Tried to make docstring less `colloquial'...
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <stdio.h>
26 #include "lisp.h"
27 #include "commands.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "keyboard.h"
31 #include "termhooks.h"
32 #include "blockinput.h"
33 #include "puresize.h"
34 #include "intervals.h"
35 #include "keymap.h"
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion in filenames */
69 Lisp_Object Vminibuffer_local_filename_completion_map;
70
71 /* keymap used for minibuffers when doing completion in filenames
72 with require-match*/
73 Lisp_Object Vminibuffer_local_must_match_filename_map;
74
75 /* keymap used for minibuffers when doing completion and require a match */
76 /* was MinibufLocalMustMatchMap */
77 Lisp_Object Vminibuffer_local_must_match_map;
78
79 /* Alist of minor mode variables and keymaps. */
80 Lisp_Object Vminor_mode_map_alist;
81
82 /* Alist of major-mode-specific overrides for
83 minor mode variables and keymaps. */
84 Lisp_Object Vminor_mode_overriding_map_alist;
85
86 /* List of emulation mode keymap alists. */
87 Lisp_Object Vemulation_mode_map_alists;
88
89 /* Keymap mapping ASCII function key sequences onto their preferred forms.
90 Initialized by the terminal-specific lisp files. See DEFVAR for more
91 documentation. */
92 Lisp_Object Vfunction_key_map;
93
94 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
95 Lisp_Object Vkey_translation_map;
96
97 /* A list of all commands given new bindings since a certain time
98 when nil was stored here.
99 This is used to speed up recomputation of menu key equivalents
100 when Emacs starts up. t means don't record anything here. */
101 Lisp_Object Vdefine_key_rebound_commands;
102
103 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
104
105 /* Alist of elements like (DEL . "\d"). */
106 static Lisp_Object exclude_keys;
107
108 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
109 static Lisp_Object command_remapping_vector;
110
111 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
112 in a string key sequence is equivalent to prefixing with this
113 character. */
114 extern Lisp_Object meta_prefix_char;
115
116 extern Lisp_Object Voverriding_local_map;
117
118 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
119 static Lisp_Object where_is_cache;
120 /* Which keymaps are reverse-stored in the cache. */
121 static Lisp_Object where_is_cache_keymaps;
122
123 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
124 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
125
126 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
127 static void describe_command P_ ((Lisp_Object, Lisp_Object));
128 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
129 static void describe_map P_ ((Lisp_Object, Lisp_Object,
130 void (*) P_ ((Lisp_Object, Lisp_Object)),
131 int, Lisp_Object, Lisp_Object*, int, int));
132 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
133 void (*) (Lisp_Object, Lisp_Object), int,
134 Lisp_Object, Lisp_Object, int *,
135 int, int, int));
136 static void silly_event_symbol_error P_ ((Lisp_Object));
137 \f
138 /* Keymap object support - constructors and predicates. */
139
140 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
141 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
142 CHARTABLE is a char-table that holds the bindings for all characters
143 without modifiers. All entries in it are initially nil, meaning
144 "command undefined". ALIST is an assoc-list which holds bindings for
145 function keys, mouse events, and any other things that appear in the
146 input stream. Initially, ALIST is nil.
147
148 The optional arg STRING supplies a menu name for the keymap
149 in case you use it as a menu with `x-popup-menu'. */)
150 (string)
151 Lisp_Object string;
152 {
153 Lisp_Object tail;
154 if (!NILP (string))
155 tail = Fcons (string, Qnil);
156 else
157 tail = Qnil;
158 return Fcons (Qkeymap,
159 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
160 }
161
162 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
163 doc: /* Construct and return a new sparse keymap.
164 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
165 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
166 which binds the function key or mouse event SYMBOL to DEFINITION.
167 Initially the alist is nil.
168
169 The optional arg STRING supplies a menu name for the keymap
170 in case you use it as a menu with `x-popup-menu'. */)
171 (string)
172 Lisp_Object string;
173 {
174 if (!NILP (string))
175 return Fcons (Qkeymap, Fcons (string, Qnil));
176 return Fcons (Qkeymap, Qnil);
177 }
178
179 /* This function is used for installing the standard key bindings
180 at initialization time.
181
182 For example:
183
184 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
185
186 void
187 initial_define_key (keymap, key, defname)
188 Lisp_Object keymap;
189 int key;
190 char *defname;
191 {
192 store_in_keymap (keymap, make_number (key), intern (defname));
193 }
194
195 void
196 initial_define_lispy_key (keymap, keyname, defname)
197 Lisp_Object keymap;
198 char *keyname;
199 char *defname;
200 {
201 store_in_keymap (keymap, intern (keyname), intern (defname));
202 }
203
204 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
205 doc: /* Return t if OBJECT is a keymap.
206
207 A keymap is a list (keymap . ALIST),
208 or a symbol whose function definition is itself a keymap.
209 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
210 a vector of densely packed bindings for small character codes
211 is also allowed as an element. */)
212 (object)
213 Lisp_Object object;
214 {
215 return (KEYMAPP (object) ? Qt : Qnil);
216 }
217
218 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
219 doc: /* Return the prompt-string of a keymap MAP.
220 If non-nil, the prompt is shown in the echo-area
221 when reading a key-sequence to be looked-up in this keymap. */)
222 (map)
223 Lisp_Object map;
224 {
225 map = get_keymap (map, 0, 0);
226 while (CONSP (map))
227 {
228 Lisp_Object tem = XCAR (map);
229 if (STRINGP (tem))
230 return tem;
231 map = XCDR (map);
232 }
233 return Qnil;
234 }
235
236 /* Check that OBJECT is a keymap (after dereferencing through any
237 symbols). If it is, return it.
238
239 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
240 is an autoload form, do the autoload and try again.
241 If AUTOLOAD is nonzero, callers must assume GC is possible.
242
243 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
244 is zero as well), return Qt.
245
246 ERROR controls how we respond if OBJECT isn't a keymap.
247 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
248
249 Note that most of the time, we don't want to pursue autoloads.
250 Functions like Faccessible_keymaps which scan entire keymap trees
251 shouldn't load every autoloaded keymap. I'm not sure about this,
252 but it seems to me that only read_key_sequence, Flookup_key, and
253 Fdefine_key should cause keymaps to be autoloaded.
254
255 This function can GC when AUTOLOAD is non-zero, because it calls
256 do_autoload which can GC. */
257
258 Lisp_Object
259 get_keymap (object, error, autoload)
260 Lisp_Object object;
261 int error, autoload;
262 {
263 Lisp_Object tem;
264
265 autoload_retry:
266 if (NILP (object))
267 goto end;
268 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
269 return object;
270
271 tem = indirect_function (object);
272 if (CONSP (tem))
273 {
274 if (EQ (XCAR (tem), Qkeymap))
275 return tem;
276
277 /* Should we do an autoload? Autoload forms for keymaps have
278 Qkeymap as their fifth element. */
279 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
280 && SYMBOLP (object))
281 {
282 Lisp_Object tail;
283
284 tail = Fnth (make_number (4), tem);
285 if (EQ (tail, Qkeymap))
286 {
287 if (autoload)
288 {
289 struct gcpro gcpro1, gcpro2;
290
291 GCPRO2 (tem, object);
292 do_autoload (tem, object);
293 UNGCPRO;
294
295 goto autoload_retry;
296 }
297 else
298 return Qt;
299 }
300 }
301 }
302
303 end:
304 if (error)
305 wrong_type_argument (Qkeymapp, object);
306 return Qnil;
307 }
308 \f
309 /* Return the parent map of KEYMAP, or nil if it has none.
310 We assume that KEYMAP is a valid keymap. */
311
312 Lisp_Object
313 keymap_parent (keymap, autoload)
314 Lisp_Object keymap;
315 int autoload;
316 {
317 Lisp_Object list;
318
319 keymap = get_keymap (keymap, 1, autoload);
320
321 /* Skip past the initial element `keymap'. */
322 list = XCDR (keymap);
323 for (; CONSP (list); list = XCDR (list))
324 {
325 /* See if there is another `keymap'. */
326 if (KEYMAPP (list))
327 return list;
328 }
329
330 return get_keymap (list, 0, autoload);
331 }
332
333 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
334 doc: /* Return the parent keymap of KEYMAP. */)
335 (keymap)
336 Lisp_Object keymap;
337 {
338 return keymap_parent (keymap, 1);
339 }
340
341 /* Check whether MAP is one of MAPS parents. */
342 int
343 keymap_memberp (map, maps)
344 Lisp_Object map, maps;
345 {
346 if (NILP (map)) return 0;
347 while (KEYMAPP (maps) && !EQ (map, maps))
348 maps = keymap_parent (maps, 0);
349 return (EQ (map, maps));
350 }
351
352 /* Set the parent keymap of MAP to PARENT. */
353
354 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
355 doc: /* Modify KEYMAP to set its parent map to PARENT.
356 Return PARENT. PARENT should be nil or another keymap. */)
357 (keymap, parent)
358 Lisp_Object keymap, parent;
359 {
360 Lisp_Object list, prev;
361 struct gcpro gcpro1, gcpro2;
362 int i;
363
364 /* Force a keymap flush for the next call to where-is.
365 Since this can be called from within where-is, we don't set where_is_cache
366 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
367 be changed during where-is, while where_is_cache_keymaps is only used at
368 the very beginning of where-is and can thus be changed here without any
369 adverse effect.
370 This is a very minor correctness (rather than safety) issue. */
371 where_is_cache_keymaps = Qt;
372
373 GCPRO2 (keymap, parent);
374 keymap = get_keymap (keymap, 1, 1);
375
376 if (!NILP (parent))
377 {
378 parent = get_keymap (parent, 1, 1);
379
380 /* Check for cycles. */
381 if (keymap_memberp (keymap, parent))
382 error ("Cyclic keymap inheritance");
383 }
384
385 /* Skip past the initial element `keymap'. */
386 prev = keymap;
387 while (1)
388 {
389 list = XCDR (prev);
390 /* If there is a parent keymap here, replace it.
391 If we came to the end, add the parent in PREV. */
392 if (!CONSP (list) || KEYMAPP (list))
393 {
394 /* If we already have the right parent, return now
395 so that we avoid the loops below. */
396 if (EQ (XCDR (prev), parent))
397 RETURN_UNGCPRO (parent);
398
399 CHECK_IMPURE (prev);
400 XSETCDR (prev, parent);
401 break;
402 }
403 prev = list;
404 }
405
406 /* Scan through for submaps, and set their parents too. */
407
408 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
409 {
410 /* Stop the scan when we come to the parent. */
411 if (EQ (XCAR (list), Qkeymap))
412 break;
413
414 /* If this element holds a prefix map, deal with it. */
415 if (CONSP (XCAR (list))
416 && CONSP (XCDR (XCAR (list))))
417 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
418 XCDR (XCAR (list)));
419
420 if (VECTORP (XCAR (list)))
421 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
422 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
423 fix_submap_inheritance (keymap, make_number (i),
424 XVECTOR (XCAR (list))->contents[i]);
425
426 if (CHAR_TABLE_P (XCAR (list)))
427 {
428 Lisp_Object indices[3];
429
430 map_char_table (fix_submap_inheritance, Qnil,
431 XCAR (list), XCAR (list),
432 keymap, 0, indices);
433 }
434 }
435
436 RETURN_UNGCPRO (parent);
437 }
438
439 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
440 if EVENT is also a prefix in MAP's parent,
441 make sure that SUBMAP inherits that definition as its own parent. */
442
443 static void
444 fix_submap_inheritance (map, event, submap)
445 Lisp_Object map, event, submap;
446 {
447 Lisp_Object map_parent, parent_entry;
448
449 /* SUBMAP is a cons that we found as a key binding.
450 Discard the other things found in a menu key binding. */
451
452 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
453
454 /* If it isn't a keymap now, there's no work to do. */
455 if (!CONSP (submap))
456 return;
457
458 map_parent = keymap_parent (map, 0);
459 if (!NILP (map_parent))
460 parent_entry =
461 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
462 else
463 parent_entry = Qnil;
464
465 /* If MAP's parent has something other than a keymap,
466 our own submap shadows it completely. */
467 if (!CONSP (parent_entry))
468 return;
469
470 if (! EQ (parent_entry, submap))
471 {
472 Lisp_Object submap_parent;
473 submap_parent = submap;
474 while (1)
475 {
476 Lisp_Object tem;
477
478 tem = keymap_parent (submap_parent, 0);
479
480 if (KEYMAPP (tem))
481 {
482 if (keymap_memberp (tem, parent_entry))
483 /* Fset_keymap_parent could create a cycle. */
484 return;
485 submap_parent = tem;
486 }
487 else
488 break;
489 }
490 Fset_keymap_parent (submap_parent, parent_entry);
491 }
492 }
493 \f
494 /* Look up IDX in MAP. IDX may be any sort of event.
495 Note that this does only one level of lookup; IDX must be a single
496 event, not a sequence.
497
498 If T_OK is non-zero, bindings for Qt are treated as default
499 bindings; any key left unmentioned by other tables and bindings is
500 given the binding of Qt.
501
502 If T_OK is zero, bindings for Qt are not treated specially.
503
504 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
505
506 Lisp_Object
507 access_keymap (map, idx, t_ok, noinherit, autoload)
508 Lisp_Object map;
509 Lisp_Object idx;
510 int t_ok;
511 int noinherit;
512 int autoload;
513 {
514 Lisp_Object val;
515
516 /* Qunbound in VAL means we have found no binding yet. */
517 val = Qunbound;
518
519 /* If idx is a list (some sort of mouse click, perhaps?),
520 the index we want to use is the car of the list, which
521 ought to be a symbol. */
522 idx = EVENT_HEAD (idx);
523
524 /* If idx is a symbol, it might have modifiers, which need to
525 be put in the canonical order. */
526 if (SYMBOLP (idx))
527 idx = reorder_modifiers (idx);
528 else if (INTEGERP (idx))
529 /* Clobber the high bits that can be present on a machine
530 with more than 24 bits of integer. */
531 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
532
533 /* Handle the special meta -> esc mapping. */
534 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
535 {
536 /* See if there is a meta-map. If there's none, there is
537 no binding for IDX, unless a default binding exists in MAP. */
538 struct gcpro gcpro1;
539 Lisp_Object meta_map;
540 GCPRO1 (map);
541 /* A strange value in which Meta is set would cause
542 infinite recursion. Protect against that. */
543 if (XINT (meta_prefix_char) & CHAR_META)
544 meta_prefix_char = make_number (27);
545 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
546 t_ok, noinherit, autoload),
547 0, autoload);
548 UNGCPRO;
549 if (CONSP (meta_map))
550 {
551 map = meta_map;
552 idx = make_number (XUINT (idx) & ~meta_modifier);
553 }
554 else if (t_ok)
555 /* Set IDX to t, so that we only find a default binding. */
556 idx = Qt;
557 else
558 /* We know there is no binding. */
559 return Qnil;
560 }
561
562 /* t_binding is where we put a default binding that applies,
563 to use in case we do not find a binding specifically
564 for this key sequence. */
565 {
566 Lisp_Object tail;
567 Lisp_Object t_binding = Qnil;
568 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
569
570 GCPRO4 (map, tail, idx, t_binding);
571
572 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
573 If it is 1, only generic-char bindings are accepted.
574 Otherwise, neither are. */
575 t_ok = t_ok ? 2 : 0;
576
577 for (tail = XCDR (map);
578 (CONSP (tail)
579 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
580 tail = XCDR (tail))
581 {
582 Lisp_Object binding;
583
584 binding = XCAR (tail);
585 if (SYMBOLP (binding))
586 {
587 /* If NOINHERIT, stop finding prefix definitions
588 after we pass a second occurrence of the `keymap' symbol. */
589 if (noinherit && EQ (binding, Qkeymap))
590 RETURN_UNGCPRO (Qnil);
591 }
592 else if (CONSP (binding))
593 {
594 Lisp_Object key = XCAR (binding);
595
596 if (EQ (key, idx))
597 val = XCDR (binding);
598 else if (t_ok
599 && INTEGERP (idx)
600 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
601 && INTEGERP (key)
602 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
603 && !SINGLE_BYTE_CHAR_P (XINT (idx))
604 && !SINGLE_BYTE_CHAR_P (XINT (key))
605 && CHAR_VALID_P (XINT (key), 1)
606 && !CHAR_VALID_P (XINT (key), 0)
607 && (CHAR_CHARSET (XINT (key))
608 == CHAR_CHARSET (XINT (idx))))
609 {
610 /* KEY is the generic character of the charset of IDX.
