Clean up scoping rule of predefined single-word vars.
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl-do-remf cl-set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl-progv-before
11 ;;;;;; cl-set-frame-visible-p cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-maplist cl-map cl-mapcar-many cl-equalp cl-coerce)
14 ;;;;;; "cl-extra" "cl-extra.el" "fecce2e361fd06364d2ffd8c0d482cd0")
15 ;;; Generated autoloads from cl-extra.el
16
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
20
21 \(fn OBJECT TYPE)" nil nil)
22
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
28
29 \(fn X Y)" nil nil)
30
31 (autoload 'cl-mapcar-many "cl-extra" "\
32
33
34 \(fn CL-FUNC CL-SEQS)" nil nil)
35
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
39
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
46
47 \(fn FUNCTION LIST...)" nil nil)
48
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
51
52 \(fn FUNCTION LIST...)" nil nil)
53
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
56
57 \(fn FUNCTION SEQUENCE...)" nil nil)
58
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
61
62 \(fn FUNCTION LIST...)" nil nil)
63
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
67
68 \(fn PREDICATE SEQ...)" nil nil)
69
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
72
73 \(fn PREDICATE SEQ...)" nil nil)
74
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
77
78 \(fn PREDICATE SEQ...)" nil nil)
79
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
82
83 \(fn PREDICATE SEQ...)" nil nil)
84
85 (autoload 'cl-map-keymap-recursively "cl-extra" "\
86
87
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
89
90 (autoload 'cl-map-intervals "cl-extra" "\
91
92
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
94
95 (autoload 'cl-map-overlays "cl-extra" "\
96
97
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
99
100 (autoload 'cl-set-frame-visible-p "cl-extra" "\
101
102
103 \(fn FRAME VAL)" nil nil)
104
105 (autoload 'cl-progv-before "cl-extra" "\
106
107
108 \(fn SYMS VALUES)" nil nil)
109
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
112
113 \(fn &rest ARGS)" nil nil)
114
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
117
118 \(fn &rest ARGS)" nil nil)
119
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
122
123 \(fn X)" nil nil)
124
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
128
129 \(fn X &optional Y)" nil nil)
130
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
134
135 \(fn X &optional Y)" nil nil)
136
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
140
141 \(fn X &optional Y)" nil nil)
142
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
146
147 \(fn X &optional Y)" nil nil)
148
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
151
152 \(fn X Y)" nil nil)
153
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
156
157 \(fn X Y)" nil nil)
158
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
161
162 \(fn X)" nil nil)
163
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
167
168 \(fn LIM &optional STATE)" nil nil)
169
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
173
174 \(fn &optional STATE)" nil nil)
175
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
178
179 \(fn OBJECT)" nil nil)
180
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
187
188 \(fn)" nil nil)
189
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
194
195 \(fn SEQ START &optional END)" nil nil)
196
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
199
200 \(fn TYPE SEQUENCE...)" nil nil)
201
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
204
205 \(fn X Y)" nil nil)
206
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
209
210 \(fn X Y)" nil nil)
211
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
214
215 \(fn X)" nil nil)
216
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
219
220 \(fn SUBLIST LIST)" nil nil)
221
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
224
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
226
227 (autoload 'cl-getf "cl-extra" "\
228 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
229 PROPLIST is a list of the sort returned by `symbol-plist'.
230
231 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
232
233 (autoload 'cl-set-getf "cl-extra" "\
234
235
236 \(fn PLIST TAG VAL)" nil nil)
237
238 (autoload 'cl-do-remf "cl-extra" "\
239
240
241 \(fn PLIST TAG)" nil nil)
242
243 (autoload 'cl-remprop "cl-extra" "\
244 Remove from SYMBOL's plist the property PROPNAME and its value.
245
246 \(fn SYMBOL PROPNAME)" nil nil)
247
248 (autoload 'cl-prettyexpand "cl-extra" "\
249
250
251 \(fn FORM &optional FULL)" nil nil)
252
253 ;;;***
254 \f
255 ;;;### (autoloads (cl-defsubst cl-compiler-macroexpand cl-define-compiler-macro
256 ;;;;;; cl-assert cl-check-type cl-typep cl-deftype cl-struct-setf-expander
257 ;;;;;; cl-defstruct cl-define-modify-macro cl-callf2 cl-callf cl-letf*
258 ;;;;;; cl-letf cl-rotatef cl-shiftf cl-remf cl-do-pop cl-psetf cl-setf
259 ;;;;;; cl-get-setf-method cl-defsetf cl-define-setf-expander cl-declare
260 ;;;;;; cl-the cl-locally cl-multiple-value-setq cl-multiple-value-bind
261 ;;;;;; cl-symbol-macrolet cl-macrolet cl-labels cl-flet cl-progv
262 ;;;;;; cl-psetq cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist
263 ;;;;;; cl-do* cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
264 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
265 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
266 ;;;;;; cl-gensym) "cl-macs" "cl-macs.el" "07b3d08f956d6740ea1979825c84bc01")
