Tried to make docstring less `colloquial'...
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1997, 1998, 2002, 2003, 2004, 2005
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7
8 This file is part of GNU Emacs.
9
10 GNU Emacs is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU Emacs is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU Emacs; see the file COPYING. If not, write to
22 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /*** TABLE OF CONTENTS ***
26
27 0. General comments
28 1. Preamble
29 2. Emacs' internal format (emacs-mule) handlers
30 3. ISO2022 handlers
31 4. Shift-JIS and BIG5 handlers
32 5. CCL handlers
33 6. End-of-line handlers
34 7. C library functions
35 8. Emacs Lisp library functions
36 9. Post-amble
37
38 */
39
40 /*** 0. General comments ***/
41
42
43 /*** GENERAL NOTE on CODING SYSTEMS ***
44
45 A coding system is an encoding mechanism for one or more character
46 sets. Here's a list of coding systems which Emacs can handle. When
47 we say "decode", it means converting some other coding system to
48 Emacs' internal format (emacs-mule), and when we say "encode",
49 it means converting the coding system emacs-mule to some other
50 coding system.
51
52 0. Emacs' internal format (emacs-mule)
53
54 Emacs itself holds a multi-lingual character in buffers and strings
55 in a special format. Details are described in section 2.
56
57 1. ISO2022
58
59 The most famous coding system for multiple character sets. X's
60 Compound Text, various EUCs (Extended Unix Code), and coding
61 systems used in Internet communication such as ISO-2022-JP are
62 all variants of ISO2022. Details are described in section 3.
63
64 2. SJIS (or Shift-JIS or MS-Kanji-Code)
65
66 A coding system to encode character sets: ASCII, JISX0201, and
67 JISX0208. Widely used for PC's in Japan. Details are described in
68 section 4.
69
70 3. BIG5
71
72 A coding system to encode the character sets ASCII and Big5. Widely
73 used for Chinese (mainly in Taiwan and Hong Kong). Details are
74 described in section 4. In this file, when we write "BIG5"
75 (all uppercase), we mean the coding system, and when we write
76 "Big5" (capitalized), we mean the character set.
77
78 4. Raw text
79
80 A coding system for text containing random 8-bit code. Emacs does
81 no code conversion on such text except for end-of-line format.
82
83 5. Other
84
85 If a user wants to read/write text encoded in a coding system not
86 listed above, he can supply a decoder and an encoder for it as CCL
87 (Code Conversion Language) programs. Emacs executes the CCL program
88 while reading/writing.
89
90 Emacs represents a coding system by a Lisp symbol that has a property
91 `coding-system'. But, before actually using the coding system, the
92 information about it is set in a structure of type `struct
93 coding_system' for rapid processing. See section 6 for more details.
94
95 */
96
97 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
98
99 How end-of-line of text is encoded depends on the operating system.
100 For instance, Unix's format is just one byte of `line-feed' code,
101 whereas DOS's format is two-byte sequence of `carriage-return' and
102 `line-feed' codes. MacOS's format is usually one byte of
103 `carriage-return'.
104
105 Since text character encoding and end-of-line encoding are
106 independent, any coding system described above can have any
107 end-of-line format. So Emacs has information about end-of-line
108 format in each coding-system. See section 6 for more details.
109
110 */
111
112 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
113
114 These functions check if a text between SRC and SRC_END is encoded
115 in the coding system category XXX. Each returns an integer value in
116 which appropriate flag bits for the category XXX are set. The flag
117 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
118 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
119 of the range 0x80..0x9F are in multibyte form. */
120 #if 0
121 int
122 detect_coding_emacs_mule (src, src_end, multibytep)
123 unsigned char *src, *src_end;
124 int multibytep;
125 {
126 ...
127 }
128 #endif
129
130 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
131
132 These functions decode SRC_BYTES length of unibyte text at SOURCE
133 encoded in CODING to Emacs' internal format. The resulting
134 multibyte text goes to a place pointed to by DESTINATION, the length
135 of which should not exceed DST_BYTES.
136
137 These functions set the information about original and decoded texts
138 in the members `produced', `produced_char', `consumed', and
139 `consumed_char' of the structure *CODING. They also set the member
140 `result' to one of CODING_FINISH_XXX indicating how the decoding
141 finished.
142
143 DST_BYTES zero means that the source area and destination area are
144 overlapped, which means that we can produce a decoded text until it
145 reaches the head of the not-yet-decoded source text.
146
147 Below is a template for these functions. */
148 #if 0
149 static void
150 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
151 struct coding_system *coding;
152 const unsigned char *source;
153 unsigned char *destination;
154 int src_bytes, dst_bytes;
155 {
156 ...
157 }
158 #endif
159
160 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
161
162 These functions encode SRC_BYTES length text at SOURCE from Emacs'
163 internal multibyte format to CODING. The resulting unibyte text
164 goes to a place pointed to by DESTINATION, the length of which
165 should not exceed DST_BYTES.
166
167 These functions set the information about original and encoded texts
168 in the members `produced', `produced_char', `consumed', and
169 `consumed_char' of the structure *CODING. They also set the member
170 `result' to one of CODING_FINISH_XXX indicating how the encoding
171 finished.
172
173 DST_BYTES zero means that the source area and destination area are
174 overlapped, which means that we can produce encoded text until it
175 reaches at the head of the not-yet-encoded source text.
176
177 Below is a template for these functions. */
178 #if 0
179 static void
180 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
181 struct coding_system *coding;
182 unsigned char *source, *destination;
183 int src_bytes, dst_bytes;
184 {
185 ...
186 }
187 #endif
188
189 /*** COMMONLY USED MACROS ***/
190
191 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
192 get one, two, and three bytes from the source text respectively.
193 If there are not enough bytes in the source, they jump to
194 `label_end_of_loop'. The caller should set variables `coding',
195 `src' and `src_end' to appropriate pointer in advance. These
196 macros are called from decoding routines `decode_coding_XXX', thus
197 it is assumed that the source text is unibyte. */
198
199 #define ONE_MORE_BYTE(c1) \
200 do { \
201 if (src >= src_end) \
202 { \
203 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
204 goto label_end_of_loop; \
205 } \
206 c1 = *src++; \
207 } while (0)
208
209 #define TWO_MORE_BYTES(c1, c2) \
210 do { \
211 if (src + 1 >= src_end) \
212 { \
213 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
214 goto label_end_of_loop; \
215 } \
216 c1 = *src++; \
217 c2 = *src++; \
218 } while (0)
219
220
221 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
222 form if MULTIBYTEP is nonzero. */
223
224 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
225 do { \
226 if (src >= src_end) \
227 { \
228 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
229 goto label_end_of_loop; \
230 } \
231 c1 = *src++; \
232 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
233 c1 = *src++ - 0x20; \
234 } while (0)
235
236 /* Set C to the next character at the source text pointed by `src'.
237 If there are not enough characters in the source, jump to
238 `label_end_of_loop'. The caller should set variables `coding'
239 `src', `src_end', and `translation_table' to appropriate pointers
240 in advance. This macro is used in encoding routines
241 `encode_coding_XXX', thus it assumes that the source text is in
242 multibyte form except for 8-bit characters. 8-bit characters are
243 in multibyte form if coding->src_multibyte is nonzero, else they
244 are represented by a single byte. */
245
246 #define ONE_MORE_CHAR(c) \
247 do { \
248 int len = src_end - src; \
249 int bytes; \
250 if (len <= 0) \
251 { \
252 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
253 goto label_end_of_loop; \
254 } \
255 if (coding->src_multibyte \
256 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
257 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
258 else \
259 c = *src, bytes = 1; \
260 if (!NILP (translation_table)) \
261 c = translate_char (translation_table, c, -1, 0, 0); \
262 src += bytes; \
263 } while (0)
264
265
266 /* Produce a multibyte form of character C to `dst'. Jump to
267 `label_end_of_loop' if there's not enough space at `dst'.
268
269 If we are now in the middle of a composition sequence, the decoded
270 character may be ALTCHAR (for the current composition). In that
271 case, the character goes to coding->cmp_data->data instead of
272 `dst'.
273
274 This macro is used in decoding routines. */
275
276 #define EMIT_CHAR(c) \
277 do { \
278 if (! COMPOSING_P (coding) \
279 || coding->composing == COMPOSITION_RELATIVE \
280 || coding->composing == COMPOSITION_WITH_RULE) \
281 { \
282 int bytes = CHAR_BYTES (c); \
283 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
284 { \
285 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
286 goto label_end_of_loop; \
287 } \
288 dst += CHAR_STRING (c, dst); \
289 coding->produced_char++; \
290 } \
291 \
292 if (COMPOSING_P (coding) \
293 && coding->composing != COMPOSITION_RELATIVE) \
294 { \
295 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
296 coding->composition_rule_follows \
297 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
298 } \
299 } while (0)
300
301
302 #define EMIT_ONE_BYTE(c) \
303 do { \
304 if (dst >= (dst_bytes ? dst_end : src)) \
305 { \
306 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
307 goto label_end_of_loop; \
308 } \
309 *dst++ = c; \
310 } while (0)
311
312 #define EMIT_TWO_BYTES(c1, c2) \
313 do { \
314 if (dst + 2 > (dst_bytes ? dst_end : src)) \
315 { \
316 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
317 goto label_end_of_loop; \
318 } \
319 *dst++ = c1, *dst++ = c2; \
320 } while (0)
321
322 #define EMIT_BYTES(from, to) \
323 do { \
324 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
325 { \
326 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
327 goto label_end_of_loop; \
328 } \
329 while (from < to) \
330 *dst++ = *from++; \
331 } while (0)
332
333 \f
334 /*** 1. Preamble ***/
335
336 #ifdef emacs
337 #include <config.h>
338 #endif
339
340 #include <stdio.h>
341
342 #ifdef emacs
343
344 #include "lisp.h"
345 #include "buffer.h"
346 #include "charset.h"
347 #include "composite.h"
348 #include "ccl.h"
349 #include "coding.h"
350 #include "window.h"
351 #include "intervals.h"
352
353 #else /* not emacs */
354
355 #include "mulelib.h"
356
357 #endif /* not emacs */
358
359 Lisp_Object Qcoding_system, Qeol_type;
360 Lisp_Object Qbuffer_file_coding_system;
361 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
362 Lisp_Object Qno_conversion, Qundecided;
363 Lisp_Object Qcoding_system_history;
364 Lisp_Object Qsafe_chars;
365 Lisp_Object Qvalid_codes;
366
367 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
368 Lisp_Object Qcall_process, Qcall_process_region;
369 Lisp_Object Qstart_process, Qopen_network_stream;
370 Lisp_Object Qtarget_idx;
371
372 /* If a symbol has this property, evaluate the value to define the
373 symbol as a coding system. */
374 Lisp_Object Qcoding_system_define_form;
375
376 Lisp_Object Vselect_safe_coding_system_function;
377
378 int coding_system_require_warning;
379
380 /* Mnemonic string for each format of end-of-line. */
381 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
382 /* Mnemonic string to indicate format of end-of-line is not yet
383 decided. */
384 Lisp_Object eol_mnemonic_undecided;
385
386 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
387 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
388 int system_eol_type;
389
390 #ifdef emacs
391
392 /* Information about which coding system is safe for which chars.
393 The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).
394
395 GENERIC-LIST is a list of generic coding systems which can encode
396 any characters.
397
398 NON-GENERIC-ALIST is an alist of non generic coding systems vs the
399 corresponding char table that contains safe chars. */
400 Lisp_Object Vcoding_system_safe_chars;
401
402 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
403
404 Lisp_Object Qcoding_system_p, Qcoding_system_error;
405
406 /* Coding system emacs-mule and raw-text are for converting only
407 end-of-line format. */
408 Lisp_Object Qemacs_mule, Qraw_text;
409
410 Lisp_Object Qutf_8;
411
412 /* Coding-systems are handed between Emacs Lisp programs and C internal
413 routines by the following three variables. */
414 /* Coding-system for reading files and receiving data from process. */
415 Lisp_Object Vcoding_system_for_read;
416 /* Coding-system for writing files and sending data to process. */
417 Lisp_Object Vcoding_system_for_write;
418 /* Coding-system actually used in the latest I/O. */
419 Lisp_Object Vlast_coding_system_used;
420
421 /* A vector of length 256 which contains information about special
422 Latin codes (especially for dealing with Microsoft codes). */
423 Lisp_Object Vlatin_extra_code_table;
424
425 /* Flag to inhibit code conversion of end-of-line format. */
426 int inhibit_eol_conversion;
427
428 /* Flag to inhibit ISO2022 escape sequence detection. */
429 int inhibit_iso_escape_detection;
430
431 /* Flag to make buffer-file-coding-system inherit from process-coding. */
432 int inherit_process_coding_system;
433
434 /* Coding system to be used to encode text for terminal display. */
435 struct coding_system terminal_coding;
436
437 /* Coding system to be used to encode text for terminal display when
438 terminal coding system is nil. */
439 struct coding_system safe_terminal_coding;
440
441 /* Coding system of what is sent from terminal keyboard. */
442 struct coding_system keyboard_coding;
443
444 /* Default coding system to be used to write a file. */
445 struct coding_system default_buffer_file_coding;
446
447 Lisp_Object Vfile_coding_system_alist;
448 Lisp_Object Vprocess_coding_system_alist;
449 Lisp_Object Vnetwork_coding_system_alist;
450
451 Lisp_Object Vlocale_coding_system;
452
453 #endif /* emacs */
454
455 Lisp_Object Qcoding_category, Qcoding_category_index;
456
457 /* List of symbols `coding-category-xxx' ordered by priority. */
458 Lisp_Object Vcoding_category_list;
459
460 /* Table of coding categories (Lisp symbols). */
461 Lisp_Object Vcoding_category_table;
462
463 /* Table of names of symbol for each coding-category. */
464 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
465 "coding-category-emacs-mule",
466 "coding-category-sjis",
467 "coding-category-iso-7",
468 "coding-category-iso-7-tight",
469 "coding-category-iso-8-1",
470 "coding-category-iso-8-2",
471 "coding-category-iso-7-else",
472 "coding-category-iso-8-else",
473 "coding-category-ccl",
474 "coding-category-big5",
475 "coding-category-utf-8",
476 "coding-category-utf-16-be",
477 "coding-category-utf-16-le",
478 "coding-category-raw-text",
479 "coding-category-binary"
480 };
481
482 /* Table of pointers to coding systems corresponding to each coding
483 categories. */
484 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
485
486 /* Table of coding category masks. Nth element is a mask for a coding
487 category of which priority is Nth. */
488 static
489 int coding_priorities[CODING_CATEGORY_IDX_MAX];
490
491 /* Flag to tell if we look up translation table on character code
492 conversion. */
493 Lisp_Object Venable_character_translation;
494 /* Standard translation table to look up on decoding (reading). */
495 Lisp_Object Vstandard_translation_table_for_decode;
496 /* Standard translation table to look up on encoding (writing). */
497 Lisp_Object Vstandard_translation_table_for_encode;
498
499 Lisp_Object Qtranslation_table;
500 Lisp_Object Qtranslation_table_id;
501 Lisp_Object Qtranslation_table_for_decode;
502 Lisp_Object Qtranslation_table_for_encode;
503
504 /* Alist of charsets vs revision number. */
505 Lisp_Object Vcharset_revision_alist;
506
507 /* Default coding systems used for process I/O. */
508 Lisp_Object Vdefault_process_coding_system;
509
510 /* Char table for translating Quail and self-inserting input. */
511 Lisp_Object Vtranslation_table_for_input;
512
513 /* Global flag to tell that we can't call post-read-conversion and
514 pre-write-conversion functions. Usually the value is zero, but it
515 is set to 1 temporarily while such functions are running. This is
516 to avoid infinite recursive call. */
517 static int inhibit_pre_post_conversion;
518
519 Lisp_Object Qchar_coding_system;
520
521 /* Return `safe-chars' property of CODING_SYSTEM (symbol). Don't check
522 its validity. */
523
524 Lisp_Object
525 coding_safe_chars (coding_system)
526 Lisp_Object coding_system;
527 {
528 Lisp_Object coding_spec, plist, safe_chars;
529
530 coding_spec = Fget (coding_system, Qcoding_system);
531 plist = XVECTOR (coding_spec)->contents[3];
532 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
533 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
534 }
535
536 #define CODING_SAFE_CHAR_P(safe_chars, c) \
537 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
538
539 \f
540 /*** 2. Emacs internal format (emacs-mule) handlers ***/
541
542 /* Emacs' internal format for representation of multiple character
543 sets is a kind of multi-byte encoding, i.e. characters are
544 represented by variable-length sequences of one-byte codes.
545
546 ASCII characters and control characters (e.g. `tab', `newline') are
547 represented by one-byte sequences which are their ASCII codes, in
548 the range 0x00 through 0x7F.
549
550 8-bit characters of the range 0x80..0x9F are represented by
551 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
552 code + 0x20).
553
554 8-bit characters of the range 0xA0..0xFF are represented by
555 one-byte sequences which are their 8-bit code.
556
557 The other characters are represented by a sequence of `base
558 leading-code', optional `extended leading-code', and one or two
559 `position-code's. The length of the sequence is determined by the
560 base leading-code. Leading-code takes the range 0x81 through 0x9D,
561 whereas extended leading-code and position-code take the range 0xA0
562 through 0xFF. See `charset.h' for more details about leading-code
563 and position-code.
564
565 --- CODE RANGE of Emacs' internal format ---
566 character set range
567 ------------- -----
568 ascii 0x00..0x7F
569 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
570 eight-bit-graphic 0xA0..0xBF
571 ELSE 0x81..0x9D + [0xA0..0xFF]+
572 ---------------------------------------------
573
574 As this is the internal character representation, the format is
575 usually not used externally (i.e. in a file or in a data sent to a
576 process). But, it is possible to have a text externally in this
577 format (i.e. by encoding by the coding system `emacs-mule').
578
579 In that case, a sequence of one-byte codes has a slightly different
580 form.
581
582 Firstly, all characters in eight-bit-control are represented by
583 one-byte sequences which are their 8-bit code.
584
585 Next, character composition data are represented by the byte
586 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
587 where,
588 METHOD is 0xF0 plus one of composition method (enum
589 composition_method),
590
591 BYTES is 0xA0 plus the byte length of these composition data,
592
593 CHARS is 0xA0 plus the number of characters composed by these
594 data,
595
596 COMPONENTs are characters of multibyte form or composition
597 rules encoded by two-byte of ASCII codes.
598
599 In addition, for backward compatibility, the following formats are
600 also recognized as composition data on decoding.
601
602 0x80 MSEQ ...
603 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
604
605 Here,
606 MSEQ is a multibyte form but in these special format:
607 ASCII: 0xA0 ASCII_CODE+0x80,
608 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
609 RULE is a one byte code of the range 0xA0..0xF0 that
610 represents a composition rule.
