(extend_range_table_work_area): Fix typo.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
22
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
30 */
31
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
36
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
40
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
47
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
56
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
64
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
91
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
101
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
108
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
114
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
118
119 # include "lisp.h"
120 # include "buffer.h"
121
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
124
125 # include "syntax.h"
126 # include "charset.h"
127 # include "category.h"
128
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
141
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
156 do { \
157 if (multibyte) \
158 { \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
169
170 #else /* not emacs */
171
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
175 # undef REL_ALLOC
176
177 # if defined STDC_HEADERS || defined _LIBC
178 # include <stdlib.h>
179 # else
180 char *malloc ();
181 char *realloc ();
182 # endif
183
184 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
185 If nothing else has been done, use the method below. */
186 # ifdef INHIBIT_STRING_HEADER
187 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
188 # if !defined bzero && !defined bcopy
189 # undef INHIBIT_STRING_HEADER
190 # endif
191 # endif
192 # endif
193
194 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
195 This is used in most programs--a few other programs avoid this
196 by defining INHIBIT_STRING_HEADER. */
197 # ifndef INHIBIT_STRING_HEADER
198 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
199 # include <string.h>
200 # ifndef bzero
201 # ifndef _LIBC
202 # define bzero(s, n) (memset (s, '\0', n), (s))
203 # else
204 # define bzero(s, n) __bzero (s, n)
205 # endif
206 # endif
207 # else
208 # include <strings.h>
209 # ifndef memcmp
210 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
211 # endif
212 # ifndef memcpy
213 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
214 # endif
215 # endif
216 # endif
217
218 /* Define the syntax stuff for \<, \>, etc. */
219
220 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
221 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
222
223 # ifdef SWITCH_ENUM_BUG
224 # define SWITCH_ENUM_CAST(x) ((int)(x))
225 # else
226 # define SWITCH_ENUM_CAST(x) (x)
227 # endif
228
229 /* Dummy macros for non-Emacs environments. */
230 # define BASE_LEADING_CODE_P(c) (0)
231 # define CHAR_CHARSET(c) 0
232 # define CHARSET_LEADING_CODE_BASE(c) 0
233 # define MAX_MULTIBYTE_LENGTH 1
234 # define RE_MULTIBYTE_P(x) 0
235 # define WORD_BOUNDARY_P(c1, c2) (0)
236 # define CHAR_HEAD_P(p) (1)
237 # define SINGLE_BYTE_CHAR_P(c) (1)
238 # define SAME_CHARSET_P(c1, c2) (1)
239 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
240 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
241 # define STRING_CHAR(p, s) (*(p))
242 # define RE_STRING_CHAR STRING_CHAR
243 # define CHAR_STRING(c, s) (*(s) = (c), 1)
244 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
248 # define MAKE_CHAR(charset, c1, c2) (c1)
249 #endif /* not emacs */
250
251 #ifndef RE_TRANSLATE
252 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253 # define RE_TRANSLATE_P(TBL) (TBL)
254 #endif
255 \f
256 /* Get the interface, including the syntax bits. */
257 #include "regex.h"
258
259 /* isalpha etc. are used for the character classes. */
260 #include <ctype.h>
261
262 #ifdef emacs
263
264 /* 1 if C is an ASCII character. */
265 # define IS_REAL_ASCII(c) ((c) < 0200)
266
267 /* 1 if C is a unibyte character. */
268 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269
270 /* The Emacs definitions should not be directly affected by locales. */
271
272 /* In Emacs, these are only used for single-byte characters. */
273 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274 # define ISCNTRL(c) ((c) < ' ')
275 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
278
279 /* This is only used for single-byte characters. */
280 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281
282 /* The rest must handle multibyte characters. */
283
284 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
286 : 1)
287
288 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
290 : 1)
291
292 # define ISALNUM(c) (IS_REAL_ASCII (c) \
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
296 : SYNTAX (c) == Sword)
297
298 # define ISALPHA(c) (IS_REAL_ASCII (c) \
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
301 : SYNTAX (c) == Sword)
302
303 # define ISLOWER(c) (LOWERCASEP (c))
304
305 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
310 : SYNTAX (c) != Sword)
311
312 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313
314 # define ISUPPER(c) (UPPERCASEP (c))
315
316 # define ISWORD(c) (SYNTAX (c) == Sword)
317
318 #else /* not emacs */
319
320 /* Jim Meyering writes:
321
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
325 ctype uses should be through macros like ISPRINT... If
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
331
332 # undef ISASCII
333 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334 # define ISASCII(c) 1
335 # else
336 # define ISASCII(c) isascii(c)
337 # endif
338
339 /* 1 if C is an ASCII character. */
340 # define IS_REAL_ASCII(c) ((c) < 0200)
341
342 /* This distinction is not meaningful, except in Emacs. */
343 # define ISUNIBYTE(c) 1
344
345 # ifdef isblank
346 # define ISBLANK(c) (ISASCII (c) && isblank (c))
347 # else
348 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
349 # endif
350 # ifdef isgraph
351 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352 # else
353 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
354 # endif
355
356 # undef ISPRINT
357 # define ISPRINT(c) (ISASCII (c) && isprint (c))
358 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
360 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
361 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362 # define ISLOWER(c) (ISASCII (c) && islower (c))
363 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364 # define ISSPACE(c) (ISASCII (c) && isspace (c))
365 # define ISUPPER(c) (ISASCII (c) && isupper (c))
366 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367
368 # define ISWORD(c) ISALPHA(c)
369
370 # ifdef _tolower
371 # define TOLOWER(c) _tolower(c)
372 # else
373 # define TOLOWER(c) tolower(c)
374 # endif
375
376 /* How many characters in the character set. */
377 # define CHAR_SET_SIZE 256
378
379 # ifdef SYNTAX_TABLE
380
381 extern char *re_syntax_table;
382
383 # else /* not SYNTAX_TABLE */
384
385 static char re_syntax_table[CHAR_SET_SIZE];
386
387 static void
388 init_syntax_once ()
389 {
390 register int c;
391 static int done = 0;
392
393 if (done)
394 return;
395
396 bzero (re_syntax_table, sizeof re_syntax_table);
397
398 for (c = 0; c < CHAR_SET_SIZE; ++c)
399 if (ISALNUM (c))
400 re_syntax_table[c] = Sword;
401
402 re_syntax_table['_'] = Ssymbol;
403
404 done = 1;
405 }
406
407 # endif /* not SYNTAX_TABLE */
408
409 # define SYNTAX(c) re_syntax_table[(c)]
410
411 #endif /* not emacs */
412 \f
413 #ifndef NULL
414 # define NULL (void *)0
415 #endif
416
417 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
420 (Per Bothner suggested the basic approach.) */
421 #undef SIGN_EXTEND_CHAR
422 #if __STDC__
423 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
424 #else /* not __STDC__ */
425 /* As in Harbison and Steele. */
426 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
427 #endif
428 \f
429 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
433 the other hand, malloc is more portable, and easier to debug.
434
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
438
439 #ifdef REGEX_MALLOC
440
441 # define REGEX_ALLOCATE malloc
442 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443 # define REGEX_FREE free
444
445 #else /* not REGEX_MALLOC */
446
447 /* Emacs already defines alloca, sometimes. */
448 # ifndef alloca
449
450 /* Make alloca work the best possible way. */
451 # ifdef __GNUC__
452 # define alloca __builtin_alloca
453 # else /* not __GNUC__ */
454 # if HAVE_ALLOCA_H
455 # include <alloca.h>
456 # endif /* HAVE_ALLOCA_H */
457 # endif /* not __GNUC__ */
458
459 # endif /* not alloca */
460
461 # define REGEX_ALLOCATE alloca
462
463 /* Assumes a `char *destination' variable. */
464 # define REGEX_REALLOCATE(source, osize, nsize) \
465 (destination = (char *) alloca (nsize), \
466 memcpy (destination, source, osize))
467
468 /* No need to do anything to free, after alloca. */
469 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470
471 #endif /* not REGEX_MALLOC */
472
473 /* Define how to allocate the failure stack. */
474
475 #if defined REL_ALLOC && defined REGEX_MALLOC
476
477 # define REGEX_ALLOCATE_STACK(size) \
478 r_alloc (&failure_stack_ptr, (size))
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
480 r_re_alloc (&failure_stack_ptr, (nsize))
481 # define REGEX_FREE_STACK(ptr) \
482 r_alloc_free (&failure_stack_ptr)
483
484 #else /* not using relocating allocator */
485
486 # ifdef REGEX_MALLOC
487
488 # define REGEX_ALLOCATE_STACK malloc
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490 # define REGEX_FREE_STACK free
491
492 # else /* not REGEX_MALLOC */
493
494 # define REGEX_ALLOCATE_STACK alloca
495
496 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
497 REGEX_REALLOCATE (source, osize, nsize)
498 /* No need to explicitly free anything. */
499 # define REGEX_FREE_STACK(arg) ((void)0)
500
501 # endif /* not REGEX_MALLOC */
502 #endif /* not using relocating allocator */
503
504
505 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
507 a good thing. */
508 #define FIRST_STRING_P(ptr) \
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510
511 /* (Re)Allocate N items of type T using malloc, or fail. */
512 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514 #define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517
518 #define BYTEWIDTH 8 /* In bits. */
519
520 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521
522 #undef MAX
523 #undef MIN
524 #define MAX(a, b) ((a) > (b) ? (a) : (b))
525 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526
527 /* Type of source-pattern and string chars. */
528 typedef const unsigned char re_char;
529
530 typedef char boolean;
531 #define false 0
532 #define true 1
533
534 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
535 re_char *string1, int size1,
536 re_char *string2, int size2,
537 int pos,
538 struct re_registers *regs,
539 int stop));
540 \f
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
545
546 typedef enum
547 {
548 no_op = 0,
549
550 /* Succeed right away--no more backtracking. */
551 succeed,
552
553 /* Followed by one byte giving n, then by n literal bytes. */
554 exactn,
555
556 /* Matches any (more or less) character. */
557 anychar,
558
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
565
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
573 charset,
574
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
577 charset_not,
578
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
582 field. */
583 start_memory,
584
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
588 pattern buffer. */
589 stop_memory,
590
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
593 duplicate,
594
595 /* Fail unless at beginning of line. */
596 begline,
597
598 /* Fail unless at end of line. */
599 endline,
600
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
603 begbuf,
604
605 /* Analogously, for end of buffer/string. */
606 endbuf,
607
608 /* Followed by two byte relative address to which to jump. */
609 jump,
610
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
613 on_failure_jump,
614
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump,
618
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
623
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
629
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart,
637
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
642 succeed_n,
643
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
646 jump_n,
647
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
651 set_number_at,
652
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
655
656 wordbound, /* Succeeds if at a word boundary. */
657 notwordbound, /* Succeeds if not at a word boundary. */
658
659 symbeg, /* Succeeds if at symbol beginning. */
660 symend, /* Succeeds if at symbol end. */
661
662 /* Matches any character whose syntax is specified. Followed by
663 a byte which contains a syntax code, e.g., Sword. */
664 syntaxspec,
665
666 /* Matches any character whose syntax is not that specified. */
667 notsyntaxspec
668
669 #ifdef emacs
670 ,before_dot, /* Succeeds if before point. */
671 at_dot, /* Succeeds if at point. */
672 after_dot, /* Succeeds if after point. */
673
674 /* Matches any character whose category-set contains the specified
675 category. The operator is followed by a byte which contains a
676 category code (mnemonic ASCII character). */
677 categoryspec,
678
679 /* Matches any character whose category-set does not contain the
680 specified category. The operator is followed by a byte which
681 contains the category code (mnemonic ASCII character). */
682 notcategoryspec
683 #endif /* emacs */
684 } re_opcode_t;
685 \f
686 /* Common operations on the compiled pattern. */
687
688 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689
690 #define STORE_NUMBER(destination, number) \
691 do { \
692 (destination)[0] = (number) & 0377; \
693 (destination)[1] = (number) >> 8; \
694 } while (0)
695
696 /* Same as STORE_NUMBER, except increment DESTINATION to
697 the byte after where the number is stored. Therefore, DESTINATION
698 must be an lvalue. */
699
700 #define STORE_NUMBER_AND_INCR(destination, number) \
701 do { \
702 STORE_NUMBER (destination, number); \
703 (destination) += 2; \
704 } while (0)
705
706 /* Put into DESTINATION a number stored in two contiguous bytes starting
707 at SOURCE. */
708
709 #define EXTRACT_NUMBER(destination, source) \
710 do { \
711 (destination) = *(source) & 0377; \
712 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
713 } while (0)
714
715 #ifdef DEBUG
716 static void extract_number _RE_ARGS ((int *dest, re_char *source));
717 static void
718 extract_number (dest, source)
719 int *dest;
720 re_char *source;
721 {
722 int temp = SIGN_EXTEND_CHAR (*(source + 1));
723 *dest = *source & 0377;
724 *dest += temp << 8;
725 }
726
727 # ifndef EXTRACT_MACROS /* To debug the macros. */
728 # undef EXTRACT_NUMBER
729 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
730 # endif /* not EXTRACT_MACROS */
731
732 #endif /* DEBUG */
733
734 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
735 SOURCE must be an lvalue. */
736
737 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
738 do { \
739 EXTRACT_NUMBER (destination, source); \
740 (source) += 2; \
741 } while (0)
742
743 #ifdef DEBUG
744 static void extract_number_and_incr _RE_ARGS ((int *destination,
745 re_char **source));
746 static void
747 extract_number_and_incr (destination, source)
748 int *destination;
749 re_char **source;
750 {
751 extract_number (destination, *source);
752 *source += 2;
753 }
754
755 # ifndef EXTRACT_MACROS
756 # undef EXTRACT_NUMBER_AND_INCR
757 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
758 extract_number_and_incr (&dest, &src)
759 # endif /* not EXTRACT_MACROS */
760
761 #endif /* DEBUG */
762 \f
763 /* Store a multibyte character in three contiguous bytes starting
764 DESTINATION, and increment DESTINATION to the byte after where the
765 character is stored. Therefore, DESTINATION must be an lvalue. */
766
767 #define STORE_CHARACTER_AND_INCR(destination, character) \
768 do { \
769 (destination)[0] = (character) & 0377; \
770 (destination)[1] = ((character) >> 8) & 0377; \
771 (destination)[2] = (character) >> 16; \
772 (destination) += 3; \
773 } while (0)
774
775 /* Put into DESTINATION a character stored in three contiguous bytes
776 starting at SOURCE. */
777
778 #define EXTRACT_CHARACTER(destination, source) \
779 do { \
780 (destination) = ((source)[0] \
781 | ((source)[1] << 8) \
782 | ((source)[2] << 16)); \
783 } while (0)
784
785
786 /* Macros for charset. */
787
788 /* Size of bitmap of charset P in bytes. P is a start of charset,
789 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
790 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791
792 /* Nonzero if charset P has range table. */
793 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
794
795 /* Return the address of range table of charset P. But not the start
796 of table itself, but the before where the number of ranges is
797 stored. `2 +' means to skip re_opcode_t and size of bitmap,
798 and the 2 bytes of flags at the start of the range table. */
799 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800
801 /* Extract the bit flags that start a range table. */
802 #define CHARSET_RANGE_TABLE_BITS(p) \
803 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
804 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
805
806 /* Test if C is listed in the bitmap of charset P. */
807 #define CHARSET_LOOKUP_BITMAP(p, c) \
808 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
809 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810
811 /* Return the address of end of RANGE_TABLE. COUNT is number of
812 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
813 is start of range and end of range. `* 3' is size of each start
814 and end. */
815 #define CHARSET_RANGE_TABLE_END(range_table, count) \
816 ((range_table) + (count) * 2 * 3)
817
818 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
819 COUNT is number of ranges in RANGE_TABLE. */
820 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
821 do \
822 { \
823 re_wchar_t range_start, range_end; \
824 re_char *p; \
825 re_char *range_table_end \
826 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 \
828 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 { \
830 EXTRACT_CHARACTER (range_start, p); \
831 EXTRACT_CHARACTER (range_end, p + 3); \
832 \
833 if (range_start <= (c) && (c) <= range_end) \
834 { \
835 (not) = !(not); \
836 break; \
837 } \
838 } \
839 } \
840 while (0)
841
842 /* Test if C is in range table of CHARSET. The flag NOT is negated if
843 C is listed in it. */
844 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
845 do \
846 { \
847 /* Number of ranges in range table. */ \
848 int count; \
849 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 \
851 EXTRACT_NUMBER_AND_INCR (count, range_table); \
852 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 } \
854 while (0)
855 \f
856 /* If DEBUG is defined, Regex prints many voluminous messages about what
857 it is doing (if the variable `debug' is nonzero). If linked with the
858 main program in `iregex.c', you can enter patterns and strings
859 interactively. And if linked with the main program in `main.c' and
860 the other test files, you can run the already-written tests. */
861
862 #ifdef DEBUG
863
864 /* We use standard I/O for debugging. */
865 # include <stdio.h>
866
867 /* It is useful to test things that ``must'' be true when debugging. */
868 # include <assert.h>
869
870 static int debug = -100000;
871
872 # define DEBUG_STATEMENT(e) e
873 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
874 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
875 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
876 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
877 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
878 if (debug > 0) print_partial_compiled_pattern (s, e)
879 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
880 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
881
882
883 /* Print the fastmap in human-readable form. */
884
885 void
886 print_fastmap (fastmap)
887 char *fastmap;
888 {
889 unsigned was_a_range = 0;
890 unsigned i = 0;
891
892 while (i < (1 << BYTEWIDTH))
893 {
894 if (fastmap[i++])
895 {
896 was_a_range = 0;
897 putchar (i - 1);
898 while (i < (1 << BYTEWIDTH) && fastmap[i])
899 {
900 was_a_range = 1;
901 i++;
902 }
903 if (was_a_range)
904 {
905 printf ("-");
906 putchar (i - 1);
907 }
908 }
909 }
910 putchar ('\n');
911 }
912
913
914 /* Print a compiled pattern string in human-readable form, starting at
915 the START pointer into it and ending just before the pointer END. */
916
917 void
918 print_partial_compiled_pattern (start, end)
919 re_char *start;
920 re_char *end;
921 {
922 int mcnt, mcnt2;
923 re_char *p = start;
924 re_char *pend = end;
925
926 if (start == NULL)
927 {
928 fprintf (stderr, "(null)\n");
929 return;
930 }
931
932 /* Loop over pattern commands. */
933 while (p < pend)
934 {
935 fprintf (stderr, "%d:\t", p - start);
936
937 switch ((re_opcode_t) *p++)
938 {
939 case no_op:
940 fprintf (stderr, "/no_op");
941 break;
942
943 case succeed:
944 fprintf (stderr, "/succeed");
945 break;
946
947 case exactn:
948 mcnt = *p++;
949 fprintf (stderr, "/exactn/%d", mcnt);
950 do
951 {
952 fprintf (stderr, "/%c", *p++);
953 }
954 while (--mcnt);
955 break;
956
957 case start_memory:
958 fprintf (stderr, "/start_memory/%d", *p++);
959 break;
960
961 case stop_memory:
962 fprintf (stderr, "/stop_memory/%d", *p++);
963 break;
964
965 case duplicate:
966 fprintf (stderr, "/duplicate/%d", *p++);
967 break;
968
969 case anychar:
970 fprintf (stderr, "/anychar");
971 break;
972
973 case charset:
974 case charset_not:
975 {
976 register int c, last = -100;
977 register int in_range = 0;
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
980
981 fprintf (stderr, "/charset [%s",
982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
983
984 if (p + *p >= pend)
985 fprintf (stderr, " !extends past end of pattern! ");
986
987 for (c = 0; c < 256; c++)
988 if (c / 8 < length
989 && (p[1 + (c/8)] & (1 << (c % 8))))
990 {
991 /* Are we starting a range? */
992 if (last + 1 == c && ! in_range)
993 {
994 fprintf (stderr, "-");
995 in_range = 1;
996 }
997 /* Have we broken a range? */
998 else if (last + 1 != c && in_range)
999 {
1000 fprintf (stderr, "%c", last);
1001 in_range = 0;
1002 }
1003
1004 if (! in_range)
1005 fprintf (stderr, "%c", c);
1006
1007 last = c;
1008 }
1009
1010 if (in_range)
1011 fprintf (stderr, "%c", last);
1012
1013 fprintf (stderr, "]");
1014
1015 p += 1 + length;
1016
1017 if (has_range_table)
1018 {
1019 int count;
1020 fprintf (stderr, "has-range-table");
1021
1022 /* ??? Should print the range table; for now, just skip it. */
1023 p += 2; /* skip range table bits */
1024 EXTRACT_NUMBER_AND_INCR (count, p);
1025 p = CHARSET_RANGE_TABLE_END (p, count);
1026 }
1027 }
1028 break;
1029
1030 case begline:
1031 fprintf (stderr, "/begline");
1032 break;
1033
1034 case endline:
1035 fprintf (stderr, "/endline");
1036 break;
1037
1038 case on_failure_jump:
1039 extract_number_and_incr (&mcnt, &p);
1040 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1041 break;
1042
1043 case on_failure_keep_string_jump:
1044 extract_number_and_incr (&mcnt, &p);
1045 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1046 break;
1047
1048 case on_failure_jump_nastyloop:
1049 extract_number_and_incr (&mcnt, &p);
1050 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1051 break;
1052
1053 case on_failure_jump_loop:
1054 extract_number_and_incr (&mcnt, &p);
1055 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1056 break;
1057
1058 case on_failure_jump_smart:
1059 extract_number_and_incr (&mcnt, &p);
1060 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1061 break;
1062
1063 case jump:
1064 extract_number_and_incr (&mcnt, &p);
1065 fprintf (stderr, "/jump to %d", p + mcnt - start);
1066 break;
1067
1068 case succeed_n:
1069 extract_number_and_incr (&mcnt, &p);
1070 extract_number_and_incr (&mcnt2, &p);
1071 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1072 break;
1073
1074 case jump_n:
1075 extract_number_and_incr (&mcnt, &p);
1076 extract_number_and_incr (&mcnt2, &p);
1077 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1078 break;
1079
1080 case set_number_at:
1081 extract_number_and_incr (&mcnt, &p);
1082 extract_number_and_incr (&mcnt2, &p);
1083 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1084 break;
1085
1086 case wordbound:
1087 fprintf (stderr, "/wordbound");
1088 break;
1089
1090 case notwordbound:
1091 fprintf (stderr, "/notwordbound");
1092 break;
1093
1094 case wordbeg:
1095 fprintf (stderr, "/wordbeg");
1096 break;
1097
1098 case wordend:
1099 fprintf (stderr, "/wordend");
1100 break;
1101
1102 case symbeg:
1103 fprintf (stderr, "/symbeg");
1104 break;
1105
1106 case symend:
1107 fprintf (stderr, "/symend");
1108 break;
1109
1110 case syntaxspec:
1111 fprintf (stderr, "/syntaxspec");
1112 mcnt = *p++;
1113 fprintf (stderr, "/%d", mcnt);
1114 break;
1115
1116 case notsyntaxspec:
1117 fprintf (stderr, "/notsyntaxspec");
1118 mcnt = *p++;
1119 fprintf (stderr, "/%d", mcnt);
1120 break;
1121
1122 # ifdef emacs
1123 case before_dot:
1124 fprintf (stderr, "/before_dot");
1125 break;
1126
1127 case at_dot:
1128 fprintf (stderr, "/at_dot");
1129 break;
1130
1131 case after_dot:
1132 fprintf (stderr, "/after_dot");
1133 break;
1134
1135 case categoryspec:
1136 fprintf (stderr, "/categoryspec");
1137 mcnt = *p++;
1138 fprintf (stderr, "/%d", mcnt);
1139 break;
1140
1141 case notcategoryspec:
1142 fprintf (stderr, "/notcategoryspec");
1143 mcnt = *p++;
1144 fprintf (stderr, "/%d", mcnt);
1145 break;
1146 # endif /* emacs */
1147
1148 case begbuf:
1149 fprintf (stderr, "/begbuf");
1150 break;
1151
1152 case endbuf:
1153 fprintf (stderr, "/endbuf");
1154 break;
1155
1156 default:
1157 fprintf (stderr, "?%d", *(p-1));
1158 }
1159
1160 fprintf (stderr, "\n");
1161 }
1162
1163 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1164 }
1165
1166
1167 void
1168 print_compiled_pattern (bufp)
1169 struct re_pattern_buffer *bufp;
1170 {
1171 re_char *buffer = bufp->buffer;
1172
1173 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1174 printf ("%ld bytes used/%ld bytes allocated.\n",
1175 bufp->used, bufp->allocated);
1176
1177 if (bufp->fastmap_accurate && bufp->fastmap)
1178 {
1179 printf ("fastmap: ");
1180 print_fastmap (bufp->fastmap);
1181 }
1182
1183 printf ("re_nsub: %d\t", bufp->re_nsub);
1184 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1185 printf ("can_be_null: %d\t", bufp->can_be_null);
1186 printf ("no_sub: %d\t", bufp->no_sub);
1187 printf ("not_bol: %d\t", bufp->not_bol);
1188 printf ("not_eol: %d\t", bufp->not_eol);
1189 printf ("syntax: %lx\n", bufp->syntax);
1190 fflush (stdout);
1191 /* Perhaps we should print the translate table? */
1192 }
1193
1194
1195 void
1196 print_double_string (where, string1, size1, string2, size2)
1197 re_char *where;
1198 re_char *string1;
1199 re_char *string2;
1200 int size1;
1201 int size2;
1202 {
1203 int this_char;
1204
1205 if (where == NULL)
1206 printf ("(null)");
1207 else
1208 {
1209 if (FIRST_STRING_P (where))
1210 {
1211 for (this_char = where - string1; this_char < size1; this_char++)
1212 putchar (string1[this_char]);
1213
1214 where = string2;
1215 }
1216
1217 for (this_char = where - string2; this_char < size2; this_char++)
1218 putchar (string2[this_char]);
1219 }
1220 }
1221
1222 #else /* not DEBUG */
1223
1224 # undef assert
1225 # define assert(e)
1226
1227 # define DEBUG_STATEMENT(e)
1228 # define DEBUG_PRINT1(x)
1229 # define DEBUG_PRINT2(x1, x2)
1230 # define DEBUG_PRINT3(x1, x2, x3)
1231 # define DEBUG_PRINT4(x1, x2, x3, x4)
1232 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1233 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1234
1235 #endif /* not DEBUG */
1236 \f
1237 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1238 also be assigned to arbitrarily: each pattern buffer stores its own
1239 syntax, so it can be changed between regex compilations. */
1240 /* This has no initializer because initialized variables in Emacs
1241 become read-only after dumping. */
1242 reg_syntax_t re_syntax_options;
1243
1244
1245 /* Specify the precise syntax of regexps for compilation. This provides
1246 for compatibility for various utilities which historically have
1247 different, incompatible syntaxes.
