* alloc.c (memory_full) [SYSTEM_MALLOC]: Port to MacO).
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_GTK_AND_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49
50 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
52
53 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54 #undef GC_MALLOC_CHECK
55 #endif
56
57 #include <unistd.h>
58 #ifndef HAVE_UNISTD_H
59 extern POINTER_TYPE *sbrk ();
60 #endif
61
62 #include <fcntl.h>
63
64 #ifdef WINDOWSNT
65 #include "w32.h"
66 #endif
67
68 #ifdef DOUG_LEA_MALLOC
69
70 #include <malloc.h>
71 /* malloc.h #defines this as size_t, at least in glibc2. */
72 #ifndef __malloc_size_t
73 #define __malloc_size_t int
74 #endif
75
76 /* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
78
79 #define MMAP_MAX_AREAS 100000000
80
81 #else /* not DOUG_LEA_MALLOC */
82
83 /* The following come from gmalloc.c. */
84
85 #define __malloc_size_t size_t
86 extern __malloc_size_t _bytes_used;
87 extern __malloc_size_t __malloc_extra_blocks;
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92 #ifdef HAVE_GTK_AND_PTHREAD
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 if (pthread_equal (pthread_self (), main_thread)) \
117 BLOCK_INPUT; \
118 pthread_mutex_lock (&alloc_mutex); \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 UNBLOCK_INPUT; \
127 } \
128 while (0)
129
130 #else /* ! defined HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
136 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
137
138 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
140
141 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
143 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
144
145 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
148
149 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
151 strings. */
152
153 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
154
155 /* Global variables. */
156 struct emacs_globals globals;
157
158 /* Number of bytes of consing done since the last gc. */
159
160 EMACS_INT consing_since_gc;
161
162 /* Similar minimum, computed from Vgc_cons_percentage. */
163
164 EMACS_INT gc_relative_threshold;
165
166 /* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
168
169 EMACS_INT memory_full_cons_threshold;
170
171 /* Nonzero during GC. */
172
173 int gc_in_progress;
174
175 /* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
178
179 int abort_on_gc;
180
181 /* Number of live and free conses etc. */
182
183 static int total_conses, total_markers, total_symbols, total_vector_size;
184 static int total_free_conses, total_free_markers, total_free_symbols;
185 static int total_free_floats, total_floats;
186
187 /* Points to memory space allocated as "spare", to be freed if we run
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
190
191 static char *spare_memory[7];
192
193 #ifndef SYSTEM_MALLOC
194 /* Amount of spare memory to keep in large reserve block. */
195
196 #define SPARE_MEMORY (1 << 14)
197 #endif
198
199 #ifdef SYSTEM_MALLOC
200 # define LARGE_REQUEST (1 << 14)
201 #else
202 # define LARGE_REQUEST SPARE_MEMORY
203 #endif
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 #ifndef VIRT_ADDR_VARIES
216 static
217 #endif
218 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
219 #define PUREBEG (char *) pure
220
221 /* Pointer to the pure area, and its size. */
222
223 static char *purebeg;
224 static size_t pure_size;
225
226 /* Number of bytes of pure storage used before pure storage overflowed.
227 If this is non-zero, this implies that an overflow occurred. */
228
229 static size_t pure_bytes_used_before_overflow;
230
231 /* Value is non-zero if P points into pure space. */
232
233 #define PURE_POINTER_P(P) \
234 (((PNTR_COMPARISON_TYPE) (P) \
235 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
236 && ((PNTR_COMPARISON_TYPE) (P) \
237 >= (PNTR_COMPARISON_TYPE) purebeg))
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static EMACS_INT pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static EMACS_INT pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static size_t stack_copy_size;
263 #endif
264
265 /* Non-zero means ignore malloc warnings. Set during initialization.
266 Currently not used. */
267
268 static int ignore_warnings;
269
270 static Lisp_Object Qgc_cons_threshold;
271 Lisp_Object Qchar_table_extra_slots;
272
273 /* Hook run after GC has finished. */
274
275 static Lisp_Object Qpost_gc_hook;
276
277 static void mark_buffer (Lisp_Object);
278 static void mark_terminals (void);
279 static void gc_sweep (void);
280 static void mark_glyph_matrix (struct glyph_matrix *);
281 static void mark_face_cache (struct face_cache *);
282
283 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
284 static void refill_memory_reserve (void);
285 #endif
286 static struct Lisp_String *allocate_string (void);
287 static void compact_small_strings (void);
288 static void free_large_strings (void);
289 static void sweep_strings (void);
290 static void free_misc (Lisp_Object);
291
292 /* When scanning the C stack for live Lisp objects, Emacs keeps track
293 of what memory allocated via lisp_malloc is intended for what
294 purpose. This enumeration specifies the type of memory. */
295
296 enum mem_type
297 {
298 MEM_TYPE_NON_LISP,
299 MEM_TYPE_BUFFER,
300 MEM_TYPE_CONS,
301 MEM_TYPE_STRING,
302 MEM_TYPE_MISC,
303 MEM_TYPE_SYMBOL,
304 MEM_TYPE_FLOAT,
305 /* We used to keep separate mem_types for subtypes of vectors such as
306 process, hash_table, frame, terminal, and window, but we never made
307 use of the distinction, so it only caused source-code complexity
308 and runtime slowdown. Minor but pointless. */
309 MEM_TYPE_VECTORLIKE
310 };
311
312 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
313 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
314
315
316 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317
318 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
319 #include <stdio.h> /* For fprintf. */
320 #endif
321
322 /* A unique object in pure space used to make some Lisp objects
323 on free lists recognizable in O(1). */
324
325 static Lisp_Object Vdead;
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330 static int dont_register_blocks;
331
332 #endif /* GC_MALLOC_CHECK */
333
334 /* A node in the red-black tree describing allocated memory containing
335 Lisp data. Each such block is recorded with its start and end
336 address when it is allocated, and removed from the tree when it
337 is freed.
338
339 A red-black tree is a balanced binary tree with the following
340 properties:
341
342 1. Every node is either red or black.
343 2. Every leaf is black.
344 3. If a node is red, then both of its children are black.
345 4. Every simple path from a node to a descendant leaf contains
346 the same number of black nodes.
347 5. The root is always black.
348
349 When nodes are inserted into the tree, or deleted from the tree,
350 the tree is "fixed" so that these properties are always true.
351
352 A red-black tree with N internal nodes has height at most 2
353 log(N+1). Searches, insertions and deletions are done in O(log N).
354 Please see a text book about data structures for a detailed
355 description of red-black trees. Any book worth its salt should
356 describe them. */
357
358 struct mem_node
359 {
360 /* Children of this node. These pointers are never NULL. When there
361 is no child, the value is MEM_NIL, which points to a dummy node. */
362 struct mem_node *left, *right;
363
364 /* The parent of this node. In the root node, this is NULL. */
365 struct mem_node *parent;
366
367 /* Start and end of allocated region. */
368 void *start, *end;
369
370 /* Node color. */
371 enum {MEM_BLACK, MEM_RED} color;
372
373 /* Memory type. */
374 enum mem_type type;
375 };
376
377 /* Base address of stack. Set in main. */
378
379 Lisp_Object *stack_base;
380
381 /* Root of the tree describing allocated Lisp memory. */
382
383 static struct mem_node *mem_root;
384
385 /* Lowest and highest known address in the heap. */
386
387 static void *min_heap_address, *max_heap_address;
388
389 /* Sentinel node of the tree. */
390
391 static struct mem_node mem_z;
392 #define MEM_NIL &mem_z
393
394 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
395 static void lisp_free (POINTER_TYPE *);
396 static void mark_stack (void);
397 static int live_vector_p (struct mem_node *, void *);
398 static int live_buffer_p (struct mem_node *, void *);
399 static int live_string_p (struct mem_node *, void *);
400 static int live_cons_p (struct mem_node *, void *);
401 static int live_symbol_p (struct mem_node *, void *);
402 static int live_float_p (struct mem_node *, void *);
403 static int live_misc_p (struct mem_node *, void *);
404 static void mark_maybe_object (Lisp_Object);
405 static void mark_memory (void *, void *, int);
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static inline struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 /* Recording what needs to be marked for gc. */
423
424 struct gcpro *gcprolist;
425
426 /* Addresses of staticpro'd variables. Initialize it to a nonzero
427 value; otherwise some compilers put it into BSS. */
428
429 #define NSTATICS 0x640
430 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431
432 /* Index of next unused slot in staticvec. */
433
434 static int staticidx = 0;
435
436 static POINTER_TYPE *pure_alloc (size_t, int);
437
438
439 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
440 ALIGNMENT must be a power of 2. */
441
442 #define ALIGN(ptr, ALIGNMENT) \
443 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
444 & ~((ALIGNMENT) - 1)))
445
446
447 \f
448 /************************************************************************
449 Malloc
450 ************************************************************************/
451
452 /* Function malloc calls this if it finds we are near exhausting storage. */
453
454 void
455 malloc_warning (const char *str)
456 {
457 pending_malloc_warning = str;
458 }
459
460
461 /* Display an already-pending malloc warning. */
462
463 void
464 display_malloc_warning (void)
465 {
466 call3 (intern ("display-warning"),
467 intern ("alloc"),
468 build_string (pending_malloc_warning),
469 intern ("emergency"));
470 pending_malloc_warning = 0;
471 }
472 \f
473 /* Called if we can't allocate relocatable space for a buffer. */
474
475 void
476 buffer_memory_full (EMACS_INT nbytes)
477 {
478 /* If buffers use the relocating allocator, no need to free
479 spare_memory, because we may have plenty of malloc space left
480 that we could get, and if we don't, the malloc that fails will
481 itself cause spare_memory to be freed. If buffers don't use the
482 relocating allocator, treat this like any other failing
483 malloc. */
484
485 #ifndef REL_ALLOC
486 memory_full (nbytes);
487 #endif
488
489 /* This used to call error, but if we've run out of memory, we could
490 get infinite recursion trying to build the string. */
491 xsignal (Qnil, Vmemory_signal_data);
492 }
493
494
495 #ifdef XMALLOC_OVERRUN_CHECK
496
497 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
498 and a 16 byte trailer around each block.
499
500 The header consists of 12 fixed bytes + a 4 byte integer contaning the
501 original block size, while the trailer consists of 16 fixed bytes.
502
503 The header is used to detect whether this block has been allocated
504 through these functions -- as it seems that some low-level libc
505 functions may bypass the malloc hooks.
506 */
507
508
509 #define XMALLOC_OVERRUN_CHECK_SIZE 16
510
511 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
512 { 0x9a, 0x9b, 0xae, 0xaf,
513 0xbf, 0xbe, 0xce, 0xcf,
514 0xea, 0xeb, 0xec, 0xed };
515
516 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
517 { 0xaa, 0xab, 0xac, 0xad,
518 0xba, 0xbb, 0xbc, 0xbd,
519 0xca, 0xcb, 0xcc, 0xcd,
520 0xda, 0xdb, 0xdc, 0xdd };
521
522 /* Macros to insert and extract the block size in the header. */
523
524 #define XMALLOC_PUT_SIZE(ptr, size) \
525 (ptr[-1] = (size & 0xff), \
526 ptr[-2] = ((size >> 8) & 0xff), \
527 ptr[-3] = ((size >> 16) & 0xff), \
528 ptr[-4] = ((size >> 24) & 0xff))
529
530 #define XMALLOC_GET_SIZE(ptr) \
531 (size_t)((unsigned)(ptr[-1]) | \
532 ((unsigned)(ptr[-2]) << 8) | \
533 ((unsigned)(ptr[-3]) << 16) | \
534 ((unsigned)(ptr[-4]) << 24))
535
536
537 /* The call depth in overrun_check functions. For example, this might happen:
538 xmalloc()
539 overrun_check_malloc()
540 -> malloc -> (via hook)_-> emacs_blocked_malloc
541 -> overrun_check_malloc
542 call malloc (hooks are NULL, so real malloc is called).
543 malloc returns 10000.
544 add overhead, return 10016.
545 <- (back in overrun_check_malloc)
546 add overhead again, return 10032
547 xmalloc returns 10032.
548
549 (time passes).
550
551 xfree(10032)
552 overrun_check_free(10032)
553 decrease overhed
554 free(10016) <- crash, because 10000 is the original pointer. */
555
556 static int check_depth;
557
558 /* Like malloc, but wraps allocated block with header and trailer. */
559
560 static POINTER_TYPE *
561 overrun_check_malloc (size_t size)
562 {
563 register unsigned char *val;
564 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
565
566 val = (unsigned char *) malloc (size + overhead);
567 if (val && check_depth == 1)
568 {
569 memcpy (val, xmalloc_overrun_check_header,
570 XMALLOC_OVERRUN_CHECK_SIZE - 4);
571 val += XMALLOC_OVERRUN_CHECK_SIZE;
572 XMALLOC_PUT_SIZE(val, size);
573 memcpy (val + size, xmalloc_overrun_check_trailer,
574 XMALLOC_OVERRUN_CHECK_SIZE);
575 }
576 --check_depth;
577 return (POINTER_TYPE *)val;
578 }
579
580
581 /* Like realloc, but checks old block for overrun, and wraps new block
582 with header and trailer. */
583
584 static POINTER_TYPE *
585 overrun_check_realloc (POINTER_TYPE *block, size_t size)
586 {
587 register unsigned char *val = (unsigned char *) block;
588 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
589
590 if (val
591 && check_depth == 1
592 && memcmp (xmalloc_overrun_check_header,
593 val - XMALLOC_OVERRUN_CHECK_SIZE,
594 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
595 {
596 size_t osize = XMALLOC_GET_SIZE (val);
597 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
598 XMALLOC_OVERRUN_CHECK_SIZE))
599 abort ();
600 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
601 val -= XMALLOC_OVERRUN_CHECK_SIZE;
602 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
603 }
604
605 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
606
607 if (val && check_depth == 1)
608 {
609 memcpy (val, xmalloc_overrun_check_header,
610 XMALLOC_OVERRUN_CHECK_SIZE - 4);
611 val += XMALLOC_OVERRUN_CHECK_SIZE;
612 XMALLOC_PUT_SIZE(val, size);
613 memcpy (val + size, xmalloc_overrun_check_trailer,
614 XMALLOC_OVERRUN_CHECK_SIZE);
615 }
616 --check_depth;
617 return (POINTER_TYPE *)val;
618 }
619
620 /* Like free, but checks block for overrun. */
621
622 static void
623 overrun_check_free (POINTER_TYPE *block)
624 {
625 unsigned char *val = (unsigned char *) block;
626
627 ++check_depth;
628 if (val
629 && check_depth == 1
630 && memcmp (xmalloc_overrun_check_header,
631 val - XMALLOC_OVERRUN_CHECK_SIZE,
632 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
633 {
634 size_t osize = XMALLOC_GET_SIZE (val);
635 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
636 XMALLOC_OVERRUN_CHECK_SIZE))
637 abort ();
638 #ifdef XMALLOC_CLEAR_FREE_MEMORY
639 val -= XMALLOC_OVERRUN_CHECK_SIZE;
640 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
641 #else
642 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
643 val -= XMALLOC_OVERRUN_CHECK_SIZE;
644 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
645 #endif
646 }
647
648 free (val);
649 --check_depth;
650 }
651
652 #undef malloc
653 #undef realloc
654 #undef free
655 #define malloc overrun_check_malloc
656 #define realloc overrun_check_realloc
657 #define free overrun_check_free
658 #endif
659
660 #ifdef SYNC_INPUT
661 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
662 there's no need to block input around malloc. */
663 #define MALLOC_BLOCK_INPUT ((void)0)
664 #define MALLOC_UNBLOCK_INPUT ((void)0)
665 #else
666 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
667 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
668 #endif
669
670 /* Like malloc but check for no memory and block interrupt input.. */
671
672 POINTER_TYPE *
673 xmalloc (size_t size)
674 {
675 register POINTER_TYPE *val;
676
677 MALLOC_BLOCK_INPUT;
678 val = (POINTER_TYPE *) malloc (size);
679 MALLOC_UNBLOCK_INPUT;
680
681 if (!val && size)
682 memory_full (size);
683 return val;
684 }
685
686
687 /* Like realloc but check for no memory and block interrupt input.. */
688
689 POINTER_TYPE *
690 xrealloc (POINTER_TYPE *block, size_t size)
691 {
692 register POINTER_TYPE *val;
693
694 MALLOC_BLOCK_INPUT;
695 /* We must call malloc explicitly when BLOCK is 0, since some
696 reallocs don't do this. */
697 if (! block)
698 val = (POINTER_TYPE *) malloc (size);
699 else
700 val = (POINTER_TYPE *) realloc (block, size);
701 MALLOC_UNBLOCK_INPUT;
702
703 if (!val && size)
704 memory_full (size);
705 return val;
706 }
707
708
709 /* Like free but block interrupt input. */
710
711 void
712 xfree (POINTER_TYPE *block)
713 {
714 if (!block)
715 return;
716 MALLOC_BLOCK_INPUT;
717 free (block);
718 MALLOC_UNBLOCK_INPUT;
719 /* We don't call refill_memory_reserve here
720 because that duplicates doing so in emacs_blocked_free
721 and the criterion should go there. */
722 }
723
724
725 /* Like strdup, but uses xmalloc. */
726
727 char *
728 xstrdup (const char *s)
729 {
730 size_t len = strlen (s) + 1;
731 char *p = (char *) xmalloc (len);
732 memcpy (p, s, len);
733 return p;
734 }
735
736
737 /* Unwind for SAFE_ALLOCA */
738
739 Lisp_Object
740 safe_alloca_unwind (Lisp_Object arg)
741 {
742 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
743
744 p->dogc = 0;
745 xfree (p->pointer);
746 p->pointer = 0;
747 free_misc (arg);
748 return Qnil;
749 }
750
751
752 /* Like malloc but used for allocating Lisp data. NBYTES is the
753 number of bytes to allocate, TYPE describes the intended use of the
754 allcated memory block (for strings, for conses, ...). */
755
756 #ifndef USE_LSB_TAG
757 static void *lisp_malloc_loser;
758 #endif
759
760 static POINTER_TYPE *
761 lisp_malloc (size_t nbytes, enum mem_type type)
762 {
763 register void *val;
764
765 MALLOC_BLOCK_INPUT;
766
767 #ifdef GC_MALLOC_CHECK
768 allocated_mem_type = type;
769 #endif
770
771 val = (void *) malloc (nbytes);
772
773 #ifndef USE_LSB_TAG
774 /* If the memory just allocated cannot be addressed thru a Lisp
775 object's pointer, and it needs to be,
776 that's equivalent to running out of memory. */
777 if (val && type != MEM_TYPE_NON_LISP)
778 {
779 Lisp_Object tem;
780 XSETCONS (tem, (char *) val + nbytes - 1);
781 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
782 {
783 lisp_malloc_loser = val;
784 free (val);
785 val = 0;
786 }
787 }
788 #endif
789
790 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
791 if (val && type != MEM_TYPE_NON_LISP)
792 mem_insert (val, (char *) val + nbytes, type);
793 #endif
794
795 MALLOC_UNBLOCK_INPUT;
796 if (!val && nbytes)
797 memory_full (nbytes);
798 return val;
799 }
800
801 /* Free BLOCK. This must be called to free memory allocated with a
802 call to lisp_malloc. */
803
804 static void
805 lisp_free (POINTER_TYPE *block)
806 {
807 MALLOC_BLOCK_INPUT;
808 free (block);
809 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
810 mem_delete (mem_find (block));
811 #endif
812 MALLOC_UNBLOCK_INPUT;
813 }
814
815 /* Allocation of aligned blocks of memory to store Lisp data. */
816 /* The entry point is lisp_align_malloc which returns blocks of at most */
817 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
818
819 /* Use posix_memalloc if the system has it and we're using the system's
820 malloc (because our gmalloc.c routines don't have posix_memalign although
821 its memalloc could be used). */
822 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
823 #define USE_POSIX_MEMALIGN 1
824 #endif
825
826 /* BLOCK_ALIGN has to be a power of 2. */
827 #define BLOCK_ALIGN (1 << 10)
828
829 /* Padding to leave at the end of a malloc'd block. This is to give
830 malloc a chance to minimize the amount of memory wasted to alignment.
831 It should be tuned to the particular malloc library used.
832 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
833 posix_memalign on the other hand would ideally prefer a value of 4
834 because otherwise, there's 1020 bytes wasted between each ablocks.
835 In Emacs, testing shows that those 1020 can most of the time be
836 efficiently used by malloc to place other objects, so a value of 0 can
837 still preferable unless you have a lot of aligned blocks and virtually
838 nothing else. */
839 #define BLOCK_PADDING 0
840 #define BLOCK_BYTES \
841 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
842
843 /* Internal data structures and constants. */
844
845 #define ABLOCKS_SIZE 16
846
847 /* An aligned block of memory. */
848 struct ablock
849 {
850 union
851 {
852 char payload[BLOCK_BYTES];
853 struct ablock *next_free;
854 } x;
855 /* `abase' is the aligned base of the ablocks. */
856 /* It is overloaded to hold the virtual `busy' field that counts
857 the number of used ablock in the parent ablocks.
