Small doc and elisp manual fixes related to searching
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "character.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (EMACS_INT, EMACS_INT);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, EMACS_INT,
96 EMACS_INT, Lisp_Object, EMACS_INT, EMACS_INT,
97 EMACS_INT, EMACS_INT);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, EMACS_INT,
99 Lisp_Object, Lisp_Object, EMACS_INT,
100 EMACS_INT, int);
101 static EMACS_INT search_buffer (Lisp_Object, EMACS_INT, EMACS_INT,
102 EMACS_INT, EMACS_INT, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 EMACS_INT s1, s2;
276 register EMACS_INT i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 EMACS_INT val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos, pos_byte;
374 int i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 EMACS_INT len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 EMACS_INT
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 EMACS_INT val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 EMACS_INT
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 EMACS_INT val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 EMACS_INT
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 EMACS_INT val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 EMACS_INT
539 fast_looking_at (Lisp_Object regexp, EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT limit, EMACS_INT limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 EMACS_INT s1, s2;
545 EMACS_INT len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 EMACS_INT
645 scan_buffer (register int target, EMACS_INT start, EMACS_INT end,
646 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 EMACS_INT start_byte = CHAR_TO_BYTE (start);
680 EMACS_INT tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 ptrdiff_t next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 BYTE_TO_CHAR (start_byte + scan_start - base),
730 BYTE_TO_CHAR (start_byte + cursor - base));
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end);
752 EMACS_INT start_byte = CHAR_TO_BYTE (start);
753 EMACS_INT tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 ptrdiff_t next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 BYTE_TO_CHAR (start_byte + cursor - base),
796 BYTE_TO_CHAR (start_byte + scan_start - base));
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (EMACS_INT start, EMACS_INT start_byte,
839 EMACS_INT limit, EMACS_INT limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 EMACS_INT ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 EMACS_INT
934 find_next_newline_no_quit (EMACS_INT from, EMACS_INT cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (EMACS_INT *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 EMACS_INT
944 find_before_next_newline (EMACS_INT from, EMACS_INT to, EMACS_INT cnt)
945 {
946 EMACS_INT shortage;
947 EMACS_INT pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register EMACS_INT np;
962 EMACS_INT lim, lim_byte;
963 EMACS_INT n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 EMACS_INT len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, EMACS_INT pos, EMACS_INT pos_byte,
1103 EMACS_INT lim, EMACS_INT lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 EMACS_INT len = SCHARS (string);
1107 EMACS_INT len_byte = SBYTES (string);
1108 register int i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 EMACS_INT s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 EMACS_INT val;
1161 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1162 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1163 (NILP (Vinhibit_changing_match_data)
1164 ? &search_regs : &search_regs_1),
1165 /* Don't allow match past current point */
1166 pos_byte - BEGV_BYTE);
1167 if (val == -2)
1168 {
1169 matcher_overflow ();
1170 }
1171 if (val >= 0)
1172 {
1173 if (NILP (Vinhibit_changing_match_data))
1174 {
1175 pos_byte = search_regs.start[0] + BEGV_BYTE;
1176 for (i = 0; i < search_regs.num_regs; i++)
1177 if (search_regs.start[i] >= 0)
1178 {
1179 search_regs.start[i]
1180 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1181 search_regs.end[i]
1182 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1183 }
1184 XSETBUFFER (last_thing_searched, current_buffer);
1185 /* Set pos to the new position. */
1186 pos = search_regs.start[0];
1187 }
1188 else
1189 {
1190 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1191 /* Set pos to the new position. */
1192 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1193 }
1194 }
1195 else
1196 {
1197 immediate_quit = 0;
1198 return (n);
1199 }
1200 n++;
1201 }
1202 while (n > 0)
1203 {
1204 EMACS_INT val;
1205 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1206 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1207 (NILP (Vinhibit_changing_match_data)
1208 ? &search_regs : &search_regs_1),
1209 lim_byte - BEGV_BYTE);
1210 if (val == -2)
1211 {
1212 matcher_overflow ();
1213 }
1214 if (val >= 0)
1215 {
1216 if (NILP (Vinhibit_changing_match_data))
1217 {
1218 pos_byte = search_regs.end[0] + BEGV_BYTE;
1219 for (i = 0; i < search_regs.num_regs; i++)
1220 if (search_regs.start[i] >= 0)
1221 {
1222 search_regs.start[i]
1223 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1224 search_regs.end[i]
1225 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1226 }
1227 XSETBUFFER (last_thing_searched, current_buffer);
1228 pos = search_regs.end[0];
1229 }
1230 else
1231 {
1232 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1233 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1234 }
1235 }
1236 else
1237 {
1238 immediate_quit = 0;
1239 return (0 - n);
1240 }
1241 n--;
1242 }
1243 immediate_quit = 0;
1244 return (pos);
1245 }
1246 else /* non-RE case */
1247 {
1248 unsigned char *raw_pattern, *pat;
1249 EMACS_INT raw_pattern_size;
1250 EMACS_INT raw_pattern_size_byte;
1251 unsigned char *patbuf;
1252 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1253 unsigned char *base_pat;
1254 /* Set to positive if we find a non-ASCII char that need
1255 translation. Otherwise set to zero later. */
1256 int char_base = -1;
1257 int boyer_moore_ok = 1;
1258
1259 /* MULTIBYTE says whether the text to be searched is multibyte.
1260 We must convert PATTERN to match that, or we will not really
1261 find things right. */
1262
1263 if (multibyte == STRING_MULTIBYTE (string))
1264 {
1265 raw_pattern = SDATA (string);
1266 raw_pattern_size = SCHARS (string);
1267 raw_pattern_size_byte = SBYTES (string);
1268 }
1269 else if (multibyte)
1270 {
1271 raw_pattern_size = SCHARS (string);
1272 raw_pattern_size_byte
1273 = count_size_as_multibyte (SDATA (string),
1274 raw_pattern_size);
1275 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1276 copy_text (SDATA (string), raw_pattern,
1277 SCHARS (string), 0, 1);
1278 }
1279 else
1280 {
1281 /* Converting multibyte to single-byte.
1282
1283 ??? Perhaps this conversion should be done in a special way
1284 by subtracting nonascii-insert-offset from each non-ASCII char,
1285 so that only the multibyte chars which really correspond to
1286 the chosen single-byte character set can possibly match. */
1287 raw_pattern_size = SCHARS (string);
1288 raw_pattern_size_byte = SCHARS (string);
1289 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1290 copy_text (SDATA (string), raw_pattern,
1291 SBYTES (string), 1, 0);
1292 }
1293
1294 /* Copy and optionally translate the pattern. */
1295 len = raw_pattern_size;
1296 len_byte = raw_pattern_size_byte;
1297 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1298 pat = patbuf;
1299 base_pat = raw_pattern;
1300 if (multibyte)
1301 {
1302 /* Fill patbuf by translated characters in STRING while
1303 checking if we can use boyer-moore search. If TRT is
1304 non-nil, we can use boyer-moore search only if TRT can be
1305 represented by the byte array of 256 elements. For that,
1306 all non-ASCII case-equivalents of all case-sensitive
1307 characters in STRING must belong to the same charset and
1308 row. */
1309
1310 while (--len >= 0)
1311 {
1312 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1313 int c, translated, inverse;
1314 int in_charlen, charlen;
1315
1316 /* If we got here and the RE flag is set, it's because we're
1317 dealing with a regexp known to be trivial, so the backslash
1318 just quotes the next character. */
1319 if (RE && *base_pat == '\\')
1320 {
1321 len--;
1322 raw_pattern_size--;
1323 len_byte--;
1324 base_pat++;
1325 }
1326
1327 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1328
1329 if (NILP (trt))
1330 {
1331 str = base_pat;
1332 charlen = in_charlen;
1333 }
1334 else
1335 {
1336 /* Translate the character. */
1337 TRANSLATE (translated, trt, c);
1338 charlen = CHAR_STRING (translated, str_base);
1339 str = str_base;
1340
1341 /* Check if C has any other case-equivalents. */
1342 TRANSLATE (inverse, inverse_trt, c);
1343 /* If so, check if we can use boyer-moore. */
1344 if (c != inverse && boyer_moore_ok)
1345 {
1346 /* Check if all equivalents belong to the same
1347 group of characters. Note that the check of C
1348 itself is done by the last iteration. */
1349 int this_char_base = -1;
1350
1351 while (boyer_moore_ok)
1352 {
1353 if (ASCII_BYTE_P (inverse))
1354 {
1355 if (this_char_base > 0)
1356 boyer_moore_ok = 0;
1357 else
1358 this_char_base = 0;
1359 }
1360 else if (CHAR_BYTE8_P (inverse))
1361 /* Boyer-moore search can't handle a
1362 translation of an eight-bit
1363 character. */
1364 boyer_moore_ok = 0;
1365 else if (this_char_base < 0)
1366 {
1367 this_char_base = inverse & ~0x3F;
1368 if (char_base < 0)
1369 char_base = this_char_base;
1370 else if (this_char_base != char_base)
1371 boyer_moore_ok = 0;
1372 }
1373 else if ((inverse & ~0x3F) != this_char_base)
1374 boyer_moore_ok = 0;
1375 if (c == inverse)
1376 break;
1377 TRANSLATE (inverse, inverse_trt, inverse);
1378 }
1379 }
1380 }
1381
1382 /* Store this character into the translated pattern. */
1383 memcpy (pat, str, charlen);
1384 pat += charlen;
1385 base_pat += in_charlen;
1386 len_byte -= in_charlen;
1387 }
1388
1389 /* If char_base is still negative we didn't find any translated
1390 non-ASCII characters. */
1391 if (char_base < 0)
1392 char_base = 0;
1393 }
1394 else
1395 {
1396 /* Unibyte buffer. */
1397 char_base = 0;
1398 while (--len >= 0)
1399 {
1400 int c, translated;
1401
1402 /* If we got here and the RE flag is set, it's because we're
1403 dealing with a regexp known to be trivial, so the backslash
1404 just quotes the next character. */
1405 if (RE && *base_pat == '\\')
1406 {
1407 len--;
1408 raw_pattern_size--;
1409 base_pat++;
1410 }
1411 c = *base_pat++;
1412 TRANSLATE (translated, trt, c);
1413 *pat++ = translated;
1414 }
1415 }
1416
1417 len_byte = pat - patbuf;
1418 pat = base_pat = patbuf;
1419
1420 if (boyer_moore_ok)
1421 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1422 pos_byte, lim_byte,
1423 char_base);
1424 else
1425 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1426 pos, pos_byte, lim, lim_byte);
1427 }
1428 }
1429 \f
1430 /* Do a simple string search N times for the string PAT,
1431 whose length is LEN/LEN_BYTE,
1432 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1433 TRT is the translation table.