611 */
612
613 enum emacs_code_class_type emacs_code_class[256];
614
615 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
616 Check if a text is encoded in Emacs' internal format. If it is,
617 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
618
619 static int
620 detect_coding_emacs_mule (src, src_end, multibytep)
621 unsigned char *src, *src_end;
622 int multibytep;
623 {
624 unsigned char c;
625 int composing = 0;
626 /* Dummy for ONE_MORE_BYTE. */
627 struct coding_system dummy_coding;
628 struct coding_system *coding = &dummy_coding;
629
630 while (1)
631 {
632 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
633
634 if (composing)
635 {
636 if (c < 0xA0)
637 composing = 0;
638 else if (c == 0xA0)
639 {
640 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
641 c &= 0x7F;
642 }
643 else
644 c -= 0x20;
645 }
646
647 if (c < 0x20)
648 {
649 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
650 return 0;
651 }
652 else if (c >= 0x80 && c < 0xA0)
653 {
654 if (c == 0x80)
655 /* Old leading code for a composite character. */
656 composing = 1;
657 else
658 {
659 unsigned char *src_base = src - 1;
660 int bytes;
661
662 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
663 bytes))
664 return 0;
665 src = src_base + bytes;
666 }
667 }
668 }
669 label_end_of_loop:
670 return CODING_CATEGORY_MASK_EMACS_MULE;
671 }
672
673
674 /* Record the starting position START and METHOD of one composition. */
675
676 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
677 do { \
678 struct composition_data *cmp_data = coding->cmp_data; \
679 int *data = cmp_data->data + cmp_data->used; \
680 coding->cmp_data_start = cmp_data->used; \
681 data[0] = -1; \
682 data[1] = cmp_data->char_offset + start; \
683 data[3] = (int) method; \
684 cmp_data->used += 4; \
685 } while (0)
686
687 /* Record the ending position END of the current composition. */
688
689 #define CODING_ADD_COMPOSITION_END(coding, end) \
690 do { \
691 struct composition_data *cmp_data = coding->cmp_data; \
692 int *data = cmp_data->data + coding->cmp_data_start; \
693 data[0] = cmp_data->used - coding->cmp_data_start; \
694 data[2] = cmp_data->char_offset + end; \
695 } while (0)
696
697 /* Record one COMPONENT (alternate character or composition rule). */
698
699 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
700 do { \
701 coding->cmp_data->data[coding->cmp_data->used++] = component; \
702 if (coding->cmp_data->used - coding->cmp_data_start \
703 == COMPOSITION_DATA_MAX_BUNCH_LENGTH) \
704 { \
705 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
706 coding->composing = COMPOSITION_NO; \
707 } \
708 } while (0)
709
710
711 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
712 is not less than SRC_END, return -1 without incrementing Src. */
713
714 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
715
716
717 /* Decode a character represented as a component of composition
718 sequence of Emacs 20 style at SRC. Set C to that character, store
719 its multibyte form sequence at P, and set P to the end of that
720 sequence. If no valid character is found, set C to -1. */
721
722 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
723 do { \
724 int bytes; \
725 \
726 c = SAFE_ONE_MORE_BYTE (); \
727 if (c < 0) \
728 break; \
729 if (CHAR_HEAD_P (c)) \
730 c = -1; \
731 else if (c == 0xA0) \
732 { \
733 c = SAFE_ONE_MORE_BYTE (); \
734 if (c < 0xA0) \
735 c = -1; \
736 else \
737 { \
738 c -= 0xA0; \
739 *p++ = c; \
740 } \
741 } \
742 else if (BASE_LEADING_CODE_P (c - 0x20)) \
743 { \
744 unsigned char *p0 = p; \
745 \
746 c -= 0x20; \
747 *p++ = c; \
748 bytes = BYTES_BY_CHAR_HEAD (c); \
749 while (--bytes) \
750 { \
751 c = SAFE_ONE_MORE_BYTE (); \
752 if (c < 0) \
753 break; \
754 *p++ = c; \
755 } \
756 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes) \
757 || (coding->flags /* We are recovering a file. */ \
758 && p0[0] == LEADING_CODE_8_BIT_CONTROL \
759 && ! CHAR_HEAD_P (p0[1]))) \
760 c = STRING_CHAR (p0, bytes); \
761 else \
762 c = -1; \
763 } \
764 else \
765 c = -1; \
766 } while (0)
767
768
769 /* Decode a composition rule represented as a component of composition
770 sequence of Emacs 20 style at SRC. Set C to the rule. If not
771 valid rule is found, set C to -1. */
772
773 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
774 do { \
775 c = SAFE_ONE_MORE_BYTE (); \
776 c -= 0xA0; \
777 if (c < 0 || c >= 81) \
778 c = -1; \
779 else \
780 { \
781 gref = c / 9, nref = c % 9; \
782 c = COMPOSITION_ENCODE_RULE (gref, nref); \
783 } \
784 } while (0)
785
786
787 /* Decode composition sequence encoded by `emacs-mule' at the source
788 pointed by SRC. SRC_END is the end of source. Store information
789 of the composition in CODING->cmp_data.
790
791 For backward compatibility, decode also a composition sequence of
792 Emacs 20 style. In that case, the composition sequence contains
793 characters that should be extracted into a buffer or string. Store
794 those characters at *DESTINATION in multibyte form.
795
796 If we encounter an invalid byte sequence, return 0.
797 If we encounter an insufficient source or destination, or
798 insufficient space in CODING->cmp_data, return 1.
799 Otherwise, return consumed bytes in the source.
800
801 */
802 static INLINE int
803 decode_composition_emacs_mule (coding, src, src_end,
804 destination, dst_end, dst_bytes)
805 struct coding_system *coding;
806 const unsigned char *src, *src_end;
807 unsigned char **destination, *dst_end;
808 int dst_bytes;
809 {
810 unsigned char *dst = *destination;
811 int method, data_len, nchars;
812 const unsigned char *src_base = src++;
813 /* Store components of composition. */
814 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
815 int ncomponent;
816 /* Store multibyte form of characters to be composed. This is for
817 Emacs 20 style composition sequence. */
818 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
819 unsigned char *bufp = buf;
820 int c, i, gref, nref;
821
822 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
823 >= COMPOSITION_DATA_SIZE)
824 {
825 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
826 return -1;
827 }
828
829 ONE_MORE_BYTE (c);
830 if (c - 0xF0 >= COMPOSITION_RELATIVE
831 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
832 {
833 int with_rule;
834
835 method = c - 0xF0;
836 with_rule = (method == COMPOSITION_WITH_RULE
837 || method == COMPOSITION_WITH_RULE_ALTCHARS);
838 ONE_MORE_BYTE (c);
839 data_len = c - 0xA0;
840 if (data_len < 4
841 || src_base + data_len > src_end)
842 return 0;
843 ONE_MORE_BYTE (c);
844 nchars = c - 0xA0;
845 if (c < 1)
846 return 0;
847 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
848 {
849 /* If it is longer than this, it can't be valid. */
850 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
851 return 0;
852
853 if (ncomponent % 2 && with_rule)
854 {
855 ONE_MORE_BYTE (gref);
856 gref -= 32;
857 ONE_MORE_BYTE (nref);
858 nref -= 32;
859 c = COMPOSITION_ENCODE_RULE (gref, nref);
860 }
861 else
862 {
863 int bytes;
864 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
865 || (coding->flags /* We are recovering a file. */
866 && src[0] == LEADING_CODE_8_BIT_CONTROL
867 && ! CHAR_HEAD_P (src[1])))
868 c = STRING_CHAR (src, bytes);
869 else
870 c = *src, bytes = 1;
871 src += bytes;
872 }
873 component[ncomponent] = c;
874 }
875 }
876 else if (c >= 0x80)
877 {
878 /* This may be an old Emacs 20 style format. See the comment at
879 the section 2 of this file. */
880 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
881 if (src == src_end
882 && !(coding->mode & CODING_MODE_LAST_BLOCK))
883 goto label_end_of_loop;
884
885 src_end = src;
886 src = src_base + 1;
887 if (c < 0xC0)
888 {
889 method = COMPOSITION_RELATIVE;
890 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
891 {
892 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
893 if (c < 0)
894 break;
895 component[ncomponent++] = c;
896 }
897 if (ncomponent < 2)
898 return 0;
899 nchars = ncomponent;
900 }
901 else if (c == 0xFF)
902 {
903 method = COMPOSITION_WITH_RULE;
904 src++;
905 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
906 if (c < 0)
907 return 0;
908 component[0] = c;
909 for (ncomponent = 1;
910 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
911 {
912 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
913 if (c < 0)
914 break;
915 component[ncomponent++] = c;
916 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
917 if (c < 0)
918 break;
919 component[ncomponent++] = c;
920 }
921 if (ncomponent < 3)
922 return 0;
923 nchars = (ncomponent + 1) / 2;
924 }
925 else
926 return 0;
927 }
928 else
929 return 0;
930
931 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
932 {
933 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
934 for (i = 0; i < ncomponent; i++)
935 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
936 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
937 if (buf < bufp)
938 {
939 unsigned char *p = buf;
940 EMIT_BYTES (p, bufp);
941 *destination += bufp - buf;
942 coding->produced_char += nchars;
943 }
944 return (src - src_base);
945 }
946 label_end_of_loop:
947 return -1;
948 }
949
950 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
951
952 static void
953 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
954 struct coding_system *coding;
955 const unsigned char *source;
956 unsigned char *destination;
957 int src_bytes, dst_bytes;
958 {
959 const unsigned char *src = source;
960 const unsigned char *src_end = source + src_bytes;
961 unsigned char *dst = destination;
962 unsigned char *dst_end = destination + dst_bytes;
963 /* SRC_BASE remembers the start position in source in each loop.
964 The loop will be exited when there's not enough source code, or
965 when there's not enough destination area to produce a
966 character. */
967 const unsigned char *src_base;
968
969 coding->produced_char = 0;
970 while ((src_base = src) < src_end)
971 {
972 unsigned char tmp[MAX_MULTIBYTE_LENGTH];
973 const unsigned char *p;
974 int bytes;
975
976 if (*src == '\r')
977 {
978 int c = *src++;
979
980 if (coding->eol_type == CODING_EOL_CR)
981 c = '\n';
982 else if (coding->eol_type == CODING_EOL_CRLF)
983 {
984 ONE_MORE_BYTE (c);
985 if (c != '\n')
986 {
987 src--;
988 c = '\r';
989 }
990 }
991 *dst++ = c;
992 coding->produced_char++;
993 continue;
994 }
995 else if (*src == '\n')
996 {
997 if ((coding->eol_type == CODING_EOL_CR
998 || coding->eol_type == CODING_EOL_CRLF)
999 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1000 {
1001 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1002 goto label_end_of_loop;
1003 }
1004 *dst++ = *src++;
1005 coding->produced_char++;
1006 continue;
1007 }
1008 else if (*src == 0x80 && coding->cmp_data)
1009 {
1010 /* Start of composition data. */
1011 int consumed = decode_composition_emacs_mule (coding, src, src_end,
1012 &dst, dst_end,
1013 dst_bytes);
1014 if (consumed < 0)
1015 goto label_end_of_loop;
1016 else if (consumed > 0)
1017 {
1018 src += consumed;
1019 continue;
1020 }
1021 bytes = CHAR_STRING (*src, tmp);
1022 p = tmp;
1023 src++;
1024 }
1025 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
1026 || (coding->flags /* We are recovering a file. */
1027 && src[0] == LEADING_CODE_8_BIT_CONTROL
1028 && ! CHAR_HEAD_P (src[1])))
1029 {
1030 p = src;
1031 src += bytes;
1032 }
1033 else
1034 {
1035 int i, c;
1036
1037 bytes = BYTES_BY_CHAR_HEAD (*src);
1038 src++;
1039 for (i = 1; i < bytes; i++)
1040 {
1041 ONE_MORE_BYTE (c);
1042 if (CHAR_HEAD_P (c))
1043 break;
1044 }
1045 if (i < bytes)
1046 {
1047 bytes = CHAR_STRING (*src_base, tmp);
1048 p = tmp;
1049 src = src_base + 1;
1050 }
1051 else
1052 {
1053 p = src_base;
1054 }
1055 }
1056 if (dst + bytes >= (dst_bytes ? dst_end : src))
1057 {
1058 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1059 break;
1060 }
1061 while (bytes--) *dst++ = *p++;
1062 coding->produced_char++;
1063 }
1064 label_end_of_loop:
1065 coding->consumed = coding->consumed_char = src_base - source;
1066 coding->produced = dst - destination;
1067 }
1068
1069
1070 /* Encode composition data stored at DATA into a special byte sequence
1071 starting by 0x80. Update CODING->cmp_data_start and maybe
1072 CODING->cmp_data for the next call. */
1073
1074 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1075 do { \
1076 unsigned char buf[1024], *p0 = buf, *p; \
1077 int len = data[0]; \
1078 int i; \
1079 \
1080 buf[0] = 0x80; \
1081 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1082 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1083 p = buf + 4; \
1084 if (data[3] == COMPOSITION_WITH_RULE \
1085 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1086 { \
1087 p += CHAR_STRING (data[4], p); \
1088 for (i = 5; i < len; i += 2) \
1089 { \
1090 int gref, nref; \
1091 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1092 *p++ = 0x20 + gref; \
1093 *p++ = 0x20 + nref; \
1094 p += CHAR_STRING (data[i + 1], p); \
1095 } \
1096 } \
1097 else \
1098 { \
1099 for (i = 4; i < len; i++) \
1100 p += CHAR_STRING (data[i], p); \
1101 } \
1102 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1103 \
1104 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1105 { \
1106 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1107 goto label_end_of_loop; \
1108 } \
1109 while (p0 < p) \
1110 *dst++ = *p0++; \
1111 coding->cmp_data_start += data[0]; \
1112 if (coding->cmp_data_start == coding->cmp_data->used \
1113 && coding->cmp_data->next) \
1114 { \
1115 coding->cmp_data = coding->cmp_data->next; \
1116 coding->cmp_data_start = 0; \
1117 } \
1118 } while (0)
1119
1120
1121 static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1122 unsigned char *, int, int));
1123
1124 static void
1125 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1126 struct coding_system *coding;
1127 const unsigned char *source;
1128 unsigned char *destination;
1129 int src_bytes, dst_bytes;
1130 {
1131 const unsigned char *src = source;
1132 const unsigned char *src_end = source + src_bytes;
1133 unsigned char *dst = destination;
1134 unsigned char *dst_end = destination + dst_bytes;
1135 const unsigned char *src_base;
1136 int c;
1137 int char_offset;
1138 int *data;
1139
1140 Lisp_Object translation_table;
1141
1142 translation_table = Qnil;
1143
1144 /* Optimization for the case that there's no composition. */
1145 if (!coding->cmp_data || coding->cmp_data->used == 0)
1146 {
1147 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1148 return;
1149 }
1150
1151 char_offset = coding->cmp_data->char_offset;
1152 data = coding->cmp_data->data + coding->cmp_data_start;
1153 while (1)
1154 {
1155 src_base = src;
1156
1157 /* If SRC starts a composition, encode the information about the
1158 composition in advance. */
1159 if (coding->cmp_data_start < coding->cmp_data->used
1160 && char_offset + coding->consumed_char == data[1])
1161 {
1162 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1163 char_offset = coding->cmp_data->char_offset;
1164 data = coding->cmp_data->data + coding->cmp_data_start;
1165 }
1166
1167 ONE_MORE_CHAR (c);
1168 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1169 || coding->eol_type == CODING_EOL_CR))
1170 {
1171 if (coding->eol_type == CODING_EOL_CRLF)
1172 EMIT_TWO_BYTES ('\r', c);
1173 else
1174 EMIT_ONE_BYTE ('\r');
1175 }
1176 else if (SINGLE_BYTE_CHAR_P (c))
1177 {
1178 if (coding->flags && ! ASCII_BYTE_P (c))
1179 {
1180 /* As we are auto saving, retain the multibyte form for
1181 8-bit chars. */
1182 unsigned char buf[MAX_MULTIBYTE_LENGTH];
1183 int bytes = CHAR_STRING (c, buf);
1184
1185 if (bytes == 1)
1186 EMIT_ONE_BYTE (buf[0]);
1187 else
1188 EMIT_TWO_BYTES (buf[0], buf[1]);
1189 }
1190 else
1191 EMIT_ONE_BYTE (c);
1192 }
1193 else
1194 EMIT_BYTES (src_base, src);
1195 coding->consumed_char++;
1196 }
1197 label_end_of_loop:
1198 coding->consumed = src_base - source;
1199 coding->produced = coding->produced_char = dst - destination;
1200 return;
1201 }
1202
1203 \f
1204 /*** 3. ISO2022 handlers ***/
1205
1206 /* The following note describes the coding system ISO2022 briefly.
1207 Since the intention of this note is to help understand the
1208 functions in this file, some parts are NOT ACCURATE or are OVERLY
1209 SIMPLIFIED. For thorough understanding, please refer to the
1210 original document of ISO2022. This is equivalent to the standard
1211 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1212
1213 ISO2022 provides many mechanisms to encode several character sets
1214 in 7-bit and 8-bit environments. For 7-bit environments, all text
1215 is encoded using bytes less than 128. This may make the encoded
1216 text a little bit longer, but the text passes more easily through
1217 several types of gateway, some of which strip off the MSB (Most
1218 Significant Bit).
1219
1220 There are two kinds of character sets: control character sets and
1221 graphic character sets. The former contain control characters such
1222 as `newline' and `escape' to provide control functions (control
1223 functions are also provided by escape sequences). The latter
1224 contain graphic characters such as 'A' and '-'. Emacs recognizes
1225 two control character sets and many graphic character sets.
1226
1227 Graphic character sets are classified into one of the following
1228 four classes, according to the number of bytes (DIMENSION) and
1229 number of characters in one dimension (CHARS) of the set:
1230 - DIMENSION1_CHARS94
1231 - DIMENSION1_CHARS96
1232 - DIMENSION2_CHARS94
1233 - DIMENSION2_CHARS96
1234
1235 In addition, each character set is assigned an identification tag,
1236 unique for each set, called the "final character" (denoted as <F>
1237 hereafter). The <F> of each character set is decided by ECMA(*)
1238 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1239 (0x30..0x3F are for private use only).
1240
1241 Note (*): ECMA = European Computer Manufacturers Association
1242
1243 Here are examples of graphic character sets [NAME(<F>)]:
1244 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1245 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1246 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1247 o DIMENSION2_CHARS96 -- none for the moment
1248
1249 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1250 C0 [0x00..0x1F] -- control character plane 0
1251 GL [0x20..0x7F] -- graphic character plane 0
1252 C1 [0x80..0x9F] -- control character plane 1
1253 GR [0xA0..0xFF] -- graphic character plane 1
1254
1255 A control character set is directly designated and invoked to C0 or
1256 C1 by an escape sequence. The most common case is that:
1257 - ISO646's control character set is designated/invoked to C0, and
1258 - ISO6429's control character set is designated/invoked to C1,
1259 and usually these designations/invocations are omitted in encoded
1260 text. In a 7-bit environment, only C0 can be used, and a control
1261 character for C1 is encoded by an appropriate escape sequence to
1262 fit into the environment. All control characters for C1 are
1263 defined to have corresponding escape sequences.
1264
1265 A graphic character set is at first designated to one of four
1266 graphic registers (G0 through G3), then these graphic registers are
1267 invoked to GL or GR. These designations and invocations can be
1268 done independently. The most common case is that G0 is invoked to
1269 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1270 these invocations and designations are omitted in encoded text.
1271 In a 7-bit environment, only GL can be used.
1272
1273 When a graphic character set of CHARS94 is invoked to GL, codes
1274 0x20 and 0x7F of the GL area work as control characters SPACE and
1275 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1276 be used.
1277
1278 There are two ways of invocation: locking-shift and single-shift.
1279 With locking-shift, the invocation lasts until the next different
1280 invocation, whereas with single-shift, the invocation affects the
1281 following character only and doesn't affect the locking-shift
1282 state. Invocations are done by the following control characters or
1283 escape sequences:
1284
1285 ----------------------------------------------------------------------
1286 abbrev function cntrl escape seq description
1287 ----------------------------------------------------------------------
1288 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1289 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1290 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1291 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1292 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1293 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1294 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1295 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1296 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1297 ----------------------------------------------------------------------
1298 (*) These are not used by any known coding system.
1299
1300 Control characters for these functions are defined by macros
1301 ISO_CODE_XXX in `coding.h'.
1302
1303 Designations are done by the following escape sequences:
1304 ----------------------------------------------------------------------
1305 escape sequence description
1306 ----------------------------------------------------------------------
1307 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1308 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1309 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1310 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1311 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1312 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1313 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1314 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1315 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1316 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1317 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1318 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1319 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1320 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1321 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1322 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1323 ----------------------------------------------------------------------
1324
1325 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1326 of dimension 1, chars 94, and final character <F>, etc...
1327
1328 Note (*): Although these designations are not allowed in ISO2022,
1329 Emacs accepts them on decoding, and produces them on encoding
1330 CHARS96 character sets in a coding system which is characterized as
1331 7-bit environment, non-locking-shift, and non-single-shift.
1332
1333 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1334 '(' can be omitted. We refer to this as "short-form" hereafter.
1335
1336 Now you may notice that there are a lot of ways of encoding the
1337 same multilingual text in ISO2022. Actually, there exist many
1338 coding systems such as Compound Text (used in X11's inter client
1339 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1340 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1341 localized platforms), and all of these are variants of ISO2022.
1342
1343 In addition to the above, Emacs handles two more kinds of escape
1344 sequences: ISO6429's direction specification and Emacs' private
1345 sequence for specifying character composition.
1346
1347 ISO6429's direction specification takes the following form:
1348 o CSI ']' -- end of the current direction
1349 o CSI '0' ']' -- end of the current direction
1350 o CSI '1' ']' -- start of left-to-right text
1351 o CSI '2' ']' -- start of right-to-left text
1352 The control character CSI (0x9B: control sequence introducer) is
1353 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1354
1355 Character composition specification takes the following form:
1356 o ESC '0' -- start relative composition
1357 o ESC '1' -- end composition
1358 o ESC '2' -- start rule-base composition (*)
1359 o ESC '3' -- start relative composition with alternate chars (**)
1360 o ESC '4' -- start rule-base composition with alternate chars (**)
1361 Since these are not standard escape sequences of any ISO standard,
1362 the use of them with these meanings is restricted to Emacs only.
1363
1364 (*) This form is used only in Emacs 20.5 and older versions,
1365 but the newer versions can safely decode it.