267 ;;; Generated autoloads from cl-macs.el
268
269 (autoload 'cl-gensym "cl-macs" "\
270 Generate a new uninterned symbol.
271 The name is made by appending a number to PREFIX, default \"G\".
272
273 \(fn &optional PREFIX)" nil nil)
274
275 (autoload 'cl-gentemp "cl-macs" "\
276 Generate a new interned symbol with a unique name.
277 The name is made by appending a number to PREFIX, default \"G\".
278
279 \(fn &optional PREFIX)" nil nil)
280
281 (autoload 'cl-defun "cl-macs" "\
282 Define NAME as a function.
283 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
284 and BODY is implicitly surrounded by (cl-block NAME ...).
285
286 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
287
288 (put 'cl-defun 'doc-string-elt '3)
289
290 (put 'cl-defun 'lisp-indent-function '2)
291
292 (autoload 'cl-defmacro "cl-macs" "\
293 Define NAME as a macro.
294 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
295 and BODY is implicitly surrounded by (cl-block NAME ...).
296
297 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
298
299 (put 'cl-defmacro 'doc-string-elt '3)
300
301 (put 'cl-defmacro 'lisp-indent-function '2)
302
303 (autoload 'cl-function "cl-macs" "\
304 Introduce a function.
305 Like normal `function', except that if argument is a lambda form,
306 its argument list allows full Common Lisp conventions.
307
308 \(fn FUNC)" nil t)
309
310 (autoload 'cl-destructuring-bind "cl-macs" "\
311
312
313 \(fn ARGS EXPR &rest BODY)" nil t)
314
315 (put 'cl-destructuring-bind 'lisp-indent-function '2)
316
317 (autoload 'cl-eval-when "cl-macs" "\
318 Control when BODY is evaluated.
319 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
320 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
321 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
322
323 \(fn (WHEN...) BODY...)" nil t)
324
325 (put 'cl-eval-when 'lisp-indent-function '1)
326
327 (autoload 'cl-load-time-value "cl-macs" "\
328 Like `progn', but evaluates the body at load time.
329 The result of the body appears to the compiler as a quoted constant.
330
331 \(fn FORM &optional READ-ONLY)" nil t)
332
333 (autoload 'cl-case "cl-macs" "\
334 Eval EXPR and choose among clauses on that value.
335 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
336 against each key in each KEYLIST; the corresponding BODY is evaluated.
337 If no clause succeeds, cl-case returns nil. A single atom may be used in
338 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
339 allowed only in the final clause, and matches if no other keys match.
340 Key values are compared by `eql'.
341
342 \(fn EXPR (KEYLIST BODY...)...)" nil t)
343
344 (put 'cl-case 'lisp-indent-function '1)
345
346 (autoload 'cl-ecase "cl-macs" "\
347 Like `cl-case', but error if no cl-case fits.
348 `otherwise'-clauses are not allowed.
349
350 \(fn EXPR (KEYLIST BODY...)...)" nil t)
351
352 (put 'cl-ecase 'lisp-indent-function '1)
353
354 (autoload 'cl-typecase "cl-macs" "\
355 Evals EXPR, chooses among clauses on that value.
356 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
357 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
358 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
359 final clause, and matches if no other keys match.
360
361 \(fn EXPR (TYPE BODY...)...)" nil t)
362
363 (put 'cl-typecase 'lisp-indent-function '1)
364
365 (autoload 'cl-etypecase "cl-macs" "\
366 Like `cl-typecase', but error if no case fits.
367 `otherwise'-clauses are not allowed.
368
369 \(fn EXPR (TYPE BODY...)...)" nil t)
370
371 (put 'cl-etypecase 'lisp-indent-function '1)
372
373 (autoload 'cl-block "cl-macs" "\
374 Define a lexically-scoped block named NAME.
375 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
376 to jump prematurely out of the block. This differs from `catch' and `throw'
377 in two respects: First, the NAME is an unevaluated symbol rather than a
378 quoted symbol or other form; and second, NAME is lexically rather than
379 dynamically scoped: Only references to it within BODY will work. These
380 references may appear inside macro expansions, but not inside functions
381 called from BODY.
382
383 \(fn NAME &rest BODY)" nil t)
384
385 (put 'cl-block 'lisp-indent-function '1)
386
387 (autoload 'cl-return "cl-macs" "\
388 Return from the block named nil.
389 This is equivalent to `(cl-return-from nil RESULT)'.
390
391 \(fn &optional RESULT)" nil t)
392
393 (autoload 'cl-return-from "cl-macs" "\
394 Return from the block named NAME.
395 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
396 returning RESULT from that form (or nil if RESULT is omitted).