1248
1249 The argument SYNTAX is a bit mask comprised of the various bits
1250 defined in regex.h. We return the old syntax. */
1251
1252 reg_syntax_t
1253 re_set_syntax (syntax)
1254 reg_syntax_t syntax;
1255 {
1256 reg_syntax_t ret = re_syntax_options;
1257
1258 re_syntax_options = syntax;
1259 return ret;
1260 }
1261 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1262
1263 /* Regexp to use to replace spaces, or NULL meaning don't. */
1264 static re_char *whitespace_regexp;
1265
1266 void
1267 re_set_whitespace_regexp (regexp)
1268 const char *regexp;
1269 {
1270 whitespace_regexp = (re_char *) regexp;
1271 }
1272 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1273 \f
1274 /* This table gives an error message for each of the error codes listed
1275 in regex.h. Obviously the order here has to be same as there.
1276 POSIX doesn't require that we do anything for REG_NOERROR,
1277 but why not be nice? */
1278
1279 static const char *re_error_msgid[] =
1280 {
1281 gettext_noop ("Success"), /* REG_NOERROR */
1282 gettext_noop ("No match"), /* REG_NOMATCH */
1283 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1284 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1285 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1286 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1287 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1288 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1289 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1290 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1291 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1292 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1293 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1294 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1295 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1296 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1297 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1298 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1299 };
1300 \f
1301 /* Avoiding alloca during matching, to placate r_alloc. */
1302
1303 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1304 searching and matching functions should not call alloca. On some
1305 systems, alloca is implemented in terms of malloc, and if we're
1306 using the relocating allocator routines, then malloc could cause a
1307 relocation, which might (if the strings being searched are in the
1308 ralloc heap) shift the data out from underneath the regexp
1309 routines.
1310
1311 Here's another reason to avoid allocation: Emacs
1312 processes input from X in a signal handler; processing X input may
1313 call malloc; if input arrives while a matching routine is calling
1314 malloc, then we're scrod. But Emacs can't just block input while
1315 calling matching routines; then we don't notice interrupts when
1316 they come in. So, Emacs blocks input around all regexp calls
1317 except the matching calls, which it leaves unprotected, in the
1318 faith that they will not malloc. */
1319
1320 /* Normally, this is fine. */
1321 #define MATCH_MAY_ALLOCATE
1322
1323 /* When using GNU C, we are not REALLY using the C alloca, no matter
1324 what config.h may say. So don't take precautions for it. */
1325 #ifdef __GNUC__
1326 # undef C_ALLOCA
1327 #endif
1328
1329 /* The match routines may not allocate if (1) they would do it with malloc
1330 and (2) it's not safe for them to use malloc.
1331 Note that if REL_ALLOC is defined, matching would not use malloc for the
1332 failure stack, but we would still use it for the register vectors;
1333 so REL_ALLOC should not affect this. */
1334 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1335 # undef MATCH_MAY_ALLOCATE
1336 #endif
1337
1338 \f
1339 /* Failure stack declarations and macros; both re_compile_fastmap and
1340 re_match_2 use a failure stack. These have to be macros because of
1341 REGEX_ALLOCATE_STACK. */
1342
1343
1344 /* Approximate number of failure points for which to initially allocate space
1345 when matching. If this number is exceeded, we allocate more
1346 space, so it is not a hard limit. */
1347 #ifndef INIT_FAILURE_ALLOC
1348 # define INIT_FAILURE_ALLOC 20
1349 #endif
1350
1351 /* Roughly the maximum number of failure points on the stack. Would be
1352 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1353 This is a variable only so users of regex can assign to it; we never
1354 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1355 before using it, so it should probably be a byte-count instead. */
1356 # if defined MATCH_MAY_ALLOCATE
1357 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1358 whose default stack limit is 2mb. In order for a larger
1359 value to work reliably, you have to try to make it accord
1360 with the process stack limit. */
1361 size_t re_max_failures = 40000;
1362 # else
1363 size_t re_max_failures = 4000;
1364 # endif
1365
1366 union fail_stack_elt
1367 {
1368 re_char *pointer;
1369 /* This should be the biggest `int' that's no bigger than a pointer. */
1370 long integer;
1371 };
1372
1373 typedef union fail_stack_elt fail_stack_elt_t;
1374
1375 typedef struct
1376 {
1377 fail_stack_elt_t *stack;
1378 size_t size;
1379 size_t avail; /* Offset of next open position. */
1380 size_t frame; /* Offset of the cur constructed frame. */
1381 } fail_stack_type;
1382
1383 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1384 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1385
1386
1387 /* Define macros to initialize and free the failure stack.
1388 Do `return -2' if the alloc fails. */
1389
1390 #ifdef MATCH_MAY_ALLOCATE
1391 # define INIT_FAIL_STACK() \
1392 do { \
1393 fail_stack.stack = (fail_stack_elt_t *) \
1394 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1395 * sizeof (fail_stack_elt_t)); \
1396 \
1397 if (fail_stack.stack == NULL) \
1398 return -2; \
1399 \
1400 fail_stack.size = INIT_FAILURE_ALLOC; \
1401 fail_stack.avail = 0; \
1402 fail_stack.frame = 0; \
1403 } while (0)
1404
1405 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1406 #else
1407 # define INIT_FAIL_STACK() \
1408 do { \
1409 fail_stack.avail = 0; \
1410 fail_stack.frame = 0; \
1411 } while (0)
1412
1413 # define RESET_FAIL_STACK() ((void)0)
1414 #endif
1415
1416
1417 /* Double the size of FAIL_STACK, up to a limit
1418 which allows approximately `re_max_failures' items.
1419
1420 Return 1 if succeeds, and 0 if either ran out of memory
1421 allocating space for it or it was already too large.
1422
1423 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1424
1425 /* Factor to increase the failure stack size by
1426 when we increase it.
1427 This used to be 2, but 2 was too wasteful
1428 because the old discarded stacks added up to as much space
1429 were as ultimate, maximum-size stack. */
1430 #define FAIL_STACK_GROWTH_FACTOR 4
1431
1432 #define GROW_FAIL_STACK(fail_stack) \
1433 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1434 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1435 ? 0 \
1436 : ((fail_stack).stack \
1437 = (fail_stack_elt_t *) \
1438 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1439 (fail_stack).size * sizeof (fail_stack_elt_t), \
1440 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR))), \
1443 \
1444 (fail_stack).stack == NULL \
1445 ? 0 \
1446 : ((fail_stack).size \
1447 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1448 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1449 * FAIL_STACK_GROWTH_FACTOR)) \
1450 / sizeof (fail_stack_elt_t)), \
1451 1)))
1452
1453
1454 /* Push a pointer value onto the failure stack.
1455 Assumes the variable `fail_stack'. Probably should only
1456 be called from within `PUSH_FAILURE_POINT'. */
1457 #define PUSH_FAILURE_POINTER(item) \
1458 fail_stack.stack[fail_stack.avail++].pointer = (item)
1459
1460 /* This pushes an integer-valued item onto the failure stack.
1461 Assumes the variable `fail_stack'. Probably should only
1462 be called from within `PUSH_FAILURE_POINT'. */
1463 #define PUSH_FAILURE_INT(item) \
1464 fail_stack.stack[fail_stack.avail++].integer = (item)
1465
1466 /* Push a fail_stack_elt_t value onto the failure stack.
1467 Assumes the variable `fail_stack'. Probably should only
1468 be called from within `PUSH_FAILURE_POINT'. */
1469 #define PUSH_FAILURE_ELT(item) \
1470 fail_stack.stack[fail_stack.avail++] = (item)
1471
1472 /* These three POP... operations complement the three PUSH... operations.
1473 All assume that `fail_stack' is nonempty. */
1474 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1475 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1476 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1477
1478 /* Individual items aside from the registers. */
1479 #define NUM_NONREG_ITEMS 3
1480
1481 /* Used to examine the stack (to detect infinite loops). */
1482 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1483 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1484 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1485 #define TOP_FAILURE_HANDLE() fail_stack.frame
1486
1487
1488 #define ENSURE_FAIL_STACK(space) \
1489 while (REMAINING_AVAIL_SLOTS <= space) { \
1490 if (!GROW_FAIL_STACK (fail_stack)) \
1491 return -2; \
1492 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1493 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1494 }
1495
1496 /* Push register NUM onto the stack. */
1497 #define PUSH_FAILURE_REG(num) \
1498 do { \
1499 char *destination; \
1500 ENSURE_FAIL_STACK(3); \
1501 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1502 num, regstart[num], regend[num]); \
1503 PUSH_FAILURE_POINTER (regstart[num]); \
1504 PUSH_FAILURE_POINTER (regend[num]); \
1505 PUSH_FAILURE_INT (num); \
1506 } while (0)
1507
1508 /* Change the counter's value to VAL, but make sure that it will
1509 be reset when backtracking. */
1510 #define PUSH_NUMBER(ptr,val) \
1511 do { \
1512 char *destination; \
1513 int c; \
1514 ENSURE_FAIL_STACK(3); \
1515 EXTRACT_NUMBER (c, ptr); \
1516 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1517 PUSH_FAILURE_INT (c); \
1518 PUSH_FAILURE_POINTER (ptr); \
1519 PUSH_FAILURE_INT (-1); \
1520 STORE_NUMBER (ptr, val); \
1521 } while (0)
1522
1523 /* Pop a saved register off the stack. */
1524 #define POP_FAILURE_REG_OR_COUNT() \
1525 do { \
1526 int reg = POP_FAILURE_INT (); \
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
1530 /* Here, we discard `const', making re_match non-reentrant. */ \
1531 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1532 reg = POP_FAILURE_INT (); \
1533 STORE_NUMBER (ptr, reg); \
1534 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1535 } \
1536 else \
1537 { \
1538 regend[reg] = POP_FAILURE_POINTER (); \
1539 regstart[reg] = POP_FAILURE_POINTER (); \
1540 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1541 reg, regstart[reg], regend[reg]); \
1542 } \
1543 } while (0)
1544
1545 /* Check that we are not stuck in an infinite loop. */
1546 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1547 do { \
1548 int failure = TOP_FAILURE_HANDLE (); \
1549 /* Check for infinite matching loops */ \
1550 while (failure > 0 \
1551 && (FAILURE_STR (failure) == string_place \
1552 || FAILURE_STR (failure) == NULL)) \
1553 { \
1554 assert (FAILURE_PAT (failure) >= bufp->buffer \
1555 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1556 if (FAILURE_PAT (failure) == pat_cur) \
1557 { \
1558 cycle = 1; \
1559 break; \
1560 } \
1561 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1562 failure = NEXT_FAILURE_HANDLE(failure); \
1563 } \
1564 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1565 } while (0)
1566
1567 /* Push the information about the state we will need
1568 if we ever fail back to it.
1569
1570 Requires variables fail_stack, regstart, regend and
1571 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1572 declared.
1573
1574 Does `return FAILURE_CODE' if runs out of memory. */
1575
1576 #define PUSH_FAILURE_POINT(pattern, string_place) \
1577 do { \
1578 char *destination; \
1579 /* Must be int, so when we don't save any registers, the arithmetic \
1580 of 0 + -1 isn't done as unsigned. */ \
1581 \
1582 DEBUG_STATEMENT (nfailure_points_pushed++); \
1583 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1584 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1585 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1586 \
1587 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1588 \
1589 DEBUG_PRINT1 ("\n"); \
1590 \
1591 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1592 PUSH_FAILURE_INT (fail_stack.frame); \
1593 \
1594 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1595 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1596 DEBUG_PRINT1 ("'\n"); \
1597 PUSH_FAILURE_POINTER (string_place); \
1598 \
1599 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1600 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1601 PUSH_FAILURE_POINTER (pattern); \
1602 \
1603 /* Close the frame by moving the frame pointer past it. */ \
1604 fail_stack.frame = fail_stack.avail; \
1605 } while (0)
1606
1607 /* Estimate the size of data pushed by a typical failure stack entry.
1608 An estimate is all we need, because all we use this for
1609 is to choose a limit for how big to make the failure stack. */
1610 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1611 #define TYPICAL_FAILURE_SIZE 20
1612
1613 /* How many items can still be added to the stack without overflowing it. */
1614 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1615
1616
1617 /* Pops what PUSH_FAIL_STACK pushes.
1618
1619 We restore into the parameters, all of which should be lvalues:
1620 STR -- the saved data position.
1621 PAT -- the saved pattern position.
1622 REGSTART, REGEND -- arrays of string positions.
1623
1624 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1625 `pend', `string1', `size1', `string2', and `size2'. */
1626
1627 #define POP_FAILURE_POINT(str, pat) \
1628 do { \
1629 assert (!FAIL_STACK_EMPTY ()); \
1630 \
1631 /* Remove failure points and point to how many regs pushed. */ \
1632 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1633 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1634 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1635 \
1636 /* Pop the saved registers. */ \
1637 while (fail_stack.frame < fail_stack.avail) \
1638 POP_FAILURE_REG_OR_COUNT (); \
1639 \
1640 pat = POP_FAILURE_POINTER (); \
1641 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1642 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1643 \
1644 /* If the saved string location is NULL, it came from an \
1645 on_failure_keep_string_jump opcode, and we want to throw away the \
1646 saved NULL, thus retaining our current position in the string. */ \
1647 str = POP_FAILURE_POINTER (); \
1648 DEBUG_PRINT2 (" Popping string %p: `", str); \
1649 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1650 DEBUG_PRINT1 ("'\n"); \
1651 \
1652 fail_stack.frame = POP_FAILURE_INT (); \
1653 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1654 \
1655 assert (fail_stack.avail >= 0); \
1656 assert (fail_stack.frame <= fail_stack.avail); \
1657 \
1658 DEBUG_STATEMENT (nfailure_points_popped++); \
1659 } while (0) /* POP_FAILURE_POINT */
1660
1661
1662 \f
1663 /* Registers are set to a sentinel when they haven't yet matched. */
1664 #define REG_UNSET(e) ((e) == NULL)
1665 \f
1666 /* Subroutine declarations and macros for regex_compile. */
1667
1668 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1669 reg_syntax_t syntax,
1670 struct re_pattern_buffer *bufp));
1671 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1672 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1673 int arg1, int arg2));
1674 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1675 int arg, unsigned char *end));
1676 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1677 int arg1, int arg2, unsigned char *end));
1678 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1679 re_char *p,
1680 reg_syntax_t syntax));
1681 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1682 re_char *pend,
1683 reg_syntax_t syntax));
1684 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1685 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1686 char *fastmap, const int multibyte));
1687
1688 /* Fetch the next character in the uncompiled pattern, with no
1689 translation. */
1690 #define PATFETCH(c) \
1691 do { \
1692 int len; \
1693 if (p == pend) return REG_EEND; \
1694 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1695 p += len; \
1696 } while (0)
1697
1698
1699 /* If `translate' is non-null, return translate[D], else just D. We
1700 cast the subscript to translate because some data is declared as
1701 `char *', to avoid warnings when a string constant is passed. But
1702 when we use a character as a subscript we must make it unsigned. */
1703 #ifndef TRANSLATE
1704 # define TRANSLATE(d) \
1705 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1706 #endif
1707
1708
1709 /* Macros for outputting the compiled pattern into `buffer'. */
1710
1711 /* If the buffer isn't allocated when it comes in, use this. */
1712 #define INIT_BUF_SIZE 32
1713
1714 /* Make sure we have at least N more bytes of space in buffer. */
1715 #define GET_BUFFER_SPACE(n) \
1716 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1717 EXTEND_BUFFER ()
1718
1719 /* Make sure we have one more byte of buffer space and then add C to it. */
1720 #define BUF_PUSH(c) \
1721 do { \
1722 GET_BUFFER_SPACE (1); \
1723 *b++ = (unsigned char) (c); \
1724 } while (0)
1725
1726
1727 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1728 #define BUF_PUSH_2(c1, c2) \
1729 do { \
1730 GET_BUFFER_SPACE (2); \
1731 *b++ = (unsigned char) (c1); \
1732 *b++ = (unsigned char) (c2); \
1733 } while (0)
1734
1735
1736 /* As with BUF_PUSH_2, except for three bytes. */
1737 #define BUF_PUSH_3(c1, c2, c3) \
1738 do { \
1739 GET_BUFFER_SPACE (3); \
1740 *b++ = (unsigned char) (c1); \
1741 *b++ = (unsigned char) (c2); \
1742 *b++ = (unsigned char) (c3); \
1743 } while (0)
1744
1745
1746 /* Store a jump with opcode OP at LOC to location TO. We store a
1747 relative address offset by the three bytes the jump itself occupies. */
1748 #define STORE_JUMP(op, loc, to) \
1749 store_op1 (op, loc, (to) - (loc) - 3)
1750
1751 /* Likewise, for a two-argument jump. */
1752 #define STORE_JUMP2(op, loc, to, arg) \
1753 store_op2 (op, loc, (to) - (loc) - 3, arg)
1754
1755 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1756 #define INSERT_JUMP(op, loc, to) \
1757 insert_op1 (op, loc, (to) - (loc) - 3, b)
1758
1759 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1760 #define INSERT_JUMP2(op, loc, to, arg) \
1761 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1762
1763
1764 /* This is not an arbitrary limit: the arguments which represent offsets
1765 into the pattern are two bytes long. So if 2^15 bytes turns out to
1766 be too small, many things would have to change. */
1767 # define MAX_BUF_SIZE (1L << 15)
1768
1769 #if 0 /* This is when we thought it could be 2^16 bytes. */
1770 /* Any other compiler which, like MSC, has allocation limit below 2^16
1771 bytes will have to use approach similar to what was done below for
1772 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1773 reallocating to 0 bytes. Such thing is not going to work too well.
1774 You have been warned!! */
1775 #if defined _MSC_VER && !defined WIN32
1776 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1777 # define MAX_BUF_SIZE 65500L
1778 #else
1779 # define MAX_BUF_SIZE (1L << 16)
1780 #endif
1781 #endif /* 0 */
1782
1783 /* Extend the buffer by twice its current size via realloc and
1784 reset the pointers that pointed into the old block to point to the
1785 correct places in the new one. If extending the buffer results in it
1786 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1787 #if __BOUNDED_POINTERS__
1788 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1789 # define MOVE_BUFFER_POINTER(P) \
1790 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1791 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1792 else \
1793 { \
1794 SET_HIGH_BOUND (b); \
1795 SET_HIGH_BOUND (begalt); \
1796 if (fixup_alt_jump) \
1797 SET_HIGH_BOUND (fixup_alt_jump); \
1798 if (laststart) \
1799 SET_HIGH_BOUND (laststart); \
1800 if (pending_exact) \
1801 SET_HIGH_BOUND (pending_exact); \
1802 }
1803 #else
1804 # define MOVE_BUFFER_POINTER(P) (P) += incr
1805 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1806 #endif
1807 #define EXTEND_BUFFER() \
1808 do { \
1809 re_char *old_buffer = bufp->buffer; \
1810 if (bufp->allocated == MAX_BUF_SIZE) \
1811 return REG_ESIZE; \
1812 bufp->allocated <<= 1; \
1813 if (bufp->allocated > MAX_BUF_SIZE) \
1814 bufp->allocated = MAX_BUF_SIZE; \
1815 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1816 if (bufp->buffer == NULL) \
1817 return REG_ESPACE; \
1818 /* If the buffer moved, move all the pointers into it. */ \
1819 if (old_buffer != bufp->buffer) \
1820 { \
1821 int incr = bufp->buffer - old_buffer; \
1822 MOVE_BUFFER_POINTER (b); \
1823 MOVE_BUFFER_POINTER (begalt); \
1824 if (fixup_alt_jump) \
1825 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1826 if (laststart) \
1827 MOVE_BUFFER_POINTER (laststart); \
1828 if (pending_exact) \
1829 MOVE_BUFFER_POINTER (pending_exact); \
1830 } \
1831 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1832 } while (0)
1833
1834
1835 /* Since we have one byte reserved for the register number argument to
1836 {start,stop}_memory, the maximum number of groups we can report
1837 things about is what fits in that byte. */
1838 #define MAX_REGNUM 255
1839
1840 /* But patterns can have more than `MAX_REGNUM' registers. We just
1841 ignore the excess. */
1842 typedef int regnum_t;
1843
1844
1845 /* Macros for the compile stack. */
1846
1847 /* Since offsets can go either forwards or backwards, this type needs to
1848 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1849 /* int may be not enough when sizeof(int) == 2. */
1850 typedef long pattern_offset_t;
1851
1852 typedef struct
1853 {
1854 pattern_offset_t begalt_offset;
1855 pattern_offset_t fixup_alt_jump;
1856 pattern_offset_t laststart_offset;
1857 regnum_t regnum;
1858 } compile_stack_elt_t;
1859
1860
1861 typedef struct
1862 {
1863 compile_stack_elt_t *stack;
1864 unsigned size;
1865 unsigned avail; /* Offset of next open position. */
1866 } compile_stack_type;
1867
1868
1869 #define INIT_COMPILE_STACK_SIZE 32
1870
1871 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1872 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1873
1874 /* The next available element. */
1875 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1876
1877 /* Explicit quit checking is only used on NTemacs and whenever we
1878 use polling to process input events. */
1879 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1880 extern int immediate_quit;
1881 # define IMMEDIATE_QUIT_CHECK \
1882 do { \
1883 if (immediate_quit) QUIT; \
1884 } while (0)
1885 #else
1886 # define IMMEDIATE_QUIT_CHECK ((void)0)
1887 #endif
1888 \f
1889 /* Structure to manage work area for range table. */
1890 struct range_table_work_area
1891 {
1892 int *table; /* actual work area. */
1893 int allocated; /* allocated size for work area in bytes. */
1894 int used; /* actually used size in words. */
1895 int bits; /* flag to record character classes */
1896 };
1897
1898 /* Make sure that WORK_AREA can hold more N multibyte characters.