1434
1435 Return the character position where the match is found.
1436 Otherwise, if M matches remained to be found, return -M.
1437
1438 This kind of search works regardless of what is in PAT and
1439 regardless of what is in TRT. It is used in cases where
1440 boyer_moore cannot work. */
1441
1442 static EMACS_INT
1443 simple_search (EMACS_INT n, unsigned char *pat,
1444 EMACS_INT len, EMACS_INT len_byte, Lisp_Object trt,
1445 EMACS_INT pos, EMACS_INT pos_byte,
1446 EMACS_INT lim, EMACS_INT lim_byte)
1447 {
1448 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1449 int forward = n > 0;
1450 /* Number of buffer bytes matched. Note that this may be different
1451 from len_byte in a multibyte buffer. */
1452 EMACS_INT match_byte;
1453
1454 if (lim > pos && multibyte)
1455 while (n > 0)
1456 {
1457 while (1)
1458 {
1459 /* Try matching at position POS. */
1460 EMACS_INT this_pos = pos;
1461 EMACS_INT this_pos_byte = pos_byte;
1462 EMACS_INT this_len = len;
1463 unsigned char *p = pat;
1464 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1465 goto stop;
1466
1467 while (this_len > 0)
1468 {
1469 int charlen, buf_charlen;
1470 int pat_ch, buf_ch;
1471
1472 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1473 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1474 buf_charlen);
1475 TRANSLATE (buf_ch, trt, buf_ch);
1476
1477 if (buf_ch != pat_ch)
1478 break;
1479
1480 this_len--;
1481 p += charlen;
1482
1483 this_pos_byte += buf_charlen;
1484 this_pos++;
1485 }
1486
1487 if (this_len == 0)
1488 {
1489 match_byte = this_pos_byte - pos_byte;
1490 pos += len;
1491 pos_byte += match_byte;
1492 break;
1493 }
1494
1495 INC_BOTH (pos, pos_byte);
1496 }
1497
1498 n--;
1499 }
1500 else if (lim > pos)
1501 while (n > 0)
1502 {
1503 while (1)
1504 {
1505 /* Try matching at position POS. */
1506 EMACS_INT this_pos = pos;
1507 EMACS_INT this_len = len;
1508 unsigned char *p = pat;
1509
1510 if (pos + len > lim)
1511 goto stop;
1512
1513 while (this_len > 0)
1514 {
1515 int pat_ch = *p++;
1516 int buf_ch = FETCH_BYTE (this_pos);
1517 TRANSLATE (buf_ch, trt, buf_ch);
1518
1519 if (buf_ch != pat_ch)
1520 break;
1521
1522 this_len--;
1523 this_pos++;
1524 }
1525
1526 if (this_len == 0)
1527 {
1528 match_byte = len;
1529 pos += len;
1530 break;
1531 }
1532
1533 pos++;
1534 }
1535
1536 n--;
1537 }
1538 /* Backwards search. */
1539 else if (lim < pos && multibyte)
1540 while (n < 0)
1541 {
1542 while (1)
1543 {
1544 /* Try matching at position POS. */
1545 EMACS_INT this_pos = pos;
1546 EMACS_INT this_pos_byte = pos_byte;
1547 EMACS_INT this_len = len;
1548 const unsigned char *p = pat + len_byte;
1549
1550 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1551 goto stop;
1552
1553 while (this_len > 0)
1554 {
1555 int pat_ch, buf_ch;
1556
1557 DEC_BOTH (this_pos, this_pos_byte);
1558 PREV_CHAR_BOUNDARY (p, pat);
1559 pat_ch = STRING_CHAR (p);
1560 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1561 TRANSLATE (buf_ch, trt, buf_ch);
1562
1563 if (buf_ch != pat_ch)
1564 break;
1565
1566 this_len--;
1567 }
1568
1569 if (this_len == 0)
1570 {
1571 match_byte = pos_byte - this_pos_byte;
1572 pos = this_pos;
1573 pos_byte = this_pos_byte;
1574 break;
1575 }
1576
1577 DEC_BOTH (pos, pos_byte);
1578 }
1579
1580 n++;
1581 }
1582 else if (lim < pos)
1583 while (n < 0)
1584 {
1585 while (1)
1586 {
1587 /* Try matching at position POS. */
1588 EMACS_INT this_pos = pos - len;
1589 EMACS_INT this_len = len;
1590 unsigned char *p = pat;
1591
1592 if (this_pos < lim)
1593 goto stop;
1594
1595 while (this_len > 0)
1596 {
1597 int pat_ch = *p++;
1598 int buf_ch = FETCH_BYTE (this_pos);
1599 TRANSLATE (buf_ch, trt, buf_ch);
1600
1601 if (buf_ch != pat_ch)
1602 break;
1603 this_len--;
1604 this_pos++;
1605 }
1606
1607 if (this_len == 0)
1608 {
1609 match_byte = len;
1610 pos -= len;
1611 break;
1612 }
1613
1614 pos--;
1615 }
1616
1617 n++;
1618 }
1619
1620 stop:
1621 if (n == 0)
1622 {
1623 if (forward)
1624 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1625 else
1626 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1627
1628 return pos;
1629 }
1630 else if (n > 0)
1631 return -n;
1632 else
1633 return n;
1634 }
1635 \f
1636 /* Do Boyer-Moore search N times for the string BASE_PAT,
1637 whose length is LEN_BYTE,
1638 from buffer position POS_BYTE until LIM_BYTE.
1639 DIRECTION says which direction we search in.
1640 TRT and INVERSE_TRT are translation tables.
1641 Characters in PAT are already translated by TRT.
1642
1643 This kind of search works if all the characters in BASE_PAT that
1644 have nontrivial translation are the same aside from the last byte.
1645 This makes it possible to translate just the last byte of a
1646 character, and do so after just a simple test of the context.
1647 CHAR_BASE is nonzero if there is such a non-ASCII character.
1648
1649 If that criterion is not satisfied, do not call this function. */
1650
1651 static EMACS_INT
1652 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1653 EMACS_INT len_byte,
1654 Lisp_Object trt, Lisp_Object inverse_trt,
1655 EMACS_INT pos_byte, EMACS_INT lim_byte,
1656 int char_base)
1657 {
1658 int direction = ((n > 0) ? 1 : -1);
1659 register EMACS_INT dirlen;
1660 EMACS_INT limit;
1661 int stride_for_teases = 0;
1662 int BM_tab[0400];
1663 register unsigned char *cursor, *p_limit;
1664 register EMACS_INT i;
1665 register int j;
1666 unsigned char *pat, *pat_end;
1667 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1668
1669 unsigned char simple_translate[0400];
1670 /* These are set to the preceding bytes of a byte to be translated
1671 if char_base is nonzero. As the maximum byte length of a
1672 multibyte character is 5, we have to check at most four previous
1673 bytes. */
1674 int translate_prev_byte1 = 0;
1675 int translate_prev_byte2 = 0;
1676 int translate_prev_byte3 = 0;
1677
1678 /* The general approach is that we are going to maintain that we know
1679 the first (closest to the present position, in whatever direction
1680 we're searching) character that could possibly be the last
1681 (furthest from present position) character of a valid match. We
1682 advance the state of our knowledge by looking at that character
1683 and seeing whether it indeed matches the last character of the
1684 pattern. If it does, we take a closer look. If it does not, we
1685 move our pointer (to putative last characters) as far as is
1686 logically possible. This amount of movement, which I call a
1687 stride, will be the length of the pattern if the actual character
1688 appears nowhere in the pattern, otherwise it will be the distance
1689 from the last occurrence of that character to the end of the
1690 pattern. If the amount is zero we have a possible match. */
1691
1692 /* Here we make a "mickey mouse" BM table. The stride of the search
1693 is determined only by the last character of the putative match.