397 This is compatible with Common Lisp, but note that `defun' and
398 `defmacro' do not create implicit blocks as they do in Common Lisp.
399
400 \(fn NAME &optional RESULT)" nil t)
401
402 (put 'cl-return-from 'lisp-indent-function '1)
403
404 (autoload 'cl-loop "cl-macs" "\
405 The Common Lisp `cl-loop' macro.
406 Valid clauses are:
407 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
408 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
409 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
410 always COND, never COND, thereis COND, collect EXPR into VAR,
411 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
412 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
413 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
415 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
416 finally return EXPR, named NAME.
417
418 \(fn CLAUSE...)" nil t)
419
420 (autoload 'cl-do "cl-macs" "\
421 The Common Lisp `cl-do' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
424
425 (put 'cl-do 'lisp-indent-function '2)
426
427 (autoload 'cl-do* "cl-macs" "\
428 The Common Lisp `cl-do*' loop.
429
430 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
431
432 (put 'cl-do* 'lisp-indent-function '2)
433
434 (autoload 'cl-dolist "cl-macs" "\
435 Loop over a list.
436 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
437 Then evaluate RESULT to get return value, default nil.
438 An implicit nil block is established around the loop.
439
440 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
441
442 (autoload 'cl-dotimes "cl-macs" "\
443 Loop a certain number of times.
444 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
445 to COUNT, exclusive. Then evaluate RESULT to get return value, default
446 nil.
447
448 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
449
450 (autoload 'cl-do-symbols "cl-macs" "\
451 Loop over all symbols.
452 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
453 from OBARRAY.
454
455 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
456
457 (put 'cl-do-symbols 'lisp-indent-function '1)
458
459 (autoload 'cl-do-all-symbols "cl-macs" "\
460
461
462 \(fn SPEC &rest BODY)" nil t)
463
464 (put 'cl-do-all-symbols 'lisp-indent-function '1)
465
466 (autoload 'cl-psetq "cl-macs" "\
467 Set SYMs to the values VALs in parallel.
468 This is like `setq', except that all VAL forms are evaluated (in order)
469 before assigning any symbols SYM to the corresponding values.
470
471 \(fn SYM VAL SYM VAL ...)" nil t)
472
473 (autoload 'cl-progv "cl-macs" "\
474 Bind SYMBOLS to VALUES dynamically in BODY.
475 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
476 Each symbol in the first list is bound to the corresponding value in the
477 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
478 BODY forms are executed and their result is returned. This is much like
479 a `let' form, except that the list of symbols can be computed at run-time.
480
481 \(fn SYMBOLS VALUES &rest BODY)" nil t)
482
483 (put 'cl-progv 'lisp-indent-function '2)
484
485 (autoload 'cl-flet "cl-macs" "\
486 Make temporary function definitions.
487 Like `cl-labels' but the definitions are not recursive.
488
489 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
490
491 (put 'cl-flet 'lisp-indent-function '1)
492
493 (autoload 'cl-labels "cl-macs" "\
494 Make temporary function bindings.
495 The bindings can be recursive. Assumes the use of `lexical-binding'.
496
497 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
498
499 (put 'cl-labels 'lisp-indent-function '1)
500
501 (autoload 'cl-macrolet "cl-macs" "\
502 Make temporary macro definitions.
503 This is like `cl-flet', but for macros instead of functions.
504
505 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
506
507 (put 'cl-macrolet 'lisp-indent-function '1)
508
509 (autoload 'cl-symbol-macrolet "cl-macs" "\
510 Make symbol macro definitions.
511 Within the body FORMs, references to the variable NAME will be replaced
512 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
513
514 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
515
516 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
517
518 (autoload 'cl-multiple-value-bind "cl-macs" "\
519 Collect multiple return values.
520 FORM must return a list; the BODY is then executed with the first N elements
521 of this list bound (`let'-style) to each of the symbols SYM in turn. This
522 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
523 simulate true multiple return values. For compatibility, (cl-values A B C) is
524 a synonym for (list A B C).
525
526 \(fn (SYM...) FORM BODY)" nil t)
527
528 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
529
530 (autoload 'cl-multiple-value-setq "cl-macs" "\
531 Collect multiple return values.
532 FORM must return a list; the first N elements of this list are stored in
533 each of the symbols SYM in turn. This is analogous to the Common Lisp
534 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
535 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
536
537 \(fn (SYM...) FORM)" nil t)
538
539 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
540
541 (autoload 'cl-locally "cl-macs" "\
542
543
544 \(fn &rest BODY)" nil t)
545
546 (autoload 'cl-the "cl-macs" "\
547
548
549 \(fn TYPE FORM)" nil t)
550
551 (put 'cl-the 'lisp-indent-function '1)
552
553 (autoload 'cl-declare "cl-macs" "\
554 Declare SPECS about the current function while compiling.
555 For instance
556
557 (cl-declare (warn 0))
558
559 will turn off byte-compile warnings in the function.