1899 This is used only in set_image_of_range and set_image_of_range_1.
1900 It expects WORK_AREA to be a pointer.
1901 If it can't get the space, it returns from the surrounding function. */
1902
1903 #define EXTEND_RANGE_TABLE(work_area, n) \
1904 do { \
1905 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1906 { \
1907 extend_range_table_work_area (work_area); \
1908 if ((work_area)->table == 0) \
1909 return (REG_ESPACE); \
1910 } \
1911 } while (0)
1912
1913 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1914 (work_area).bits |= (bit)
1915
1916 /* Bits used to implement the multibyte-part of the various character classes
1917 such as [:alnum:] in a charset's range table. */
1918 #define BIT_WORD 0x1
1919 #define BIT_LOWER 0x2
1920 #define BIT_PUNCT 0x4
1921 #define BIT_SPACE 0x8
1922 #define BIT_UPPER 0x10
1923 #define BIT_MULTIBYTE 0x20
1924
1925 /* Set a range START..END to WORK_AREA.
1926 The range is passed through TRANSLATE, so START and END
1927 should be untranslated. */
1928 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1929 do { \
1930 int tem; \
1931 tem = set_image_of_range (&work_area, start, end, translate); \
1932 if (tem > 0) \
1933 FREE_STACK_RETURN (tem); \
1934 } while (0)
1935
1936 /* Free allocated memory for WORK_AREA. */
1937 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1938 do { \
1939 if ((work_area).table) \
1940 free ((work_area).table); \
1941 } while (0)
1942
1943 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1944 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1945 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1946 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1947 \f
1948
1949 /* Set the bit for character C in a list. */
1950 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1951
1952
1953 /* Get the next unsigned number in the uncompiled pattern. */
1954 #define GET_UNSIGNED_NUMBER(num) \
1955 do { \
1956 if (p == pend) \
1957 FREE_STACK_RETURN (REG_EBRACE); \
1958 else \
1959 { \
1960 PATFETCH (c); \
1961 while ('0' <= c && c <= '9') \
1962 { \
1963 int prev; \
1964 if (num < 0) \
1965 num = 0; \
1966 prev = num; \
1967 num = num * 10 + c - '0'; \
1968 if (num / 10 != prev) \
1969 FREE_STACK_RETURN (REG_BADBR); \
1970 if (p == pend) \
1971 FREE_STACK_RETURN (REG_EBRACE); \
1972 PATFETCH (c); \
1973 } \
1974 } \
1975 } while (0)
1976 \f
1977 #if ! WIDE_CHAR_SUPPORT
1978
1979 /* Map a string to the char class it names (if any). */
1980 re_wctype_t
1981 re_wctype (str)
1982 re_char *str;
1983 {
1984 const char *string = str;
1985 if (STREQ (string, "alnum")) return RECC_ALNUM;
1986 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1987 else if (STREQ (string, "word")) return RECC_WORD;
1988 else if (STREQ (string, "ascii")) return RECC_ASCII;
1989 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1990 else if (STREQ (string, "graph")) return RECC_GRAPH;
1991 else if (STREQ (string, "lower")) return RECC_LOWER;
1992 else if (STREQ (string, "print")) return RECC_PRINT;
1993 else if (STREQ (string, "punct")) return RECC_PUNCT;
1994 else if (STREQ (string, "space")) return RECC_SPACE;
1995 else if (STREQ (string, "upper")) return RECC_UPPER;
1996 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1997 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1998 else if (STREQ (string, "digit")) return RECC_DIGIT;
1999 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2000 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2001 else if (STREQ (string, "blank")) return RECC_BLANK;
2002 else return 0;
2003 }
2004
2005 /* True iff CH is in the char class CC. */
2006 boolean
2007 re_iswctype (ch, cc)
2008 int ch;
2009 re_wctype_t cc;
2010 {
2011 switch (cc)
2012 {
2013 case RECC_ALNUM: return ISALNUM (ch);
2014 case RECC_ALPHA: return ISALPHA (ch);
2015 case RECC_BLANK: return ISBLANK (ch);
2016 case RECC_CNTRL: return ISCNTRL (ch);
2017 case RECC_DIGIT: return ISDIGIT (ch);
2018 case RECC_GRAPH: return ISGRAPH (ch);
2019 case RECC_LOWER: return ISLOWER (ch);
2020 case RECC_PRINT: return ISPRINT (ch);
2021 case RECC_PUNCT: return ISPUNCT (ch);
2022 case RECC_SPACE: return ISSPACE (ch);
2023 case RECC_UPPER: return ISUPPER (ch);
2024 case RECC_XDIGIT: return ISXDIGIT (ch);
2025 case RECC_ASCII: return IS_REAL_ASCII (ch);
2026 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2027 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2028 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2029 case RECC_WORD: return ISWORD (ch);
2030 case RECC_ERROR: return false;
2031 default:
2032 abort();
2033 }
2034 }
2035
2036 /* Return a bit-pattern to use in the range-table bits to match multibyte
2037 chars of class CC. */
2038 static int
2039 re_wctype_to_bit (cc)
2040 re_wctype_t cc;
2041 {
2042 switch (cc)
2043 {
2044 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2045 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2046 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2047 case RECC_LOWER: return BIT_LOWER;
2048 case RECC_UPPER: return BIT_UPPER;
2049 case RECC_PUNCT: return BIT_PUNCT;
2050 case RECC_SPACE: return BIT_SPACE;
2051 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2052 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2053 default:
2054 abort();
2055 }
2056 }
2057 #endif
2058 \f
2059 /* Filling in the work area of a range. */
2060
2061 /* Actually extend the space in WORK_AREA. */
2062
2063 static void
2064 extend_range_table_work_area (work_area)
2065 struct range_table_work_area *work_area;
2066 {
2067 work_area->allocated += 16 * sizeof (int);
2068 if (work_area->table)
2069 work_area->table
2070 = (int *) xrealloc (work_area->table, work_area->allocated);
2071 else
2072 work_area->table
2073 = (int *) xmalloc (work_area->allocated);
2074 }
2075
2076 #ifdef emacs
2077
2078 /* Carefully find the ranges of codes that are equivalent
2079 under case conversion to the range start..end when passed through
2080 TRANSLATE. Handle the case where non-letters can come in between
2081 two upper-case letters (which happens in Latin-1).
2082 Also handle the case of groups of more than 2 case-equivalent chars.
2083
2084 The basic method is to look at consecutive characters and see
2085 if they can form a run that can be handled as one.
2086
2087 Returns -1 if successful, REG_ESPACE if ran out of space. */
2088
2089 static int
2090 set_image_of_range_1 (work_area, start, end, translate)
2091 RE_TRANSLATE_TYPE translate;
2092 struct range_table_work_area *work_area;
2093 re_wchar_t start, end;
2094 {
2095 /* `one_case' indicates a character, or a run of characters,
2096 each of which is an isolate (no case-equivalents).
2097 This includes all ASCII non-letters.
2098
2099 `two_case' indicates a character, or a run of characters,
2100 each of which has two case-equivalent forms.
2101 This includes all ASCII letters.
2102
2103 `strange' indicates a character that has more than one
2104 case-equivalent. */
2105
2106 enum case_type {one_case, two_case, strange};
2107
2108 /* Describe the run that is in progress,
2109 which the next character can try to extend.
2110 If run_type is strange, that means there really is no run.
2111 If run_type is one_case, then run_start...run_end is the run.
2112 If run_type is two_case, then the run is run_start...run_end,
2113 and the case-equivalents end at run_eqv_end. */
2114
2115 enum case_type run_type = strange;
2116 int run_start, run_end, run_eqv_end;
2117
2118 Lisp_Object eqv_table;
2119
2120 if (!RE_TRANSLATE_P (translate))
2121 {
2122 EXTEND_RANGE_TABLE (work_area, 2);
2123 work_area->table[work_area->used++] = (start);
2124 work_area->table[work_area->used++] = (end);
2125 return -1;
2126 }
2127
2128 eqv_table = XCHAR_TABLE (translate)->extras[2];
2129
2130 for (; start <= end; start++)
2131 {
2132 enum case_type this_type;
2133 int eqv = RE_TRANSLATE (eqv_table, start);
2134 int minchar, maxchar;
2135
2136 /* Classify this character */
2137 if (eqv == start)
2138 this_type = one_case;
2139 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2140 this_type = two_case;
2141 else
2142 this_type = strange;
2143
2144 if (start < eqv)
2145 minchar = start, maxchar = eqv;
2146 else
2147 minchar = eqv, maxchar = start;
2148
2149 /* Can this character extend the run in progress? */
2150 if (this_type == strange || this_type != run_type
2151 || !(minchar == run_end + 1
2152 && (run_type == two_case
2153 ? maxchar == run_eqv_end + 1 : 1)))
2154 {
2155 /* No, end the run.
2156 Record each of its equivalent ranges. */
2157 if (run_type == one_case)
2158 {
2159 EXTEND_RANGE_TABLE (work_area, 2);
2160 work_area->table[work_area->used++] = run_start;
2161 work_area->table[work_area->used++] = run_end;
2162 }
2163 else if (run_type == two_case)
2164 {
2165 EXTEND_RANGE_TABLE (work_area, 4);
2166 work_area->table[work_area->used++] = run_start;
2167 work_area->table[work_area->used++] = run_end;
2168 work_area->table[work_area->used++]
2169 = RE_TRANSLATE (eqv_table, run_start);
2170 work_area->table[work_area->used++]
2171 = RE_TRANSLATE (eqv_table, run_end);
2172 }
2173 run_type = strange;
2174 }
2175
2176 if (this_type == strange)
2177 {
2178 /* For a strange character, add each of its equivalents, one
2179 by one. Don't start a range. */
2180 do
2181 {
2182 EXTEND_RANGE_TABLE (work_area, 2);
2183 work_area->table[work_area->used++] = eqv;
2184 work_area->table[work_area->used++] = eqv;
2185 eqv = RE_TRANSLATE (eqv_table, eqv);
2186 }
2187 while (eqv != start);
2188 }
2189
2190 /* Add this char to the run, or start a new run. */
2191 else if (run_type == strange)
2192 {
2193 /* Initialize a new range. */
2194 run_type = this_type;
2195 run_start = start;
2196 run_end = start;
2197 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2198 }
2199 else
2200 {
2201 /* Extend a running range. */
2202 run_end = minchar;
2203 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2204 }
2205 }
2206
2207 /* If a run is still in progress at the end, finish it now
2208 by recording its equivalent ranges. */
2209 if (run_type == one_case)
2210 {
2211 EXTEND_RANGE_TABLE (work_area, 2);
2212 work_area->table[work_area->used++] = run_start;
2213 work_area->table[work_area->used++] = run_end;
2214 }
2215 else if (run_type == two_case)
2216 {
2217 EXTEND_RANGE_TABLE (work_area, 4);
2218 work_area->table[work_area->used++] = run_start;
2219 work_area->table[work_area->used++] = run_end;
2220 work_area->table[work_area->used++]
2221 = RE_TRANSLATE (eqv_table, run_start);
2222 work_area->table[work_area->used++]
2223 = RE_TRANSLATE (eqv_table, run_end);
2224 }
2225
2226 return -1;
2227 }
2228
2229 #endif /* emacs */
2230
2231 /* Record the the image of the range start..end when passed through
2232 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2233 and is not even necessarily contiguous.
2234 Normally we approximate it with the smallest contiguous range that contains
2235 all the chars we need. However, for Latin-1 we go to extra effort
2236 to do a better job.
2237
2238 This function is not called for ASCII ranges.
2239
2240 Returns -1 if successful, REG_ESPACE if ran out of space. */
2241
2242 static int
2243 set_image_of_range (work_area, start, end, translate)
2244 RE_TRANSLATE_TYPE translate;
2245 struct range_table_work_area *work_area;
2246 re_wchar_t start, end;
2247 {
2248 re_wchar_t cmin, cmax;
2249
2250 #ifdef emacs
2251 /* For Latin-1 ranges, use set_image_of_range_1
2252 to get proper handling of ranges that include letters and nonletters.
2253 For a range that includes the whole of Latin-1, this is not necessary.
2254 For other character sets, we don't bother to get this right. */
2255 if (RE_TRANSLATE_P (translate) && start < 04400
2256 && !(start < 04200 && end >= 04377))
2257 {
2258 int newend;
2259 int tem;
2260 newend = end;
2261 if (newend > 04377)
2262 newend = 04377;
2263 tem = set_image_of_range_1 (work_area, start, newend, translate);
2264 if (tem > 0)
2265 return tem;
2266
2267 start = 04400;
2268 if (end < 04400)
2269 return -1;
2270 }
2271 #endif
2272
2273 EXTEND_RANGE_TABLE (work_area, 2);
2274 work_area->table[work_area->used++] = (start);
2275 work_area->table[work_area->used++] = (end);
2276
2277 cmin = -1, cmax = -1;
2278
2279 if (RE_TRANSLATE_P (translate))
2280 {
2281 int ch;
2282
2283 for (ch = start; ch <= end; ch++)
2284 {
2285 re_wchar_t c = TRANSLATE (ch);
2286 if (! (start <= c && c <= end))
2287 {
2288 if (cmin == -1)
2289 cmin = c, cmax = c;
2290 else
2291 {
2292 cmin = MIN (cmin, c);
2293 cmax = MAX (cmax, c);
2294 }
2295 }
2296 }
2297
2298 if (cmin != -1)
2299 {
2300 EXTEND_RANGE_TABLE (work_area, 2);
2301 work_area->table[work_area->used++] = (cmin);
2302 work_area->table[work_area->used++] = (cmax);
2303 }
2304 }
2305
2306 return -1;
2307 }
2308 \f
2309 #ifndef MATCH_MAY_ALLOCATE
2310
2311 /* If we cannot allocate large objects within re_match_2_internal,
2312 we make the fail stack and register vectors global.
2313 The fail stack, we grow to the maximum size when a regexp
2314 is compiled.
2315 The register vectors, we adjust in size each time we
2316 compile a regexp, according to the number of registers it needs. */
2317
2318 static fail_stack_type fail_stack;
2319
2320 /* Size with which the following vectors are currently allocated.
2321 That is so we can make them bigger as needed,
2322 but never make them smaller. */
2323 static int regs_allocated_size;
2324
2325 static re_char ** regstart, ** regend;
2326 static re_char **best_regstart, **best_regend;
2327
2328 /* Make the register vectors big enough for NUM_REGS registers,
2329 but don't make them smaller. */
2330
2331 static
2332 regex_grow_registers (num_regs)
2333 int num_regs;
2334 {
2335 if (num_regs > regs_allocated_size)
2336 {
2337 RETALLOC_IF (regstart, num_regs, re_char *);
2338 RETALLOC_IF (regend, num_regs, re_char *);
2339 RETALLOC_IF (best_regstart, num_regs, re_char *);
2340 RETALLOC_IF (best_regend, num_regs, re_char *);
2341
2342 regs_allocated_size = num_regs;
2343 }
2344 }
2345
2346 #endif /* not MATCH_MAY_ALLOCATE */
2347 \f
2348 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2349 compile_stack,
2350 regnum_t regnum));
2351
2352 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2353 Returns one of error codes defined in `regex.h', or zero for success.
2354
2355 Assumes the `allocated' (and perhaps `buffer') and `translate'
2356 fields are set in BUFP on entry.
2357
2358 If it succeeds, results are put in BUFP (if it returns an error, the
2359 contents of BUFP are undefined):
2360 `buffer' is the compiled pattern;
2361 `syntax' is set to SYNTAX;
2362 `used' is set to the length of the compiled pattern;
2363 `fastmap_accurate' is zero;
2364 `re_nsub' is the number of subexpressions in PATTERN;
2365 `not_bol' and `not_eol' are zero;
2366
2367 The `fastmap' field is neither examined nor set. */
2368
2369 /* Insert the `jump' from the end of last alternative to "here".
2370 The space for the jump has already been allocated. */
2371 #define FIXUP_ALT_JUMP() \
2372 do { \
2373 if (fixup_alt_jump) \
2374 STORE_JUMP (jump, fixup_alt_jump, b); \
2375 } while (0)
2376
2377
2378 /* Return, freeing storage we allocated. */
2379 #define FREE_STACK_RETURN(value) \
2380 do { \
2381 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2382 free (compile_stack.stack); \
2383 return value; \
2384 } while (0)
2385
2386 static reg_errcode_t
2387 regex_compile (pattern, size, syntax, bufp)
2388 re_char *pattern;
2389 size_t size;
2390 reg_syntax_t syntax;
2391 struct re_pattern_buffer *bufp;
2392 {
2393 /* We fetch characters from PATTERN here. */
2394 register re_wchar_t c, c1;
2395
2396 /* A random temporary spot in PATTERN. */
2397 re_char *p1;
2398
2399 /* Points to the end of the buffer, where we should append. */
2400 register unsigned char *b;
2401
2402 /* Keeps track of unclosed groups. */
2403 compile_stack_type compile_stack;
2404
2405 /* Points to the current (ending) position in the pattern. */
2406 #ifdef AIX
2407 /* `const' makes AIX compiler fail. */
2408 unsigned char *p = pattern;
2409 #else
2410 re_char *p = pattern;
2411 #endif
2412 re_char *pend = pattern + size;
2413
2414 /* How to translate the characters in the pattern. */
2415 RE_TRANSLATE_TYPE translate = bufp->translate;
2416
2417 /* Address of the count-byte of the most recently inserted `exactn'
2418 command. This makes it possible to tell if a new exact-match
2419 character can be added to that command or if the character requires
2420 a new `exactn' command. */
2421 unsigned char *pending_exact = 0;
2422
2423 /* Address of start of the most recently finished expression.
2424 This tells, e.g., postfix * where to find the start of its
2425 operand. Reset at the beginning of groups and alternatives. */
2426 unsigned char *laststart = 0;
2427
2428 /* Address of beginning of regexp, or inside of last group. */
2429 unsigned char *begalt;
2430
2431 /* Place in the uncompiled pattern (i.e., the {) to
2432 which to go back if the interval is invalid. */
2433 re_char *beg_interval;
2434
2435 /* Address of the place where a forward jump should go to the end of
2436 the containing expression. Each alternative of an `or' -- except the
2437 last -- ends with a forward jump of this sort. */
2438 unsigned char *fixup_alt_jump = 0;
2439
2440 /* Counts open-groups as they are encountered. Remembered for the
2441 matching close-group on the compile stack, so the same register
2442 number is put in the stop_memory as the start_memory. */
2443 regnum_t regnum = 0;
2444
2445 /* Work area for range table of charset. */
2446 struct range_table_work_area range_table_work;
2447
2448 /* If the object matched can contain multibyte characters. */
2449 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2450
2451 /* Nonzero if we have pushed down into a subpattern. */
2452 int in_subpattern = 0;
2453
2454 /* These hold the values of p, pattern, and pend from the main
2455 pattern when we have pushed into a subpattern. */
2456 re_char *main_p;
2457 re_char *main_pattern;
2458 re_char *main_pend;
2459
2460 #ifdef DEBUG
2461 debug++;
2462 DEBUG_PRINT1 ("\nCompiling pattern: ");
2463 if (debug > 0)
2464 {
2465 unsigned debug_count;
2466
2467 for (debug_count = 0; debug_count < size; debug_count++)
2468 putchar (pattern[debug_count]);
2469 putchar ('\n');
2470 }
2471 #endif /* DEBUG */
2472
2473 /* Initialize the compile stack. */
2474 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2475 if (compile_stack.stack == NULL)
2476 return REG_ESPACE;
2477
2478 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2479 compile_stack.avail = 0;
2480
2481 range_table_work.table = 0;
2482 range_table_work.allocated = 0;
2483
2484 /* Initialize the pattern buffer. */
2485 bufp->syntax = syntax;
2486 bufp->fastmap_accurate = 0;
2487 bufp->not_bol = bufp->not_eol = 0;
2488
2489 /* Set `used' to zero, so that if we return an error, the pattern
2490 printer (for debugging) will think there's no pattern. We reset it
2491 at the end. */
2492 bufp->used = 0;
2493
2494 /* Always count groups, whether or not bufp->no_sub is set. */
2495 bufp->re_nsub = 0;
2496
2497 #if !defined emacs && !defined SYNTAX_TABLE
2498 /* Initialize the syntax table. */
2499 init_syntax_once ();
2500 #endif
2501
2502 if (bufp->allocated == 0)
2503 {
2504 if (bufp->buffer)
2505 { /* If zero allocated, but buffer is non-null, try to realloc
2506 enough space. This loses if buffer's address is bogus, but
2507 that is the user's responsibility. */
2508 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2509 }
2510 else
2511 { /* Caller did not allocate a buffer. Do it for them. */
2512 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2513 }
2514 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2515
2516 bufp->allocated = INIT_BUF_SIZE;
2517 }
2518
2519 begalt = b = bufp->buffer;
2520
2521 /* Loop through the uncompiled pattern until we're at the end. */
2522 while (1)
2523 {
2524 if (p == pend)
2525 {
2526 /* If this is the end of an included regexp,
2527 pop back to the main regexp and try again. */
2528 if (in_subpattern)
2529 {
2530 in_subpattern = 0;
2531 pattern = main_pattern;
2532 p = main_p;
2533 pend = main_pend;
2534 continue;
2535 }
2536 /* If this is the end of the main regexp, we are done. */
2537 break;
2538 }
2539
2540 PATFETCH (c);
2541
2542 switch (c)
2543 {
2544 case ' ':
2545 {
2546 re_char *p1 = p;
2547
2548 /* If there's no special whitespace regexp, treat
2549 spaces normally. And don't try to do this recursively. */
2550 if (!whitespace_regexp || in_subpattern)
2551 goto normal_char;
2552
2553 /* Peek past following spaces. */
2554 while (p1 != pend)
2555 {
2556 if (*p1 != ' ')
2557 break;
2558 p1++;
2559 }
2560 /* If the spaces are followed by a repetition op,
2561 treat them normally. */
2562 if (p1 != pend
2563 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2564 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2565 goto normal_char;
2566
2567 /* Replace the spaces with the whitespace regexp. */
2568 in_subpattern = 1;
2569 main_p = p1;
2570 main_pend = pend;
2571 main_pattern = pattern;
2572 p = pattern = whitespace_regexp;
2573 pend = p + strlen (p);
2574 break;
2575 }
2576
2577 case '^':
2578 {
2579 if ( /* If at start of pattern, it's an operator. */
2580 p == pattern + 1
2581 /* If context independent, it's an operator. */
2582 || syntax & RE_CONTEXT_INDEP_ANCHORS
2583 /* Otherwise, depends on what's come before. */
2584 || at_begline_loc_p (pattern, p, syntax))
2585 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2586 else
2587 goto normal_char;
2588 }
2589 break;
2590
2591
2592 case '$':
2593 {
2594 if ( /* If at end of pattern, it's an operator. */
2595 p == pend
2596 /* If context independent, it's an operator. */
2597 || syntax & RE_CONTEXT_INDEP_ANCHORS
2598 /* Otherwise, depends on what's next. */
2599 || at_endline_loc_p (p, pend, syntax))
2600 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2601 else
2602 goto normal_char;
2603 }
2604 break;
2605
2606
2607 case '+':
2608 case '?':
2609 if ((syntax & RE_BK_PLUS_QM)
2610 || (syntax & RE_LIMITED_OPS))
2611 goto normal_char;
2612 handle_plus:
2613 case '*':
2614 /* If there is no previous pattern... */
2615 if (!laststart)
2616 {
2617 if (syntax & RE_CONTEXT_INVALID_OPS)
2618 FREE_STACK_RETURN (REG_BADRPT);
2619 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2620 goto normal_char;
2621 }
2622
2623 {
2624 /* 1 means zero (many) matches is allowed. */
2625 boolean zero_times_ok = 0, many_times_ok = 0;
2626 boolean greedy = 1;
2627
2628 /* If there is a sequence of repetition chars, collapse it
2629 down to just one (the right one). We can't combine
2630 interval operators with these because of, e.g., `a{2}*',
2631 which should only match an even number of `a's. */
2632
2633 for (;;)
2634 {
2635 if ((syntax & RE_FRUGAL)
2636 && c == '?' && (zero_times_ok || many_times_ok))
2637 greedy = 0;
2638 else
2639 {
2640 zero_times_ok |= c != '+';
2641 many_times_ok |= c != '?';
2642 }
2643
2644 if (p == pend)
2645 break;
2646 else if (*p == '*'
2647 || (!(syntax & RE_BK_PLUS_QM)
2648 && (*p == '+' || *p == '?')))