1366 (**) This form is used only in Emacs 21.1 and newer versions,
1367 and the older versions can't decode it.
1368
1369 Here's a list of example usages of these composition escape
1370 sequences (categorized by `enum composition_method').
1371
1372 COMPOSITION_RELATIVE:
1373 ESC 0 CHAR [ CHAR ] ESC 1
1374 COMPOSITION_WITH_RULE:
1375 ESC 2 CHAR [ RULE CHAR ] ESC 1
1376 COMPOSITION_WITH_ALTCHARS:
1377 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1378 COMPOSITION_WITH_RULE_ALTCHARS:
1379 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1380
1381 enum iso_code_class_type iso_code_class[256];
1382
1383 #define CHARSET_OK(idx, charset, c) \
1384 (coding_system_table[idx] \
1385 && (charset == CHARSET_ASCII \
1386 || (safe_chars = coding_safe_chars (coding_system_table[idx]->symbol), \
1387 CODING_SAFE_CHAR_P (safe_chars, c))) \
1388 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1389 charset) \
1390 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1391
1392 #define SHIFT_OUT_OK(idx) \
1393 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1394
1395 #define COMPOSITION_OK(idx) \
1396 (coding_system_table[idx]->composing != COMPOSITION_DISABLED)
1397
1398 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1399 Check if a text is encoded in ISO2022. If it is, return an
1400 integer in which appropriate flag bits any of:
1401 CODING_CATEGORY_MASK_ISO_7
1402 CODING_CATEGORY_MASK_ISO_7_TIGHT
1403 CODING_CATEGORY_MASK_ISO_8_1
1404 CODING_CATEGORY_MASK_ISO_8_2
1405 CODING_CATEGORY_MASK_ISO_7_ELSE
1406 CODING_CATEGORY_MASK_ISO_8_ELSE
1407 are set. If a code which should never appear in ISO2022 is found,
1408 returns 0. */
1409
1410 static int
1411 detect_coding_iso2022 (src, src_end, multibytep)
1412 unsigned char *src, *src_end;
1413 int multibytep;
1414 {
1415 int mask = CODING_CATEGORY_MASK_ISO;
1416 int mask_found = 0;
1417 int reg[4], shift_out = 0, single_shifting = 0;
1418 int c, c1, charset;
1419 /* Dummy for ONE_MORE_BYTE. */
1420 struct coding_system dummy_coding;
1421 struct coding_system *coding = &dummy_coding;
1422 Lisp_Object safe_chars;
1423
1424 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1425 while (mask && src < src_end)
1426 {
1427 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1428 retry:
1429 switch (c)
1430 {
1431 case ISO_CODE_ESC:
1432 if (inhibit_iso_escape_detection)
1433 break;
1434 single_shifting = 0;
1435 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1436 if (c >= '(' && c <= '/')
1437 {
1438 /* Designation sequence for a charset of dimension 1. */
1439 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1440 if (c1 < ' ' || c1 >= 0x80
1441 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1442 /* Invalid designation sequence. Just ignore. */
1443 break;
1444 reg[(c - '(') % 4] = charset;
1445 }
1446 else if (c == '$')
1447 {
1448 /* Designation sequence for a charset of dimension 2. */
1449 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1450 if (c >= '@' && c <= 'B')
1451 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1452 reg[0] = charset = iso_charset_table[1][0][c];
1453 else if (c >= '(' && c <= '/')
1454 {
1455 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1456 if (c1 < ' ' || c1 >= 0x80
1457 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1458 /* Invalid designation sequence. Just ignore. */
1459 break;
1460 reg[(c - '(') % 4] = charset;
1461 }
1462 else
1463 /* Invalid designation sequence. Just ignore. */
1464 break;
1465 }
1466 else if (c == 'N' || c == 'O')
1467 {
1468 /* ESC <Fe> for SS2 or SS3. */
1469 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1470 break;
1471 }
1472 else if (c >= '0' && c <= '4')
1473 {
1474 /* ESC <Fp> for start/end composition. */
1475 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7))
1476 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1477 else
1478 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1479 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT))
1480 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1481 else
1482 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1483 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_1))
1484 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1485 else
1486 mask &= ~CODING_CATEGORY_MASK_ISO_8_1;
1487 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_2))
1488 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1489 else
1490 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1491 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_ELSE))
1492 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1493 else
1494 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1495 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_ELSE))
1496 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1497 else
1498 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1499 break;
1500 }
1501 else
1502 /* Invalid escape sequence. Just ignore. */
1503 break;
1504
1505 /* We found a valid designation sequence for CHARSET. */
1506 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1507 c = MAKE_CHAR (charset, 0, 0);
1508 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1509 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1510 else
1511 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1512 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1513 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1514 else
1515 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1516 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1517 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1518 else
1519 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1520 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1521 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1522 else
1523 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1524 break;
1525
1526 case ISO_CODE_SO:
1527 if (inhibit_iso_escape_detection)
1528 break;
1529 single_shifting = 0;
1530 if (shift_out == 0
1531 && (reg[1] >= 0
1532 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1533 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1534 {
1535 /* Locking shift out. */
1536 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1537 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1538 }
1539 break;
1540
1541 case ISO_CODE_SI:
1542 if (inhibit_iso_escape_detection)
1543 break;
1544 single_shifting = 0;
1545 if (shift_out == 1)
1546 {
1547 /* Locking shift in. */
1548 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1549 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1550 }
1551 break;
1552
1553 case ISO_CODE_CSI:
1554 single_shifting = 0;
1555 case ISO_CODE_SS2:
1556 case ISO_CODE_SS3:
1557 {
1558 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1559
1560 if (inhibit_iso_escape_detection)
1561 break;
1562 if (c != ISO_CODE_CSI)
1563 {
1564 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1565 & CODING_FLAG_ISO_SINGLE_SHIFT)
1566 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1567 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1568 & CODING_FLAG_ISO_SINGLE_SHIFT)
1569 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1570 single_shifting = 1;
1571 }
1572 if (VECTORP (Vlatin_extra_code_table)
1573 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1574 {
1575 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1576 & CODING_FLAG_ISO_LATIN_EXTRA)
1577 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1578 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1579 & CODING_FLAG_ISO_LATIN_EXTRA)
1580 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1581 }
1582 mask &= newmask;
1583 mask_found |= newmask;
1584 }
1585 break;
1586
1587 default:
1588 if (c < 0x80)
1589 {
1590 single_shifting = 0;
1591 break;
1592 }
1593 else if (c < 0xA0)
1594 {
1595 single_shifting = 0;
1596 if (VECTORP (Vlatin_extra_code_table)
1597 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1598 {
1599 int newmask = 0;
1600
1601 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1602 & CODING_FLAG_ISO_LATIN_EXTRA)
1603 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1604 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1605 & CODING_FLAG_ISO_LATIN_EXTRA)
1606 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1607 mask &= newmask;
1608 mask_found |= newmask;
1609 }
1610 else
1611 return 0;
1612 }
1613 else
1614 {
1615 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1616 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1617 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1618 /* Check the length of succeeding codes of the range
1619 0xA0..0FF. If the byte length is odd, we exclude
1620 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1621 when we are not single shifting. */
1622 if (!single_shifting
1623 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1624 {
1625 int i = 1;
1626
1627 c = -1;
1628 while (src < src_end)
1629 {
1630 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1631 if (c < 0xA0)
1632 break;
1633 i++;
1634 }
1635
1636 if (i & 1 && src < src_end)
1637 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1638 else
1639 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1640 if (c >= 0)
1641 /* This means that we have read one extra byte. */
1642 goto retry;
1643 }
1644 }
1645 break;
1646 }
1647 }
1648 label_end_of_loop:
1649 return (mask & mask_found);
1650 }
1651
1652 /* Decode a character of which charset is CHARSET, the 1st position
1653 code is C1, the 2nd position code is C2, and return the decoded
1654 character code. If the variable `translation_table' is non-nil,
1655 returned the translated code. */
1656
1657 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1658 (NILP (translation_table) \
1659 ? MAKE_CHAR (charset, c1, c2) \
1660 : translate_char (translation_table, -1, charset, c1, c2))
1661
1662 /* Set designation state into CODING. */
1663 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1664 do { \
1665 int charset, c; \
1666 \
1667 if (final_char < '0' || final_char >= 128) \
1668 goto label_invalid_code; \
1669 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1670 make_number (chars), \
1671 make_number (final_char)); \
1672 c = MAKE_CHAR (charset, 0, 0); \
1673 if (charset >= 0 \
1674 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1675 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1676 { \
1677 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1678 && reg == 0 \
1679 && charset == CHARSET_ASCII) \
1680 { \
1681 /* We should insert this designation sequence as is so \
1682 that it is surely written back to a file. */ \
1683 coding->spec.iso2022.last_invalid_designation_register = -1; \
1684 goto label_invalid_code; \
1685 } \
1686 coding->spec.iso2022.last_invalid_designation_register = -1; \
1687 if ((coding->mode & CODING_MODE_DIRECTION) \
1688 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1689 charset = CHARSET_REVERSE_CHARSET (charset); \
1690 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1691 } \
1692 else \
1693 { \
1694 coding->spec.iso2022.last_invalid_designation_register = reg; \
1695 goto label_invalid_code; \
1696 } \
1697 } while (0)
1698
1699 /* Allocate a memory block for storing information about compositions.
1700 The block is chained to the already allocated blocks. */
1701
1702 void
1703 coding_allocate_composition_data (coding, char_offset)
1704 struct coding_system *coding;
1705 int char_offset;
1706 {
1707 struct composition_data *cmp_data
1708 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1709
1710 cmp_data->char_offset = char_offset;
1711 cmp_data->used = 0;
1712 cmp_data->prev = coding->cmp_data;
1713 cmp_data->next = NULL;
1714 if (coding->cmp_data)
1715 coding->cmp_data->next = cmp_data;
1716 coding->cmp_data = cmp_data;
1717 coding->cmp_data_start = 0;
1718 coding->composing = COMPOSITION_NO;
1719 }
1720
1721 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1722 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1723 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1724 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1725 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1726 */
1727
1728 #define DECODE_COMPOSITION_START(c1) \
1729 do { \
1730 if (coding->composing == COMPOSITION_DISABLED) \
1731 { \
1732 *dst++ = ISO_CODE_ESC; \
1733 *dst++ = c1 & 0x7f; \
1734 coding->produced_char += 2; \
1735 } \
1736 else if (!COMPOSING_P (coding)) \
1737 { \
1738 /* This is surely the start of a composition. We must be sure \
1739 that coding->cmp_data has enough space to store the \
1740 information about the composition. If not, terminate the \
1741 current decoding loop, allocate one more memory block for \
1742 coding->cmp_data in the caller, then start the decoding \
1743 loop again. We can't allocate memory here directly because \
1744 it may cause buffer/string relocation. */ \
1745 if (!coding->cmp_data \
1746 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1747 >= COMPOSITION_DATA_SIZE)) \
1748 { \
1749 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1750 goto label_end_of_loop; \
1751 } \
1752 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1753 : c1 == '2' ? COMPOSITION_WITH_RULE \
1754 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1755 : COMPOSITION_WITH_RULE_ALTCHARS); \
1756 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1757 coding->composing); \
1758 coding->composition_rule_follows = 0; \
1759 } \
1760 else \
1761 { \
1762 /* We are already handling a composition. If the method is \
1763 the following two, the codes following the current escape \
1764 sequence are actual characters stored in a buffer. */ \
1765 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1766 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1767 { \
1768 coding->composing = COMPOSITION_RELATIVE; \
1769 coding->composition_rule_follows = 0; \
1770 } \
1771 } \
1772 } while (0)
1773
1774 /* Handle composition end sequence ESC 1. */
1775
1776 #define DECODE_COMPOSITION_END(c1) \
1777 do { \
1778 if (! COMPOSING_P (coding)) \
1779 { \
1780 *dst++ = ISO_CODE_ESC; \
1781 *dst++ = c1; \
1782 coding->produced_char += 2; \
1783 } \
1784 else \
1785 { \
1786 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1787 coding->composing = COMPOSITION_NO; \
1788 } \
1789 } while (0)
1790
1791 /* Decode a composition rule from the byte C1 (and maybe one more byte
1792 from SRC) and store one encoded composition rule in
1793 coding->cmp_data. */
1794
1795 #define DECODE_COMPOSITION_RULE(c1) \
1796 do { \
1797 int rule = 0; \
1798 (c1) -= 32; \
1799 if (c1 < 81) /* old format (before ver.21) */ \
1800 { \
1801 int gref = (c1) / 9; \
1802 int nref = (c1) % 9; \
1803 if (gref == 4) gref = 10; \
1804 if (nref == 4) nref = 10; \
1805 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1806 } \
1807 else if (c1 < 93) /* new format (after ver.21) */ \
1808 { \
1809 ONE_MORE_BYTE (c2); \
1810 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1811 } \
1812 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1813 coding->composition_rule_follows = 0; \
1814 } while (0)
1815
1816
1817 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1818
1819 static void
1820 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1821 struct coding_system *coding;
1822 const unsigned char *source;
1823 unsigned char *destination;
1824 int src_bytes, dst_bytes;
1825 {
1826 const unsigned char *src = source;
1827 const unsigned char *src_end = source + src_bytes;
1828 unsigned char *dst = destination;
1829 unsigned char *dst_end = destination + dst_bytes;
1830 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1831 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1832 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1833 /* SRC_BASE remembers the start position in source in each loop.
1834 The loop will be exited when there's not enough source code
1835 (within macro ONE_MORE_BYTE), or when there's not enough
1836 destination area to produce a character (within macro
1837 EMIT_CHAR). */
1838 const unsigned char *src_base;
1839 int c, charset;
1840 Lisp_Object translation_table;
1841 Lisp_Object safe_chars;
1842
1843 safe_chars = coding_safe_chars (coding->symbol);
1844
1845 if (NILP (Venable_character_translation))
1846 translation_table = Qnil;
1847 else
1848 {
1849 translation_table = coding->translation_table_for_decode;
1850 if (NILP (translation_table))
1851 translation_table = Vstandard_translation_table_for_decode;
1852 }
1853
1854 coding->result = CODING_FINISH_NORMAL;
1855
1856 while (1)
1857 {
1858 int c1, c2 = 0;
1859
1860 src_base = src;
1861 ONE_MORE_BYTE (c1);
1862
1863 /* We produce no character or one character. */
1864 switch (iso_code_class [c1])
1865 {
1866 case ISO_0x20_or_0x7F:
1867 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1868 {
1869 DECODE_COMPOSITION_RULE (c1);
1870 continue;
1871 }
1872 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1873 {
1874 /* This is SPACE or DEL. */
1875 charset = CHARSET_ASCII;
1876 break;
1877 }
1878 /* This is a graphic character, we fall down ... */
1879
1880 case ISO_graphic_plane_0:
1881 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1882 {
1883 DECODE_COMPOSITION_RULE (c1);
1884 continue;
1885 }
1886 charset = charset0;
1887 break;
1888
1889 case ISO_0xA0_or_0xFF:
1890 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1891 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1892 goto label_invalid_code;
1893 /* This is a graphic character, we fall down ... */
1894
1895 case ISO_graphic_plane_1:
1896 if (charset1 < 0)
1897 goto label_invalid_code;
1898 charset = charset1;
1899 break;
1900
1901 case ISO_control_0:
1902 if (COMPOSING_P (coding))
1903 DECODE_COMPOSITION_END ('1');
1904
1905 /* All ISO2022 control characters in this class have the
1906 same representation in Emacs internal format. */
1907 if (c1 == '\n'
1908 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1909 && (coding->eol_type == CODING_EOL_CR
1910 || coding->eol_type == CODING_EOL_CRLF))
1911 {
1912 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1913 goto label_end_of_loop;
1914 }
1915 charset = CHARSET_ASCII;
1916 break;
1917
1918 case ISO_control_1:
1919 if (COMPOSING_P (coding))
1920 DECODE_COMPOSITION_END ('1');
1921 goto label_invalid_code;
1922
1923 case ISO_carriage_return:
1924 if (COMPOSING_P (coding))
1925 DECODE_COMPOSITION_END ('1');
1926
1927 if (coding->eol_type == CODING_EOL_CR)
1928 c1 = '\n';
1929 else if (coding->eol_type == CODING_EOL_CRLF)
1930 {
1931 ONE_MORE_BYTE (c1);
1932 if (c1 != ISO_CODE_LF)
1933 {
1934 src--;
1935 c1 = '\r';
1936 }
1937 }
1938 charset = CHARSET_ASCII;
1939 break;
1940
1941 case ISO_shift_out:
1942 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1943 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1944 goto label_invalid_code;
1945 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1946 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1947 continue;
1948
1949 case ISO_shift_in:
1950 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1951 goto label_invalid_code;
1952 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1953 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1954 continue;
1955
1956 case ISO_single_shift_2_7:
1957 case ISO_single_shift_2:
1958 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1959 goto label_invalid_code;
1960 /* SS2 is handled as an escape sequence of ESC 'N' */
1961 c1 = 'N';
1962 goto label_escape_sequence;
1963
1964 case ISO_single_shift_3:
1965 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1966 goto label_invalid_code;
1967 /* SS2 is handled as an escape sequence of ESC 'O' */
1968 c1 = 'O';
1969 goto label_escape_sequence;
1970
1971 case ISO_control_sequence_introducer:
1972 /* CSI is handled as an escape sequence of ESC '[' ... */
1973 c1 = '[';
1974 goto label_escape_sequence;
1975
1976 case ISO_escape:
1977 ONE_MORE_BYTE (c1);
1978 label_escape_sequence:
1979 /* Escape sequences handled by Emacs are invocation,
1980 designation, direction specification, and character
1981 composition specification. */
1982 switch (c1)
1983 {
1984 case '&': /* revision of following character set */
1985 ONE_MORE_BYTE (c1);
1986 if (!(c1 >= '@' && c1 <= '~'))
1987 goto label_invalid_code;
1988 ONE_MORE_BYTE (c1);
1989 if (c1 != ISO_CODE_ESC)
1990 goto label_invalid_code;
1991 ONE_MORE_BYTE (c1);
1992 goto label_escape_sequence;
1993
1994 case '$': /* designation of 2-byte character set */
1995 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1996 goto label_invalid_code;
1997 ONE_MORE_BYTE (c1);
1998 if (c1 >= '@' && c1 <= 'B')
1999 { /* designation of JISX0208.1978, GB2312.1980,
2000 or JISX0208.1980 */
2001 DECODE_DESIGNATION (0, 2, 94, c1);
2002 }
2003 else if (c1 >= 0x28 && c1 <= 0x2B)
2004 { /* designation of DIMENSION2_CHARS94 character set */
2005 ONE_MORE_BYTE (c2);
2006 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
2007 }
2008 else if (c1 >= 0x2C && c1 <= 0x2F)
2009 { /* designation of DIMENSION2_CHARS96 character set */
2010 ONE_MORE_BYTE (c2);
2011 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
2012 }
2013 else
2014 goto label_invalid_code;
2015 /* We must update these variables now. */
2016 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2017 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2018 continue;
2019
2020 case 'n': /* invocation of locking-shift-2 */
2021 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2022 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2023 goto label_invalid_code;
2024 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
2025 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2026 continue;
2027
2028 case 'o': /* invocation of locking-shift-3 */
2029 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2030 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2031 goto label_invalid_code;
2032 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
2033 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2034 continue;
2035
2036 case 'N': /* invocation of single-shift-2 */
2037 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2038 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2039 goto label_invalid_code;
2040 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
2041 ONE_MORE_BYTE (c1);
2042 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2043 goto label_invalid_code;
2044 break;
2045
2046 case 'O': /* invocation of single-shift-3 */
2047 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2048 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2049 goto label_invalid_code;
2050 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
2051 ONE_MORE_BYTE (c1);
2052 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2053 goto label_invalid_code;
2054 break;
2055
2056 case '0': case '2': case '3': case '4': /* start composition */
2057 DECODE_COMPOSITION_START (c1);
2058 continue;
2059
2060 case '1': /* end composition */
2061 DECODE_COMPOSITION_END (c1);
2062 continue;
2063
2064 case '[': /* specification of direction */
2065 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
2066 goto label_invalid_code;
2067 /* For the moment, nested direction is not supported.