611 Use KEY's binding if there isn't a binding for IDX
612 itself. */
613 t_binding = XCDR (binding);
614 t_ok = 0;
615 }
616 else if (t_ok > 1 && EQ (key, Qt))
617 {
618 t_binding = XCDR (binding);
619 t_ok = 1;
620 }
621 }
622 else if (VECTORP (binding))
623 {
624 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
625 val = AREF (binding, XFASTINT (idx));
626 }
627 else if (CHAR_TABLE_P (binding))
628 {
629 /* Character codes with modifiers
630 are not included in a char-table.
631 All character codes without modifiers are included. */
632 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
633 {
634 val = Faref (binding, idx);
635 /* `nil' has a special meaning for char-tables, so
636 we use something else to record an explicitly
637 unbound entry. */
638 if (NILP (val))
639 val = Qunbound;
640 }
641 }
642
643 /* If we found a binding, clean it up and return it. */
644 if (!EQ (val, Qunbound))
645 {
646 if (EQ (val, Qt))
647 /* A Qt binding is just like an explicit nil binding
648 (i.e. it shadows any parent binding but not bindings in
649 keymaps of lower precedence). */
650 val = Qnil;
651 val = get_keyelt (val, autoload);
652 if (KEYMAPP (val))
653 fix_submap_inheritance (map, idx, val);
654 RETURN_UNGCPRO (val);
655 }
656 QUIT;
657 }
658 UNGCPRO;
659 return get_keyelt (t_binding, autoload);
660 }
661 }
662
663 static void
664 map_keymap_item (fun, args, key, val, data)
665 map_keymap_function_t fun;
666 Lisp_Object args, key, val;
667 void *data;
668 {
669 /* We should maybe try to detect bindings shadowed by previous
670 ones and things like that. */
671 if (EQ (val, Qt))
672 val = Qnil;
673 (*fun) (key, val, args, data);
674 }
675
676 static void
677 map_keymap_char_table_item (args, key, val)
678 Lisp_Object args, key, val;
679 {
680 if (!NILP (val))
681 {
682 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
683 args = XCDR (args);
684 map_keymap_item (fun, XCDR (args), key, val,
685 XSAVE_VALUE (XCAR (args))->pointer);
686 }
687 }
688
689 /* Call FUN for every binding in MAP.
690 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
691 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
692 void
693 map_keymap (map, fun, args, data, autoload)
694 map_keymap_function_t fun;
695 Lisp_Object map, args;
696 void *data;
697 int autoload;
698 {
699 struct gcpro gcpro1, gcpro2, gcpro3;
700 Lisp_Object tail;
701
702 GCPRO3 (map, args, tail);
703 map = get_keymap (map, 1, autoload);
704 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
705 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
706 tail = XCDR (tail))
707 {
708 Lisp_Object binding = XCAR (tail);
709
710 if (CONSP (binding))
711 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
712 else if (VECTORP (binding))
713 {
714 /* Loop over the char values represented in the vector. */
715 int len = ASIZE (binding);
716 int c;
717 for (c = 0; c < len; c++)
718 {
719 Lisp_Object character;
720 XSETFASTINT (character, c);
721 map_keymap_item (fun, args, character, AREF (binding, c), data);
722 }
723 }
724 else if (CHAR_TABLE_P (binding))
725 {
726 Lisp_Object indices[3];
727 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
728 Fcons (make_save_value (fun, 0),
729 Fcons (make_save_value (data, 0),
730 args)),
731 0, indices);
732 }
733 }
734 UNGCPRO;
735 }
736
737 static void
738 map_keymap_call (key, val, fun, dummy)
739 Lisp_Object key, val, fun;
740 void *dummy;
741 {
742 call2 (fun, key, val);
743 }
744
745 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
746 doc: /* Call FUNCTION once for each event binding in KEYMAP.
747 FUNCTION is called with two arguments: the event that is bound, and
748 the definition it is bound to.
749
750 If KEYMAP has a parent, the parent's bindings are included as well.
751 This works recursively: if the parent has itself a parent, then the
752 grandparent's bindings are also included and so on.
753 usage: (map-keymap FUNCTION KEYMAP) */)
754 (function, keymap, sort_first)
755 Lisp_Object function, keymap, sort_first;
756 {
757 if (INTEGERP (function))
758 /* We have to stop integers early since map_keymap gives them special
759 significance. */
760 Fsignal (Qinvalid_function, Fcons (function, Qnil));
761 if (! NILP (sort_first))
762 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
763
764 map_keymap (keymap, map_keymap_call, function, NULL, 1);
765 return Qnil;
766 }
767
768 /* Given OBJECT which was found in a slot in a keymap,
769 trace indirect definitions to get the actual definition of that slot.
770 An indirect definition is a list of the form
771 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
772 and INDEX is the object to look up in KEYMAP to yield the definition.
773
774 Also if OBJECT has a menu string as the first element,
775 remove that. Also remove a menu help string as second element.
776
777 If AUTOLOAD is nonzero, load autoloadable keymaps
778 that are referred to with indirection.
779
780 This can GC because menu_item_eval_property calls Feval. */
781
782 Lisp_Object
783 get_keyelt (object, autoload)
784 Lisp_Object object;
785 int autoload;
786 {
787 while (1)
788 {
789 if (!(CONSP (object)))
790 /* This is really the value. */
791 return object;
792
793 /* If the keymap contents looks like (keymap ...) or (lambda ...)
794 then use itself. */
795 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
796 return object;
797
798 /* If the keymap contents looks like (menu-item name . DEFN)
799 or (menu-item name DEFN ...) then use DEFN.
800 This is a new format menu item. */
801 else if (EQ (XCAR (object), Qmenu_item))
802 {
803 if (CONSP (XCDR (object)))
804 {
805 Lisp_Object tem;
806
807 object = XCDR (XCDR (object));
808 tem = object;
809 if (CONSP (object))
810 object = XCAR (object);
811
812 /* If there's a `:filter FILTER', apply FILTER to the
813 menu-item's definition to get the real definition to
814 use. */
815 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
816 if (EQ (XCAR (tem), QCfilter) && autoload)
817 {
818 Lisp_Object filter;
819 filter = XCAR (XCDR (tem));
820 filter = list2 (filter, list2 (Qquote, object));
821 object = menu_item_eval_property (filter);
822 break;
823 }
824 }
825 else
826 /* Invalid keymap. */
827 return object;
828 }
829
830 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
831 Keymap alist elements like (CHAR MENUSTRING . DEFN)
832 will be used by HierarKey menus. */
833 else if (STRINGP (XCAR (object)))
834 {
835 object = XCDR (object);
836 /* Also remove a menu help string, if any,
837 following the menu item name. */
838 if (CONSP (object) && STRINGP (XCAR (object)))
839 object = XCDR (object);
840 /* Also remove the sublist that caches key equivalences, if any. */
841 if (CONSP (object) && CONSP (XCAR (object)))
842 {
843 Lisp_Object carcar;
844 carcar = XCAR (XCAR (object));
845 if (NILP (carcar) || VECTORP (carcar))
846 object = XCDR (object);
847 }
848 }
849
850 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
851 else
852 {
853 struct gcpro gcpro1;
854 Lisp_Object map;
855 GCPRO1 (object);
856 map = get_keymap (Fcar_safe (object), 0, autoload);
857 UNGCPRO;
858 return (!CONSP (map) ? object /* Invalid keymap */
859 : access_keymap (map, Fcdr (object), 0, 0, autoload));
860 }
861 }
862 }
863
864 static Lisp_Object
865 store_in_keymap (keymap, idx, def)
866 Lisp_Object keymap;
867 register Lisp_Object idx;
868 register Lisp_Object def;
869 {
870 /* Flush any reverse-map cache. */
871 where_is_cache = Qnil;
872 where_is_cache_keymaps = Qt;
873
874 /* If we are preparing to dump, and DEF is a menu element
875 with a menu item indicator, copy it to ensure it is not pure. */
876 if (CONSP (def) && PURE_P (def)
877 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
878 def = Fcons (XCAR (def), XCDR (def));
879
880 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
881 error ("attempt to define a key in a non-keymap");
882
883 /* If idx is a list (some sort of mouse click, perhaps?),
884 the index we want to use is the car of the list, which
885 ought to be a symbol. */
886 idx = EVENT_HEAD (idx);
887
888 /* If idx is a symbol, it might have modifiers, which need to
889 be put in the canonical order. */
890 if (SYMBOLP (idx))
891 idx = reorder_modifiers (idx);
892 else if (INTEGERP (idx))
893 /* Clobber the high bits that can be present on a machine
894 with more than 24 bits of integer. */
895 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
896
897 /* Scan the keymap for a binding of idx. */
898 {
899 Lisp_Object tail;
900
901 /* The cons after which we should insert new bindings. If the
902 keymap has a table element, we record its position here, so new
903 bindings will go after it; this way, the table will stay
904 towards the front of the alist and character lookups in dense
905 keymaps will remain fast. Otherwise, this just points at the
906 front of the keymap. */
907 Lisp_Object insertion_point;
908
909 insertion_point = keymap;
910 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
911 {
912 Lisp_Object elt;
913
914 elt = XCAR (tail);
915 if (VECTORP (elt))
916 {
917 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
918 {
919 CHECK_IMPURE (elt);
920 ASET (elt, XFASTINT (idx), def);
921 return def;
922 }
923 insertion_point = tail;
924 }
925 else if (CHAR_TABLE_P (elt))
926 {
927 /* Character codes with modifiers
928 are not included in a char-table.
929 All character codes without modifiers are included. */
930 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
931 {
932 Faset (elt, idx,
933 /* `nil' has a special meaning for char-tables, so
934 we use something else to record an explicitly
935 unbound entry. */
936 NILP (def) ? Qt : def);
937 return def;
938 }
939 insertion_point = tail;
940 }
941 else if (CONSP (elt))
942 {
943 if (EQ (idx, XCAR (elt)))
944 {
945 CHECK_IMPURE (elt);
946 XSETCDR (elt, def);
947 return def;
948 }
949 }
950 else if (EQ (elt, Qkeymap))
951 /* If we find a 'keymap' symbol in the spine of KEYMAP,
952 then we must have found the start of a second keymap
953 being used as the tail of KEYMAP, and a binding for IDX
954 should be inserted before it. */
955 goto keymap_end;
956
957 QUIT;
958 }
959
960 keymap_end:
961 /* We have scanned the entire keymap, and not found a binding for
962 IDX. Let's add one. */
963 CHECK_IMPURE (insertion_point);
964 XSETCDR (insertion_point,
965 Fcons (Fcons (idx, def), XCDR (insertion_point)));
966 }
967
968 return def;
969 }
970
971 EXFUN (Fcopy_keymap, 1);
972
973 Lisp_Object
974 copy_keymap_item (elt)
975 Lisp_Object elt;
976 {
977 Lisp_Object res, tem;
978
979 if (!CONSP (elt))
980 return elt;
981
982 res = tem = elt;
983
984 /* Is this a new format menu item. */
985 if (EQ (XCAR (tem), Qmenu_item))
986 {
987 /* Copy cell with menu-item marker. */
988 res = elt = Fcons (XCAR (tem), XCDR (tem));
989 tem = XCDR (elt);
990 if (CONSP (tem))
991 {
992 /* Copy cell with menu-item name. */
993 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
994 elt = XCDR (elt);
995 tem = XCDR (elt);
996 }
997 if (CONSP (tem))
998 {
999 /* Copy cell with binding and if the binding is a keymap,
1000 copy that. */
1001 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1002 elt = XCDR (elt);
1003 tem = XCAR (elt);
1004 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1005 XSETCAR (elt, Fcopy_keymap (tem));
1006 tem = XCDR (elt);
1007 if (CONSP (tem) && CONSP (XCAR (tem)))
1008 /* Delete cache for key equivalences. */
1009 XSETCDR (elt, XCDR (tem));
1010 }
1011 }
1012 else
1013 {
1014 /* It may be an old fomat menu item.
1015 Skip the optional menu string. */
1016 if (STRINGP (XCAR (tem)))
1017 {
1018 /* Copy the cell, since copy-alist didn't go this deep. */
1019 res = elt = Fcons (XCAR (tem), XCDR (tem));
1020 tem = XCDR (elt);
1021 /* Also skip the optional menu help string. */
1022 if (CONSP (tem) && STRINGP (XCAR (tem)))
1023 {
1024 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1025 elt = XCDR (elt);
1026 tem = XCDR (elt);
1027 }
1028 /* There may also be a list that caches key equivalences.
1029 Just delete it for the new keymap. */
1030 if (CONSP (tem)
1031 && CONSP (XCAR (tem))
1032 && (NILP (XCAR (XCAR (tem)))
1033 || VECTORP (XCAR (XCAR (tem)))))
1034 {
1035 XSETCDR (elt, XCDR (tem));
1036 tem = XCDR (tem);
1037 }
1038 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1039 XSETCDR (elt, Fcopy_keymap (tem));
1040 }
1041 else if (EQ (XCAR (tem), Qkeymap))
1042 res = Fcopy_keymap (elt);
1043 }
1044 return res;
1045 }
1046
1047 static void
1048 copy_keymap_1 (chartable, idx, elt)
1049 Lisp_Object chartable, idx, elt;
1050 {
1051 Faset (chartable, idx, copy_keymap_item (elt));
1052 }
1053
1054 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1055 doc: /* Return a copy of the keymap KEYMAP.
1056 The copy starts out with the same definitions of KEYMAP,
1057 but changing either the copy or KEYMAP does not affect the other.