858 The first ablock has the `busy' field, the others have the `abase'
859 field. To tell the difference, we assume that pointers will have
860 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
861 is used to tell whether the real base of the parent ablocks is `abase'
862 (if not, the word before the first ablock holds a pointer to the
863 real base). */
864 struct ablocks *abase;
865 /* The padding of all but the last ablock is unused. The padding of
866 the last ablock in an ablocks is not allocated. */
867 #if BLOCK_PADDING
868 char padding[BLOCK_PADDING];
869 #endif
870 };
871
872 /* A bunch of consecutive aligned blocks. */
873 struct ablocks
874 {
875 struct ablock blocks[ABLOCKS_SIZE];
876 };
877
878 /* Size of the block requested from malloc or memalign. */
879 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
880
881 #define ABLOCK_ABASE(block) \
882 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
883 ? (struct ablocks *)(block) \
884 : (block)->abase)
885
886 /* Virtual `busy' field. */
887 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
888
889 /* Pointer to the (not necessarily aligned) malloc block. */
890 #ifdef USE_POSIX_MEMALIGN
891 #define ABLOCKS_BASE(abase) (abase)
892 #else
893 #define ABLOCKS_BASE(abase) \
894 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
895 #endif
896
897 /* The list of free ablock. */
898 static struct ablock *free_ablock;
899
900 /* Allocate an aligned block of nbytes.
901 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
902 smaller or equal to BLOCK_BYTES. */
903 static POINTER_TYPE *
904 lisp_align_malloc (size_t nbytes, enum mem_type type)
905 {
906 void *base, *val;
907 struct ablocks *abase;
908
909 eassert (nbytes <= BLOCK_BYTES);
910
911 MALLOC_BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 allocated_mem_type = type;
915 #endif
916
917 if (!free_ablock)
918 {
919 int i;
920 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
921
922 #ifdef DOUG_LEA_MALLOC
923 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
924 because mapped region contents are not preserved in
925 a dumped Emacs. */
926 mallopt (M_MMAP_MAX, 0);
927 #endif
928
929 #ifdef USE_POSIX_MEMALIGN
930 {
931 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
932 if (err)
933 base = NULL;
934 abase = base;
935 }
936 #else
937 base = malloc (ABLOCKS_BYTES);
938 abase = ALIGN (base, BLOCK_ALIGN);
939 #endif
940
941 if (base == 0)
942 {
943 MALLOC_UNBLOCK_INPUT;
944 memory_full (ABLOCKS_BYTES);
945 }
946
947 aligned = (base == abase);
948 if (!aligned)
949 ((void**)abase)[-1] = base;
950
951 #ifdef DOUG_LEA_MALLOC
952 /* Back to a reasonable maximum of mmap'ed areas. */
953 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
954 #endif
955
956 #ifndef USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be, that's equivalent to
959 running out of memory. */
960 if (type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 char *end = (char *) base + ABLOCKS_BYTES - 1;
964 XSETCONS (tem, end);
965 if ((char *) XCONS (tem) != end)
966 {
967 lisp_malloc_loser = base;
968 free (base);
969 MALLOC_UNBLOCK_INPUT;
970 memory_full (SIZE_MAX);
971 }
972 }
973 #endif
974
975 /* Initialize the blocks and put them on the free list.
976 Is `base' was not properly aligned, we can't use the last block. */
977 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
978 {
979 abase->blocks[i].abase = abase;
980 abase->blocks[i].x.next_free = free_ablock;
981 free_ablock = &abase->blocks[i];
982 }
983 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
984
985 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
986 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
987 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
988 eassert (ABLOCKS_BASE (abase) == base);
989 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
990 }
991
992 abase = ABLOCK_ABASE (free_ablock);
993 ABLOCKS_BUSY (abase) =
994 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
995 val = free_ablock;
996 free_ablock = free_ablock->x.next_free;
997
998 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
999 if (type != MEM_TYPE_NON_LISP)
1000 mem_insert (val, (char *) val + nbytes, type);
1001 #endif
1002
1003 MALLOC_UNBLOCK_INPUT;
1004
1005 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1006 return val;
1007 }
1008
1009 static void
1010 lisp_align_free (POINTER_TYPE *block)
1011 {
1012 struct ablock *ablock = block;
1013 struct ablocks *abase = ABLOCK_ABASE (ablock);
1014
1015 MALLOC_BLOCK_INPUT;
1016 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1017 mem_delete (mem_find (block));
1018 #endif
1019 /* Put on free list. */
1020 ablock->x.next_free = free_ablock;
1021 free_ablock = ablock;
1022 /* Update busy count. */
1023 ABLOCKS_BUSY (abase) =
1024 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1025
1026 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1027 { /* All the blocks are free. */
1028 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1029 struct ablock **tem = &free_ablock;
1030 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1031
1032 while (*tem)
1033 {
1034 if (*tem >= (struct ablock *) abase && *tem < atop)
1035 {
1036 i++;
1037 *tem = (*tem)->x.next_free;
1038 }
1039 else
1040 tem = &(*tem)->x.next_free;
1041 }
1042 eassert ((aligned & 1) == aligned);
1043 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1044 #ifdef USE_POSIX_MEMALIGN
1045 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1046 #endif
1047 free (ABLOCKS_BASE (abase));
1048 }
1049 MALLOC_UNBLOCK_INPUT;
1050 }
1051
1052 /* Return a new buffer structure allocated from the heap with
1053 a call to lisp_malloc. */
1054
1055 struct buffer *
1056 allocate_buffer (void)
1057 {
1058 struct buffer *b
1059 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1060 MEM_TYPE_BUFFER);
1061 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1062 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1063 / sizeof (EMACS_INT)));
1064 return b;
1065 }
1066
1067 \f
1068 #ifndef SYSTEM_MALLOC
1069
1070 /* Arranging to disable input signals while we're in malloc.
1071
1072 This only works with GNU malloc. To help out systems which can't
1073 use GNU malloc, all the calls to malloc, realloc, and free
1074 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1075 pair; unfortunately, we have no idea what C library functions
1076 might call malloc, so we can't really protect them unless you're
1077 using GNU malloc. Fortunately, most of the major operating systems
1078 can use GNU malloc. */
1079
1080 #ifndef SYNC_INPUT
1081 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1082 there's no need to block input around malloc. */
1083
1084 #ifndef DOUG_LEA_MALLOC
1085 extern void * (*__malloc_hook) (size_t, const void *);
1086 extern void * (*__realloc_hook) (void *, size_t, const void *);
1087 extern void (*__free_hook) (void *, const void *);
1088 /* Else declared in malloc.h, perhaps with an extra arg. */
1089 #endif /* DOUG_LEA_MALLOC */
1090 static void * (*old_malloc_hook) (size_t, const void *);
1091 static void * (*old_realloc_hook) (void *, size_t, const void*);
1092 static void (*old_free_hook) (void*, const void*);
1093
1094 #ifdef DOUG_LEA_MALLOC
1095 # define BYTES_USED (mallinfo ().uordblks)
1096 #else
1097 # define BYTES_USED _bytes_used
1098 #endif
1099
1100 static __malloc_size_t bytes_used_when_reconsidered;
1101
1102 /* Value of _bytes_used, when spare_memory was freed. */
1103
1104 static __malloc_size_t bytes_used_when_full;
1105
1106 /* This function is used as the hook for free to call. */
1107
1108 static void
1109 emacs_blocked_free (void *ptr, const void *ptr2)
1110 {
1111 BLOCK_INPUT_ALLOC;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 if (ptr)
1115 {
1116 struct mem_node *m;
1117
1118 m = mem_find (ptr);
1119 if (m == MEM_NIL || m->start != ptr)
1120 {
1121 fprintf (stderr,
1122 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1123 abort ();
1124 }
1125 else
1126 {
1127 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1128 mem_delete (m);
1129 }
1130 }
1131 #endif /* GC_MALLOC_CHECK */
1132
1133 __free_hook = old_free_hook;
1134 free (ptr);
1135
1136 /* If we released our reserve (due to running out of memory),
1137 and we have a fair amount free once again,
1138 try to set aside another reserve in case we run out once more. */
1139 if (! NILP (Vmemory_full)
1140 /* Verify there is enough space that even with the malloc
1141 hysteresis this call won't run out again.
1142 The code here is correct as long as SPARE_MEMORY
1143 is substantially larger than the block size malloc uses. */
1144 && (bytes_used_when_full
1145 > ((bytes_used_when_reconsidered = BYTES_USED)
1146 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1147 refill_memory_reserve ();
1148
1149 __free_hook = emacs_blocked_free;
1150 UNBLOCK_INPUT_ALLOC;
1151 }
1152
1153
1154 /* This function is the malloc hook that Emacs uses. */
1155
1156 static void *
1157 emacs_blocked_malloc (size_t size, const void *ptr)
1158 {
1159 void *value;
1160
1161 BLOCK_INPUT_ALLOC;
1162 __malloc_hook = old_malloc_hook;
1163 #ifdef DOUG_LEA_MALLOC
1164 /* Segfaults on my system. --lorentey */
1165 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1166 #else
1167 __malloc_extra_blocks = malloc_hysteresis;
1168 #endif
1169
1170 value = (void *) malloc (size);
1171
1172 #ifdef GC_MALLOC_CHECK
1173 {
1174 struct mem_node *m = mem_find (value);
1175 if (m != MEM_NIL)
1176 {
1177 fprintf (stderr, "Malloc returned %p which is already in use\n",
1178 value);
1179 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1180 m->start, m->end, (char *) m->end - (char *) m->start,
1181 m->type);
1182 abort ();
1183 }
1184
1185 if (!dont_register_blocks)
1186 {
1187 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1188 allocated_mem_type = MEM_TYPE_NON_LISP;
1189 }
1190 }
1191 #endif /* GC_MALLOC_CHECK */
1192
1193 __malloc_hook = emacs_blocked_malloc;
1194 UNBLOCK_INPUT_ALLOC;
1195
1196 /* fprintf (stderr, "%p malloc\n", value); */
1197 return value;
1198 }
1199
1200
1201 /* This function is the realloc hook that Emacs uses. */
1202
1203 static void *
1204 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1205 {
1206 void *value;
1207
1208 BLOCK_INPUT_ALLOC;
1209 __realloc_hook = old_realloc_hook;
1210
1211 #ifdef GC_MALLOC_CHECK
1212 if (ptr)
1213 {
1214 struct mem_node *m = mem_find (ptr);
1215 if (m == MEM_NIL || m->start != ptr)
1216 {
1217 fprintf (stderr,
1218 "Realloc of %p which wasn't allocated with malloc\n",
1219 ptr);
1220 abort ();
1221 }
1222
1223 mem_delete (m);
1224 }
1225
1226 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1227
1228 /* Prevent malloc from registering blocks. */
1229 dont_register_blocks = 1;
1230 #endif /* GC_MALLOC_CHECK */
1231
1232 value = (void *) realloc (ptr, size);
1233
1234 #ifdef GC_MALLOC_CHECK
1235 dont_register_blocks = 0;
1236
1237 {
1238 struct mem_node *m = mem_find (value);
1239 if (m != MEM_NIL)
1240 {
1241 fprintf (stderr, "Realloc returns memory that is already in use\n");
1242 abort ();
1243 }
1244
1245 /* Can't handle zero size regions in the red-black tree. */
1246 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1247 }
1248
1249 /* fprintf (stderr, "%p <- realloc\n", value); */
1250 #endif /* GC_MALLOC_CHECK */
1251
1252 __realloc_hook = emacs_blocked_realloc;
1253 UNBLOCK_INPUT_ALLOC;
1254
1255 return value;
1256 }
1257
1258
1259 #ifdef HAVE_GTK_AND_PTHREAD
1260 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1261 normal malloc. Some thread implementations need this as they call
1262 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1263 calls malloc because it is the first call, and we have an endless loop. */
1264
1265 void
1266 reset_malloc_hooks ()
1267 {
1268 __free_hook = old_free_hook;
1269 __malloc_hook = old_malloc_hook;
1270 __realloc_hook = old_realloc_hook;
1271 }
1272 #endif /* HAVE_GTK_AND_PTHREAD */
1273
1274
1275 /* Called from main to set up malloc to use our hooks. */
1276
1277 void
1278 uninterrupt_malloc (void)
1279 {
1280 #ifdef HAVE_GTK_AND_PTHREAD
1281 #ifdef DOUG_LEA_MALLOC
1282 pthread_mutexattr_t attr;
1283
1284 /* GLIBC has a faster way to do this, but lets keep it portable.
1285 This is according to the Single UNIX Specification. */
1286 pthread_mutexattr_init (&attr);
1287 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1288 pthread_mutex_init (&alloc_mutex, &attr);
1289 #else /* !DOUG_LEA_MALLOC */
1290 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1291 and the bundled gmalloc.c doesn't require it. */
1292 pthread_mutex_init (&alloc_mutex, NULL);
1293 #endif /* !DOUG_LEA_MALLOC */
1294 #endif /* HAVE_GTK_AND_PTHREAD */
1295
1296 if (__free_hook != emacs_blocked_free)
1297 old_free_hook = __free_hook;
1298 __free_hook = emacs_blocked_free;
1299
1300 if (__malloc_hook != emacs_blocked_malloc)
1301 old_malloc_hook = __malloc_hook;
1302 __malloc_hook = emacs_blocked_malloc;
1303
1304 if (__realloc_hook != emacs_blocked_realloc)
1305 old_realloc_hook = __realloc_hook;
1306 __realloc_hook = emacs_blocked_realloc;
1307 }
1308
1309 #endif /* not SYNC_INPUT */
1310 #endif /* not SYSTEM_MALLOC */
1311
1312
1313 \f
1314 /***********************************************************************
1315 Interval Allocation
1316 ***********************************************************************/
1317
1318 /* Number of intervals allocated in an interval_block structure.
1319 The 1020 is 1024 minus malloc overhead. */
1320
1321 #define INTERVAL_BLOCK_SIZE \
1322 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1323
1324 /* Intervals are allocated in chunks in form of an interval_block
1325 structure. */
1326
1327 struct interval_block
1328 {
1329 /* Place `intervals' first, to preserve alignment. */
1330 struct interval intervals[INTERVAL_BLOCK_SIZE];
1331 struct interval_block *next;
1332 };
1333
1334 /* Current interval block. Its `next' pointer points to older
1335 blocks. */
1336
1337 static struct interval_block *interval_block;
1338
1339 /* Index in interval_block above of the next unused interval
1340 structure. */
1341
1342 static int interval_block_index;
1343
1344 /* Number of free and live intervals. */
1345
1346 static int total_free_intervals, total_intervals;
1347
1348 /* List of free intervals. */
1349
1350 static INTERVAL interval_free_list;
1351
1352 /* Total number of interval blocks now in use. */
1353
1354 static int n_interval_blocks;
1355
1356
1357 /* Initialize interval allocation. */
1358
1359 static void
1360 init_intervals (void)
1361 {
1362 interval_block = NULL;
1363 interval_block_index = INTERVAL_BLOCK_SIZE;
1364 interval_free_list = 0;
1365 n_interval_blocks = 0;
1366 }
1367
1368
1369 /* Return a new interval. */
1370
1371 INTERVAL
1372 make_interval (void)
1373 {
1374 INTERVAL val;
1375
1376 /* eassert (!handling_signal); */
1377
1378 MALLOC_BLOCK_INPUT;
1379
1380 if (interval_free_list)
1381 {
1382 val = interval_free_list;
1383 interval_free_list = INTERVAL_PARENT (interval_free_list);
1384 }
1385 else
1386 {
1387 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1388 {
1389 register struct interval_block *newi;
1390
1391 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1392 MEM_TYPE_NON_LISP);
1393
1394 newi->next = interval_block;
1395 interval_block = newi;
1396 interval_block_index = 0;
1397 n_interval_blocks++;
1398 }
1399 val = &interval_block->intervals[interval_block_index++];
1400 }
1401
1402 MALLOC_UNBLOCK_INPUT;
1403
1404 consing_since_gc += sizeof (struct interval);
1405 intervals_consed++;
1406 RESET_INTERVAL (val);
1407 val->gcmarkbit = 0;
1408 return val;
1409 }
1410
1411
1412 /* Mark Lisp objects in interval I. */
1413
1414 static void
1415 mark_interval (register INTERVAL i, Lisp_Object dummy)
1416 {
1417 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1418 i->gcmarkbit = 1;
1419 mark_object (i->plist);
1420 }
1421
1422
1423 /* Mark the interval tree rooted in TREE. Don't call this directly;
1424 use the macro MARK_INTERVAL_TREE instead. */
1425
1426 static void
1427 mark_interval_tree (register INTERVAL tree)
1428 {
1429 /* No need to test if this tree has been marked already; this
1430 function is always called through the MARK_INTERVAL_TREE macro,
1431 which takes care of that. */
1432
1433 traverse_intervals_noorder (tree, mark_interval, Qnil);
1434 }
1435
1436
1437 /* Mark the interval tree rooted in I. */
1438
1439 #define MARK_INTERVAL_TREE(i) \
1440 do { \
1441 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1442 mark_interval_tree (i); \
1443 } while (0)
1444
1445
1446 #define UNMARK_BALANCE_INTERVALS(i) \
1447 do { \
1448 if (! NULL_INTERVAL_P (i)) \
1449 (i) = balance_intervals (i); \
1450 } while (0)
1451
1452 \f
1453 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1454 can't create number objects in macros. */
1455 #ifndef make_number
1456 Lisp_Object
1457 make_number (EMACS_INT n)
1458 {
1459 Lisp_Object obj;
1460 obj.s.val = n;
1461 obj.s.type = Lisp_Int;
1462 return obj;
1463 }
1464 #endif
1465 \f
1466 /***********************************************************************
1467 String Allocation
1468 ***********************************************************************/
1469
1470 /* Lisp_Strings are allocated in string_block structures. When a new
1471 string_block is allocated, all the Lisp_Strings it contains are
1472 added to a free-list string_free_list. When a new Lisp_String is
1473 needed, it is taken from that list. During the sweep phase of GC,
1474 string_blocks that are entirely free are freed, except two which
1475 we keep.
1476
1477 String data is allocated from sblock structures. Strings larger
1478 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1479 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1480
1481 Sblocks consist internally of sdata structures, one for each
1482 Lisp_String. The sdata structure points to the Lisp_String it
1483 belongs to. The Lisp_String points back to the `u.data' member of
1484 its sdata structure.
1485
1486 When a Lisp_String is freed during GC, it is put back on
1487 string_free_list, and its `data' member and its sdata's `string'
1488 pointer is set to null. The size of the string is recorded in the
1489 `u.nbytes' member of the sdata. So, sdata structures that are no
1490 longer used, can be easily recognized, and it's easy to compact the
1491 sblocks of small strings which we do in compact_small_strings. */
1492
1493 /* Size in bytes of an sblock structure used for small strings. This
1494 is 8192 minus malloc overhead. */
1495
1496 #define SBLOCK_SIZE 8188
1497
1498 /* Strings larger than this are considered large strings. String data
1499 for large strings is allocated from individual sblocks. */
1500
1501 #define LARGE_STRING_BYTES 1024
1502
1503 /* Structure describing string memory sub-allocated from an sblock.
1504 This is where the contents of Lisp strings are stored. */
1505
1506 struct sdata
1507 {
1508 /* Back-pointer to the string this sdata belongs to. If null, this
1509 structure is free, and the NBYTES member of the union below
1510 contains the string's byte size (the same value that STRING_BYTES
1511 would return if STRING were non-null). If non-null, STRING_BYTES
1512 (STRING) is the size of the data, and DATA contains the string's
1513 contents. */
1514 struct Lisp_String *string;
1515
1516 #ifdef GC_CHECK_STRING_BYTES
1517
1518 EMACS_INT nbytes;
1519 unsigned char data[1];
1520
1521 #define SDATA_NBYTES(S) (S)->nbytes
1522 #define SDATA_DATA(S) (S)->data
1523 #define SDATA_SELECTOR(member) member
1524
1525 #else /* not GC_CHECK_STRING_BYTES */
1526
1527 union
1528 {
1529 /* When STRING is non-null. */
1530 unsigned char data[1];
1531
1532 /* When STRING is null. */
1533 EMACS_INT nbytes;
1534 } u;
1535
1536 #define SDATA_NBYTES(S) (S)->u.nbytes
1537 #define SDATA_DATA(S) (S)->u.data
1538 #define SDATA_SELECTOR(member) u.member
1539
1540 #endif /* not GC_CHECK_STRING_BYTES */
1541
1542 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1543 };
1544
1545
1546 /* Structure describing a block of memory which is sub-allocated to
1547 obtain string data memory for strings. Blocks for small strings
1548 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1549 as large as needed. */
1550
1551 struct sblock
1552 {
1553 /* Next in list. */
1554 struct sblock *next;
1555
1556 /* Pointer to the next free sdata block. This points past the end
1557 of the sblock if there isn't any space left in this block. */
1558 struct sdata *next_free;
1559
1560 /* Start of data. */
1561 struct sdata first_data;
1562 };
1563
1564 /* Number of Lisp strings in a string_block structure. The 1020 is
1565 1024 minus malloc overhead. */
1566
1567 #define STRING_BLOCK_SIZE \
1568 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1569
1570 /* Structure describing a block from which Lisp_String structures
1571 are allocated. */
1572
1573 struct string_block
1574 {
1575 /* Place `strings' first, to preserve alignment. */
1576 struct Lisp_String strings[STRING_BLOCK_SIZE];
1577 struct string_block *next;
1578 };
1579
1580 /* Head and tail of the list of sblock structures holding Lisp string
1581 data. We always allocate from current_sblock. The NEXT pointers
1582 in the sblock structures go from oldest_sblock to current_sblock. */
1583
1584 static struct sblock *oldest_sblock, *current_sblock;
1585
1586 /* List of sblocks for large strings. */
1587
1588 static struct sblock *large_sblocks;
1589
1590 /* List of string_block structures, and how many there are. */
1591
1592 static struct string_block *string_blocks;
1593 static int n_string_blocks;
1594
1595 /* Free-list of Lisp_Strings. */
1596
1597 static struct Lisp_String *string_free_list;
1598
1599 /* Number of live and free Lisp_Strings. */
1600
1601 static int total_strings, total_free_strings;
1602
1603 /* Number of bytes used by live strings. */
1604
1605 static EMACS_INT total_string_size;
1606
1607 /* Given a pointer to a Lisp_String S which is on the free-list
1608 string_free_list, return a pointer to its successor in the
1609 free-list. */
1610
1611 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1612
1613 /* Return a pointer to the sdata structure belonging to Lisp string S.