560 See Info node `(cl)Declarations' for details.
561
562 \(fn &rest SPECS)" nil t)
563
564 (autoload 'cl-define-setf-expander "cl-macs" "\
565 Define a `cl-setf' method.
566 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
567 The argument forms ARGS are bound according to ARGLIST, as if NAME were
568 going to be expanded as a macro, then the BODY forms are executed and must
569 return a list of five elements: a temporary-variables list, a value-forms
570 list, a store-variables list (of length one), a store-form, and an access-
571 form. See `cl-defsetf' for a simpler way to define most setf-methods.
572
573 \(fn NAME ARGLIST BODY...)" nil t)
574
575 (autoload 'cl-defsetf "cl-macs" "\
576 Define a `cl-setf' method.
577 This macro is an easy-to-use substitute for `cl-define-setf-expander' that works
578 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
579 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
580 calls of the form (FUNC ARGS... VAL). Example:
581
582 (cl-defsetf aref aset)
583
584 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
585 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
586 according to ARGLIST, binding the value form VAL to STORE, then executing
587 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
588 Actually, ARGLIST and STORE may be bound to temporary variables which are
589 introduced automatically to preserve proper execution order of the arguments.
590 Example:
591
592 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
593
594 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil t)
595
596 (autoload 'cl-get-setf-method "cl-macs" "\
597 Return a list of five values describing the setf-method for PLACE.
598 PLACE may be any Lisp form which can appear as the PLACE argument to
599 a macro like `cl-setf' or `cl-incf'.
600
601 \(fn PLACE &optional ENV)" nil nil)
602
603 (autoload 'cl-setf "cl-macs" "\
604 Set each PLACE to the value of its VAL.
605 This is a generalized version of `setq'; the PLACEs may be symbolic
606 references such as (car x) or (aref x i), as well as plain symbols.
607 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
608 The return value is the last VAL in the list.
609
610 \(fn PLACE VAL PLACE VAL ...)" nil t)
611
612 (autoload 'cl-psetf "cl-macs" "\
613 Set PLACEs to the values VALs in parallel.
614 This is like `cl-setf', except that all VAL forms are evaluated (in order)
615 before assigning any PLACEs to the corresponding values.
616
617 \(fn PLACE VAL PLACE VAL ...)" nil t)
618
619 (autoload 'cl-do-pop "cl-macs" "\
620
621
622 \(fn PLACE)" nil nil)
623
624 (autoload 'cl-remf "cl-macs" "\
625 Remove TAG from property list PLACE.
626 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
627 The form returns true if TAG was found and removed, nil otherwise.
628
629 \(fn PLACE TAG)" nil t)
630
631 (autoload 'cl-shiftf "cl-macs" "\
632 Shift left among PLACEs.
633 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
634 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
635
636 \(fn PLACE... VAL)" nil t)
637
638 (autoload 'cl-rotatef "cl-macs" "\
639 Rotate left among PLACEs.
640 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
641 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
642
643 \(fn PLACE...)" nil t)
644
645 (autoload 'cl-letf "cl-macs" "\
646 Temporarily bind to PLACEs.
647 This is the analogue of `let', but with generalized variables (in the
648 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
649 VALUE, then the BODY forms are executed. On exit, either normally or
650 because of a `throw' or error, the PLACEs are set back to their original
651 values. Note that this macro is *not* available in Common Lisp.
652 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
653 the PLACE is not modified before executing BODY.
654
655 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
656
657 (put 'cl-letf 'lisp-indent-function '1)
658
659 (autoload 'cl-letf* "cl-macs" "\
660 Temporarily bind to PLACEs.
661 This is the analogue of `let*', but with generalized variables (in the
662 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
663 VALUE, then the BODY forms are executed. On exit, either normally or
664 because of a `throw' or error, the PLACEs are set back to their original
665 values. Note that this macro is *not* available in Common Lisp.
666 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
667 the PLACE is not modified before executing BODY.
668
669 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
670
671 (put 'cl-letf* 'lisp-indent-function '1)
672
673 (autoload 'cl-callf "cl-macs" "\
674 Set PLACE to (FUNC PLACE ARGS...).
675 FUNC should be an unquoted function name. PLACE may be a symbol,
676 or any generalized variable allowed by `cl-setf'.