1058 Any key definitions that are subkeymaps are recursively copied.
1059 However, a key definition which is a symbol whose definition is a keymap
1060 is not copied. */)
1061 (keymap)
1062 Lisp_Object keymap;
1063 {
1064 register Lisp_Object copy, tail;
1065 keymap = get_keymap (keymap, 1, 0);
1066 copy = tail = Fcons (Qkeymap, Qnil);
1067 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1068
1069 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1070 {
1071 Lisp_Object elt = XCAR (keymap);
1072 if (CHAR_TABLE_P (elt))
1073 {
1074 Lisp_Object indices[3];
1075 elt = Fcopy_sequence (elt);
1076 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1077 }
1078 else if (VECTORP (elt))
1079 {
1080 int i;
1081 elt = Fcopy_sequence (elt);
1082 for (i = 0; i < ASIZE (elt); i++)
1083 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1084 }
1085 else if (CONSP (elt))
1086 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1087 XSETCDR (tail, Fcons (elt, Qnil));
1088 tail = XCDR (tail);
1089 keymap = XCDR (keymap);
1090 }
1091 XSETCDR (tail, keymap);
1092 return copy;
1093 }
1094 \f
1095 /* Simple Keymap mutators and accessors. */
1096
1097 /* GC is possible in this function if it autoloads a keymap. */
1098
1099 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1100 doc: /* In KEYMAP, define key sequence KEY as DEF.
1101 KEYMAP is a keymap.
1102
1103 KEY is a string or a vector of symbols and characters meaning a
1104 sequence of keystrokes and events. Non-ASCII characters with codes
1105 above 127 (such as ISO Latin-1) can be included if you use a vector.
1106 Using [t] for KEY creates a default definition, which applies to any
1107 event type that has no other definition in this keymap.
1108
1109 DEF is anything that can be a key's definition:
1110 nil (means key is undefined in this keymap),
1111 a command (a Lisp function suitable for interactive calling),
1112 a string (treated as a keyboard macro),
1113 a keymap (to define a prefix key),
1114 a symbol (when the key is looked up, the symbol will stand for its
1115 function definition, which should at that time be one of the above,
1116 or another symbol whose function definition is used, etc.),
1117 a cons (STRING . DEFN), meaning that DEFN is the definition
1118 (DEFN should be a valid definition in its own right),
1119 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1120
1121 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1122 binding is altered. If there is no binding for KEY, the new pair
1123 binding KEY to DEF is added at the front of KEYMAP. */)
1124 (keymap, key, def)
1125 Lisp_Object keymap;
1126 Lisp_Object key;
1127 Lisp_Object def;
1128 {
1129 register int idx;
1130 register Lisp_Object c;
1131 register Lisp_Object cmd;
1132 int metized = 0;
1133 int meta_bit;
1134 int length;
1135 struct gcpro gcpro1, gcpro2, gcpro3;
1136
1137 GCPRO3 (keymap, key, def);
1138 keymap = get_keymap (keymap, 1, 1);
1139
1140 if (!VECTORP (key) && !STRINGP (key))
1141 key = wrong_type_argument (Qarrayp, key);
1142
1143 length = XFASTINT (Flength (key));
1144 if (length == 0)
1145 RETURN_UNGCPRO (Qnil);
1146
1147 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1148 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1149
1150 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1151
1152 idx = 0;
1153 while (1)
1154 {
1155 c = Faref (key, make_number (idx));
1156
1157 if (CONSP (c) && lucid_event_type_list_p (c))
1158 c = Fevent_convert_list (c);
1159
1160 if (SYMBOLP (c))
1161 silly_event_symbol_error (c);
1162
1163 if (INTEGERP (c)
1164 && (XINT (c) & meta_bit)
1165 && !metized)
1166 {
1167 c = meta_prefix_char;
1168 metized = 1;
1169 }
1170 else
1171 {
1172 if (INTEGERP (c))
1173 XSETINT (c, XINT (c) & ~meta_bit);
1174
1175 metized = 0;
1176 idx++;
1177 }
1178
1179 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1180 error ("Key sequence contains invalid event");
1181
1182 if (idx == length)
1183 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1184
1185 cmd = access_keymap (keymap, c, 0, 1, 1);
1186
1187 /* If this key is undefined, make it a prefix. */
1188 if (NILP (cmd))
1189 cmd = define_as_prefix (keymap, c);
1190
1191 keymap = get_keymap (cmd, 0, 1);
1192 if (!CONSP (keymap))
1193 /* We must use Fkey_description rather than just passing key to
1194 error; key might be a vector, not a string. */
1195 error ("Key sequence %s uses invalid prefix characters",
1196 SDATA (Fkey_description (key, Qnil)));
1197 }
1198 }
1199
1200 /* This function may GC (it calls Fkey_binding). */
1201
1202 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1203 doc: /* Return the remapping for command COMMAND in current keymaps.
1204 Returns nil if COMMAND is not remapped (or not a symbol). */)
1205 (command)
1206 Lisp_Object command;
1207 {
1208 if (!SYMBOLP (command))
1209 return Qnil;
1210
1211 ASET (command_remapping_vector, 1, command);
1212 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1213 }
1214
1215 /* Value is number if KEY is too long; nil if valid but has no definition. */
1216 /* GC is possible in this function if it autoloads a keymap. */
1217
1218 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1219 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1220 nil means undefined. See doc of `define-key' for kinds of definitions.
1221
1222 A number as value means KEY is "too long";
1223 that is, characters or symbols in it except for the last one
1224 fail to be a valid sequence of prefix characters in KEYMAP.
1225 The number is how many characters at the front of KEY
1226 it takes to reach a non-prefix key.
1227
1228 Normally, `lookup-key' ignores bindings for t, which act as default
1229 bindings, used when nothing else in the keymap applies; this makes it
1230 usable as a general function for probing keymaps. However, if the
1231 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1232 recognize the default bindings, just as `read-key-sequence' does. */)
1233 (keymap, key, accept_default)
1234 Lisp_Object keymap;
1235 Lisp_Object key;
1236 Lisp_Object accept_default;
1237 {
1238 register int idx;
1239 register Lisp_Object cmd;
1240 register Lisp_Object c;
1241 int length;
1242 int t_ok = !NILP (accept_default);
1243 struct gcpro gcpro1, gcpro2;
1244
1245 GCPRO2 (keymap, key);
1246 keymap = get_keymap (keymap, 1, 1);
1247
1248 if (!VECTORP (key) && !STRINGP (key))
1249 key = wrong_type_argument (Qarrayp, key);
1250
1251 length = XFASTINT (Flength (key));
1252 if (length == 0)
1253 RETURN_UNGCPRO (keymap);
1254
1255 idx = 0;
1256 while (1)
1257 {
1258 c = Faref (key, make_number (idx++));
1259
1260 if (CONSP (c) && lucid_event_type_list_p (c))
1261 c = Fevent_convert_list (c);
1262
1263 /* Turn the 8th bit of string chars into a meta modifier. */
1264 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1265 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1266
1267 /* Allow string since binding for `menu-bar-select-buffer'
1268 includes the buffer name in the key sequence. */
1269 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1270 error ("Key sequence contains invalid event");
1271
1272 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1273 if (idx == length)
1274 RETURN_UNGCPRO (cmd);
1275
1276 keymap = get_keymap (cmd, 0, 1);
1277 if (!CONSP (keymap))
1278 RETURN_UNGCPRO (make_number (idx));
1279
1280 QUIT;
1281 }
1282 }
1283
1284 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1285 Assume that currently it does not define C at all.
1286 Return the keymap. */
1287
1288 static Lisp_Object
1289 define_as_prefix (keymap, c)
1290 Lisp_Object keymap, c;
1291 {
1292 Lisp_Object cmd;
1293
1294 cmd = Fmake_sparse_keymap (Qnil);
1295 /* If this key is defined as a prefix in an inherited keymap,
1296 make it a prefix in this map, and make its definition
1297 inherit the other prefix definition. */
1298 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1299 store_in_keymap (keymap, c, cmd);
1300
1301 return cmd;
1302 }
1303
1304 /* Append a key to the end of a key sequence. We always make a vector. */
1305
1306 Lisp_Object
1307 append_key (key_sequence, key)
1308 Lisp_Object key_sequence, key;
1309 {
1310 Lisp_Object args[2];
1311
1312 args[0] = key_sequence;
1313
1314 args[1] = Fcons (key, Qnil);
1315 return Fvconcat (2, args);
1316 }
1317
1318 /* Given a event type C which is a symbol,
1319 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1320
1321 static void
1322 silly_event_symbol_error (c)
1323 Lisp_Object c;
1324 {
1325 Lisp_Object parsed, base, name, assoc;
1326 int modifiers;
1327
1328 parsed = parse_modifiers (c);
1329 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1330 base = XCAR (parsed);
1331 name = Fsymbol_name (base);
1332 /* This alist includes elements such as ("RET" . "\\r"). */
1333 assoc = Fassoc (name, exclude_keys);
1334
1335 if (! NILP (assoc))
1336 {
1337 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1338 char *p = new_mods;
1339 Lisp_Object keystring;
1340 if (modifiers & alt_modifier)
1341 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1342 if (modifiers & ctrl_modifier)
1343 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1344 if (modifiers & hyper_modifier)
1345 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1346 if (modifiers & meta_modifier)
1347 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1348 if (modifiers & shift_modifier)
1349 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1350 if (modifiers & super_modifier)
1351 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1352 *p = 0;
1353
1354 c = reorder_modifiers (c);
1355 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1356
1357 error ((modifiers & ~meta_modifier
1358 ? "To bind the key %s, use [?%s], not [%s]"
1359 : "To bind the key %s, use \"%s\", not [%s]"),
1360 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1361 SDATA (SYMBOL_NAME (c)));
1362 }
1363 }
1364 \f
1365 /* Global, local, and minor mode keymap stuff. */
1366
1367 /* We can't put these variables inside current_minor_maps, since under
1368 some systems, static gets macro-defined to be the empty string.
1369 Ickypoo. */
1370 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1371 static int cmm_size = 0;
1372
1373 /* Error handler used in current_minor_maps. */
1374 static Lisp_Object
1375 current_minor_maps_error ()
1376 {
1377 return Qnil;
1378 }
1379
1380 /* Store a pointer to an array of the keymaps of the currently active
1381 minor modes in *buf, and return the number of maps it contains.
1382
1383 This function always returns a pointer to the same buffer, and may
1384 free or reallocate it, so if you want to keep it for a long time or
1385 hand it out to lisp code, copy it. This procedure will be called
1386 for every key sequence read, so the nice lispy approach (return a
1387 new assoclist, list, what have you) for each invocation would
1388 result in a lot of consing over time.
1389
1390 If we used xrealloc/xmalloc and ran out of memory, they would throw
1391 back to the command loop, which would try to read a key sequence,
1392 which would call this function again, resulting in an infinite
1393 loop. Instead, we'll use realloc/malloc and silently truncate the
1394 list, let the key sequence be read, and hope some other piece of
1395 code signals the error. */
1396 int
1397 current_minor_maps (modeptr, mapptr)
1398 Lisp_Object **modeptr, **mapptr;
1399 {
1400 int i = 0;
1401 int list_number = 0;
1402 Lisp_Object alist, assoc, var, val;
1403 Lisp_Object emulation_alists;
1404 Lisp_Object lists[2];
1405
1406 emulation_alists = Vemulation_mode_map_alists;
1407 lists[0] = Vminor_mode_overriding_map_alist;
1408 lists[1] = Vminor_mode_map_alist;
1409
1410 for (list_number = 0; list_number < 2; list_number++)
1411 {
1412 if (CONSP (emulation_alists))
1413 {
1414 alist = XCAR (emulation_alists);
1415 emulation_alists = XCDR (emulation_alists);
1416 if (SYMBOLP (alist))
1417 alist = find_symbol_value (alist);
1418 list_number = -1;
1419 }
1420 else
1421 alist = lists[list_number];
1422
1423 for ( ; CONSP (alist); alist = XCDR (alist))
1424 if ((assoc = XCAR (alist), CONSP (assoc))
1425 && (var = XCAR (assoc), SYMBOLP (var))
1426 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1427 && !NILP (val))
1428 {
1429 Lisp_Object temp;
1430
1431 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1432 and also an entry in Vminor_mode_map_alist,
1433 ignore the latter. */
1434 if (list_number == 1)
1435 {
1436 val = assq_no_quit (var, lists[0]);
1437 if (!NILP (val))
1438 continue;
1439 }
1440
1441 if (i >= cmm_size)
1442 {
1443 int newsize, allocsize;
1444 Lisp_Object *newmodes, *newmaps;
1445
1446 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1447 allocsize = newsize * sizeof *newmodes;
1448
1449 /* Use malloc here. See the comment above this function.
1450 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1451 BLOCK_INPUT;
1452 newmodes = (Lisp_Object *) malloc (allocsize);
1453 if (newmodes)
1454 {
1455 if (cmm_modes)
1456 {
1457 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1458 free (cmm_modes);
1459 }
1460 cmm_modes = newmodes;
1461 }
1462
1463 newmaps = (Lisp_Object *) malloc (allocsize);
1464 if (newmaps)
1465 {
1466 if (cmm_maps)
1467 {
1468 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1469 free (cmm_maps);
1470 }
1471 cmm_maps = newmaps;
1472 }
1473 UNBLOCK_INPUT;
1474
1475 if (newmodes == NULL || newmaps == NULL)
1476 break;
1477 cmm_size = newsize;
1478 }
1479
1480 /* Get the keymap definition--or nil if it is not defined. */
1481 temp = internal_condition_case_1 (Findirect_function,
1482 XCDR (assoc),
1483 Qerror, current_minor_maps_error);
1484 if (!NILP (temp))
1485 {
1486 cmm_modes[i] = var;
1487 cmm_maps [i] = temp;
1488 i++;
1489 }
1490 }
1491 }
1492
1493 if (modeptr) *modeptr = cmm_modes;
1494 if (mapptr) *mapptr = cmm_maps;
1495 return i;
1496 }
1497
1498 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1499 0, 1, 0,
1500 doc: /* Return a list of the currently active keymaps.
1501 OLP if non-nil indicates that we should obey `overriding-local-map' and
1502 `overriding-terminal-local-map'. */)
1503 (olp)
1504 Lisp_Object olp;
1505 {
1506 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1507
1508 if (!NILP (olp))
1509 {
1510 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1511 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1512 /* The doc said that overriding-terminal-local-map should
1513 override overriding-local-map. The code used them both,
1514 but it seems clearer to use just one. rms, jan 2005. */
1515 else if (!NILP (Voverriding_local_map))
1516 keymaps = Fcons (Voverriding_local_map, keymaps);
1517 }
1518 if (NILP (XCDR (keymaps)))
1519 {
1520 Lisp_Object local;
1521 Lisp_Object *maps;
1522 int nmaps, i;
1523
1524 /* This usually returns the buffer's local map,
1525 but that can be overridden by a `local-map' property. */
1526 local = get_local_map (PT, current_buffer, Qlocal_map);
1527 if (!NILP (local))
1528 keymaps = Fcons (local, keymaps);
1529
1530 /* Now put all the minor mode keymaps on the list. */
1531 nmaps = current_minor_maps (0, &maps);
1532
1533 for (i = --nmaps; i >= 0; i--)
1534 if (!NILP (maps[i]))
1535 keymaps = Fcons (maps[i], keymaps);
1536
1537 /* This returns nil unless there is a `keymap' property. */
1538 local = get_local_map (PT, current_buffer, Qkeymap);
1539 if (!NILP (local))
1540 keymaps = Fcons (local, keymaps);
1541 }
1542
1543 return keymaps;
1544 }
1545
1546 /* GC is possible in this function if it autoloads a keymap. */
1547
1548 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1549 doc: /* Return the binding for command KEY in current keymaps.