2649 ;
2650 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2651 {
2652 if (p+1 == pend)
2653 FREE_STACK_RETURN (REG_EESCAPE);
2654 if (p[1] == '+' || p[1] == '?')
2655 PATFETCH (c); /* Gobble up the backslash. */
2656 else
2657 break;
2658 }
2659 else
2660 break;
2661 /* If we get here, we found another repeat character. */
2662 PATFETCH (c);
2663 }
2664
2665 /* Star, etc. applied to an empty pattern is equivalent
2666 to an empty pattern. */
2667 if (!laststart || laststart == b)
2668 break;
2669
2670 /* Now we know whether or not zero matches is allowed
2671 and also whether or not two or more matches is allowed. */
2672 if (greedy)
2673 {
2674 if (many_times_ok)
2675 {
2676 boolean simple = skip_one_char (laststart) == b;
2677 unsigned int startoffset = 0;
2678 re_opcode_t ofj =
2679 /* Check if the loop can match the empty string. */
2680 (simple || !analyse_first (laststart, b, NULL, 0))
2681 ? on_failure_jump : on_failure_jump_loop;
2682 assert (skip_one_char (laststart) <= b);
2683
2684 if (!zero_times_ok && simple)
2685 { /* Since simple * loops can be made faster by using
2686 on_failure_keep_string_jump, we turn simple P+
2687 into PP* if P is simple. */
2688 unsigned char *p1, *p2;
2689 startoffset = b - laststart;
2690 GET_BUFFER_SPACE (startoffset);
2691 p1 = b; p2 = laststart;
2692 while (p2 < p1)
2693 *b++ = *p2++;
2694 zero_times_ok = 1;
2695 }
2696
2697 GET_BUFFER_SPACE (6);
2698 if (!zero_times_ok)
2699 /* A + loop. */
2700 STORE_JUMP (ofj, b, b + 6);
2701 else
2702 /* Simple * loops can use on_failure_keep_string_jump
2703 depending on what follows. But since we don't know
2704 that yet, we leave the decision up to
2705 on_failure_jump_smart. */
2706 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2707 laststart + startoffset, b + 6);
2708 b += 3;
2709 STORE_JUMP (jump, b, laststart + startoffset);
2710 b += 3;
2711 }
2712 else
2713 {
2714 /* A simple ? pattern. */
2715 assert (zero_times_ok);
2716 GET_BUFFER_SPACE (3);
2717 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2718 b += 3;
2719 }
2720 }
2721 else /* not greedy */
2722 { /* I wish the greedy and non-greedy cases could be merged. */
2723
2724 GET_BUFFER_SPACE (7); /* We might use less. */
2725 if (many_times_ok)
2726 {
2727 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2728
2729 /* The non-greedy multiple match looks like
2730 a repeat..until: we only need a conditional jump
2731 at the end of the loop. */
2732 if (emptyp) BUF_PUSH (no_op);
2733 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2734 : on_failure_jump, b, laststart);
2735 b += 3;
2736 if (zero_times_ok)
2737 {
2738 /* The repeat...until naturally matches one or more.
2739 To also match zero times, we need to first jump to
2740 the end of the loop (its conditional jump). */
2741 INSERT_JUMP (jump, laststart, b);
2742 b += 3;
2743 }
2744 }
2745 else
2746 {
2747 /* non-greedy a?? */
2748 INSERT_JUMP (jump, laststart, b + 3);
2749 b += 3;
2750 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2751 b += 3;
2752 }
2753 }
2754 }
2755 pending_exact = 0;
2756 break;
2757
2758
2759 case '.':
2760 laststart = b;
2761 BUF_PUSH (anychar);
2762 break;
2763
2764
2765 case '[':
2766 {
2767 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2768
2769 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2770
2771 /* Ensure that we have enough space to push a charset: the
2772 opcode, the length count, and the bitset; 34 bytes in all. */
2773 GET_BUFFER_SPACE (34);
2774
2775 laststart = b;
2776
2777 /* We test `*p == '^' twice, instead of using an if
2778 statement, so we only need one BUF_PUSH. */
2779 BUF_PUSH (*p == '^' ? charset_not : charset);
2780 if (*p == '^')
2781 p++;
2782
2783 /* Remember the first position in the bracket expression. */
2784 p1 = p;
2785
2786 /* Push the number of bytes in the bitmap. */
2787 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2788
2789 /* Clear the whole map. */
2790 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2791
2792 /* charset_not matches newline according to a syntax bit. */
2793 if ((re_opcode_t) b[-2] == charset_not
2794 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2795 SET_LIST_BIT ('\n');
2796
2797 /* Read in characters and ranges, setting map bits. */
2798 for (;;)
2799 {
2800 boolean escaped_char = false;
2801 const unsigned char *p2 = p;
2802
2803 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2804
2805 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2806 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2807 So the translation is done later in a loop. Example:
2808 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2809 PATFETCH (c);
2810
2811 /* \ might escape characters inside [...] and [^...]. */
2812 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2813 {
2814 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2815
2816 PATFETCH (c);
2817 escaped_char = true;
2818 }
2819 else
2820 {
2821 /* Could be the end of the bracket expression. If it's
2822 not (i.e., when the bracket expression is `[]' so
2823 far), the ']' character bit gets set way below. */
2824 if (c == ']' && p2 != p1)
2825 break;
2826 }
2827
2828 /* What should we do for the character which is
2829 greater than 0x7F, but not BASE_LEADING_CODE_P?
2830 XXX */
2831
2832 /* See if we're at the beginning of a possible character
2833 class. */
2834
2835 if (!escaped_char &&
2836 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2837 {
2838 /* Leave room for the null. */
2839 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2840 const unsigned char *class_beg;
2841
2842 PATFETCH (c);
2843 c1 = 0;
2844 class_beg = p;
2845
2846 /* If pattern is `[[:'. */
2847 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2848
2849 for (;;)
2850 {
2851 PATFETCH (c);
2852 if ((c == ':' && *p == ']') || p == pend)
2853 break;
2854 if (c1 < CHAR_CLASS_MAX_LENGTH)
2855 str[c1++] = c;
2856 else
2857 /* This is in any case an invalid class name. */
2858 str[0] = '\0';
2859 }
2860 str[c1] = '\0';
2861
2862 /* If isn't a word bracketed by `[:' and `:]':
2863 undo the ending character, the letters, and
2864 leave the leading `:' and `[' (but set bits for
2865 them). */
2866 if (c == ':' && *p == ']')
2867 {
2868 re_wchar_t ch;
2869 re_wctype_t cc;
2870
2871 cc = re_wctype (str);
2872
2873 if (cc == 0)
2874 FREE_STACK_RETURN (REG_ECTYPE);
2875
2876 /* Throw away the ] at the end of the character
2877 class. */
2878 PATFETCH (c);
2879
2880 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2881
2882 /* Most character classes in a multibyte match
2883 just set a flag. Exceptions are is_blank,
2884 is_digit, is_cntrl, and is_xdigit, since
2885 they can only match ASCII characters. We
2886 don't need to handle them for multibyte.
2887 They are distinguished by a negative wctype. */
2888
2889 if (multibyte)
2890 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2891 re_wctype_to_bit (cc));
2892
2893 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2894 {
2895 int translated = TRANSLATE (ch);
2896 if (re_iswctype (btowc (ch), cc))
2897 SET_LIST_BIT (translated);
2898 }
2899
2900 /* Repeat the loop. */
2901 continue;
2902 }
2903 else
2904 {
2905 /* Go back to right after the "[:". */
2906 p = class_beg;
2907 SET_LIST_BIT ('[');
2908
2909 /* Because the `:' may starts the range, we
2910 can't simply set bit and repeat the loop.
2911 Instead, just set it to C and handle below. */
2912 c = ':';
2913 }
2914 }
2915
2916 if (p < pend && p[0] == '-' && p[1] != ']')
2917 {
2918
2919 /* Discard the `-'. */
2920 PATFETCH (c1);
2921
2922 /* Fetch the character which ends the range. */
2923 PATFETCH (c1);
2924
2925 if (SINGLE_BYTE_CHAR_P (c))
2926 {
2927 if (! SINGLE_BYTE_CHAR_P (c1))
2928 {
2929 /* Handle a range starting with a
2930 character of less than 256, and ending
2931 with a character of not less than 256.
2932 Split that into two ranges, the low one
2933 ending at 0377, and the high one
2934 starting at the smallest character in
2935 the charset of C1 and ending at C1. */
2936 int charset = CHAR_CHARSET (c1);
2937 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2938
2939 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2940 c2, c1);
2941 c1 = 0377;
2942 }
2943 }
2944 else if (!SAME_CHARSET_P (c, c1))
2945 FREE_STACK_RETURN (REG_ERANGEX);
2946 }
2947 else
2948 /* Range from C to C. */
2949 c1 = c;
2950
2951 /* Set the range ... */
2952 if (SINGLE_BYTE_CHAR_P (c))
2953 /* ... into bitmap. */
2954 {
2955 re_wchar_t this_char;
2956 re_wchar_t range_start = c, range_end = c1;
2957
2958 /* If the start is after the end, the range is empty. */
2959 if (range_start > range_end)
2960 {
2961 if (syntax & RE_NO_EMPTY_RANGES)
2962 FREE_STACK_RETURN (REG_ERANGE);
2963 /* Else, repeat the loop. */
2964 }
2965 else
2966 {
2967 for (this_char = range_start; this_char <= range_end;
2968 this_char++)
2969 SET_LIST_BIT (TRANSLATE (this_char));
2970 }
2971 }
2972 else
2973 /* ... into range table. */
2974 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2975 }
2976
2977 /* Discard any (non)matching list bytes that are all 0 at the
2978 end of the map. Decrease the map-length byte too. */
2979 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2980 b[-1]--;
2981 b += b[-1];
2982
2983 /* Build real range table from work area. */
2984 if (RANGE_TABLE_WORK_USED (range_table_work)
2985 || RANGE_TABLE_WORK_BITS (range_table_work))
2986 {
2987 int i;
2988 int used = RANGE_TABLE_WORK_USED (range_table_work);
2989
2990 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2991 bytes for flags, two for COUNT, and three bytes for
2992 each character. */
2993 GET_BUFFER_SPACE (4 + used * 3);
2994
2995 /* Indicate the existence of range table. */
2996 laststart[1] |= 0x80;
2997
2998 /* Store the character class flag bits into the range table.
2999 If not in emacs, these flag bits are always 0. */
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3001 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3002
3003 STORE_NUMBER_AND_INCR (b, used / 2);
3004 for (i = 0; i < used; i++)
3005 STORE_CHARACTER_AND_INCR
3006 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3007 }
3008 }
3009 break;
3010
3011
3012 case '(':
3013 if (syntax & RE_NO_BK_PARENS)
3014 goto handle_open;
3015 else
3016 goto normal_char;
3017
3018
3019 case ')':
3020 if (syntax & RE_NO_BK_PARENS)
3021 goto handle_close;
3022 else
3023 goto normal_char;
3024
3025
3026 case '\n':
3027 if (syntax & RE_NEWLINE_ALT)
3028 goto handle_alt;
3029 else
3030 goto normal_char;
3031
3032
3033 case '|':
3034 if (syntax & RE_NO_BK_VBAR)
3035 goto handle_alt;
3036 else
3037 goto normal_char;
3038
3039
3040 case '{':
3041 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3042 goto handle_interval;
3043 else
3044 goto normal_char;
3045
3046
3047 case '\\':
3048 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3049
3050 /* Do not translate the character after the \, so that we can
3051 distinguish, e.g., \B from \b, even if we normally would
3052 translate, e.g., B to b. */
3053 PATFETCH (c);
3054
3055 switch (c)
3056 {
3057 case '(':
3058 if (syntax & RE_NO_BK_PARENS)
3059 goto normal_backslash;
3060
3061 handle_open:
3062 {
3063 int shy = 0;
3064 if (p+1 < pend)
3065 {
3066 /* Look for a special (?...) construct */
3067 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3068 {
3069 PATFETCH (c); /* Gobble up the '?'. */
3070 PATFETCH (c);
3071 switch (c)
3072 {
3073 case ':': shy = 1; break;
3074 default:
3075 /* Only (?:...) is supported right now. */
3076 FREE_STACK_RETURN (REG_BADPAT);
3077 }
3078 }
3079 }
3080
3081 if (!shy)
3082 {
3083 bufp->re_nsub++;
3084 regnum++;
3085 }
3086
3087 if (COMPILE_STACK_FULL)
3088 {
3089 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3090 compile_stack_elt_t);
3091 if (compile_stack.stack == NULL) return REG_ESPACE;
3092
3093 compile_stack.size <<= 1;
3094 }
3095
3096 /* These are the values to restore when we hit end of this
3097 group. They are all relative offsets, so that if the
3098 whole pattern moves because of realloc, they will still
3099 be valid. */
3100 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3101 COMPILE_STACK_TOP.fixup_alt_jump
3102 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3103 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3104 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3105
3106 /* Do not push a
3107 start_memory for groups beyond the last one we can
3108 represent in the compiled pattern. */
3109 if (regnum <= MAX_REGNUM && !shy)
3110 BUF_PUSH_2 (start_memory, regnum);
3111
3112 compile_stack.avail++;
3113
3114 fixup_alt_jump = 0;
3115 laststart = 0;
3116 begalt = b;
3117 /* If we've reached MAX_REGNUM groups, then this open
3118 won't actually generate any code, so we'll have to
3119 clear pending_exact explicitly. */
3120 pending_exact = 0;
3121 break;
3122 }
3123
3124 case ')':
3125 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3126
3127 if (COMPILE_STACK_EMPTY)
3128 {
3129 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3130 goto normal_backslash;
3131 else
3132 FREE_STACK_RETURN (REG_ERPAREN);
3133 }
3134
3135 handle_close:
3136 FIXUP_ALT_JUMP ();
3137
3138 /* See similar code for backslashed left paren above. */
3139 if (COMPILE_STACK_EMPTY)
3140 {
3141 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3142 goto normal_char;
3143 else
3144 FREE_STACK_RETURN (REG_ERPAREN);
3145 }
3146
3147 /* Since we just checked for an empty stack above, this
3148 ``can't happen''. */
3149 assert (compile_stack.avail != 0);
3150 {
3151 /* We don't just want to restore into `regnum', because
3152 later groups should continue to be numbered higher,
3153 as in `(ab)c(de)' -- the second group is #2. */
3154 regnum_t this_group_regnum;
3155
3156 compile_stack.avail--;
3157 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3158 fixup_alt_jump
3159 = COMPILE_STACK_TOP.fixup_alt_jump
3160 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3161 : 0;
3162 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3163 this_group_regnum = COMPILE_STACK_TOP.regnum;
3164 /* If we've reached MAX_REGNUM groups, then this open
3165 won't actually generate any code, so we'll have to
3166 clear pending_exact explicitly. */
3167 pending_exact = 0;
3168
3169 /* We're at the end of the group, so now we know how many
3170 groups were inside this one. */
3171 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3172 BUF_PUSH_2 (stop_memory, this_group_regnum);
3173 }
3174 break;
3175
3176
3177 case '|': /* `\|'. */
3178 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3179 goto normal_backslash;
3180 handle_alt:
3181 if (syntax & RE_LIMITED_OPS)
3182 goto normal_char;
3183
3184 /* Insert before the previous alternative a jump which
3185 jumps to this alternative if the former fails. */
3186 GET_BUFFER_SPACE (3);
3187 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3188 pending_exact = 0;
3189 b += 3;
3190
3191 /* The alternative before this one has a jump after it
3192 which gets executed if it gets matched. Adjust that
3193 jump so it will jump to this alternative's analogous
3194 jump (put in below, which in turn will jump to the next
3195 (if any) alternative's such jump, etc.). The last such
3196 jump jumps to the correct final destination. A picture:
3197 _____ _____
3198 | | | |
3199 | v | v
3200 a | b | c
3201
3202 If we are at `b', then fixup_alt_jump right now points to a
3203 three-byte space after `a'. We'll put in the jump, set
3204 fixup_alt_jump to right after `b', and leave behind three
3205 bytes which we'll fill in when we get to after `c'. */
3206
3207 FIXUP_ALT_JUMP ();
3208
3209 /* Mark and leave space for a jump after this alternative,
3210 to be filled in later either by next alternative or
3211 when know we're at the end of a series of alternatives. */
3212 fixup_alt_jump = b;
3213 GET_BUFFER_SPACE (3);
3214 b += 3;
3215
3216 laststart = 0;
3217 begalt = b;
3218 break;
3219
3220
3221 case '{':
3222 /* If \{ is a literal. */
3223 if (!(syntax & RE_INTERVALS)
3224 /* If we're at `\{' and it's not the open-interval
3225 operator. */
3226 || (syntax & RE_NO_BK_BRACES))
3227 goto normal_backslash;
3228
3229 handle_interval:
3230 {
3231 /* If got here, then the syntax allows intervals. */
3232
3233 /* At least (most) this many matches must be made. */
3234 int lower_bound = 0, upper_bound = -1;
3235
3236 beg_interval = p;
3237
3238 GET_UNSIGNED_NUMBER (lower_bound);
3239
3240 if (c == ',')
3241 GET_UNSIGNED_NUMBER (upper_bound);
3242 else
3243 /* Interval such as `{1}' => match exactly once. */
3244 upper_bound = lower_bound;
3245
3246 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3247 || (upper_bound >= 0 && lower_bound > upper_bound))
3248 FREE_STACK_RETURN (REG_BADBR);
3249
3250 if (!(syntax & RE_NO_BK_BRACES))
3251 {
3252 if (c != '\\')
3253 FREE_STACK_RETURN (REG_BADBR);
3254 if (p == pend)
3255 FREE_STACK_RETURN (REG_EESCAPE);
3256 PATFETCH (c);
3257 }
3258
3259 if (c != '}')
3260 FREE_STACK_RETURN (REG_BADBR);
3261
3262 /* We just parsed a valid interval. */
3263
3264 /* If it's invalid to have no preceding re. */
3265 if (!laststart)
3266 {
3267 if (syntax & RE_CONTEXT_INVALID_OPS)
3268 FREE_STACK_RETURN (REG_BADRPT);
3269 else if (syntax & RE_CONTEXT_INDEP_OPS)
3270 laststart = b;
3271 else
3272 goto unfetch_interval;
3273 }
3274
3275 if (upper_bound == 0)
3276 /* If the upper bound is zero, just drop the sub pattern
3277 altogether. */
3278 b = laststart;
3279 else if (lower_bound == 1 && upper_bound == 1)
3280 /* Just match it once: nothing to do here. */
3281 ;
3282
3283 /* Otherwise, we have a nontrivial interval. When
3284 we're all done, the pattern will look like:
3285 set_number_at <jump count> <upper bound>
3286 set_number_at <succeed_n count> <lower bound>
3287 succeed_n <after jump addr> <succeed_n count>
3288 <body of loop>
3289 jump_n <succeed_n addr> <jump count>
3290 (The upper bound and `jump_n' are omitted if
3291 `upper_bound' is 1, though.) */
3292 else
3293 { /* If the upper bound is > 1, we need to insert
3294 more at the end of the loop. */
3295 unsigned int nbytes = (upper_bound < 0 ? 3
3296 : upper_bound > 1 ? 5 : 0);
3297 unsigned int startoffset = 0;
3298
3299 GET_BUFFER_SPACE (20); /* We might use less. */
3300
3301 if (lower_bound == 0)
3302 {
3303 /* A succeed_n that starts with 0 is really a
3304 a simple on_failure_jump_loop. */
3305 INSERT_JUMP (on_failure_jump_loop, laststart,
3306 b + 3 + nbytes);
3307 b += 3;
3308 }
3309 else
3310 {
3311 /* Initialize lower bound of the `succeed_n', even
3312 though it will be set during matching by its
3313 attendant `set_number_at' (inserted next),
3314 because `re_compile_fastmap' needs to know.
3315 Jump to the `jump_n' we might insert below. */
3316 INSERT_JUMP2 (succeed_n, laststart,
3317 b + 5 + nbytes,
3318 lower_bound);
3319 b += 5;
3320
3321 /* Code to initialize the lower bound. Insert
3322 before the `succeed_n'. The `5' is the last two
3323 bytes of this `set_number_at', plus 3 bytes of
3324 the following `succeed_n'. */
3325 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3326 b += 5;
3327 startoffset += 5;
3328 }
3329
3330 if (upper_bound < 0)
3331 {
3332 /* A negative upper bound stands for infinity,
3333 in which case it degenerates to a plain jump. */
3334 STORE_JUMP (jump, b, laststart + startoffset);
3335 b += 3;
3336 }
3337 else if (upper_bound > 1)
3338 { /* More than one repetition is allowed, so
3339 append a backward jump to the `succeed_n'
3340 that starts this interval.
3341
3342 When we've reached this during matching,
3343 we'll have matched the interval once, so
3344 jump back only `upper_bound - 1' times. */
3345 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3346 upper_bound - 1);
3347 b += 5;
3348
3349 /* The location we want to set is the second
3350 parameter of the `jump_n'; that is `b-2' as
3351 an absolute address. `laststart' will be
3352 the `set_number_at' we're about to insert;
3353 `laststart+3' the number to set, the source
3354 for the relative address. But we are
3355 inserting into the middle of the pattern --
3356 so everything is getting moved up by 5.