1694 If that character does not match, we will stride the proper
1695 distance to propose a match that superimposes it on the last
1696 instance of a character that matches it (per trt), or misses
1697 it entirely if there is none. */
1698
1699 dirlen = len_byte * direction;
1700
1701 /* Record position after the end of the pattern. */
1702 pat_end = base_pat + len_byte;
1703 /* BASE_PAT points to a character that we start scanning from.
1704 It is the first character in a forward search,
1705 the last character in a backward search. */
1706 if (direction < 0)
1707 base_pat = pat_end - 1;
1708
1709 /* A character that does not appear in the pattern induces a
1710 stride equal to the pattern length. */
1711 for (i = 0; i < 0400; i++)
1712 BM_tab[i] = dirlen;
1713
1714 /* We use this for translation, instead of TRT itself.
1715 We fill this in to handle the characters that actually
1716 occur in the pattern. Others don't matter anyway! */
1717 for (i = 0; i < 0400; i++)
1718 simple_translate[i] = i;
1719
1720 if (char_base)
1721 {
1722 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1723 byte following them are the target of translation. */
1724 unsigned char str[MAX_MULTIBYTE_LENGTH];
1725 int cblen = CHAR_STRING (char_base, str);
1726
1727 translate_prev_byte1 = str[cblen - 2];
1728 if (cblen > 2)
1729 {
1730 translate_prev_byte2 = str[cblen - 3];
1731 if (cblen > 3)
1732 translate_prev_byte3 = str[cblen - 4];
1733 }
1734 }
1735
1736 i = 0;
1737 while (i != dirlen)
1738 {
1739 unsigned char *ptr = base_pat + i;
1740 i += direction;
1741 if (! NILP (trt))
1742 {
1743 /* If the byte currently looking at is the last of a
1744 character to check case-equivalents, set CH to that
1745 character. An ASCII character and a non-ASCII character
1746 matching with CHAR_BASE are to be checked. */
1747 int ch = -1;
1748
1749 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1750 ch = *ptr;
1751 else if (char_base
1752 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1753 {
1754 unsigned char *charstart = ptr - 1;
1755
1756 while (! (CHAR_HEAD_P (*charstart)))
1757 charstart--;
1758 ch = STRING_CHAR (charstart);
1759 if (char_base != (ch & ~0x3F))
1760 ch = -1;
1761 }
1762
1763 if (ch >= 0200 && multibyte)
1764 j = (ch & 0x3F) | 0200;
1765 else
1766 j = *ptr;
1767
1768 if (i == dirlen)
1769 stride_for_teases = BM_tab[j];
1770
1771 BM_tab[j] = dirlen - i;
1772 /* A translation table is accompanied by its inverse -- see
1773 comment following downcase_table for details. */
1774 if (ch >= 0)
1775 {
1776 int starting_ch = ch;
1777 int starting_j = j;
1778
1779 while (1)
1780 {
1781 TRANSLATE (ch, inverse_trt, ch);
1782 if (ch >= 0200 && multibyte)
1783 j = (ch & 0x3F) | 0200;
1784 else
1785 j = ch;
1786
1787 /* For all the characters that map into CH,
1788 set up simple_translate to map the last byte
1789 into STARTING_J. */
1790 simple_translate[j] = starting_j;
1791 if (ch == starting_ch)
1792 break;
1793 BM_tab[j] = dirlen - i;
1794 }
1795 }
1796 }
1797 else
1798 {
1799 j = *ptr;
1800
1801 if (i == dirlen)
1802 stride_for_teases = BM_tab[j];
1803 BM_tab[j] = dirlen - i;
1804 }
1805 /* stride_for_teases tells how much to stride if we get a
1806 match on the far character but are subsequently
1807 disappointed, by recording what the stride would have been
1808 for that character if the last character had been
1809 different. */
1810 }
1811 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1812 /* loop invariant - POS_BYTE points at where last char (first
1813 char if reverse) of pattern would align in a possible match. */
1814 while (n != 0)
1815 {
1816 EMACS_INT tail_end;
1817 unsigned char *tail_end_ptr;
1818
1819 /* It's been reported that some (broken) compiler thinks that
1820 Boolean expressions in an arithmetic context are unsigned.
1821 Using an explicit ?1:0 prevents this. */
1822 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1823 < 0)
1824 return (n * (0 - direction));
1825 /* First we do the part we can by pointers (maybe nothing) */
1826 QUIT;
1827 pat = base_pat;
1828 limit = pos_byte - dirlen + direction;
1829 if (direction > 0)
1830 {
1831 limit = BUFFER_CEILING_OF (limit);
1832 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1833 can take on without hitting edge of buffer or the gap. */
1834 limit = min (limit, pos_byte + 20000);
1835 limit = min (limit, lim_byte - 1);
1836 }
1837 else
1838 {
1839 limit = BUFFER_FLOOR_OF (limit);
1840 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1841 can take on without hitting edge of buffer or the gap. */
1842 limit = max (limit, pos_byte - 20000);
1843 limit = max (limit, lim_byte);
1844 }
1845 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1846 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1847
1848 if ((limit - pos_byte) * direction > 20)
1849 {
1850 unsigned char *p2;
1851
1852 p_limit = BYTE_POS_ADDR (limit);
1853 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1854 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1855 while (1) /* use one cursor setting as long as i can */
1856 {
1857 if (direction > 0) /* worth duplicating */
1858 {
1859 while (cursor <= p_limit)
1860 {
1861 if (BM_tab[*cursor] == 0)
1862 goto hit;
1863 cursor += BM_tab[*cursor];
1864 }
1865 }
1866 else
1867 {
1868 while (cursor >= p_limit)
1869 {
1870 if (BM_tab[*cursor] == 0)
1871 goto hit;
1872 cursor += BM_tab[*cursor];
1873 }
1874 }
1875 /* If you are here, cursor is beyond the end of the
1876 searched region. You fail to match within the
1877 permitted region and would otherwise try a character
1878 beyond that region. */
1879 break;
1880
1881 hit:
1882 i = dirlen - direction;
1883 if (! NILP (trt))
1884 {
1885 while ((i -= direction) + direction != 0)
1886 {
1887 int ch;
1888 cursor -= direction;
1889 /* Translate only the last byte of a character. */
1890 if (! multibyte
1891 || ((cursor == tail_end_ptr
1892 || CHAR_HEAD_P (cursor[1]))
1893 && (CHAR_HEAD_P (cursor[0])
1894 /* Check if this is the last byte of
1895 a translatable character. */
1896 || (translate_prev_byte1 == cursor[-1]
1897 && (CHAR_HEAD_P (translate_prev_byte1)
1898 || (translate_prev_byte2 == cursor[-2]
1899 && (CHAR_HEAD_P (translate_prev_byte2)
1900 || (translate_prev_byte3 == cursor[-3]))))))))
1901 ch = simple_translate[*cursor];
1902 else
1903 ch = *cursor;
1904 if (pat[i] != ch)
1905 break;
1906 }
1907 }
1908 else
1909 {
1910 while ((i -= direction) + direction != 0)
1911 {
1912 cursor -= direction;
1913 if (pat[i] != *cursor)
1914 break;
1915 }
1916 }
1917 cursor += dirlen - i - direction; /* fix cursor */
1918 if (i + direction == 0)
1919 {
1920 EMACS_INT position, start, end;
1921
1922 cursor -= direction;
1923
1924 position = pos_byte + cursor - p2 + ((direction > 0)
1925 ? 1 - len_byte : 0);
1926 set_search_regs (position, len_byte);
1927
1928 if (NILP (Vinhibit_changing_match_data))
1929 {
1930 start = search_regs.start[0];
1931 end = search_regs.end[0];
1932 }
1933 else
1934 /* If Vinhibit_changing_match_data is non-nil,
1935 search_regs will not be changed. So let's
1936 compute start and end here. */
1937 {
1938 start = BYTE_TO_CHAR (position);
1939 end = BYTE_TO_CHAR (position + len_byte);
1940 }
1941
1942 if ((n -= direction) != 0)
1943 cursor += dirlen; /* to resume search */
1944 else
1945 return direction > 0 ? end : start;
1946 }
1947 else
1948 cursor += stride_for_teases; /* <sigh> we lose - */
1949 }
1950 pos_byte += cursor - p2;
1951 }
1952 else
1953 /* Now we'll pick up a clump that has to be done the hard
1954 way because it covers a discontinuity. */
1955 {
1956 limit = ((direction > 0)
1957 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1958 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1959 limit = ((direction > 0)
1960 ? min (limit + len_byte, lim_byte - 1)
1961 : max (limit - len_byte, lim_byte));
1962 /* LIMIT is now the last value POS_BYTE can have
1963 and still be valid for a possible match. */
1964 while (1)
1965 {
1966 /* This loop can be coded for space rather than
1967 speed because it will usually run only once.