1550 KEY is a string or vector, a sequence of keystrokes.
1551 The binding is probably a symbol with a function definition.
1552
1553 Normally, `key-binding' ignores bindings for t, which act as default
1554 bindings, used when nothing else in the keymap applies; this makes it
1555 usable as a general function for probing keymaps. However, if the
1556 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1557 recognize the default bindings, just as `read-key-sequence' does.
1558
1559 Like the normal command loop, `key-binding' will remap the command
1560 resulting from looking up KEY by looking up the command in the
1561 current keymaps. However, if the optional third argument NO-REMAP
1562 is non-nil, `key-binding' returns the unmapped command. */)
1563 (key, accept_default, no_remap)
1564 Lisp_Object key, accept_default, no_remap;
1565 {
1566 Lisp_Object *maps, value;
1567 int nmaps, i;
1568 struct gcpro gcpro1;
1569
1570 GCPRO1 (key);
1571
1572 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1573 {
1574 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1575 key, accept_default);
1576 if (! NILP (value) && !INTEGERP (value))
1577 goto done;
1578 }
1579 else if (!NILP (Voverriding_local_map))
1580 {
1581 value = Flookup_key (Voverriding_local_map, key, accept_default);
1582 if (! NILP (value) && !INTEGERP (value))
1583 goto done;
1584 }
1585 else
1586 {
1587 Lisp_Object local;
1588
1589 local = get_local_map (PT, current_buffer, Qkeymap);
1590 if (! NILP (local))
1591 {
1592 value = Flookup_key (local, key, accept_default);
1593 if (! NILP (value) && !INTEGERP (value))
1594 goto done;
1595 }
1596
1597 nmaps = current_minor_maps (0, &maps);
1598 /* Note that all these maps are GCPRO'd
1599 in the places where we found them. */
1600
1601 for (i = 0; i < nmaps; i++)
1602 if (! NILP (maps[i]))
1603 {
1604 value = Flookup_key (maps[i], key, accept_default);
1605 if (! NILP (value) && !INTEGERP (value))
1606 goto done;
1607 }
1608
1609 local = get_local_map (PT, current_buffer, Qlocal_map);
1610 if (! NILP (local))
1611 {
1612 value = Flookup_key (local, key, accept_default);
1613 if (! NILP (value) && !INTEGERP (value))
1614 goto done;
1615 }
1616 }
1617
1618 value = Flookup_key (current_global_map, key, accept_default);
1619
1620 done:
1621 UNGCPRO;
1622 if (NILP (value) || INTEGERP (value))
1623 return Qnil;
1624
1625 /* If the result of the ordinary keymap lookup is an interactive
1626 command, look for a key binding (ie. remapping) for that command. */
1627
1628 if (NILP (no_remap) && SYMBOLP (value))
1629 {
1630 Lisp_Object value1;
1631 if (value1 = Fcommand_remapping (value), !NILP (value1))
1632 value = value1;
1633 }
1634
1635 return value;
1636 }
1637
1638 /* GC is possible in this function if it autoloads a keymap. */
1639
1640 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1641 doc: /* Return the binding for command KEYS in current local keymap only.
1642 KEYS is a string or vector, a sequence of keystrokes.
1643 The binding is probably a symbol with a function definition.
1644
1645 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1646 bindings; see the description of `lookup-key' for more details about this. */)
1647 (keys, accept_default)
1648 Lisp_Object keys, accept_default;
1649 {
1650 register Lisp_Object map;
1651 map = current_buffer->keymap;
1652 if (NILP (map))
1653 return Qnil;
1654 return Flookup_key (map, keys, accept_default);
1655 }
1656
1657 /* GC is possible in this function if it autoloads a keymap. */
1658
1659 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1660 doc: /* Return the binding for command KEYS in current global keymap only.
1661 KEYS is a string or vector, a sequence of keystrokes.
1662 The binding is probably a symbol with a function definition.
1663 This function's return values are the same as those of `lookup-key'
1664 \(which see).
1665
1666 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1667 bindings; see the description of `lookup-key' for more details about this. */)
1668 (keys, accept_default)
1669 Lisp_Object keys, accept_default;
1670 {
1671 return Flookup_key (current_global_map, keys, accept_default);
1672 }
1673
1674 /* GC is possible in this function if it autoloads a keymap. */
1675
1676 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1677 doc: /* Find the visible minor mode bindings of KEY.
1678 Return an alist of pairs (MODENAME . BINDING), where MODENAME is
1679 the symbol which names the minor mode binding KEY, and BINDING is
1680 KEY's definition in that mode. In particular, if KEY has no
1681 minor-mode bindings, return nil. If the first binding is a
1682 non-prefix, all subsequent bindings will be omitted, since they would
1683 be ignored. Similarly, the list doesn't include non-prefix bindings
1684 that come after prefix bindings.
1685
1686 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1687 bindings; see the description of `lookup-key' for more details about this. */)
1688 (key, accept_default)
1689 Lisp_Object key, accept_default;
1690 {
1691 Lisp_Object *modes, *maps;
1692 int nmaps;
1693 Lisp_Object binding;
1694 int i, j;
1695 struct gcpro gcpro1, gcpro2;
1696
1697 nmaps = current_minor_maps (&modes, &maps);
1698 /* Note that all these maps are GCPRO'd
1699 in the places where we found them. */
1700
1701 binding = Qnil;
1702 GCPRO2 (key, binding);
1703
1704 for (i = j = 0; i < nmaps; i++)
1705 if (!NILP (maps[i])
1706 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1707 && !INTEGERP (binding))
1708 {
1709 if (KEYMAPP (binding))
1710 maps[j++] = Fcons (modes[i], binding);
1711 else if (j == 0)
1712 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1713 }
1714
1715 UNGCPRO;
1716 return Flist (j, maps);
1717 }
1718
1719 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1720 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1721 A new sparse keymap is stored as COMMAND's function definition and its value.
1722 If a second optional argument MAPVAR is given, the map is stored as
1723 its value instead of as COMMAND's value; but COMMAND is still defined
1724 as a function.
1725 The third optional argument NAME, if given, supplies a menu name
1726 string for the map. This is required to use the keymap as a menu.
1727 This function returns COMMAND. */)
1728 (command, mapvar, name)
1729 Lisp_Object command, mapvar, name;
1730 {
1731 Lisp_Object map;
1732 map = Fmake_sparse_keymap (name);
1733 Ffset (command, map);
1734 if (!NILP (mapvar))
1735 Fset (mapvar, map);
1736 else
1737 Fset (command, map);
1738 return command;
1739 }
1740
1741 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1742 doc: /* Select KEYMAP as the global keymap. */)
1743 (keymap)
1744 Lisp_Object keymap;
1745 {
1746 keymap = get_keymap (keymap, 1, 1);
1747 current_global_map = keymap;
1748
1749 return Qnil;
1750 }
1751
1752 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1753 doc: /* Select KEYMAP as the local keymap.
1754 If KEYMAP is nil, that means no local keymap. */)
1755 (keymap)
1756 Lisp_Object keymap;
1757 {
1758 if (!NILP (keymap))
1759 keymap = get_keymap (keymap, 1, 1);
1760
1761 current_buffer->keymap = keymap;
1762
1763 return Qnil;
1764 }
1765
1766 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1767 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1768 ()
1769 {
1770 return current_buffer->keymap;
1771 }
1772
1773 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1774 doc: /* Return the current global keymap. */)
1775 ()
1776 {
1777 return current_global_map;
1778 }
1779
1780 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1781 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1782 ()
1783 {
1784 Lisp_Object *maps;
1785 int nmaps = current_minor_maps (0, &maps);
1786
1787 return Flist (nmaps, maps);
1788 }
1789 \f
1790 /* Help functions for describing and documenting keymaps. */
1791
1792
1793 static void
1794 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1795 Lisp_Object maps, tail, thisseq, key, cmd;
1796 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1797 {
1798 Lisp_Object tem;
1799
1800 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1801 if (NILP (cmd))
1802 return;
1803
1804 /* Look for and break cycles. */
1805 while (!NILP (tem = Frassq (cmd, maps)))
1806 {
1807 Lisp_Object prefix = XCAR (tem);
1808 int lim = XINT (Flength (XCAR (tem)));
1809 if (lim <= XINT (Flength (thisseq)))
1810 { /* This keymap was already seen with a smaller prefix. */
1811 int i = 0;
1812 while (i < lim && EQ (Faref (prefix, make_number (i)),
1813 Faref (thisseq, make_number (i))))
1814 i++;
1815 if (i >= lim)
1816 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1817 return;
1818 }
1819 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1820 but maybe `cmd' occurs again further down in `maps', so keep
1821 looking. */
1822 maps = XCDR (Fmemq (tem, maps));
1823 }
1824
1825 /* If the last key in thisseq is meta-prefix-char,
1826 turn it into a meta-ized keystroke. We know
1827 that the event we're about to append is an
1828 ascii keystroke since we're processing a
1829 keymap table. */
1830 if (is_metized)
1831 {
1832 int meta_bit = meta_modifier;
1833 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1834 tem = Fcopy_sequence (thisseq);
1835
1836 Faset (tem, last, make_number (XINT (key) | meta_bit));
1837
1838 /* This new sequence is the same length as
1839 thisseq, so stick it in the list right
1840 after this one. */
1841 XSETCDR (tail,
1842 Fcons (Fcons (tem, cmd), XCDR (tail)));
1843 }
1844 else
1845 {
1846 tem = append_key (thisseq, key);
1847 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1848 }
1849 }
1850
1851 static void
1852 accessible_keymaps_char_table (args, index, cmd)
1853 Lisp_Object args, index, cmd;
1854 {
1855 accessible_keymaps_1 (index, cmd,
1856 XCAR (XCAR (args)),
1857 XCAR (XCDR (args)),
1858 XCDR (XCDR (args)),
1859 XINT (XCDR (XCAR (args))));
1860 }
1861
1862 /* This function cannot GC. */
1863
1864 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1865 1, 2, 0,
1866 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1867 Returns a list of elements of the form (KEYS . MAP), where the sequence
1868 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1869 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1870 An optional argument PREFIX, if non-nil, should be a key sequence;
1871 then the value includes only maps for prefixes that start with PREFIX. */)
1872 (keymap, prefix)
1873 Lisp_Object keymap, prefix;
1874 {
1875 Lisp_Object maps, tail;
1876 int prefixlen = 0;
1877
1878 /* no need for gcpro because we don't autoload any keymaps. */
1879
1880 if (!NILP (prefix))
1881 prefixlen = XINT (Flength (prefix));
1882
1883 if (!NILP (prefix))
1884 {
1885 /* If a prefix was specified, start with the keymap (if any) for
1886 that prefix, so we don't waste time considering other prefixes. */
1887 Lisp_Object tem;
1888 tem = Flookup_key (keymap, prefix, Qt);
1889 /* Flookup_key may give us nil, or a number,
1890 if the prefix is not defined in this particular map.
1891 It might even give us a list that isn't a keymap. */
1892 tem = get_keymap (tem, 0, 0);
1893 if (CONSP (tem))
1894 {
1895 /* Convert PREFIX to a vector now, so that later on
1896 we don't have to deal with the possibility of a string. */
1897 if (STRINGP (prefix))
1898 {
1899 int i, i_byte, c;
1900 Lisp_Object copy;
1901
1902 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1903 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1904 {
1905 int i_before = i;
1906
1907 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1908 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1909 c ^= 0200 | meta_modifier;
1910 ASET (copy, i_before, make_number (c));
1911 }
1912 prefix = copy;
1913 }
1914 maps = Fcons (Fcons (prefix, tem), Qnil);
1915 }
1916 else
1917 return Qnil;
1918 }
1919 else
1920 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1921 get_keymap (keymap, 1, 0)),
1922 Qnil);
1923
1924 /* For each map in the list maps,
1925 look at any other maps it points to,
1926 and stick them at the end if they are not already in the list.
1927
1928 This is a breadth-first traversal, where tail is the queue of
1929 nodes, and maps accumulates a list of all nodes visited. */
1930
1931 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1932 {
1933 register Lisp_Object thisseq, thismap;
1934 Lisp_Object last;
1935 /* Does the current sequence end in the meta-prefix-char? */
1936 int is_metized;
1937
1938 thisseq = Fcar (Fcar (tail));
1939 thismap = Fcdr (Fcar (tail));
1940 last = make_number (XINT (Flength (thisseq)) - 1);
1941 is_metized = (XINT (last) >= 0
1942 /* Don't metize the last char of PREFIX. */
1943 && XINT (last) >= prefixlen
1944 && EQ (Faref (thisseq, last), meta_prefix_char));
1945
1946 for (; CONSP (thismap); thismap = XCDR (thismap))
1947 {
1948 Lisp_Object elt;
1949
1950 elt = XCAR (thismap);
1951
1952 QUIT;
1953
1954 if (CHAR_TABLE_P (elt))
1955 {
1956 Lisp_Object indices[3];
1957
1958 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1959 elt, Fcons (Fcons (maps, make_number (is_metized)),
1960 Fcons (tail, thisseq)),
1961 0, indices);
1962 }
1963 else if (VECTORP (elt))
1964 {
1965 register int i;
1966
1967 /* Vector keymap. Scan all the elements. */
1968 for (i = 0; i < ASIZE (elt); i++)
1969 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1970 maps, tail, thisseq, is_metized);
1971
1972 }
1973 else if (CONSP (elt))
1974 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1975 maps, tail, thisseq,
1976 is_metized && INTEGERP (XCAR (elt)));
1977
1978 }
1979 }
1980
1981 return maps;
1982 }
1983 \f
1984 Lisp_Object Qsingle_key_description, Qkey_description;
1985
1986 /* This function cannot GC. */
1987
1988 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1989 doc: /* Return a pretty description of key-sequence KEYS.
