
5990 lim = MARKER_BLOCK_SIZE;
5991 /* If this block contains only free markers and we have already
5992 seen more than two blocks worth of free markers then deallocate
5993 this block. */
5994 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5995 {
5996 *mprev = mblk->next;
5997 /* Unhook from the free list. */
5998 marker_free_list = mblk->markers[0].u_free.chain;
5999 lisp_free (mblk);
6000 }
6001 else
6002 {
6003 num_free += this_free;
6004 mprev = &mblk->next;
6005 }
6006 }
6007
6008 total_markers = num_used;
6009 total_free_markers = num_free;
6010 }
6011
6012 /* Free all unmarked buffers */
6013 {
6014 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6015
6016 while (buffer)
6017 if (!VECTOR_MARKED_P (buffer))
6018 {
6019 if (prev)
6020 prev->header.next = buffer->header.next;
6021 else
6022 all_buffers = buffer->header.next.buffer;
6023 next = buffer->header.next.buffer;
6024 lisp_free (buffer);
6025 buffer = next;
6026 }
6027 else
6028 {
6029 VECTOR_UNMARK (buffer);
6030 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6031 prev = buffer, buffer = buffer->header.next.buffer;
6032 }
6033 }
6034
6035 /* Free all unmarked vectors */
6036 {
6037 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6038 total_vector_size = 0;
6039
6040 while (vector)
6041 if (!VECTOR_MARKED_P (vector))
6042 {
6043 if (prev)
6044 prev->header.next = vector->header.next;
6045 else
6046 all_vectors = vector->header.next.vector;
6047 next = vector->header.next.vector;
6048 lisp_free (vector);
6049 vector = next;
6050
6051 }
6052 else
6053 {
6054 VECTOR_UNMARK (vector);
6055 if (vector->header.size & PSEUDOVECTOR_FLAG)
6056 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6057 else
6058 total_vector_size += vector->header.size;
6059 prev = vector, vector = vector->header.next.vector;
6060 }
6061 }
6062
6063 #ifdef GC_CHECK_STRING_BYTES
6064 if (!noninteractive)
6065 check_string_bytes (1);
6066 #endif
6067 }
6068
6069
6070
6071 \f
6072 /* Debugging aids. */
6073
6074 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6075 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6076 This may be helpful in debugging Emacs's memory usage.
6077 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6078 (void)
6079 {
6080 Lisp_Object end;
6081
6082 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6083
6084 return end;
6085 }
6086
6087 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6088 doc: /* Return a list of counters that measure how much consing there has been.
6089 Each of these counters increments for a certain kind of object.
6090 The counters wrap around from the largest positive integer to zero.
6091 Garbage collection does not decrease them.
6092 The elements of the value are as follows:
6093 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6094 All are in units of 1 = one object consed
6095 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6096 objects consed.
6097 MISCS include overlays, markers, and some internal types.
6098 Frames, windows, buffers, and subprocesses count as vectors
6099 (but the contents of a buffer's text do not count here). */)
6100 (void)
6101 {
6102 Lisp_Object consed[8];
6103
6104 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6105 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6106 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6107 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6108 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6109 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6110 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6111 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6112
6113 return Flist (8, consed);
6114 }
6115
6116 #ifdef ENABLE_CHECKING
6117 int suppress_checking;
6118
6119 void
6120 die (const char *msg, const char *file, int line)
6121 {
6122 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6123 file, line, msg);
6124 abort ();
6125 }
6126 #endif
6127 \f
6128 /* Initialization */
6129
6130 void
6131 init_alloc_once (void)
6132 {
6133 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6134 purebeg = PUREBEG;
6135 pure_size = PURESIZE;
6136 pure_bytes_used = 0;
6137 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6138 pure_bytes_used_before_overflow = 0;
6139
6140 /* Initialize the list of free aligned blocks. */
6141 free_ablock = NULL;
6142
6143 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6144 mem_init ();
6145 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6146 #endif
6147
6148 all_vectors = 0;
6149 ignore_warnings = 1;
6150 #ifdef DOUG_LEA_MALLOC
6151 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6152 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6153 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6154 #endif
6155 init_strings ();
6156 init_cons ();
6157 init_symbol ();
6158 init_marker ();
6159 init_float ();
6160 init_intervals ();
6161 init_weak_hash_tables ();
6162
6163 #ifdef REL_ALLOC
6164 malloc_hysteresis = 32;
6165 #else
6166 malloc_hysteresis = 0;
6167 #endif
6168
6169 refill_memory_reserve ();
6170
6171 ignore_warnings = 0;
6172 gcprolist = 0;
6173 byte_stack_list = 0;
6174 staticidx = 0;
6175 consing_since_gc = 0;
6176 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6177 gc_relative_threshold = 0;
6178 }
6179
6180 void
6181 init_alloc (void)
6182 {
6183 gcprolist = 0;
6184 byte_stack_list = 0;
6185 #if GC_MARK_STACK
6186 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6187 setjmp_tested_p = longjmps_done = 0;
6188 #endif
6189 #endif
6190 Vgc_elapsed = make_float (0.0);
6191 gcs_done = 0;
6192 }
6193
6194 void
6195 syms_of_alloc (void)
6196 {
6197 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6198 doc: /* *Number of bytes of consing between garbage collections.