677
678 \(fn FUNC PLACE ARGS...)" nil t)
679
680 (put 'cl-callf 'lisp-indent-function '2)
681
682 (autoload 'cl-callf2 "cl-macs" "\
683 Set PLACE to (FUNC ARG1 PLACE ARGS...).
684 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
685
686 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
687
688 (put 'cl-callf2 'lisp-indent-function '3)
689
690 (autoload 'cl-define-modify-macro "cl-macs" "\
691 Define a `cl-setf'-like modify macro.
692 If NAME is called, it combines its PLACE argument with the other arguments
693 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)
694
695 \(fn NAME ARGLIST FUNC &optional DOC)" nil t)
696
697 (autoload 'cl-defstruct "cl-macs" "\
698 Define a struct type.
699 This macro defines a new data type called NAME that stores data
700 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
701 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
702 You can use the accessors to set the corresponding slots, via `cl-setf'.
703
704 NAME may instead take the form (NAME OPTIONS...), where each
705 OPTION is either a single keyword or (KEYWORD VALUE).
706 See Info node `(cl)Structures' for a list of valid keywords.
707
708 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
709 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
710 one keyword is supported, `:read-only'. If this has a non-nil
711 value, that slot cannot be set via `cl-setf'.
712
713 \(fn NAME SLOTS...)" nil t)
714
715 (put 'cl-defstruct 'doc-string-elt '2)
716
717 (autoload 'cl-struct-setf-expander "cl-macs" "\
718
719
720 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
721
722 (autoload 'cl-deftype "cl-macs" "\
723 Define NAME as a new data type.
724 The type name can then be used in `cl-typecase', `cl-check-type', etc.
725
726 \(fn NAME ARGLIST &rest BODY)" nil t)
727
728 (put 'cl-deftype 'doc-string-elt '3)
729
730 (autoload 'cl-typep "cl-macs" "\
731 Check that OBJECT is of type TYPE.
732 TYPE is a Common Lisp-style type specifier.
733
734 \(fn OBJECT TYPE)" nil nil)
735
736 (autoload 'cl-check-type "cl-macs" "\
737 Verify that FORM is of type TYPE; signal an error if not.
738 STRING is an optional description of the desired type.
739
740 \(fn FORM TYPE &optional STRING)" nil t)
741
742 (autoload 'cl-assert "cl-macs" "\
743 Verify that FORM returns non-nil; signal an error if not.
744 Second arg SHOW-ARGS means to include arguments of FORM in message.
745 Other args STRING and ARGS... are arguments to be passed to `error'.
746 They are not evaluated unless the assertion fails. If STRING is
747 omitted, a default message listing FORM itself is used.
748
749 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
750
751 (autoload 'cl-define-compiler-macro "cl-macs" "\
752 Define a compiler-only macro.
753 This is like `defmacro', but macro expansion occurs only if the call to
754 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
755 for optimizing the way calls to FUNC are compiled; the form returned by
756 BODY should do the same thing as a call to the normal function called
757 FUNC, though possibly more efficiently. Note that, like regular macros,
758 compiler macros are expanded repeatedly until no further expansions are
759 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
760 original function call alone by declaring an initial `&whole foo' parameter
761 and then returning foo.
762
763 \(fn FUNC ARGS &rest BODY)" nil t)
764
765 (autoload 'cl-compiler-macroexpand "cl-macs" "\
766
767
768 \(fn FORM)" nil nil)
769
770 (autoload 'cl-defsubst "cl-macs" "\
771 Define NAME as a function.
772 Like `defun', except the function is automatically declared `inline',
773 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
774 surrounded by (cl-block NAME ...).
775
776 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
777
778 ;;;***
779 \f
780 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
781 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
782 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
783 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
784 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
785 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
786 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
787 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
788 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
789 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
790 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
791 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
792 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "d3eaca7a24bdb10b381bb94729c5d7e9")
793 ;;; Generated autoloads from cl-seq.el
794
795 (autoload 'cl-reduce "cl-seq" "\
796 Reduce two-argument FUNCTION across SEQ.
797
798 Keywords supported: :start :end :from-end :initial-value :key
799
800 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
801
802 (autoload 'cl-fill "cl-seq" "\
803 Fill the elements of SEQ with ITEM.
804
805 Keywords supported: :start :end
806
807 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
808
809 (autoload 'cl-replace "cl-seq" "\
810 Replace the elements of SEQ1 with the elements of SEQ2.
811 SEQ1 is destructively modified, then returned.
812
813 Keywords supported: :start1 :end1 :start2 :end2
814
815 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
816
817 (autoload 'cl-remove "cl-seq" "\
818 Remove all occurrences of ITEM in SEQ.
819 This is a non-destructive function; it makes a copy of SEQ if necessary
820 to avoid corrupting the original SEQ.
821
822 Keywords supported: :test :test-not :key :count :start :end :from-end
823
824 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
825
826 (autoload 'cl-remove-if "cl-seq" "\
827 Remove all items satisfying PREDICATE in SEQ.
828 This is a non-destructive function; it makes a copy of SEQ if necessary
829 to avoid corrupting the original SEQ.