1990 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1991 Control characters turn into "C-foo" sequences, meta into "M-foo",
1992 spaces are put between sequence elements, etc. */)
1993 (keys, prefix)
1994 Lisp_Object keys, prefix;
1995 {
1996 int len = 0;
1997 int i, i_byte;
1998 Lisp_Object *args;
1999 int size = XINT (Flength (keys));
2000 Lisp_Object list;
2001 Lisp_Object sep = build_string (" ");
2002 Lisp_Object key;
2003 int add_meta = 0;
2004
2005 if (!NILP (prefix))
2006 size += XINT (Flength (prefix));
2007
2008 /* This has one extra element at the end that we don't pass to Fconcat. */
2009 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
2010
2011 /* In effect, this computes
2012 (mapconcat 'single-key-description keys " ")
2013 but we shouldn't use mapconcat because it can do GC. */
2014
2015 next_list:
2016 if (!NILP (prefix))
2017 list = prefix, prefix = Qnil;
2018 else if (!NILP (keys))
2019 list = keys, keys = Qnil;
2020 else
2021 {
2022 if (add_meta)
2023 {
2024 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2025 len += 2;
2026 }
2027 else if (len == 0)
2028 return empty_string;
2029 return Fconcat (len - 1, args);
2030 }
2031
2032 if (STRINGP (list))
2033 size = SCHARS (list);
2034 else if (VECTORP (list))
2035 size = XVECTOR (list)->size;
2036 else if (CONSP (list))
2037 size = XINT (Flength (list));
2038 else
2039 wrong_type_argument (Qarrayp, list);
2040
2041 i = i_byte = 0;
2042
2043 while (i < size)
2044 {
2045 if (STRINGP (list))
2046 {
2047 int c;
2048 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2049 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2050 c ^= 0200 | meta_modifier;
2051 XSETFASTINT (key, c);
2052 }
2053 else if (VECTORP (list))
2054 {
2055 key = AREF (list, i++);
2056 }
2057 else
2058 {
2059 key = XCAR (list);
2060 list = XCDR (list);
2061 i++;
2062 }
2063
2064 if (add_meta)
2065 {
2066 if (!INTEGERP (key)
2067 || EQ (key, meta_prefix_char)
2068 || (XINT (key) & meta_modifier))
2069 {
2070 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2071 args[len++] = sep;
2072 if (EQ (key, meta_prefix_char))
2073 continue;
2074 }
2075 else
2076 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2077 add_meta = 0;
2078 }
2079 else if (EQ (key, meta_prefix_char))
2080 {
2081 add_meta = 1;
2082 continue;
2083 }
2084 args[len++] = Fsingle_key_description (key, Qnil);
2085 args[len++] = sep;
2086 }
2087 goto next_list;
2088 }
2089
2090
2091 char *
2092 push_key_description (c, p, force_multibyte)
2093 register unsigned int c;
2094 register char *p;
2095 int force_multibyte;
2096 {
2097 unsigned c2;
2098
2099 /* Clear all the meaningless bits above the meta bit. */
2100 c &= meta_modifier | ~ - meta_modifier;
2101 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2102 | meta_modifier | shift_modifier | super_modifier);
2103
2104 if (c & alt_modifier)
2105 {
2106 *p++ = 'A';
2107 *p++ = '-';
2108 c -= alt_modifier;
2109 }
2110 if ((c & ctrl_modifier) != 0
2111 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2112 {
2113 *p++ = 'C';
2114 *p++ = '-';
2115 c &= ~ctrl_modifier;
2116 }
2117 if (c & hyper_modifier)
2118 {
2119 *p++ = 'H';
2120 *p++ = '-';
2121 c -= hyper_modifier;
2122 }
2123 if (c & meta_modifier)
2124 {
2125 *p++ = 'M';
2126 *p++ = '-';
2127 c -= meta_modifier;
2128 }
2129 if (c & shift_modifier)
2130 {
2131 *p++ = 'S';
2132 *p++ = '-';
2133 c -= shift_modifier;
2134 }
2135 if (c & super_modifier)
2136 {
2137 *p++ = 's';
2138 *p++ = '-';
2139 c -= super_modifier;
2140 }
2141 if (c < 040)
2142 {
2143 if (c == 033)
2144 {
2145 *p++ = 'E';
2146 *p++ = 'S';
2147 *p++ = 'C';
2148 }
2149 else if (c == '\t')
2150 {
2151 *p++ = 'T';
2152 *p++ = 'A';
2153 *p++ = 'B';
2154 }
2155 else if (c == Ctl ('M'))
2156 {
2157 *p++ = 'R';
2158 *p++ = 'E';
2159 *p++ = 'T';
2160 }
2161 else
2162 {
2163 /* `C-' already added above. */
2164 if (c > 0 && c <= Ctl ('Z'))
2165 *p++ = c + 0140;
2166 else
2167 *p++ = c + 0100;
2168 }
2169 }
2170 else if (c == 0177)
2171 {
2172 *p++ = 'D';
2173 *p++ = 'E';
2174 *p++ = 'L';
2175 }
2176 else if (c == ' ')
2177 {
2178 *p++ = 'S';
2179 *p++ = 'P';
2180 *p++ = 'C';
2181 }
2182 else if (c < 128
2183 || (NILP (current_buffer->enable_multibyte_characters)
2184 && SINGLE_BYTE_CHAR_P (c)
2185 && !force_multibyte))
2186 {
2187 *p++ = c;
2188 }
2189 else
2190 {
2191 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2192
2193 if (force_multibyte && valid_p)
2194 {
2195 if (SINGLE_BYTE_CHAR_P (c))
2196 c = unibyte_char_to_multibyte (c);
2197 p += CHAR_STRING (c, p);
2198 }
2199 else if (NILP (current_buffer->enable_multibyte_characters)
2200 || valid_p)
2201 {
2202 int bit_offset;
2203 *p++ = '\\';
2204 /* The biggest character code uses 19 bits. */
2205 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2206 {
2207 if (c >= (1 << bit_offset))
2208 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2209 }
2210 }
2211 else
2212 p += CHAR_STRING (c, p);
2213 }
2214
2215 return p;
2216 }
2217
2218 /* This function cannot GC. */
2219
2220 DEFUN ("single-key-description", Fsingle_key_description,
2221 Ssingle_key_description, 1, 2, 0,
2222 doc: /* Return a pretty description of command character KEY.
2223 Control characters turn into C-whatever, etc.
2224 Optional argument NO-ANGLES non-nil means don't put angle brackets
2225 around function keys and event symbols. */)
2226 (key, no_angles)
2227 Lisp_Object key, no_angles;
2228 {
2229 if (CONSP (key) && lucid_event_type_list_p (key))
2230 key = Fevent_convert_list (key);
2231
2232 key = EVENT_HEAD (key);
2233
2234 if (INTEGERP (key)) /* Normal character */
2235 {
2236 unsigned int charset, c1, c2;
2237 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2238
2239 if (SINGLE_BYTE_CHAR_P (without_bits))
2240 charset = 0;
2241 else
2242 SPLIT_CHAR (without_bits, charset, c1, c2);
2243
2244 if (charset
2245 && CHARSET_DEFINED_P (charset)
2246 && ((c1 >= 0 && c1 < 32)
2247 || (c2 >= 0 && c2 < 32)))
2248 {
2249 /* Handle a generic character. */
2250 Lisp_Object name;
2251 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2252 CHECK_STRING (name);
2253 return concat2 (build_string ("Character set "), name);
2254 }
2255 else
2256 {
2257 char tem[KEY_DESCRIPTION_SIZE], *end;
2258 int nbytes, nchars;
2259 Lisp_Object string;
2260
2261 end = push_key_description (XUINT (key), tem, 1);
2262 nbytes = end - tem;
2263 nchars = multibyte_chars_in_text (tem, nbytes);
2264 if (nchars == nbytes)
2265 {
2266 *end = '\0';
2267 string = build_string (tem);
2268 }
2269 else
2270 string = make_multibyte_string (tem, nchars, nbytes);
2271 return string;
2272 }
2273 }
2274 else if (SYMBOLP (key)) /* Function key or event-symbol */
2275 {
2276 if (NILP (no_angles))
2277 {
2278 char *buffer
2279 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2280 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2281 return build_string (buffer);
2282 }
2283 else
2284 return Fsymbol_name (key);
2285 }
2286 else if (STRINGP (key)) /* Buffer names in the menubar. */
2287 return Fcopy_sequence (key);
2288 else
2289 error ("KEY must be an integer, cons, symbol, or string");
2290 return Qnil;
2291 }
2292
2293 char *
2294 push_text_char_description (c, p)
2295 register unsigned int c;
2296 register char *p;
2297 {
2298 if (c >= 0200)
2299 {
2300 *p++ = 'M';
2301 *p++ = '-';
2302 c -= 0200;
2303 }
2304 if (c < 040)
2305 {
2306 *p++ = '^';
2307 *p++ = c + 64; /* 'A' - 1 */
2308 }
2309 else if (c == 0177)
2310 {
2311 *p++ = '^';
2312 *p++ = '?';
2313 }
2314 else
2315 *p++ = c;
2316 return p;
2317 }
2318
2319 /* This function cannot GC. */
2320
2321 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2322 doc: /* Return a pretty description of file-character CHARACTER.
2323 Control characters turn into "^char", etc. This differs from
2324 `single-key-description' which turns them into "C-char".
2325 Also, this function recognizes the 2**7 bit as the Meta character,
2326 whereas `single-key-description' uses the 2**27 bit for Meta.
2327 See Info node `(elisp)Describing Characters' for examples. */)
2328 (character)
2329 Lisp_Object character;
2330 {
2331 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2332 unsigned char str[6];
2333 int c;
2334
2335 CHECK_NUMBER (character);
2336
2337 c = XINT (character);
2338 if (!SINGLE_BYTE_CHAR_P (c))
2339 {
2340 int len = CHAR_STRING (c, str);
2341
2342 return make_multibyte_string (str, 1, len);
2343 }
2344
2345 *push_text_char_description (c & 0377, str) = 0;
2346
2347 return build_string (str);
2348 }
2349
2350 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2351 a meta bit. */
2352 static int
2353 ascii_sequence_p (seq)
2354 Lisp_Object seq;
2355 {
2356 int i;
2357 int len = XINT (Flength (seq));
2358
2359 for (i = 0; i < len; i++)
2360 {
2361 Lisp_Object ii, elt;
2362
2363 XSETFASTINT (ii, i);
2364 elt = Faref (seq, ii);
2365
2366 if (!INTEGERP (elt)
2367 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2368 return 0;
2369 }
2370
2371 return 1;
2372 }
2373
2374 \f
2375 /* where-is - finding a command in a set of keymaps. */
2376
2377 static Lisp_Object where_is_internal ();
2378 static Lisp_Object where_is_internal_1 ();
2379 static void where_is_internal_2 ();
2380
2381 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2382 Returns the first non-nil binding found in any of those maps. */
2383
2384 static Lisp_Object
2385 shadow_lookup (shadow, key, flag)
2386 Lisp_Object shadow, key, flag;
2387 {
2388 Lisp_Object tail, value;
2389
2390 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2391 {
2392 value = Flookup_key (XCAR (tail), key, flag);
2393 if (NATNUMP (value))
2394 {
2395 value = Flookup_key (XCAR (tail),
2396 Fsubstring (key, make_number (0), value), flag);
2397 if (!NILP (value))
2398 return Qnil;
2399 }
2400 else if (!NILP (value))
2401 return value;
2402 }
2403 return Qnil;
2404 }
2405
2406 static Lisp_Object Vmouse_events;
2407
2408 /* This function can GC if Flookup_key autoloads any keymaps. */
2409
2410 static Lisp_Object
2411 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2412 Lisp_Object definition, keymaps;
2413 Lisp_Object firstonly, noindirect, no_remap;
2414 {
2415 Lisp_Object maps = Qnil;
2416 Lisp_Object found, sequences;
2417 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2418 /* 1 means ignore all menu bindings entirely. */
2419 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2420
2421 /* If this command is remapped, then it has no key bindings
2422 of its own. */
2423 if (NILP (no_remap) && SYMBOLP (definition))
2424 {
2425 Lisp_Object tem;
2426 if (tem = Fcommand_remapping (definition), !NILP (tem))
2427 return Qnil;
2428 }
2429
2430 found = keymaps;
2431 while (CONSP (found))
2432 {
2433 maps =
2434 nconc2 (maps,
2435 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2436 found = XCDR (found);
2437 }
2438
2439 GCPRO5 (definition, keymaps, maps, found, sequences);
2440 found = Qnil;
2441 sequences = Qnil;
2442
2443 for (; !NILP (maps); maps = Fcdr (maps))
2444 {
2445 /* Key sequence to reach map, and the map that it reaches */
2446 register Lisp_Object this, map, tem;
2447
2448 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2449 [M-CHAR] sequences, check if last character of the sequence
2450 is the meta-prefix char. */
2451 Lisp_Object last;
2452 int last_is_meta;
2453
2454 this = Fcar (Fcar (maps));
2455 map = Fcdr (Fcar (maps));
2456 last = make_number (XINT (Flength (this)) - 1);
2457 last_is_meta = (XINT (last) >= 0
2458 && EQ (Faref (this, last), meta_prefix_char));
2459
2460 /* if (nomenus && !ascii_sequence_p (this)) */
2461 if (nomenus && XINT (last) >= 0
2462 && SYMBOLP (tem = Faref (this, make_number (0)))
2463 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2464 /* If no menu entries should be returned, skip over the
2465 keymaps bound to `menu-bar' and `tool-bar' and other
2466 non-ascii prefixes like `C-down-mouse-2'. */
2467 continue;
2468
2469 QUIT;
2470
2471 while (CONSP (map))
2472 {
2473 /* Because the code we want to run on each binding is rather
2474 large, we don't want to have two separate loop bodies for
2475 sparse keymap bindings and tables; we want to iterate one
2476 loop body over both keymap and vector bindings.
2477
2478 For this reason, if Fcar (map) is a vector, we don't
2479 advance map to the next element until i indicates that we
2480 have finished off the vector. */
2481 Lisp_Object elt, key, binding;
2482 elt = XCAR (map);
2483 map = XCDR (map);
2484
2485 sequences = Qnil;
2486
2487 QUIT;
2488
2489 /* Set key and binding to the current key and binding, and
2490 advance map and i to the next binding. */
2491 if (VECTORP (elt))
2492 {
2493 Lisp_Object sequence;
2494 int i;
2495 /* In a vector, look at each element. */
2496 for (i = 0; i < XVECTOR (elt)->size; i++)
2497 {
2498 binding = AREF (elt, i);
2499 XSETFASTINT (key, i);
2500 sequence = where_is_internal_1 (binding, key, definition,
2501 noindirect, this,
2502 last, nomenus, last_is_meta);
2503 if (!NILP (sequence))
2504 sequences = Fcons (sequence, sequences);
2505 }
2506 }
2507 else if (CHAR_TABLE_P (elt))
2508 {
2509 Lisp_Object indices[3];
2510 Lisp_Object args;
2511
2512 args = Fcons (Fcons (Fcons (definition, noindirect),
2513 Qnil), /* Result accumulator. */
2514 Fcons (Fcons (this, last),
2515 Fcons (make_number (nomenus),
2516 make_number (last_is_meta))));
2517 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2518 0, indices);
2519 sequences = XCDR (XCAR (args));
2520 }
2521 else if (CONSP (elt))
2522 {
2523 Lisp_Object sequence;
2524
2525 key = XCAR (elt);
2526 binding = XCDR (elt);
2527
2528 sequence = where_is_internal_1 (binding, key, definition,
2529 noindirect, this,
2530 last, nomenus, last_is_meta);
2531 if (!NILP (sequence))
2532 sequences = Fcons (sequence, sequences);
2533 }
2534
2535
2536 while (!NILP (sequences))
2537 {
2538 Lisp_Object sequence, remapped, function;
2539
2540 sequence = XCAR (sequences);
2541 sequences = XCDR (sequences);
2542
2543 /* If the current sequence is a command remapping with
2544 format [remap COMMAND], find the key sequences
2545 which run COMMAND, and use those sequences instead. */
2546 remapped = Qnil;
2547 if (NILP (no_remap)
2548 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2549 && EQ (AREF (sequence, 0), Qremap)
2550 && (function = AREF (sequence, 1), SYMBOLP (function)))
2551 {
2552 Lisp_Object remapped1;
2553
2554 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2555 if (CONSP (remapped1))
2556 {
2557 /* Verify that this key binding actually maps to the
2558 remapped command (see below). */
2559 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2560 continue;
2561 sequence = XCAR (remapped1);
2562 remapped = XCDR (remapped1);
2563 goto record_sequence;
2564 }
2565 }
2566
2567 /* Verify that this key binding is not shadowed by another
2568 binding for the same key, before we say it exists.