1614 S must be live, i.e. S->data must not be null. S->data is actually
1615 a pointer to the `u.data' member of its sdata structure; the
1616 structure starts at a constant offset in front of that. */
1617
1618 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1619
1620
1621 #ifdef GC_CHECK_STRING_OVERRUN
1622
1623 /* We check for overrun in string data blocks by appending a small
1624 "cookie" after each allocated string data block, and check for the
1625 presence of this cookie during GC. */
1626
1627 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1628 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1629 { '\xde', '\xad', '\xbe', '\xef' };
1630
1631 #else
1632 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1633 #endif
1634
1635 /* Value is the size of an sdata structure large enough to hold NBYTES
1636 bytes of string data. The value returned includes a terminating
1637 NUL byte, the size of the sdata structure, and padding. */
1638
1639 #ifdef GC_CHECK_STRING_BYTES
1640
1641 #define SDATA_SIZE(NBYTES) \
1642 ((SDATA_DATA_OFFSET \
1643 + (NBYTES) + 1 \
1644 + sizeof (EMACS_INT) - 1) \
1645 & ~(sizeof (EMACS_INT) - 1))
1646
1647 #else /* not GC_CHECK_STRING_BYTES */
1648
1649 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1650 less than the size of that member. The 'max' is not needed when
1651 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1652 alignment code reserves enough space. */
1653
1654 #define SDATA_SIZE(NBYTES) \
1655 ((SDATA_DATA_OFFSET \
1656 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1657 ? NBYTES \
1658 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1659 + 1 \
1660 + sizeof (EMACS_INT) - 1) \
1661 & ~(sizeof (EMACS_INT) - 1))
1662
1663 #endif /* not GC_CHECK_STRING_BYTES */
1664
1665 /* Extra bytes to allocate for each string. */
1666
1667 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668
1669 /* Initialize string allocation. Called from init_alloc_once. */
1670
1671 static void
1672 init_strings (void)
1673 {
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 n_string_blocks = 0;
1678 string_free_list = NULL;
1679 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1680 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1681 }
1682
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685
1686 static int check_string_bytes_count;
1687
1688 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1689
1690
1691 /* Like GC_STRING_BYTES, but with debugging check. */
1692
1693 EMACS_INT
1694 string_bytes (struct Lisp_String *s)
1695 {
1696 EMACS_INT nbytes =
1697 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1698
1699 if (!PURE_POINTER_P (s)
1700 && s->data
1701 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1702 abort ();
1703 return nbytes;
1704 }
1705
1706 /* Check validity of Lisp strings' string_bytes member in B. */
1707
1708 static void
1709 check_sblock (struct sblock *b)
1710 {
1711 struct sdata *from, *end, *from_end;
1712
1713 end = b->next_free;
1714
1715 for (from = &b->first_data; from < end; from = from_end)
1716 {
1717 /* Compute the next FROM here because copying below may
1718 overwrite data we need to compute it. */
1719 EMACS_INT nbytes;
1720
1721 /* Check that the string size recorded in the string is the
1722 same as the one recorded in the sdata structure. */
1723 if (from->string)
1724 CHECK_STRING_BYTES (from->string);
1725
1726 if (from->string)
1727 nbytes = GC_STRING_BYTES (from->string);
1728 else
1729 nbytes = SDATA_NBYTES (from);
1730
1731 nbytes = SDATA_SIZE (nbytes);
1732 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1733 }
1734 }
1735
1736
1737 /* Check validity of Lisp strings' string_bytes member. ALL_P
1738 non-zero means check all strings, otherwise check only most
1739 recently allocated strings. Used for hunting a bug. */
1740
1741 static void
1742 check_string_bytes (int all_p)
1743 {
1744 if (all_p)
1745 {
1746 struct sblock *b;
1747
1748 for (b = large_sblocks; b; b = b->next)
1749 {
1750 struct Lisp_String *s = b->first_data.string;
1751 if (s)
1752 CHECK_STRING_BYTES (s);
1753 }
1754
1755 for (b = oldest_sblock; b; b = b->next)
1756 check_sblock (b);
1757 }
1758 else
1759 check_sblock (current_sblock);
1760 }
1761
1762 #endif /* GC_CHECK_STRING_BYTES */
1763
1764 #ifdef GC_CHECK_STRING_FREE_LIST
1765
1766 /* Walk through the string free list looking for bogus next pointers.
1767 This may catch buffer overrun from a previous string. */
1768
1769 static void
1770 check_string_free_list (void)
1771 {
1772 struct Lisp_String *s;
1773
1774 /* Pop a Lisp_String off the free-list. */
1775 s = string_free_list;
1776 while (s != NULL)
1777 {
1778 if ((uintptr_t) s < 1024)
1779 abort();
1780 s = NEXT_FREE_LISP_STRING (s);
1781 }
1782 }
1783 #else
1784 #define check_string_free_list()
1785 #endif
1786
1787 /* Return a new Lisp_String. */
1788
1789 static struct Lisp_String *
1790 allocate_string (void)
1791 {
1792 struct Lisp_String *s;
1793
1794 /* eassert (!handling_signal); */
1795
1796 MALLOC_BLOCK_INPUT;
1797
1798 /* If the free-list is empty, allocate a new string_block, and
1799 add all the Lisp_Strings in it to the free-list. */
1800 if (string_free_list == NULL)
1801 {
1802 struct string_block *b;
1803 int i;
1804
1805 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1806 memset (b, 0, sizeof *b);
1807 b->next = string_blocks;
1808 string_blocks = b;
1809 ++n_string_blocks;
1810
1811 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1812 {
1813 s = b->strings + i;
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 }
1817
1818 total_free_strings += STRING_BLOCK_SIZE;
1819 }
1820
1821 check_string_free_list ();
1822
1823 /* Pop a Lisp_String off the free-list. */
1824 s = string_free_list;
1825 string_free_list = NEXT_FREE_LISP_STRING (s);
1826
1827 MALLOC_UNBLOCK_INPUT;
1828
1829 /* Probably not strictly necessary, but play it safe. */
1830 memset (s, 0, sizeof *s);
1831
1832 --total_free_strings;
1833 ++total_strings;
1834 ++strings_consed;
1835 consing_since_gc += sizeof *s;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 if (!noninteractive)
1839 {
1840 if (++check_string_bytes_count == 200)
1841 {
1842 check_string_bytes_count = 0;
1843 check_string_bytes (1);
1844 }
1845 else
1846 check_string_bytes (0);
1847 }
1848 #endif /* GC_CHECK_STRING_BYTES */
1849
1850 return s;
1851 }
1852
1853
1854 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1855 plus a NUL byte at the end. Allocate an sdata structure for S, and
1856 set S->data to its `u.data' member. Store a NUL byte at the end of
1857 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1858 S->data if it was initially non-null. */
1859
1860 void
1861 allocate_string_data (struct Lisp_String *s,
1862 EMACS_INT nchars, EMACS_INT nbytes)
1863 {
1864 struct sdata *data, *old_data;
1865 struct sblock *b;
1866 EMACS_INT needed, old_nbytes;
1867
1868 /* Determine the number of bytes needed to store NBYTES bytes
1869 of string data. */
1870 needed = SDATA_SIZE (nbytes);
1871 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1872 old_nbytes = GC_STRING_BYTES (s);
1873
1874 MALLOC_BLOCK_INPUT;
1875
1876 if (nbytes > LARGE_STRING_BYTES)
1877 {
1878 size_t size = offsetof (struct sblock, first_data) + needed;
1879
1880 #ifdef DOUG_LEA_MALLOC
1881 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1882 because mapped region contents are not preserved in
1883 a dumped Emacs.
1884
1885 In case you think of allowing it in a dumped Emacs at the
1886 cost of not being able to re-dump, there's another reason:
1887 mmap'ed data typically have an address towards the top of the
1888 address space, which won't fit into an EMACS_INT (at least on
1889 32-bit systems with the current tagging scheme). --fx */
1890 mallopt (M_MMAP_MAX, 0);
1891 #endif
1892
1893 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1894
1895 #ifdef DOUG_LEA_MALLOC
1896 /* Back to a reasonable maximum of mmap'ed areas. */
1897 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1898 #endif
1899
1900 b->next_free = &b->first_data;
1901 b->first_data.string = NULL;
1902 b->next = large_sblocks;
1903 large_sblocks = b;
1904 }
1905 else if (current_sblock == NULL
1906 || (((char *) current_sblock + SBLOCK_SIZE
1907 - (char *) current_sblock->next_free)
1908 < (needed + GC_STRING_EXTRA)))
1909 {
1910 /* Not enough room in the current sblock. */
1911 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1912 b->next_free = &b->first_data;
1913 b->first_data.string = NULL;
1914 b->next = NULL;
1915
1916 if (current_sblock)
1917 current_sblock->next = b;
1918 else
1919 oldest_sblock = b;
1920 current_sblock = b;
1921 }
1922 else
1923 b = current_sblock;
1924
1925 data = b->next_free;
1926 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1927
1928 MALLOC_UNBLOCK_INPUT;
1929
1930 data->string = s;
1931 s->data = SDATA_DATA (data);
1932 #ifdef GC_CHECK_STRING_BYTES
1933 SDATA_NBYTES (data) = nbytes;
1934 #endif
1935 s->size = nchars;
1936 s->size_byte = nbytes;
1937 s->data[nbytes] = '\0';
1938 #ifdef GC_CHECK_STRING_OVERRUN
1939 memcpy ((char *) data + needed, string_overrun_cookie,
1940 GC_STRING_OVERRUN_COOKIE_SIZE);
1941 #endif
1942
1943 /* If S had already data assigned, mark that as free by setting its
1944 string back-pointer to null, and recording the size of the data
1945 in it. */
1946 if (old_data)
1947 {
1948 SDATA_NBYTES (old_data) = old_nbytes;
1949 old_data->string = NULL;
1950 }
1951
1952 consing_since_gc += needed;
1953 }
1954
1955
1956 /* Sweep and compact strings. */
1957
1958 static void
1959 sweep_strings (void)
1960 {
1961 struct string_block *b, *next;
1962 struct string_block *live_blocks = NULL;
1963
1964 string_free_list = NULL;
1965 total_strings = total_free_strings = 0;
1966 total_string_size = 0;
1967
1968 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1969 for (b = string_blocks; b; b = next)
1970 {
1971 int i, nfree = 0;
1972 struct Lisp_String *free_list_before = string_free_list;
1973
1974 next = b->next;
1975
1976 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1977 {
1978 struct Lisp_String *s = b->strings + i;
1979
1980 if (s->data)
1981 {
1982 /* String was not on free-list before. */
1983 if (STRING_MARKED_P (s))
1984 {
1985 /* String is live; unmark it and its intervals. */
1986 UNMARK_STRING (s);
1987
1988 if (!NULL_INTERVAL_P (s->intervals))
1989 UNMARK_BALANCE_INTERVALS (s->intervals);
1990
1991 ++total_strings;
1992 total_string_size += STRING_BYTES (s);
1993 }
1994 else
1995 {
1996 /* String is dead. Put it on the free-list. */
1997 struct sdata *data = SDATA_OF_STRING (s);
1998
1999 /* Save the size of S in its sdata so that we know
2000 how large that is. Reset the sdata's string
2001 back-pointer so that we know it's free. */
2002 #ifdef GC_CHECK_STRING_BYTES
2003 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2004 abort ();
2005 #else
2006 data->u.nbytes = GC_STRING_BYTES (s);
2007 #endif
2008 data->string = NULL;
2009
2010 /* Reset the strings's `data' member so that we
2011 know it's free. */
2012 s->data = NULL;
2013
2014 /* Put the string on the free-list. */
2015 NEXT_FREE_LISP_STRING (s) = string_free_list;
2016 string_free_list = s;
2017 ++nfree;
2018 }
2019 }
2020 else
2021 {
2022 /* S was on the free-list before. Put it there again. */
2023 NEXT_FREE_LISP_STRING (s) = string_free_list;
2024 string_free_list = s;
2025 ++nfree;
2026 }
2027 }
2028
2029 /* Free blocks that contain free Lisp_Strings only, except
2030 the first two of them. */
2031 if (nfree == STRING_BLOCK_SIZE
2032 && total_free_strings > STRING_BLOCK_SIZE)
2033 {
2034 lisp_free (b);
2035 --n_string_blocks;
2036 string_free_list = free_list_before;
2037 }
2038 else
2039 {
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2043 }
2044 }
2045
2046 check_string_free_list ();
2047
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2051
2052 check_string_free_list ();
2053 }
2054
2055
2056 /* Free dead large strings. */
2057
2058 static void
2059 free_large_strings (void)
2060 {
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2063
2064 for (b = large_sblocks; b; b = next)
2065 {
2066 next = b->next;
2067
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2071 {
2072 b->next = live_blocks;
2073 live_blocks = b;
2074 }
2075 }
2076
2077 large_sblocks = live_blocks;
2078 }
2079
2080
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2083
2084 static void
2085 compact_small_strings (void)
2086 {
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2090
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2096
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2101 {
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2104
2105 for (from = &b->first_data; from < end; from = from_end)
2106 {
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2110
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2118
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2123
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2126
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2129
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2136
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2139 {
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2143 {
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2149 }
2150
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2153 {
2154 xassert (tb != b || to < from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2157 }
2158
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2161 }
2162 }
2163 }
2164
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2168 {
2169 next = b->next;
2170 lisp_free (b);
2171 }
2172
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2176 }
2177
2178 void
2179 string_overflow (void)
2180 {
2181 error ("Maximum string size exceeded");
2182 }
2183
2184 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186 LENGTH must be an integer.
2187 INIT must be an integer that represents a character. */)
2188 (Lisp_Object length, Lisp_Object init)
2189 {
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
2192 int c;
2193 EMACS_INT nbytes;
2194
2195 CHECK_NATNUM (length);
2196 CHECK_NUMBER (init);
2197
2198 c = XINT (init);
2199 if (ASCII_CHAR_P (c))
2200 {
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2205 while (p != end)
2206 *p++ = c;
2207 }
2208 else
2209 {
2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2211 int len = CHAR_STRING (c, str);
2212 EMACS_INT string_len = XINT (length);
2213
2214 if (string_len > MOST_POSITIVE_FIXNUM / len)
2215 string_overflow ();
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
2218 p = SDATA (val);
2219 end = p + nbytes;
2220 while (p != end)
2221 {
2222 memcpy (p, str, len);
2223 p += len;
2224 }
2225 }
2226
2227 *p = 0;
2228 return val;
2229 }
2230
2231
2232 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2234 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2235 (Lisp_Object length, Lisp_Object init)
2236 {
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
2239 int real_init, i;
2240 EMACS_INT length_in_chars, length_in_elts;
2241 int bits_per_value;
2242
2243 CHECK_NATNUM (length);
2244
2245 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2246
2247 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2248 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2249 / BOOL_VECTOR_BITS_PER_CHAR);
2250
2251 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2252 slot `size' of the struct Lisp_Bool_Vector. */
2253 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2254
2255 /* No Lisp_Object to trace in there. */
2256 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2257
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2260
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2264
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2269
2270 return val;
2271 }
2272
2273
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2280 {
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2283
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2292 return val;
2293 }
2294
2295
2296 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298 Lisp_Object
2299 make_unibyte_string (const char *contents, EMACS_INT length)
2300 {
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
2303 memcpy (SDATA (val), contents, length);
2304 return val;
2305 }
2306
2307
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2310
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2314 {
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2319 }
2320
2321
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2328 {
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2335 }
2336
2337
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2342
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2346 {
2347 register Lisp_Object val;
2348
2349 if (nchars < 0)
2350 {
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
2354 else
2355 nchars = nbytes;
2356 }
2357 val = make_uninit_multibyte_string (nchars, nbytes);
2358 memcpy (SDATA (val), contents, nbytes);
2359 if (!multibyte)
2360 STRING_SET_UNIBYTE (val);
2361 return val;
2362 }
2363
2364
2365 /* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2367
2368 Lisp_Object
2369 build_string (const char *str)
2370 {
2371 return make_string (str, strlen (str));
2372 }
2373
2374
2375 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2377
2378 Lisp_Object
2379 make_uninit_string (EMACS_INT length)
2380 {
2381 Lisp_Object val;
2382
2383 if (!length)
2384 return empty_unibyte_string;
2385 val = make_uninit_multibyte_string (length, length);
2386 STRING_SET_UNIBYTE (val);
2387 return val;
2388 }
2389
2390
2391 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2393
2394 Lisp_Object
2395 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 {
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2399
2400 if (nchars < 0)
2401 abort ();
2402 if (!nbytes)
2403 return empty_multibyte_string;
2404
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2410 }
2411
2412
2413 \f
2414 /***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2417
2418 /* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
2421 any new float cells from the latest float_block. */
2422
2423 #define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428
2429 #define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2433
2434 #define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437
2438 #define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441
2442 #define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2444
2445 #define FLOAT_INDEX(fptr) \
2446 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447
2448 struct float_block
2449 {
2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2454 };
2455
2456 #define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 #define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462 #define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464
2465 /* Current float_block. */
2466
2467 static struct float_block *float_block;
2468
2469 /* Index of first unused Lisp_Float in the current float_block. */
2470
2471 static int float_block_index;
2472
2473 /* Total number of float blocks now in use. */
2474
2475 static int n_float_blocks;
2476
2477 /* Free-list of Lisp_Floats. */
2478
2479 static struct Lisp_Float *float_free_list;
2480
2481
2482 /* Initialize float allocation. */
2483
2484 static void
2485 init_float (void)
2486 {
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2489 float_free_list = 0;
2490 n_float_blocks = 0;
2491 }
2492
2493
2494 /* Return a new float object with value FLOAT_VALUE. */
2495
2496 Lisp_Object
2497 make_float (double float_value)
2498 {
2499 register Lisp_Object val;
2500
2501 /* eassert (!handling_signal); */
2502
2503 MALLOC_BLOCK_INPUT;
2504
2505 if (float_free_list)
2506 {
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
2510 float_free_list = float_free_list->u.chain;
2511 }
2512 else
2513 {
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 {
2516 register struct float_block *new;
2517
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2520 new->next = float_block;
2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2525 }
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2528 }
2529
2530 MALLOC_UNBLOCK_INPUT;
2531
2532 XFLOAT_INIT (val, float_value);
2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2537 }
2538
2539
2540 \f
2541 /***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2544
2545 /* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
2548 any new cons cells from the latest cons_block. */
2549
2550 #define CONS_BLOCK_SIZE \
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553
2554 #define CONS_BLOCK(fptr) \
2555 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2556
2557 #define CONS_INDEX(fptr) \
2558 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2559
2560 struct cons_block
2561 {
2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2566 };
2567
2568 #define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 #define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573
2574 #define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576
2577 /* Current cons_block. */
2578
2579 static struct cons_block *cons_block;
2580
2581 /* Index of first unused Lisp_Cons in the current block. */
2582
2583 static int cons_block_index;
2584
2585 /* Free-list of Lisp_Cons structures. */
2586
2587 static struct Lisp_Cons *cons_free_list;
2588
2589 /* Total number of cons blocks now in use. */
2590
2591 static int n_cons_blocks;
2592
2593
2594 /* Initialize cons allocation. */
2595
2596 static void
2597 init_cons (void)
2598 {
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2601 cons_free_list = 0;
2602 n_cons_blocks = 0;
2603 }
2604
2605
2606 /* Explicitly free a cons cell by putting it on the free-list. */
2607
2608 void
2609 free_cons (struct Lisp_Cons *ptr)
2610 {
2611 ptr->u.chain = cons_free_list;
2612 #if GC_MARK_STACK
2613 ptr->car = Vdead;
2614 #endif
2615 cons_free_list = ptr;
2616 }
2617
2618 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2620 (Lisp_Object car, Lisp_Object cdr)
2621 {
2622 register Lisp_Object val;
2623
2624 /* eassert (!handling_signal); */
2625
2626 MALLOC_BLOCK_INPUT;
2627
2628 if (cons_free_list)
2629 {
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
2633 cons_free_list = cons_free_list->u.chain;
2634 }
2635 else
2636 {
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2638 {
2639 register struct cons_block *new;
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2647 }
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2650 }
2651
2652 MALLOC_UNBLOCK_INPUT;
2653
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
2656 eassert (!CONS_MARKED_P (XCONS (val)));
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2660 }
2661
2662 #ifdef GC_CHECK_CONS_LIST
2663 /* Get an error now if there's any junk in the cons free list. */
2664 void
2665 check_cons_list (void)
2666 {
2667 struct Lisp_Cons *tail = cons_free_list;
2668
2669 while (tail)
2670 tail = tail->u.chain;
2671 }
2672 #endif
2673
2674 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675
2676 Lisp_Object
2677 list1 (Lisp_Object arg1)
2678 {
2679 return Fcons (arg1, Qnil);
2680 }
2681
2682 Lisp_Object
2683 list2 (Lisp_Object arg1, Lisp_Object arg2)
2684 {
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2686 }
2687
2688
2689 Lisp_Object
2690 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2691 {
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693 }
2694
2695
2696 Lisp_Object
2697 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2698 {
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700 }
2701
2702
2703 Lisp_Object
2704 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2705 {
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2708 }
2709
2710
2711 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2712 doc: /* Return a newly created list with specified arguments as elements.