3357 Conclusion: (b - 2) - (laststart + 3) + 5,
3358 i.e., b - laststart.
3359
3360 We insert this at the beginning of the loop
3361 so that if we fail during matching, we'll
3362 reinitialize the bounds. */
3363 insert_op2 (set_number_at, laststart, b - laststart,
3364 upper_bound - 1, b);
3365 b += 5;
3366 }
3367 }
3368 pending_exact = 0;
3369 beg_interval = NULL;
3370 }
3371 break;
3372
3373 unfetch_interval:
3374 /* If an invalid interval, match the characters as literals. */
3375 assert (beg_interval);
3376 p = beg_interval;
3377 beg_interval = NULL;
3378
3379 /* normal_char and normal_backslash need `c'. */
3380 c = '{';
3381
3382 if (!(syntax & RE_NO_BK_BRACES))
3383 {
3384 assert (p > pattern && p[-1] == '\\');
3385 goto normal_backslash;
3386 }
3387 else
3388 goto normal_char;
3389
3390 #ifdef emacs
3391 /* There is no way to specify the before_dot and after_dot
3392 operators. rms says this is ok. --karl */
3393 case '=':
3394 BUF_PUSH (at_dot);
3395 break;
3396
3397 case 's':
3398 laststart = b;
3399 PATFETCH (c);
3400 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3401 break;
3402
3403 case 'S':
3404 laststart = b;
3405 PATFETCH (c);
3406 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3407 break;
3408
3409 case 'c':
3410 laststart = b;
3411 PATFETCH (c);
3412 BUF_PUSH_2 (categoryspec, c);
3413 break;
3414
3415 case 'C':
3416 laststart = b;
3417 PATFETCH (c);
3418 BUF_PUSH_2 (notcategoryspec, c);
3419 break;
3420 #endif /* emacs */
3421
3422
3423 case 'w':
3424 if (syntax & RE_NO_GNU_OPS)
3425 goto normal_char;
3426 laststart = b;
3427 BUF_PUSH_2 (syntaxspec, Sword);
3428 break;
3429
3430
3431 case 'W':
3432 if (syntax & RE_NO_GNU_OPS)
3433 goto normal_char;
3434 laststart = b;
3435 BUF_PUSH_2 (notsyntaxspec, Sword);
3436 break;
3437
3438
3439 case '<':
3440 if (syntax & RE_NO_GNU_OPS)
3441 goto normal_char;
3442 BUF_PUSH (wordbeg);
3443 break;
3444
3445 case '>':
3446 if (syntax & RE_NO_GNU_OPS)
3447 goto normal_char;
3448 BUF_PUSH (wordend);
3449 break;
3450
3451 case '_':
3452 if (syntax & RE_NO_GNU_OPS)
3453 goto normal_char;
3454 laststart = b;
3455 PATFETCH (c);
3456 if (c == '<')
3457 BUF_PUSH (symbeg);
3458 else if (c == '>')
3459 BUF_PUSH (symend);
3460 else
3461 FREE_STACK_RETURN (REG_BADPAT);
3462 break;
3463
3464 case 'b':
3465 if (syntax & RE_NO_GNU_OPS)
3466 goto normal_char;
3467 BUF_PUSH (wordbound);
3468 break;
3469
3470 case 'B':
3471 if (syntax & RE_NO_GNU_OPS)
3472 goto normal_char;
3473 BUF_PUSH (notwordbound);
3474 break;
3475
3476 case '`':
3477 if (syntax & RE_NO_GNU_OPS)
3478 goto normal_char;
3479 BUF_PUSH (begbuf);
3480 break;
3481
3482 case '\'':
3483 if (syntax & RE_NO_GNU_OPS)
3484 goto normal_char;
3485 BUF_PUSH (endbuf);
3486 break;
3487
3488 case '1': case '2': case '3': case '4': case '5':
3489 case '6': case '7': case '8': case '9':
3490 {
3491 regnum_t reg;
3492
3493 if (syntax & RE_NO_BK_REFS)
3494 goto normal_backslash;
3495
3496 reg = c - '0';
3497
3498 /* Can't back reference to a subexpression before its end. */
3499 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3500 FREE_STACK_RETURN (REG_ESUBREG);
3501
3502 laststart = b;
3503 BUF_PUSH_2 (duplicate, reg);
3504 }
3505 break;
3506
3507
3508 case '+':
3509 case '?':
3510 if (syntax & RE_BK_PLUS_QM)
3511 goto handle_plus;
3512 else
3513 goto normal_backslash;
3514
3515 default:
3516 normal_backslash:
3517 /* You might think it would be useful for \ to mean
3518 not to translate; but if we don't translate it
3519 it will never match anything. */
3520 goto normal_char;
3521 }
3522 break;
3523
3524
3525 default:
3526 /* Expects the character in `c'. */
3527 normal_char:
3528 /* If no exactn currently being built. */
3529 if (!pending_exact
3530
3531 /* If last exactn not at current position. */
3532 || pending_exact + *pending_exact + 1 != b
3533
3534 /* We have only one byte following the exactn for the count. */
3535 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3536
3537 /* If followed by a repetition operator. */
3538 || (p != pend && (*p == '*' || *p == '^'))
3539 || ((syntax & RE_BK_PLUS_QM)
3540 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3541 : p != pend && (*p == '+' || *p == '?'))
3542 || ((syntax & RE_INTERVALS)
3543 && ((syntax & RE_NO_BK_BRACES)
3544 ? p != pend && *p == '{'
3545 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3546 {
3547 /* Start building a new exactn. */
3548
3549 laststart = b;
3550
3551 BUF_PUSH_2 (exactn, 0);
3552 pending_exact = b - 1;
3553 }
3554
3555 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3556 {
3557 int len;
3558
3559 c = TRANSLATE (c);
3560 if (multibyte)
3561 len = CHAR_STRING (c, b);
3562 else
3563 *b = c, len = 1;
3564 b += len;
3565 (*pending_exact) += len;
3566 }
3567
3568 break;
3569 } /* switch (c) */
3570 } /* while p != pend */
3571
3572
3573 /* Through the pattern now. */
3574
3575 FIXUP_ALT_JUMP ();
3576
3577 if (!COMPILE_STACK_EMPTY)
3578 FREE_STACK_RETURN (REG_EPAREN);
3579
3580 /* If we don't want backtracking, force success
3581 the first time we reach the end of the compiled pattern. */
3582 if (syntax & RE_NO_POSIX_BACKTRACKING)
3583 BUF_PUSH (succeed);
3584
3585 /* We have succeeded; set the length of the buffer. */
3586 bufp->used = b - bufp->buffer;
3587
3588 #ifdef DEBUG
3589 if (debug > 0)
3590 {
3591 re_compile_fastmap (bufp);
3592 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3593 print_compiled_pattern (bufp);
3594 }
3595 debug--;
3596 #endif /* DEBUG */
3597
3598 #ifndef MATCH_MAY_ALLOCATE
3599 /* Initialize the failure stack to the largest possible stack. This
3600 isn't necessary unless we're trying to avoid calling alloca in
3601 the search and match routines. */
3602 {
3603 int num_regs = bufp->re_nsub + 1;
3604
3605 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3606 {
3607 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3608
3609 if (! fail_stack.stack)
3610 fail_stack.stack
3611 = (fail_stack_elt_t *) xmalloc (fail_stack.size
3612 * sizeof (fail_stack_elt_t));
3613 else
3614 fail_stack.stack
3615 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3616 (fail_stack.size
3617 * sizeof (fail_stack_elt_t)));
3618 }
3619
3620 regex_grow_registers (num_regs);
3621 }
3622 #endif /* not MATCH_MAY_ALLOCATE */
3623
3624 FREE_STACK_RETURN (REG_NOERROR);
3625 } /* regex_compile */
3626 \f
3627 /* Subroutines for `regex_compile'. */
3628
3629 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3630
3631 static void
3632 store_op1 (op, loc, arg)
3633 re_opcode_t op;
3634 unsigned char *loc;
3635 int arg;
3636 {
3637 *loc = (unsigned char) op;
3638 STORE_NUMBER (loc + 1, arg);
3639 }
3640
3641
3642 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3643
3644 static void
3645 store_op2 (op, loc, arg1, arg2)
3646 re_opcode_t op;
3647 unsigned char *loc;
3648 int arg1, arg2;
3649 {
3650 *loc = (unsigned char) op;
3651 STORE_NUMBER (loc + 1, arg1);
3652 STORE_NUMBER (loc + 3, arg2);
3653 }
3654
3655
3656 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3657 for OP followed by two-byte integer parameter ARG. */
3658
3659 static void
3660 insert_op1 (op, loc, arg, end)
3661 re_opcode_t op;
3662 unsigned char *loc;
3663 int arg;
3664 unsigned char *end;
3665 {
3666 register unsigned char *pfrom = end;
3667 register unsigned char *pto = end + 3;
3668
3669 while (pfrom != loc)
3670 *--pto = *--pfrom;
3671
3672 store_op1 (op, loc, arg);
3673 }
3674
3675
3676 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3677
3678 static void
3679 insert_op2 (op, loc, arg1, arg2, end)
3680 re_opcode_t op;
3681 unsigned char *loc;
3682 int arg1, arg2;
3683 unsigned char *end;
3684 {
3685 register unsigned char *pfrom = end;
3686 register unsigned char *pto = end + 5;
3687
3688 while (pfrom != loc)
3689 *--pto = *--pfrom;
3690
3691 store_op2 (op, loc, arg1, arg2);
3692 }
3693
3694
3695 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3696 after an alternative or a begin-subexpression. We assume there is at
3697 least one character before the ^. */
3698
3699 static boolean
3700 at_begline_loc_p (pattern, p, syntax)
3701 re_char *pattern, *p;
3702 reg_syntax_t syntax;
3703 {
3704 re_char *prev = p - 2;
3705 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3706
3707 return
3708 /* After a subexpression? */
3709 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3710 /* After an alternative? */
3711 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3712 /* After a shy subexpression? */
3713 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3714 && prev[-1] == '?' && prev[-2] == '('
3715 && (syntax & RE_NO_BK_PARENS
3716 || (prev - 3 >= pattern && prev[-3] == '\\')));
3717 }
3718
3719
3720 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3721 at least one character after the $, i.e., `P < PEND'. */
3722
3723 static boolean
3724 at_endline_loc_p (p, pend, syntax)
3725 re_char *p, *pend;
3726 reg_syntax_t syntax;
3727 {
3728 re_char *next = p;
3729 boolean next_backslash = *next == '\\';
3730 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3731
3732 return
3733 /* Before a subexpression? */
3734 (syntax & RE_NO_BK_PARENS ? *next == ')'
3735 : next_backslash && next_next && *next_next == ')')
3736 /* Before an alternative? */
3737 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3738 : next_backslash && next_next && *next_next == '|');
3739 }
3740
3741
3742 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3743 false if it's not. */
3744
3745 static boolean
3746 group_in_compile_stack (compile_stack, regnum)
3747 compile_stack_type compile_stack;
3748 regnum_t regnum;
3749 {
3750 int this_element;
3751
3752 for (this_element = compile_stack.avail - 1;
3753 this_element >= 0;
3754 this_element--)
3755 if (compile_stack.stack[this_element].regnum == regnum)
3756 return true;
3757
3758 return false;
3759 }
3760 \f
3761 /* analyse_first.
3762 If fastmap is non-NULL, go through the pattern and fill fastmap
3763 with all the possible leading chars. If fastmap is NULL, don't
3764 bother filling it up (obviously) and only return whether the
3765 pattern could potentially match the empty string.
3766
3767 Return 1 if p..pend might match the empty string.
3768 Return 0 if p..pend matches at least one char.
3769 Return -1 if fastmap was not updated accurately. */
3770
3771 static int
3772 analyse_first (p, pend, fastmap, multibyte)
3773 re_char *p, *pend;
3774 char *fastmap;
3775 const int multibyte;
3776 {
3777 int j, k;
3778 boolean not;
3779
3780 /* If all elements for base leading-codes in fastmap is set, this
3781 flag is set true. */
3782 boolean match_any_multibyte_characters = false;
3783
3784 assert (p);
3785
3786 /* The loop below works as follows:
3787 - It has a working-list kept in the PATTERN_STACK and which basically
3788 starts by only containing a pointer to the first operation.
3789 - If the opcode we're looking at is a match against some set of
3790 chars, then we add those chars to the fastmap and go on to the
3791 next work element from the worklist (done via `break').
3792 - If the opcode is a control operator on the other hand, we either
3793 ignore it (if it's meaningless at this point, such as `start_memory')
3794 or execute it (if it's a jump). If the jump has several destinations
3795 (i.e. `on_failure_jump'), then we push the other destination onto the
3796 worklist.
3797 We guarantee termination by ignoring backward jumps (more or less),
3798 so that `p' is monotonically increasing. More to the point, we
3799 never set `p' (or push) anything `<= p1'. */
3800
3801 while (p < pend)
3802 {
3803 /* `p1' is used as a marker of how far back a `on_failure_jump'
3804 can go without being ignored. It is normally equal to `p'
3805 (which prevents any backward `on_failure_jump') except right
3806 after a plain `jump', to allow patterns such as:
3807 0: jump 10
3808 3..9: <body>
3809 10: on_failure_jump 3
3810 as used for the *? operator. */
3811 re_char *p1 = p;
3812
3813 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3814 {
3815 case succeed:
3816 return 1;
3817 continue;
3818
3819 case duplicate:
3820 /* If the first character has to match a backreference, that means
3821 that the group was empty (since it already matched). Since this
3822 is the only case that interests us here, we can assume that the
3823 backreference must match the empty string. */
3824 p++;
3825 continue;
3826
3827
3828 /* Following are the cases which match a character. These end
3829 with `break'. */
3830
3831 case exactn:
3832 if (fastmap)
3833 {
3834 int c = RE_STRING_CHAR (p + 1, pend - p);
3835
3836 if (SINGLE_BYTE_CHAR_P (c))
3837 fastmap[c] = 1;
3838 else
3839 fastmap[p[1]] = 1;
3840 }
3841 break;
3842
3843
3844 case anychar:
3845 /* We could put all the chars except for \n (and maybe \0)
3846 but we don't bother since it is generally not worth it. */
3847 if (!fastmap) break;
3848 return -1;
3849
3850
3851 case charset_not:
3852 /* Chars beyond end of bitmap are possible matches.
3853 All the single-byte codes can occur in multibyte buffers.
3854 So any that are not listed in the charset
3855 are possible matches, even in multibyte buffers. */
3856 if (!fastmap) break;
3857 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3858 j < (1 << BYTEWIDTH); j++)
3859 fastmap[j] = 1;
3860 /* Fallthrough */
3861 case charset:
3862 if (!fastmap) break;
3863 not = (re_opcode_t) *(p - 1) == charset_not;
3864 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3865 j >= 0; j--)
3866 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3867 fastmap[j] = 1;
3868
3869 if ((not && multibyte)
3870 /* Any character set can possibly contain a character
3871 which doesn't match the specified set of characters. */
3872 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3873 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3874 /* If we can match a character class, we can match
3875 any character set. */
3876 {
3877 set_fastmap_for_multibyte_characters:
3878 if (match_any_multibyte_characters == false)
3879 {
3880 for (j = 0x80; j < 0xA0; j++) /* XXX */
3881 if (BASE_LEADING_CODE_P (j))
3882 fastmap[j] = 1;
3883 match_any_multibyte_characters = true;
3884 }
3885 }
3886
3887 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3888 && match_any_multibyte_characters == false)
3889 {
3890 /* Set fastmap[I] 1 where I is a base leading code of each
3891 multibyte character in the range table. */
3892 int c, count;
3893
3894 /* Make P points the range table. `+ 2' is to skip flag
3895 bits for a character class. */
3896 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3897
3898 /* Extract the number of ranges in range table into COUNT. */
3899 EXTRACT_NUMBER_AND_INCR (count, p);
3900 for (; count > 0; count--, p += 2 * 3) /* XXX */
3901 {
3902 /* Extract the start of each range. */
3903 EXTRACT_CHARACTER (c, p);
3904 j = CHAR_CHARSET (c);
3905 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3906 }
3907 }
3908 break;
3909
3910 case syntaxspec:
3911 case notsyntaxspec:
3912 if (!fastmap) break;
3913 #ifndef emacs
3914 not = (re_opcode_t)p[-1] == notsyntaxspec;
3915 k = *p++;
3916 for (j = 0; j < (1 << BYTEWIDTH); j++)
3917 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3918 fastmap[j] = 1;
3919 break;
3920 #else /* emacs */
3921 /* This match depends on text properties. These end with
3922 aborting optimizations. */
3923 return -1;
3924
3925 case categoryspec:
3926 case notcategoryspec:
3927 if (!fastmap) break;
3928 not = (re_opcode_t)p[-1] == notcategoryspec;
3929 k = *p++;
3930 for (j = 0; j < (1 << BYTEWIDTH); j++)
3931 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3932 fastmap[j] = 1;
3933
3934 if (multibyte)
3935 /* Any character set can possibly contain a character
3936 whose category is K (or not). */
3937 goto set_fastmap_for_multibyte_characters;
3938 break;
3939
3940 /* All cases after this match the empty string. These end with
3941 `continue'. */
3942
3943 case before_dot:
3944 case at_dot:
3945 case after_dot:
3946 #endif /* !emacs */
3947 case no_op:
3948 case begline:
3949 case endline:
3950 case begbuf:
3951 case endbuf:
3952 case wordbound:
3953 case notwordbound:
3954 case wordbeg:
3955 case wordend:
3956 case symbeg:
3957 case symend:
3958 continue;
3959
3960
3961 case jump:
3962 EXTRACT_NUMBER_AND_INCR (j, p);
3963 if (j < 0)
3964 /* Backward jumps can only go back to code that we've already
3965 visited. `re_compile' should make sure this is true. */
3966 break;
3967 p += j;
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3969 {
3970 case on_failure_jump:
3971 case on_failure_keep_string_jump:
3972 case on_failure_jump_loop:
3973 case on_failure_jump_nastyloop:
3974 case on_failure_jump_smart:
3975 p++;
3976 break;
3977 default:
3978 continue;
3979 };
3980 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3981 to jump back to "just after here". */
3982 /* Fallthrough */
3983
3984 case on_failure_jump:
3985 case on_failure_keep_string_jump:
3986 case on_failure_jump_nastyloop:
3987 case on_failure_jump_loop:
3988 case on_failure_jump_smart:
3989 EXTRACT_NUMBER_AND_INCR (j, p);
3990 if (p + j <= p1)
3991 ; /* Backward jump to be ignored. */
3992 else
3993 { /* We have to look down both arms.
3994 We first go down the "straight" path so as to minimize
3995 stack usage when going through alternatives. */
3996 int r = analyse_first (p, pend, fastmap, multibyte);
3997 if (r) return r;
3998 p += j;
3999 }
4000 continue;
4001
4002
4003 case jump_n:
4004 /* This code simply does not properly handle forward jump_n. */
4005 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4006 p += 4;
4007 /* jump_n can either jump or fall through. The (backward) jump
4008 case has already been handled, so we only need to look at the
4009 fallthrough case. */
4010 continue;
4011
4012 case succeed_n:
4013 /* If N == 0, it should be an on_failure_jump_loop instead. */
4014 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4015 p += 4;
4016 /* We only care about one iteration of the loop, so we don't
4017 need to consider the case where this behaves like an
4018 on_failure_jump. */
4019 continue;
4020
4021
4022 case set_number_at:
4023 p += 4;
4024 continue;
4025
4026
4027 case start_memory:
4028 case stop_memory:
4029 p += 1;
4030 continue;
4031
4032
4033 default:
4034 abort (); /* We have listed all the cases. */
4035 } /* switch *p++ */
4036
4037 /* Getting here means we have found the possible starting
4038 characters for one path of the pattern -- and that the empty
4039 string does not match. We need not follow this path further. */
4040 return 0;
4041 } /* while p */
4042
4043 /* We reached the end without matching anything. */
4044 return 1;
4045
4046 } /* analyse_first */
4047 \f
4048 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4049 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4050 characters can start a string that matches the pattern. This fastmap
4051 is used by re_search to skip quickly over impossible starting points.
4052
4053 Character codes above (1 << BYTEWIDTH) are not represented in the
4054 fastmap, but the leading codes are represented. Thus, the fastmap
4055 indicates which character sets could start a match.
4056
4057 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4058 area as BUFP->fastmap.
4059
4060 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4061 the pattern buffer.
4062
4063 Returns 0 if we succeed, -2 if an internal error. */
4064
4065 int
4066 re_compile_fastmap (bufp)
4067 struct re_pattern_buffer *bufp;
4068 {
4069 char *fastmap = bufp->fastmap;
4070 int analysis;
4071
4072 assert (fastmap && bufp->buffer);
4073
4074 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4075 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4076
4077 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4078 fastmap, RE_MULTIBYTE_P (bufp));
4079 bufp->can_be_null = (analysis != 0);
4080 return 0;
4081 } /* re_compile_fastmap */
4082 \f
4083 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4084 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4085 this memory for recording register information. STARTS and ENDS
4086 must be allocated using the malloc library routine, and must each
4087 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4088
4089 If NUM_REGS == 0, then subsequent matches should allocate their own
4090 register data.
4091
4092 Unless this function is called, the first search or match using
4093 PATTERN_BUFFER will allocate its own register data, without
4094 freeing the old data. */
4095
4096 void
4097 re_set_registers (bufp, regs, num_regs, starts, ends)
4098 struct re_pattern_buffer *bufp;
4099 struct re_registers *regs;
4100 unsigned num_regs;
4101 regoff_t *starts, *ends;
4102 {
4103 if (num_regs)
4104 {
4105 bufp->regs_allocated = REGS_REALLOCATE;
4106 regs->num_regs = num_regs;
4107 regs->start = starts;
4108 regs->end = ends;
4109 }
4110 else
4111 {
4112 bufp->regs_allocated = REGS_UNALLOCATED;
4113 regs->num_regs = 0;
4114 regs->start = regs->end = (regoff_t *) 0;
4115 }
4116 }
4117 WEAK_ALIAS (__re_set_registers, re_set_registers)
4118 \f
4119 /* Searching routines. */
4120
4121 /* Like re_search_2, below, but only one string is specified, and
4122 doesn't let you say where to stop matching. */
4123
4124 int
4125 re_search (bufp, string, size, startpos, range, regs)
4126 struct re_pattern_buffer *bufp;
4127 const char *string;
4128 int size, startpos, range;
4129 struct re_registers *regs;
4130 {
4131 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4132 regs, size);
4133 }
4134 WEAK_ALIAS (__re_search, re_search)
4135
4136 /* Head address of virtual concatenation of string. */
4137 #define HEAD_ADDR_VSTRING(P) \
4138 (((P) >= size1 ? string2 : string1))
4139
4140 /* End address of virtual concatenation of string. */
4141 #define STOP_ADDR_VSTRING(P) \
4142 (((P) >= size1 ? string2 + size2 : string1 + size1))
4143
4144 /* Address of POS in the concatenation of virtual string. */
4145 #define POS_ADDR_VSTRING(POS) \
4146 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4147
4148 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4149 virtual concatenation of STRING1 and STRING2, starting first at index
4150 STARTPOS, then at STARTPOS + 1, and so on.
4151
4152 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4153
4154 RANGE is how far to scan while trying to match. RANGE = 0 means try
4155 only at STARTPOS; in general, the last start tried is STARTPOS +
4156 RANGE.
4157
4158 In REGS, return the indices of the virtual concatenation of STRING1
4159 and STRING2 that matched the entire BUFP->buffer and its contained
4160 subexpressions.