2569
2570 Mechanism: look for local definition of this key and if
2571 it is defined and does not match what we found then
2572 ignore this key.
2573
2574 Either nil or number as value from Flookup_key
2575 means undefined. */
2576 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2577 continue;
2578
2579 record_sequence:
2580 /* Don't annoy user with strings from a menu such as
2581 Select Paste. Change them all to "(any string)",
2582 so that there seems to be only one menu item
2583 to report. */
2584 if (! NILP (sequence))
2585 {
2586 Lisp_Object tem;
2587 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2588 if (STRINGP (tem))
2589 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2590 build_string ("(any string)"));
2591 }
2592
2593 /* It is a true unshadowed match. Record it, unless it's already
2594 been seen (as could happen when inheriting keymaps). */
2595 if (NILP (Fmember (sequence, found)))
2596 found = Fcons (sequence, found);
2597
2598 /* If firstonly is Qnon_ascii, then we can return the first
2599 binding we find. If firstonly is not Qnon_ascii but not
2600 nil, then we should return the first ascii-only binding
2601 we find. */
2602 if (EQ (firstonly, Qnon_ascii))
2603 RETURN_UNGCPRO (sequence);
2604 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2605 RETURN_UNGCPRO (sequence);
2606
2607 if (CONSP (remapped))
2608 {
2609 sequence = XCAR (remapped);
2610 remapped = XCDR (remapped);
2611 goto record_sequence;
2612 }
2613 }
2614 }
2615 }
2616
2617 UNGCPRO;
2618
2619 found = Fnreverse (found);
2620
2621 /* firstonly may have been t, but we may have gone all the way through
2622 the keymaps without finding an all-ASCII key sequence. So just
2623 return the best we could find. */
2624 if (!NILP (firstonly))
2625 return Fcar (found);
2626
2627 return found;
2628 }
2629
2630 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2631 doc: /* Return list of keys that invoke DEFINITION.
2632 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2633 If KEYMAP is nil, search all the currently active keymaps.
2634 If KEYMAP is a list of keymaps, search only those keymaps.
2635
2636 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2637 rather than a list of all possible key sequences.
2638 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2639 no matter what it is.
2640 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2641 \(or their meta variants) and entirely reject menu bindings.
2642
2643 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2644 to other keymaps or slots. This makes it possible to search for an
2645 indirect definition itself.
2646
2647 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2648 that invoke a command which is remapped to DEFINITION, but include the
2649 remapped command in the returned list. */)
2650 (definition, keymap, firstonly, noindirect, no_remap)
2651 Lisp_Object definition, keymap;
2652 Lisp_Object firstonly, noindirect, no_remap;
2653 {
2654 Lisp_Object sequences, keymaps;
2655 /* 1 means ignore all menu bindings entirely. */
2656 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2657 Lisp_Object result;
2658
2659 /* Find the relevant keymaps. */
2660 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2661 keymaps = keymap;
2662 else if (!NILP (keymap))
2663 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2664 else
2665 keymaps = Fcurrent_active_maps (Qnil);
2666
2667 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2668 We don't really need to check `keymap'. */
2669 if (nomenus && NILP (noindirect) && NILP (keymap))
2670 {
2671 Lisp_Object *defns;
2672 int i, j, n;
2673 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2674
2675 /* Check heuristic-consistency of the cache. */
2676 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2677 where_is_cache = Qnil;
2678
2679 if (NILP (where_is_cache))
2680 {
2681 /* We need to create the cache. */
2682 Lisp_Object args[2];
2683 where_is_cache = Fmake_hash_table (0, args);
2684 where_is_cache_keymaps = Qt;
2685
2686 /* Fill in the cache. */
2687 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2688 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2689 UNGCPRO;
2690
2691 where_is_cache_keymaps = keymaps;
2692 }
2693
2694 /* We want to process definitions from the last to the first.
2695 Instead of consing, copy definitions to a vector and step
2696 over that vector. */
2697 sequences = Fgethash (definition, where_is_cache, Qnil);
2698 n = XINT (Flength (sequences));
2699 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2700 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2701 defns[i++] = XCAR (sequences);
2702
2703 /* Verify that the key bindings are not shadowed. Note that
2704 the following can GC. */
2705 GCPRO2 (definition, keymaps);
2706 result = Qnil;
2707 j = -1;
2708 for (i = n - 1; i >= 0; --i)
2709 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2710 {
2711 if (ascii_sequence_p (defns[i]))
2712 break;
2713 else if (j < 0)
2714 j = i;
2715 }
2716
2717 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2718 UNGCPRO;
2719 }
2720 else
2721 {
2722 /* Kill the cache so that where_is_internal_1 doesn't think
2723 we're filling it up. */
2724 where_is_cache = Qnil;
2725 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2726 }
2727
2728 return result;
2729 }
2730
2731 /* This is the function that Fwhere_is_internal calls using map_char_table.
2732 ARGS has the form
2733 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2734 .
2735 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2736 Since map_char_table doesn't really use the return value from this function,
2737 we the result append to RESULT, the slot in ARGS.
2738
2739 This function can GC because it calls where_is_internal_1 which can
2740 GC. */
2741
2742 static void
2743 where_is_internal_2 (args, key, binding)
2744 Lisp_Object args, key, binding;
2745 {
2746 Lisp_Object definition, noindirect, this, last;
2747 Lisp_Object result, sequence;
2748 int nomenus, last_is_meta;
2749 struct gcpro gcpro1, gcpro2, gcpro3;
2750
2751 GCPRO3 (args, key, binding);
2752 result = XCDR (XCAR (args));
2753 definition = XCAR (XCAR (XCAR (args)));
2754 noindirect = XCDR (XCAR (XCAR (args)));
2755 this = XCAR (XCAR (XCDR (args)));
2756 last = XCDR (XCAR (XCDR (args)));
2757 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2758 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2759
2760 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2761 this, last, nomenus, last_is_meta);
2762
2763 if (!NILP (sequence))
2764 XSETCDR (XCAR (args), Fcons (sequence, result));
2765
2766 UNGCPRO;
2767 }
2768
2769
2770 /* This function can GC because get_keyelt can. */
2771
2772 static Lisp_Object
2773 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2774 nomenus, last_is_meta)
2775 Lisp_Object binding, key, definition, noindirect, this, last;
2776 int nomenus, last_is_meta;
2777 {
2778 Lisp_Object sequence;
2779
2780 /* Search through indirections unless that's not wanted. */
2781 if (NILP (noindirect))
2782 binding = get_keyelt (binding, 0);
2783
2784 /* End this iteration if this element does not match
2785 the target. */
2786
2787 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2788 || EQ (binding, definition)
2789 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2790 /* Doesn't match. */
2791 return Qnil;
2792
2793 /* We have found a match. Construct the key sequence where we found it. */
2794 if (INTEGERP (key) && last_is_meta)
2795 {
2796 sequence = Fcopy_sequence (this);
2797 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2798 }
2799 else
2800 sequence = append_key (this, key);
2801
2802 if (!NILP (where_is_cache))
2803 {
2804 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2805 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2806 return Qnil;
2807 }
2808 else
2809 return sequence;
2810 }
2811 \f
2812 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2813
2814 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2815 doc: /* Insert the list of all defined keys and their definitions.
2816 The list is inserted in the current buffer, while the bindings are
2817 looked up in BUFFER.
2818 The optional argument PREFIX, if non-nil, should be a key sequence;
2819 then we display only bindings that start with that prefix.
2820 The optional argument MENUS, if non-nil, says to mention menu bindings.
2821 \(Ordinarily these are omitted from the output.) */)
2822 (buffer, prefix, menus)
2823 Lisp_Object buffer, prefix, menus;
2824 {
2825 Lisp_Object outbuf, shadow;
2826 int nomenu = NILP (menus);
2827 register Lisp_Object start1;
2828 struct gcpro gcpro1;
2829
2830 char *alternate_heading
2831 = "\
2832 Keyboard translations:\n\n\
2833 You type Translation\n\
2834 -------- -----------\n";
2835
2836 shadow = Qnil;
2837 GCPRO1 (shadow);
2838
2839 outbuf = Fcurrent_buffer ();
2840
2841 /* Report on alternates for keys. */
2842 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2843 {
2844 int c;
2845 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2846 int translate_len = SCHARS (Vkeyboard_translate_table);
2847
2848 for (c = 0; c < translate_len; c++)
2849 if (translate[c] != c)
2850 {
2851 char buf[KEY_DESCRIPTION_SIZE];
2852 char *bufend;
2853
2854 if (alternate_heading)
2855 {
2856 insert_string (alternate_heading);
2857 alternate_heading = 0;
2858 }
2859
2860 bufend = push_key_description (translate[c], buf, 1);
2861 insert (buf, bufend - buf);
2862 Findent_to (make_number (16), make_number (1));
2863 bufend = push_key_description (c, buf, 1);
2864 insert (buf, bufend - buf);
2865
2866 insert ("\n", 1);
2867
2868 /* Insert calls signal_after_change which may GC. */
2869 translate = SDATA (Vkeyboard_translate_table);
2870 }
2871
2872 insert ("\n", 1);
2873 }
2874
2875 if (!NILP (Vkey_translation_map))
2876 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2877 "Key translations", nomenu, 1, 0, 0);
2878
2879
2880 /* Print the (major mode) local map. */
2881 start1 = Qnil;
2882 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2883 start1 = current_kboard->Voverriding_terminal_local_map;
2884 else if (!NILP (Voverriding_local_map))
2885 start1 = Voverriding_local_map;
2886
2887 if (!NILP (start1))
2888 {
2889 describe_map_tree (start1, 1, shadow, prefix,
2890 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
2891 shadow = Fcons (start1, shadow);
2892 }
2893 else
2894 {
2895 /* Print the minor mode and major mode keymaps. */
2896 int i, nmaps;
2897 Lisp_Object *modes, *maps;
2898
2899 /* Temporarily switch to `buffer', so that we can get that buffer's
2900 minor modes correctly. */
2901 Fset_buffer (buffer);
2902
2903 nmaps = current_minor_maps (&modes, &maps);
2904 Fset_buffer (outbuf);
2905
2906 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2907 XBUFFER (buffer), Qkeymap);
2908 if (!NILP (start1))
2909 {
2910 describe_map_tree (start1, 1, shadow, prefix,
2911 "\f\n`keymap' Property Bindings", nomenu,
2912 0, 0, 0);
2913 shadow = Fcons (start1, shadow);
2914 }
2915
2916 /* Print the minor mode maps. */
2917 for (i = 0; i < nmaps; i++)
2918 {
2919 /* The title for a minor mode keymap
2920 is constructed at run time.
2921 We let describe_map_tree do the actual insertion
2922 because it takes care of other features when doing so. */
2923 char *title, *p;
2924
2925 if (!SYMBOLP (modes[i]))
2926 abort();
2927
2928 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2929 *p++ = '\f';
2930 *p++ = '\n';
2931 *p++ = '`';
2932 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2933 SCHARS (SYMBOL_NAME (modes[i])));
2934 p += SCHARS (SYMBOL_NAME (modes[i]));
2935 *p++ = '\'';
2936 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2937 p += sizeof (" Minor Mode Bindings") - 1;
2938 *p = 0;
2939
2940 describe_map_tree (maps[i], 1, shadow, prefix,
2941 title, nomenu, 0, 0, 0);
2942 shadow = Fcons (maps[i], shadow);
2943 }
2944
2945 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2946 XBUFFER (buffer), Qlocal_map);
2947 if (!NILP (start1))
2948 {
2949 if (EQ (start1, XBUFFER (buffer)->keymap))
2950 describe_map_tree (start1, 1, shadow, prefix,
2951 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
2952 else
2953 describe_map_tree (start1, 1, shadow, prefix,
2954 "\f\n`local-map' Property Bindings",
2955 nomenu, 0, 0, 0);
2956
2957 shadow = Fcons (start1, shadow);
2958 }
2959 }
2960
2961 describe_map_tree (current_global_map, 1, shadow, prefix,
2962 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
2963
2964 /* Print the function-key-map translations under this prefix. */
2965 if (!NILP (Vfunction_key_map))
2966 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2967 "\f\nFunction key map translations", nomenu, 1, 0, 0);
2968
2969 UNGCPRO;
2970 return Qnil;
2971 }
2972
2973 /* Insert a description of the key bindings in STARTMAP,
2974 followed by those of all maps reachable through STARTMAP.
2975 If PARTIAL is nonzero, omit certain "uninteresting" commands
2976 (such as `undefined').
2977 If SHADOW is non-nil, it is a list of maps;
2978 don't mention keys which would be shadowed by any of them.
2979 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2980 TITLE, if not 0, is a string to insert at the beginning.
2981 TITLE should not end with a colon or a newline; we supply that.
2982 If NOMENU is not 0, then omit menu-bar commands.
2983
2984 If TRANSL is nonzero, the definitions are actually key translations
2985 so print strings and vectors differently.
2986
2987 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2988 to look through.