2713 Any number of arguments, even zero arguments, are allowed.
2714 usage: (list &rest OBJECTS) */)
2715 (size_t nargs, register Lisp_Object *args)
2716 {
2717 register Lisp_Object val;
2718 val = Qnil;
2719
2720 while (nargs > 0)
2721 {
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2724 }
2725 return val;
2726 }
2727
2728
2729 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2731 (register Lisp_Object length, Lisp_Object init)
2732 {
2733 register Lisp_Object val;
2734 register EMACS_INT size;
2735
2736 CHECK_NATNUM (length);
2737 size = XFASTINT (length);
2738
2739 val = Qnil;
2740 while (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
2749
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
2754
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759
2760 if (size > 0)
2761 {
2762 val = Fcons (init, val);
2763 --size;
2764 }
2765 }
2766 }
2767 }
2768
2769 QUIT;
2770 }
2771
2772 return val;
2773 }
2774
2775
2776 \f
2777 /***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
2780
2781 /* Singly-linked list of all vectors. */
2782
2783 static struct Lisp_Vector *all_vectors;
2784
2785 /* Total number of vector-like objects now in use. */
2786
2787 static int n_vectors;
2788
2789
2790 /* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2792
2793 static struct Lisp_Vector *
2794 allocate_vectorlike (EMACS_INT len)
2795 {
2796 struct Lisp_Vector *p;
2797 size_t nbytes;
2798 int header_size = offsetof (struct Lisp_Vector, contents);
2799 int word_size = sizeof p->contents[0];
2800
2801 if ((SIZE_MAX - header_size) / word_size < len)
2802 memory_full (SIZE_MAX);
2803
2804 MALLOC_BLOCK_INPUT;
2805
2806 #ifdef DOUG_LEA_MALLOC
2807 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2808 because mapped region contents are not preserved in
2809 a dumped Emacs. */
2810 mallopt (M_MMAP_MAX, 0);
2811 #endif
2812
2813 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2814 /* eassert (!handling_signal); */
2815
2816 nbytes = header_size + len * word_size;
2817 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2818
2819 #ifdef DOUG_LEA_MALLOC
2820 /* Back to a reasonable maximum of mmap'ed areas. */
2821 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2822 #endif
2823
2824 consing_since_gc += nbytes;
2825 vector_cells_consed += len;
2826
2827 p->header.next.vector = all_vectors;
2828 all_vectors = p;
2829
2830 MALLOC_UNBLOCK_INPUT;
2831
2832 ++n_vectors;
2833 return p;
2834 }
2835
2836
2837 /* Allocate a vector with NSLOTS slots. */
2838
2839 struct Lisp_Vector *
2840 allocate_vector (EMACS_INT nslots)
2841 {
2842 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2843 v->header.size = nslots;
2844 return v;
2845 }
2846
2847
2848 /* Allocate other vector-like structures. */
2849
2850 struct Lisp_Vector *
2851 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2852 {
2853 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2854 EMACS_INT i;
2855
2856 /* Only the first lisplen slots will be traced normally by the GC. */
2857 for (i = 0; i < lisplen; ++i)
2858 v->contents[i] = Qnil;
2859
2860 XSETPVECTYPESIZE (v, tag, lisplen);
2861 return v;
2862 }
2863
2864 struct Lisp_Hash_Table *
2865 allocate_hash_table (void)
2866 {
2867 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2868 }
2869
2870
2871 struct window *
2872 allocate_window (void)
2873 {
2874 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2875 }
2876
2877
2878 struct terminal *
2879 allocate_terminal (void)
2880 {
2881 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2882 next_terminal, PVEC_TERMINAL);
2883 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2884 memset (&t->next_terminal, 0,
2885 (char*) (t + 1) - (char*) &t->next_terminal);
2886
2887 return t;
2888 }
2889
2890 struct frame *
2891 allocate_frame (void)
2892 {
2893 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2894 face_cache, PVEC_FRAME);
2895 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2896 memset (&f->face_cache, 0,
2897 (char *) (f + 1) - (char *) &f->face_cache);
2898 return f;
2899 }
2900
2901
2902 struct Lisp_Process *
2903 allocate_process (void)
2904 {
2905 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2906 }
2907
2908
2909 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2910 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2911 See also the function `vector'. */)
2912 (register Lisp_Object length, Lisp_Object init)
2913 {
2914 Lisp_Object vector;
2915 register EMACS_INT sizei;
2916 register EMACS_INT i;
2917 register struct Lisp_Vector *p;
2918
2919 CHECK_NATNUM (length);
2920 sizei = XFASTINT (length);
2921
2922 p = allocate_vector (sizei);
2923 for (i = 0; i < sizei; i++)
2924 p->contents[i] = init;
2925
2926 XSETVECTOR (vector, p);
2927 return vector;
2928 }
2929
2930
2931 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2932 doc: /* Return a newly created vector with specified arguments as elements.
2933 Any number of arguments, even zero arguments, are allowed.
2934 usage: (vector &rest OBJECTS) */)
2935 (register size_t nargs, Lisp_Object *args)
2936 {
2937 register Lisp_Object len, val;
2938 register size_t i;
2939 register struct Lisp_Vector *p;
2940
2941 XSETFASTINT (len, nargs);
2942 val = Fmake_vector (len, Qnil);
2943 p = XVECTOR (val);
2944 for (i = 0; i < nargs; i++)
2945 p->contents[i] = args[i];
2946 return val;
2947 }
2948
2949
2950 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2951 doc: /* Create a byte-code object with specified arguments as elements.
2952 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2953 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2954 and (optional) INTERACTIVE-SPEC.
2955 The first four arguments are required; at most six have any
2956 significance.
2957 The ARGLIST can be either like the one of `lambda', in which case the arguments
2958 will be dynamically bound before executing the byte code, or it can be an
2959 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2960 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2961 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2962 argument to catch the left-over arguments. If such an integer is used, the
2963 arguments will not be dynamically bound but will be instead pushed on the
2964 stack before executing the byte-code.
2965 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2966 (register size_t nargs, Lisp_Object *args)
2967 {
2968 register Lisp_Object len, val;
2969 register size_t i;
2970 register struct Lisp_Vector *p;
2971
2972 XSETFASTINT (len, nargs);
2973 if (!NILP (Vpurify_flag))
2974 val = make_pure_vector ((EMACS_INT) nargs);
2975 else
2976 val = Fmake_vector (len, Qnil);
2977
2978 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2979 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2980 earlier because they produced a raw 8-bit string for byte-code
2981 and now such a byte-code string is loaded as multibyte while
2982 raw 8-bit characters converted to multibyte form. Thus, now we
2983 must convert them back to the original unibyte form. */
2984 args[1] = Fstring_as_unibyte (args[1]);
2985
2986 p = XVECTOR (val);
2987 for (i = 0; i < nargs; i++)
2988 {
2989 if (!NILP (Vpurify_flag))
2990 args[i] = Fpurecopy (args[i]);
2991 p->contents[i] = args[i];
2992 }
2993 XSETPVECTYPE (p, PVEC_COMPILED);
2994 XSETCOMPILED (val, p);
2995 return val;
2996 }
2997
2998
2999 \f
3000 /***********************************************************************
3001 Symbol Allocation
3002 ***********************************************************************/
3003
3004 /* Each symbol_block is just under 1020 bytes long, since malloc
3005 really allocates in units of powers of two and uses 4 bytes for its
3006 own overhead. */
3007
3008 #define SYMBOL_BLOCK_SIZE \
3009 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3010
3011 struct symbol_block
3012 {
3013 /* Place `symbols' first, to preserve alignment. */
3014 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3015 struct symbol_block *next;
3016 };
3017
3018 /* Current symbol block and index of first unused Lisp_Symbol
3019 structure in it. */
3020
3021 static struct symbol_block *symbol_block;
3022 static int symbol_block_index;
3023
3024 /* List of free symbols. */
3025
3026 static struct Lisp_Symbol *symbol_free_list;
3027
3028 /* Total number of symbol blocks now in use. */
3029
3030 static int n_symbol_blocks;
3031
3032
3033 /* Initialize symbol allocation. */
3034
3035 static void
3036 init_symbol (void)
3037 {
3038 symbol_block = NULL;
3039 symbol_block_index = SYMBOL_BLOCK_SIZE;
3040 symbol_free_list = 0;
3041 n_symbol_blocks = 0;
3042 }
3043
3044
3045 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3046 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3047 Its value and function definition are void, and its property list is nil. */)
3048 (Lisp_Object name)
3049 {
3050 register Lisp_Object val;
3051 register struct Lisp_Symbol *p;
3052
3053 CHECK_STRING (name);
3054
3055 /* eassert (!handling_signal); */
3056
3057 MALLOC_BLOCK_INPUT;
3058
3059 if (symbol_free_list)
3060 {
3061 XSETSYMBOL (val, symbol_free_list);
3062 symbol_free_list = symbol_free_list->next;
3063 }
3064 else
3065 {
3066 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3067 {
3068 struct symbol_block *new;
3069 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3070 MEM_TYPE_SYMBOL);
3071 new->next = symbol_block;
3072 symbol_block = new;
3073 symbol_block_index = 0;
3074 n_symbol_blocks++;
3075 }
3076 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3077 symbol_block_index++;
3078 }
3079
3080 MALLOC_UNBLOCK_INPUT;
3081
3082 p = XSYMBOL (val);
3083 p->xname = name;
3084 p->plist = Qnil;
3085 p->redirect = SYMBOL_PLAINVAL;
3086 SET_SYMBOL_VAL (p, Qunbound);
3087 p->function = Qunbound;
3088 p->next = NULL;
3089 p->gcmarkbit = 0;
3090 p->interned = SYMBOL_UNINTERNED;
3091 p->constant = 0;
3092 p->declared_special = 0;
3093 consing_since_gc += sizeof (struct Lisp_Symbol);
3094 symbols_consed++;
3095 return val;
3096 }
3097
3098
3099 \f
3100 /***********************************************************************
3101 Marker (Misc) Allocation
3102 ***********************************************************************/
3103
3104 /* Allocation of markers and other objects that share that structure.
3105 Works like allocation of conses. */
3106
3107 #define MARKER_BLOCK_SIZE \
3108 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3109
3110 struct marker_block
3111 {
3112 /* Place `markers' first, to preserve alignment. */
3113 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3114 struct marker_block *next;
3115 };
3116
3117 static struct marker_block *marker_block;
3118 static int marker_block_index;
3119
3120 static union Lisp_Misc *marker_free_list;
3121
3122 /* Total number of marker blocks now in use. */
3123
3124 static int n_marker_blocks;
3125
3126 static void
3127 init_marker (void)
3128 {
3129 marker_block = NULL;
3130 marker_block_index = MARKER_BLOCK_SIZE;
3131 marker_free_list = 0;
3132 n_marker_blocks = 0;
3133 }
3134
3135 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3136
3137 Lisp_Object
3138 allocate_misc (void)
3139 {
3140 Lisp_Object val;
3141
3142 /* eassert (!handling_signal); */
3143
3144 MALLOC_BLOCK_INPUT;
3145
3146 if (marker_free_list)
3147 {
3148 XSETMISC (val, marker_free_list);
3149 marker_free_list = marker_free_list->u_free.chain;
3150 }
3151 else
3152 {
3153 if (marker_block_index == MARKER_BLOCK_SIZE)
3154 {
3155 struct marker_block *new;
3156 new = (struct marker_block *) lisp_malloc (sizeof *new,
3157 MEM_TYPE_MISC);
3158 new->next = marker_block;
3159 marker_block = new;
3160 marker_block_index = 0;
3161 n_marker_blocks++;
3162 total_free_markers += MARKER_BLOCK_SIZE;
3163 }
3164 XSETMISC (val, &marker_block->markers[marker_block_index]);
3165 marker_block_index++;
3166 }
3167
3168 MALLOC_UNBLOCK_INPUT;
3169
3170 --total_free_markers;
3171 consing_since_gc += sizeof (union Lisp_Misc);
3172 misc_objects_consed++;
3173 XMISCANY (val)->gcmarkbit = 0;
3174 return val;
3175 }
3176
3177 /* Free a Lisp_Misc object */
3178
3179 static void
3180 free_misc (Lisp_Object misc)
3181 {
3182 XMISCTYPE (misc) = Lisp_Misc_Free;
3183 XMISC (misc)->u_free.chain = marker_free_list;
3184 marker_free_list = XMISC (misc);
3185
3186 total_free_markers++;
3187 }
3188
3189 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3190 INTEGER. This is used to package C values to call record_unwind_protect.
3191 The unwind function can get the C values back using XSAVE_VALUE. */
3192
3193 Lisp_Object
3194 make_save_value (void *pointer, int integer)
3195 {
3196 register Lisp_Object val;
3197 register struct Lisp_Save_Value *p;
3198
3199 val = allocate_misc ();
3200 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3201 p = XSAVE_VALUE (val);
3202 p->pointer = pointer;
3203 p->integer = integer;
3204 p->dogc = 0;
3205 return val;
3206 }
3207
3208 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3209 doc: /* Return a newly allocated marker which does not point at any place. */)
3210 (void)
3211 {
3212 register Lisp_Object val;
3213 register struct Lisp_Marker *p;
3214
3215 val = allocate_misc ();
3216 XMISCTYPE (val) = Lisp_Misc_Marker;
3217 p = XMARKER (val);
3218 p->buffer = 0;
3219 p->bytepos = 0;
3220 p->charpos = 0;
3221 p->next = NULL;
3222 p->insertion_type = 0;
3223 return val;
3224 }
3225
3226 /* Put MARKER back on the free list after using it temporarily. */
3227
3228 void
3229 free_marker (Lisp_Object marker)
3230 {
3231 unchain_marker (XMARKER (marker));
3232 free_misc (marker);
3233 }
3234
3235 \f
3236 /* Return a newly created vector or string with specified arguments as
3237 elements. If all the arguments are characters that can fit
3238 in a string of events, make a string; otherwise, make a vector.
3239
3240 Any number of arguments, even zero arguments, are allowed. */
3241
3242 Lisp_Object
3243 make_event_array (register int nargs, Lisp_Object *args)
3244 {
3245 int i;
3246
3247 for (i = 0; i < nargs; i++)
3248 /* The things that fit in a string
3249 are characters that are in 0...127,
3250 after discarding the meta bit and all the bits above it. */
3251 if (!INTEGERP (args[i])
3252 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3253 return Fvector (nargs, args);
3254
3255 /* Since the loop exited, we know that all the things in it are
3256 characters, so we can make a string. */
3257 {
3258 Lisp_Object result;
3259
3260 result = Fmake_string (make_number (nargs), make_number (0));
3261 for (i = 0; i < nargs; i++)
3262 {
3263 SSET (result, i, XINT (args[i]));
3264 /* Move the meta bit to the right place for a string char. */
3265 if (XINT (args[i]) & CHAR_META)
3266 SSET (result, i, SREF (result, i) | 0x80);
3267 }
3268
3269 return result;
3270 }
3271 }
3272
3273
3274 \f
3275 /************************************************************************
3276 Memory Full Handling
3277 ************************************************************************/
3278
3279
3280 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3281 there may have been size_t overflow so that malloc was never
3282 called, or perhaps malloc was invoked successfully but the
3283 resulting pointer had problems fitting into a tagged EMACS_INT. In
3284 either case this counts as memory being full even though malloc did
3285 not fail. */
3286
3287 void
3288 memory_full (size_t nbytes)
3289 {
3290 /* Do not go into hysterics merely because a large request failed. */
3291 int enough_free_memory = 0;
3292 if (LARGE_REQUEST < nbytes)
3293 {
3294 void *p = malloc (LARGE_REQUEST);
3295 if (p)
3296 {
3297 free (p);
3298 enough_free_memory = 1;
3299 }
3300 }
3301
3302 if (! enough_free_memory)
3303 {
3304 int i;
3305
3306 Vmemory_full = Qt;
3307
3308 memory_full_cons_threshold = sizeof (struct cons_block);
3309
3310 /* The first time we get here, free the spare memory. */
3311 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3312 if (spare_memory[i])
3313 {
3314 if (i == 0)
3315 free (spare_memory[i]);
3316 else if (i >= 1 && i <= 4)
3317 lisp_align_free (spare_memory[i]);
3318 else
3319 lisp_free (spare_memory[i]);
3320 spare_memory[i] = 0;
3321 }
3322
3323 /* Record the space now used. When it decreases substantially,
3324 we can refill the memory reserve. */
3325 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3326 bytes_used_when_full = BYTES_USED;
3327 #endif
3328 }
3329
3330 /* This used to call error, but if we've run out of memory, we could
3331 get infinite recursion trying to build the string. */
3332 xsignal (Qnil, Vmemory_signal_data);
3333 }
3334
3335 /* If we released our reserve (due to running out of memory),
3336 and we have a fair amount free once again,
3337 try to set aside another reserve in case we run out once more.