2068 So, `coding->mode & CODING_MODE_DIRECTION' zero means
2069 left-to-right, and nonzero means right-to-left. */
2070 ONE_MORE_BYTE (c1);
2071 switch (c1)
2072 {
2073 case ']': /* end of the current direction */
2074 coding->mode &= ~CODING_MODE_DIRECTION;
2075
2076 case '0': /* end of the current direction */
2077 case '1': /* start of left-to-right direction */
2078 ONE_MORE_BYTE (c1);
2079 if (c1 == ']')
2080 coding->mode &= ~CODING_MODE_DIRECTION;
2081 else
2082 goto label_invalid_code;
2083 break;
2084
2085 case '2': /* start of right-to-left direction */
2086 ONE_MORE_BYTE (c1);
2087 if (c1 == ']')
2088 coding->mode |= CODING_MODE_DIRECTION;
2089 else
2090 goto label_invalid_code;
2091 break;
2092
2093 default:
2094 goto label_invalid_code;
2095 }
2096 continue;
2097
2098 case '%':
2099 if (COMPOSING_P (coding))
2100 DECODE_COMPOSITION_END ('1');
2101 ONE_MORE_BYTE (c1);
2102 if (c1 == '/')
2103 {
2104 /* CTEXT extended segment:
2105 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
2106 We keep these bytes as is for the moment.
2107 They may be decoded by post-read-conversion. */
2108 int dim, M, L;
2109 int size, required;
2110 int produced_chars;
2111
2112 ONE_MORE_BYTE (dim);
2113 ONE_MORE_BYTE (M);
2114 ONE_MORE_BYTE (L);
2115 size = ((M - 128) * 128) + (L - 128);
2116 required = 8 + size * 2;
2117 if (dst + required > (dst_bytes ? dst_end : src))
2118 goto label_end_of_loop;
2119 *dst++ = ISO_CODE_ESC;
2120 *dst++ = '%';
2121 *dst++ = '/';
2122 *dst++ = dim;
2123 produced_chars = 4;
2124 dst += CHAR_STRING (M, dst), produced_chars++;
2125 dst += CHAR_STRING (L, dst), produced_chars++;
2126 while (size-- > 0)
2127 {
2128 ONE_MORE_BYTE (c1);
2129 dst += CHAR_STRING (c1, dst), produced_chars++;
2130 }
2131 coding->produced_char += produced_chars;
2132 }
2133 else if (c1 == 'G')
2134 {
2135 unsigned char *d = dst;
2136 int produced_chars;
2137
2138 /* XFree86 extension for embedding UTF-8 in CTEXT:
2139 ESC % G --UTF-8-BYTES-- ESC % @
2140 We keep these bytes as is for the moment.
2141 They may be decoded by post-read-conversion. */
2142 if (d + 6 > (dst_bytes ? dst_end : src))
2143 goto label_end_of_loop;
2144 *d++ = ISO_CODE_ESC;
2145 *d++ = '%';
2146 *d++ = 'G';
2147 produced_chars = 3;
2148 while (d + 1 < (dst_bytes ? dst_end : src))
2149 {
2150 ONE_MORE_BYTE (c1);
2151 if (c1 == ISO_CODE_ESC
2152 && src + 1 < src_end
2153 && src[0] == '%'
2154 && src[1] == '@')
2155 {
2156 src += 2;
2157 break;
2158 }
2159 d += CHAR_STRING (c1, d), produced_chars++;
2160 }
2161 if (d + 3 > (dst_bytes ? dst_end : src))
2162 goto label_end_of_loop;
2163 *d++ = ISO_CODE_ESC;
2164 *d++ = '%';
2165 *d++ = '@';
2166 dst = d;
2167 coding->produced_char += produced_chars + 3;
2168 }
2169 else
2170 goto label_invalid_code;
2171 continue;
2172
2173 default:
2174 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
2175 goto label_invalid_code;
2176 if (c1 >= 0x28 && c1 <= 0x2B)
2177 { /* designation of DIMENSION1_CHARS94 character set */
2178 ONE_MORE_BYTE (c2);
2179 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2180 }
2181 else if (c1 >= 0x2C && c1 <= 0x2F)
2182 { /* designation of DIMENSION1_CHARS96 character set */
2183 ONE_MORE_BYTE (c2);
2184 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2185 }
2186 else
2187 goto label_invalid_code;
2188 /* We must update these variables now. */
2189 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2190 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2191 continue;
2192 }
2193 }
2194
2195 /* Now we know CHARSET and 1st position code C1 of a character.
2196 Produce a multibyte sequence for that character while getting
2197 2nd position code C2 if necessary. */
2198 if (CHARSET_DIMENSION (charset) == 2)
2199 {
2200 ONE_MORE_BYTE (c2);
2201 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2202 /* C2 is not in a valid range. */
2203 goto label_invalid_code;
2204 }
2205 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2206 EMIT_CHAR (c);
2207 continue;
2208
2209 label_invalid_code:
2210 coding->errors++;
2211 if (COMPOSING_P (coding))
2212 DECODE_COMPOSITION_END ('1');
2213 src = src_base;
2214 c = *src++;
2215 if (! NILP (translation_table))
2216 c = translate_char (translation_table, c, 0, 0, 0);
2217 EMIT_CHAR (c);
2218 }
2219
2220 label_end_of_loop:
2221 coding->consumed = coding->consumed_char = src_base - source;
2222 coding->produced = dst - destination;
2223 return;
2224 }
2225
2226
2227 /* ISO2022 encoding stuff. */
2228
2229 /*
2230 It is not enough to say just "ISO2022" on encoding, we have to
2231 specify more details. In Emacs, each ISO2022 coding system
2232 variant has the following specifications:
2233 1. Initial designation to G0 through G3.
2234 2. Allows short-form designation?
2235 3. ASCII should be designated to G0 before control characters?
2236 4. ASCII should be designated to G0 at end of line?
2237 5. 7-bit environment or 8-bit environment?
2238 6. Use locking-shift?
2239 7. Use Single-shift?
2240 And the following two are only for Japanese:
2241 8. Use ASCII in place of JIS0201-1976-Roman?
2242 9. Use JISX0208-1983 in place of JISX0208-1978?
2243 These specifications are encoded in `coding->flags' as flag bits
2244 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2245 details.
2246 */
2247
2248 /* Produce codes (escape sequence) for designating CHARSET to graphic
2249 register REG at DST, and increment DST. If <final-char> of CHARSET is
2250 '@', 'A', or 'B' and the coding system CODING allows, produce
2251 designation sequence of short-form. */
2252
2253 #define ENCODE_DESIGNATION(charset, reg, coding) \
2254 do { \
2255 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2256 char *intermediate_char_94 = "()*+"; \
2257 char *intermediate_char_96 = ",-./"; \
2258 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2259 \
2260 if (revision < 255) \
2261 { \
2262 *dst++ = ISO_CODE_ESC; \
2263 *dst++ = '&'; \
2264 *dst++ = '@' + revision; \
2265 } \
2266 *dst++ = ISO_CODE_ESC; \
2267 if (CHARSET_DIMENSION (charset) == 1) \
2268 { \
2269 if (CHARSET_CHARS (charset) == 94) \
2270 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2271 else \
2272 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2273 } \
2274 else \
2275 { \
2276 *dst++ = '$'; \
2277 if (CHARSET_CHARS (charset) == 94) \
2278 { \
2279 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2280 || reg != 0 \
2281 || final_char < '@' || final_char > 'B') \
2282 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2283 } \
2284 else \
2285 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2286 } \
2287 *dst++ = final_char; \
2288 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2289 } while (0)
2290
2291 /* The following two macros produce codes (control character or escape
2292 sequence) for ISO2022 single-shift functions (single-shift-2 and
2293 single-shift-3). */
2294
2295 #define ENCODE_SINGLE_SHIFT_2 \
2296 do { \
2297 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2298 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2299 else \
2300 *dst++ = ISO_CODE_SS2; \
2301 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2302 } while (0)
2303
2304 #define ENCODE_SINGLE_SHIFT_3 \
2305 do { \
2306 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2307 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2308 else \
2309 *dst++ = ISO_CODE_SS3; \
2310 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2311 } while (0)
2312
2313 /* The following four macros produce codes (control character or
2314 escape sequence) for ISO2022 locking-shift functions (shift-in,
2315 shift-out, locking-shift-2, and locking-shift-3). */
2316
2317 #define ENCODE_SHIFT_IN \
2318 do { \
2319 *dst++ = ISO_CODE_SI; \
2320 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2321 } while (0)
2322
2323 #define ENCODE_SHIFT_OUT \
2324 do { \
2325 *dst++ = ISO_CODE_SO; \
2326 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2327 } while (0)
2328
2329 #define ENCODE_LOCKING_SHIFT_2 \
2330 do { \
2331 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2332 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2333 } while (0)
2334
2335 #define ENCODE_LOCKING_SHIFT_3 \
2336 do { \
2337 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2338 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2339 } while (0)
2340
2341 /* Produce codes for a DIMENSION1 character whose character set is
2342 CHARSET and whose position-code is C1. Designation and invocation
2343 sequences are also produced in advance if necessary. */
2344
2345 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2346 do { \
2347 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2348 { \
2349 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2350 *dst++ = c1 & 0x7F; \
2351 else \
2352 *dst++ = c1 | 0x80; \
2353 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2354 break; \
2355 } \
2356 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2357 { \
2358 *dst++ = c1 & 0x7F; \
2359 break; \
2360 } \
2361 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2362 { \
2363 *dst++ = c1 | 0x80; \
2364 break; \
2365 } \
2366 else \
2367 /* Since CHARSET is not yet invoked to any graphic planes, we \
2368 must invoke it, or, at first, designate it to some graphic \
2369 register. Then repeat the loop to actually produce the \
2370 character. */ \
2371 dst = encode_invocation_designation (charset, coding, dst); \
2372 } while (1)
2373
2374 /* Produce codes for a DIMENSION2 character whose character set is
2375 CHARSET and whose position-codes are C1 and C2. Designation and
2376 invocation codes are also produced in advance if necessary. */
2377
2378 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2379 do { \
2380 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2381 { \
2382 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2383 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2384 else \
2385 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2386 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2387 break; \
2388 } \
2389 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2390 { \
2391 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2392 break; \
2393 } \
2394 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2395 { \
2396 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2397 break; \
2398 } \
2399 else \
2400 /* Since CHARSET is not yet invoked to any graphic planes, we \
2401 must invoke it, or, at first, designate it to some graphic \
2402 register. Then repeat the loop to actually produce the \
2403 character. */ \
2404 dst = encode_invocation_designation (charset, coding, dst); \
2405 } while (1)
2406
2407 #define ENCODE_ISO_CHARACTER(c) \
2408 do { \
2409 int charset, c1, c2; \
2410 \
2411 SPLIT_CHAR (c, charset, c1, c2); \
2412 if (CHARSET_DEFINED_P (charset)) \
2413 { \
2414 if (CHARSET_DIMENSION (charset) == 1) \
2415 { \
2416 if (charset == CHARSET_ASCII \
2417 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2418 charset = charset_latin_jisx0201; \
2419 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2420 } \
2421 else \
2422 { \
2423 if (charset == charset_jisx0208 \
2424 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2425 charset = charset_jisx0208_1978; \
2426 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2427 } \
2428 } \
2429 else \
2430 { \
2431 *dst++ = c1; \
2432 if (c2 >= 0) \
2433 *dst++ = c2; \
2434 } \
2435 } while (0)
2436
2437
2438 /* Instead of encoding character C, produce one or two `?'s. */
2439
2440 #define ENCODE_UNSAFE_CHARACTER(c) \
2441 do { \
2442 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2443 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2444 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2445 } while (0)
2446
2447
2448 /* Produce designation and invocation codes at a place pointed by DST
2449 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2450 Return new DST. */
2451
2452 unsigned char *
2453 encode_invocation_designation (charset, coding, dst)
2454 int charset;
2455 struct coding_system *coding;
2456 unsigned char *dst;
2457 {
2458 int reg; /* graphic register number */
2459
2460 /* At first, check designations. */
2461 for (reg = 0; reg < 4; reg++)
2462 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2463 break;
2464
2465 if (reg >= 4)
2466 {
2467 /* CHARSET is not yet designated to any graphic registers. */
2468 /* At first check the requested designation. */
2469 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2470 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2471 /* Since CHARSET requests no special designation, designate it
2472 to graphic register 0. */
2473 reg = 0;
2474
2475 ENCODE_DESIGNATION (charset, reg, coding);
2476 }
2477
2478 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2479 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2480 {
2481 /* Since the graphic register REG is not invoked to any graphic
2482 planes, invoke it to graphic plane 0. */
2483 switch (reg)
2484 {
2485 case 0: /* graphic register 0 */
2486 ENCODE_SHIFT_IN;
2487 break;
2488
2489 case 1: /* graphic register 1 */
2490 ENCODE_SHIFT_OUT;
2491 break;
2492
2493 case 2: /* graphic register 2 */
2494 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2495 ENCODE_SINGLE_SHIFT_2;
2496 else
2497 ENCODE_LOCKING_SHIFT_2;
2498 break;
2499
2500 case 3: /* graphic register 3 */
2501 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2502 ENCODE_SINGLE_SHIFT_3;
2503 else
2504 ENCODE_LOCKING_SHIFT_3;
2505 break;
2506 }
2507 }
2508
2509 return dst;
2510 }
2511
2512 /* Produce 2-byte codes for encoded composition rule RULE. */
2513
2514 #define ENCODE_COMPOSITION_RULE(rule) \
2515 do { \
2516 int gref, nref; \
2517 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2518 *dst++ = 32 + 81 + gref; \
2519 *dst++ = 32 + nref; \
2520 } while (0)
2521
2522 /* Produce codes for indicating the start of a composition sequence
2523 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2524 which specify information about the composition. See the comment
2525 in coding.h for the format of DATA. */
2526
2527 #define ENCODE_COMPOSITION_START(coding, data) \
2528 do { \
2529 coding->composing = data[3]; \
2530 *dst++ = ISO_CODE_ESC; \
2531 if (coding->composing == COMPOSITION_RELATIVE) \
2532 *dst++ = '0'; \
2533 else \
2534 { \
2535 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2536 ? '3' : '4'); \
2537 coding->cmp_data_index = coding->cmp_data_start + 4; \
2538 coding->composition_rule_follows = 0; \
2539 } \
2540 } while (0)
2541
2542 /* Produce codes for indicating the end of the current composition. */
2543
2544 #define ENCODE_COMPOSITION_END(coding, data) \
2545 do { \
2546 *dst++ = ISO_CODE_ESC; \
2547 *dst++ = '1'; \
2548 coding->cmp_data_start += data[0]; \
2549 coding->composing = COMPOSITION_NO; \
2550 if (coding->cmp_data_start == coding->cmp_data->used \
2551 && coding->cmp_data->next) \
2552 { \
2553 coding->cmp_data = coding->cmp_data->next; \
2554 coding->cmp_data_start = 0; \
2555 } \
2556 } while (0)
2557
2558 /* Produce composition start sequence ESC 0. Here, this sequence
2559 doesn't mean the start of a new composition but means that we have
2560 just produced components (alternate chars and composition rules) of
2561 the composition and the actual text follows in SRC. */
2562
2563 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2564 do { \
2565 *dst++ = ISO_CODE_ESC; \
2566 *dst++ = '0'; \
2567 coding->composing = COMPOSITION_RELATIVE; \
2568 } while (0)
2569
2570 /* The following three macros produce codes for indicating direction
2571 of text. */
2572 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2573 do { \
2574 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2575 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2576 else \
2577 *dst++ = ISO_CODE_CSI; \
2578 } while (0)
2579
2580 #define ENCODE_DIRECTION_R2L \
2581 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2582
2583 #define ENCODE_DIRECTION_L2R \
2584 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2585
2586 /* Produce codes for designation and invocation to reset the graphic
2587 planes and registers to initial state. */
2588 #define ENCODE_RESET_PLANE_AND_REGISTER \
2589 do { \
2590 int reg; \
2591 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2592 ENCODE_SHIFT_IN; \
2593 for (reg = 0; reg < 4; reg++) \
2594 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2595 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2596 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2597 ENCODE_DESIGNATION \
2598 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2599 } while (0)
2600
2601 /* Produce designation sequences of charsets in the line started from
2602 SRC to a place pointed by DST, and return updated DST.
2603
2604 If the current block ends before any end-of-line, we may fail to
2605 find all the necessary designations. */
2606
2607 static unsigned char *
2608 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2609 struct coding_system *coding;
2610 Lisp_Object translation_table;
2611 const unsigned char *src, *src_end;
2612 unsigned char *dst;
2613 {
2614 int charset, c, found = 0, reg;
2615 /* Table of charsets to be designated to each graphic register. */
2616 int r[4];
2617
2618 for (reg = 0; reg < 4; reg++)
2619 r[reg] = -1;
2620
2621 while (found < 4)
2622 {
2623 ONE_MORE_CHAR (c);
2624 if (c == '\n')
2625 break;
2626
2627 charset = CHAR_CHARSET (c);
2628 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2629 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2630 {
2631 found++;
2632 r[reg] = charset;
2633 }
2634 }
2635
2636 label_end_of_loop:
2637 if (found)
2638 {
2639 for (reg = 0; reg < 4; reg++)
2640 if (r[reg] >= 0
2641 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2642 ENCODE_DESIGNATION (r[reg], reg, coding);
2643 }
2644
2645 return dst;
2646 }
2647
2648 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2649
2650 static void
2651 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2652 struct coding_system *coding;
2653 const unsigned char *source;
2654 unsigned char *destination;
2655 int src_bytes, dst_bytes;
2656 {
2657 const unsigned char *src = source;
2658 const unsigned char *src_end = source + src_bytes;
2659 unsigned char *dst = destination;
2660 unsigned char *dst_end = destination + dst_bytes;
2661 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2662 from DST_END to assure overflow checking is necessary only at the
2663 head of loop. */
2664 unsigned char *adjusted_dst_end = dst_end - 19;
2665 /* SRC_BASE remembers the start position in source in each loop.
2666 The loop will be exited when there's not enough source text to
2667 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2668 there's not enough destination area to produce encoded codes
2669 (within macro EMIT_BYTES). */
2670 const unsigned char *src_base;
2671 int c;
2672 Lisp_Object translation_table;
2673 Lisp_Object safe_chars;
2674
2675 if (coding->flags & CODING_FLAG_ISO_SAFE)
2676 coding->mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
2677
2678 safe_chars = coding_safe_chars (coding->symbol);
2679
2680 if (NILP (Venable_character_translation))
2681 translation_table = Qnil;
2682 else
2683 {
2684 translation_table = coding->translation_table_for_encode;
2685 if (NILP (translation_table))
2686 translation_table = Vstandard_translation_table_for_encode;
2687 }
2688
2689 coding->consumed_char = 0;
2690 coding->errors = 0;
2691 while (1)
2692 {
2693 src_base = src;
2694
2695 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2696 {
2697 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2698 break;
2699 }
2700
2701 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2702 && CODING_SPEC_ISO_BOL (coding))
2703 {
2704 /* We have to produce designation sequences if any now. */
2705 dst = encode_designation_at_bol (coding, translation_table,
2706 src, src_end, dst);
2707 CODING_SPEC_ISO_BOL (coding) = 0;
2708 }
2709
2710 /* Check composition start and end. */
2711 if (coding->composing != COMPOSITION_DISABLED
2712 && coding->cmp_data_start < coding->cmp_data->used)
2713 {
2714 struct composition_data *cmp_data = coding->cmp_data;
2715 int *data = cmp_data->data + coding->cmp_data_start;
2716 int this_pos = cmp_data->char_offset + coding->consumed_char;
2717
2718 if (coding->composing == COMPOSITION_RELATIVE)
2719 {
2720 if (this_pos == data[2])
2721 {
2722 ENCODE_COMPOSITION_END (coding, data);
2723 cmp_data = coding->cmp_data;
2724 data = cmp_data->data + coding->cmp_data_start;
2725 }
2726 }
2727 else if (COMPOSING_P (coding))
2728 {
2729 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2730 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2731 /* We have consumed components of the composition.