1968 (the reach is at most len + 21, and typically
1969 does not exceed len). */
1970 while ((limit - pos_byte) * direction >= 0)
1971 {
1972 int ch = FETCH_BYTE (pos_byte);
1973 if (BM_tab[ch] == 0)
1974 goto hit2;
1975 pos_byte += BM_tab[ch];
1976 }
1977 break; /* ran off the end */
1978
1979 hit2:
1980 /* Found what might be a match. */
1981 i = dirlen - direction;
1982 while ((i -= direction) + direction != 0)
1983 {
1984 int ch;
1985 unsigned char *ptr;
1986 pos_byte -= direction;
1987 ptr = BYTE_POS_ADDR (pos_byte);
1988 /* Translate only the last byte of a character. */
1989 if (! multibyte
1990 || ((ptr == tail_end_ptr
1991 || CHAR_HEAD_P (ptr[1]))
1992 && (CHAR_HEAD_P (ptr[0])
1993 /* Check if this is the last byte of a
1994 translatable character. */
1995 || (translate_prev_byte1 == ptr[-1]
1996 && (CHAR_HEAD_P (translate_prev_byte1)
1997 || (translate_prev_byte2 == ptr[-2]
1998 && (CHAR_HEAD_P (translate_prev_byte2)
1999 || translate_prev_byte3 == ptr[-3])))))))
2000 ch = simple_translate[*ptr];
2001 else
2002 ch = *ptr;
2003 if (pat[i] != ch)
2004 break;
2005 }
2006 /* Above loop has moved POS_BYTE part or all the way
2007 back to the first pos (last pos if reverse).
2008 Set it once again at the last (first if reverse) char. */
2009 pos_byte += dirlen - i - direction;
2010 if (i + direction == 0)
2011 {
2012 EMACS_INT position, start, end;
2013 pos_byte -= direction;
2014
2015 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2016 set_search_regs (position, len_byte);
2017
2018 if (NILP (Vinhibit_changing_match_data))
2019 {
2020 start = search_regs.start[0];
2021 end = search_regs.end[0];
2022 }
2023 else
2024 /* If Vinhibit_changing_match_data is non-nil,
2025 search_regs will not be changed. So let's
2026 compute start and end here. */
2027 {
2028 start = BYTE_TO_CHAR (position);
2029 end = BYTE_TO_CHAR (position + len_byte);
2030 }
2031
2032 if ((n -= direction) != 0)
2033 pos_byte += dirlen; /* to resume search */
2034 else
2035 return direction > 0 ? end : start;
2036 }
2037 else
2038 pos_byte += stride_for_teases;
2039 }
2040 }
2041 /* We have done one clump. Can we continue? */
2042 if ((lim_byte - pos_byte) * direction < 0)
2043 return ((0 - n) * direction);
2044 }
2045 return BYTE_TO_CHAR (pos_byte);
2046 }
2047
2048 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2049 for the overall match just found in the current buffer.
2050 Also clear out the match data for registers 1 and up. */
2051
2052 static void
2053 set_search_regs (EMACS_INT beg_byte, EMACS_INT nbytes)
2054 {
2055 int i;
2056
2057 if (!NILP (Vinhibit_changing_match_data))
2058 return;
2059
2060 /* Make sure we have registers in which to store
2061 the match position. */
2062 if (search_regs.num_regs == 0)
2063 {
2064 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2065 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2066 search_regs.num_regs = 2;
2067 }
2068
2069 /* Clear out the other registers. */
2070 for (i = 1; i < search_regs.num_regs; i++)
2071 {
2072 search_regs.start[i] = -1;
2073 search_regs.end[i] = -1;
2074 }
2075
2076 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2077 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2078 XSETBUFFER (last_thing_searched, current_buffer);
2079 }
2080 \f
2081 DEFUN ("word-search-regexp", Fword_search_regexp, Sword_search_regexp, 1, 2, 0,
2082 doc: /* Return a regexp which matches words, ignoring punctuation.
2083 Given STRING, a string of words separated by word delimiters,
2084 compute a regexp that matches those exact words separated by
2085 arbitrary punctuation. If LAX is non-nil, the end of the string
2086 need not match a word boundary unless it ends in whitespace.
2087
2088 Used in `word-search-forward', `word-search-backward',
2089 `word-search-forward-lax', `word-search-backward-lax'. */)
2090 (Lisp_Object string, Lisp_Object lax)
2091 {
2092 register unsigned char *o;
2093 register EMACS_INT i, i_byte, len, punct_count = 0, word_count = 0;
2094 Lisp_Object val;
2095 int prev_c = 0;
2096 EMACS_INT adjust;
2097 int whitespace_at_end;
2098
2099 CHECK_STRING (string);
2100 len = SCHARS (string);
2101
2102 for (i = 0, i_byte = 0; i < len; )
2103 {
2104 int c;
2105
2106 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2107
2108 if (SYNTAX (c) != Sword)
2109 {
2110 punct_count++;
2111 if (SYNTAX (prev_c) == Sword)
2112 word_count++;
2113 }
2114
2115 prev_c = c;
2116 }
2117
2118 if (SYNTAX (prev_c) == Sword)
2119 {
2120 word_count++;
2121 whitespace_at_end = 0;
2122 }
2123 else
2124 {
2125 whitespace_at_end = 1;
2126 if (!word_count)
2127 return empty_unibyte_string;
2128 }
2129
2130 adjust = - punct_count + 5 * (word_count - 1)
2131 + ((!NILP (lax) && !whitespace_at_end) ? 2 : 4);
2132 if (STRING_MULTIBYTE (string))
2133 val = make_uninit_multibyte_string (len + adjust,
2134 SBYTES (string)
2135 + adjust);
2136 else
2137 val = make_uninit_string (len + adjust);
2138
2139 o = SDATA (val);
2140 *o++ = '\\';
2141 *o++ = 'b';
2142 prev_c = 0;
2143
2144 for (i = 0, i_byte = 0; i < len; )
2145 {
2146 int c;
2147 EMACS_INT i_byte_orig = i_byte;
2148
2149 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2150
2151 if (SYNTAX (c) == Sword)
2152 {
2153 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2154 o += i_byte - i_byte_orig;
2155 }
2156 else if (SYNTAX (prev_c) == Sword && --word_count)
2157 {
2158 *o++ = '\\';
2159 *o++ = 'W';
2160 *o++ = '\\';
2161 *o++ = 'W';
2162 *o++ = '*';
2163 }
2164
2165 prev_c = c;
2166 }
2167
2168 if (NILP (lax) || whitespace_at_end)
2169 {
2170 *o++ = '\\';
2171 *o++ = 'b';
2172 }
2173
2174 return val;
2175 }
2176 \f
2177 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2178 "MSearch backward: ",
2179 doc: /* Search backward from point for STRING.
2180 Set point to the beginning of the occurrence found, and return point.
2181 An optional second argument bounds the search; it is a buffer position.
2182 The match found must not extend before that position.
2183 Optional third argument, if t, means if fail just return nil (no error).
2184 If not nil and not t, position at limit of search and return nil.
2185 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2186 successive occurrences. If COUNT is negative, search forward,
2187 instead of backward, for -COUNT occurrences.
2188
2189 Search case-sensitivity is determined by the value of the variable
2190 `case-fold-search', which see.
2191
2192 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2193 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2194 {
2195 return search_command (string, bound, noerror, count, -1, 0, 0);
2196 }
2197
2198 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2199 doc: /* Search forward from point for STRING.
2200 Set point to the end of the occurrence found, and return point.
2201 An optional second argument bounds the search; it is a buffer position.
2202 The match found must not extend after that position. A value of nil is
2203 equivalent to (point-max).
2204 Optional third argument, if t, means if fail just return nil (no error).
2205 If not nil and not t, move to limit of search and return nil.
2206 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2207 successive occurrences. If COUNT is negative, search backward,
2208 instead of forward, for -COUNT occurrences.