3338
3339 This is called when a relocatable block is freed in ralloc.c,
3340 and also directly from this file, in case we're not using ralloc.c. */
3341
3342 void
3343 refill_memory_reserve (void)
3344 {
3345 #ifndef SYSTEM_MALLOC
3346 if (spare_memory[0] == 0)
3347 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3348 if (spare_memory[1] == 0)
3349 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3350 MEM_TYPE_CONS);
3351 if (spare_memory[2] == 0)
3352 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3353 MEM_TYPE_CONS);
3354 if (spare_memory[3] == 0)
3355 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3356 MEM_TYPE_CONS);
3357 if (spare_memory[4] == 0)
3358 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3359 MEM_TYPE_CONS);
3360 if (spare_memory[5] == 0)
3361 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3362 MEM_TYPE_STRING);
3363 if (spare_memory[6] == 0)
3364 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3365 MEM_TYPE_STRING);
3366 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3367 Vmemory_full = Qnil;
3368 #endif
3369 }
3370 \f
3371 /************************************************************************
3372 C Stack Marking
3373 ************************************************************************/
3374
3375 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3376
3377 /* Conservative C stack marking requires a method to identify possibly
3378 live Lisp objects given a pointer value. We do this by keeping
3379 track of blocks of Lisp data that are allocated in a red-black tree
3380 (see also the comment of mem_node which is the type of nodes in
3381 that tree). Function lisp_malloc adds information for an allocated
3382 block to the red-black tree with calls to mem_insert, and function
3383 lisp_free removes it with mem_delete. Functions live_string_p etc
3384 call mem_find to lookup information about a given pointer in the
3385 tree, and use that to determine if the pointer points to a Lisp
3386 object or not. */
3387
3388 /* Initialize this part of alloc.c. */
3389
3390 static void
3391 mem_init (void)
3392 {
3393 mem_z.left = mem_z.right = MEM_NIL;
3394 mem_z.parent = NULL;
3395 mem_z.color = MEM_BLACK;
3396 mem_z.start = mem_z.end = NULL;
3397 mem_root = MEM_NIL;
3398 }
3399
3400
3401 /* Value is a pointer to the mem_node containing START. Value is
3402 MEM_NIL if there is no node in the tree containing START. */
3403
3404 static inline struct mem_node *
3405 mem_find (void *start)
3406 {
3407 struct mem_node *p;
3408
3409 if (start < min_heap_address || start > max_heap_address)
3410 return MEM_NIL;
3411
3412 /* Make the search always successful to speed up the loop below. */
3413 mem_z.start = start;
3414 mem_z.end = (char *) start + 1;
3415
3416 p = mem_root;
3417 while (start < p->start || start >= p->end)
3418 p = start < p->start ? p->left : p->right;
3419 return p;
3420 }
3421
3422
3423 /* Insert a new node into the tree for a block of memory with start
3424 address START, end address END, and type TYPE. Value is a
3425 pointer to the node that was inserted. */
3426
3427 static struct mem_node *
3428 mem_insert (void *start, void *end, enum mem_type type)
3429 {
3430 struct mem_node *c, *parent, *x;
3431
3432 if (min_heap_address == NULL || start < min_heap_address)
3433 min_heap_address = start;
3434 if (max_heap_address == NULL || end > max_heap_address)
3435 max_heap_address = end;
3436
3437 /* See where in the tree a node for START belongs. In this
3438 particular application, it shouldn't happen that a node is already
3439 present. For debugging purposes, let's check that. */
3440 c = mem_root;
3441 parent = NULL;
3442
3443 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3444
3445 while (c != MEM_NIL)
3446 {
3447 if (start >= c->start && start < c->end)
3448 abort ();
3449 parent = c;
3450 c = start < c->start ? c->left : c->right;
3451 }
3452
3453 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3454
3455 while (c != MEM_NIL)
3456 {
3457 parent = c;
3458 c = start < c->start ? c->left : c->right;
3459 }
3460
3461 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3462
3463 /* Create a new node. */
3464 #ifdef GC_MALLOC_CHECK
3465 x = (struct mem_node *) _malloc_internal (sizeof *x);
3466 if (x == NULL)
3467 abort ();
3468 #else
3469 x = (struct mem_node *) xmalloc (sizeof *x);
3470 #endif
3471 x->start = start;
3472 x->end = end;
3473 x->type = type;
3474 x->parent = parent;
3475 x->left = x->right = MEM_NIL;
3476 x->color = MEM_RED;
3477
3478 /* Insert it as child of PARENT or install it as root. */
3479 if (parent)
3480 {
3481 if (start < parent->start)
3482 parent->left = x;
3483 else
3484 parent->right = x;
3485 }
3486 else
3487 mem_root = x;
3488
3489 /* Re-establish red-black tree properties. */
3490 mem_insert_fixup (x);
3491
3492 return x;
3493 }
3494
3495
3496 /* Re-establish the red-black properties of the tree, and thereby
3497 balance the tree, after node X has been inserted; X is always red. */
3498
3499 static void
3500 mem_insert_fixup (struct mem_node *x)
3501 {
3502 while (x != mem_root && x->parent->color == MEM_RED)
3503 {
3504 /* X is red and its parent is red. This is a violation of
3505 red-black tree property #3. */
3506
3507 if (x->parent == x->parent->parent->left)
3508 {
3509 /* We're on the left side of our grandparent, and Y is our
3510 "uncle". */
3511 struct mem_node *y = x->parent->parent->right;
3512
3513 if (y->color == MEM_RED)
3514 {
3515 /* Uncle and parent are red but should be black because
3516 X is red. Change the colors accordingly and proceed
3517 with the grandparent. */
3518 x->parent->color = MEM_BLACK;
3519 y->color = MEM_BLACK;
3520 x->parent->parent->color = MEM_RED;
3521 x = x->parent->parent;
3522 }
3523 else
3524 {
3525 /* Parent and uncle have different colors; parent is
3526 red, uncle is black. */
3527 if (x == x->parent->right)
3528 {
3529 x = x->parent;
3530 mem_rotate_left (x);
3531 }
3532
3533 x->parent->color = MEM_BLACK;
3534 x->parent->parent->color = MEM_RED;
3535 mem_rotate_right (x->parent->parent);
3536 }
3537 }
3538 else
3539 {
3540 /* This is the symmetrical case of above. */
3541 struct mem_node *y = x->parent->parent->left;
3542
3543 if (y->color == MEM_RED)
3544 {
3545 x->parent->color = MEM_BLACK;
3546 y->color = MEM_BLACK;
3547 x->parent->parent->color = MEM_RED;
3548 x = x->parent->parent;
3549 }
3550 else
3551 {
3552 if (x == x->parent->left)
3553 {
3554 x = x->parent;
3555 mem_rotate_right (x);
3556 }
3557
3558 x->parent->color = MEM_BLACK;
3559 x->parent->parent->color = MEM_RED;
3560 mem_rotate_left (x->parent->parent);
3561 }
3562 }
3563 }
3564
3565 /* The root may have been changed to red due to the algorithm. Set
3566 it to black so that property #5 is satisfied. */
3567 mem_root->color = MEM_BLACK;
3568 }
3569
3570
3571 /* (x) (y)
3572 / \ / \
3573 a (y) ===> (x) c
3574 / \ / \
3575 b c a b */
3576
3577 static void
3578 mem_rotate_left (struct mem_node *x)
3579 {
3580 struct mem_node *y;
3581
3582 /* Turn y's left sub-tree into x's right sub-tree. */
3583 y = x->right;
3584 x->right = y->left;
3585 if (y->left != MEM_NIL)
3586 y->left->parent = x;
3587
3588 /* Y's parent was x's parent. */
3589 if (y != MEM_NIL)
3590 y->parent = x->parent;
3591
3592 /* Get the parent to point to y instead of x. */
3593 if (x->parent)
3594 {
3595 if (x == x->parent->left)
3596 x->parent->left = y;
3597 else
3598 x->parent->right = y;
3599 }
3600 else
3601 mem_root = y;
3602
3603 /* Put x on y's left. */
3604 y->left = x;
3605 if (x != MEM_NIL)
3606 x->parent = y;
3607 }
3608
3609
3610 /* (x) (Y)
3611 / \ / \
3612 (y) c ===> a (x)
3613 / \ / \
3614 a b b c */
3615
3616 static void
3617 mem_rotate_right (struct mem_node *x)
3618 {
3619 struct mem_node *y = x->left;
3620
3621 x->left = y->right;
3622 if (y->right != MEM_NIL)
3623 y->right->parent = x;
3624
3625 if (y != MEM_NIL)
3626 y->parent = x->parent;
3627 if (x->parent)
3628 {
3629 if (x == x->parent->right)
3630 x->parent->right = y;
3631 else
3632 x->parent->left = y;
3633 }
3634 else
3635 mem_root = y;
3636
3637 y->right = x;
3638 if (x != MEM_NIL)
3639 x->parent = y;
3640 }
3641
3642
3643 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3644
3645 static void
3646 mem_delete (struct mem_node *z)
3647 {
3648 struct mem_node *x, *y;
3649
3650 if (!z || z == MEM_NIL)
3651 return;
3652
3653 if (z->left == MEM_NIL || z->right == MEM_NIL)
3654 y = z;
3655 else
3656 {
3657 y = z->right;
3658 while (y->left != MEM_NIL)
3659 y = y->left;
3660 }
3661
3662 if (y->left != MEM_NIL)
3663 x = y->left;
3664 else
3665 x = y->right;
3666
3667 x->parent = y->parent;
3668 if (y->parent)
3669 {
3670 if (y == y->parent->left)
3671 y->parent->left = x;
3672 else
3673 y->parent->right = x;
3674 }
3675 else
3676 mem_root = x;
3677
3678 if (y != z)
3679 {
3680 z->start = y->start;
3681 z->end = y->end;
3682 z->type = y->type;
3683 }
3684
3685 if (y->color == MEM_BLACK)
3686 mem_delete_fixup (x);
3687
3688 #ifdef GC_MALLOC_CHECK
3689 _free_internal (y);
3690 #else
3691 xfree (y);
3692 #endif
3693 }
3694
3695
3696 /* Re-establish the red-black properties of the tree, after a
3697 deletion. */
3698
3699 static void
3700 mem_delete_fixup (struct mem_node *x)
3701 {
3702 while (x != mem_root && x->color == MEM_BLACK)
3703 {
3704 if (x == x->parent->left)
3705 {
3706 struct mem_node *w = x->parent->right;
3707
3708 if (w->color == MEM_RED)
3709 {
3710 w->color = MEM_BLACK;
3711 x->parent->color = MEM_RED;
3712 mem_rotate_left (x->parent);
3713 w = x->parent->right;
3714 }
3715
3716 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3717 {
3718 w->color = MEM_RED;
3719 x = x->parent;
3720 }
3721 else
3722 {
3723 if (w->right->color == MEM_BLACK)
3724 {
3725 w->left->color = MEM_BLACK;
3726 w->color = MEM_RED;
3727 mem_rotate_right (w);
3728 w = x->parent->right;
3729 }
3730 w->color = x->parent->color;
3731 x->parent->color = MEM_BLACK;
3732 w->right->color = MEM_BLACK;
3733 mem_rotate_left (x->parent);
3734 x = mem_root;
3735 }
3736 }
3737 else
3738 {
3739 struct mem_node *w = x->parent->left;
3740
3741 if (w->color == MEM_RED)
3742 {
3743 w->color = MEM_BLACK;
3744 x->parent->color = MEM_RED;
3745 mem_rotate_right (x->parent);
3746 w = x->parent->left;
3747 }
3748
3749 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3750 {
3751 w->color = MEM_RED;
3752 x = x->parent;
3753 }
3754 else
3755 {
3756 if (w->left->color == MEM_BLACK)
3757 {
3758 w->right->color = MEM_BLACK;
3759 w->color = MEM_RED;
3760 mem_rotate_left (w);
3761 w = x->parent->left;
3762 }
3763
3764 w->color = x->parent->color;
3765 x->parent->color = MEM_BLACK;
3766 w->left->color = MEM_BLACK;
3767 mem_rotate_right (x->parent);
3768 x = mem_root;
3769 }
3770 }
3771 }
3772
3773 x->color = MEM_BLACK;
3774 }
3775
3776
3777 /* Value is non-zero if P is a pointer to a live Lisp string on
3778 the heap. M is a pointer to the mem_block for P. */
3779
3780 static inline int
3781 live_string_p (struct mem_node *m, void *p)
3782 {
3783 if (m->type == MEM_TYPE_STRING)
3784 {
3785 struct string_block *b = (struct string_block *) m->start;
3786 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3787
3788 /* P must point to the start of a Lisp_String structure, and it
3789 must not be on the free-list. */
3790 return (offset >= 0
3791 && offset % sizeof b->strings[0] == 0
3792 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3793 && ((struct Lisp_String *) p)->data != NULL);
3794 }
3795 else
3796 return 0;
3797 }
3798
3799
3800 /* Value is non-zero if P is a pointer to a live Lisp cons on
3801 the heap. M is a pointer to the mem_block for P. */
3802
3803 static inline int
3804 live_cons_p (struct mem_node *m, void *p)
3805 {
3806 if (m->type == MEM_TYPE_CONS)
3807 {
3808 struct cons_block *b = (struct cons_block *) m->start;
3809 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3810
3811 /* P must point to the start of a Lisp_Cons, not be
3812 one of the unused cells in the current cons block,
3813 and not be on the free-list. */
3814 return (offset >= 0
3815 && offset % sizeof b->conses[0] == 0
3816 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3817 && (b != cons_block
3818 || offset / sizeof b->conses[0] < cons_block_index)
3819 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3820 }
3821 else
3822 return 0;
3823 }
3824
3825
3826 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3827 the heap. M is a pointer to the mem_block for P. */
3828
3829 static inline int
3830 live_symbol_p (struct mem_node *m, void *p)
3831 {
3832 if (m->type == MEM_TYPE_SYMBOL)
3833 {
3834 struct symbol_block *b = (struct symbol_block *) m->start;
3835 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3836
3837 /* P must point to the start of a Lisp_Symbol, not be
3838 one of the unused cells in the current symbol block,
3839 and not be on the free-list. */
3840 return (offset >= 0
3841 && offset % sizeof b->symbols[0] == 0
3842 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3843 && (b != symbol_block
3844 || offset / sizeof b->symbols[0] < symbol_block_index)
3845 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3846 }
3847 else
3848 return 0;
3849 }
3850
3851
3852 /* Value is non-zero if P is a pointer to a live Lisp float on
3853 the heap. M is a pointer to the mem_block for P. */
3854
3855 static inline int
3856 live_float_p (struct mem_node *m, void *p)
3857 {
3858 if (m->type == MEM_TYPE_FLOAT)
3859 {
3860 struct float_block *b = (struct float_block *) m->start;
3861 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3862
3863 /* P must point to the start of a Lisp_Float and not be
3864 one of the unused cells in the current float block. */
3865 return (offset >= 0
3866 && offset % sizeof b->floats[0] == 0
3867 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3868 && (b != float_block
3869 || offset / sizeof b->floats[0] < float_block_index));
3870 }
3871 else
3872 return 0;
3873 }
3874
3875
3876 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3877 the heap. M is a pointer to the mem_block for P. */
3878
3879 static inline int
3880 live_misc_p (struct mem_node *m, void *p)
3881 {
3882 if (m->type == MEM_TYPE_MISC)
3883 {
3884 struct marker_block *b = (struct marker_block *) m->start;
3885 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3886
3887 /* P must point to the start of a Lisp_Misc, not be
3888 one of the unused cells in the current misc block,
3889 and not be on the free-list. */
3890 return (offset >= 0
3891 && offset % sizeof b->markers[0] == 0
3892 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3893 && (b != marker_block
3894 || offset / sizeof b->markers[0] < marker_block_index)
3895 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3896 }
3897 else
3898 return 0;
3899 }
3900
3901
3902 /* Value is non-zero if P is a pointer to a live vector-like object.
3903 M is a pointer to the mem_block for P. */
3904
3905 static inline int
3906 live_vector_p (struct mem_node *m, void *p)
3907 {
3908 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3909 }
3910
3911
3912 /* Value is non-zero if P is a pointer to a live buffer. M is a
3913 pointer to the mem_block for P. */
3914
3915 static inline int
3916 live_buffer_p (struct mem_node *m, void *p)
3917 {
3918 /* P must point to the start of the block, and the buffer
3919 must not have been killed. */
3920 return (m->type == MEM_TYPE_BUFFER
3921 && p == m->start
3922 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3923 }
3924
3925 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3926
3927 #if GC_MARK_STACK
3928
3929 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3930
3931 /* Array of objects that are kept alive because the C stack contains
3932 a pattern that looks like a reference to them . */
3933
3934 #define MAX_ZOMBIES 10
3935 static Lisp_Object zombies[MAX_ZOMBIES];
3936
3937 /* Number of zombie objects. */
3938
3939 static int nzombies;
3940
3941 /* Number of garbage collections. */
3942
3943 static int ngcs;
3944
3945 /* Average percentage of zombies per collection. */
3946
3947 static double avg_zombies;
3948
3949 /* Max. number of live and zombie objects. */
3950
3951 static int max_live, max_zombies;
3952
3953 /* Average number of live objects per GC. */
3954
3955 static double avg_live;
3956
3957 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3958 doc: /* Show information about live and zombie objects. */)
3959 (void)
3960 {
3961 Lisp_Object args[8], zombie_list = Qnil;
3962 int i;
3963 for (i = 0; i < nzombies; i++)
3964 zombie_list = Fcons (zombies[i], zombie_list);
3965 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3966 args[1] = make_number (ngcs);
3967 args[2] = make_float (avg_live);
3968 args[3] = make_float (avg_zombies);
3969 args[4] = make_float (avg_zombies / avg_live / 100);
3970 args[5] = make_number (max_live);
3971 args[6] = make_number (max_zombies);
3972 args[7] = zombie_list;
3973 return Fmessage (8, args);
3974 }
3975
3976 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3977
3978
3979 /* Mark OBJ if we can prove it's a Lisp_Object. */
3980
3981 static inline void
3982 mark_maybe_object (Lisp_Object obj)
3983 {
3984 void *po;
3985 struct mem_node *m;
3986
3987 if (INTEGERP (obj))
3988 return;
3989
3990 po = (void *) XPNTR (obj);
3991 m = mem_find (po);
3992
3993 if (m != MEM_NIL)
3994 {
3995 int mark_p = 0;
3996
3997 switch (XTYPE (obj))
3998 {
3999 case Lisp_String:
4000 mark_p = (live_string_p (m, po)
4001 && !STRING_MARKED_P ((struct Lisp_String *) po));
4002 break;
4003
4004 case Lisp_Cons:
4005 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4006 break;
4007
4008 case Lisp_Symbol:
4009 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4010 break;
4011
4012 case Lisp_Float:
4013 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4014 break;
4015
4016 case Lisp_Vectorlike:
4017 /* Note: can't check BUFFERP before we know it's a
4018 buffer because checking that dereferences the pointer
4019 PO which might point anywhere. */
4020 if (live_vector_p (m, po))
4021 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4022 else if (live_buffer_p (m, po))
4023 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4024 break;
4025
4026 case Lisp_Misc:
4027 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4028 break;
4029
4030 default:
4031 break;
4032 }
4033
4034 if (mark_p)
4035 {
4036 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4037 if (nzombies < MAX_ZOMBIES)
4038 zombies[nzombies] = obj;
4039 ++nzombies;
4040 #endif
4041 mark_object (obj);
4042 }
4043 }
4044 }
4045
4046
4047 /* If P points to Lisp data, mark that as live if it isn't already
4048 marked. */
4049
4050 static inline void
4051 mark_maybe_pointer (void *p)
4052 {
4053 struct mem_node *m;
4054
4055 /* Quickly rule out some values which can't point to Lisp data. */
4056 if ((intptr_t) p %
4057 #ifdef USE_LSB_TAG
4058 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4059 #else
4060 2 /* We assume that Lisp data is aligned on even addresses. */
4061 #endif
4062 )
4063 return;
4064
4065 m = mem_find (p);
4066 if (m != MEM_NIL)
4067 {
4068 Lisp_Object obj = Qnil;
4069
4070 switch (m->type)
4071 {
4072 case MEM_TYPE_NON_LISP:
4073 /* Nothing to do; not a pointer to Lisp memory. */
4074 break;
4075
4076 case MEM_TYPE_BUFFER:
4077 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4078 XSETVECTOR (obj, p);
4079 break;
4080
4081 case MEM_TYPE_CONS:
4082 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4083 XSETCONS (obj, p);
4084 break;
4085
4086 case MEM_TYPE_STRING:
4087 if (live_string_p (m, p)
4088 && !STRING_MARKED_P ((struct Lisp_String *) p))
4089 XSETSTRING (obj, p);
4090 break;
4091
4092 case MEM_TYPE_MISC:
4093 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4094 XSETMISC (obj, p);
4095 break;
4096
4097 case MEM_TYPE_SYMBOL:
4098 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4099 XSETSYMBOL (obj, p);
4100 break;
4101
4102 case MEM_TYPE_FLOAT:
4103 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4104 XSETFLOAT (obj, p);
4105 break;
4106
4107 case MEM_TYPE_VECTORLIKE:
4108 if (live_vector_p (m, p))
4109 {
4110 Lisp_Object tem;
4111 XSETVECTOR (tem, p);
4112 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4113 obj = tem;
4114 }
4115 break;
4116
4117 default:
4118 abort ();
4119 }
4120
4121 if (!NILP (obj))
4122 mark_object (obj);
4123 }
4124 }
4125
4126
4127 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4128 or END+OFFSET..START. */
4129
4130 static void
4131 mark_memory (void *start, void *end, int offset)
4132 {
4133 Lisp_Object *p;
4134 void **pp;
4135
4136 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4137 nzombies = 0;
4138 #endif
4139
4140 /* Make START the pointer to the start of the memory region,
4141 if it isn't already. */
4142 if (end < start)
4143 {
4144 void *tem = start;
4145 start = end;
4146 end = tem;
4147 }
4148
4149 /* Mark Lisp_Objects. */
4150 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4151 mark_maybe_object (*p);
4152
4153 /* Mark Lisp data pointed to. This is necessary because, in some
4154 situations, the C compiler optimizes Lisp objects away, so that
4155 only a pointer to them remains. Example:
4156
4157 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4158 ()
4159 {
4160 Lisp_Object obj = build_string ("test");
4161 struct Lisp_String *s = XSTRING (obj);
4162 Fgarbage_collect ();
4163 fprintf (stderr, "test `%s'\n", s->data);
4164 return Qnil;
4165 }
4166
4167 Here, `obj' isn't really used, and the compiler optimizes it
4168 away. The only reference to the life string is through the
4169 pointer `s'. */
4170
4171 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4172 mark_maybe_pointer (*pp);
4173 }
4174
4175 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4176 the GCC system configuration. In gcc 3.2, the only systems for
4177 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4178 by others?) and ns32k-pc532-min. */
4179
4180 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4181
4182 static int setjmp_tested_p, longjmps_done;
4183
4184 #define SETJMP_WILL_LIKELY_WORK "\
4185 \n\
4186 Emacs garbage collector has been changed to use conservative stack\n\
4187 marking. Emacs has determined that the method it uses to do the\n\
4188 marking will likely work on your system, but this isn't sure.\n\
4189 \n\
4190 If you are a system-programmer, or can get the help of a local wizard\n\
4191 who is, please take a look at the function mark_stack in alloc.c, and\n\
4192 verify that the methods used are appropriate for your system.\n\
4193 \n\
4194 Please mail the result to <emacs-devel@gnu.org>.\n\
4195 "
4196
4197 #define SETJMP_WILL_NOT_WORK "\
4198 \n\
4199 Emacs garbage collector has been changed to use conservative stack\n\
4200 marking. Emacs has determined that the default method it uses to do the\n\
4201 marking will not work on your system. We will need a system-dependent\n\
4202 solution for your system.\n\
4203 \n\
4204 Please take a look at the function mark_stack in alloc.c, and\n\
4205 try to find a way to make it work on your system.\n\
4206 \n\
4207 Note that you may get false negatives, depending on the compiler.\n\
4208 In particular, you need to use -O with GCC for this test.\n\
4209 \n\
4210 Please mail the result to <emacs-devel@gnu.org>.\n\
4211 "
4212
4213
4214 /* Perform a quick check if it looks like setjmp saves registers in a
4215 jmp_buf. Print a message to stderr saying so. When this test
4216 succeeds, this is _not_ a proof that setjmp is sufficient for
4217 conservative stack marking. Only the sources or a disassembly
4218 can prove that. */
4219
4220 static void
4221 test_setjmp (void)
4222 {
4223 char buf[10];
4224 register int x;
4225 jmp_buf jbuf;
4226 int result = 0;
4227
4228 /* Arrange for X to be put in a register. */
4229 sprintf (buf, "1");
4230 x = strlen (buf);
4231 x = 2 * x - 1;
4232
4233 setjmp (jbuf);
4234 if (longjmps_done == 1)
4235 {
4236 /* Came here after the longjmp at the end of the function.