2732 What follows in SRC is the composition's base
2733 text. */
2734 ENCODE_COMPOSITION_FAKE_START (coding);
2735 else
2736 {
2737 int c = cmp_data->data[coding->cmp_data_index++];
2738 if (coding->composition_rule_follows)
2739 {
2740 ENCODE_COMPOSITION_RULE (c);
2741 coding->composition_rule_follows = 0;
2742 }
2743 else
2744 {
2745 if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2746 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2747 ENCODE_UNSAFE_CHARACTER (c);
2748 else
2749 ENCODE_ISO_CHARACTER (c);
2750 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2751 coding->composition_rule_follows = 1;
2752 }
2753 continue;
2754 }
2755 }
2756 if (!COMPOSING_P (coding))
2757 {
2758 if (this_pos == data[1])
2759 {
2760 ENCODE_COMPOSITION_START (coding, data);
2761 continue;
2762 }
2763 }
2764 }
2765
2766 ONE_MORE_CHAR (c);
2767
2768 /* Now encode the character C. */
2769 if (c < 0x20 || c == 0x7F)
2770 {
2771 if (c == '\r')
2772 {
2773 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2774 {
2775 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2776 ENCODE_RESET_PLANE_AND_REGISTER;
2777 *dst++ = c;
2778 continue;
2779 }
2780 /* fall down to treat '\r' as '\n' ... */
2781 c = '\n';
2782 }
2783 if (c == '\n')
2784 {
2785 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2786 ENCODE_RESET_PLANE_AND_REGISTER;
2787 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2788 bcopy (coding->spec.iso2022.initial_designation,
2789 coding->spec.iso2022.current_designation,
2790 sizeof coding->spec.iso2022.initial_designation);
2791 if (coding->eol_type == CODING_EOL_LF
2792 || coding->eol_type == CODING_EOL_UNDECIDED)
2793 *dst++ = ISO_CODE_LF;
2794 else if (coding->eol_type == CODING_EOL_CRLF)
2795 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2796 else
2797 *dst++ = ISO_CODE_CR;
2798 CODING_SPEC_ISO_BOL (coding) = 1;
2799 }
2800 else
2801 {
2802 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2803 ENCODE_RESET_PLANE_AND_REGISTER;
2804 *dst++ = c;
2805 }
2806 }
2807 else if (ASCII_BYTE_P (c))
2808 ENCODE_ISO_CHARACTER (c);
2809 else if (SINGLE_BYTE_CHAR_P (c))
2810 {
2811 *dst++ = c;
2812 coding->errors++;
2813 }
2814 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2815 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2816 ENCODE_UNSAFE_CHARACTER (c);
2817 else
2818 ENCODE_ISO_CHARACTER (c);
2819
2820 coding->consumed_char++;
2821 }
2822
2823 label_end_of_loop:
2824 coding->consumed = src_base - source;
2825 coding->produced = coding->produced_char = dst - destination;
2826 }
2827
2828 \f
2829 /*** 4. SJIS and BIG5 handlers ***/
2830
2831 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2832 quite widely. So, for the moment, Emacs supports them in the bare
2833 C code. But, in the future, they may be supported only by CCL. */
2834
2835 /* SJIS is a coding system encoding three character sets: ASCII, right
2836 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2837 as is. A character of charset katakana-jisx0201 is encoded by
2838 "position-code + 0x80". A character of charset japanese-jisx0208
2839 is encoded in 2-byte but two position-codes are divided and shifted
2840 so that it fits in the range below.
2841
2842 --- CODE RANGE of SJIS ---
2843 (character set) (range)
2844 ASCII 0x00 .. 0x7F
2845 KATAKANA-JISX0201 0xA1 .. 0xDF
2846 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2847 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2848 -------------------------------
2849
2850 */
2851
2852 /* BIG5 is a coding system encoding two character sets: ASCII and
2853 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2854 character set and is encoded in two bytes.
2855
2856 --- CODE RANGE of BIG5 ---
2857 (character set) (range)
2858 ASCII 0x00 .. 0x7F
2859 Big5 (1st byte) 0xA1 .. 0xFE
2860 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2861 --------------------------
2862
2863 Since the number of characters in Big5 is larger than maximum
2864 characters in Emacs' charset (96x96), it can't be handled as one
2865 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2866 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2867 contains frequently used characters and the latter contains less
2868 frequently used characters. */
2869
2870 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2871 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2872 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2873 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2874
2875 /* Number of Big5 characters which have the same code in 1st byte. */
2876 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2877
2878 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2879 do { \
2880 unsigned int temp \
2881 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2882 if (b1 < 0xC9) \
2883 charset = charset_big5_1; \
2884 else \
2885 { \
2886 charset = charset_big5_2; \
2887 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2888 } \
2889 c1 = temp / (0xFF - 0xA1) + 0x21; \
2890 c2 = temp % (0xFF - 0xA1) + 0x21; \
2891 } while (0)
2892
2893 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2894 do { \
2895 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2896 if (charset == charset_big5_2) \
2897 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2898 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2899 b2 = temp % BIG5_SAME_ROW; \
2900 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2901 } while (0)
2902
2903 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2904 Check if a text is encoded in SJIS. If it is, return
2905 CODING_CATEGORY_MASK_SJIS, else return 0. */
2906
2907 static int
2908 detect_coding_sjis (src, src_end, multibytep)
2909 unsigned char *src, *src_end;
2910 int multibytep;
2911 {
2912 int c;
2913 /* Dummy for ONE_MORE_BYTE. */
2914 struct coding_system dummy_coding;
2915 struct coding_system *coding = &dummy_coding;
2916
2917 while (1)
2918 {
2919 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2920 if (c < 0x80)
2921 continue;
2922 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2923 return 0;
2924 if (c <= 0x9F || c >= 0xE0)
2925 {
2926 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2927 if (c < 0x40 || c == 0x7F || c > 0xFC)
2928 return 0;
2929 }
2930 }
2931 label_end_of_loop:
2932 return CODING_CATEGORY_MASK_SJIS;
2933 }
2934
2935 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2936 Check if a text is encoded in BIG5. If it is, return
2937 CODING_CATEGORY_MASK_BIG5, else return 0. */
2938
2939 static int
2940 detect_coding_big5 (src, src_end, multibytep)
2941 unsigned char *src, *src_end;
2942 int multibytep;
2943 {
2944 int c;
2945 /* Dummy for ONE_MORE_BYTE. */
2946 struct coding_system dummy_coding;
2947 struct coding_system *coding = &dummy_coding;
2948
2949 while (1)
2950 {
2951 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2952 if (c < 0x80)
2953 continue;
2954 if (c < 0xA1 || c > 0xFE)
2955 return 0;
2956 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2957 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2958 return 0;
2959 }
2960 label_end_of_loop:
2961 return CODING_CATEGORY_MASK_BIG5;
2962 }
2963
2964 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2965 Check if a text is encoded in UTF-8. If it is, return
2966 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2967
2968 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2969 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2970 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2971 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2972 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2973 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2974 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2975
2976 static int
2977 detect_coding_utf_8 (src, src_end, multibytep)
2978 unsigned char *src, *src_end;
2979 int multibytep;
2980 {
2981 unsigned char c;
2982 int seq_maybe_bytes;
2983 /* Dummy for ONE_MORE_BYTE. */
2984 struct coding_system dummy_coding;
2985 struct coding_system *coding = &dummy_coding;
2986
2987 while (1)
2988 {
2989 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2990 if (UTF_8_1_OCTET_P (c))
2991 continue;
2992 else if (UTF_8_2_OCTET_LEADING_P (c))
2993 seq_maybe_bytes = 1;
2994 else if (UTF_8_3_OCTET_LEADING_P (c))
2995 seq_maybe_bytes = 2;
2996 else if (UTF_8_4_OCTET_LEADING_P (c))
2997 seq_maybe_bytes = 3;
2998 else if (UTF_8_5_OCTET_LEADING_P (c))
2999 seq_maybe_bytes = 4;
3000 else if (UTF_8_6_OCTET_LEADING_P (c))
3001 seq_maybe_bytes = 5;
3002 else
3003 return 0;
3004
3005 do
3006 {
3007 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3008 if (!UTF_8_EXTRA_OCTET_P (c))
3009 return 0;
3010 seq_maybe_bytes--;
3011 }
3012 while (seq_maybe_bytes > 0);
3013 }
3014
3015 label_end_of_loop:
3016 return CODING_CATEGORY_MASK_UTF_8;
3017 }
3018
3019 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3020 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
3021 Little Endian (otherwise). If it is, return
3022 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
3023 else return 0. */
3024
3025 #define UTF_16_INVALID_P(val) \
3026 (((val) == 0xFFFE) \
3027 || ((val) == 0xFFFF))
3028
3029 #define UTF_16_HIGH_SURROGATE_P(val) \
3030 (((val) & 0xD800) == 0xD800)
3031
3032 #define UTF_16_LOW_SURROGATE_P(val) \
3033 (((val) & 0xDC00) == 0xDC00)
3034
3035 static int
3036 detect_coding_utf_16 (src, src_end, multibytep)
3037 unsigned char *src, *src_end;
3038 int multibytep;
3039 {
3040 unsigned char c1, c2;
3041 /* Dummy for ONE_MORE_BYTE_CHECK_MULTIBYTE. */
3042 struct coding_system dummy_coding;
3043 struct coding_system *coding = &dummy_coding;
3044
3045 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
3046 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
3047
3048 if ((c1 == 0xFF) && (c2 == 0xFE))
3049 return CODING_CATEGORY_MASK_UTF_16_LE;
3050 else if ((c1 == 0xFE) && (c2 == 0xFF))
3051 return CODING_CATEGORY_MASK_UTF_16_BE;
3052
3053 label_end_of_loop:
3054 return 0;
3055 }
3056
3057 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
3058 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
3059
3060 static void
3061 decode_coding_sjis_big5 (coding, source, destination,
3062 src_bytes, dst_bytes, sjis_p)
3063 struct coding_system *coding;
3064 const unsigned char *source;
3065 unsigned char *destination;
3066 int src_bytes, dst_bytes;
3067 int sjis_p;
3068 {
3069 const unsigned char *src = source;
3070 const unsigned char *src_end = source + src_bytes;
3071 unsigned char *dst = destination;
3072 unsigned char *dst_end = destination + dst_bytes;
3073 /* SRC_BASE remembers the start position in source in each loop.
3074 The loop will be exited when there's not enough source code
3075 (within macro ONE_MORE_BYTE), or when there's not enough
3076 destination area to produce a character (within macro
3077 EMIT_CHAR). */
3078 const unsigned char *src_base;
3079 Lisp_Object translation_table;
3080
3081 if (NILP (Venable_character_translation))
3082 translation_table = Qnil;
3083 else
3084 {
3085 translation_table = coding->translation_table_for_decode;
3086 if (NILP (translation_table))
3087 translation_table = Vstandard_translation_table_for_decode;
3088 }
3089
3090 coding->produced_char = 0;
3091 while (1)
3092 {
3093 int c, charset, c1, c2 = 0;
3094
3095 src_base = src;
3096 ONE_MORE_BYTE (c1);
3097
3098 if (c1 < 0x80)
3099 {
3100 charset = CHARSET_ASCII;
3101 if (c1 < 0x20)
3102 {
3103 if (c1 == '\r')
3104 {
3105 if (coding->eol_type == CODING_EOL_CRLF)
3106 {
3107 ONE_MORE_BYTE (c2);
3108 if (c2 == '\n')
3109 c1 = c2;
3110 else
3111 /* To process C2 again, SRC is subtracted by 1. */
3112 src--;
3113 }
3114 else if (coding->eol_type == CODING_EOL_CR)
3115 c1 = '\n';
3116 }
3117 else if (c1 == '\n'
3118 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3119 && (coding->eol_type == CODING_EOL_CR
3120 || coding->eol_type == CODING_EOL_CRLF))
3121 {
3122 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3123 goto label_end_of_loop;
3124 }
3125 }
3126 }
3127 else
3128 {
3129 if (sjis_p)
3130 {
3131 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
3132 goto label_invalid_code;
3133 if (c1 <= 0x9F || c1 >= 0xE0)
3134 {
3135 /* SJIS -> JISX0208 */
3136 ONE_MORE_BYTE (c2);
3137 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
3138 goto label_invalid_code;
3139 DECODE_SJIS (c1, c2, c1, c2);
3140 charset = charset_jisx0208;
3141 }
3142 else
3143 /* SJIS -> JISX0201-Kana */
3144 charset = charset_katakana_jisx0201;
3145 }
3146 else
3147 {
3148 /* BIG5 -> Big5 */
3149 if (c1 < 0xA0 || c1 > 0xFE)
3150 goto label_invalid_code;
3151 ONE_MORE_BYTE (c2);
3152 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
3153 goto label_invalid_code;
3154 DECODE_BIG5 (c1, c2, charset, c1, c2);
3155 }
3156 }
3157
3158 c = DECODE_ISO_CHARACTER (charset, c1, c2);
3159 EMIT_CHAR (c);
3160 continue;
3161
3162 label_invalid_code:
3163 coding->errors++;
3164 src = src_base;
3165 c = *src++;
3166 EMIT_CHAR (c);
3167 }
3168
3169 label_end_of_loop:
3170 coding->consumed = coding->consumed_char = src_base - source;
3171 coding->produced = dst - destination;
3172 return;
3173 }
3174
3175 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
3176 This function can encode charsets `ascii', `katakana-jisx0201',
3177 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
3178 are sure that all these charsets are registered as official charset
3179 (i.e. do not have extended leading-codes). Characters of other
3180 charsets are produced without any encoding. If SJIS_P is 1, encode
3181 SJIS text, else encode BIG5 text. */
3182
3183 static void
3184 encode_coding_sjis_big5 (coding, source, destination,
3185 src_bytes, dst_bytes, sjis_p)
3186 struct coding_system *coding;
3187 unsigned char *source, *destination;
3188 int src_bytes, dst_bytes;
3189 int sjis_p;
3190 {
3191 unsigned char *src = source;
3192 unsigned char *src_end = source + src_bytes;
3193 unsigned char *dst = destination;
3194 unsigned char *dst_end = destination + dst_bytes;
3195 /* SRC_BASE remembers the start position in source in each loop.
3196 The loop will be exited when there's not enough source text to
3197 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3198 there's not enough destination area to produce encoded codes
3199 (within macro EMIT_BYTES). */
3200 unsigned char *src_base;
3201 Lisp_Object translation_table;
3202
3203 if (NILP (Venable_character_translation))
3204 translation_table = Qnil;
3205 else
3206 {
3207 translation_table = coding->translation_table_for_encode;
3208 if (NILP (translation_table))
3209 translation_table = Vstandard_translation_table_for_encode;
3210 }
3211
3212 while (1)
3213 {
3214 int c, charset, c1, c2;
3215
3216 src_base = src;
3217 ONE_MORE_CHAR (c);
3218
3219 /* Now encode the character C. */
3220 if (SINGLE_BYTE_CHAR_P (c))
3221 {
3222 switch (c)
3223 {
3224 case '\r':
3225 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3226 {
3227 EMIT_ONE_BYTE (c);
3228 break;
3229 }
3230 c = '\n';
3231 case '\n':
3232 if (coding->eol_type == CODING_EOL_CRLF)
3233 {
3234 EMIT_TWO_BYTES ('\r', c);
3235 break;
3236 }
3237 else if (coding->eol_type == CODING_EOL_CR)
3238 c = '\r';
3239 default:
3240 EMIT_ONE_BYTE (c);
3241 }
3242 }
3243 else
3244 {
3245 SPLIT_CHAR (c, charset, c1, c2);
3246 if (sjis_p)
3247 {
3248 if (charset == charset_jisx0208
3249 || charset == charset_jisx0208_1978)
3250 {
3251 ENCODE_SJIS (c1, c2, c1, c2);
3252 EMIT_TWO_BYTES (c1, c2);
3253 }
3254 else if (charset == charset_katakana_jisx0201)
3255 EMIT_ONE_BYTE (c1 | 0x80);
3256 else if (charset == charset_latin_jisx0201)
3257 EMIT_ONE_BYTE (c1);
3258 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3259 {
3260 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3261 if (CHARSET_WIDTH (charset) > 1)
3262 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3263 }
3264 else
3265 /* There's no way other than producing the internal
3266 codes as is. */
3267 EMIT_BYTES (src_base, src);
3268 }
3269 else
3270 {
3271 if (charset == charset_big5_1 || charset == charset_big5_2)
3272 {
3273 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3274 EMIT_TWO_BYTES (c1, c2);
3275 }
3276 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3277 {
3278 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3279 if (CHARSET_WIDTH (charset) > 1)
3280 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3281 }
3282 else
3283 /* There's no way other than producing the internal
3284 codes as is. */
3285 EMIT_BYTES (src_base, src);
3286 }
3287 }
3288 coding->consumed_char++;
3289 }
3290
3291 label_end_of_loop:
3292 coding->consumed = src_base - source;
3293 coding->produced = coding->produced_char = dst - destination;
3294 }
3295
3296 \f
3297 /*** 5. CCL handlers ***/
3298
3299 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3300 Check if a text is encoded in a coding system of which
3301 encoder/decoder are written in CCL program. If it is, return
3302 CODING_CATEGORY_MASK_CCL, else return 0. */
3303
3304 static int
3305 detect_coding_ccl (src, src_end, multibytep)
3306 unsigned char *src, *src_end;
3307 int multibytep;
3308 {
3309 unsigned char *valid;
3310 int c;
3311 /* Dummy for ONE_MORE_BYTE. */
3312 struct coding_system dummy_coding;
3313 struct coding_system *coding = &dummy_coding;
3314
3315 /* No coding system is assigned to coding-category-ccl. */
3316 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3317 return 0;
3318
3319 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3320 while (1)
3321 {
3322 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3323 if (! valid[c])
3324 return 0;
3325 }
3326 label_end_of_loop:
3327 return CODING_CATEGORY_MASK_CCL;
3328 }
3329
3330 \f
3331 /*** 6. End-of-line handlers ***/
3332
3333 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3334
3335 static void
3336 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3337 struct coding_system *coding;
3338 const unsigned char *source;
3339 unsigned char *destination;
3340 int src_bytes, dst_bytes;
3341 {
3342 const unsigned char *src = source;
3343 unsigned char *dst = destination;
3344 const unsigned char *src_end = src + src_bytes;
3345 unsigned char *dst_end = dst + dst_bytes;
3346 Lisp_Object translation_table;
3347 /* SRC_BASE remembers the start position in source in each loop.
3348 The loop will be exited when there's not enough source code
3349 (within macro ONE_MORE_BYTE), or when there's not enough
3350 destination area to produce a character (within macro
3351 EMIT_CHAR). */
3352 const unsigned char *src_base;
3353 int c;
3354
3355 translation_table = Qnil;
3356 switch (coding->eol_type)
3357 {
3358 case CODING_EOL_CRLF:
3359 while (1)
3360 {
3361 src_base = src;
3362 ONE_MORE_BYTE (c);
3363 if (c == '\r')
3364 {
3365 ONE_MORE_BYTE (c);
3366 if (c != '\n')
3367 {
3368 src--;
3369 c = '\r';
3370 }
3371 }
3372 else if (c == '\n'
3373 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3374 {
3375 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3376 goto label_end_of_loop;
3377 }
3378 EMIT_CHAR (c);
3379 }
3380 break;
3381
3382 case CODING_EOL_CR:
3383 while (1)
3384 {
3385 src_base = src;
3386 ONE_MORE_BYTE (c);
3387 if (c == '\n')
3388 {
3389 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3390 {
3391 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3392 goto label_end_of_loop;
3393 }
3394 }
3395 else if (c == '\r')
3396 c = '\n';
3397 EMIT_CHAR (c);
3398 }
3399 break;
3400
3401 default: /* no need for EOL handling */
3402 while (1)
3403 {
3404 src_base = src;
3405 ONE_MORE_BYTE (c);
3406 EMIT_CHAR (c);
3407 }
3408 }
3409
3410 label_end_of_loop:
3411 coding->consumed = coding->consumed_char = src_base - source;
3412 coding->produced = dst - destination;
3413 return;
3414 }
3415
3416 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3417 format of end-of-line according to `coding->eol_type'. It also
3418 convert multibyte form 8-bit characters to unibyte if
3419 CODING->src_multibyte is nonzero. If `coding->mode &
3420 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3421 also means end-of-line. */
3422
3423 static void
3424 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3425 struct coding_system *coding;
3426 const unsigned char *source;
3427 unsigned char *destination;
3428 int src_bytes, dst_bytes;
3429 {
3430 const unsigned char *src = source;
3431 unsigned char *dst = destination;
3432 const unsigned char *src_end = src + src_bytes;
3433 unsigned char *dst_end = dst + dst_bytes;
3434 Lisp_Object translation_table;
3435 /* SRC_BASE remembers the start position in source in each loop.