2209
2210 Search case-sensitivity is determined by the value of the variable
2211 `case-fold-search', which see.
2212
2213 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2214 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2215 {
2216 return search_command (string, bound, noerror, count, 1, 0, 0);
2217 }
2218
2219 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2220 "sWord search backward: ",
2221 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2222 Set point to the beginning of the occurrence found, and return point.
2223 An optional second argument bounds the search; it is a buffer position.
2224 The match found must not extend before that position.
2225 Optional third argument, if t, means if fail just return nil (no error).
2226 If not nil and not t, move to limit of search and return nil.
2227 Optional fourth argument is repeat count--search for successive occurrences.
2228
2229 Relies on the function `word-search-regexp' to convert a sequence
2230 of words in STRING to a regexp used to search words without regard
2231 to punctuation. */)
2232 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2233 {
2234 return search_command (Fword_search_regexp (string, Qnil), bound, noerror, count, -1, 1, 0);
2235 }
2236
2237 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2238 "sWord search: ",
2239 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2240 Set point to the end of the occurrence found, and return point.
2241 An optional second argument bounds the search; it is a buffer position.
2242 The match found must not extend after that position.
2243 Optional third argument, if t, means if fail just return nil (no error).
2244 If not nil and not t, move to limit of search and return nil.
2245 Optional fourth argument is repeat count--search for successive occurrences.
2246
2247 Relies on the function `word-search-regexp' to convert a sequence
2248 of words in STRING to a regexp used to search words without regard
2249 to punctuation. */)
2250 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2251 {
2252 return search_command (Fword_search_regexp (string, Qnil), bound, noerror, count, 1, 1, 0);
2253 }
2254
2255 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2256 "sWord search backward: ",
2257 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2258 Set point to the beginning of the occurrence found, and return point.
2259
2260 Unlike `word-search-backward', the end of STRING need not match a word
2261 boundary, unless STRING ends in whitespace.
2262
2263 An optional second argument bounds the search; it is a buffer position.
2264 The match found must not extend before that position.
2265 Optional third argument, if t, means if fail just return nil (no error).
2266 If not nil and not t, move to limit of search and return nil.
2267 Optional fourth argument is repeat count--search for successive occurrences.
2268
2269 Relies on the function `word-search-regexp' to convert a sequence
2270 of words in STRING to a regexp used to search words without regard
2271 to punctuation. */)
2272 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2273 {
2274 return search_command (Fword_search_regexp (string, Qt), bound, noerror, count, -1, 1, 0);
2275 }
2276
2277 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2278 "sWord search: ",
2279 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2280 Set point to the end of the occurrence found, and return point.
2281
2282 Unlike `word-search-forward', the end of STRING need not match a word
2283 boundary, unless STRING ends in whitespace.
2284
2285 An optional second argument bounds the search; it is a buffer position.
2286 The match found must not extend after that position.
2287 Optional third argument, if t, means if fail just return nil (no error).
2288 If not nil and not t, move to limit of search and return nil.
2289 Optional fourth argument is repeat count--search for successive occurrences.
2290
2291 Relies on the function `word-search-regexp' to convert a sequence
2292 of words in STRING to a regexp used to search words without regard
2293 to punctuation. */)
2294 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2295 {
2296 return search_command (Fword_search_regexp (string, Qt), bound, noerror, count, 1, 1, 0);
2297 }
2298
2299 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2300 "sRE search backward: ",
2301 doc: /* Search backward from point for match for regular expression REGEXP.
2302 Set point to the beginning of the match, and return point.
2303 The match found is the one starting last in the buffer
2304 and yet ending before the origin of the search.
2305 An optional second argument bounds the search; it is a buffer position.
2306 The match found must start at or after that position.
2307 Optional third argument, if t, means if fail just return nil (no error).
2308 If not nil and not t, move to limit of search and return nil.
2309 Optional fourth argument is repeat count--search for successive occurrences.
2310
2311 Search case-sensitivity is determined by the value of the variable
2312 `case-fold-search', which see.
2313
2314 See also the functions `match-beginning', `match-end', `match-string',
2315 and `replace-match'. */)
2316 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2317 {
2318 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2319 }
2320
2321 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2322 "sRE search: ",
2323 doc: /* Search forward from point for regular expression REGEXP.
2324 Set point to the end of the occurrence found, and return point.
2325 An optional second argument bounds the search; it is a buffer position.
2326 The match found must not extend after that position.
2327 Optional third argument, if t, means if fail just return nil (no error).
2328 If not nil and not t, move to limit of search and return nil.
2329 Optional fourth argument is repeat count--search for successive occurrences.
2330
2331 Search case-sensitivity is determined by the value of the variable
2332 `case-fold-search', which see.
2333
2334 See also the functions `match-beginning', `match-end', `match-string',
2335 and `replace-match'. */)
2336 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2337 {
2338 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2339 }
2340
2341 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2342 "sPosix search backward: ",
2343 doc: /* Search backward from point for match for regular expression REGEXP.
2344 Find the longest match in accord with Posix regular expression rules.
2345 Set point to the beginning of the match, and return point.
2346 The match found is the one starting last in the buffer
2347 and yet ending before the origin of the search.
2348 An optional second argument bounds the search; it is a buffer position.
2349 The match found must start at or after that position.
2350 Optional third argument, if t, means if fail just return nil (no error).
2351 If not nil and not t, move to limit of search and return nil.
2352 Optional fourth argument is repeat count--search for successive occurrences.
2353
2354 Search case-sensitivity is determined by the value of the variable
2355 `case-fold-search', which see.
2356
2357 See also the functions `match-beginning', `match-end', `match-string',
2358 and `replace-match'. */)
2359 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2360 {
2361 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2362 }
2363
2364 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2365 "sPosix search: ",
2366 doc: /* Search forward from point for regular expression REGEXP.
2367 Find the longest match in accord with Posix regular expression rules.
2368 Set point to the end of the occurrence found, and return point.
2369 An optional second argument bounds the search; it is a buffer position.
2370 The match found must not extend after that position.
2371 Optional third argument, if t, means if fail just return nil (no error).
2372 If not nil and not t, move to limit of search and return nil.
2373 Optional fourth argument is repeat count--search for successive occurrences.
2374
2375 Search case-sensitivity is determined by the value of the variable
2376 `case-fold-search', which see.
2377
2378 See also the functions `match-beginning', `match-end', `match-string',
2379 and `replace-match'. */)
2380 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2381 {
2382 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2383 }
2384 \f
2385 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2386 doc: /* Replace text matched by last search with NEWTEXT.
2387 Leave point at the end of the replacement text.
2388
2389 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2390 Otherwise maybe capitalize the whole text, or maybe just word initials,
2391 based on the replaced text.
2392 If the replaced text has only capital letters
2393 and has at least one multiletter word, convert NEWTEXT to all caps.
2394 Otherwise if all words are capitalized in the replaced text,
2395 capitalize each word in NEWTEXT.
2396
2397 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2398 Otherwise treat `\\' as special:
2399 `\\&' in NEWTEXT means substitute original matched text.
2400 `\\N' means substitute what matched the Nth `\\(...\\)'.
2401 If Nth parens didn't match, substitute nothing.
2402 `\\\\' means insert one `\\'.
2403 Case conversion does not apply to these substitutions.
2404
2405 FIXEDCASE and LITERAL are optional arguments.
2406
2407 The optional fourth argument STRING can be a string to modify.
2408 This is meaningful when the previous match was done against STRING,
2409 using `string-match'. When used this way, `replace-match'
2410 creates and returns a new string made by copying STRING and replacing
2411 the part of STRING that was matched.
2412
2413 The optional fifth argument SUBEXP specifies a subexpression;
2414 it says to replace just that subexpression with NEWTEXT,
2415 rather than replacing the entire matched text.
2416 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2417 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2418 NEWTEXT in place of subexp N.