4161
4162 Do not consider matching one past the index STOP in the virtual
4163 concatenation of STRING1 and STRING2.
4164
4165 We return either the position in the strings at which the match was
4166 found, -1 if no match, or -2 if error (such as failure
4167 stack overflow). */
4168
4169 int
4170 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4171 struct re_pattern_buffer *bufp;
4172 const char *str1, *str2;
4173 int size1, size2;
4174 int startpos;
4175 int range;
4176 struct re_registers *regs;
4177 int stop;
4178 {
4179 int val;
4180 re_char *string1 = (re_char*) str1;
4181 re_char *string2 = (re_char*) str2;
4182 register char *fastmap = bufp->fastmap;
4183 register RE_TRANSLATE_TYPE translate = bufp->translate;
4184 int total_size = size1 + size2;
4185 int endpos = startpos + range;
4186 boolean anchored_start;
4187
4188 /* Nonzero if we have to concern multibyte character. */
4189 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4190
4191 /* Check for out-of-range STARTPOS. */
4192 if (startpos < 0 || startpos > total_size)
4193 return -1;
4194
4195 /* Fix up RANGE if it might eventually take us outside
4196 the virtual concatenation of STRING1 and STRING2.
4197 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4198 if (endpos < 0)
4199 range = 0 - startpos;
4200 else if (endpos > total_size)
4201 range = total_size - startpos;
4202
4203 /* If the search isn't to be a backwards one, don't waste time in a
4204 search for a pattern anchored at beginning of buffer. */
4205 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4206 {
4207 if (startpos > 0)
4208 return -1;
4209 else
4210 range = 0;
4211 }
4212
4213 #ifdef emacs
4214 /* In a forward search for something that starts with \=.
4215 don't keep searching past point. */
4216 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4217 {
4218 range = PT_BYTE - BEGV_BYTE - startpos;
4219 if (range < 0)
4220 return -1;
4221 }
4222 #endif /* emacs */
4223
4224 /* Update the fastmap now if not correct already. */
4225 if (fastmap && !bufp->fastmap_accurate)
4226 re_compile_fastmap (bufp);
4227
4228 /* See whether the pattern is anchored. */
4229 anchored_start = (bufp->buffer[0] == begline);
4230
4231 #ifdef emacs
4232 gl_state.object = re_match_object;
4233 {
4234 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4235
4236 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4237 }
4238 #endif
4239
4240 /* Loop through the string, looking for a place to start matching. */
4241 for (;;)
4242 {
4243 /* If the pattern is anchored,
4244 skip quickly past places we cannot match.
4245 We don't bother to treat startpos == 0 specially
4246 because that case doesn't repeat. */
4247 if (anchored_start && startpos > 0)
4248 {
4249 if (! ((startpos <= size1 ? string1[startpos - 1]
4250 : string2[startpos - size1 - 1])
4251 == '\n'))
4252 goto advance;
4253 }
4254
4255 /* If a fastmap is supplied, skip quickly over characters that
4256 cannot be the start of a match. If the pattern can match the
4257 null string, however, we don't need to skip characters; we want
4258 the first null string. */
4259 if (fastmap && startpos < total_size && !bufp->can_be_null)
4260 {
4261 register re_char *d;
4262 register re_wchar_t buf_ch;
4263
4264 d = POS_ADDR_VSTRING (startpos);
4265
4266 if (range > 0) /* Searching forwards. */
4267 {
4268 register int lim = 0;
4269 int irange = range;
4270
4271 if (startpos < size1 && startpos + range >= size1)
4272 lim = range - (size1 - startpos);
4273
4274 /* Written out as an if-else to avoid testing `translate'
4275 inside the loop. */
4276 if (RE_TRANSLATE_P (translate))
4277 {
4278 if (multibyte)
4279 while (range > lim)
4280 {
4281 int buf_charlen;
4282
4283 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4284 buf_charlen);
4285
4286 buf_ch = RE_TRANSLATE (translate, buf_ch);
4287 if (buf_ch >= 0400
4288 || fastmap[buf_ch])
4289 break;
4290
4291 range -= buf_charlen;
4292 d += buf_charlen;
4293 }
4294 else
4295 {
4296 /* Convert *d to integer to shut up GCC's
4297 whining about comparison that is always
4298 true. */
4299 int di = *d;
4300
4301 while (range > lim
4302 && !fastmap[RE_TRANSLATE (translate, di)])
4303 {
4304 di = *(++d);
4305 range--;
4306 }
4307 }
4308 }
4309 else
4310 while (range > lim && !fastmap[*d])
4311 {
4312 d++;
4313 range--;
4314 }
4315
4316 startpos += irange - range;
4317 }
4318 else /* Searching backwards. */
4319 {
4320 int room = (startpos >= size1
4321 ? size2 + size1 - startpos
4322 : size1 - startpos);
4323 buf_ch = RE_STRING_CHAR (d, room);
4324 buf_ch = TRANSLATE (buf_ch);
4325
4326 if (! (buf_ch >= 0400
4327 || fastmap[buf_ch]))
4328 goto advance;
4329 }
4330 }
4331
4332 /* If can't match the null string, and that's all we have left, fail. */
4333 if (range >= 0 && startpos == total_size && fastmap
4334 && !bufp->can_be_null)
4335 return -1;
4336
4337 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4338 startpos, regs, stop);
4339 #ifndef REGEX_MALLOC
4340 # ifdef C_ALLOCA
4341 alloca (0);
4342 # endif
4343 #endif
4344
4345 if (val >= 0)
4346 return startpos;
4347
4348 if (val == -2)
4349 return -2;
4350
4351 advance:
4352 if (!range)
4353 break;
4354 else if (range > 0)
4355 {
4356 /* Update STARTPOS to the next character boundary. */
4357 if (multibyte)
4358 {
4359 re_char *p = POS_ADDR_VSTRING (startpos);
4360 re_char *pend = STOP_ADDR_VSTRING (startpos);
4361 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4362
4363 range -= len;
4364 if (range < 0)
4365 break;
4366 startpos += len;
4367 }
4368 else
4369 {
4370 range--;
4371 startpos++;
4372 }
4373 }
4374 else
4375 {
4376 range++;
4377 startpos--;
4378
4379 /* Update STARTPOS to the previous character boundary. */
4380 if (multibyte)
4381 {
4382 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4383 re_char *p0 = p;
4384 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4385
4386 /* Find the head of multibyte form. */
4387 PREV_CHAR_BOUNDARY (p, phead);
4388 range += p0 - 1 - p;
4389 if (range > 0)
4390 break;
4391
4392 startpos -= p0 - 1 - p;
4393 }
4394 }
4395 }
4396 return -1;
4397 } /* re_search_2 */
4398 WEAK_ALIAS (__re_search_2, re_search_2)
4399 \f
4400 /* Declarations and macros for re_match_2. */
4401
4402 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4403 register int len,
4404 RE_TRANSLATE_TYPE translate,
4405 const int multibyte));
4406
4407 /* This converts PTR, a pointer into one of the search strings `string1'
4408 and `string2' into an offset from the beginning of that string. */
4409 #define POINTER_TO_OFFSET(ptr) \
4410 (FIRST_STRING_P (ptr) \
4411 ? ((regoff_t) ((ptr) - string1)) \
4412 : ((regoff_t) ((ptr) - string2 + size1)))
4413
4414 /* Call before fetching a character with *d. This switches over to
4415 string2 if necessary.
4416 Check re_match_2_internal for a discussion of why end_match_2 might
4417 not be within string2 (but be equal to end_match_1 instead). */
4418 #define PREFETCH() \
4419 while (d == dend) \
4420 { \
4421 /* End of string2 => fail. */ \
4422 if (dend == end_match_2) \
4423 goto fail; \
4424 /* End of string1 => advance to string2. */ \
4425 d = string2; \
4426 dend = end_match_2; \
4427 }
4428
4429 /* Call before fetching a char with *d if you already checked other limits.
4430 This is meant for use in lookahead operations like wordend, etc..
4431 where we might need to look at parts of the string that might be
4432 outside of the LIMITs (i.e past `stop'). */
4433 #define PREFETCH_NOLIMIT() \
4434 if (d == end1) \
4435 { \
4436 d = string2; \
4437 dend = end_match_2; \
4438 } \
4439
4440 /* Test if at very beginning or at very end of the virtual concatenation
4441 of `string1' and `string2'. If only one string, it's `string2'. */
4442 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4443 #define AT_STRINGS_END(d) ((d) == end2)
4444
4445
4446 /* Test if D points to a character which is word-constituent. We have
4447 two special cases to check for: if past the end of string1, look at
4448 the first character in string2; and if before the beginning of
4449 string2, look at the last character in string1. */
4450 #define WORDCHAR_P(d) \
4451 (SYNTAX ((d) == end1 ? *string2 \
4452 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4453 == Sword)
4454
4455 /* Disabled due to a compiler bug -- see comment at case wordbound */
4456
4457 /* The comment at case wordbound is following one, but we don't use
4458 AT_WORD_BOUNDARY anymore to support multibyte form.
4459
4460 The DEC Alpha C compiler 3.x generates incorrect code for the
4461 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4462 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4463 macro and introducing temporary variables works around the bug. */
4464
4465 #if 0
4466 /* Test if the character before D and the one at D differ with respect
4467 to being word-constituent. */
4468 #define AT_WORD_BOUNDARY(d) \
4469 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4470 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4471 #endif
4472
4473 /* Free everything we malloc. */
4474 #ifdef MATCH_MAY_ALLOCATE
4475 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4476 # define FREE_VARIABLES() \
4477 do { \
4478 REGEX_FREE_STACK (fail_stack.stack); \
4479 FREE_VAR (regstart); \
4480 FREE_VAR (regend); \
4481 FREE_VAR (best_regstart); \
4482 FREE_VAR (best_regend); \
4483 } while (0)
4484 #else
4485 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4486 #endif /* not MATCH_MAY_ALLOCATE */
4487
4488 \f
4489 /* Optimization routines. */
4490
4491 /* If the operation is a match against one or more chars,
4492 return a pointer to the next operation, else return NULL. */
4493 static re_char *
4494 skip_one_char (p)
4495 re_char *p;
4496 {
4497 switch (SWITCH_ENUM_CAST (*p++))
4498 {
4499 case anychar:
4500 break;
4501
4502 case exactn:
4503 p += *p + 1;
4504 break;
4505
4506 case charset_not:
4507 case charset:
4508 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4509 {
4510 int mcnt;
4511 p = CHARSET_RANGE_TABLE (p - 1);
4512 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4513 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4514 }
4515 else
4516 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4517 break;
4518
4519 case syntaxspec:
4520 case notsyntaxspec:
4521 #ifdef emacs
4522 case categoryspec:
4523 case notcategoryspec:
4524 #endif /* emacs */
4525 p++;
4526 break;
4527
4528 default:
4529 p = NULL;
4530 }
4531 return p;
4532 }
4533
4534
4535 /* Jump over non-matching operations. */
4536 static re_char *
4537 skip_noops (p, pend)
4538 re_char *p, *pend;
4539 {
4540 int mcnt;
4541 while (p < pend)
4542 {
4543 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4544 {
4545 case start_memory:
4546 case stop_memory:
4547 p += 2; break;
4548 case no_op:
4549 p += 1; break;
4550 case jump:
4551 p += 1;
4552 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4553 p += mcnt;
4554 break;
4555 default:
4556 return p;
4557 }
4558 }
4559 assert (p == pend);
4560 return p;
4561 }
4562
4563 /* Non-zero if "p1 matches something" implies "p2 fails". */
4564 static int
4565 mutually_exclusive_p (bufp, p1, p2)
4566 struct re_pattern_buffer *bufp;
4567 re_char *p1, *p2;
4568 {
4569 re_opcode_t op2;
4570 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4571 unsigned char *pend = bufp->buffer + bufp->used;
4572
4573 assert (p1 >= bufp->buffer && p1 < pend
4574 && p2 >= bufp->buffer && p2 <= pend);
4575
4576 /* Skip over open/close-group commands.
4577 If what follows this loop is a ...+ construct,
4578 look at what begins its body, since we will have to
4579 match at least one of that. */
4580 p2 = skip_noops (p2, pend);
4581 /* The same skip can be done for p1, except that this function
4582 is only used in the case where p1 is a simple match operator. */
4583 /* p1 = skip_noops (p1, pend); */
4584
4585 assert (p1 >= bufp->buffer && p1 < pend
4586 && p2 >= bufp->buffer && p2 <= pend);
4587
4588 op2 = p2 == pend ? succeed : *p2;
4589
4590 switch (SWITCH_ENUM_CAST (op2))
4591 {
4592 case succeed:
4593 case endbuf:
4594 /* If we're at the end of the pattern, we can change. */
4595 if (skip_one_char (p1))
4596 {
4597 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4598 return 1;
4599 }
4600 break;
4601
4602 case endline:
4603 case exactn:
4604 {
4605 register re_wchar_t c
4606 = (re_opcode_t) *p2 == endline ? '\n'
4607 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4608
4609 if ((re_opcode_t) *p1 == exactn)
4610 {
4611 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4612 {
4613 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4614 return 1;
4615 }
4616 }
4617
4618 else if ((re_opcode_t) *p1 == charset
4619 || (re_opcode_t) *p1 == charset_not)
4620 {
4621 int not = (re_opcode_t) *p1 == charset_not;
4622
4623 /* Test if C is listed in charset (or charset_not)
4624 at `p1'. */
4625 if (SINGLE_BYTE_CHAR_P (c))
4626 {
4627 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4628 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4629 not = !not;
4630 }
4631 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4632 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4633
4634 /* `not' is equal to 1 if c would match, which means
4635 that we can't change to pop_failure_jump. */
4636 if (!not)
4637 {
4638 DEBUG_PRINT1 (" No match => fast loop.\n");
4639 return 1;
4640 }
4641 }
4642 else if ((re_opcode_t) *p1 == anychar
4643 && c == '\n')
4644 {
4645 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4646 return 1;
4647 }
4648 }
4649 break;
4650
4651 case charset:
4652 {
4653 if ((re_opcode_t) *p1 == exactn)
4654 /* Reuse the code above. */
4655 return mutually_exclusive_p (bufp, p2, p1);
4656
4657 /* It is hard to list up all the character in charset
4658 P2 if it includes multibyte character. Give up in
4659 such case. */
4660 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4661 {
4662 /* Now, we are sure that P2 has no range table.
4663 So, for the size of bitmap in P2, `p2[1]' is
4664 enough. But P1 may have range table, so the
4665 size of bitmap table of P1 is extracted by
4666 using macro `CHARSET_BITMAP_SIZE'.
4667
4668 Since we know that all the character listed in
4669 P2 is ASCII, it is enough to test only bitmap
4670 table of P1. */
4671
4672 if ((re_opcode_t) *p1 == charset)
4673 {
4674 int idx;
4675 /* We win if the charset inside the loop
4676 has no overlap with the one after the loop. */
4677 for (idx = 0;
4678 (idx < (int) p2[1]
4679 && idx < CHARSET_BITMAP_SIZE (p1));
4680 idx++)
4681 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4682 break;
4683
4684 if (idx == p2[1]
4685 || idx == CHARSET_BITMAP_SIZE (p1))
4686 {
4687 DEBUG_PRINT1 (" No match => fast loop.\n");
4688 return 1;
4689 }
4690 }
4691 else if ((re_opcode_t) *p1 == charset_not)
4692 {
4693 int idx;
4694 /* We win if the charset_not inside the loop lists
4695 every character listed in the charset after. */
4696 for (idx = 0; idx < (int) p2[1]; idx++)
4697 if (! (p2[2 + idx] == 0
4698 || (idx < CHARSET_BITMAP_SIZE (p1)
4699 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4700 break;
4701
4702 if (idx == p2[1])
4703 {
4704 DEBUG_PRINT1 (" No match => fast loop.\n");
4705 return 1;
4706 }
4707 }
4708 }
4709 }
4710 break;
4711
4712 case charset_not:
4713 switch (SWITCH_ENUM_CAST (*p1))
4714 {
4715 case exactn:
4716 case charset:
4717 /* Reuse the code above. */
4718 return mutually_exclusive_p (bufp, p2, p1);
4719 case charset_not:
4720 /* When we have two charset_not, it's very unlikely that
4721 they don't overlap. The union of the two sets of excluded
4722 chars should cover all possible chars, which, as a matter of
4723 fact, is virtually impossible in multibyte buffers. */
4724 break;
4725 }
4726 break;
4727
4728 case wordend:
4729 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4730 case symend:
4731 return ((re_opcode_t) *p1 == syntaxspec
4732 && (p1[1] == Ssymbol || p1[1] == Sword));
4733 case notsyntaxspec:
4734 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4735
4736 case wordbeg:
4737 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4738 case symbeg:
4739 return ((re_opcode_t) *p1 == notsyntaxspec
4740 && (p1[1] == Ssymbol || p1[1] == Sword));
4741 case syntaxspec:
4742 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4743
4744 case wordbound:
4745 return (((re_opcode_t) *p1 == notsyntaxspec
4746 || (re_opcode_t) *p1 == syntaxspec)
4747 && p1[1] == Sword);
4748
4749 #ifdef emacs
4750 case categoryspec:
4751 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4752 case notcategoryspec:
4753 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4754 #endif /* emacs */
4755
4756 default:
4757 ;
4758 }
4759
4760 /* Safe default. */
4761 return 0;
4762 }
4763
4764 \f
4765 /* Matching routines. */
4766
4767 #ifndef emacs /* Emacs never uses this. */
4768 /* re_match is like re_match_2 except it takes only a single string. */
4769
4770 int
4771 re_match (bufp, string, size, pos, regs)
4772 struct re_pattern_buffer *bufp;
4773 const char *string;
4774 int size, pos;
4775 struct re_registers *regs;
4776 {
4777 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4778 pos, regs, size);
4779 # if defined C_ALLOCA && !defined REGEX_MALLOC
4780 alloca (0);
4781 # endif
4782 return result;
4783 }
4784 WEAK_ALIAS (__re_match, re_match)
4785 #endif /* not emacs */
4786
4787 #ifdef emacs
4788 /* In Emacs, this is the string or buffer in which we
4789 are matching. It is used for looking up syntax properties. */
4790 Lisp_Object re_match_object;
4791 #endif
4792
4793 /* re_match_2 matches the compiled pattern in BUFP against the
4794 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4795 and SIZE2, respectively). We start matching at POS, and stop
4796 matching at STOP.
4797
4798 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4799 store offsets for the substring each group matched in REGS. See the
4800 documentation for exactly how many groups we fill.
4801
4802 We return -1 if no match, -2 if an internal error (such as the
4803 failure stack overflowing). Otherwise, we return the length of the
4804 matched substring. */
4805
4806 int
4807 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4808 struct re_pattern_buffer *bufp;
4809 const char *string1, *string2;
4810 int size1, size2;
4811 int pos;
4812 struct re_registers *regs;
4813 int stop;
4814 {
4815 int result;
4816
4817 #ifdef emacs
4818 int charpos;
4819 gl_state.object = re_match_object;
4820 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4821 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4822 #endif
4823
4824 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4825 (re_char*) string2, size2,
4826 pos, regs, stop);
4827 #if defined C_ALLOCA && !defined REGEX_MALLOC
4828 alloca (0);
4829 #endif
4830 return result;
4831 }
4832 WEAK_ALIAS (__re_match_2, re_match_2)
4833
4834 /* This is a separate function so that we can force an alloca cleanup
4835 afterwards. */
4836 static int
4837 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4838 struct re_pattern_buffer *bufp;
4839 re_char *string1, *string2;
4840 int size1, size2;
4841 int pos;
4842 struct re_registers *regs;
4843 int stop;
4844 {
4845 /* General temporaries. */
4846 int mcnt;
4847 size_t reg;
4848 boolean not;
4849
4850 /* Just past the end of the corresponding string. */
4851 re_char *end1, *end2;
4852
4853 /* Pointers into string1 and string2, just past the last characters in
4854 each to consider matching. */
4855 re_char *end_match_1, *end_match_2;
4856
4857 /* Where we are in the data, and the end of the current string. */
4858 re_char *d, *dend;
4859
4860 /* Used sometimes to remember where we were before starting matching
4861 an operator so that we can go back in case of failure. This "atomic"
4862 behavior of matching opcodes is indispensable to the correctness
4863 of the on_failure_keep_string_jump optimization. */
4864 re_char *dfail;
4865
4866 /* Where we are in the pattern, and the end of the pattern. */
4867 re_char *p = bufp->buffer;
4868 re_char *pend = p + bufp->used;
4869
4870 /* We use this to map every character in the string. */
4871 RE_TRANSLATE_TYPE translate = bufp->translate;
4872
4873 /* Nonzero if we have to concern multibyte character. */
4874 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4875
4876 /* Failure point stack. Each place that can handle a failure further
4877 down the line pushes a failure point on this stack. It consists of
4878 regstart, and regend for all registers corresponding to
4879 the subexpressions we're currently inside, plus the number of such
4880 registers, and, finally, two char *'s. The first char * is where
4881 to resume scanning the pattern; the second one is where to resume
4882 scanning the strings. */
4883 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4884 fail_stack_type fail_stack;
4885 #endif
4886 #ifdef DEBUG
4887 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4888 #endif
4889
4890 #if defined REL_ALLOC && defined REGEX_MALLOC
4891 /* This holds the pointer to the failure stack, when
4892 it is allocated relocatably. */
4893 fail_stack_elt_t *failure_stack_ptr;
4894 #endif
4895
4896 /* We fill all the registers internally, independent of what we
4897 return, for use in backreferences. The number here includes
4898 an element for register zero. */
4899 size_t num_regs = bufp->re_nsub + 1;
4900
4901 /* Information on the contents of registers. These are pointers into
4902 the input strings; they record just what was matched (on this
4903 attempt) by a subexpression part of the pattern, that is, the
4904 regnum-th regstart pointer points to where in the pattern we began
4905 matching and the regnum-th regend points to right after where we
4906 stopped matching the regnum-th subexpression. (The zeroth register
4907 keeps track of what the whole pattern matches.) */
4908 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4909 re_char **regstart, **regend;
4910 #endif
4911
4912 /* The following record the register info as found in the above
4913 variables when we find a match better than any we've seen before.