2989
2990 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
2991 don't omit it; instead, mention it but say it is shadowed. */
2992
2993 void
2994 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2995 always_title, mention_shadow)
2996 Lisp_Object startmap, shadow, prefix;
2997 int partial;
2998 char *title;
2999 int nomenu;
3000 int transl;
3001 int always_title;
3002 int mention_shadow;
3003 {
3004 Lisp_Object maps, orig_maps, seen, sub_shadows;
3005 struct gcpro gcpro1, gcpro2, gcpro3;
3006 int something = 0;
3007 char *key_heading
3008 = "\
3009 key binding\n\
3010 --- -------\n";
3011
3012 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
3013 seen = Qnil;
3014 sub_shadows = Qnil;
3015 GCPRO3 (maps, seen, sub_shadows);
3016
3017 if (nomenu)
3018 {
3019 Lisp_Object list;
3020
3021 /* Delete from MAPS each element that is for the menu bar. */
3022 for (list = maps; !NILP (list); list = XCDR (list))
3023 {
3024 Lisp_Object elt, prefix, tem;
3025
3026 elt = Fcar (list);
3027 prefix = Fcar (elt);
3028 if (XVECTOR (prefix)->size >= 1)
3029 {
3030 tem = Faref (prefix, make_number (0));
3031 if (EQ (tem, Qmenu_bar))
3032 maps = Fdelq (elt, maps);
3033 }
3034 }
3035 }
3036
3037 if (!NILP (maps) || always_title)
3038 {
3039 if (title)
3040 {
3041 insert_string (title);
3042 if (!NILP (prefix))
3043 {
3044 insert_string (" Starting With ");
3045 insert1 (Fkey_description (prefix, Qnil));
3046 }
3047 insert_string (":\n");
3048 }
3049 insert_string (key_heading);
3050 something = 1;
3051 }
3052
3053 for (; !NILP (maps); maps = Fcdr (maps))
3054 {
3055 register Lisp_Object elt, prefix, tail;
3056
3057 elt = Fcar (maps);
3058 prefix = Fcar (elt);
3059
3060 sub_shadows = Qnil;
3061
3062 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3063 {
3064 Lisp_Object shmap;
3065
3066 shmap = XCAR (tail);
3067
3068 /* If the sequence by which we reach this keymap is zero-length,
3069 then the shadow map for this keymap is just SHADOW. */
3070 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3071 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3072 ;
3073 /* If the sequence by which we reach this keymap actually has
3074 some elements, then the sequence's definition in SHADOW is
3075 what we should use. */
3076 else
3077 {
3078 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3079 if (INTEGERP (shmap))
3080 shmap = Qnil;
3081 }
3082
3083 /* If shmap is not nil and not a keymap,
3084 it completely shadows this map, so don't
3085 describe this map at all. */
3086 if (!NILP (shmap) && !KEYMAPP (shmap))
3087 goto skip;
3088
3089 if (!NILP (shmap))
3090 sub_shadows = Fcons (shmap, sub_shadows);
3091 }
3092
3093 /* Maps we have already listed in this loop shadow this map. */
3094 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3095 {
3096 Lisp_Object tem;
3097 tem = Fequal (Fcar (XCAR (tail)), prefix);
3098 if (!NILP (tem))
3099 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3100 }
3101
3102 describe_map (Fcdr (elt), prefix,
3103 transl ? describe_translation : describe_command,
3104 partial, sub_shadows, &seen, nomenu, mention_shadow);
3105
3106 skip: ;
3107 }
3108
3109 if (something)
3110 insert_string ("\n");
3111
3112 UNGCPRO;
3113 }
3114
3115 static int previous_description_column;
3116
3117 static void
3118 describe_command (definition, args)
3119 Lisp_Object definition, args;
3120 {
3121 register Lisp_Object tem1;
3122 int column = (int) current_column (); /* iftc */
3123 int description_column;
3124
3125 /* If column 16 is no good, go to col 32;
3126 but don't push beyond that--go to next line instead. */
3127 if (column > 30)
3128 {
3129 insert_char ('\n');
3130 description_column = 32;
3131 }
3132 else if (column > 14 || (column > 10 && previous_description_column == 32))
3133 description_column = 32;
3134 else
3135 description_column = 16;
3136
3137 Findent_to (make_number (description_column), make_number (1));
3138 previous_description_column = description_column;
3139
3140 if (SYMBOLP (definition))
3141 {
3142 tem1 = SYMBOL_NAME (definition);
3143 insert1 (tem1);
3144 insert_string ("\n");
3145 }
3146 else if (STRINGP (definition) || VECTORP (definition))
3147 insert_string ("Keyboard Macro\n");
3148 else if (KEYMAPP (definition))
3149 insert_string ("Prefix Command\n");
3150 else
3151 insert_string ("??\n");
3152 }
3153
3154 static void
3155 describe_translation (definition, args)
3156 Lisp_Object definition, args;
3157 {
3158 register Lisp_Object tem1;
3159
3160 Findent_to (make_number (16), make_number (1));
3161
3162 if (SYMBOLP (definition))
3163 {
3164 tem1 = SYMBOL_NAME (definition);
3165 insert1 (tem1);
3166 insert_string ("\n");
3167 }
3168 else if (STRINGP (definition) || VECTORP (definition))
3169 {
3170 insert1 (Fkey_description (definition, Qnil));
3171 insert_string ("\n");
3172 }
3173 else if (KEYMAPP (definition))
3174 insert_string ("Prefix Command\n");
3175 else
3176 insert_string ("??\n");
3177 }
3178
3179 /* describe_map puts all the usable elements of a sparse keymap
3180 into an array of `struct describe_map_elt',
3181 then sorts them by the events. */
3182
3183 struct describe_map_elt { Lisp_Object event; Lisp_Object definition; int shadowed; };
3184
3185 /* qsort comparison function for sorting `struct describe_map_elt' by
3186 the event field. */
3187
3188 static int
3189 describe_map_compare (aa, bb)
3190 const void *aa, *bb;
3191 {
3192 const struct describe_map_elt *a = aa, *b = bb;
3193 if (INTEGERP (a->event) && INTEGERP (b->event))
3194 return ((XINT (a->event) > XINT (b->event))
3195 - (XINT (a->event) < XINT (b->event)));
3196 if (!INTEGERP (a->event) && INTEGERP (b->event))
3197 return 1;
3198 if (INTEGERP (a->event) && !INTEGERP (b->event))
3199 return -1;
3200 if (SYMBOLP (a->event) && SYMBOLP (b->event))
3201 return (!NILP (Fstring_lessp (a->event, b->event)) ? -1
3202 : !NILP (Fstring_lessp (b->event, a->event)) ? 1
3203 : 0);
3204 return 0;
3205 }
3206
3207 /* Describe the contents of map MAP, assuming that this map itself is
3208 reached by the sequence of prefix keys PREFIX (a string or vector).
3209 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3210
3211 static void
3212 describe_map (map, prefix, elt_describer, partial, shadow,
3213 seen, nomenu, mention_shadow)
3214 register Lisp_Object map;
3215 Lisp_Object prefix;
3216 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3217 int partial;
3218 Lisp_Object shadow;
3219 Lisp_Object *seen;
3220 int nomenu;
3221 int mention_shadow;
3222 {
3223 Lisp_Object tail, definition, event;
3224 Lisp_Object tem;
3225 Lisp_Object suppress;
3226 Lisp_Object kludge;
3227 int first = 1;
3228 struct gcpro gcpro1, gcpro2, gcpro3;
3229
3230 /* These accumulate the values from sparse keymap bindings,
3231 so we can sort them and handle them in order. */
3232 int length_needed = 0;
3233 struct describe_map_elt *vect;
3234 int slots_used = 0;
3235 int i;
3236
3237 suppress = Qnil;
3238
3239 if (partial)
3240 suppress = intern ("suppress-keymap");
3241
3242 /* This vector gets used to present single keys to Flookup_key. Since
3243 that is done once per keymap element, we don't want to cons up a
3244 fresh vector every time. */
3245 kludge = Fmake_vector (make_number (1), Qnil);
3246 definition = Qnil;
3247
3248 for (tail = map; CONSP (tail); tail = XCDR (tail))
3249 length_needed++;
3250
3251 vect = ((struct describe_map_elt *)
3252 alloca (sizeof (struct describe_map_elt) * length_needed));
3253
3254 GCPRO3 (prefix, definition, kludge);
3255
3256 for (tail = map; CONSP (tail); tail = XCDR (tail))
3257 {
3258 QUIT;
3259
3260 if (VECTORP (XCAR (tail))
3261 || CHAR_TABLE_P (XCAR (tail)))
3262 describe_vector (XCAR (tail),
3263 prefix, Qnil, elt_describer, partial, shadow, map,
3264 (int *)0, 0, 1, mention_shadow);
3265 else if (CONSP (XCAR (tail)))
3266 {
3267 int this_shadowed = 0;
3268
3269 event = XCAR (XCAR (tail));
3270
3271 /* Ignore bindings whose "prefix" are not really valid events.
3272 (We get these in the frames and buffers menu.) */
3273 if (!(SYMBOLP (event) || INTEGERP (event)))
3274 continue;
3275
3276 if (nomenu && EQ (event, Qmenu_bar))
3277 continue;
3278
3279 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3280
3281 /* Don't show undefined commands or suppressed commands. */
3282 if (NILP (definition)) continue;
3283 if (SYMBOLP (definition) && partial)
3284 {
3285 tem = Fget (definition, suppress);
3286 if (!NILP (tem))
3287 continue;
3288 }
3289
3290 /* Don't show a command that isn't really visible
3291 because a local definition of the same key shadows it. */
3292
3293 ASET (kludge, 0, event);
3294 if (!NILP (shadow))
3295 {
3296 tem = shadow_lookup (shadow, kludge, Qt);
3297 if (!NILP (tem))
3298 {
3299 if (mention_shadow)
3300 this_shadowed = 1;
3301 else
3302 continue;
3303 }
3304 }
3305
3306 tem = Flookup_key (map, kludge, Qt);
3307 if (!EQ (tem, definition)) continue;
3308
3309 vect[slots_used].event = event;
3310 vect[slots_used].definition = definition;
3311 vect[slots_used].shadowed = this_shadowed;
3312 slots_used++;
3313 }
3314 else if (EQ (XCAR (tail), Qkeymap))
3315 {
3316 /* The same keymap might be in the structure twice, if we're
3317 using an inherited keymap. So skip anything we've already
3318 encountered. */
3319 tem = Fassq (tail, *seen);
3320 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3321 break;
3322 *seen = Fcons (Fcons (tail, prefix), *seen);
3323 }
3324 }
3325
3326 /* If we found some sparse map events, sort them. */
3327
3328 qsort (vect, slots_used, sizeof (struct describe_map_elt),
3329 describe_map_compare);
3330
3331 /* Now output them in sorted order. */
3332
3333 for (i = 0; i < slots_used; i++)
3334 {
3335 Lisp_Object start, end;
3336
3337 if (first)
3338 {
3339 previous_description_column = 0;
3340 insert ("\n", 1);
3341 first = 0;
3342 }
3343
3344 ASET (kludge, 0, vect[i].event);
3345 start = vect[i].event;
3346 end = start;
3347
3348 definition = vect[i].definition;
3349
3350 /* Find consecutive chars that are identically defined. */
3351 if (INTEGERP (vect[i].event))
3352 {
3353 while (i + 1 < slots_used
3354 && XINT (vect[i + 1].event) == XINT (vect[i].event) + 1
3355 && !NILP (Fequal (vect[i + 1].definition, definition))
3356 && vect[i].shadowed == vect[i + 1].shadowed)
3357 i++;
3358 end = vect[i].event;
3359 }
3360
3361 /* Now START .. END is the range to describe next. */
3362
3363 /* Insert the string to describe the event START. */
3364 insert1 (Fkey_description (kludge, prefix));
3365
3366 if (!EQ (start, end))
3367 {
3368 insert (" .. ", 4);
3369
3370 ASET (kludge, 0, end);
3371 /* Insert the string to describe the character END. */
3372 insert1 (Fkey_description (kludge, prefix));
3373 }
3374
3375 /* Print a description of the definition of this character.
3376 elt_describer will take care of spacing out far enough
3377 for alignment purposes. */
3378 (*elt_describer) (vect[i].definition, Qnil);
3379
3380 if (vect[i].shadowed)
3381 {
3382 SET_PT (PT - 1);
3383 insert_string (" (binding currently shadowed)");
3384 SET_PT (PT + 1);
3385 }
3386 }
3387
3388 UNGCPRO;
3389 }
3390
3391 static void
3392 describe_vector_princ (elt, fun)
3393 Lisp_Object elt, fun;
3394 {
3395 Findent_to (make_number (16), make_number (1));
3396 call1 (fun, elt);
3397 Fterpri (Qnil);
3398 }
3399
3400 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3401 doc: /* Insert a description of contents of VECTOR.
3402 This is text showing the elements of vector matched against indices.
3403 DESCRIBER is the output function used; nil means use `princ'. */)
3404 (vector, describer)
3405 Lisp_Object vector, describer;
3406 {
3407 int count = SPECPDL_INDEX ();
3408 if (NILP (describer))
3409 describer = intern ("princ");
3410 specbind (Qstandard_output, Fcurrent_buffer ());
3411 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3412 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3413 Qnil, Qnil, (int *)0, 0, 0, 0);
3414
3415 return unbind_to (count, Qnil);
3416 }
3417
3418 /* Insert in the current buffer a description of the contents of VECTOR.
3419 We call ELT_DESCRIBER to insert the description of one value found
3420 in VECTOR.
3421
3422 ELT_PREFIX describes what "comes before" the keys or indices defined
3423 by this vector. This is a human-readable string whose size
3424 is not necessarily related to the situation.
3425
3426 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3427 leads to this keymap.
3428
3429 If the vector is a chartable, ELT_PREFIX is the vector
3430 of bytes that lead to the character set or portion of a character
3431 set described by this chartable.
3432
3433 If PARTIAL is nonzero, it means do not mention suppressed commands
3434 (that assumes the vector is in a keymap).
3435
3436 SHADOW is a list of keymaps that shadow this map.
3437 If it is non-nil, then we look up the key in those maps
3438 and we don't mention it now if it is defined by any of them.
3439
3440 ENTIRE_MAP is the keymap in which this vector appears.
3441 If the definition in effect in the whole map does not match
3442 the one in this vector, we ignore this one.
3443
3444 When describing a sub-char-table, INDICES is a list of
3445 indices at higher levels in this char-table,
3446 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3447
3448 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3449
3450 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3451
3452 static void
3453 describe_vector (vector, prefix, args, elt_describer,
3454 partial, shadow, entire_map,
3455 indices, char_table_depth, keymap_p,
3456 mention_shadow)
3457 register Lisp_Object vector;
3458 Lisp_Object prefix, args;
3459 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3460 int partial;
3461 Lisp_Object shadow;
3462 Lisp_Object entire_map;
3463 int *indices;
3464 int char_table_depth;
3465 int keymap_p;
3466 int mention_shadow;
3467 {
3468 Lisp_Object definition;
3469 Lisp_Object tem2;
3470 Lisp_Object elt_prefix = Qnil;
3471 register int i;
3472 Lisp_Object suppress;
3473 Lisp_Object kludge;
3474 int first = 1;
3475 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3476 /* Range of elements to be handled. */
3477 int from, to;
3478 /* A flag to tell if a leaf in this level of char-table is not a
3479 generic character (i.e. a complete multibyte character). */
3480 int complete_char;
3481 int character;
3482 int starting_i;
3483
3484 suppress = Qnil;
3485
3486 if (indices == 0)
3487 indices = (int *) alloca (3 * sizeof (int));
3488
3489 definition = Qnil;
3490
3491 if (!keymap_p)
3492 {
3493 /* Call Fkey_description first, to avoid GC bug for the other string. */
3494 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3495 {
3496 Lisp_Object tem;
3497 tem = Fkey_description (prefix, Qnil);
3498 elt_prefix = concat2 (tem, build_string (" "));
3499 }
3500 prefix = Qnil;
3501 }
3502
3503 /* This vector gets used to present single keys to Flookup_key. Since
3504 that is done once per vector element, we don't want to cons up a
3505 fresh vector every time. */
3506 kludge = Fmake_vector (make_number (1), Qnil);
3507 GCPRO4 (elt_prefix, prefix, definition, kludge);
3508
3509 if (partial)
3510 suppress = intern ("suppress-keymap");
3511
3512 if (CHAR_TABLE_P (vector))
3513 {
3514 if (char_table_depth == 0)
3515 {
3516 /* VECTOR is a top level char-table. */
3517 complete_char = 1;
3518 from = 0;
3519 to = CHAR_TABLE_ORDINARY_SLOTS;
3520 }
3521 else
3522 {
3523 /* VECTOR is a sub char-table. */
3524 if (char_table_depth >= 3)
3525 /* A char-table is never that deep. */
3526 error ("Too deep char table");
3527
3528 complete_char
3529 = (CHARSET_VALID_P (indices[0])
3530 && ((CHARSET_DIMENSION (indices[0]) == 1
3531 && char_table_depth == 1)
3532 || char_table_depth == 2));
3533
3534 /* Meaningful elements are from 32th to 127th. */
3535 from = 32;
3536 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3537 }
3538 }
3539 else
3540 {
3541 /* This does the right thing for ordinary vectors. */
3542
3543 complete_char = 1;
3544 from = 0;
3545 to = XVECTOR (vector)->size;
3546 }
3547
3548 for (i = from; i < to; i++)
3549 {
3550 int this_shadowed = 0;
3551 QUIT;
3552
3553 if (CHAR_TABLE_P (vector))
3554 {
3555 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3556 complete_char = 0;
3557
3558 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3559 && !CHARSET_DEFINED_P (i - 128))
3560 continue;
3561
3562 definition
3563 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3564 }
3565 else
3566 definition = get_keyelt (AREF (vector, i), 0);
3567
3568 if (NILP (definition)) continue;
3569
3570 /* Don't mention suppressed commands. */
3571 if (SYMBOLP (definition) && partial)
3572 {
3573 Lisp_Object tem;
3574
3575 tem = Fget (definition, suppress);
3576
3577 if (!NILP (tem)) continue;
3578 }
3579
3580 /* Set CHARACTER to the character this entry describes, if any.