2419 This is useful only after a regular expression search or match,
2420 since only regular expressions have distinguished subexpressions. */)
2421 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2422 {
2423 enum { nochange, all_caps, cap_initial } case_action;
2424 register EMACS_INT pos, pos_byte;
2425 int some_multiletter_word;
2426 int some_lowercase;
2427 int some_uppercase;
2428 int some_nonuppercase_initial;
2429 register int c, prevc;
2430 ptrdiff_t sub;
2431 EMACS_INT opoint, newpoint;
2432
2433 CHECK_STRING (newtext);
2434
2435 if (! NILP (string))
2436 CHECK_STRING (string);
2437
2438 case_action = nochange; /* We tried an initialization */
2439 /* but some C compilers blew it */
2440
2441 if (search_regs.num_regs <= 0)
2442 error ("`replace-match' called before any match found");
2443
2444 if (NILP (subexp))
2445 sub = 0;
2446 else
2447 {
2448 CHECK_NUMBER (subexp);
2449 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2450 args_out_of_range (subexp, make_number (search_regs.num_regs));
2451 sub = XINT (subexp);
2452 }
2453
2454 if (NILP (string))
2455 {
2456 if (search_regs.start[sub] < BEGV
2457 || search_regs.start[sub] > search_regs.end[sub]
2458 || search_regs.end[sub] > ZV)
2459 args_out_of_range (make_number (search_regs.start[sub]),
2460 make_number (search_regs.end[sub]));
2461 }
2462 else
2463 {
2464 if (search_regs.start[sub] < 0
2465 || search_regs.start[sub] > search_regs.end[sub]
2466 || search_regs.end[sub] > SCHARS (string))
2467 args_out_of_range (make_number (search_regs.start[sub]),
2468 make_number (search_regs.end[sub]));
2469 }
2470
2471 if (NILP (fixedcase))
2472 {
2473 /* Decide how to casify by examining the matched text. */
2474 EMACS_INT last;
2475
2476 pos = search_regs.start[sub];
2477 last = search_regs.end[sub];
2478
2479 if (NILP (string))
2480 pos_byte = CHAR_TO_BYTE (pos);
2481 else
2482 pos_byte = string_char_to_byte (string, pos);
2483
2484 prevc = '\n';
2485 case_action = all_caps;
2486
2487 /* some_multiletter_word is set nonzero if any original word
2488 is more than one letter long. */
2489 some_multiletter_word = 0;
2490 some_lowercase = 0;
2491 some_nonuppercase_initial = 0;
2492 some_uppercase = 0;
2493
2494 while (pos < last)
2495 {
2496 if (NILP (string))
2497 {
2498 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2499 INC_BOTH (pos, pos_byte);
2500 }
2501 else
2502 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2503
2504 if (lowercasep (c))
2505 {
2506 /* Cannot be all caps if any original char is lower case */
2507
2508 some_lowercase = 1;
2509 if (SYNTAX (prevc) != Sword)
2510 some_nonuppercase_initial = 1;
2511 else
2512 some_multiletter_word = 1;
2513 }
2514 else if (uppercasep (c))
2515 {
2516 some_uppercase = 1;
2517 if (SYNTAX (prevc) != Sword)
2518 ;
2519 else
2520 some_multiletter_word = 1;
2521 }
2522 else
2523 {
2524 /* If the initial is a caseless word constituent,
2525 treat that like a lowercase initial. */
2526 if (SYNTAX (prevc) != Sword)
2527 some_nonuppercase_initial = 1;
2528 }
2529
2530 prevc = c;
2531 }
2532
2533 /* Convert to all caps if the old text is all caps
2534 and has at least one multiletter word. */
2535 if (! some_lowercase && some_multiletter_word)
2536 case_action = all_caps;
2537 /* Capitalize each word, if the old text has all capitalized words. */
2538 else if (!some_nonuppercase_initial && some_multiletter_word)
2539 case_action = cap_initial;
2540 else if (!some_nonuppercase_initial && some_uppercase)
2541 /* Should x -> yz, operating on X, give Yz or YZ?
2542 We'll assume the latter. */
2543 case_action = all_caps;
2544 else
2545 case_action = nochange;
2546 }
2547
2548 /* Do replacement in a string. */
2549 if (!NILP (string))
2550 {
2551 Lisp_Object before, after;
2552
2553 before = Fsubstring (string, make_number (0),
2554 make_number (search_regs.start[sub]));
2555 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2556
2557 /* Substitute parts of the match into NEWTEXT
2558 if desired. */
2559 if (NILP (literal))
2560 {
2561 EMACS_INT lastpos = 0;
2562 EMACS_INT lastpos_byte = 0;
2563 /* We build up the substituted string in ACCUM. */
2564 Lisp_Object accum;
2565 Lisp_Object middle;
2566 EMACS_INT length = SBYTES (newtext);
2567
2568 accum = Qnil;
2569
2570 for (pos_byte = 0, pos = 0; pos_byte < length;)
2571 {
2572 EMACS_INT substart = -1;
2573 EMACS_INT subend = 0;
2574 int delbackslash = 0;
2575
2576 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2577
2578 if (c == '\\')
2579 {
2580 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2581
2582 if (c == '&')
2583 {
2584 substart = search_regs.start[sub];
2585 subend = search_regs.end[sub];
2586 }
2587 else if (c >= '1' && c <= '9')
2588 {
2589 if (search_regs.start[c - '0'] >= 0
2590 && c <= search_regs.num_regs + '0')
2591 {
2592 substart = search_regs.start[c - '0'];
2593 subend = search_regs.end[c - '0'];
2594 }
2595 else
2596 {
2597 /* If that subexp did not match,
2598 replace \\N with nothing. */
2599 substart = 0;
2600 subend = 0;
2601 }
2602 }
2603 else if (c == '\\')
2604 delbackslash = 1;
2605 else
2606 error ("Invalid use of `\\' in replacement text");
2607 }
2608 if (substart >= 0)
2609 {
2610 if (pos - 2 != lastpos)
2611 middle = substring_both (newtext, lastpos,
2612 lastpos_byte,
2613 pos - 2, pos_byte - 2);
2614 else
2615 middle = Qnil;
2616 accum = concat3 (accum, middle,
2617 Fsubstring (string,
2618 make_number (substart),
2619 make_number (subend)));
2620 lastpos = pos;
2621 lastpos_byte = pos_byte;
2622 }
2623 else if (delbackslash)
2624 {
2625 middle = substring_both (newtext, lastpos,
2626 lastpos_byte,
2627 pos - 1, pos_byte - 1);
2628
2629 accum = concat2 (accum, middle);
2630 lastpos = pos;
2631 lastpos_byte = pos_byte;
2632 }
2633 }
2634
2635 if (pos != lastpos)
2636 middle = substring_both (newtext, lastpos,
2637 lastpos_byte,
2638 pos, pos_byte);
2639 else
2640 middle = Qnil;
2641
2642 newtext = concat2 (accum, middle);
2643 }
2644
2645 /* Do case substitution in NEWTEXT if desired. */
2646 if (case_action == all_caps)
2647 newtext = Fupcase (newtext);
2648 else if (case_action == cap_initial)
2649 newtext = Fupcase_initials (newtext);
2650
2651 return concat3 (before, newtext, after);
2652 }
2653
2654 /* Record point, then move (quietly) to the start of the match. */
2655 if (PT >= search_regs.end[sub])
2656 opoint = PT - ZV;
2657 else if (PT > search_regs.start[sub])
2658 opoint = search_regs.end[sub] - ZV;
2659 else
2660 opoint = PT;
2661
2662 /* If we want non-literal replacement,
2663 perform substitution on the replacement string. */
2664 if (NILP (literal))
2665 {
2666 ptrdiff_t length = SBYTES (newtext);
2667 unsigned char *substed;
2668 ptrdiff_t substed_alloc_size, substed_len;
2669 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2670 int str_multibyte = STRING_MULTIBYTE (newtext);
2671 int really_changed = 0;
2672
2673 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2674 ? STRING_BYTES_BOUND
2675 : length * 2 + 100);
2676 substed = (unsigned char *) xmalloc (substed_alloc_size);
2677 substed_len = 0;
2678
2679 /* Go thru NEWTEXT, producing the actual text to insert in
2680 SUBSTED while adjusting multibyteness to that of the current
2681 buffer. */
2682
2683 for (pos_byte = 0, pos = 0; pos_byte < length;)
2684 {
2685 unsigned char str[MAX_MULTIBYTE_LENGTH];
2686 const unsigned char *add_stuff = NULL;
2687 ptrdiff_t add_len = 0;
2688 ptrdiff_t idx = -1;
2689
2690 if (str_multibyte)
2691 {
2692 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2693 if (!buf_multibyte)
2694 c = multibyte_char_to_unibyte (c);
2695 }
2696 else
2697 {
2698 /* Note that we don't have to increment POS. */
2699 c = SREF (newtext, pos_byte++);
2700 if (buf_multibyte)
2701 MAKE_CHAR_MULTIBYTE (c);
2702 }
2703
2704 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2705 or set IDX to a match index, which means put that part
2706 of the buffer text into SUBSTED. */
2707
2708 if (c == '\\')
2709 {
2710 really_changed = 1;
2711
2712 if (str_multibyte)
2713 {
2714 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2715 pos, pos_byte);
2716 if (!buf_multibyte && !ASCII_CHAR_P (c))
2717 c = multibyte_char_to_unibyte (c);
2718 }
2719 else
2720 {
2721 c = SREF (newtext, pos_byte++);
2722 if (buf_multibyte)
2723 MAKE_CHAR_MULTIBYTE (c);
2724 }
2725
2726 if (c == '&')
2727 idx = sub;