830
831 Keywords supported: :key :count :start :end :from-end
832
833 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
834
835 (autoload 'cl-remove-if-not "cl-seq" "\
836 Remove all items not satisfying PREDICATE in SEQ.
837 This is a non-destructive function; it makes a copy of SEQ if necessary
838 to avoid corrupting the original SEQ.
839
840 Keywords supported: :key :count :start :end :from-end
841
842 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
843
844 (autoload 'cl-delete "cl-seq" "\
845 Remove all occurrences of ITEM in SEQ.
846 This is a destructive function; it reuses the storage of SEQ whenever possible.
847
848 Keywords supported: :test :test-not :key :count :start :end :from-end
849
850 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
851
852 (autoload 'cl-delete-if "cl-seq" "\
853 Remove all items satisfying PREDICATE in SEQ.
854 This is a destructive function; it reuses the storage of SEQ whenever possible.
855
856 Keywords supported: :key :count :start :end :from-end
857
858 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
859
860 (autoload 'cl-delete-if-not "cl-seq" "\
861 Remove all items not satisfying PREDICATE in SEQ.
862 This is a destructive function; it reuses the storage of SEQ whenever possible.
863
864 Keywords supported: :key :count :start :end :from-end
865
866 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
867
868 (autoload 'cl-remove-duplicates "cl-seq" "\
869 Return a copy of SEQ with all duplicate elements removed.
870
871 Keywords supported: :test :test-not :key :start :end :from-end
872
873 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
874
875 (autoload 'cl-delete-duplicates "cl-seq" "\
876 Remove all duplicate elements from SEQ (destructively).
877
878 Keywords supported: :test :test-not :key :start :end :from-end
879
880 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
881
882 (autoload 'cl-substitute "cl-seq" "\
883 Substitute NEW for OLD in SEQ.
884 This is a non-destructive function; it makes a copy of SEQ if necessary
885 to avoid corrupting the original SEQ.
886
887 Keywords supported: :test :test-not :key :count :start :end :from-end
888
889 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
890
891 (autoload 'cl-substitute-if "cl-seq" "\
892 Substitute NEW for all items satisfying PREDICATE in SEQ.
893 This is a non-destructive function; it makes a copy of SEQ if necessary
894 to avoid corrupting the original SEQ.
895
896 Keywords supported: :key :count :start :end :from-end
897
898 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
899
900 (autoload 'cl-substitute-if-not "cl-seq" "\
901 Substitute NEW for all items not satisfying PREDICATE in SEQ.
902 This is a non-destructive function; it makes a copy of SEQ if necessary
903 to avoid corrupting the original SEQ.