3436 The loop will be exited when there's not enough source text to
3437 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3438 there's not enough destination area to produce encoded codes
3439 (within macro EMIT_BYTES). */
3440 const unsigned char *src_base;
3441 unsigned char *tmp;
3442 int c;
3443 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3444
3445 translation_table = Qnil;
3446 if (coding->src_multibyte
3447 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3448 {
3449 src_end--;
3450 src_bytes--;
3451 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3452 }
3453
3454 if (coding->eol_type == CODING_EOL_CRLF)
3455 {
3456 while (src < src_end)
3457 {
3458 src_base = src;
3459 c = *src++;
3460 if (c >= 0x20)
3461 EMIT_ONE_BYTE (c);
3462 else if (c == '\n' || (c == '\r' && selective_display))
3463 EMIT_TWO_BYTES ('\r', '\n');
3464 else
3465 EMIT_ONE_BYTE (c);
3466 }
3467 src_base = src;
3468 label_end_of_loop:
3469 ;
3470 }
3471 else
3472 {
3473 if (!dst_bytes || src_bytes <= dst_bytes)
3474 {
3475 safe_bcopy (src, dst, src_bytes);
3476 src_base = src_end;
3477 dst += src_bytes;
3478 }
3479 else
3480 {
3481 if (coding->src_multibyte
3482 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3483 dst_bytes--;
3484 safe_bcopy (src, dst, dst_bytes);
3485 src_base = src + dst_bytes;
3486 dst = destination + dst_bytes;
3487 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3488 }
3489 if (coding->eol_type == CODING_EOL_CR)
3490 {
3491 for (tmp = destination; tmp < dst; tmp++)
3492 if (*tmp == '\n') *tmp = '\r';
3493 }
3494 else if (selective_display)
3495 {
3496 for (tmp = destination; tmp < dst; tmp++)
3497 if (*tmp == '\r') *tmp = '\n';
3498 }
3499 }
3500 if (coding->src_multibyte)
3501 dst = destination + str_as_unibyte (destination, dst - destination);
3502
3503 coding->consumed = src_base - source;
3504 coding->produced = dst - destination;
3505 coding->produced_char = coding->produced;
3506 }
3507
3508 \f
3509 /*** 7. C library functions ***/
3510
3511 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3512 has a property `coding-system'. The value of this property is a
3513 vector of length 5 (called the coding-vector). Among elements of
3514 this vector, the first (element[0]) and the fifth (element[4])
3515 carry important information for decoding/encoding. Before
3516 decoding/encoding, this information should be set in fields of a
3517 structure of type `coding_system'.
3518
3519 The value of the property `coding-system' can be a symbol of another
3520 subsidiary coding-system. In that case, Emacs gets coding-vector
3521 from that symbol.
3522
3523 `element[0]' contains information to be set in `coding->type'. The
3524 value and its meaning is as follows:
3525
3526 0 -- coding_type_emacs_mule
3527 1 -- coding_type_sjis
3528 2 -- coding_type_iso2022
3529 3 -- coding_type_big5
3530 4 -- coding_type_ccl encoder/decoder written in CCL
3531 nil -- coding_type_no_conversion
3532 t -- coding_type_undecided (automatic conversion on decoding,
3533 no-conversion on encoding)
3534
3535 `element[4]' contains information to be set in `coding->flags' and
3536 `coding->spec'. The meaning varies by `coding->type'.
3537
3538 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3539 of length 32 (of which the first 13 sub-elements are used now).
3540 Meanings of these sub-elements are:
3541
3542 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3543 If the value is an integer of valid charset, the charset is
3544 assumed to be designated to graphic register N initially.
3545
3546 If the value is minus, it is a minus value of charset which
3547 reserves graphic register N, which means that the charset is
3548 not designated initially but should be designated to graphic
3549 register N just before encoding a character in that charset.
3550
3551 If the value is nil, graphic register N is never used on
3552 encoding.
3553
3554 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3555 Each value takes t or nil. See the section ISO2022 of
3556 `coding.h' for more information.
3557
3558 If `coding->type' is `coding_type_big5', element[4] is t to denote
3559 BIG5-ETen or nil to denote BIG5-HKU.
3560
3561 If `coding->type' takes the other value, element[4] is ignored.
3562
3563 Emacs Lisp's coding systems also carry information about format of
3564 end-of-line in a value of property `eol-type'. If the value is
3565 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3566 means CODING_EOL_CR. If it is not integer, it should be a vector
3567 of subsidiary coding systems of which property `eol-type' has one
3568 of the above values.
3569
3570 */
3571
3572 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3573 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3574 is setup so that no conversion is necessary and return -1, else
3575 return 0. */
3576
3577 int
3578 setup_coding_system (coding_system, coding)
3579 Lisp_Object coding_system;
3580 struct coding_system *coding;
3581 {
3582 Lisp_Object coding_spec, coding_type, eol_type, plist;
3583 Lisp_Object val;
3584
3585 /* At first, zero clear all members. */
3586 bzero (coding, sizeof (struct coding_system));
3587
3588 /* Initialize some fields required for all kinds of coding systems. */
3589 coding->symbol = coding_system;
3590 coding->heading_ascii = -1;
3591 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3592 coding->composing = COMPOSITION_DISABLED;
3593 coding->cmp_data = NULL;
3594
3595 if (NILP (coding_system))
3596 goto label_invalid_coding_system;
3597
3598 coding_spec = Fget (coding_system, Qcoding_system);
3599
3600 if (!VECTORP (coding_spec)
3601 || XVECTOR (coding_spec)->size != 5
3602 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3603 goto label_invalid_coding_system;
3604
3605 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3606 if (VECTORP (eol_type))
3607 {
3608 coding->eol_type = CODING_EOL_UNDECIDED;
3609 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3610 }
3611 else if (XFASTINT (eol_type) == 1)
3612 {
3613 coding->eol_type = CODING_EOL_CRLF;
3614 coding->common_flags
3615 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3616 }
3617 else if (XFASTINT (eol_type) == 2)
3618 {
3619 coding->eol_type = CODING_EOL_CR;
3620 coding->common_flags
3621 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3622 }
3623 else
3624 coding->eol_type = CODING_EOL_LF;
3625
3626 coding_type = XVECTOR (coding_spec)->contents[0];
3627 /* Try short cut. */
3628 if (SYMBOLP (coding_type))
3629 {
3630 if (EQ (coding_type, Qt))
3631 {
3632 coding->type = coding_type_undecided;
3633 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3634 }
3635 else
3636 coding->type = coding_type_no_conversion;
3637 /* Initialize this member. Any thing other than
3638 CODING_CATEGORY_IDX_UTF_16_BE and
3639 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3640 special treatment in detect_eol. */
3641 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3642
3643 return 0;
3644 }
3645
3646 /* Get values of coding system properties:
3647 `post-read-conversion', `pre-write-conversion',
3648 `translation-table-for-decode', `translation-table-for-encode'. */
3649 plist = XVECTOR (coding_spec)->contents[3];
3650 /* Pre & post conversion functions should be disabled if
3651 inhibit_eol_conversion is nonzero. This is the case that a code
3652 conversion function is called while those functions are running. */
3653 if (! inhibit_pre_post_conversion)
3654 {
3655 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3656 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3657 }
3658 val = Fplist_get (plist, Qtranslation_table_for_decode);
3659 if (SYMBOLP (val))
3660 val = Fget (val, Qtranslation_table_for_decode);
3661 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3662 val = Fplist_get (plist, Qtranslation_table_for_encode);
3663 if (SYMBOLP (val))
3664 val = Fget (val, Qtranslation_table_for_encode);
3665 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3666 val = Fplist_get (plist, Qcoding_category);
3667 if (!NILP (val))
3668 {
3669 val = Fget (val, Qcoding_category_index);
3670 if (INTEGERP (val))
3671 coding->category_idx = XINT (val);
3672 else
3673 goto label_invalid_coding_system;
3674 }
3675 else
3676 goto label_invalid_coding_system;
3677
3678 /* If the coding system has non-nil `composition' property, enable
3679 composition handling. */
3680 val = Fplist_get (plist, Qcomposition);
3681 if (!NILP (val))
3682 coding->composing = COMPOSITION_NO;
3683
3684 switch (XFASTINT (coding_type))
3685 {
3686 case 0:
3687 coding->type = coding_type_emacs_mule;
3688 coding->common_flags
3689 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3690 if (!NILP (coding->post_read_conversion))
3691 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3692 if (!NILP (coding->pre_write_conversion))
3693 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3694 break;
3695
3696 case 1:
3697 coding->type = coding_type_sjis;
3698 coding->common_flags
3699 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3700 break;
3701
3702 case 2:
3703 coding->type = coding_type_iso2022;
3704 coding->common_flags
3705 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3706 {
3707 Lisp_Object val, temp;
3708 Lisp_Object *flags;
3709 int i, charset, reg_bits = 0;
3710
3711 val = XVECTOR (coding_spec)->contents[4];
3712
3713 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3714 goto label_invalid_coding_system;
3715
3716 flags = XVECTOR (val)->contents;
3717 coding->flags
3718 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3719 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3720 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3721 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3722 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3723 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3724 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3725 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3726 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3727 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3728 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3729 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3730 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3731 );
3732
3733 /* Invoke graphic register 0 to plane 0. */
3734 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3735 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3736 CODING_SPEC_ISO_INVOCATION (coding, 1)
3737 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3738 /* Not single shifting at first. */
3739 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3740 /* Beginning of buffer should also be regarded as bol. */
3741 CODING_SPEC_ISO_BOL (coding) = 1;
3742
3743 for (charset = 0; charset <= MAX_CHARSET; charset++)
3744 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3745 val = Vcharset_revision_alist;
3746 while (CONSP (val))
3747 {
3748 charset = get_charset_id (Fcar_safe (XCAR (val)));
3749 if (charset >= 0
3750 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3751 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3752 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3753 val = XCDR (val);
3754 }
3755
3756 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3757 FLAGS[REG] can be one of below:
3758 integer CHARSET: CHARSET occupies register I,
3759 t: designate nothing to REG initially, but can be used
3760 by any charsets,
3761 list of integer, nil, or t: designate the first
3762 element (if integer) to REG initially, the remaining
3763 elements (if integer) is designated to REG on request,
3764 if an element is t, REG can be used by any charsets,
3765 nil: REG is never used. */
3766 for (charset = 0; charset <= MAX_CHARSET; charset++)
3767 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3768 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3769 for (i = 0; i < 4; i++)
3770 {
3771 if ((INTEGERP (flags[i])
3772 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3773 || (charset = get_charset_id (flags[i])) >= 0)
3774 {
3775 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3776 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3777 }
3778 else if (EQ (flags[i], Qt))
3779 {
3780 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3781 reg_bits |= 1 << i;
3782 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3783 }
3784 else if (CONSP (flags[i]))
3785 {
3786 Lisp_Object tail;
3787 tail = flags[i];
3788
3789 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3790 if ((INTEGERP (XCAR (tail))
3791 && (charset = XINT (XCAR (tail)),
3792 CHARSET_VALID_P (charset)))
3793 || (charset = get_charset_id (XCAR (tail))) >= 0)
3794 {
3795 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3796 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3797 }
3798 else
3799 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3800 tail = XCDR (tail);
3801 while (CONSP (tail))
3802 {
3803 if ((INTEGERP (XCAR (tail))
3804 && (charset = XINT (XCAR (tail)),
3805 CHARSET_VALID_P (charset)))
3806 || (charset = get_charset_id (XCAR (tail))) >= 0)
3807 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3808 = i;
3809 else if (EQ (XCAR (tail), Qt))
3810 reg_bits |= 1 << i;
3811 tail = XCDR (tail);
3812 }
3813 }
3814 else
3815 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3816
3817 CODING_SPEC_ISO_DESIGNATION (coding, i)
3818 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3819 }
3820
3821 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3822 {
3823 /* REG 1 can be used only by locking shift in 7-bit env. */
3824 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3825 reg_bits &= ~2;
3826 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3827 /* Without any shifting, only REG 0 and 1 can be used. */
3828 reg_bits &= 3;
3829 }
3830
3831 if (reg_bits)
3832 for (charset = 0; charset <= MAX_CHARSET; charset++)
3833 {
3834 if (CHARSET_DEFINED_P (charset)
3835 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3836 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3837 {
3838 /* There exist some default graphic registers to be
3839 used by CHARSET. */
3840
3841 /* We had better avoid designating a charset of
3842 CHARS96 to REG 0 as far as possible. */
3843 if (CHARSET_CHARS (charset) == 96)
3844 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3845 = (reg_bits & 2
3846 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3847 else
3848 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3849 = (reg_bits & 1
3850 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3851 }
3852 }
3853 }
3854 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3855 coding->spec.iso2022.last_invalid_designation_register = -1;
3856 break;
3857
3858 case 3:
3859 coding->type = coding_type_big5;
3860 coding->common_flags
3861 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3862 coding->flags
3863 = (NILP (XVECTOR (coding_spec)->contents[4])
3864 ? CODING_FLAG_BIG5_HKU
3865 : CODING_FLAG_BIG5_ETEN);
3866 break;
3867
3868 case 4:
3869 coding->type = coding_type_ccl;
3870 coding->common_flags
3871 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3872 {
3873 val = XVECTOR (coding_spec)->contents[4];
3874 if (! CONSP (val)
3875 || setup_ccl_program (&(coding->spec.ccl.decoder),
3876 XCAR (val)) < 0
3877 || setup_ccl_program (&(coding->spec.ccl.encoder),
3878 XCDR (val)) < 0)
3879 goto label_invalid_coding_system;
3880
3881 bzero (coding->spec.ccl.valid_codes, 256);
3882 val = Fplist_get (plist, Qvalid_codes);
3883 if (CONSP (val))
3884 {
3885 Lisp_Object this;
3886
3887 for (; CONSP (val); val = XCDR (val))
3888 {
3889 this = XCAR (val);
3890 if (INTEGERP (this)
3891 && XINT (this) >= 0 && XINT (this) < 256)
3892 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3893 else if (CONSP (this)
3894 && INTEGERP (XCAR (this))
3895 && INTEGERP (XCDR (this)))
3896 {
3897 int start = XINT (XCAR (this));
3898 int end = XINT (XCDR (this));
3899
3900 if (start >= 0 && start <= end && end < 256)
3901 while (start <= end)
3902 coding->spec.ccl.valid_codes[start++] = 1;
3903 }
3904 }
3905 }
3906 }
3907 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3908 coding->spec.ccl.cr_carryover = 0;
3909 coding->spec.ccl.eight_bit_carryover[0] = 0;
3910 break;
3911
3912 case 5:
3913 coding->type = coding_type_raw_text;
3914 break;
3915
3916 default:
3917 goto label_invalid_coding_system;
3918 }
3919 return 0;
3920
3921 label_invalid_coding_system:
3922 coding->type = coding_type_no_conversion;
3923 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3924 coding->common_flags = 0;
3925 coding->eol_type = CODING_EOL_LF;
3926 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3927 return -1;
3928 }
3929
3930 /* Free memory blocks allocated for storing composition information. */
3931
3932 void
3933 coding_free_composition_data (coding)
3934 struct coding_system *coding;
3935 {
3936 struct composition_data *cmp_data = coding->cmp_data, *next;
3937
3938 if (!cmp_data)
3939 return;
3940 /* Memory blocks are chained. At first, rewind to the first, then,
3941 free blocks one by one. */
3942 while (cmp_data->prev)
3943 cmp_data = cmp_data->prev;
3944 while (cmp_data)
3945 {
3946 next = cmp_data->next;
3947 xfree (cmp_data);
3948 cmp_data = next;
3949 }
3950 coding->cmp_data = NULL;
3951 }
3952
3953 /* Set `char_offset' member of all memory blocks pointed by
3954 coding->cmp_data to POS. */
3955
3956 void
3957 coding_adjust_composition_offset (coding, pos)
3958 struct coding_system *coding;
3959 int pos;
3960 {
3961 struct composition_data *cmp_data;
3962
3963 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3964 cmp_data->char_offset = pos;
3965 }
3966
3967 /* Setup raw-text or one of its subsidiaries in the structure
3968 coding_system CODING according to the already setup value eol_type
3969 in CODING. CODING should be setup for some coding system in
3970 advance. */
3971
3972 void
3973 setup_raw_text_coding_system (coding)
3974 struct coding_system *coding;
3975 {
3976 if (coding->type != coding_type_raw_text)
3977 {
3978 coding->symbol = Qraw_text;
3979 coding->type = coding_type_raw_text;
3980 if (coding->eol_type != CODING_EOL_UNDECIDED)
3981 {
3982 Lisp_Object subsidiaries;
3983 subsidiaries = Fget (Qraw_text, Qeol_type);
3984
3985 if (VECTORP (subsidiaries)
3986 && XVECTOR (subsidiaries)->size == 3)
3987 coding->symbol
3988 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3989 }
3990 setup_coding_system (coding->symbol, coding);
3991 }
3992 return;
3993 }
3994
3995 /* Emacs has a mechanism to automatically detect a coding system if it
3996 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3997 it's impossible to distinguish some coding systems accurately
3998 because they use the same range of codes. So, at first, coding
3999 systems are categorized into 7, those are:
4000
4001 o coding-category-emacs-mule
4002
4003 The category for a coding system which has the same code range
4004 as Emacs' internal format. Assigned the coding-system (Lisp
4005 symbol) `emacs-mule' by default.
4006
4007 o coding-category-sjis
4008
4009 The category for a coding system which has the same code range
4010 as SJIS. Assigned the coding-system (Lisp
4011 symbol) `japanese-shift-jis' by default.
4012
4013 o coding-category-iso-7
4014
4015 The category for a coding system which has the same code range
4016 as ISO2022 of 7-bit environment. This doesn't use any locking
4017 shift and single shift functions. This can encode/decode all
4018 charsets. Assigned the coding-system (Lisp symbol)
4019 `iso-2022-7bit' by default.
4020
4021 o coding-category-iso-7-tight
4022
4023 Same as coding-category-iso-7 except that this can
4024 encode/decode only the specified charsets.
4025
4026 o coding-category-iso-8-1
4027
4028 The category for a coding system which has the same code range
4029 as ISO2022 of 8-bit environment and graphic plane 1 used only
4030 for DIMENSION1 charset. This doesn't use any locking shift
4031 and single shift functions. Assigned the coding-system (Lisp
4032 symbol) `iso-latin-1' by default.
4033
4034 o coding-category-iso-8-2
4035
4036 The category for a coding system which has the same code range
4037 as ISO2022 of 8-bit environment and graphic plane 1 used only
4038 for DIMENSION2 charset. This doesn't use any locking shift
4039 and single shift functions. Assigned the coding-system (Lisp
4040 symbol) `japanese-iso-8bit' by default.
4041
4042 o coding-category-iso-7-else
4043
4044 The category for a coding system which has the same code range
4045 as ISO2022 of 7-bit environment but uses locking shift or
4046 single shift functions. Assigned the coding-system (Lisp
4047 symbol) `iso-2022-7bit-lock' by default.
4048
4049 o coding-category-iso-8-else
4050
4051 The category for a coding system which has the same code range
4052 as ISO2022 of 8-bit environment but uses locking shift or
4053 single shift functions. Assigned the coding-system (Lisp
4054 symbol) `iso-2022-8bit-ss2' by default.
4055
4056 o coding-category-big5
4057
4058 The category for a coding system which has the same code range
4059 as BIG5. Assigned the coding-system (Lisp symbol)
4060 `cn-big5' by default.
4061
4062 o coding-category-utf-8
4063
4064 The category for a coding system which has the same code range
4065 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
4066 symbol) `utf-8' by default.
4067
4068 o coding-category-utf-16-be
4069
4070 The category for a coding system in which a text has an
4071 Unicode signature (cf. Unicode Standard) in the order of BIG
4072 endian at the head. Assigned the coding-system (Lisp symbol)
4073 `utf-16-be' by default.
4074
4075 o coding-category-utf-16-le
4076
4077 The category for a coding system in which a text has an
4078 Unicode signature (cf. Unicode Standard) in the order of
4079 LITTLE endian at the head. Assigned the coding-system (Lisp
4080 symbol) `utf-16-le' by default.
4081
4082 o coding-category-ccl
4083
4084 The category for a coding system of which encoder/decoder is
4085 written in CCL programs. The default value is nil, i.e., no
4086 coding system is assigned.
4087
4088 o coding-category-binary
4089
4090 The category for a coding system not categorized in any of the
4091 above. Assigned the coding-system (Lisp symbol)
4092 `no-conversion' by default.
4093
4094 Each of them is a Lisp symbol and the value is an actual
4095 `coding-system' (this is also a Lisp symbol) assigned by a user.
4096 What Emacs does actually is to detect a category of coding system.
4097 Then, it uses a `coding-system' assigned to it. If Emacs can't
4098 decide a single possible category, it selects a category of the
4099 highest priority. Priorities of categories are also specified by a
4100 user in a Lisp variable `coding-category-list'.
4101
4102 */
4103
4104 static
4105 int ascii_skip_code[256];
4106
4107 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
4108 If it detects possible coding systems, return an integer in which
4109 appropriate flag bits are set. Flag bits are defined by macros
4110 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
4111 it should point the table `coding_priorities'. In that case, only
4112 the flag bit for a coding system of the highest priority is set in
4113 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
4114 range 0x80..0x9F are in multibyte form.