4237
4238 If x == 1, the longjmp has restored the register to its
4239 value before the setjmp, and we can hope that setjmp
4240 saves all such registers in the jmp_buf, although that
4241 isn't sure.
4242
4243 For other values of X, either something really strange is
4244 taking place, or the setjmp just didn't save the register. */
4245
4246 if (x == 1)
4247 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4248 else
4249 {
4250 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4251 exit (1);
4252 }
4253 }
4254
4255 ++longjmps_done;
4256 x = 2;
4257 if (longjmps_done == 1)
4258 longjmp (jbuf, 1);
4259 }
4260
4261 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4262
4263
4264 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4265
4266 /* Abort if anything GCPRO'd doesn't survive the GC. */
4267
4268 static void
4269 check_gcpros (void)
4270 {
4271 struct gcpro *p;
4272 size_t i;
4273
4274 for (p = gcprolist; p; p = p->next)
4275 for (i = 0; i < p->nvars; ++i)
4276 if (!survives_gc_p (p->var[i]))
4277 /* FIXME: It's not necessarily a bug. It might just be that the
4278 GCPRO is unnecessary or should release the object sooner. */
4279 abort ();
4280 }
4281
4282 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4283
4284 static void
4285 dump_zombies (void)
4286 {
4287 int i;
4288
4289 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4290 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4291 {
4292 fprintf (stderr, " %d = ", i);
4293 debug_print (zombies[i]);
4294 }
4295 }
4296
4297 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4298
4299
4300 /* Mark live Lisp objects on the C stack.
4301
4302 There are several system-dependent problems to consider when
4303 porting this to new architectures:
4304
4305 Processor Registers
4306
4307 We have to mark Lisp objects in CPU registers that can hold local
4308 variables or are used to pass parameters.
4309
4310 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4311 something that either saves relevant registers on the stack, or
4312 calls mark_maybe_object passing it each register's contents.
4313
4314 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4315 implementation assumes that calling setjmp saves registers we need
4316 to see in a jmp_buf which itself lies on the stack. This doesn't
4317 have to be true! It must be verified for each system, possibly
4318 by taking a look at the source code of setjmp.
4319
4320 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4321 can use it as a machine independent method to store all registers
4322 to the stack. In this case the macros described in the previous
4323 two paragraphs are not used.
4324
4325 Stack Layout
4326
4327 Architectures differ in the way their processor stack is organized.
4328 For example, the stack might look like this
4329
4330 +----------------+
4331 | Lisp_Object | size = 4
4332 +----------------+
4333 | something else | size = 2
4334 +----------------+
4335 | Lisp_Object | size = 4
4336 +----------------+
4337 | ... |
4338
4339 In such a case, not every Lisp_Object will be aligned equally. To
4340 find all Lisp_Object on the stack it won't be sufficient to walk
4341 the stack in steps of 4 bytes. Instead, two passes will be
4342 necessary, one starting at the start of the stack, and a second
4343 pass starting at the start of the stack + 2. Likewise, if the
4344 minimal alignment of Lisp_Objects on the stack is 1, four passes
4345 would be necessary, each one starting with one byte more offset
4346 from the stack start.
4347
4348 The current code assumes by default that Lisp_Objects are aligned
4349 equally on the stack. */
4350
4351 static void
4352 mark_stack (void)
4353 {
4354 int i;
4355 void *end;
4356
4357 #ifdef HAVE___BUILTIN_UNWIND_INIT
4358 /* Force callee-saved registers and register windows onto the stack.
4359 This is the preferred method if available, obviating the need for
4360 machine dependent methods. */
4361 __builtin_unwind_init ();
4362 end = &end;
4363 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4364 #ifndef GC_SAVE_REGISTERS_ON_STACK
4365 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4366 union aligned_jmpbuf {
4367 Lisp_Object o;
4368 jmp_buf j;
4369 } j;
4370 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4371 #endif
4372 /* This trick flushes the register windows so that all the state of
4373 the process is contained in the stack. */
4374 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4375 needed on ia64 too. See mach_dep.c, where it also says inline
4376 assembler doesn't work with relevant proprietary compilers. */
4377 #ifdef __sparc__
4378 #if defined (__sparc64__) && defined (__FreeBSD__)
4379 /* FreeBSD does not have a ta 3 handler. */
4380 asm ("flushw");
4381 #else
4382 asm ("ta 3");
4383 #endif
4384 #endif
4385
4386 /* Save registers that we need to see on the stack. We need to see
4387 registers used to hold register variables and registers used to
4388 pass parameters. */
4389 #ifdef GC_SAVE_REGISTERS_ON_STACK
4390 GC_SAVE_REGISTERS_ON_STACK (end);
4391 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4392
4393 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4394 setjmp will definitely work, test it
4395 and print a message with the result
4396 of the test. */
4397 if (!setjmp_tested_p)
4398 {
4399 setjmp_tested_p = 1;
4400 test_setjmp ();
4401 }
4402 #endif /* GC_SETJMP_WORKS */
4403
4404 setjmp (j.j);
4405 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4406 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4407 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4408
4409 /* This assumes that the stack is a contiguous region in memory. If
4410 that's not the case, something has to be done here to iterate
4411 over the stack segments. */
4412 #ifndef GC_LISP_OBJECT_ALIGNMENT
4413 #ifdef __GNUC__
4414 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4415 #else
4416 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4417 #endif
4418 #endif
4419 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4420 mark_memory (stack_base, end, i);
4421 /* Allow for marking a secondary stack, like the register stack on the
4422 ia64. */
4423 #ifdef GC_MARK_SECONDARY_STACK
4424 GC_MARK_SECONDARY_STACK ();
4425 #endif
4426
4427 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4428 check_gcpros ();
4429 #endif
4430 }
4431
4432 #endif /* GC_MARK_STACK != 0 */
4433
4434
4435 /* Determine whether it is safe to access memory at address P. */
4436 static int
4437 valid_pointer_p (void *p)
4438 {
4439 #ifdef WINDOWSNT
4440 return w32_valid_pointer_p (p, 16);
4441 #else
4442 int fd;
4443
4444 /* Obviously, we cannot just access it (we would SEGV trying), so we
4445 trick the o/s to tell us whether p is a valid pointer.
4446 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4447 not validate p in that case. */
4448
4449 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4450 {
4451 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4452 emacs_close (fd);
4453 unlink ("__Valid__Lisp__Object__");
4454 return valid;
4455 }
4456
4457 return -1;
4458 #endif
4459 }
4460
4461 /* Return 1 if OBJ is a valid lisp object.
4462 Return 0 if OBJ is NOT a valid lisp object.
4463 Return -1 if we cannot validate OBJ.
4464 This function can be quite slow,
4465 so it should only be used in code for manual debugging. */
4466
4467 int
4468 valid_lisp_object_p (Lisp_Object obj)
4469 {
4470 void *p;
4471 #if GC_MARK_STACK
4472 struct mem_node *m;
4473 #endif
4474
4475 if (INTEGERP (obj))
4476 return 1;
4477
4478 p = (void *) XPNTR (obj);
4479 if (PURE_POINTER_P (p))
4480 return 1;
4481
4482 #if !GC_MARK_STACK
4483 return valid_pointer_p (p);
4484 #else
4485
4486 m = mem_find (p);
4487
4488 if (m == MEM_NIL)
4489 {
4490 int valid = valid_pointer_p (p);
4491 if (valid <= 0)
4492 return valid;
4493
4494 if (SUBRP (obj))
4495 return 1;
4496
4497 return 0;
4498 }
4499
4500 switch (m->type)
4501 {
4502 case MEM_TYPE_NON_LISP:
4503 return 0;
4504
4505 case MEM_TYPE_BUFFER:
4506 return live_buffer_p (m, p);
4507
4508 case MEM_TYPE_CONS:
4509 return live_cons_p (m, p);
4510
4511 case MEM_TYPE_STRING:
4512 return live_string_p (m, p);
4513
4514 case MEM_TYPE_MISC:
4515 return live_misc_p (m, p);
4516
4517 case MEM_TYPE_SYMBOL:
4518 return live_symbol_p (m, p);
4519
4520 case MEM_TYPE_FLOAT:
4521 return live_float_p (m, p);
4522
4523 case MEM_TYPE_VECTORLIKE:
4524 return live_vector_p (m, p);
4525
4526 default:
4527 break;
4528 }
4529
4530 return 0;
4531 #endif
4532 }
4533
4534
4535
4536 \f
4537 /***********************************************************************
4538 Pure Storage Management
4539 ***********************************************************************/
4540
4541 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4542 pointer to it. TYPE is the Lisp type for which the memory is
4543 allocated. TYPE < 0 means it's not used for a Lisp object. */
4544
4545 static POINTER_TYPE *
4546 pure_alloc (size_t size, int type)
4547 {
4548 POINTER_TYPE *result;
4549 #ifdef USE_LSB_TAG
4550 size_t alignment = (1 << GCTYPEBITS);
4551 #else
4552 size_t alignment = sizeof (EMACS_INT);
4553
4554 /* Give Lisp_Floats an extra alignment. */
4555 if (type == Lisp_Float)
4556 {
4557 #if defined __GNUC__ && __GNUC__ >= 2
4558 alignment = __alignof (struct Lisp_Float);
4559 #else
4560 alignment = sizeof (struct Lisp_Float);
4561 #endif
4562 }
4563 #endif
4564
4565 again:
4566 if (type >= 0)
4567 {
4568 /* Allocate space for a Lisp object from the beginning of the free
4569 space with taking account of alignment. */
4570 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4571 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4572 }
4573 else
4574 {
4575 /* Allocate space for a non-Lisp object from the end of the free
4576 space. */
4577 pure_bytes_used_non_lisp += size;
4578 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4579 }
4580 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4581
4582 if (pure_bytes_used <= pure_size)
4583 return result;
4584
4585 /* Don't allocate a large amount here,
4586 because it might get mmap'd and then its address
4587 might not be usable. */
4588 purebeg = (char *) xmalloc (10000);
4589 pure_size = 10000;
4590 pure_bytes_used_before_overflow += pure_bytes_used - size;
4591 pure_bytes_used = 0;
4592 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4593 goto again;
4594 }
4595
4596
4597 /* Print a warning if PURESIZE is too small. */
4598
4599 void
4600 check_pure_size (void)
4601 {
4602 if (pure_bytes_used_before_overflow)
4603 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4604 " bytes needed)"),
4605 pure_bytes_used + pure_bytes_used_before_overflow);
4606 }
4607
4608
4609 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4610 the non-Lisp data pool of the pure storage, and return its start
4611 address. Return NULL if not found. */
4612
4613 static char *
4614 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4615 {
4616 int i;
4617 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4618 const unsigned char *p;
4619 char *non_lisp_beg;
4620
4621 if (pure_bytes_used_non_lisp < nbytes + 1)
4622 return NULL;
4623
4624 /* Set up the Boyer-Moore table. */
4625 skip = nbytes + 1;
4626 for (i = 0; i < 256; i++)
4627 bm_skip[i] = skip;
4628
4629 p = (const unsigned char *) data;
4630 while (--skip > 0)
4631 bm_skip[*p++] = skip;
4632
4633 last_char_skip = bm_skip['\0'];
4634
4635 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4636 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4637
4638 /* See the comments in the function `boyer_moore' (search.c) for the
4639 use of `infinity'. */
4640 infinity = pure_bytes_used_non_lisp + 1;
4641 bm_skip['\0'] = infinity;
4642
4643 p = (const unsigned char *) non_lisp_beg + nbytes;
4644 start = 0;
4645 do
4646 {
4647 /* Check the last character (== '\0'). */
4648 do
4649 {
4650 start += bm_skip[*(p + start)];
4651 }
4652 while (start <= start_max);
4653
4654 if (start < infinity)
4655 /* Couldn't find the last character. */
4656 return NULL;
4657
4658 /* No less than `infinity' means we could find the last
4659 character at `p[start - infinity]'. */
4660 start -= infinity;
4661
4662 /* Check the remaining characters. */
4663 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4664 /* Found. */
4665 return non_lisp_beg + start;
4666
4667 start += last_char_skip;
4668 }
4669 while (start <= start_max);
4670
4671 return NULL;
4672 }
4673
4674
4675 /* Return a string allocated in pure space. DATA is a buffer holding
4676 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4677 non-zero means make the result string multibyte.
4678
4679 Must get an error if pure storage is full, since if it cannot hold
4680 a large string it may be able to hold conses that point to that
4681 string; then the string is not protected from gc. */
4682
4683 Lisp_Object
4684 make_pure_string (const char *data,
4685 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4686 {
4687 Lisp_Object string;
4688 struct Lisp_String *s;
4689
4690 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4691 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4692 if (s->data == NULL)
4693 {
4694 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4695 memcpy (s->data, data, nbytes);
4696 s->data[nbytes] = '\0';
4697 }
4698 s->size = nchars;
4699 s->size_byte = multibyte ? nbytes : -1;
4700 s->intervals = NULL_INTERVAL;
4701 XSETSTRING (string, s);
4702 return string;
4703 }
4704
4705 /* Return a string a string allocated in pure space. Do not allocate
4706 the string data, just point to DATA. */
4707
4708 Lisp_Object
4709 make_pure_c_string (const char *data)
4710 {
4711 Lisp_Object string;
4712 struct Lisp_String *s;
4713 EMACS_INT nchars = strlen (data);
4714
4715 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4716 s->size = nchars;
4717 s->size_byte = -1;
4718 s->data = (unsigned char *) data;
4719 s->intervals = NULL_INTERVAL;
4720 XSETSTRING (string, s);
4721 return string;
4722 }
4723
4724 /* Return a cons allocated from pure space. Give it pure copies
4725 of CAR as car and CDR as cdr. */
4726
4727 Lisp_Object
4728 pure_cons (Lisp_Object car, Lisp_Object cdr)
4729 {
4730 register Lisp_Object new;
4731 struct Lisp_Cons *p;
4732
4733 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4734 XSETCONS (new, p);
4735 XSETCAR (new, Fpurecopy (car));
4736 XSETCDR (new, Fpurecopy (cdr));
4737 return new;
4738 }
4739
4740
4741 /* Value is a float object with value NUM allocated from pure space. */
4742
4743 static Lisp_Object
4744 make_pure_float (double num)
4745 {
4746 register Lisp_Object new;
4747 struct Lisp_Float *p;
4748
4749 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4750 XSETFLOAT (new, p);
4751 XFLOAT_INIT (new, num);
4752 return new;
4753 }
4754
4755
4756 /* Return a vector with room for LEN Lisp_Objects allocated from
4757 pure space. */
4758
4759 Lisp_Object
4760 make_pure_vector (EMACS_INT len)
4761 {
4762 Lisp_Object new;
4763 struct Lisp_Vector *p;
4764 size_t size = (offsetof (struct Lisp_Vector, contents)
4765 + len * sizeof (Lisp_Object));
4766
4767 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4768 XSETVECTOR (new, p);
4769 XVECTOR (new)->header.size = len;
4770 return new;
4771 }
4772
4773
4774 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4775 doc: /* Make a copy of object OBJ in pure storage.
4776 Recursively copies contents of vectors and cons cells.
4777 Does not copy symbols. Copies strings without text properties. */)
4778 (register Lisp_Object obj)
4779 {
4780 if (NILP (Vpurify_flag))
4781 return obj;
4782
4783 if (PURE_POINTER_P (XPNTR (obj)))
4784 return obj;
4785
4786 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4787 {
4788 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4789 if (!NILP (tmp))
4790 return tmp;
4791 }
4792
4793 if (CONSP (obj))
4794 obj = pure_cons (XCAR (obj), XCDR (obj));
4795 else if (FLOATP (obj))
4796 obj = make_pure_float (XFLOAT_DATA (obj));
4797 else if (STRINGP (obj))
4798 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4799 SBYTES (obj),
4800 STRING_MULTIBYTE (obj));
4801 else if (COMPILEDP (obj) || VECTORP (obj))
4802 {
4803 register struct Lisp_Vector *vec;
4804 register EMACS_INT i;
4805 EMACS_INT size;
4806
4807 size = ASIZE (obj);
4808 if (size & PSEUDOVECTOR_FLAG)
4809 size &= PSEUDOVECTOR_SIZE_MASK;
4810 vec = XVECTOR (make_pure_vector (size));
4811 for (i = 0; i < size; i++)
4812 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4813 if (COMPILEDP (obj))
4814 {
4815 XSETPVECTYPE (vec, PVEC_COMPILED);
4816 XSETCOMPILED (obj, vec);
4817 }
4818 else
4819 XSETVECTOR (obj, vec);
4820 }
4821 else if (MARKERP (obj))
4822 error ("Attempt to copy a marker to pure storage");
4823 else
4824 /* Not purified, don't hash-cons. */
4825 return obj;
4826
4827 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4828 Fputhash (obj, obj, Vpurify_flag);
4829
4830 return obj;
4831 }
4832
4833
4834 \f
4835 /***********************************************************************
4836 Protection from GC
4837 ***********************************************************************/
4838
4839 /* Put an entry in staticvec, pointing at the variable with address
4840 VARADDRESS. */
4841
4842 void
4843 staticpro (Lisp_Object *varaddress)
4844 {
4845 staticvec[staticidx++] = varaddress;
4846 if (staticidx >= NSTATICS)
4847 abort ();
4848 }
4849
4850 \f
4851 /***********************************************************************
4852 Protection from GC
4853 ***********************************************************************/
4854
4855 /* Temporarily prevent garbage collection. */
4856
4857 int
4858 inhibit_garbage_collection (void)
4859 {
4860 int count = SPECPDL_INDEX ();
4861 int nbits = min (VALBITS, BITS_PER_INT);
4862
4863 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4864 return count;
4865 }
4866
4867
4868 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4869 doc: /* Reclaim storage for Lisp objects no longer needed.
4870 Garbage collection happens automatically if you cons more than
4871 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4872 `garbage-collect' normally returns a list with info on amount of space in use:
4873 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4874 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4875 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4876 (USED-STRINGS . FREE-STRINGS))
4877 However, if there was overflow in pure space, `garbage-collect'
4878 returns nil, because real GC can't be done. */)
4879 (void)
4880 {
4881 register struct specbinding *bind;
4882 char stack_top_variable;
4883 register size_t i;
4884 int message_p;
4885 Lisp_Object total[8];
4886 int count = SPECPDL_INDEX ();
4887 EMACS_TIME t1, t2, t3;
4888
4889 if (abort_on_gc)
4890 abort ();
4891
4892 /* Can't GC if pure storage overflowed because we can't determine
4893 if something is a pure object or not. */
4894 if (pure_bytes_used_before_overflow)
4895 return Qnil;
4896
4897 CHECK_CONS_LIST ();
4898
4899 /* Don't keep undo information around forever.