904
905 Keywords supported: :key :count :start :end :from-end
906
907 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
908
909 (autoload 'cl-nsubstitute "cl-seq" "\
910 Substitute NEW for OLD in SEQ.
911 This is a destructive function; it reuses the storage of SEQ whenever possible.
912
913 Keywords supported: :test :test-not :key :count :start :end :from-end
914
915 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
916
917 (autoload 'cl-nsubstitute-if "cl-seq" "\
918 Substitute NEW for all items satisfying PREDICATE in SEQ.
919 This is a destructive function; it reuses the storage of SEQ whenever possible.
920
921 Keywords supported: :key :count :start :end :from-end
922
923 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
924
925 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
926 Substitute NEW for all items not satisfying PREDICATE in SEQ.
927 This is a destructive function; it reuses the storage of SEQ whenever possible.
928
929 Keywords supported: :key :count :start :end :from-end
930
931 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
932
933 (autoload 'cl-find "cl-seq" "\
934 Find the first occurrence of ITEM in SEQ.
935 Return the matching ITEM, or nil if not found.
936
937 Keywords supported: :test :test-not :key :start :end :from-end
938
939 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
940
941 (autoload 'cl-find-if "cl-seq" "\
942 Find the first item satisfying PREDICATE in SEQ.
943 Return the matching item, or nil if not found.
944
945 Keywords supported: :key :start :end :from-end
946
947 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
948
949 (autoload 'cl-find-if-not "cl-seq" "\
950 Find the first item not satisfying PREDICATE in SEQ.
951 Return the matching item, or nil if not found.
952
953 Keywords supported: :key :start :end :from-end
954
955 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
956
957 (autoload 'cl-position "cl-seq" "\
958 Find the first occurrence of ITEM in SEQ.
959 Return the index of the matching item, or nil if not found.
960
961 Keywords supported: :test :test-not :key :start :end :from-end
962
963 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
964
965 (autoload 'cl-position-if "cl-seq" "\
966 Find the first item satisfying PREDICATE in SEQ.
967 Return the index of the matching item, or nil if not found.
968
969 Keywords supported: :key :start :end :from-end
970
971 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
972
973 (autoload 'cl-position-if-not "cl-seq" "\
974 Find the first item not satisfying PREDICATE in SEQ.
975 Return the index of the matching item, or nil if not found.
976
977 Keywords supported: :key :start :end :from-end
978
979 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
980
981 (autoload 'cl-count "cl-seq" "\
982 Count the number of occurrences of ITEM in SEQ.
983
984 Keywords supported: :test :test-not :key :start :end
985
986 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
987
988 (autoload 'cl-count-if "cl-seq" "\
989 Count the number of items satisfying PREDICATE in SEQ.
990
991 Keywords supported: :key :start :end
992
993 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
994
995 (autoload 'cl-count-if-not "cl-seq" "\
996 Count the number of items not satisfying PREDICATE in SEQ.
997
998 Keywords supported: :key :start :end
999
1000 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1001
1002 (autoload 'cl-mismatch "cl-seq" "\
1003 Compare SEQ1 with SEQ2, return index of first mismatching element.
1004 Return nil if the sequences match. If one sequence is a prefix of the
1005 other, the return value indicates the end of the shorter sequence.
1006
1007 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1008
1009 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1010
1011 (autoload 'cl-search "cl-seq" "\
1012 Search for SEQ1 as a subsequence of SEQ2.
1013 Return the index of the leftmost element of the first match found;
1014 return nil if there are no matches.
1015
1016 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1017
1018 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1019
1020 (autoload 'cl-sort "cl-seq" "\
1021 Sort the argument SEQ according to PREDICATE.
1022 This is a destructive function; it reuses the storage of SEQ if possible.
1023
1024 Keywords supported: :key
1025
1026 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1027
1028 (autoload 'cl-stable-sort "cl-seq" "\
1029 Sort the argument SEQ stably according to PREDICATE.
1030 This is a destructive function; it reuses the storage of SEQ if possible.
1031
1032 Keywords supported: :key
1033
1034 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1035
1036 (autoload 'cl-merge "cl-seq" "\
1037 Destructively merge the two sequences to produce a new sequence.
1038 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1039 sequences, and PREDICATE is a `less-than' predicate on the elements.
1040
1041 Keywords supported: :key
1042
1043 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1044
1045 (autoload 'cl-member "cl-seq" "\
1046 Find the first occurrence of ITEM in LIST.
1047 Return the sublist of LIST whose car is ITEM.
1048
1049 Keywords supported: :test :test-not :key
1050
1051 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1052
1053 (autoload 'cl-member-if "cl-seq" "\
1054 Find the first item satisfying PREDICATE in LIST.
1055 Return the sublist of LIST whose car matches.
1056
1057 Keywords supported: :key
1058
1059 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1060
1061 (autoload 'cl-member-if-not "cl-seq" "\
1062 Find the first item not satisfying PREDICATE in LIST.
1063 Return the sublist of LIST whose car matches.
1064
1065 Keywords supported: :key
1066
1067 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1068
1069 (autoload 'cl--adjoin "cl-seq" "\
1070
1071
1072 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1073
1074 (autoload 'cl-assoc "cl-seq" "\
1075 Find the first item whose car matches ITEM in LIST.
1076
1077 Keywords supported: :test :test-not :key
1078
1079 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1080
1081 (autoload 'cl-assoc-if "cl-seq" "\
1082 Find the first item whose car satisfies PREDICATE in LIST.
1083
1084 Keywords supported: :key
1085
1086 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1087
1088 (autoload 'cl-assoc-if-not "cl-seq" "\
1089 Find the first item whose car does not satisfy PREDICATE in LIST.
1090
1091 Keywords supported: :key
1092
1093 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1094
1095 (autoload 'cl-rassoc "cl-seq" "\
1096 Find the first item whose cdr matches ITEM in LIST.
1097
1098 Keywords supported: :test :test-not :key
1099
1100 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1101
1102 (autoload 'cl-rassoc-if "cl-seq" "\
1103 Find the first item whose cdr satisfies PREDICATE in LIST.
1104
1105 Keywords supported: :key
1106
1107 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1108
1109 (autoload 'cl-rassoc-if-not "cl-seq" "\
1110 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1111
1112 Keywords supported: :key
1113
1114 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1115
1116 (autoload 'cl-union "cl-seq" "\
1117 Combine LIST1 and LIST2 using a set-union operation.
1118 The resulting list contains all items that appear in either LIST1 or LIST2.
1119 This is a non-destructive function; it makes a copy of the data if necessary
1120 to avoid corrupting the original LIST1 and LIST2.
1121
1122 Keywords supported: :test :test-not :key
1123
1124 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1125
1126 (autoload 'cl-nunion "cl-seq" "\
1127 Combine LIST1 and LIST2 using a set-union operation.
1128 The resulting list contains all items that appear in either LIST1 or LIST2.
1129 This is a destructive function; it reuses the storage of LIST1 and LIST2
1130 whenever possible.