3581 Also update *INDICES. */
3582 if (CHAR_TABLE_P (vector))
3583 {
3584 indices[char_table_depth] = i;
3585
3586 if (char_table_depth == 0)
3587 {
3588 character = i;
3589 indices[0] = i - 128;
3590 }
3591 else if (complete_char)
3592 {
3593 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3594 }
3595 else
3596 character = 0;
3597 }
3598 else
3599 character = i;
3600
3601 ASET (kludge, 0, make_number (character));
3602
3603 /* If this binding is shadowed by some other map, ignore it. */
3604 if (!NILP (shadow) && complete_char)
3605 {
3606 Lisp_Object tem;
3607
3608 tem = shadow_lookup (shadow, kludge, Qt);
3609
3610 if (!NILP (tem))
3611 {
3612 if (mention_shadow)
3613 this_shadowed = 1;
3614 else
3615 continue;
3616 }
3617 }
3618
3619 /* Ignore this definition if it is shadowed by an earlier
3620 one in the same keymap. */
3621 if (!NILP (entire_map) && complete_char)
3622 {
3623 Lisp_Object tem;
3624
3625 tem = Flookup_key (entire_map, kludge, Qt);
3626
3627 if (!EQ (tem, definition))
3628 continue;
3629 }
3630
3631 if (first)
3632 {
3633 if (char_table_depth == 0)
3634 insert ("\n", 1);
3635 first = 0;
3636 }
3637
3638 /* For a sub char-table, show the depth by indentation.
3639 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3640 if (char_table_depth > 0)
3641 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3642
3643 /* Output the prefix that applies to every entry in this map. */
3644 if (!NILP (elt_prefix))
3645 insert1 (elt_prefix);
3646
3647 /* Insert or describe the character this slot is for,
3648 or a description of what it is for. */
3649 if (SUB_CHAR_TABLE_P (vector))
3650 {
3651 if (complete_char)
3652 insert_char (character);
3653 else
3654 {
3655 /* We need an octal representation for this block of
3656 characters. */
3657 char work[16];
3658 sprintf (work, "(row %d)", i);
3659 insert (work, strlen (work));
3660 }
3661 }
3662 else if (CHAR_TABLE_P (vector))
3663 {
3664 if (complete_char)
3665 insert1 (Fkey_description (kludge, prefix));
3666 else
3667 {
3668 /* Print the information for this character set. */
3669 insert_string ("<");
3670 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3671 if (STRINGP (tem2))
3672 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3673 SBYTES (tem2), 0);
3674 else
3675 insert ("?", 1);
3676 insert (">", 1);
3677 }
3678 }
3679 else
3680 {
3681 insert1 (Fkey_description (kludge, prefix));
3682 }
3683
3684 /* If we find a sub char-table within a char-table,
3685 scan it recursively; it defines the details for
3686 a character set or a portion of a character set. */
3687 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3688 {
3689 insert ("\n", 1);
3690 describe_vector (definition, prefix, args, elt_describer,
3691 partial, shadow, entire_map,
3692 indices, char_table_depth + 1, keymap_p,
3693 mention_shadow);
3694 continue;
3695 }
3696
3697 starting_i = i;
3698
3699 /* Find all consecutive characters or rows that have the same
3700 definition. But, for elements of a top level char table, if
3701 they are for charsets, we had better describe one by one even
3702 if they have the same definition. */
3703 if (CHAR_TABLE_P (vector))
3704 {
3705 int limit = to;
3706
3707 if (char_table_depth == 0)
3708 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3709
3710 while (i + 1 < limit
3711 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3712 !NILP (tem2))
3713 && !NILP (Fequal (tem2, definition)))
3714 i++;
3715 }
3716 else
3717 while (i + 1 < to
3718 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3719 !NILP (tem2))
3720 && !NILP (Fequal (tem2, definition)))
3721 i++;
3722
3723
3724 /* If we have a range of more than one character,
3725 print where the range reaches to. */
3726
3727 if (i != starting_i)
3728 {
3729 insert (" .. ", 4);
3730
3731 ASET (kludge, 0, make_number (i));
3732
3733 if (!NILP (elt_prefix))
3734 insert1 (elt_prefix);
3735
3736 if (CHAR_TABLE_P (vector))
3737 {
3738 if (char_table_depth == 0)
3739 {
3740 insert1 (Fkey_description (kludge, prefix));
3741 }
3742 else if (complete_char)
3743 {
3744 indices[char_table_depth] = i;
3745 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3746 insert_char (character);
3747 }
3748 else
3749 {
3750 /* We need an octal representation for this block of
3751 characters. */
3752 char work[16];
3753 sprintf (work, "(row %d)", i);
3754 insert (work, strlen (work));
3755 }
3756 }
3757 else
3758 {
3759 insert1 (Fkey_description (kludge, prefix));
3760 }
3761 }
3762
3763 /* Print a description of the definition of this character.
3764 elt_describer will take care of spacing out far enough
3765 for alignment purposes. */
3766 (*elt_describer) (definition, args);
3767
3768 if (this_shadowed)
3769 {
3770 SET_PT (PT - 1);
3771 insert_string (" (binding currently shadowed)");
3772 SET_PT (PT + 1);
3773 }
3774 }
3775
3776 /* For (sub) char-table, print `defalt' slot at last. */
3777 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3778 {
3779 insert (" ", char_table_depth * 2);
3780 insert_string ("<<default>>");
3781 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3782 }
3783
3784 UNGCPRO;
3785 }
3786 \f
3787 /* Apropos - finding all symbols whose names match a regexp. */
3788 static Lisp_Object apropos_predicate;
3789 static Lisp_Object apropos_accumulate;
3790
3791 static void
3792 apropos_accum (symbol, string)
3793 Lisp_Object symbol, string;
3794 {
3795 register Lisp_Object tem;
3796
3797 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3798 if (!NILP (tem) && !NILP (apropos_predicate))
3799 tem = call1 (apropos_predicate, symbol);
3800 if (!NILP (tem))
3801 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3802 }
3803
3804 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3805 doc: /* Show all symbols whose names contain match for REGEXP.
3806 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3807 for each symbol and a symbol is mentioned only if that returns non-nil.
3808 Return list of symbols found. */)
3809 (regexp, predicate)
3810 Lisp_Object regexp, predicate;
3811 {
3812 Lisp_Object tem;
3813 CHECK_STRING (regexp);
3814 apropos_predicate = predicate;
3815 apropos_accumulate = Qnil;
3816 map_obarray (Vobarray, apropos_accum, regexp);
3817 tem = Fsort (apropos_accumulate, Qstring_lessp);
3818 apropos_accumulate = Qnil;
3819 apropos_predicate = Qnil;
3820 return tem;
3821 }
3822 \f
3823 void
3824 syms_of_keymap ()
3825 {
3826 Qkeymap = intern ("keymap");
3827 staticpro (&Qkeymap);
3828 staticpro (&apropos_predicate);
3829 staticpro (&apropos_accumulate);
3830 apropos_predicate = Qnil;
3831 apropos_accumulate = Qnil;
3832
3833 /* Now we are ready to set up this property, so we can
3834 create char tables. */
3835 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3836
3837 /* Initialize the keymaps standardly used.
3838 Each one is the value of a Lisp variable, and is also
3839 pointed to by a C variable */
3840
3841 global_map = Fmake_keymap (Qnil);
3842 Fset (intern ("global-map"), global_map);
3843
3844 current_global_map = global_map;
3845 staticpro (&global_map);
3846 staticpro (&current_global_map);
3847
3848 meta_map = Fmake_keymap (Qnil);
3849 Fset (intern ("esc-map"), meta_map);
3850 Ffset (intern ("ESC-prefix"), meta_map);
3851
3852 control_x_map = Fmake_keymap (Qnil);
3853 Fset (intern ("ctl-x-map"), control_x_map);
3854 Ffset (intern ("Control-X-prefix"), control_x_map);
3855
3856 exclude_keys
3857 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3858 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3859 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3860 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3861 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3862 Qnil)))));
3863 staticpro (&exclude_keys);
3864
3865 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3866 doc: /* List of commands given new key bindings recently.
3867 This is used for internal purposes during Emacs startup;
3868 don't alter it yourself. */);
3869 Vdefine_key_rebound_commands = Qt;
3870
3871 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3872 doc: /* Default keymap to use when reading from the minibuffer. */);
3873 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3874
3875 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3876 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3877 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3878 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3879
3880 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3881 doc: /* Local keymap for minibuffer input with completion. */);
3882 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3883 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3884
3885 DEFVAR_LISP ("minibuffer-local-filename-completion-map",
3886 &Vminibuffer_local_filename_completion_map,
3887 doc: /* Local keymap for minibuffer input with completion for filenames. */);
3888 Vminibuffer_local_filename_completion_map = Fmake_sparse_keymap (Qnil);
3889 Fset_keymap_parent (Vminibuffer_local_filename_completion_map,
3890 Vminibuffer_local_completion_map);
3891
3892
3893 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3894 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3895 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3896 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3897 Vminibuffer_local_completion_map);
3898
3899 DEFVAR_LISP ("minibuffer-local-must-match-filename-map",
3900 &Vminibuffer_local_must_match_filename_map,
3901 doc: /* Local keymap for minibuffer input with completion for filenames with exact match. */);
3902 Vminibuffer_local_must_match_filename_map = Fmake_sparse_keymap (Qnil);
3903 Fset_keymap_parent (Vminibuffer_local_must_match_filename_map,
3904 Vminibuffer_local_must_match_map);
3905
3906 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3907 doc: /* Alist of keymaps to use for minor modes.
3908 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3909 key sequences and look up bindings iff VARIABLE's value is non-nil.
3910 If two active keymaps bind the same key, the keymap appearing earlier
3911 in the list takes precedence. */);
3912 Vminor_mode_map_alist = Qnil;
3913
3914 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3915 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3916 This variable is an alist just like `minor-mode-map-alist', and it is
3917 used the same way (and before `minor-mode-map-alist'); however,
3918 it is provided for major modes to bind locally. */);
3919 Vminor_mode_overriding_map_alist = Qnil;
3920
3921 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3922 doc: /* List of keymap alists to use for emulations modes.
3923 It is intended for modes or packages using multiple minor-mode keymaps.
3924 Each element is a keymap alist just like `minor-mode-map-alist', or a
3925 symbol with a variable binding which is a keymap alist, and it is used
3926 the same way. The "active" keymaps in each alist are used before
3927 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3928 Vemulation_mode_map_alists = Qnil;
3929
3930
3931 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3932 doc: /* Keymap that translates key sequences to key sequences during input.
3933 This is used mainly for mapping ASCII function key sequences into
3934 real Emacs function key events (symbols).
3935
3936 The `read-key-sequence' function replaces any subsequence bound by
3937 `function-key-map' with its binding. More precisely, when the active
3938 keymaps have no binding for the current key sequence but
3939 `function-key-map' binds a suffix of the sequence to a vector or string,
3940 `read-key-sequence' replaces the matching suffix with its binding, and
3941 continues with the new sequence.
3942
3943 If the binding is a function, it is called with one argument (the prompt)
3944 and its return value (a key sequence) is used.
3945
3946 The events that come from bindings in `function-key-map' are not
3947 themselves looked up in `function-key-map'.
3948
3949 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3950 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3951 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3952 key, typing `ESC O P x' would return [f1 x]. */);
3953 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3954
3955 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3956 doc: /* Keymap of key translations that can override keymaps.
3957 This keymap works like `function-key-map', but comes after that,
3958 and its non-prefix bindings override ordinary bindings. */);
3959 Vkey_translation_map = Qnil;
3960
3961 staticpro (&Vmouse_events);
3962 Vmouse_events = Fcons (intern ("menu-bar"),
3963 Fcons (intern ("tool-bar"),
3964 Fcons (intern ("header-line"),
3965 Fcons (intern ("mode-line"),
3966 Fcons (intern ("mouse-1"),
3967 Fcons (intern ("mouse-2"),
3968 Fcons (intern ("mouse-3"),
3969 Fcons (intern ("mouse-4"),
3970 Fcons (intern ("mouse-5"),
3971 Qnil)))))))));
3972
3973
3974 Qsingle_key_description = intern ("single-key-description");
3975 staticpro (&Qsingle_key_description);
3976
3977 Qkey_description = intern ("key-description");
3978 staticpro (&Qkey_description);
3979
3980 Qkeymapp = intern ("keymapp");
3981 staticpro (&Qkeymapp);
3982
3983 Qnon_ascii = intern ("non-ascii");
3984 staticpro (&Qnon_ascii);
3985
3986 Qmenu_item = intern ("menu-item");
3987 staticpro (&Qmenu_item);
3988
3989 Qremap = intern ("remap");
3990 staticpro (&Qremap);
3991
3992 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3993 staticpro (&command_remapping_vector);
3994
3995 where_is_cache_keymaps = Qt;
3996 where_is_cache = Qnil;
3997 staticpro (&where_is_cache);
3998 staticpro (&where_is_cache_keymaps);
3999
4000 defsubr (&Skeymapp);
4001 defsubr (&Skeymap_parent);
4002 defsubr (&Skeymap_prompt);
4003 defsubr (&Sset_keymap_parent);
4004 defsubr (&Smake_keymap);
4005 defsubr (&Smake_sparse_keymap);
4006 defsubr (&Smap_keymap);
4007 defsubr (&Scopy_keymap);
4008 defsubr (&Scommand_remapping);
4009 defsubr (&Skey_binding);
4010 defsubr (&Slocal_key_binding);
4011 defsubr (&Sglobal_key_binding);
4012 defsubr (&Sminor_mode_key_binding);
4013 defsubr (&Sdefine_key);
4014 defsubr (&Slookup_key);
4015 defsubr (&Sdefine_prefix_command);
4016 defsubr (&Suse_global_map);
4017 defsubr (&Suse_local_map);
4018 defsubr (&Scurrent_local_map);
4019 defsubr (&Scurrent_global_map);
4020 defsubr (&Scurrent_minor_mode_maps);
4021 defsubr (&Scurrent_active_maps);
4022 defsubr (&Saccessible_keymaps);
4023 defsubr (&Skey_description);
4024 defsubr (&Sdescribe_vector);
4025 defsubr (&Ssingle_key_description);
4026 defsubr (&Stext_char_description);
4027 defsubr (&Swhere_is_internal);
4028 defsubr (&Sdescribe_buffer_bindings);
4029 defsubr (&Sapropos_internal);
4030 }
4031
4032 void
4033 keys_of_keymap ()
4034 {
4035 initial_define_key (global_map, 033, "ESC-prefix");
4036 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
4037 }
4038
4039 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
4040 (do not change this comment) */