2728 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2729 {
2730 if (search_regs.start[c - '0'] >= 1)
2731 idx = c - '0';
2732 }
2733 else if (c == '\\')
2734 add_len = 1, add_stuff = (unsigned char *) "\\";
2735 else
2736 {
2737 xfree (substed);
2738 error ("Invalid use of `\\' in replacement text");
2739 }
2740 }
2741 else
2742 {
2743 add_len = CHAR_STRING (c, str);
2744 add_stuff = str;
2745 }
2746
2747 /* If we want to copy part of a previous match,
2748 set up ADD_STUFF and ADD_LEN to point to it. */
2749 if (idx >= 0)
2750 {
2751 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2752 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2753 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2754 move_gap (search_regs.start[idx]);
2755 add_stuff = BYTE_POS_ADDR (begbyte);
2756 }
2757
2758 /* Now the stuff we want to add to SUBSTED
2759 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2760
2761 /* Make sure SUBSTED is big enough. */
2762 if (substed_alloc_size - substed_len < add_len)
2763 substed =
2764 xpalloc (substed, &substed_alloc_size,
2765 add_len - (substed_alloc_size - substed_len),
2766 STRING_BYTES_BOUND, 1);
2767
2768 /* Now add to the end of SUBSTED. */
2769 if (add_stuff)
2770 {
2771 memcpy (substed + substed_len, add_stuff, add_len);
2772 substed_len += add_len;
2773 }
2774 }
2775
2776 if (really_changed)
2777 {
2778 if (buf_multibyte)
2779 {
2780 EMACS_INT nchars =
2781 multibyte_chars_in_text (substed, substed_len);
2782
2783 newtext = make_multibyte_string ((char *) substed, nchars,
2784 substed_len);
2785 }
2786 else
2787 newtext = make_unibyte_string ((char *) substed, substed_len);
2788 }
2789 xfree (substed);
2790 }
2791
2792 /* Replace the old text with the new in the cleanest possible way. */
2793 replace_range (search_regs.start[sub], search_regs.end[sub],
2794 newtext, 1, 0, 1);
2795 newpoint = search_regs.start[sub] + SCHARS (newtext);
2796
2797 if (case_action == all_caps)
2798 Fupcase_region (make_number (search_regs.start[sub]),
2799 make_number (newpoint));
2800 else if (case_action == cap_initial)
2801 Fupcase_initials_region (make_number (search_regs.start[sub]),
2802 make_number (newpoint));
2803
2804 /* Adjust search data for this change. */
2805 {
2806 EMACS_INT oldend = search_regs.end[sub];
2807 EMACS_INT oldstart = search_regs.start[sub];
2808 EMACS_INT change = newpoint - search_regs.end[sub];
2809 int i;
2810
2811 for (i = 0; i < search_regs.num_regs; i++)
2812 {
2813 if (search_regs.start[i] >= oldend)
2814 search_regs.start[i] += change;
2815 else if (search_regs.start[i] > oldstart)
2816 search_regs.start[i] = oldstart;
2817 if (search_regs.end[i] >= oldend)
2818 search_regs.end[i] += change;
2819 else if (search_regs.end[i] > oldstart)
2820 search_regs.end[i] = oldstart;
2821 }
2822 }
2823
2824 /* Put point back where it was in the text. */
2825 if (opoint <= 0)
2826 TEMP_SET_PT (opoint + ZV);
2827 else
2828 TEMP_SET_PT (opoint);
2829
2830 /* Now move point "officially" to the start of the inserted replacement. */
2831 move_if_not_intangible (newpoint);
2832
2833 return Qnil;
2834 }
2835 \f
2836 static Lisp_Object
2837 match_limit (Lisp_Object num, int beginningp)
2838 {
2839 EMACS_INT n;
2840
2841 CHECK_NUMBER (num);
2842 n = XINT (num);
2843 if (n < 0)
2844 args_out_of_range (num, make_number (0));
2845 if (search_regs.num_regs <= 0)
2846 error ("No match data, because no search succeeded");
2847 if (n >= search_regs.num_regs
2848 || search_regs.start[n] < 0)
2849 return Qnil;
2850 return (make_number ((beginningp) ? search_regs.start[n]
2851 : search_regs.end[n]));
2852 }
2853
2854 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2855 doc: /* Return position of start of text matched by last search.
2856 SUBEXP, a number, specifies which parenthesized expression in the last
2857 regexp.
2858 Value is nil if SUBEXPth pair didn't match, or there were less than
2859 SUBEXP pairs.
2860 Zero means the entire text matched by the whole regexp or whole string. */)
2861 (Lisp_Object subexp)
2862 {
2863 return match_limit (subexp, 1);
2864 }
2865
2866 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2867 doc: /* Return position of end of text matched by last search.
2868 SUBEXP, a number, specifies which parenthesized expression in the last
2869 regexp.
2870 Value is nil if SUBEXPth pair didn't match, or there were less than
2871 SUBEXP pairs.
2872 Zero means the entire text matched by the whole regexp or whole string. */)
2873 (Lisp_Object subexp)
2874 {
2875 return match_limit (subexp, 0);
2876 }
2877
2878 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2879 doc: /* Return a list containing all info on what the last search matched.
2880 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2881 All the elements are markers or nil (nil if the Nth pair didn't match)
2882 if the last match was on a buffer; integers or nil if a string was matched.
2883 Use `set-match-data' to reinstate the data in this list.
2884
2885 If INTEGERS (the optional first argument) is non-nil, always use
2886 integers \(rather than markers) to represent buffer positions. In
2887 this case, and if the last match was in a buffer, the buffer will get
2888 stored as one additional element at the end of the list.
2889
2890 If REUSE is a list, reuse it as part of the value. If REUSE is long
2891 enough to hold all the values, and if INTEGERS is non-nil, no consing
2892 is done.
2893
2894 If optional third arg RESEAT is non-nil, any previous markers on the
2895 REUSE list will be modified to point to nowhere.
2896
2897 Return value is undefined if the last search failed. */)
2898 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2899 {
2900 Lisp_Object tail, prev;
2901 Lisp_Object *data;
2902 int i, len;
2903
2904 if (!NILP (reseat))
2905 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2906 if (MARKERP (XCAR (tail)))
2907 {
2908 unchain_marker (XMARKER (XCAR (tail)));
2909 XSETCAR (tail, Qnil);
2910 }
2911
2912 if (NILP (last_thing_searched))
2913 return Qnil;
2914
2915 prev = Qnil;
2916
2917 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2918 * sizeof (Lisp_Object));
2919
2920 len = 0;
2921 for (i = 0; i < search_regs.num_regs; i++)
2922 {
2923 EMACS_INT start = search_regs.start[i];
2924 if (start >= 0)
2925 {
2926 if (EQ (last_thing_searched, Qt)
2927 || ! NILP (integers))
2928 {
2929 XSETFASTINT (data[2 * i], start);
2930 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2931 }
2932 else if (BUFFERP (last_thing_searched))
2933 {
2934 data[2 * i] = Fmake_marker ();
2935 Fset_marker (data[2 * i],
2936 make_number (start),
2937 last_thing_searched);
2938 data[2 * i + 1] = Fmake_marker ();
2939 Fset_marker (data[2 * i + 1],
2940 make_number (search_regs.end[i]),
2941 last_thing_searched);
2942 }
2943 else
2944 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2945 abort ();
2946
2947 len = 2 * i + 2;
2948 }
2949 else
2950 data[2 * i] = data[2 * i + 1] = Qnil;
2951 }
2952
2953 if (BUFFERP (last_thing_searched) && !NILP (integers))
2954 {
2955 data[len] = last_thing_searched;
2956 len++;
2957 }
2958
2959 /* If REUSE is not usable, cons up the values and return them. */
2960 if (! CONSP (reuse))
2961 return Flist (len, data);
2962
2963 /* If REUSE is a list, store as many value elements as will fit
2964 into the elements of REUSE. */
2965 for (i = 0, tail = reuse; CONSP (tail);
2966 i++, tail = XCDR (tail))
2967 {
2968 if (i < len)
2969 XSETCAR (tail, data[i]);
2970 else
2971 XSETCAR (tail, Qnil);
2972 prev = tail;
2973 }
2974
2975 /* If we couldn't fit all value elements into REUSE,
2976 cons up the rest of them and add them to the end of REUSE. */
2977 if (i < len)
2978 XSETCDR (prev, Flist (len - i, data + i));
2979
2980 return reuse;
2981 }
2982
2983 /* We used to have an internal use variant of `reseat' described as:
2984
2985 If RESEAT is `evaporate', put the markers back on the free list
2986 immediately. No other references to the markers must exist in this
2987 case, so it is used only internally on the unwind stack and
2988 save-match-data from Lisp.
2989
2990 But it was ill-conceived: those supposedly-internal markers get exposed via
2991 the undo-list, so freeing them here is unsafe. */
2992
2993 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2994 doc: /* Set internal data on last search match from elements of LIST.