1131
1132 Keywords supported: :test :test-not :key
1133
1134 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1135
1136 (autoload 'cl-intersection "cl-seq" "\
1137 Combine LIST1 and LIST2 using a set-intersection operation.
1138 The resulting list contains all items that appear in both LIST1 and LIST2.
1139 This is a non-destructive function; it makes a copy of the data if necessary
1140 to avoid corrupting the original LIST1 and LIST2.
1141
1142 Keywords supported: :test :test-not :key
1143
1144 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1145
1146 (autoload 'cl-nintersection "cl-seq" "\
1147 Combine LIST1 and LIST2 using a set-intersection operation.
1148 The resulting list contains all items that appear in both LIST1 and LIST2.
1149 This is a destructive function; it reuses the storage of LIST1 and LIST2
1150 whenever possible.
1151
1152 Keywords supported: :test :test-not :key
1153
1154 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1155
1156 (autoload 'cl-set-difference "cl-seq" "\
1157 Combine LIST1 and LIST2 using a set-difference operation.
1158 The resulting list contains all items that appear in LIST1 but not LIST2.
1159 This is a non-destructive function; it makes a copy of the data if necessary
1160 to avoid corrupting the original LIST1 and LIST2.
1161
1162 Keywords supported: :test :test-not :key
1163
1164 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1165
1166 (autoload 'cl-nset-difference "cl-seq" "\
1167 Combine LIST1 and LIST2 using a set-difference operation.
1168 The resulting list contains all items that appear in LIST1 but not LIST2.
1169 This is a destructive function; it reuses the storage of LIST1 and LIST2
1170 whenever possible.
1171
1172 Keywords supported: :test :test-not :key
1173
1174 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1175
1176 (autoload 'cl-set-exclusive-or "cl-seq" "\
1177 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1178 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1179 This is a non-destructive function; it makes a copy of the data if necessary
1180 to avoid corrupting the original LIST1 and LIST2.
1181
1182 Keywords supported: :test :test-not :key
1183
1184 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1185
1186 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1187 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1188 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1189 This is a destructive function; it reuses the storage of LIST1 and LIST2
1190 whenever possible.
1191
1192 Keywords supported: :test :test-not :key
1193
1194 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1195
1196 (autoload 'cl-subsetp "cl-seq" "\
1197 Return true if LIST1 is a subset of LIST2.
1198 I.e., if every element of LIST1 also appears in LIST2.
1199
1200 Keywords supported: :test :test-not :key
1201
1202 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1203
1204 (autoload 'cl-subst-if "cl-seq" "\
1205 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1206 Return a copy of TREE with all matching elements replaced by NEW.
1207
1208 Keywords supported: :key
1209
1210 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1211
1212 (autoload 'cl-subst-if-not "cl-seq" "\
1213 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1214 Return a copy of TREE with all non-matching elements replaced by NEW.
1215
1216 Keywords supported: :key
1217
1218 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1219
1220 (autoload 'cl-nsubst "cl-seq" "\
1221 Substitute NEW for OLD everywhere in TREE (destructively).
1222 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1223 to `setcar').
1224
1225 Keywords supported: :test :test-not :key
1226
1227 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1228
1229 (autoload 'cl-nsubst-if "cl-seq" "\
1230 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1231 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1232
1233 Keywords supported: :key
1234
1235 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1236
1237 (autoload 'cl-nsubst-if-not "cl-seq" "\
1238 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1239 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1240
1241 Keywords supported: :key
1242
1243 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1244
1245 (autoload 'cl-sublis "cl-seq" "\
1246 Perform substitutions indicated by ALIST in TREE (non-destructively).
1247 Return a copy of TREE with all matching elements replaced.
1248
1249 Keywords supported: :test :test-not :key
1250
1251 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1252
1253 (autoload 'cl-nsublis "cl-seq" "\
1254 Perform substitutions indicated by ALIST in TREE (destructively).
1255 Any matching element of TREE is changed via a call to `setcar'.
1256
1257 Keywords supported: :test :test-not :key
1258
1259 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1260
1261 (autoload 'cl-tree-equal "cl-seq" "\
1262 Return t if trees TREE1 and TREE2 have `eql' leaves.
1263 Atoms are compared by `eql'; cons cells are compared recursively.
1264
1265 Keywords supported: :test :test-not :key
1266
1267 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1268
1269 ;;;***
1270 \f
1271 ;; Local Variables:
1272 ;; version-control: never
1273 ;; no-byte-compile: t
1274 ;; no-update-autoloads: t
1275 ;; coding: utf-8
1276 ;; End:
1277 ;;; cl-loaddefs.el ends here