4914 This happens as we backtrack through the failure points, which in
4915 turn happens only if we have not yet matched the entire string. */
4916 unsigned best_regs_set = false;
4917 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4918 re_char **best_regstart, **best_regend;
4919 #endif
4920
4921 /* Logically, this is `best_regend[0]'. But we don't want to have to
4922 allocate space for that if we're not allocating space for anything
4923 else (see below). Also, we never need info about register 0 for
4924 any of the other register vectors, and it seems rather a kludge to
4925 treat `best_regend' differently than the rest. So we keep track of
4926 the end of the best match so far in a separate variable. We
4927 initialize this to NULL so that when we backtrack the first time
4928 and need to test it, it's not garbage. */
4929 re_char *match_end = NULL;
4930
4931 #ifdef DEBUG
4932 /* Counts the total number of registers pushed. */
4933 unsigned num_regs_pushed = 0;
4934 #endif
4935
4936 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4937
4938 INIT_FAIL_STACK ();
4939
4940 #ifdef MATCH_MAY_ALLOCATE
4941 /* Do not bother to initialize all the register variables if there are
4942 no groups in the pattern, as it takes a fair amount of time. If
4943 there are groups, we include space for register 0 (the whole
4944 pattern), even though we never use it, since it simplifies the
4945 array indexing. We should fix this. */
4946 if (bufp->re_nsub)
4947 {
4948 regstart = REGEX_TALLOC (num_regs, re_char *);
4949 regend = REGEX_TALLOC (num_regs, re_char *);
4950 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4951 best_regend = REGEX_TALLOC (num_regs, re_char *);
4952
4953 if (!(regstart && regend && best_regstart && best_regend))
4954 {
4955 FREE_VARIABLES ();
4956 return -2;
4957 }
4958 }
4959 else
4960 {
4961 /* We must initialize all our variables to NULL, so that
4962 `FREE_VARIABLES' doesn't try to free them. */
4963 regstart = regend = best_regstart = best_regend = NULL;
4964 }
4965 #endif /* MATCH_MAY_ALLOCATE */
4966
4967 /* The starting position is bogus. */
4968 if (pos < 0 || pos > size1 + size2)
4969 {
4970 FREE_VARIABLES ();
4971 return -1;
4972 }
4973
4974 /* Initialize subexpression text positions to -1 to mark ones that no
4975 start_memory/stop_memory has been seen for. Also initialize the
4976 register information struct. */
4977 for (reg = 1; reg < num_regs; reg++)
4978 regstart[reg] = regend[reg] = NULL;
4979
4980 /* We move `string1' into `string2' if the latter's empty -- but not if
4981 `string1' is null. */
4982 if (size2 == 0 && string1 != NULL)
4983 {
4984 string2 = string1;
4985 size2 = size1;
4986 string1 = 0;
4987 size1 = 0;
4988 }
4989 end1 = string1 + size1;
4990 end2 = string2 + size2;
4991
4992 /* `p' scans through the pattern as `d' scans through the data.
4993 `dend' is the end of the input string that `d' points within. `d'
4994 is advanced into the following input string whenever necessary, but
4995 this happens before fetching; therefore, at the beginning of the
4996 loop, `d' can be pointing at the end of a string, but it cannot
4997 equal `string2'. */
4998 if (pos >= size1)
4999 {
5000 /* Only match within string2. */
5001 d = string2 + pos - size1;
5002 dend = end_match_2 = string2 + stop - size1;
5003 end_match_1 = end1; /* Just to give it a value. */
5004 }
5005 else
5006 {
5007 if (stop < size1)
5008 {
5009 /* Only match within string1. */
5010 end_match_1 = string1 + stop;
5011 /* BEWARE!
5012 When we reach end_match_1, PREFETCH normally switches to string2.
5013 But in the present case, this means that just doing a PREFETCH
5014 makes us jump from `stop' to `gap' within the string.
5015 What we really want here is for the search to stop as
5016 soon as we hit end_match_1. That's why we set end_match_2
5017 to end_match_1 (since PREFETCH fails as soon as we hit
5018 end_match_2). */
5019 end_match_2 = end_match_1;
5020 }
5021 else
5022 { /* It's important to use this code when stop == size so that
5023 moving `d' from end1 to string2 will not prevent the d == dend
5024 check from catching the end of string. */
5025 end_match_1 = end1;
5026 end_match_2 = string2 + stop - size1;
5027 }
5028 d = string1 + pos;
5029 dend = end_match_1;
5030 }
5031
5032 DEBUG_PRINT1 ("The compiled pattern is: ");
5033 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5034 DEBUG_PRINT1 ("The string to match is: `");
5035 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5036 DEBUG_PRINT1 ("'\n");
5037
5038 /* This loops over pattern commands. It exits by returning from the
5039 function if the match is complete, or it drops through if the match
5040 fails at this starting point in the input data. */
5041 for (;;)
5042 {
5043 DEBUG_PRINT2 ("\n%p: ", p);
5044
5045 if (p == pend)
5046 { /* End of pattern means we might have succeeded. */
5047 DEBUG_PRINT1 ("end of pattern ... ");
5048
5049 /* If we haven't matched the entire string, and we want the
5050 longest match, try backtracking. */
5051 if (d != end_match_2)
5052 {
5053 /* 1 if this match ends in the same string (string1 or string2)
5054 as the best previous match. */
5055 boolean same_str_p = (FIRST_STRING_P (match_end)
5056 == FIRST_STRING_P (d));
5057 /* 1 if this match is the best seen so far. */
5058 boolean best_match_p;
5059
5060 /* AIX compiler got confused when this was combined
5061 with the previous declaration. */
5062 if (same_str_p)
5063 best_match_p = d > match_end;
5064 else
5065 best_match_p = !FIRST_STRING_P (d);
5066
5067 DEBUG_PRINT1 ("backtracking.\n");
5068
5069 if (!FAIL_STACK_EMPTY ())
5070 { /* More failure points to try. */
5071
5072 /* If exceeds best match so far, save it. */
5073 if (!best_regs_set || best_match_p)
5074 {
5075 best_regs_set = true;
5076 match_end = d;
5077
5078 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5079
5080 for (reg = 1; reg < num_regs; reg++)
5081 {
5082 best_regstart[reg] = regstart[reg];
5083 best_regend[reg] = regend[reg];
5084 }
5085 }
5086 goto fail;
5087 }
5088
5089 /* If no failure points, don't restore garbage. And if
5090 last match is real best match, don't restore second
5091 best one. */
5092 else if (best_regs_set && !best_match_p)
5093 {
5094 restore_best_regs:
5095 /* Restore best match. It may happen that `dend ==
5096 end_match_1' while the restored d is in string2.
5097 For example, the pattern `x.*y.*z' against the
5098 strings `x-' and `y-z-', if the two strings are
5099 not consecutive in memory. */
5100 DEBUG_PRINT1 ("Restoring best registers.\n");
5101
5102 d = match_end;
5103 dend = ((d >= string1 && d <= end1)
5104 ? end_match_1 : end_match_2);
5105
5106 for (reg = 1; reg < num_regs; reg++)
5107 {
5108 regstart[reg] = best_regstart[reg];
5109 regend[reg] = best_regend[reg];
5110 }
5111 }
5112 } /* d != end_match_2 */
5113
5114 succeed_label:
5115 DEBUG_PRINT1 ("Accepting match.\n");
5116
5117 /* If caller wants register contents data back, do it. */
5118 if (regs && !bufp->no_sub)
5119 {
5120 /* Have the register data arrays been allocated? */
5121 if (bufp->regs_allocated == REGS_UNALLOCATED)
5122 { /* No. So allocate them with malloc. We need one
5123 extra element beyond `num_regs' for the `-1' marker
5124 GNU code uses. */
5125 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5126 regs->start = TALLOC (regs->num_regs, regoff_t);
5127 regs->end = TALLOC (regs->num_regs, regoff_t);
5128 if (regs->start == NULL || regs->end == NULL)
5129 {
5130 FREE_VARIABLES ();
5131 return -2;
5132 }
5133 bufp->regs_allocated = REGS_REALLOCATE;
5134 }
5135 else if (bufp->regs_allocated == REGS_REALLOCATE)
5136 { /* Yes. If we need more elements than were already
5137 allocated, reallocate them. If we need fewer, just
5138 leave it alone. */
5139 if (regs->num_regs < num_regs + 1)
5140 {
5141 regs->num_regs = num_regs + 1;
5142 RETALLOC (regs->start, regs->num_regs, regoff_t);
5143 RETALLOC (regs->end, regs->num_regs, regoff_t);
5144 if (regs->start == NULL || regs->end == NULL)
5145 {
5146 FREE_VARIABLES ();
5147 return -2;
5148 }
5149 }
5150 }
5151 else
5152 {
5153 /* These braces fend off a "empty body in an else-statement"
5154 warning under GCC when assert expands to nothing. */
5155 assert (bufp->regs_allocated == REGS_FIXED);
5156 }
5157
5158 /* Convert the pointer data in `regstart' and `regend' to
5159 indices. Register zero has to be set differently,
5160 since we haven't kept track of any info for it. */
5161 if (regs->num_regs > 0)
5162 {
5163 regs->start[0] = pos;
5164 regs->end[0] = POINTER_TO_OFFSET (d);
5165 }
5166
5167 /* Go through the first `min (num_regs, regs->num_regs)'
5168 registers, since that is all we initialized. */
5169 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5170 {
5171 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5172 regs->start[reg] = regs->end[reg] = -1;
5173 else
5174 {
5175 regs->start[reg]
5176 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5177 regs->end[reg]
5178 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5179 }
5180 }
5181
5182 /* If the regs structure we return has more elements than
5183 were in the pattern, set the extra elements to -1. If
5184 we (re)allocated the registers, this is the case,
5185 because we always allocate enough to have at least one
5186 -1 at the end. */
5187 for (reg = num_regs; reg < regs->num_regs; reg++)
5188 regs->start[reg] = regs->end[reg] = -1;
5189 } /* regs && !bufp->no_sub */
5190
5191 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5192 nfailure_points_pushed, nfailure_points_popped,
5193 nfailure_points_pushed - nfailure_points_popped);
5194 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5195
5196 mcnt = POINTER_TO_OFFSET (d) - pos;
5197
5198 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5199
5200 FREE_VARIABLES ();
5201 return mcnt;
5202 }
5203
5204 /* Otherwise match next pattern command. */
5205 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5206 {
5207 /* Ignore these. Used to ignore the n of succeed_n's which
5208 currently have n == 0. */
5209 case no_op:
5210 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5211 break;
5212
5213 case succeed:
5214 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5215 goto succeed_label;
5216
5217 /* Match the next n pattern characters exactly. The following
5218 byte in the pattern defines n, and the n bytes after that
5219 are the characters to match. */
5220 case exactn:
5221 mcnt = *p++;
5222 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5223
5224 /* Remember the start point to rollback upon failure. */
5225 dfail = d;
5226
5227 /* This is written out as an if-else so we don't waste time
5228 testing `translate' inside the loop. */
5229 if (RE_TRANSLATE_P (translate))
5230 {
5231 if (multibyte)
5232 do
5233 {
5234 int pat_charlen, buf_charlen;
5235 unsigned int pat_ch, buf_ch;
5236
5237 PREFETCH ();
5238 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5239 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5240
5241 if (RE_TRANSLATE (translate, buf_ch)
5242 != pat_ch)
5243 {
5244 d = dfail;
5245 goto fail;
5246 }
5247
5248 p += pat_charlen;
5249 d += buf_charlen;
5250 mcnt -= pat_charlen;
5251 }
5252 while (mcnt > 0);
5253 else
5254 do
5255 {
5256 /* Avoid compiler whining about comparison being
5257 always true. */
5258 int di;
5259
5260 PREFETCH ();
5261 di = *d;
5262 if (RE_TRANSLATE (translate, di) != *p++)
5263 {
5264 d = dfail;
5265 goto fail;
5266 }
5267 d++;
5268 }
5269 while (--mcnt);
5270 }
5271 else
5272 {
5273 do
5274 {
5275 PREFETCH ();
5276 if (*d++ != *p++)
5277 {
5278 d = dfail;
5279 goto fail;
5280 }
5281 }
5282 while (--mcnt);
5283 }
5284 break;
5285
5286
5287 /* Match any character except possibly a newline or a null. */
5288 case anychar:
5289 {
5290 int buf_charlen;
5291 re_wchar_t buf_ch;
5292
5293 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5294
5295 PREFETCH ();
5296 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5297 buf_ch = TRANSLATE (buf_ch);
5298
5299 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5300 && buf_ch == '\n')
5301 || ((bufp->syntax & RE_DOT_NOT_NULL)
5302 && buf_ch == '\000'))
5303 goto fail;
5304
5305 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5306 d += buf_charlen;
5307 }
5308 break;
5309
5310
5311 case charset:
5312 case charset_not:
5313 {
5314 register unsigned int c;
5315 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5316 int len;
5317
5318 /* Start of actual range_table, or end of bitmap if there is no
5319 range table. */
5320 re_char *range_table;
5321
5322 /* Nonzero if there is a range table. */
5323 int range_table_exists;
5324
5325 /* Number of ranges of range table. This is not included
5326 in the initial byte-length of the command. */
5327 int count = 0;
5328
5329 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5330
5331 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5332
5333 if (range_table_exists)
5334 {
5335 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5336 EXTRACT_NUMBER_AND_INCR (count, range_table);
5337 }
5338
5339 PREFETCH ();
5340 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5341 c = TRANSLATE (c); /* The character to match. */
5342
5343 if (SINGLE_BYTE_CHAR_P (c))
5344 { /* Lookup bitmap. */
5345 /* Cast to `unsigned' instead of `unsigned char' in
5346 case the bit list is a full 32 bytes long. */
5347 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5348 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5349 not = !not;
5350 }
5351 #ifdef emacs
5352 else if (range_table_exists)
5353 {
5354 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5355
5356 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5357 | (class_bits & BIT_MULTIBYTE)
5358 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5359 | (class_bits & BIT_SPACE && ISSPACE (c))
5360 | (class_bits & BIT_UPPER && ISUPPER (c))
5361 | (class_bits & BIT_WORD && ISWORD (c)))
5362 not = !not;
5363 else
5364 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5365 }
5366 #endif /* emacs */
5367
5368 if (range_table_exists)
5369 p = CHARSET_RANGE_TABLE_END (range_table, count);
5370 else
5371 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5372
5373 if (!not) goto fail;
5374
5375 d += len;
5376 break;
5377 }
5378
5379
5380 /* The beginning of a group is represented by start_memory.
5381 The argument is the register number. The text
5382 matched within the group is recorded (in the internal
5383 registers data structure) under the register number. */
5384 case start_memory:
5385 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5386
5387 /* In case we need to undo this operation (via backtracking). */
5388 PUSH_FAILURE_REG ((unsigned int)*p);
5389
5390 regstart[*p] = d;
5391 regend[*p] = NULL; /* probably unnecessary. -sm */
5392 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5393
5394 /* Move past the register number and inner group count. */
5395 p += 1;
5396 break;
5397
5398
5399 /* The stop_memory opcode represents the end of a group. Its
5400 argument is the same as start_memory's: the register number. */
5401 case stop_memory:
5402 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5403
5404 assert (!REG_UNSET (regstart[*p]));
5405 /* Strictly speaking, there should be code such as:
5406
5407 assert (REG_UNSET (regend[*p]));
5408 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5409
5410 But the only info to be pushed is regend[*p] and it is known to
5411 be UNSET, so there really isn't anything to push.
5412 Not pushing anything, on the other hand deprives us from the
5413 guarantee that regend[*p] is UNSET since undoing this operation
5414 will not reset its value properly. This is not important since
5415 the value will only be read on the next start_memory or at
5416 the very end and both events can only happen if this stop_memory
5417 is *not* undone. */
5418
5419 regend[*p] = d;
5420 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5421
5422 /* Move past the register number and the inner group count. */
5423 p += 1;
5424 break;
5425
5426
5427 /* \<digit> has been turned into a `duplicate' command which is
5428 followed by the numeric value of <digit> as the register number. */
5429 case duplicate:
5430 {
5431 register re_char *d2, *dend2;
5432 int regno = *p++; /* Get which register to match against. */
5433 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5434
5435 /* Can't back reference a group which we've never matched. */
5436 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5437 goto fail;
5438
5439 /* Where in input to try to start matching. */
5440 d2 = regstart[regno];
5441
5442 /* Remember the start point to rollback upon failure. */
5443 dfail = d;
5444
5445 /* Where to stop matching; if both the place to start and
5446 the place to stop matching are in the same string, then
5447 set to the place to stop, otherwise, for now have to use
5448 the end of the first string. */
5449
5450 dend2 = ((FIRST_STRING_P (regstart[regno])
5451 == FIRST_STRING_P (regend[regno]))
5452 ? regend[regno] : end_match_1);
5453 for (;;)
5454 {
5455 /* If necessary, advance to next segment in register
5456 contents. */
5457 while (d2 == dend2)
5458 {
5459 if (dend2 == end_match_2) break;
5460 if (dend2 == regend[regno]) break;
5461
5462 /* End of string1 => advance to string2. */
5463 d2 = string2;
5464 dend2 = regend[regno];
5465 }
5466 /* At end of register contents => success */
5467 if (d2 == dend2) break;
5468
5469 /* If necessary, advance to next segment in data. */
5470 PREFETCH ();
5471
5472 /* How many characters left in this segment to match. */
5473 mcnt = dend - d;
5474
5475 /* Want how many consecutive characters we can match in
5476 one shot, so, if necessary, adjust the count. */
5477 if (mcnt > dend2 - d2)
5478 mcnt = dend2 - d2;
5479
5480 /* Compare that many; failure if mismatch, else move
5481 past them. */
5482 if (RE_TRANSLATE_P (translate)
5483 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5484 : memcmp (d, d2, mcnt))
5485 {
5486 d = dfail;
5487 goto fail;
5488 }
5489 d += mcnt, d2 += mcnt;
5490 }
5491 }
5492 break;
5493
5494
5495 /* begline matches the empty string at the beginning of the string
5496 (unless `not_bol' is set in `bufp'), and after newlines. */
5497 case begline:
5498 DEBUG_PRINT1 ("EXECUTING begline.\n");
5499
5500 if (AT_STRINGS_BEG (d))
5501 {
5502 if (!bufp->not_bol) break;
5503 }
5504 else
5505 {
5506 unsigned char c;
5507 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5508 if (c == '\n')
5509 break;
5510 }
5511 /* In all other cases, we fail. */
5512 goto fail;
5513
5514
5515 /* endline is the dual of begline. */
5516 case endline:
5517 DEBUG_PRINT1 ("EXECUTING endline.\n");
5518
5519 if (AT_STRINGS_END (d))
5520 {
5521 if (!bufp->not_eol) break;
5522 }
5523 else
5524 {
5525 PREFETCH_NOLIMIT ();
5526 if (*d == '\n')
5527 break;
5528 }
5529 goto fail;
5530
5531
5532 /* Match at the very beginning of the data. */
5533 case begbuf:
5534 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5535 if (AT_STRINGS_BEG (d))
5536 break;
5537 goto fail;
5538
5539
5540 /* Match at the very end of the data. */
5541 case endbuf:
5542 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5543 if (AT_STRINGS_END (d))
5544 break;
5545 goto fail;
5546
5547
5548 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5549 pushes NULL as the value for the string on the stack. Then
5550 `POP_FAILURE_POINT' will keep the current value for the
5551 string, instead of restoring it. To see why, consider
5552 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5553 then the . fails against the \n. But the next thing we want
5554 to do is match the \n against the \n; if we restored the
5555 string value, we would be back at the foo.
5556
5557 Because this is used only in specific cases, we don't need to
5558 check all the things that `on_failure_jump' does, to make
5559 sure the right things get saved on the stack. Hence we don't
5560 share its code. The only reason to push anything on the
5561 stack at all is that otherwise we would have to change
5562 `anychar's code to do something besides goto fail in this
5563 case; that seems worse than this. */
5564 case on_failure_keep_string_jump:
5565 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5566 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5567 mcnt, p + mcnt);
5568
5569 PUSH_FAILURE_POINT (p - 3, NULL);
5570 break;
5571
5572 /* A nasty loop is introduced by the non-greedy *? and +?.
5573 With such loops, the stack only ever contains one failure point
5574 at a time, so that a plain on_failure_jump_loop kind of
5575 cycle detection cannot work. Worse yet, such a detection
5576 can not only fail to detect a cycle, but it can also wrongly
5577 detect a cycle (between different instantiations of the same
5578 loop).
5579 So the method used for those nasty loops is a little different:
5580 We use a special cycle-detection-stack-frame which is pushed
5581 when the on_failure_jump_nastyloop failure-point is *popped*.
5582 This special frame thus marks the beginning of one iteration
5583 through the loop and we can hence easily check right here
5584 whether something matched between the beginning and the end of
5585 the loop. */
5586 case on_failure_jump_nastyloop:
5587 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5588 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5589 mcnt, p + mcnt);
5590
5591 assert ((re_opcode_t)p[-4] == no_op);
5592 {
5593 int cycle = 0;
5594 CHECK_INFINITE_LOOP (p - 4, d);
5595 if (!cycle)
5596 /* If there's a cycle, just continue without pushing
5597 this failure point. The failure point is the "try again"
5598 option, which shouldn't be tried.
5599 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5600 PUSH_FAILURE_POINT (p - 3, d);
5601 }
5602 break;
5603
5604 /* Simple loop detecting on_failure_jump: just check on the
5605 failure stack if the same spot was already hit earlier. */
5606 case on_failure_jump_loop:
5607 on_failure:
5608 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5609 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5610 mcnt, p + mcnt);
5611 {
5612 int cycle = 0;
5613 CHECK_INFINITE_LOOP (p - 3, d);
5614 if (cycle)
5615 /* If there's a cycle, get out of the loop, as if the matching
5616 had failed. We used to just `goto fail' here, but that was
5617 aborting the search a bit too early: we want to keep the
5618 empty-loop-match and keep matching after the loop.
5619 We want (x?)*y\1z to match both xxyz and xxyxz. */
5620 p += mcnt;
5621 else
5622 PUSH_FAILURE_POINT (p - 3, d);
5623 }
5624 break;
5625
5626
5627 /* Uses of on_failure_jump:
5628
5629 Each alternative starts with an on_failure_jump that points
5630 to the beginning of the next alternative. Each alternative
5631 except the last ends with a jump that in effect jumps past
5632 the rest of the alternatives. (They really jump to the
5633 ending jump of the following alternative, because tensioning
5634 these jumps is a hassle.)
5635
5636 Repeats start with an on_failure_jump that points past both
5637 the repetition text and either the following jump or
5638 pop_failure_jump back to this on_failure_jump. */
5639 case on_failure_jump:
5640 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5641 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5642 mcnt, p + mcnt);
5643
5644 PUSH_FAILURE_POINT (p -3, d);
5645 break;
5646
5647 /* This operation is used for greedy *.
5648 Compare the beginning of the repeat with what in the
5649 pattern follows its end. If we can establish that there
5650 is nothing that they would both match, i.e., that we
5651 would have to backtrack because of (as in, e.g., `a*a')
5652 then we can use a non-backtracking loop based on
5653 on_failure_keep_string_jump instead of on_failure_jump. */
5654 case on_failure_jump_smart:
5655 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5656 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5657 mcnt, p + mcnt);
5658 {
5659 re_char *p1 = p; /* Next operation. */
5660 /* Here, we discard `const', making re_match non-reentrant. */
5661 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5662 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5663
5664 p -= 3; /* Reset so that we will re-execute the
5665 instruction once it's been changed. */
5666
5667 EXTRACT_NUMBER (mcnt, p2 - 2);
5668
5669 /* Ensure this is a indeed the trivial kind of loop
5670 we are expecting. */
5671 assert (skip_one_char (p1) == p2 - 3);
5672 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5673 DEBUG_STATEMENT (debug += 2);
5674 if (mutually_exclusive_p (bufp, p1, p2))
5675 {
5676 /* Use a fast `on_failure_keep_string_jump' loop. */
5677 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5678 *p3 = (unsigned char) on_failure_keep_string_jump;
5679 STORE_NUMBER (p2 - 2, mcnt + 3);
5680 }
5681 else
5682 {
5683 /* Default to a safe `on_failure_jump' loop. */
5684 DEBUG_PRINT1 (" smart default => slow loop.\n");
5685 *p3 = (unsigned char) on_failure_jump;
5686 }
5687 DEBUG_STATEMENT (debug -= 2);
5688 }
5689 break;
5690
5691 /* Unconditionally jump (without popping any failure points). */
5692 case jump:
5693 unconditional_jump:
5694 IMMEDIATE_QUIT_CHECK;
5695 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5696 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5697 p += mcnt; /* Do the jump. */
5698 DEBUG_PRINT2 ("(to %p).\n", p);
5699 break;
5700
5701
5702 /* Have to succeed matching what follows at least n times.