4115
4116 How many ASCII characters are at the head is returned as *SKIP. */
4117
4118 static int
4119 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
4120 unsigned char *source;
4121 int src_bytes, *priorities, *skip;
4122 int multibytep;
4123 {
4124 register unsigned char c;
4125 unsigned char *src = source, *src_end = source + src_bytes;
4126 unsigned int mask, utf16_examined_p, iso2022_examined_p;
4127 int i;
4128
4129 /* At first, skip all ASCII characters and control characters except
4130 for three ISO2022 specific control characters. */
4131 ascii_skip_code[ISO_CODE_SO] = 0;
4132 ascii_skip_code[ISO_CODE_SI] = 0;
4133 ascii_skip_code[ISO_CODE_ESC] = 0;
4134
4135 label_loop_detect_coding:
4136 while (src < src_end && ascii_skip_code[*src]) src++;
4137 *skip = src - source;
4138
4139 if (src >= src_end)
4140 /* We found nothing other than ASCII. There's nothing to do. */
4141 return 0;
4142
4143 c = *src;
4144 /* The text seems to be encoded in some multilingual coding system.
4145 Now, try to find in which coding system the text is encoded. */
4146 if (c < 0x80)
4147 {
4148 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
4149 /* C is an ISO2022 specific control code of C0. */
4150 mask = detect_coding_iso2022 (src, src_end, multibytep);
4151 if (mask == 0)
4152 {
4153 /* No valid ISO2022 code follows C. Try again. */
4154 src++;
4155 if (c == ISO_CODE_ESC)
4156 ascii_skip_code[ISO_CODE_ESC] = 1;
4157 else
4158 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
4159 goto label_loop_detect_coding;
4160 }
4161 if (priorities)
4162 {
4163 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4164 {
4165 if (mask & priorities[i])
4166 return priorities[i];
4167 }
4168 return CODING_CATEGORY_MASK_RAW_TEXT;
4169 }
4170 }
4171 else
4172 {
4173 int try;
4174
4175 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
4176 c = src[1] - 0x20;
4177
4178 if (c < 0xA0)
4179 {
4180 /* C is the first byte of SJIS character code,
4181 or a leading-code of Emacs' internal format (emacs-mule),
4182 or the first byte of UTF-16. */
4183 try = (CODING_CATEGORY_MASK_SJIS
4184 | CODING_CATEGORY_MASK_EMACS_MULE
4185 | CODING_CATEGORY_MASK_UTF_16_BE
4186 | CODING_CATEGORY_MASK_UTF_16_LE);
4187
4188 /* Or, if C is a special latin extra code,
4189 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4190 or is an ISO2022 control-sequence-introducer (CSI),
4191 we should also consider the possibility of ISO2022 codings. */
4192 if ((VECTORP (Vlatin_extra_code_table)
4193 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4194 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4195 || (c == ISO_CODE_CSI
4196 && (src < src_end
4197 && (*src == ']'
4198 || ((*src == '0' || *src == '1' || *src == '2')
4199 && src + 1 < src_end
4200 && src[1] == ']')))))
4201 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4202 | CODING_CATEGORY_MASK_ISO_8BIT);
4203 }
4204 else
4205 /* C is a character of ISO2022 in graphic plane right,
4206 or a SJIS's 1-byte character code (i.e. JISX0201),
4207 or the first byte of BIG5's 2-byte code,
4208 or the first byte of UTF-8/16. */
4209 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4210 | CODING_CATEGORY_MASK_ISO_8BIT
4211 | CODING_CATEGORY_MASK_SJIS
4212 | CODING_CATEGORY_MASK_BIG5
4213 | CODING_CATEGORY_MASK_UTF_8
4214 | CODING_CATEGORY_MASK_UTF_16_BE
4215 | CODING_CATEGORY_MASK_UTF_16_LE);
4216
4217 /* Or, we may have to consider the possibility of CCL. */
4218 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4219 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4220 ->spec.ccl.valid_codes)[c])
4221 try |= CODING_CATEGORY_MASK_CCL;
4222
4223 mask = 0;
4224 utf16_examined_p = iso2022_examined_p = 0;
4225 if (priorities)
4226 {
4227 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4228 {
4229 if (!iso2022_examined_p
4230 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4231 {
4232 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4233 iso2022_examined_p = 1;
4234 }
4235 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4236 mask |= detect_coding_sjis (src, src_end, multibytep);
4237 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4238 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4239 else if (!utf16_examined_p
4240 && (priorities[i] & try &
4241 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4242 {
4243 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4244 utf16_examined_p = 1;
4245 }
4246 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4247 mask |= detect_coding_big5 (src, src_end, multibytep);
4248 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4249 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4250 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4251 mask |= detect_coding_ccl (src, src_end, multibytep);
4252 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4253 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4254 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4255 mask |= CODING_CATEGORY_MASK_BINARY;
4256 if (mask & priorities[i])
4257 return priorities[i];
4258 }
4259 return CODING_CATEGORY_MASK_RAW_TEXT;
4260 }
4261 if (try & CODING_CATEGORY_MASK_ISO)
4262 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4263 if (try & CODING_CATEGORY_MASK_SJIS)
4264 mask |= detect_coding_sjis (src, src_end, multibytep);
4265 if (try & CODING_CATEGORY_MASK_BIG5)
4266 mask |= detect_coding_big5 (src, src_end, multibytep);
4267 if (try & CODING_CATEGORY_MASK_UTF_8)
4268 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4269 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4270 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4271 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4272 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4273 if (try & CODING_CATEGORY_MASK_CCL)
4274 mask |= detect_coding_ccl (src, src_end, multibytep);
4275 }
4276 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4277 }
4278
4279 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4280 The information of the detected coding system is set in CODING. */
4281
4282 void
4283 detect_coding (coding, src, src_bytes)
4284 struct coding_system *coding;
4285 const unsigned char *src;
4286 int src_bytes;
4287 {
4288 unsigned int idx;
4289 int skip, mask;
4290 Lisp_Object val;
4291
4292 val = Vcoding_category_list;
4293 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4294 coding->src_multibyte);
4295 coding->heading_ascii = skip;
4296
4297 if (!mask) return;
4298
4299 /* We found a single coding system of the highest priority in MASK. */
4300 idx = 0;
4301 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4302 if (! mask)
4303 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4304
4305 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4306
4307 if (coding->eol_type != CODING_EOL_UNDECIDED)
4308 {
4309 Lisp_Object tmp;
4310
4311 tmp = Fget (val, Qeol_type);
4312 if (VECTORP (tmp))
4313 val = XVECTOR (tmp)->contents[coding->eol_type];
4314 }
4315
4316 /* Setup this new coding system while preserving some slots. */
4317 {
4318 int src_multibyte = coding->src_multibyte;
4319 int dst_multibyte = coding->dst_multibyte;
4320
4321 setup_coding_system (val, coding);
4322 coding->src_multibyte = src_multibyte;
4323 coding->dst_multibyte = dst_multibyte;
4324 coding->heading_ascii = skip;
4325 }
4326 }
4327
4328 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4329 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4330 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4331
4332 How many non-eol characters are at the head is returned as *SKIP. */
4333
4334 #define MAX_EOL_CHECK_COUNT 3
4335
4336 static int
4337 detect_eol_type (source, src_bytes, skip)
4338 unsigned char *source;
4339 int src_bytes, *skip;
4340 {
4341 unsigned char *src = source, *src_end = src + src_bytes;
4342 unsigned char c;
4343 int total = 0; /* How many end-of-lines are found so far. */
4344 int eol_type = CODING_EOL_UNDECIDED;
4345 int this_eol_type;
4346
4347 *skip = 0;
4348
4349 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4350 {
4351 c = *src++;
4352 if (c == '\n' || c == '\r')
4353 {
4354 if (*skip == 0)
4355 *skip = src - 1 - source;
4356 total++;
4357 if (c == '\n')
4358 this_eol_type = CODING_EOL_LF;
4359 else if (src >= src_end || *src != '\n')
4360 this_eol_type = CODING_EOL_CR;
4361 else
4362 this_eol_type = CODING_EOL_CRLF, src++;
4363
4364 if (eol_type == CODING_EOL_UNDECIDED)
4365 /* This is the first end-of-line. */
4366 eol_type = this_eol_type;
4367 else if (eol_type != this_eol_type)
4368 {
4369 /* The found type is different from what found before. */
4370 eol_type = CODING_EOL_INCONSISTENT;
4371 break;
4372 }
4373 }
4374 }
4375
4376 if (*skip == 0)
4377 *skip = src_end - source;
4378 return eol_type;
4379 }
4380
4381 /* Like detect_eol_type, but detect EOL type in 2-octet
4382 big-endian/little-endian format for coding systems utf-16-be and
4383 utf-16-le. */
4384
4385 static int
4386 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4387 unsigned char *source;
4388 int src_bytes, *skip, big_endian_p;
4389 {
4390 unsigned char *src = source, *src_end = src + src_bytes;
4391 unsigned int c1, c2;
4392 int total = 0; /* How many end-of-lines are found so far. */
4393 int eol_type = CODING_EOL_UNDECIDED;
4394 int this_eol_type;
4395 int msb, lsb;
4396
4397 if (big_endian_p)
4398 msb = 0, lsb = 1;
4399 else
4400 msb = 1, lsb = 0;
4401
4402 *skip = 0;
4403
4404 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4405 {
4406 c1 = (src[msb] << 8) | (src[lsb]);
4407 src += 2;
4408
4409 if (c1 == '\n' || c1 == '\r')
4410 {
4411 if (*skip == 0)
4412 *skip = src - 2 - source;
4413 total++;
4414 if (c1 == '\n')
4415 {
4416 this_eol_type = CODING_EOL_LF;
4417 }
4418 else
4419 {
4420 if ((src + 1) >= src_end)
4421 {
4422 this_eol_type = CODING_EOL_CR;
4423 }
4424 else
4425 {
4426 c2 = (src[msb] << 8) | (src[lsb]);
4427 if (c2 == '\n')
4428 this_eol_type = CODING_EOL_CRLF, src += 2;
4429 else
4430 this_eol_type = CODING_EOL_CR;
4431 }
4432 }
4433
4434 if (eol_type == CODING_EOL_UNDECIDED)
4435 /* This is the first end-of-line. */
4436 eol_type = this_eol_type;
4437 else if (eol_type != this_eol_type)
4438 {
4439 /* The found type is different from what found before. */
4440 eol_type = CODING_EOL_INCONSISTENT;
4441 break;
4442 }
4443 }
4444 }
4445
4446 if (*skip == 0)
4447 *skip = src_end - source;
4448 return eol_type;
4449 }
4450
4451 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4452 is encoded. If it detects an appropriate format of end-of-line, it
4453 sets the information in *CODING. */
4454
4455 void
4456 detect_eol (coding, src, src_bytes)
4457 struct coding_system *coding;
4458 const unsigned char *src;
4459 int src_bytes;
4460 {
4461 Lisp_Object val;
4462 int skip;
4463 int eol_type;
4464
4465 switch (coding->category_idx)
4466 {
4467 case CODING_CATEGORY_IDX_UTF_16_BE:
4468 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4469 break;
4470 case CODING_CATEGORY_IDX_UTF_16_LE:
4471 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4472 break;
4473 default:
4474 eol_type = detect_eol_type (src, src_bytes, &skip);
4475 break;
4476 }
4477
4478 if (coding->heading_ascii > skip)
4479 coding->heading_ascii = skip;
4480 else
4481 skip = coding->heading_ascii;
4482
4483 if (eol_type == CODING_EOL_UNDECIDED)
4484 return;
4485 if (eol_type == CODING_EOL_INCONSISTENT)
4486 {
4487 #if 0
4488 /* This code is suppressed until we find a better way to
4489 distinguish raw text file and binary file. */
4490
4491 /* If we have already detected that the coding is raw-text, the
4492 coding should actually be no-conversion. */
4493 if (coding->type == coding_type_raw_text)
4494 {
4495 setup_coding_system (Qno_conversion, coding);
4496 return;
4497 }
4498 /* Else, let's decode only text code anyway. */
4499 #endif /* 0 */
4500 eol_type = CODING_EOL_LF;
4501 }
4502
4503 val = Fget (coding->symbol, Qeol_type);
4504 if (VECTORP (val) && XVECTOR (val)->size == 3)
4505 {
4506 int src_multibyte = coding->src_multibyte;
4507 int dst_multibyte = coding->dst_multibyte;
4508 struct composition_data *cmp_data = coding->cmp_data;
4509
4510 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4511 coding->src_multibyte = src_multibyte;
4512 coding->dst_multibyte = dst_multibyte;
4513 coding->heading_ascii = skip;
4514 coding->cmp_data = cmp_data;
4515 }
4516 }
4517
4518 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4519
4520 #define DECODING_BUFFER_MAG(coding) \
4521 (coding->type == coding_type_iso2022 \
4522 ? 3 \
4523 : (coding->type == coding_type_ccl \
4524 ? coding->spec.ccl.decoder.buf_magnification \
4525 : 2))
4526
4527 /* Return maximum size (bytes) of a buffer enough for decoding
4528 SRC_BYTES of text encoded in CODING. */
4529
4530 int
4531 decoding_buffer_size (coding, src_bytes)
4532 struct coding_system *coding;
4533 int src_bytes;
4534 {
4535 return (src_bytes * DECODING_BUFFER_MAG (coding)
4536 + CONVERSION_BUFFER_EXTRA_ROOM);
4537 }
4538
4539 /* Return maximum size (bytes) of a buffer enough for encoding
4540 SRC_BYTES of text to CODING. */
4541
4542 int
4543 encoding_buffer_size (coding, src_bytes)
4544 struct coding_system *coding;
4545 int src_bytes;
4546 {
4547 int magnification;
4548
4549 if (coding->type == coding_type_ccl)
4550 {
4551 magnification = coding->spec.ccl.encoder.buf_magnification;
4552 if (coding->eol_type == CODING_EOL_CRLF)
4553 magnification *= 2;
4554 }
4555 else if (CODING_REQUIRE_ENCODING (coding))
4556 magnification = 3;
4557 else
4558 magnification = 1;
4559
4560 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4561 }
4562
4563 /* Working buffer for code conversion. */
4564 struct conversion_buffer
4565 {
4566 int size; /* size of data. */
4567 int on_stack; /* 1 if allocated by alloca. */
4568 unsigned char *data;
4569 };
4570
4571 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4572 #define allocate_conversion_buffer(buf, len) \
4573 do { \
4574 if (len < MAX_ALLOCA) \
4575 { \
4576 buf.data = (unsigned char *) alloca (len); \
4577 buf.on_stack = 1; \
4578 } \
4579 else \
4580 { \
4581 buf.data = (unsigned char *) xmalloc (len); \
4582 buf.on_stack = 0; \
4583 } \
4584 buf.size = len; \
4585 } while (0)
4586
4587 /* Double the allocated memory for *BUF. */
4588 static void
4589 extend_conversion_buffer (buf)
4590 struct conversion_buffer *buf;
4591 {
4592 if (buf->on_stack)
4593 {
4594 unsigned char *save = buf->data;
4595 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4596 bcopy (save, buf->data, buf->size);
4597 buf->on_stack = 0;
4598 }
4599 else
4600 {
4601 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4602 }
4603 buf->size *= 2;
4604 }
4605
4606 /* Free the allocated memory for BUF if it is not on stack. */
4607 static void
4608 free_conversion_buffer (buf)
4609 struct conversion_buffer *buf;
4610 {
4611 if (!buf->on_stack)
4612 xfree (buf->data);
4613 }
4614
4615 int
4616 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4617 struct coding_system *coding;
4618 unsigned char *source, *destination;
4619 int src_bytes, dst_bytes, encodep;
4620 {
4621 struct ccl_program *ccl
4622 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4623 unsigned char *dst = destination;
4624
4625 ccl->suppress_error = coding->suppress_error;
4626 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4627 if (encodep)
4628 {
4629 /* On encoding, EOL format is converted within ccl_driver. For
4630 that, setup proper information in the structure CCL. */
4631 ccl->eol_type = coding->eol_type;
4632 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4633 ccl->eol_type = CODING_EOL_LF;
4634 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4635 ccl->eight_bit_control = coding->dst_multibyte;
4636 }
4637 else
4638 ccl->eight_bit_control = 1;
4639 ccl->multibyte = coding->src_multibyte;
4640 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4641 {
4642 /* Move carryover bytes to DESTINATION. */
4643 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4644 while (*p)
4645 *dst++ = *p++;
4646 coding->spec.ccl.eight_bit_carryover[0] = 0;
4647 if (dst_bytes)
4648 dst_bytes -= dst - destination;
4649 }
4650
4651 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4652 &(coding->consumed))
4653 + dst - destination);
4654
4655 if (encodep)
4656 {
4657 coding->produced_char = coding->produced;
4658 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4659 }
4660 else if (!ccl->eight_bit_control)
4661 {
4662 /* The produced bytes forms a valid multibyte sequence. */
4663 coding->produced_char
4664 = multibyte_chars_in_text (destination, coding->produced);
4665 coding->spec.ccl.eight_bit_carryover[0] = 0;
4666 }
4667 else
4668 {
4669 /* On decoding, the destination should always multibyte. But,
4670 CCL program might have been generated an invalid multibyte
4671 sequence. Here we make such a sequence valid as
4672 multibyte. */
4673 int bytes
4674 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4675
4676 if ((coding->consumed < src_bytes
4677 || !ccl->last_block)
4678 && coding->produced >= 1
4679 && destination[coding->produced - 1] >= 0x80)
4680 {
4681 /* We should not convert the tailing 8-bit codes to
4682 multibyte form even if they doesn't form a valid
4683 multibyte sequence. They may form a valid sequence in
4684 the next call. */
4685 int carryover = 0;
4686
4687 if (destination[coding->produced - 1] < 0xA0)
4688 carryover = 1;
4689 else if (coding->produced >= 2)
4690 {
4691 if (destination[coding->produced - 2] >= 0x80)
4692 {
4693 if (destination[coding->produced - 2] < 0xA0)
4694 carryover = 2;
4695 else if (coding->produced >= 3
4696 && destination[coding->produced - 3] >= 0x80
4697 && destination[coding->produced - 3] < 0xA0)
4698 carryover = 3;
4699 }
4700 }
4701 if (carryover > 0)
4702 {
4703 BCOPY_SHORT (destination + coding->produced - carryover,
4704 coding->spec.ccl.eight_bit_carryover,
4705 carryover);
4706 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4707 coding->produced -= carryover;
4708 }
4709 }
4710 coding->produced = str_as_multibyte (destination, bytes,
4711 coding->produced,
4712 &(coding->produced_char));
4713 }
4714
4715 switch (ccl->status)
4716 {
4717 case CCL_STAT_SUSPEND_BY_SRC:
4718 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4719 break;
4720 case CCL_STAT_SUSPEND_BY_DST:
4721 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4722 break;
4723 case CCL_STAT_QUIT:
4724 case CCL_STAT_INVALID_CMD:
4725 coding->result = CODING_FINISH_INTERRUPT;
4726 break;
4727 default:
4728 coding->result = CODING_FINISH_NORMAL;
4729 break;
4730 }
4731 return coding->result;
4732 }
4733
4734 /* Decode EOL format of the text at PTR of BYTES length destructively
4735 according to CODING->eol_type. This is called after the CCL
4736 program produced a decoded text at PTR. If we do CRLF->LF
4737 conversion, update CODING->produced and CODING->produced_char. */
4738
4739 static void
4740 decode_eol_post_ccl (coding, ptr, bytes)
4741 struct coding_system *coding;
4742 unsigned char *ptr;
4743 int bytes;
4744 {
4745 Lisp_Object val, saved_coding_symbol;
4746 unsigned char *pend = ptr + bytes;
4747 int dummy;
4748
4749 /* Remember the current coding system symbol. We set it back when
4750 an inconsistent EOL is found so that `last-coding-system-used' is
4751 set to the coding system that doesn't specify EOL conversion. */
4752 saved_coding_symbol = coding->symbol;
4753
4754 coding->spec.ccl.cr_carryover = 0;
4755 if (coding->eol_type == CODING_EOL_UNDECIDED)
4756 {
4757 /* Here, to avoid the call of setup_coding_system, we directly
4758 call detect_eol_type. */
4759 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4760 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4761 coding->eol_type = CODING_EOL_LF;
4762 if (coding->eol_type != CODING_EOL_UNDECIDED)
4763 {
4764 val = Fget (coding->symbol, Qeol_type);
4765 if (VECTORP (val) && XVECTOR (val)->size == 3)
4766 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4767 }
4768 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4769 }
4770
4771 if (coding->eol_type == CODING_EOL_LF
4772 || coding->eol_type == CODING_EOL_UNDECIDED)
4773 {
4774 /* We have nothing to do. */
4775 ptr = pend;
4776 }
4777 else if (coding->eol_type == CODING_EOL_CRLF)
4778 {
4779 unsigned char *pstart = ptr, *p = ptr;
4780
4781 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4782 && *(pend - 1) == '\r')
4783 {
4784 /* If the last character is CR, we can't handle it here
4785 because LF will be in the not-yet-decoded source text.