4900 Do this early on, so it is no problem if the user quits. */
4901 {
4902 register struct buffer *nextb = all_buffers;
4903
4904 while (nextb)
4905 {
4906 /* If a buffer's undo list is Qt, that means that undo is
4907 turned off in that buffer. Calling truncate_undo_list on
4908 Qt tends to return NULL, which effectively turns undo back on.
4909 So don't call truncate_undo_list if undo_list is Qt. */
4910 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4911 truncate_undo_list (nextb);
4912
4913 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4914 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4915 && ! nextb->text->inhibit_shrinking)
4916 {
4917 /* If a buffer's gap size is more than 10% of the buffer
4918 size, or larger than 2000 bytes, then shrink it
4919 accordingly. Keep a minimum size of 20 bytes. */
4920 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4921
4922 if (nextb->text->gap_size > size)
4923 {
4924 struct buffer *save_current = current_buffer;
4925 current_buffer = nextb;
4926 make_gap (-(nextb->text->gap_size - size));
4927 current_buffer = save_current;
4928 }
4929 }
4930
4931 nextb = nextb->header.next.buffer;
4932 }
4933 }
4934
4935 EMACS_GET_TIME (t1);
4936
4937 /* In case user calls debug_print during GC,
4938 don't let that cause a recursive GC. */
4939 consing_since_gc = 0;
4940
4941 /* Save what's currently displayed in the echo area. */
4942 message_p = push_message ();
4943 record_unwind_protect (pop_message_unwind, Qnil);
4944
4945 /* Save a copy of the contents of the stack, for debugging. */
4946 #if MAX_SAVE_STACK > 0
4947 if (NILP (Vpurify_flag))
4948 {
4949 char *stack;
4950 size_t stack_size;
4951 if (&stack_top_variable < stack_bottom)
4952 {
4953 stack = &stack_top_variable;
4954 stack_size = stack_bottom - &stack_top_variable;
4955 }
4956 else
4957 {
4958 stack = stack_bottom;
4959 stack_size = &stack_top_variable - stack_bottom;
4960 }
4961 if (stack_size <= MAX_SAVE_STACK)
4962 {
4963 if (stack_copy_size < stack_size)
4964 {
4965 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4966 stack_copy_size = stack_size;
4967 }
4968 memcpy (stack_copy, stack, stack_size);
4969 }
4970 }
4971 #endif /* MAX_SAVE_STACK > 0 */
4972
4973 if (garbage_collection_messages)
4974 message1_nolog ("Garbage collecting...");
4975
4976 BLOCK_INPUT;
4977
4978 shrink_regexp_cache ();
4979
4980 gc_in_progress = 1;
4981
4982 /* clear_marks (); */
4983
4984 /* Mark all the special slots that serve as the roots of accessibility. */
4985
4986 for (i = 0; i < staticidx; i++)
4987 mark_object (*staticvec[i]);
4988
4989 for (bind = specpdl; bind != specpdl_ptr; bind++)
4990 {
4991 mark_object (bind->symbol);
4992 mark_object (bind->old_value);
4993 }
4994 mark_terminals ();
4995 mark_kboards ();
4996 mark_ttys ();
4997
4998 #ifdef USE_GTK
4999 {
5000 extern void xg_mark_data (void);
5001 xg_mark_data ();
5002 }
5003 #endif
5004
5005 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5006 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5007 mark_stack ();
5008 #else
5009 {
5010 register struct gcpro *tail;
5011 for (tail = gcprolist; tail; tail = tail->next)
5012 for (i = 0; i < tail->nvars; i++)
5013 mark_object (tail->var[i]);
5014 }
5015 mark_byte_stack ();
5016 {
5017 struct catchtag *catch;
5018 struct handler *handler;
5019
5020 for (catch = catchlist; catch; catch = catch->next)
5021 {
5022 mark_object (catch->tag);
5023 mark_object (catch->val);
5024 }
5025 for (handler = handlerlist; handler; handler = handler->next)
5026 {
5027 mark_object (handler->handler);
5028 mark_object (handler->var);
5029 }
5030 }
5031 mark_backtrace ();
5032 #endif
5033
5034 #ifdef HAVE_WINDOW_SYSTEM
5035 mark_fringe_data ();
5036 #endif
5037
5038 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5039 mark_stack ();
5040 #endif
5041
5042 /* Everything is now marked, except for the things that require special
5043 finalization, i.e. the undo_list.
5044 Look thru every buffer's undo list
5045 for elements that update markers that were not marked,
5046 and delete them. */
5047 {
5048 register struct buffer *nextb = all_buffers;
5049
5050 while (nextb)
5051 {
5052 /* If a buffer's undo list is Qt, that means that undo is
5053 turned off in that buffer. Calling truncate_undo_list on
5054 Qt tends to return NULL, which effectively turns undo back on.
5055 So don't call truncate_undo_list if undo_list is Qt. */
5056 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5057 {
5058 Lisp_Object tail, prev;
5059 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5060 prev = Qnil;
5061 while (CONSP (tail))
5062 {
5063 if (CONSP (XCAR (tail))
5064 && MARKERP (XCAR (XCAR (tail)))
5065 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5066 {
5067 if (NILP (prev))
5068 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5069 else
5070 {
5071 tail = XCDR (tail);
5072 XSETCDR (prev, tail);
5073 }
5074 }
5075 else
5076 {
5077 prev = tail;
5078 tail = XCDR (tail);
5079 }
5080 }
5081 }
5082 /* Now that we have stripped the elements that need not be in the
5083 undo_list any more, we can finally mark the list. */
5084 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5085
5086 nextb = nextb->header.next.buffer;
5087 }
5088 }
5089
5090 gc_sweep ();
5091
5092 /* Clear the mark bits that we set in certain root slots. */
5093
5094 unmark_byte_stack ();
5095 VECTOR_UNMARK (&buffer_defaults);
5096 VECTOR_UNMARK (&buffer_local_symbols);
5097
5098 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5099 dump_zombies ();
5100 #endif
5101
5102 UNBLOCK_INPUT;
5103
5104 CHECK_CONS_LIST ();
5105
5106 /* clear_marks (); */
5107 gc_in_progress = 0;
5108
5109 consing_since_gc = 0;
5110 if (gc_cons_threshold < 10000)
5111 gc_cons_threshold = 10000;
5112
5113 if (FLOATP (Vgc_cons_percentage))
5114 { /* Set gc_cons_combined_threshold. */
5115 EMACS_INT tot = 0;
5116
5117 tot += total_conses * sizeof (struct Lisp_Cons);
5118 tot += total_symbols * sizeof (struct Lisp_Symbol);
5119 tot += total_markers * sizeof (union Lisp_Misc);
5120 tot += total_string_size;
5121 tot += total_vector_size * sizeof (Lisp_Object);
5122 tot += total_floats * sizeof (struct Lisp_Float);
5123 tot += total_intervals * sizeof (struct interval);
5124 tot += total_strings * sizeof (struct Lisp_String);
5125
5126 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5127 }
5128 else
5129 gc_relative_threshold = 0;
5130
5131 if (garbage_collection_messages)
5132 {
5133 if (message_p || minibuf_level > 0)
5134 restore_message ();
5135 else
5136 message1_nolog ("Garbage collecting...done");
5137 }
5138
5139 unbind_to (count, Qnil);
5140
5141 total[0] = Fcons (make_number (total_conses),
5142 make_number (total_free_conses));
5143 total[1] = Fcons (make_number (total_symbols),
5144 make_number (total_free_symbols));
5145 total[2] = Fcons (make_number (total_markers),
5146 make_number (total_free_markers));
5147 total[3] = make_number (total_string_size);
5148 total[4] = make_number (total_vector_size);
5149 total[5] = Fcons (make_number (total_floats),
5150 make_number (total_free_floats));
5151 total[6] = Fcons (make_number (total_intervals),
5152 make_number (total_free_intervals));
5153 total[7] = Fcons (make_number (total_strings),
5154 make_number (total_free_strings));
5155
5156 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5157 {
5158 /* Compute average percentage of zombies. */
5159 double nlive = 0;
5160
5161 for (i = 0; i < 7; ++i)
5162 if (CONSP (total[i]))
5163 nlive += XFASTINT (XCAR (total[i]));
5164
5165 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5166 max_live = max (nlive, max_live);
5167 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5168 max_zombies = max (nzombies, max_zombies);
5169 ++ngcs;
5170 }
5171 #endif
5172
5173 if (!NILP (Vpost_gc_hook))
5174 {
5175 int gc_count = inhibit_garbage_collection ();
5176 safe_run_hooks (Qpost_gc_hook);
5177 unbind_to (gc_count, Qnil);
5178 }
5179
5180 /* Accumulate statistics. */
5181 EMACS_GET_TIME (t2);
5182 EMACS_SUB_TIME (t3, t2, t1);
5183 if (FLOATP (Vgc_elapsed))
5184 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5185 EMACS_SECS (t3) +
5186 EMACS_USECS (t3) * 1.0e-6);
5187 gcs_done++;
5188
5189 return Flist (sizeof total / sizeof *total, total);
5190 }
5191
5192
5193 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5194 only interesting objects referenced from glyphs are strings. */
5195
5196 static void
5197 mark_glyph_matrix (struct glyph_matrix *matrix)
5198 {
5199 struct glyph_row *row = matrix->rows;
5200 struct glyph_row *end = row + matrix->nrows;
5201
5202 for (; row < end; ++row)
5203 if (row->enabled_p)
5204 {
5205 int area;
5206 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5207 {
5208 struct glyph *glyph = row->glyphs[area];
5209 struct glyph *end_glyph = glyph + row->used[area];
5210
5211 for (; glyph < end_glyph; ++glyph)
5212 if (STRINGP (glyph->object)
5213 && !STRING_MARKED_P (XSTRING (glyph->object)))
5214 mark_object (glyph->object);
5215 }
5216 }
5217 }
5218
5219
5220 /* Mark Lisp faces in the face cache C. */
5221
5222 static void
5223 mark_face_cache (struct face_cache *c)
5224 {
5225 if (c)
5226 {
5227 int i, j;
5228 for (i = 0; i < c->used; ++i)
5229 {
5230 struct face *face = FACE_FROM_ID (c->f, i);
5231
5232 if (face)
5233 {
5234 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5235 mark_object (face->lface[j]);
5236 }
5237 }
5238 }
5239 }
5240
5241
5242 \f
5243 /* Mark reference to a Lisp_Object.
5244 If the object referred to has not been seen yet, recursively mark
5245 all the references contained in it. */
5246
5247 #define LAST_MARKED_SIZE 500
5248 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5249 static int last_marked_index;
5250
5251 /* For debugging--call abort when we cdr down this many
5252 links of a list, in mark_object. In debugging,
5253 the call to abort will hit a breakpoint.
5254 Normally this is zero and the check never goes off. */
5255 static size_t mark_object_loop_halt;
5256
5257 static void
5258 mark_vectorlike (struct Lisp_Vector *ptr)
5259 {
5260 register EMACS_UINT size = ptr->header.size;
5261 register EMACS_UINT i;
5262
5263 eassert (!VECTOR_MARKED_P (ptr));
5264 VECTOR_MARK (ptr); /* Else mark it */
5265 if (size & PSEUDOVECTOR_FLAG)
5266 size &= PSEUDOVECTOR_SIZE_MASK;
5267
5268 /* Note that this size is not the memory-footprint size, but only
5269 the number of Lisp_Object fields that we should trace.
5270 The distinction is used e.g. by Lisp_Process which places extra
5271 non-Lisp_Object fields at the end of the structure. */
5272 for (i = 0; i < size; i++) /* and then mark its elements */
5273 mark_object (ptr->contents[i]);
5274 }
5275
5276 /* Like mark_vectorlike but optimized for char-tables (and
5277 sub-char-tables) assuming that the contents are mostly integers or
5278 symbols. */
5279
5280 static void
5281 mark_char_table (struct Lisp_Vector *ptr)
5282 {
5283 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5284 register EMACS_UINT i;
5285
5286 eassert (!VECTOR_MARKED_P (ptr));
5287 VECTOR_MARK (ptr);
5288 for (i = 0; i < size; i++)
5289 {
5290 Lisp_Object val = ptr->contents[i];
5291
5292 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5293 continue;
5294 if (SUB_CHAR_TABLE_P (val))
5295 {
5296 if (! VECTOR_MARKED_P (XVECTOR (val)))
5297 mark_char_table (XVECTOR (val));
5298 }
5299 else
5300 mark_object (val);
5301 }
5302 }
5303
5304 void
5305 mark_object (Lisp_Object arg)
5306 {
5307 register Lisp_Object obj = arg;
5308 #ifdef GC_CHECK_MARKED_OBJECTS
5309 void *po;
5310 struct mem_node *m;
5311 #endif
5312 size_t cdr_count = 0;
5313
5314 loop:
5315
5316 if (PURE_POINTER_P (XPNTR (obj)))
5317 return;
5318
5319 last_marked[last_marked_index++] = obj;
5320 if (last_marked_index == LAST_MARKED_SIZE)
5321 last_marked_index = 0;
5322
5323 /* Perform some sanity checks on the objects marked here. Abort if
5324 we encounter an object we know is bogus. This increases GC time
5325 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5326 #ifdef GC_CHECK_MARKED_OBJECTS
5327
5328 po = (void *) XPNTR (obj);
5329
5330 /* Check that the object pointed to by PO is known to be a Lisp
5331 structure allocated from the heap. */
5332 #define CHECK_ALLOCATED() \
5333 do { \
5334 m = mem_find (po); \
5335 if (m == MEM_NIL) \
5336 abort (); \
5337 } while (0)
5338
5339 /* Check that the object pointed to by PO is live, using predicate
5340 function LIVEP. */
5341 #define CHECK_LIVE(LIVEP) \
5342 do { \
5343 if (!LIVEP (m, po)) \
5344 abort (); \
5345 } while (0)
5346
5347 /* Check both of the above conditions. */
5348 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5349 do { \
5350 CHECK_ALLOCATED (); \
5351 CHECK_LIVE (LIVEP); \
5352 } while (0) \
5353
5354 #else /* not GC_CHECK_MARKED_OBJECTS */
5355
5356 #define CHECK_LIVE(LIVEP) (void) 0
5357 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5358
5359 #endif /* not GC_CHECK_MARKED_OBJECTS */
5360
5361 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5362 {
5363 case Lisp_String:
5364 {
5365 register struct Lisp_String *ptr = XSTRING (obj);
5366 if (STRING_MARKED_P (ptr))
5367 break;
5368 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5369 MARK_INTERVAL_TREE (ptr->intervals);
5370 MARK_STRING (ptr);
5371 #ifdef GC_CHECK_STRING_BYTES
5372 /* Check that the string size recorded in the string is the
5373 same as the one recorded in the sdata structure. */
5374 CHECK_STRING_BYTES (ptr);
5375 #endif /* GC_CHECK_STRING_BYTES */
5376 }
5377 break;
5378
5379 case Lisp_Vectorlike:
5380 if (VECTOR_MARKED_P (XVECTOR (obj)))
5381 break;
5382 #ifdef GC_CHECK_MARKED_OBJECTS
5383 m = mem_find (po);
5384 if (m == MEM_NIL && !SUBRP (obj)
5385 && po != &buffer_defaults
5386 && po != &buffer_local_symbols)
5387 abort ();
5388 #endif /* GC_CHECK_MARKED_OBJECTS */
5389
5390 if (BUFFERP (obj))
5391 {
5392 #ifdef GC_CHECK_MARKED_OBJECTS
5393 if (po != &buffer_defaults && po != &buffer_local_symbols)
5394 {
5395 struct buffer *b;
5396 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5397 ;
5398 if (b == NULL)
5399 abort ();
5400 }
5401 #endif /* GC_CHECK_MARKED_OBJECTS */
5402 mark_buffer (obj);
5403 }
5404 else if (SUBRP (obj))
5405 break;
5406 else if (COMPILEDP (obj))
5407 /* We could treat this just like a vector, but it is better to
5408 save the COMPILED_CONSTANTS element for last and avoid
5409 recursion there. */
5410 {
5411 register struct Lisp_Vector *ptr = XVECTOR (obj);
5412 register EMACS_UINT size = ptr->header.size;
5413 register EMACS_UINT i;
5414
5415 CHECK_LIVE (live_vector_p);
5416 VECTOR_MARK (ptr); /* Else mark it */
5417 size &= PSEUDOVECTOR_SIZE_MASK;
5418 for (i = 0; i < size; i++) /* and then mark its elements */
5419 {
5420 if (i != COMPILED_CONSTANTS)
5421 mark_object (ptr->contents[i]);
5422 }
5423 obj = ptr->contents[COMPILED_CONSTANTS];
5424 goto loop;
5425 }
5426 else if (FRAMEP (obj))
5427 {
5428 register struct frame *ptr = XFRAME (obj);
5429 mark_vectorlike (XVECTOR (obj));
5430 mark_face_cache (ptr->face_cache);
5431 }
5432 else if (WINDOWP (obj))
5433 {
5434 register struct Lisp_Vector *ptr = XVECTOR (obj);
5435 struct window *w = XWINDOW (obj);
5436 mark_vectorlike (ptr);
5437 /* Mark glyphs for leaf windows. Marking window matrices is
5438 sufficient because frame matrices use the same glyph
5439 memory. */
5440 if (NILP (w->hchild)
5441 && NILP (w->vchild)
5442 && w->current_matrix)
5443 {
5444 mark_glyph_matrix (w->current_matrix);
5445 mark_glyph_matrix (w->desired_matrix);
5446 }
5447 }
5448 else if (HASH_TABLE_P (obj))
5449 {
5450 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5451 mark_vectorlike ((struct Lisp_Vector *)h);
5452 /* If hash table is not weak, mark all keys and values.
5453 For weak tables, mark only the vector. */
5454 if (NILP (h->weak))
5455 mark_object (h->key_and_value);
5456 else
5457 VECTOR_MARK (XVECTOR (h->key_and_value));
5458 }
5459 else if (CHAR_TABLE_P (obj))
5460 mark_char_table (XVECTOR (obj));
5461 else
5462 mark_vectorlike (XVECTOR (obj));
5463 break;
5464
5465 case Lisp_Symbol:
5466 {
5467 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5468 struct Lisp_Symbol *ptrx;
5469
5470 if (ptr->gcmarkbit)
5471 break;
5472 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5473 ptr->gcmarkbit = 1;
5474 mark_object (ptr->function);
5475 mark_object (ptr->plist);
5476 switch (ptr->redirect)
5477 {
5478 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5479 case SYMBOL_VARALIAS:
5480 {
5481 Lisp_Object tem;
5482 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5483 mark_object (tem);
5484 break;
5485 }
5486 case SYMBOL_LOCALIZED:
5487 {
5488 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5489 /* If the value is forwarded to a buffer or keyboard field,
5490 these are marked when we see the corresponding object.
5491 And if it's forwarded to a C variable, either it's not
5492 a Lisp_Object var, or it's staticpro'd already. */
5493 mark_object (blv->where);
5494 mark_object (blv->valcell);
5495 mark_object (blv->defcell);
5496 break;
5497 }
5498 case SYMBOL_FORWARDED:
5499 /* If the value is forwarded to a buffer or keyboard field,
5500 these are marked when we see the corresponding object.
5501 And if it's forwarded to a C variable, either it's not
5502 a Lisp_Object var, or it's staticpro'd already. */
5503 break;
5504 default: abort ();
5505 }
5506 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5507 MARK_STRING (XSTRING (ptr->xname));
5508 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5509
5510 ptr = ptr->next;
5511 if (ptr)
5512 {
5513 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5514 XSETSYMBOL (obj, ptrx);
5515 goto loop;
5516 }
5517 }
5518 break;
5519
5520 case Lisp_Misc:
5521 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5522 if (XMISCANY (obj)->gcmarkbit)
5523 break;
5524 XMISCANY (obj)->gcmarkbit = 1;
5525
5526 switch (XMISCTYPE (obj))
5527 {
5528
5529 case Lisp_Misc_Marker:
5530 /* DO NOT mark thru the marker's chain.