5703 After that, handle like `on_failure_jump'. */
5704 case succeed_n:
5705 /* Signedness doesn't matter since we only compare MCNT to 0. */
5706 EXTRACT_NUMBER (mcnt, p + 2);
5707 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5708
5709 /* Originally, mcnt is how many times we HAVE to succeed. */
5710 if (mcnt != 0)
5711 {
5712 /* Here, we discard `const', making re_match non-reentrant. */
5713 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5714 mcnt--;
5715 p += 4;
5716 PUSH_NUMBER (p2, mcnt);
5717 }
5718 else
5719 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5720 goto on_failure;
5721 break;
5722
5723 case jump_n:
5724 /* Signedness doesn't matter since we only compare MCNT to 0. */
5725 EXTRACT_NUMBER (mcnt, p + 2);
5726 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5727
5728 /* Originally, this is how many times we CAN jump. */
5729 if (mcnt != 0)
5730 {
5731 /* Here, we discard `const', making re_match non-reentrant. */
5732 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5733 mcnt--;
5734 PUSH_NUMBER (p2, mcnt);
5735 goto unconditional_jump;
5736 }
5737 /* If don't have to jump any more, skip over the rest of command. */
5738 else
5739 p += 4;
5740 break;
5741
5742 case set_number_at:
5743 {
5744 unsigned char *p2; /* Location of the counter. */
5745 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5746
5747 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5748 /* Here, we discard `const', making re_match non-reentrant. */
5749 p2 = (unsigned char*) p + mcnt;
5750 /* Signedness doesn't matter since we only copy MCNT's bits . */
5751 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5752 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5753 PUSH_NUMBER (p2, mcnt);
5754 break;
5755 }
5756
5757 case wordbound:
5758 case notwordbound:
5759 not = (re_opcode_t) *(p - 1) == notwordbound;
5760 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5761
5762 /* We SUCCEED (or FAIL) in one of the following cases: */
5763
5764 /* Case 1: D is at the beginning or the end of string. */
5765 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5766 not = !not;
5767 else
5768 {
5769 /* C1 is the character before D, S1 is the syntax of C1, C2
5770 is the character at D, and S2 is the syntax of C2. */
5771 re_wchar_t c1, c2;
5772 int s1, s2;
5773 #ifdef emacs
5774 int offset = PTR_TO_OFFSET (d - 1);
5775 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5776 UPDATE_SYNTAX_TABLE (charpos);
5777 #endif
5778 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5779 s1 = SYNTAX (c1);
5780 #ifdef emacs
5781 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5782 #endif
5783 PREFETCH_NOLIMIT ();
5784 c2 = RE_STRING_CHAR (d, dend - d);
5785 s2 = SYNTAX (c2);
5786
5787 if (/* Case 2: Only one of S1 and S2 is Sword. */
5788 ((s1 == Sword) != (s2 == Sword))
5789 /* Case 3: Both of S1 and S2 are Sword, and macro
5790 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5791 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5792 not = !not;
5793 }
5794 if (not)
5795 break;
5796 else
5797 goto fail;
5798
5799 case wordbeg:
5800 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5801
5802 /* We FAIL in one of the following cases: */
5803
5804 /* Case 1: D is at the end of string. */
5805 if (AT_STRINGS_END (d))
5806 goto fail;
5807 else
5808 {
5809 /* C1 is the character before D, S1 is the syntax of C1, C2
5810 is the character at D, and S2 is the syntax of C2. */
5811 re_wchar_t c1, c2;
5812 int s1, s2;
5813 #ifdef emacs
5814 int offset = PTR_TO_OFFSET (d);
5815 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5816 UPDATE_SYNTAX_TABLE (charpos);
5817 #endif
5818 PREFETCH ();
5819 c2 = RE_STRING_CHAR (d, dend - d);
5820 s2 = SYNTAX (c2);
5821
5822 /* Case 2: S2 is not Sword. */
5823 if (s2 != Sword)
5824 goto fail;
5825
5826 /* Case 3: D is not at the beginning of string ... */
5827 if (!AT_STRINGS_BEG (d))
5828 {
5829 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5830 #ifdef emacs
5831 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5832 #endif
5833 s1 = SYNTAX (c1);
5834
5835 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5836 returns 0. */
5837 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5838 goto fail;
5839 }
5840 }
5841 break;
5842
5843 case wordend:
5844 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5845
5846 /* We FAIL in one of the following cases: */
5847
5848 /* Case 1: D is at the beginning of string. */
5849 if (AT_STRINGS_BEG (d))
5850 goto fail;
5851 else
5852 {
5853 /* C1 is the character before D, S1 is the syntax of C1, C2
5854 is the character at D, and S2 is the syntax of C2. */
5855 re_wchar_t c1, c2;
5856 int s1, s2;
5857 #ifdef emacs
5858 int offset = PTR_TO_OFFSET (d) - 1;
5859 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5860 UPDATE_SYNTAX_TABLE (charpos);
5861 #endif
5862 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5863 s1 = SYNTAX (c1);
5864
5865 /* Case 2: S1 is not Sword. */
5866 if (s1 != Sword)
5867 goto fail;
5868
5869 /* Case 3: D is not at the end of string ... */
5870 if (!AT_STRINGS_END (d))
5871 {
5872 PREFETCH_NOLIMIT ();
5873 c2 = RE_STRING_CHAR (d, dend - d);
5874 #ifdef emacs
5875 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5876 #endif
5877 s2 = SYNTAX (c2);
5878
5879 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5880 returns 0. */
5881 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5882 goto fail;
5883 }
5884 }
5885 break;
5886
5887 case symbeg:
5888 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5889
5890 /* We FAIL in one of the following cases: */
5891
5892 /* Case 1: D is at the end of string. */
5893 if (AT_STRINGS_END (d))
5894 goto fail;
5895 else
5896 {
5897 /* C1 is the character before D, S1 is the syntax of C1, C2
5898 is the character at D, and S2 is the syntax of C2. */
5899 re_wchar_t c1, c2;
5900 int s1, s2;
5901 #ifdef emacs
5902 int offset = PTR_TO_OFFSET (d);
5903 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5904 UPDATE_SYNTAX_TABLE (charpos);
5905 #endif
5906 PREFETCH ();
5907 c2 = RE_STRING_CHAR (d, dend - d);
5908 s2 = SYNTAX (c2);
5909
5910 /* Case 2: S2 is neither Sword nor Ssymbol. */
5911 if (s2 != Sword && s2 != Ssymbol)
5912 goto fail;
5913
5914 /* Case 3: D is not at the beginning of string ... */
5915 if (!AT_STRINGS_BEG (d))
5916 {
5917 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5918 #ifdef emacs
5919 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5920 #endif
5921 s1 = SYNTAX (c1);
5922
5923 /* ... and S1 is Sword or Ssymbol. */
5924 if (s1 == Sword || s1 == Ssymbol)
5925 goto fail;
5926 }
5927 }
5928 break;
5929
5930 case symend:
5931 DEBUG_PRINT1 ("EXECUTING symend.\n");
5932
5933 /* We FAIL in one of the following cases: */
5934
5935 /* Case 1: D is at the beginning of string. */
5936 if (AT_STRINGS_BEG (d))
5937 goto fail;
5938 else
5939 {
5940 /* C1 is the character before D, S1 is the syntax of C1, C2
5941 is the character at D, and S2 is the syntax of C2. */
5942 re_wchar_t c1, c2;
5943 int s1, s2;
5944 #ifdef emacs
5945 int offset = PTR_TO_OFFSET (d) - 1;
5946 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5947 UPDATE_SYNTAX_TABLE (charpos);
5948 #endif
5949 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5950 s1 = SYNTAX (c1);
5951
5952 /* Case 2: S1 is neither Ssymbol nor Sword. */
5953 if (s1 != Sword && s1 != Ssymbol)
5954 goto fail;
5955
5956 /* Case 3: D is not at the end of string ... */
5957 if (!AT_STRINGS_END (d))
5958 {
5959 PREFETCH_NOLIMIT ();
5960 c2 = RE_STRING_CHAR (d, dend - d);
5961 #ifdef emacs
5962 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5963 #endif
5964 s2 = SYNTAX (c2);
5965
5966 /* ... and S2 is Sword or Ssymbol. */
5967 if (s2 == Sword || s2 == Ssymbol)
5968 goto fail;
5969 }
5970 }
5971 break;
5972
5973 case syntaxspec:
5974 case notsyntaxspec:
5975 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5976 mcnt = *p++;
5977 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5978 PREFETCH ();
5979 #ifdef emacs
5980 {
5981 int offset = PTR_TO_OFFSET (d);
5982 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5983 UPDATE_SYNTAX_TABLE (pos1);
5984 }
5985 #endif
5986 {
5987 int len;
5988 re_wchar_t c;
5989
5990 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5991
5992 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5993 goto fail;
5994 d += len;
5995 }
5996 break;
5997
5998 #ifdef emacs
5999 case before_dot:
6000 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6001 if (PTR_BYTE_POS (d) >= PT_BYTE)
6002 goto fail;
6003 break;
6004
6005 case at_dot:
6006 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6007 if (PTR_BYTE_POS (d) != PT_BYTE)
6008 goto fail;
6009 break;
6010
6011 case after_dot:
6012 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6013 if (PTR_BYTE_POS (d) <= PT_BYTE)
6014 goto fail;
6015 break;
6016
6017 case categoryspec:
6018 case notcategoryspec:
6019 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6020 mcnt = *p++;
6021 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6022 PREFETCH ();
6023 {
6024 int len;
6025 re_wchar_t c;
6026
6027 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6028
6029 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6030 goto fail;
6031 d += len;
6032 }
6033 break;
6034
6035 #endif /* emacs */
6036
6037 default:
6038 abort ();
6039 }
6040 continue; /* Successfully executed one pattern command; keep going. */
6041
6042
6043 /* We goto here if a matching operation fails. */
6044 fail:
6045 IMMEDIATE_QUIT_CHECK;
6046 if (!FAIL_STACK_EMPTY ())
6047 {
6048 re_char *str, *pat;
6049 /* A restart point is known. Restore to that state. */
6050 DEBUG_PRINT1 ("\nFAIL:\n");
6051 POP_FAILURE_POINT (str, pat);
6052 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6053 {
6054 case on_failure_keep_string_jump:
6055 assert (str == NULL);
6056 goto continue_failure_jump;
6057
6058 case on_failure_jump_nastyloop:
6059 assert ((re_opcode_t)pat[-2] == no_op);
6060 PUSH_FAILURE_POINT (pat - 2, str);
6061 /* Fallthrough */
6062
6063 case on_failure_jump_loop:
6064 case on_failure_jump:
6065 case succeed_n:
6066 d = str;
6067 continue_failure_jump:
6068 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6069 p = pat + mcnt;
6070 break;
6071
6072 case no_op:
6073 /* A special frame used for nastyloops. */
6074 goto fail;
6075
6076 default:
6077 abort();
6078 }
6079
6080 assert (p >= bufp->buffer && p <= pend);
6081
6082 if (d >= string1 && d <= end1)
6083 dend = end_match_1;
6084 }
6085 else
6086 break; /* Matching at this starting point really fails. */
6087 } /* for (;;) */
6088
6089 if (best_regs_set)
6090 goto restore_best_regs;
6091
6092 FREE_VARIABLES ();
6093
6094 return -1; /* Failure to match. */
6095 } /* re_match_2 */
6096 \f
6097 /* Subroutine definitions for re_match_2. */
6098
6099 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6100 bytes; nonzero otherwise. */
6101
6102 static int
6103 bcmp_translate (s1, s2, len, translate, multibyte)
6104 re_char *s1, *s2;
6105 register int len;
6106 RE_TRANSLATE_TYPE translate;
6107 const int multibyte;
6108 {
6109 register re_char *p1 = s1, *p2 = s2;
6110 re_char *p1_end = s1 + len;
6111 re_char *p2_end = s2 + len;
6112
6113 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6114 different lengths, but relying on a single `len' would break this. -sm */
6115 while (p1 < p1_end && p2 < p2_end)
6116 {
6117 int p1_charlen, p2_charlen;
6118 re_wchar_t p1_ch, p2_ch;
6119
6120 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6121 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6122
6123 if (RE_TRANSLATE (translate, p1_ch)
6124 != RE_TRANSLATE (translate, p2_ch))
6125 return 1;
6126
6127 p1 += p1_charlen, p2 += p2_charlen;
6128 }
6129
6130 if (p1 != p1_end || p2 != p2_end)
6131 return 1;
6132
6133 return 0;
6134 }
6135 \f
6136 /* Entry points for GNU code. */
6137
6138 /* re_compile_pattern is the GNU regular expression compiler: it
6139 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6140 Returns 0 if the pattern was valid, otherwise an error string.
6141
6142 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6143 are set in BUFP on entry.
6144
6145 We call regex_compile to do the actual compilation. */
6146
6147 const char *
6148 re_compile_pattern (pattern, length, bufp)
6149 const char *pattern;
6150 size_t length;
6151 struct re_pattern_buffer *bufp;
6152 {
6153 reg_errcode_t ret;
6154
6155 /* GNU code is written to assume at least RE_NREGS registers will be set
6156 (and at least one extra will be -1). */
6157 bufp->regs_allocated = REGS_UNALLOCATED;
6158
6159 /* And GNU code determines whether or not to get register information
6160 by passing null for the REGS argument to re_match, etc., not by
6161 setting no_sub. */
6162 bufp->no_sub = 0;
6163
6164 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6165
6166 if (!ret)
6167 return NULL;
6168 return gettext (re_error_msgid[(int) ret]);
6169 }
6170 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6171 \f
6172 /* Entry points compatible with 4.2 BSD regex library. We don't define
6173 them unless specifically requested. */
6174
6175 #if defined _REGEX_RE_COMP || defined _LIBC
6176
6177 /* BSD has one and only one pattern buffer. */
6178 static struct re_pattern_buffer re_comp_buf;
6179
6180 char *
6181 # ifdef _LIBC
6182 /* Make these definitions weak in libc, so POSIX programs can redefine
6183 these names if they don't use our functions, and still use
6184 regcomp/regexec below without link errors. */
6185 weak_function
6186 # endif
6187 re_comp (s)
6188 const char *s;
6189 {
6190 reg_errcode_t ret;
6191
6192 if (!s)
6193 {
6194 if (!re_comp_buf.buffer)
6195 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6196 return (char *) gettext ("No previous regular expression");
6197 return 0;
6198 }
6199
6200 if (!re_comp_buf.buffer)
6201 {
6202 re_comp_buf.buffer = (unsigned char *) malloc (200);
6203 if (re_comp_buf.buffer == NULL)
6204 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6205 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6206 re_comp_buf.allocated = 200;
6207
6208 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6209 if (re_comp_buf.fastmap == NULL)
6210 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6211 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6212 }
6213
6214 /* Since `re_exec' always passes NULL for the `regs' argument, we
6215 don't need to initialize the pattern buffer fields which affect it. */
6216
6217 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6218
6219 if (!ret)
6220 return NULL;
6221
6222 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6223 return (char *) gettext (re_error_msgid[(int) ret]);
6224 }
6225
6226
6227 int
6228 # ifdef _LIBC
6229 weak_function
6230 # endif
6231 re_exec (s)
6232 const char *s;
6233 {
6234 const int len = strlen (s);
6235 return
6236 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6237 }
6238 #endif /* _REGEX_RE_COMP */
6239 \f
6240 /* POSIX.2 functions. Don't define these for Emacs. */
6241
6242 #ifndef emacs
6243
6244 /* regcomp takes a regular expression as a string and compiles it.
6245
6246 PREG is a regex_t *. We do not expect any fields to be initialized,
6247 since POSIX says we shouldn't. Thus, we set
6248
6249 `buffer' to the compiled pattern;
6250 `used' to the length of the compiled pattern;
6251 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6252 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6253 RE_SYNTAX_POSIX_BASIC;
6254 `fastmap' to an allocated space for the fastmap;
6255 `fastmap_accurate' to zero;
6256 `re_nsub' to the number of subexpressions in PATTERN.
6257
6258 PATTERN is the address of the pattern string.
6259
6260 CFLAGS is a series of bits which affect compilation.
6261
6262 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6263 use POSIX basic syntax.
6264
6265 If REG_NEWLINE is set, then . and [^...] don't match newline.
6266 Also, regexec will try a match beginning after every newline.
6267
6268 If REG_ICASE is set, then we considers upper- and lowercase
6269 versions of letters to be equivalent when matching.
6270
6271 If REG_NOSUB is set, then when PREG is passed to regexec, that
6272 routine will report only success or failure, and nothing about the
6273 registers.
6274
6275 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6276 the return codes and their meanings.) */
6277
6278 int
6279 regcomp (preg, pattern, cflags)
6280 regex_t *__restrict preg;
6281 const char *__restrict pattern;
6282 int cflags;
6283 {
6284 reg_errcode_t ret;
6285 reg_syntax_t syntax
6286 = (cflags & REG_EXTENDED) ?
6287 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6288
6289 /* regex_compile will allocate the space for the compiled pattern. */
6290 preg->buffer = 0;
6291 preg->allocated = 0;
6292 preg->used = 0;
6293
6294 /* Try to allocate space for the fastmap. */
6295 preg->fastmap = (char *) xmalloc (1 << BYTEWIDTH);
6296
6297 if (cflags & REG_ICASE)
6298 {
6299 unsigned i;
6300
6301 preg->translate
6302 = (RE_TRANSLATE_TYPE) xmalloc (CHAR_SET_SIZE
6303 * sizeof (*(RE_TRANSLATE_TYPE)0));
6304 if (preg->translate == NULL)
6305 return (int) REG_ESPACE;
6306
6307 /* Map uppercase characters to corresponding lowercase ones. */
6308 for (i = 0; i < CHAR_SET_SIZE; i++)
6309 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6310 }
6311 else
6312 preg->translate = NULL;
6313
6314 /* If REG_NEWLINE is set, newlines are treated differently. */
6315 if (cflags & REG_NEWLINE)
6316 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6317 syntax &= ~RE_DOT_NEWLINE;
6318 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6319 }
6320 else
6321 syntax |= RE_NO_NEWLINE_ANCHOR;
6322
6323 preg->no_sub = !!(cflags & REG_NOSUB);
6324
6325 /* POSIX says a null character in the pattern terminates it, so we
6326 can use strlen here in compiling the pattern. */
6327 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6328
6329 /* POSIX doesn't distinguish between an unmatched open-group and an
6330 unmatched close-group: both are REG_EPAREN. */
6331 if (ret == REG_ERPAREN)
6332 ret = REG_EPAREN;
6333
6334 if (ret == REG_NOERROR && preg->fastmap)
6335 { /* Compute the fastmap now, since regexec cannot modify the pattern
6336 buffer. */
6337 re_compile_fastmap (preg);
6338 if (preg->can_be_null)
6339 { /* The fastmap can't be used anyway. */
6340 free (preg->fastmap);
6341 preg->fastmap = NULL;
6342 }
6343 }
6344 return (int) ret;
6345 }
6346 WEAK_ALIAS (__regcomp, regcomp)
6347
6348
6349 /* regexec searches for a given pattern, specified by PREG, in the
6350 string STRING.
6351
6352 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6353 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6354 least NMATCH elements, and we set them to the offsets of the
6355 corresponding matched substrings.
6356
6357 EFLAGS specifies `execution flags' which affect matching: if
6358 REG_NOTBOL is set, then ^ does not match at the beginning of the
6359 string; if REG_NOTEOL is set, then $ does not match at the end.
6360
6361 We return 0 if we find a match and REG_NOMATCH if not. */
6362
6363 int
6364 regexec (preg, string, nmatch, pmatch, eflags)
6365 const regex_t *__restrict preg;
6366 const char *__restrict string;
6367 size_t nmatch;
6368 regmatch_t pmatch[__restrict_arr];
6369 int eflags;
6370 {
6371 int ret;
6372 struct re_registers regs;
6373 regex_t private_preg;
6374 int len = strlen (string);
6375 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6376
6377 private_preg = *preg;
6378
6379 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6380 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6381
6382 /* The user has told us exactly how many registers to return
6383 information about, via `nmatch'. We have to pass that on to the
6384 matching routines. */
6385 private_preg.regs_allocated = REGS_FIXED;
6386
6387 if (want_reg_info)
6388 {
6389 regs.num_regs = nmatch;
6390 regs.start = TALLOC (nmatch * 2, regoff_t);
6391 if (regs.start == NULL)
6392 return (int) REG_NOMATCH;
6393 regs.end = regs.start + nmatch;
6394 }
6395
6396 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6397 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6398 was a little bit longer but still only matching the real part.
6399 This works because the `endline' will check for a '\n' and will find a
6400 '\0', correctly deciding that this is not the end of a line.
6401 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6402 a convenient '\0' there. For all we know, the string could be preceded
6403 by '\n' which would throw things off. */
6404
6405 /* Perform the searching operation. */
6406 ret = re_search (&private_preg, string, len,
6407 /* start: */ 0, /* range: */ len,
6408 want_reg_info ? &regs : (struct re_registers *) 0);
6409
6410 /* Copy the register information to the POSIX structure. */
6411 if (want_reg_info)
6412 {
6413 if (ret >= 0)
6414 {
6415 unsigned r;
6416
6417 for (r = 0; r < nmatch; r++)
6418 {
6419 pmatch[r].rm_so = regs.start[r];
6420 pmatch[r].rm_eo = regs.end[r];
6421 }
6422 }
6423
6424 /* If we needed the temporary register info, free the space now. */
6425 free (regs.start);
6426 }
6427
6428 /* We want zero return to mean success, unlike `re_search'. */
6429 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6430 }
6431 WEAK_ALIAS (__regexec, regexec)
6432
6433
6434 /* Returns a message corresponding to an error code, ERRCODE, returned
6435 from either regcomp or regexec. We don't use PREG here. */
6436
6437 size_t
6438 regerror (errcode, preg, errbuf, errbuf_size)
6439 int errcode;
6440 const regex_t *preg;
6441 char *errbuf;
6442 size_t errbuf_size;
6443 {
6444 const char *msg;
6445 size_t msg_size;
6446
6447 if (errcode < 0
6448 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6449 /* Only error codes returned by the rest of the code should be passed
6450 to this routine. If we are given anything else, or if other regex
6451 code generates an invalid error code, then the program has a bug.
6452 Dump core so we can fix it. */
6453 abort ();
6454
6455 msg = gettext (re_error_msgid[errcode]);
6456
6457 msg_size = strlen (msg) + 1; /* Includes the null. */
6458
6459 if (errbuf_size != 0)
6460 {
6461 if (msg_size > errbuf_size)
6462 {
6463 strncpy (errbuf, msg, errbuf_size - 1);
6464 errbuf[errbuf_size - 1] = 0;
6465 }
6466 else
6467 strcpy (errbuf, msg);
6468 }
6469
6470 return msg_size;
6471 }
6472 WEAK_ALIAS (__regerror, regerror)
6473
6474
6475 /* Free dynamically allocated space used by PREG. */
6476
6477 void
6478 regfree (preg)
6479 regex_t *preg;
6480 {
6481 if (preg->buffer != NULL)
6482 free (preg->buffer);
6483 preg->buffer = NULL;
6484
6485 preg->allocated = 0;
6486 preg->used = 0;
6487
6488 if (preg->fastmap != NULL)
6489 free (preg->fastmap);
6490 preg->fastmap = NULL;
6491 preg->fastmap_accurate = 0;
6492
6493 if (preg->translate != NULL)
6494 free (preg->translate);
6495 preg->translate = NULL;
6496 }
6497 WEAK_ALIAS (__regfree, regfree)
6498
6499 #endif /* not emacs */
6500
6501 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6502 (do not change this comment) */