2995 LIST should have been created by calling `match-data' previously.
2996
2997 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2998 (register Lisp_Object list, Lisp_Object reseat)
2999 {
3000 ptrdiff_t i;
3001 register Lisp_Object marker;
3002
3003 if (running_asynch_code)
3004 save_search_regs ();
3005
3006 CHECK_LIST (list);
3007
3008 /* Unless we find a marker with a buffer or an explicit buffer
3009 in LIST, assume that this match data came from a string. */
3010 last_thing_searched = Qt;
3011
3012 /* Allocate registers if they don't already exist. */
3013 {
3014 ptrdiff_t length = XFASTINT (Flength (list)) / 2;
3015
3016 if (length > search_regs.num_regs)
3017 {
3018 ptrdiff_t num_regs = search_regs.num_regs;
3019 search_regs.start =
3020 xpalloc (search_regs.start, &num_regs, length - num_regs,
3021 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
3022 search_regs.end =
3023 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
3024
3025 for (i = search_regs.num_regs; i < num_regs; i++)
3026 search_regs.start[i] = -1;
3027
3028 search_regs.num_regs = num_regs;
3029 }
3030
3031 for (i = 0; CONSP (list); i++)
3032 {
3033 marker = XCAR (list);
3034 if (BUFFERP (marker))
3035 {
3036 last_thing_searched = marker;
3037 break;
3038 }
3039 if (i >= length)
3040 break;
3041 if (NILP (marker))
3042 {
3043 search_regs.start[i] = -1;
3044 list = XCDR (list);
3045 }
3046 else
3047 {
3048 EMACS_INT from;
3049 Lisp_Object m;
3050
3051 m = marker;
3052 if (MARKERP (marker))
3053 {
3054 if (XMARKER (marker)->buffer == 0)
3055 XSETFASTINT (marker, 0);
3056 else
3057 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3058 }
3059
3060 CHECK_NUMBER_COERCE_MARKER (marker);
3061 from = XINT (marker);
3062
3063 if (!NILP (reseat) && MARKERP (m))
3064 {
3065 unchain_marker (XMARKER (m));
3066 XSETCAR (list, Qnil);
3067 }
3068
3069 if ((list = XCDR (list), !CONSP (list)))
3070 break;
3071
3072 m = marker = XCAR (list);
3073
3074 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3075 XSETFASTINT (marker, 0);
3076
3077 CHECK_NUMBER_COERCE_MARKER (marker);
3078 search_regs.start[i] = from;
3079 search_regs.end[i] = XINT (marker);
3080
3081 if (!NILP (reseat) && MARKERP (m))
3082 {
3083 unchain_marker (XMARKER (m));
3084 XSETCAR (list, Qnil);
3085 }
3086 }
3087 list = XCDR (list);
3088 }
3089
3090 for (; i < search_regs.num_regs; i++)
3091 search_regs.start[i] = -1;
3092 }
3093
3094 return Qnil;
3095 }
3096
3097 /* If non-zero the match data have been saved in saved_search_regs
3098 during the execution of a sentinel or filter. */
3099 static int search_regs_saved;
3100 static struct re_registers saved_search_regs;
3101 static Lisp_Object saved_last_thing_searched;
3102
3103 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3104 if asynchronous code (filter or sentinel) is running. */
3105 static void
3106 save_search_regs (void)
3107 {
3108 if (!search_regs_saved)
3109 {
3110 saved_search_regs.num_regs = search_regs.num_regs;
3111 saved_search_regs.start = search_regs.start;
3112 saved_search_regs.end = search_regs.end;
3113 saved_last_thing_searched = last_thing_searched;
3114 last_thing_searched = Qnil;
3115 search_regs.num_regs = 0;
3116 search_regs.start = 0;
3117 search_regs.end = 0;
3118
3119 search_regs_saved = 1;
3120 }
3121 }
3122
3123 /* Called upon exit from filters and sentinels. */
3124 void
3125 restore_search_regs (void)
3126 {
3127 if (search_regs_saved)
3128 {
3129 if (search_regs.num_regs > 0)
3130 {
3131 xfree (search_regs.start);
3132 xfree (search_regs.end);
3133 }
3134 search_regs.num_regs = saved_search_regs.num_regs;
3135 search_regs.start = saved_search_regs.start;
3136 search_regs.end = saved_search_regs.end;
3137 last_thing_searched = saved_last_thing_searched;
3138 saved_last_thing_searched = Qnil;
3139 search_regs_saved = 0;
3140 }
3141 }
3142
3143 static Lisp_Object
3144 unwind_set_match_data (Lisp_Object list)
3145 {
3146 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3147 return Fset_match_data (list, Qt);
3148 }
3149
3150 /* Called to unwind protect the match data. */
3151 void
3152 record_unwind_save_match_data (void)
3153 {
3154 record_unwind_protect (unwind_set_match_data,
3155 Fmatch_data (Qnil, Qnil, Qnil));
3156 }
3157
3158 /* Quote a string to deactivate reg-expr chars */
3159
3160 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3161 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3162 (Lisp_Object string)
3163 {
3164 register char *in, *out, *end;
3165 register char *temp;
3166 int backslashes_added = 0;
3167
3168 CHECK_STRING (string);
3169
3170 temp = (char *) alloca (SBYTES (string) * 2);
3171
3172 /* Now copy the data into the new string, inserting escapes. */
3173
3174 in = SSDATA (string);
3175 end = in + SBYTES (string);
3176 out = temp;
3177
3178 for (; in != end; in++)
3179 {
3180 if (*in == '['
3181 || *in == '*' || *in == '.' || *in == '\\'
3182 || *in == '?' || *in == '+'
3183 || *in == '^' || *in == '$')
3184 *out++ = '\\', backslashes_added++;
3185 *out++ = *in;
3186 }
3187
3188 return make_specified_string (temp,
3189 SCHARS (string) + backslashes_added,
3190 out - temp,
3191 STRING_MULTIBYTE (string));
3192 }
3193 \f
3194 void
3195 syms_of_search (void)
3196 {
3197 register int i;
3198
3199 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3200 {
3201 searchbufs[i].buf.allocated = 100;
3202 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3203 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3204 searchbufs[i].regexp = Qnil;
3205 searchbufs[i].whitespace_regexp = Qnil;
3206 searchbufs[i].syntax_table = Qnil;
3207 staticpro (&searchbufs[i].regexp);
3208 staticpro (&searchbufs[i].whitespace_regexp);
3209 staticpro (&searchbufs[i].syntax_table);
3210 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3211 }
3212 searchbuf_head = &searchbufs[0];
3213
3214 DEFSYM (Qsearch_failed, "search-failed");
3215 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3216
3217 Fput (Qsearch_failed, Qerror_conditions,
3218 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3219 Fput (Qsearch_failed, Qerror_message,
3220 make_pure_c_string ("Search failed"));
3221
3222 Fput (Qinvalid_regexp, Qerror_conditions,
3223 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3224 Fput (Qinvalid_regexp, Qerror_message,
3225 make_pure_c_string ("Invalid regexp"));
3226
3227 last_thing_searched = Qnil;
3228 staticpro (&last_thing_searched);
3229
3230 saved_last_thing_searched = Qnil;
3231 staticpro (&saved_last_thing_searched);
3232
3233 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3234 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3235 Some commands use this for user-specified regexps.
3236 Spaces that occur inside character classes or repetition operators
3237 or other such regexp constructs are not replaced with this.
3238 A value of nil (which is the normal value) means treat spaces literally. */);
3239 Vsearch_spaces_regexp = Qnil;
3240
3241 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3242 doc: /* Internal use only.
3243 If non-nil, the primitive searching and matching functions
3244 such as `looking-at', `string-match', `re-search-forward', etc.,
3245 do not set the match data. The proper way to use this variable
3246 is to bind it with `let' around a small expression. */);
3247 Vinhibit_changing_match_data = Qnil;
3248
3249 defsubr (&Slooking_at);
3250 defsubr (&Sposix_looking_at);
3251 defsubr (&Sstring_match);
3252 defsubr (&Sposix_string_match);
3253 defsubr (&Ssearch_forward);
3254 defsubr (&Ssearch_backward);
3255 defsubr (&Sword_search_regexp);
3256 defsubr (&Sword_search_forward);
3257 defsubr (&Sword_search_backward);
3258 defsubr (&Sword_search_forward_lax);
3259 defsubr (&Sword_search_backward_lax);
3260 defsubr (&Sre_search_forward);
3261 defsubr (&Sre_search_backward);
3262 defsubr (&Sposix_search_forward);
3263 defsubr (&Sposix_search_backward);
3264 defsubr (&Sreplace_match);
3265 defsubr (&Smatch_beginning);
3266 defsubr (&Smatch_end);
3267 defsubr (&Smatch_data);
3268 defsubr (&Sset_match_data);
3269 defsubr (&Sregexp_quote);
3270 }