5531 The buffer's markers chain does not preserve markers from gc;
5532 instead, markers are removed from the chain when freed by gc. */
5533 break;
5534
5535 case Lisp_Misc_Save_Value:
5536 #if GC_MARK_STACK
5537 {
5538 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5539 /* If DOGC is set, POINTER is the address of a memory
5540 area containing INTEGER potential Lisp_Objects. */
5541 if (ptr->dogc)
5542 {
5543 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5544 int nelt;
5545 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5546 mark_maybe_object (*p);
5547 }
5548 }
5549 #endif
5550 break;
5551
5552 case Lisp_Misc_Overlay:
5553 {
5554 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5555 mark_object (ptr->start);
5556 mark_object (ptr->end);
5557 mark_object (ptr->plist);
5558 if (ptr->next)
5559 {
5560 XSETMISC (obj, ptr->next);
5561 goto loop;
5562 }
5563 }
5564 break;
5565
5566 default:
5567 abort ();
5568 }
5569 break;
5570
5571 case Lisp_Cons:
5572 {
5573 register struct Lisp_Cons *ptr = XCONS (obj);
5574 if (CONS_MARKED_P (ptr))
5575 break;
5576 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5577 CONS_MARK (ptr);
5578 /* If the cdr is nil, avoid recursion for the car. */
5579 if (EQ (ptr->u.cdr, Qnil))
5580 {
5581 obj = ptr->car;
5582 cdr_count = 0;
5583 goto loop;
5584 }
5585 mark_object (ptr->car);
5586 obj = ptr->u.cdr;
5587 cdr_count++;
5588 if (cdr_count == mark_object_loop_halt)
5589 abort ();
5590 goto loop;
5591 }
5592
5593 case Lisp_Float:
5594 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5595 FLOAT_MARK (XFLOAT (obj));
5596 break;
5597
5598 case_Lisp_Int:
5599 break;
5600
5601 default:
5602 abort ();
5603 }
5604
5605 #undef CHECK_LIVE
5606 #undef CHECK_ALLOCATED
5607 #undef CHECK_ALLOCATED_AND_LIVE
5608 }
5609
5610 /* Mark the pointers in a buffer structure. */
5611
5612 static void
5613 mark_buffer (Lisp_Object buf)
5614 {
5615 register struct buffer *buffer = XBUFFER (buf);
5616 register Lisp_Object *ptr, tmp;
5617 Lisp_Object base_buffer;
5618
5619 eassert (!VECTOR_MARKED_P (buffer));
5620 VECTOR_MARK (buffer);
5621
5622 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5623
5624 /* For now, we just don't mark the undo_list. It's done later in
5625 a special way just before the sweep phase, and after stripping
5626 some of its elements that are not needed any more. */
5627
5628 if (buffer->overlays_before)
5629 {
5630 XSETMISC (tmp, buffer->overlays_before);
5631 mark_object (tmp);
5632 }
5633 if (buffer->overlays_after)
5634 {
5635 XSETMISC (tmp, buffer->overlays_after);
5636 mark_object (tmp);
5637 }
5638
5639 /* buffer-local Lisp variables start at `undo_list',
5640 tho only the ones from `name' on are GC'd normally. */
5641 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5642 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5643 ptr++)
5644 mark_object (*ptr);
5645
5646 /* If this is an indirect buffer, mark its base buffer. */
5647 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5648 {
5649 XSETBUFFER (base_buffer, buffer->base_buffer);
5650 mark_buffer (base_buffer);
5651 }
5652 }
5653
5654 /* Mark the Lisp pointers in the terminal objects.
5655 Called by the Fgarbage_collector. */
5656
5657 static void
5658 mark_terminals (void)
5659 {
5660 struct terminal *t;
5661 for (t = terminal_list; t; t = t->next_terminal)
5662 {
5663 eassert (t->name != NULL);
5664 #ifdef HAVE_WINDOW_SYSTEM
5665 /* If a terminal object is reachable from a stacpro'ed object,
5666 it might have been marked already. Make sure the image cache
5667 gets marked. */
5668 mark_image_cache (t->image_cache);
5669 #endif /* HAVE_WINDOW_SYSTEM */
5670 if (!VECTOR_MARKED_P (t))
5671 mark_vectorlike ((struct Lisp_Vector *)t);
5672 }
5673 }
5674
5675
5676
5677 /* Value is non-zero if OBJ will survive the current GC because it's
5678 either marked or does not need to be marked to survive. */
5679
5680 int
5681 survives_gc_p (Lisp_Object obj)
5682 {
5683 int survives_p;
5684
5685 switch (XTYPE (obj))
5686 {
5687 case_Lisp_Int:
5688 survives_p = 1;
5689 break;
5690
5691 case Lisp_Symbol:
5692 survives_p = XSYMBOL (obj)->gcmarkbit;
5693 break;
5694
5695 case Lisp_Misc:
5696 survives_p = XMISCANY (obj)->gcmarkbit;
5697 break;
5698
5699 case Lisp_String:
5700 survives_p = STRING_MARKED_P (XSTRING (obj));
5701 break;
5702
5703 case Lisp_Vectorlike:
5704 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5705 break;
5706
5707 case Lisp_Cons:
5708 survives_p = CONS_MARKED_P (XCONS (obj));
5709 break;
5710
5711 case Lisp_Float:
5712 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5713 break;
5714
5715 default:
5716 abort ();
5717 }
5718
5719 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5720 }
5721
5722
5723 \f
5724 /* Sweep: find all structures not marked, and free them. */
5725
5726 static void
5727 gc_sweep (void)
5728 {
5729 /* Remove or mark entries in weak hash tables.
5730 This must be done before any object is unmarked. */
5731 sweep_weak_hash_tables ();
5732
5733 sweep_strings ();
5734 #ifdef GC_CHECK_STRING_BYTES
5735 if (!noninteractive)
5736 check_string_bytes (1);
5737 #endif
5738
5739 /* Put all unmarked conses on free list */
5740 {
5741 register struct cons_block *cblk;
5742 struct cons_block **cprev = &cons_block;
5743 register int lim = cons_block_index;
5744 register int num_free = 0, num_used = 0;
5745
5746 cons_free_list = 0;
5747
5748 for (cblk = cons_block; cblk; cblk = *cprev)
5749 {
5750 register int i = 0;
5751 int this_free = 0;
5752 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5753
5754 /* Scan the mark bits an int at a time. */
5755 for (i = 0; i <= ilim; i++)
5756 {
5757 if (cblk->gcmarkbits[i] == -1)
5758 {
5759 /* Fast path - all cons cells for this int are marked. */
5760 cblk->gcmarkbits[i] = 0;
5761 num_used += BITS_PER_INT;
5762 }
5763 else
5764 {
5765 /* Some cons cells for this int are not marked.
5766 Find which ones, and free them. */
5767 int start, pos, stop;
5768
5769 start = i * BITS_PER_INT;
5770 stop = lim - start;
5771 if (stop > BITS_PER_INT)
5772 stop = BITS_PER_INT;
5773 stop += start;
5774
5775 for (pos = start; pos < stop; pos++)
5776 {
5777 if (!CONS_MARKED_P (&cblk->conses[pos]))
5778 {
5779 this_free++;
5780 cblk->conses[pos].u.chain = cons_free_list;
5781 cons_free_list = &cblk->conses[pos];
5782 #if GC_MARK_STACK
5783 cons_free_list->car = Vdead;
5784 #endif
5785 }
5786 else
5787 {
5788 num_used++;
5789 CONS_UNMARK (&cblk->conses[pos]);
5790 }
5791 }
5792 }
5793 }
5794
5795 lim = CONS_BLOCK_SIZE;
5796 /* If this block contains only free conses and we have already
5797 seen more than two blocks worth of free conses then deallocate
5798 this block. */
5799 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5800 {
5801 *cprev = cblk->next;
5802 /* Unhook from the free list. */
5803 cons_free_list = cblk->conses[0].u.chain;
5804 lisp_align_free (cblk);
5805 n_cons_blocks--;
5806 }
5807 else
5808 {
5809 num_free += this_free;
5810 cprev = &cblk->next;
5811 }
5812 }
5813 total_conses = num_used;
5814 total_free_conses = num_free;
5815 }
5816
5817 /* Put all unmarked floats on free list */
5818 {
5819 register struct float_block *fblk;
5820 struct float_block **fprev = &float_block;
5821 register int lim = float_block_index;
5822 register int num_free = 0, num_used = 0;
5823
5824 float_free_list = 0;
5825
5826 for (fblk = float_block; fblk; fblk = *fprev)
5827 {
5828 register int i;
5829 int this_free = 0;
5830 for (i = 0; i < lim; i++)
5831 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5832 {
5833 this_free++;
5834 fblk->floats[i].u.chain = float_free_list;
5835 float_free_list = &fblk->floats[i];
5836 }
5837 else
5838 {
5839 num_used++;
5840 FLOAT_UNMARK (&fblk->floats[i]);
5841 }
5842 lim = FLOAT_BLOCK_SIZE;
5843 /* If this block contains only free floats and we have already
5844 seen more than two blocks worth of free floats then deallocate
5845 this block. */
5846 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5847 {
5848 *fprev = fblk->next;
5849 /* Unhook from the free list. */
5850 float_free_list = fblk->floats[0].u.chain;
5851 lisp_align_free (fblk);
5852 n_float_blocks--;
5853 }
5854 else
5855 {
5856 num_free += this_free;
5857 fprev = &fblk->next;
5858 }
5859 }
5860 total_floats = num_used;
5861 total_free_floats = num_free;
5862 }
5863
5864 /* Put all unmarked intervals on free list */
5865 {
5866 register struct interval_block *iblk;
5867 struct interval_block **iprev = &interval_block;
5868 register int lim = interval_block_index;
5869 register int num_free = 0, num_used = 0;
5870
5871 interval_free_list = 0;
5872
5873 for (iblk = interval_block; iblk; iblk = *iprev)
5874 {
5875 register int i;
5876 int this_free = 0;
5877
5878 for (i = 0; i < lim; i++)
5879 {
5880 if (!iblk->intervals[i].gcmarkbit)
5881 {
5882 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5883 interval_free_list = &iblk->intervals[i];
5884 this_free++;
5885 }
5886 else
5887 {
5888 num_used++;
5889 iblk->intervals[i].gcmarkbit = 0;
5890 }
5891 }
5892 lim = INTERVAL_BLOCK_SIZE;
5893 /* If this block contains only free intervals and we have already
5894 seen more than two blocks worth of free intervals then
5895 deallocate this block. */
5896 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5897 {
5898 *iprev = iblk->next;
5899 /* Unhook from the free list. */
5900 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5901 lisp_free (iblk);
5902 n_interval_blocks--;
5903 }
5904 else
5905 {
5906 num_free += this_free;
5907 iprev = &iblk->next;
5908 }
5909 }
5910 total_intervals = num_used;
5911 total_free_intervals = num_free;
5912 }
5913
5914 /* Put all unmarked symbols on free list */
5915 {
5916 register struct symbol_block *sblk;
5917 struct symbol_block **sprev = &symbol_block;
5918 register int lim = symbol_block_index;
5919 register int num_free = 0, num_used = 0;
5920
5921 symbol_free_list = NULL;
5922
5923 for (sblk = symbol_block; sblk; sblk = *sprev)
5924 {
5925 int this_free = 0;
5926 struct Lisp_Symbol *sym = sblk->symbols;
5927 struct Lisp_Symbol *end = sym + lim;
5928
5929 for (; sym < end; ++sym)
5930 {
5931 /* Check if the symbol was created during loadup. In such a case
5932 it might be pointed to by pure bytecode which we don't trace,
5933 so we conservatively assume that it is live. */
5934 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5935
5936 if (!sym->gcmarkbit && !pure_p)
5937 {
5938 if (sym->redirect == SYMBOL_LOCALIZED)
5939 xfree (SYMBOL_BLV (sym));
5940 sym->next = symbol_free_list;
5941 symbol_free_list = sym;
5942 #if GC_MARK_STACK
5943 symbol_free_list->function = Vdead;
5944 #endif
5945 ++this_free;
5946 }
5947 else
5948 {
5949 ++num_used;
5950 if (!pure_p)
5951 UNMARK_STRING (XSTRING (sym->xname));
5952 sym->gcmarkbit = 0;
5953 }
5954 }
5955
5956 lim = SYMBOL_BLOCK_SIZE;
5957 /* If this block contains only free symbols and we have already
5958 seen more than two blocks worth of free symbols then deallocate
5959 this block. */
5960 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5961 {
5962 *sprev = sblk->next;
5963 /* Unhook from the free list. */
5964 symbol_free_list = sblk->symbols[0].next;
5965 lisp_free (sblk);
5966 n_symbol_blocks--;
5967 }
5968 else
5969 {
5970 num_free += this_free;
5971 sprev = &sblk->next;
5972 }
5973 }
5974 total_symbols = num_used;
5975 total_free_symbols = num_free;
5976 }
5977
5978 /* Put all unmarked misc's on free list.
5979 For a marker, first unchain it from the buffer it points into. */
5980 {
5981 register struct marker_block *mblk;
5982 struct marker_block **mprev = &marker_block;
5983 register int lim = marker_block_index;
5984 register int num_free = 0, num_used = 0;
5985
5986 marker_free_list = 0;
5987
5988 for (mblk = marker_block; mblk; mblk = *mprev)
5989 {
5990 register int i;
5991 int this_free = 0;
5992
5993 for (i = 0; i < lim; i++)
5994 {
5995 if (!mblk->markers[i].u_any.gcmarkbit)
5996 {
5997 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5998 unchain_marker (&mblk->markers[i].u_marker);
5999 /* Set the type of the freed object to Lisp_Misc_Free.
6000 We could leave the type alone, since nobody checks it,
6001 but this might catch bugs faster. */
6002 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6003 mblk->markers[i].u_free.chain = marker_free_list;
6004 marker_free_list = &mblk->markers[i];
6005 this_free++;
6006 }
6007 else
6008 {
6009 num_used++;
6010 mblk->markers[i].u_any.gcmarkbit = 0;
6011 }
6012 }
6013 lim = MARKER_BLOCK_SIZE;
6014 /* If this block contains only free markers and we have already
6015 seen more than two blocks worth of free markers then deallocate
6016 this block. */
6017 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6018 {
6019 *mprev = mblk->next;
6020 /* Unhook from the free list. */
6021 marker_free_list = mblk->markers[0].u_free.chain;
6022 lisp_free (mblk);
6023 n_marker_blocks--;
6024 }
6025 else
6026 {
6027 num_free += this_free;
6028 mprev = &mblk->next;
6029 }
6030 }
6031
6032 total_markers = num_used;
6033 total_free_markers = num_free;
6034 }
6035
6036 /* Free all unmarked buffers */
6037 {
6038 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6039
6040 while (buffer)
6041 if (!VECTOR_MARKED_P (buffer))
6042 {
6043 if (prev)
6044 prev->header.next = buffer->header.next;
6045 else
6046 all_buffers = buffer->header.next.buffer;
6047 next = buffer->header.next.buffer;
6048 lisp_free (buffer);
6049 buffer = next;
6050 }
6051 else
6052 {
6053 VECTOR_UNMARK (buffer);
6054 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6055 prev = buffer, buffer = buffer->header.next.buffer;
6056 }
6057 }
6058
6059 /* Free all unmarked vectors */
6060 {
6061 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6062 total_vector_size = 0;
6063
6064 while (vector)
6065 if (!VECTOR_MARKED_P (vector))
6066 {
6067 if (prev)
6068 prev->header.next = vector->header.next;
6069 else
6070 all_vectors = vector->header.next.vector;
6071 next = vector->header.next.vector;
6072 lisp_free (vector);
6073 n_vectors--;
6074 vector = next;
6075
6076 }
6077 else
6078 {
6079 VECTOR_UNMARK (vector);
6080 if (vector->header.size & PSEUDOVECTOR_FLAG)
6081 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6082 else
6083 total_vector_size += vector->header.size;
6084 prev = vector, vector = vector->header.next.vector;
6085 }
6086 }
6087
6088 #ifdef GC_CHECK_STRING_BYTES
6089 if (!noninteractive)
6090 check_string_bytes (1);
6091 #endif
6092 }
6093
6094
6095
6096 \f
6097 /* Debugging aids. */
6098
6099 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6100 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6101 This may be helpful in debugging Emacs's memory usage.
6102 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6103 (void)
6104 {
6105 Lisp_Object end;
6106
6107 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6108
6109 return end;
6110 }
6111
6112 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6113 doc: /* Return a list of counters that measure how much consing there has been.
6114 Each of these counters increments for a certain kind of object.
6115 The counters wrap around from the largest positive integer to zero.
6116 Garbage collection does not decrease them.
6117 The elements of the value are as follows:
6118 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6119 All are in units of 1 = one object consed
6120 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6121 objects consed.
6122 MISCS include overlays, markers, and some internal types.
6123 Frames, windows, buffers, and subprocesses count as vectors
6124 (but the contents of a buffer's text do not count here). */)
6125 (void)
6126 {
6127 Lisp_Object consed[8];
6128
6129 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6130 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6131 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6132 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6133 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6134 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6135 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6136 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6137
6138 return Flist (8, consed);
6139 }
6140
6141 #ifdef ENABLE_CHECKING
6142 int suppress_checking;
6143
6144 void
6145 die (const char *msg, const char *file, int line)
6146 {
6147 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6148 file, line, msg);
6149 abort ();
6150 }
6151 #endif
6152 \f
6153 /* Initialization */
6154
6155 void
6156 init_alloc_once (void)
6157 {
6158 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6159 purebeg = PUREBEG;
6160 pure_size = PURESIZE;
6161 pure_bytes_used = 0;
6162 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6163 pure_bytes_used_before_overflow = 0;
6164
6165 /* Initialize the list of free aligned blocks. */
6166 free_ablock = NULL;
6167
6168 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6169 mem_init ();
6170 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6171 #endif
6172
6173 all_vectors = 0;
6174 ignore_warnings = 1;
6175 #ifdef DOUG_LEA_MALLOC
6176 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6177 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6178 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6179 #endif
6180 init_strings ();
6181 init_cons ();
6182 init_symbol ();
6183 init_marker ();
6184 init_float ();
6185 init_intervals ();
6186 init_weak_hash_tables ();
6187
6188 #ifdef REL_ALLOC
6189 malloc_hysteresis = 32;
6190 #else
6191 malloc_hysteresis = 0;
6192 #endif
6193
6194 refill_memory_reserve ();
6195
6196 ignore_warnings = 0;
6197 gcprolist = 0;
6198 byte_stack_list = 0;
6199 staticidx = 0;
6200 consing_since_gc = 0;
6201 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6202 gc_relative_threshold = 0;
6203 }
6204
6205 void
6206 init_alloc (void)
6207 {
6208 gcprolist = 0;
6209 byte_stack_list = 0;
6210 #if GC_MARK_STACK
6211 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6212 setjmp_tested_p = longjmps_done = 0;
6213 #endif
6214 #endif
6215 Vgc_elapsed = make_float (0.0);
6216 gcs_done = 0;
6217 }
6218
6219 void
6220 syms_of_alloc (void)
6221 {
6222 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6223 doc: /* *Number of bytes of consing between garbage collections.
6224 Garbage collection can happen automatically once this many bytes have been
6225 allocated since the last garbage collection. All data types count.
6226
6227 Garbage collection happens automatically only when `eval' is called.
6228
6229 By binding this temporarily to a large number, you can effectively
6230 prevent garbage collection during a part of the program.
6231 See also `gc-cons-percentage'. */);
6232
6233 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6234 doc: /* *Portion of the heap used for allocation.
6235 Garbage collection can happen automatically once this portion of the heap
6236 has been allocated since the last garbage collection.
6237 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6238 Vgc_cons_percentage = make_float (0.1);
6239
6240 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6241 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6242
6243 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6244 doc: /* Number of cons cells that have been consed so far. */);
6245
6246 DEFVAR_INT ("floats-consed", floats_consed,
6247 doc: /* Number of floats that have been consed so far. */);
6248
6249 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6250 doc: /* Number of vector cells that have been consed so far. */);
6251
6252 DEFVAR_INT ("symbols-consed", symbols_consed,
6253 doc: /* Number of symbols that have been consed so far. */);
6254
6255 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6256 doc: /* Number of string characters that have been consed so far. */);
6257
6258 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6259 doc: /* Number of miscellaneous objects that have been consed so far. */);
6260
6261 DEFVAR_INT ("intervals-consed", intervals_consed,
6262 doc: /* Number of intervals that have been consed so far. */);
6263
6264 DEFVAR_INT ("strings-consed", strings_consed,
6265 doc: /* Number of strings that have been consed so far. */);
6266
6267 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6268 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6269 This means that certain objects should be allocated in shared (pure) space.
6270 It can also be set to a hash-table, in which case this table is used to
6271 do hash-consing of the objects allocated to pure space. */);
6272
6273 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6274 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6275 garbage_collection_messages = 0;
6276
6277 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6278 doc: /* Hook run after garbage collection has finished. */);
6279 Vpost_gc_hook = Qnil;
6280 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6281 staticpro (&Qpost_gc_hook);
6282
6283 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6284 doc: /* Precomputed `signal' argument for memory-full error. */);
6285 /* We build this in advance because if we wait until we need it, we might
6286 not be able to allocate the memory to hold it. */
6287 Vmemory_signal_data
6288 = pure_cons (Qerror,
6289 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6290
6291 DEFVAR_LISP ("memory-full", Vmemory_full,
6292 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6293 Vmemory_full = Qnil;
6294
6295 staticpro (&Qgc_cons_threshold);
6296 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6297
6298 staticpro (&Qchar_table_extra_slots);
6299 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6300
6301 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6302 doc: /* Accumulated time elapsed in garbage collections.
6303 The time is in seconds as a floating point value. */);
6304 DEFVAR_INT ("gcs-done", gcs_done,
6305 doc: /* Accumulated number of garbage collections done. */);
6306
6307 defsubr (&Scons);
6308 defsubr (&Slist);
6309 defsubr (&Svector);
6310 defsubr (&Smake_byte_code);
6311 defsubr (&Smake_list);
6312 defsubr (&Smake_vector);
6313 defsubr (&Smake_string);
6314 defsubr (&Smake_bool_vector);
6315 defsubr (&Smake_symbol);
6316 defsubr (&Smake_marker);
6317 defsubr (&Spurecopy);
6318 defsubr (&Sgarbage_collect);
6319 defsubr (&Smemory_limit);
6320 defsubr (&Smemory_use_counts);
6321
6322 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6323 defsubr (&Sgc_status);
6324 #endif
6325 }