6199 Garbage collection can happen automatically once this many bytes have been
6200 allocated since the last garbage collection. All data types count.
6201
6202 Garbage collection happens automatically only when `eval' is called.
6203
6204 By binding this temporarily to a large number, you can effectively
6205 prevent garbage collection during a part of the program.
6206 See also `gc-cons-percentage'. */);
6207
6208 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6209 doc: /* *Portion of the heap used for allocation.
6210 Garbage collection can happen automatically once this portion of the heap
6211 has been allocated since the last garbage collection.
6212 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6213 Vgc_cons_percentage = make_float (0.1);
6214
6215 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6216 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6217
6218 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6219 doc: /* Number of cons cells that have been consed so far. */);
6220
6221 DEFVAR_INT ("floats-consed", floats_consed,
6222 doc: /* Number of floats that have been consed so far. */);
6223
6224 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6225 doc: /* Number of vector cells that have been consed so far. */);
6226
6227 DEFVAR_INT ("symbols-consed", symbols_consed,
6228 doc: /* Number of symbols that have been consed so far. */);
6229
6230 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6231 doc: /* Number of string characters that have been consed so far. */);
6232
6233 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6234 doc: /* Number of miscellaneous objects that have been consed so far. */);
6235
6236 DEFVAR_INT ("intervals-consed", intervals_consed,
6237 doc: /* Number of intervals that have been consed so far. */);
6238
6239 DEFVAR_INT ("strings-consed", strings_consed,
6240 doc: /* Number of strings that have been consed so far. */);
6241
6242 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6243 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6244 This means that certain objects should be allocated in shared (pure) space.
6245 It can also be set to a hash-table, in which case this table is used to
6246 do hash-consing of the objects allocated to pure space. */);
6247
6248 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6249 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6250 garbage_collection_messages = 0;
6251
6252 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6253 doc: /* Hook run after garbage collection has finished. */);
6254 Vpost_gc_hook = Qnil;
6255 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6256
6257 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6258 doc: /* Precomputed `signal' argument for memory-full error. */);
6259 /* We build this in advance because if we wait until we need it, we might
6260 not be able to allocate the memory to hold it. */
6261 Vmemory_signal_data
6262 = pure_cons (Qerror,
6263 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6264
6265 DEFVAR_LISP ("memory-full", Vmemory_full,
6266 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6267 Vmemory_full = Qnil;
6268
6269 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6270 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6271
6272 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6273 doc: /* Accumulated time elapsed in garbage collections.
6274 The time is in seconds as a floating point value. */);
6275 DEFVAR_INT ("gcs-done", gcs_done,
6276 doc: /* Accumulated number of garbage collections done. */);
6277
6278 defsubr (&Scons);
6279 defsubr (&Slist);
6280 defsubr (&Svector);
6281 defsubr (&Smake_byte_code);
6282 defsubr (&Smake_list);
6283 defsubr (&Smake_vector);
6284 defsubr (&Smake_string);
6285 defsubr (&Smake_bool_vector);
6286 defsubr (&Smake_symbol);
6287 defsubr (&Smake_marker);
6288 defsubr (&Spurecopy);
6289 defsubr (&Sgarbage_collect);
6290 defsubr (&Smemory_limit);
6291 defsubr (&Smemory_use_counts);
6292
6293 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6294 defsubr (&Sgc_status);
6295 #endif
6296 }