4786 Record that the CR is not yet processed. */
4787 coding->spec.ccl.cr_carryover = 1;
4788 coding->produced--;
4789 coding->produced_char--;
4790 pend--;
4791 }
4792 while (ptr < pend)
4793 {
4794 if (*ptr == '\r')
4795 {
4796 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4797 {
4798 *p++ = '\n';
4799 ptr += 2;
4800 }
4801 else
4802 {
4803 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4804 goto undo_eol_conversion;
4805 *p++ = *ptr++;
4806 }
4807 }
4808 else if (*ptr == '\n'
4809 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4810 goto undo_eol_conversion;
4811 else
4812 *p++ = *ptr++;
4813 continue;
4814
4815 undo_eol_conversion:
4816 /* We have faced with inconsistent EOL format at PTR.
4817 Convert all LFs before PTR back to CRLFs. */
4818 for (p--, ptr--; p >= pstart; p--)
4819 {
4820 if (*p == '\n')
4821 *ptr-- = '\n', *ptr-- = '\r';
4822 else
4823 *ptr-- = *p;
4824 }
4825 /* If carryover is recorded, cancel it because we don't
4826 convert CRLF anymore. */
4827 if (coding->spec.ccl.cr_carryover)
4828 {
4829 coding->spec.ccl.cr_carryover = 0;
4830 coding->produced++;
4831 coding->produced_char++;
4832 pend++;
4833 }
4834 p = ptr = pend;
4835 coding->eol_type = CODING_EOL_LF;
4836 coding->symbol = saved_coding_symbol;
4837 }
4838 if (p < pend)
4839 {
4840 /* As each two-byte sequence CRLF was converted to LF, (PEND
4841 - P) is the number of deleted characters. */
4842 coding->produced -= pend - p;
4843 coding->produced_char -= pend - p;
4844 }
4845 }
4846 else /* i.e. coding->eol_type == CODING_EOL_CR */
4847 {
4848 unsigned char *p = ptr;
4849
4850 for (; ptr < pend; ptr++)
4851 {
4852 if (*ptr == '\r')
4853 *ptr = '\n';
4854 else if (*ptr == '\n'
4855 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4856 {
4857 for (; p < ptr; p++)
4858 {
4859 if (*p == '\n')
4860 *p = '\r';
4861 }
4862 ptr = pend;
4863 coding->eol_type = CODING_EOL_LF;
4864 coding->symbol = saved_coding_symbol;
4865 }
4866 }
4867 }
4868 }
4869
4870 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4871 decoding, it may detect coding system and format of end-of-line if
4872 those are not yet decided. The source should be unibyte, the
4873 result is multibyte if CODING->dst_multibyte is nonzero, else
4874 unibyte. */
4875
4876 int
4877 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4878 struct coding_system *coding;
4879 const unsigned char *source;
4880 unsigned char *destination;
4881 int src_bytes, dst_bytes;
4882 {
4883 int extra = 0;
4884
4885 if (coding->type == coding_type_undecided)
4886 detect_coding (coding, source, src_bytes);
4887
4888 if (coding->eol_type == CODING_EOL_UNDECIDED
4889 && coding->type != coding_type_ccl)
4890 {
4891 detect_eol (coding, source, src_bytes);
4892 /* We had better recover the original eol format if we
4893 encounter an inconsistent eol format while decoding. */
4894 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4895 }
4896
4897 coding->produced = coding->produced_char = 0;
4898 coding->consumed = coding->consumed_char = 0;
4899 coding->errors = 0;
4900 coding->result = CODING_FINISH_NORMAL;
4901
4902 switch (coding->type)
4903 {
4904 case coding_type_sjis:
4905 decode_coding_sjis_big5 (coding, source, destination,
4906 src_bytes, dst_bytes, 1);
4907 break;
4908
4909 case coding_type_iso2022:
4910 decode_coding_iso2022 (coding, source, destination,
4911 src_bytes, dst_bytes);
4912 break;
4913
4914 case coding_type_big5:
4915 decode_coding_sjis_big5 (coding, source, destination,
4916 src_bytes, dst_bytes, 0);
4917 break;
4918
4919 case coding_type_emacs_mule:
4920 decode_coding_emacs_mule (coding, source, destination,
4921 src_bytes, dst_bytes);
4922 break;
4923
4924 case coding_type_ccl:
4925 if (coding->spec.ccl.cr_carryover)
4926 {
4927 /* Put the CR which was not processed by the previous call
4928 of decode_eol_post_ccl in DESTINATION. It will be
4929 decoded together with the following LF by the call to
4930 decode_eol_post_ccl below. */
4931 *destination = '\r';
4932 coding->produced++;
4933 coding->produced_char++;
4934 dst_bytes--;
4935 extra = coding->spec.ccl.cr_carryover;
4936 }
4937 ccl_coding_driver (coding, source, destination + extra,
4938 src_bytes, dst_bytes, 0);
4939 if (coding->eol_type != CODING_EOL_LF)
4940 {
4941 coding->produced += extra;
4942 coding->produced_char += extra;
4943 decode_eol_post_ccl (coding, destination, coding->produced);
4944 }
4945 break;
4946
4947 default:
4948 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4949 }
4950
4951 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4952 && coding->mode & CODING_MODE_LAST_BLOCK
4953 && coding->consumed == src_bytes)
4954 coding->result = CODING_FINISH_NORMAL;
4955
4956 if (coding->mode & CODING_MODE_LAST_BLOCK
4957 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4958 {
4959 const unsigned char *src = source + coding->consumed;
4960 unsigned char *dst = destination + coding->produced;
4961
4962 src_bytes -= coding->consumed;
4963 coding->errors++;
4964 if (COMPOSING_P (coding))
4965 DECODE_COMPOSITION_END ('1');
4966 while (src_bytes--)
4967 {
4968 int c = *src++;
4969 dst += CHAR_STRING (c, dst);
4970 coding->produced_char++;
4971 }
4972 coding->consumed = coding->consumed_char = src - source;
4973 coding->produced = dst - destination;
4974 coding->result = CODING_FINISH_NORMAL;
4975 }
4976
4977 if (!coding->dst_multibyte)
4978 {
4979 coding->produced = str_as_unibyte (destination, coding->produced);
4980 coding->produced_char = coding->produced;
4981 }
4982
4983 return coding->result;
4984 }
4985
4986 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4987 multibyteness of the source is CODING->src_multibyte, the
4988 multibyteness of the result is always unibyte. */
4989
4990 int
4991 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4992 struct coding_system *coding;
4993 const unsigned char *source;
4994 unsigned char *destination;
4995 int src_bytes, dst_bytes;
4996 {
4997 coding->produced = coding->produced_char = 0;
4998 coding->consumed = coding->consumed_char = 0;
4999 coding->errors = 0;
5000 coding->result = CODING_FINISH_NORMAL;
5001
5002 switch (coding->type)
5003 {
5004 case coding_type_sjis:
5005 encode_coding_sjis_big5 (coding, source, destination,
5006 src_bytes, dst_bytes, 1);
5007 break;
5008
5009 case coding_type_iso2022:
5010 encode_coding_iso2022 (coding, source, destination,
5011 src_bytes, dst_bytes);
5012 break;
5013
5014 case coding_type_big5:
5015 encode_coding_sjis_big5 (coding, source, destination,
5016 src_bytes, dst_bytes, 0);
5017 break;
5018
5019 case coding_type_emacs_mule:
5020 encode_coding_emacs_mule (coding, source, destination,
5021 src_bytes, dst_bytes);
5022 break;
5023
5024 case coding_type_ccl:
5025 ccl_coding_driver (coding, source, destination,
5026 src_bytes, dst_bytes, 1);
5027 break;
5028
5029 default:
5030 encode_eol (coding, source, destination, src_bytes, dst_bytes);
5031 }
5032
5033 if (coding->mode & CODING_MODE_LAST_BLOCK
5034 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
5035 {
5036 const unsigned char *src = source + coding->consumed;
5037 unsigned char *dst = destination + coding->produced;
5038
5039 if (coding->type == coding_type_iso2022)
5040 ENCODE_RESET_PLANE_AND_REGISTER;
5041 if (COMPOSING_P (coding))
5042 *dst++ = ISO_CODE_ESC, *dst++ = '1';
5043 if (coding->consumed < src_bytes)
5044 {
5045 int len = src_bytes - coding->consumed;
5046
5047 BCOPY_SHORT (src, dst, len);
5048 if (coding->src_multibyte)
5049 len = str_as_unibyte (dst, len);
5050 dst += len;
5051 coding->consumed = src_bytes;
5052 }
5053 coding->produced = coding->produced_char = dst - destination;
5054 coding->result = CODING_FINISH_NORMAL;
5055 }
5056
5057 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
5058 && coding->consumed == src_bytes)
5059 coding->result = CODING_FINISH_NORMAL;
5060
5061 return coding->result;
5062 }
5063
5064 /* Scan text in the region between *BEG and *END (byte positions),
5065 skip characters which we don't have to decode by coding system
5066 CODING at the head and tail, then set *BEG and *END to the region
5067 of the text we actually have to convert. The caller should move
5068 the gap out of the region in advance if the region is from a
5069 buffer.
5070
5071 If STR is not NULL, *BEG and *END are indices into STR. */
5072
5073 static void
5074 shrink_decoding_region (beg, end, coding, str)
5075 int *beg, *end;
5076 struct coding_system *coding;
5077 unsigned char *str;
5078 {
5079 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
5080 int eol_conversion;
5081 Lisp_Object translation_table;
5082
5083 if (coding->type == coding_type_ccl
5084 || coding->type == coding_type_undecided
5085 || coding->eol_type != CODING_EOL_LF
5086 || !NILP (coding->post_read_conversion)
5087 || coding->composing != COMPOSITION_DISABLED)
5088 {
5089 /* We can't skip any data. */
5090 return;
5091 }
5092 if (coding->type == coding_type_no_conversion
5093 || coding->type == coding_type_raw_text
5094 || coding->type == coding_type_emacs_mule)
5095 {
5096 /* We need no conversion, but don't have to skip any data here.
5097 Decoding routine handles them effectively anyway. */
5098 return;
5099 }
5100
5101 translation_table = coding->translation_table_for_decode;
5102 if (NILP (translation_table) && !NILP (Venable_character_translation))
5103 translation_table = Vstandard_translation_table_for_decode;
5104 if (CHAR_TABLE_P (translation_table))
5105 {
5106 int i;
5107 for (i = 0; i < 128; i++)
5108 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5109 break;
5110 if (i < 128)
5111 /* Some ASCII character should be translated. We give up
5112 shrinking. */
5113 return;
5114 }
5115
5116 if (coding->heading_ascii >= 0)
5117 /* Detection routine has already found how much we can skip at the
5118 head. */
5119 *beg += coding->heading_ascii;
5120
5121 if (str)
5122 {
5123 begp_orig = begp = str + *beg;
5124 endp_orig = endp = str + *end;
5125 }
5126 else
5127 {
5128 begp_orig = begp = BYTE_POS_ADDR (*beg);
5129 endp_orig = endp = begp + *end - *beg;
5130 }
5131
5132 eol_conversion = (coding->eol_type == CODING_EOL_CR
5133 || coding->eol_type == CODING_EOL_CRLF);
5134
5135 switch (coding->type)
5136 {
5137 case coding_type_sjis:
5138 case coding_type_big5:
5139 /* We can skip all ASCII characters at the head. */
5140 if (coding->heading_ascii < 0)
5141 {
5142 if (eol_conversion)
5143 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
5144 else
5145 while (begp < endp && *begp < 0x80) begp++;
5146 }
5147 /* We can skip all ASCII characters at the tail except for the
5148 second byte of SJIS or BIG5 code. */
5149 if (eol_conversion)
5150 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
5151 else
5152 while (begp < endp && endp[-1] < 0x80) endp--;
5153 /* Do not consider LF as ascii if preceded by CR, since that
5154 confuses eol decoding. */
5155 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5156 endp++;
5157 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
5158 endp++;
5159 break;
5160
5161 case coding_type_iso2022:
5162 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5163 /* We can't skip any data. */
5164 break;
5165 if (coding->heading_ascii < 0)
5166 {
5167 /* We can skip all ASCII characters at the head except for a
5168 few control codes. */
5169 while (begp < endp && (c = *begp) < 0x80
5170 && c != ISO_CODE_CR && c != ISO_CODE_SO
5171 && c != ISO_CODE_SI && c != ISO_CODE_ESC
5172 && (!eol_conversion || c != ISO_CODE_LF))
5173 begp++;
5174 }
5175 switch (coding->category_idx)
5176 {
5177 case CODING_CATEGORY_IDX_ISO_8_1:
5178 case CODING_CATEGORY_IDX_ISO_8_2:
5179 /* We can skip all ASCII characters at the tail. */
5180 if (eol_conversion)
5181 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
5182 else
5183 while (begp < endp && endp[-1] < 0x80) endp--;
5184 /* Do not consider LF as ascii if preceded by CR, since that
5185 confuses eol decoding. */
5186 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5187 endp++;
5188 break;
5189
5190 case CODING_CATEGORY_IDX_ISO_7:
5191 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
5192 {
5193 /* We can skip all characters at the tail except for 8-bit
5194 codes and ESC and the following 2-byte at the tail. */
5195 unsigned char *eight_bit = NULL;
5196
5197 if (eol_conversion)
5198 while (begp < endp
5199 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5200 {
5201 if (!eight_bit && c & 0x80) eight_bit = endp;
5202 endp--;
5203 }
5204 else
5205 while (begp < endp
5206 && (c = endp[-1]) != ISO_CODE_ESC)
5207 {
5208 if (!eight_bit && c & 0x80) eight_bit = endp;
5209 endp--;
5210 }
5211 /* Do not consider LF as ascii if preceded by CR, since that
5212 confuses eol decoding. */
5213 if (begp < endp && endp < endp_orig
5214 && endp[-1] == '\r' && endp[0] == '\n')
5215 endp++;
5216 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5217 {
5218 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5219 /* This is an ASCII designation sequence. We can
5220 surely skip the tail. But, if we have
5221 encountered an 8-bit code, skip only the codes
5222 after that. */
5223 endp = eight_bit ? eight_bit : endp + 2;
5224 else
5225 /* Hmmm, we can't skip the tail. */
5226 endp = endp_orig;
5227 }
5228 else if (eight_bit)
5229 endp = eight_bit;
5230 }
5231 }
5232 break;
5233
5234 default:
5235 abort ();
5236 }
5237 *beg += begp - begp_orig;
5238 *end += endp - endp_orig;
5239 return;
5240 }
5241
5242 /* Like shrink_decoding_region but for encoding. */
5243
5244 static void
5245 shrink_encoding_region (beg, end, coding, str)
5246 int *beg, *end;
5247 struct coding_system *coding;
5248 unsigned char *str;
5249 {
5250 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5251 int eol_conversion;
5252 Lisp_Object translation_table;
5253
5254 if (coding->type == coding_type_ccl
5255 || coding->eol_type == CODING_EOL_CRLF
5256 || coding->eol_type == CODING_EOL_CR
5257 || (coding->cmp_data && coding->cmp_data->used > 0))
5258 {
5259 /* We can't skip any data. */
5260 return;
5261 }
5262 if (coding->type == coding_type_no_conversion
5263 || coding->type == coding_type_raw_text
5264 || coding->type == coding_type_emacs_mule
5265 || coding->type == coding_type_undecided)
5266 {
5267 /* We need no conversion, but don't have to skip any data here.
5268 Encoding routine handles them effectively anyway. */
5269 return;
5270 }
5271
5272 translation_table = coding->translation_table_for_encode;
5273 if (NILP (translation_table) && !NILP (Venable_character_translation))
5274 translation_table = Vstandard_translation_table_for_encode;
5275 if (CHAR_TABLE_P (translation_table))
5276 {
5277 int i;
5278 for (i = 0; i < 128; i++)
5279 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5280 break;
5281 if (i < 128)
5282 /* Some ASCII character should be translated. We give up
5283 shrinking. */
5284 return;
5285 }
5286
5287 if (str)
5288 {
5289 begp_orig = begp = str + *beg;
5290 endp_orig = endp = str + *end;
5291 }
5292 else
5293 {
5294 begp_orig = begp = BYTE_POS_ADDR (*beg);
5295 endp_orig = endp = begp + *end - *beg;
5296 }
5297
5298 eol_conversion = (coding->eol_type == CODING_EOL_CR
5299 || coding->eol_type == CODING_EOL_CRLF);
5300
5301 /* Here, we don't have to check coding->pre_write_conversion because
5302 the caller is expected to have handled it already. */
5303 switch (coding->type)
5304 {
5305 case coding_type_iso2022:
5306 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5307 /* We can't skip any data. */
5308 break;
5309 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5310 {
5311 unsigned char *bol = begp;
5312 while (begp < endp && *begp < 0x80)
5313 {
5314 begp++;
5315 if (begp[-1] == '\n')
5316 bol = begp;
5317 }
5318 begp = bol;
5319 goto label_skip_tail;
5320 }
5321 /* fall down ... */
5322
5323 case coding_type_sjis:
5324 case coding_type_big5:
5325 /* We can skip all ASCII characters at the head and tail. */
5326 if (eol_conversion)
5327 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5328 else
5329 while (begp < endp && *begp < 0x80) begp++;
5330 label_skip_tail:
5331 if (eol_conversion)
5332 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5333 else
5334 while (begp < endp && *(endp - 1) < 0x80) endp--;
5335 break;
5336
5337 default:
5338 abort ();
5339 }
5340
5341 *beg += begp - begp_orig;
5342 *end += endp - endp_orig;
5343 return;
5344 }
5345
5346 /* As shrinking conversion region requires some overhead, we don't try
5347 shrinking if the length of conversion region is less than this
5348 value. */
5349 static int shrink_conversion_region_threshhold = 1024;
5350
5351 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5352 do { \
5353 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5354 { \
5355 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5356 else shrink_decoding_region (beg, end, coding, str); \
5357 } \
5358 } while (0)
5359
5360 /* ARG is (CODING BUFFER ...) where CODING is what to be set in
5361 Vlast_coding_system_used and the remaining elements are buffers to
5362 kill. */
5363 static Lisp_Object
5364 code_convert_region_unwind (arg)
5365 Lisp_Object arg;
5366 {
5367 struct gcpro gcpro1;
5368 GCPRO1 (arg);
5369
5370 inhibit_pre_post_conversion = 0;
5371 Vlast_coding_system_used = XCAR (arg);
5372 for (arg = XCDR (arg); ! NILP (arg); arg = XCDR (arg))
5373 Fkill_buffer (XCAR (arg));
5374
5375 UNGCPRO;
5376 return Qnil;
5377 }
5378
5379 /* Store information about all compositions in the range FROM and TO
5380 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5381 buffer or a string, defaults to the current buffer. */
5382
5383 void
5384 coding_save_composition (coding, from, to, obj)
5385 struct coding_system *coding;
5386 int from, to;
5387 Lisp_Object obj;
5388 {
5389 Lisp_Object prop;
5390 int start, end;
5391
5392 if (coding->composing == COMPOSITION_DISABLED)
5393 return;
5394 if (!coding->cmp_data)
5395 coding_allocate_composition_data (coding, from);
5396 if (!find_composition (from, to, &start, &end, &prop, obj)
5397 || end > to)
5398 return;
5399 if (start < from
5400 && (!find_composition (end, to, &start, &end, &prop, obj)
5401 || end > to))
5402 return;
5403 coding->composing = COMPOSITION_NO;
5404 do
5405 {
5406 if (COMPOSITION_VALID_P (start, end, prop))
5407 {
5408 enum composition_method method = COMPOSITION_METHOD (prop);
5409 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5410 >= COMPOSITION_DATA_SIZE)
5411 coding_allocate_composition_data (coding, from);
5412 /* For relative composition, we remember start and end
5413 positions, for the other compositions, we also remember
5414 components. */
5415 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5416 if (method != COMPOSITION_RELATIVE)
5417 {
5418 /* We must store a*/
5419 Lisp_Object val, ch;
5420
5421 val = COMPOSITION_COMPONENTS (prop);
5422 if (CONSP (val))
5423 while (CONSP (val))
5424 {
5425 ch = XCAR (val), val = XCDR (val);
5426 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5427 }
5428 else if (VECTORP (val) || STRINGP (val))
5429 {
5430 int len = (VECTORP (val)
5431 ? XVECTOR (val)->size : SCHARS (val));
5432 int i;
5433 for (i = 0; i < len; i++)
5434 {
5435 ch = (STRINGP (val)
5436 ? Faref (val, make_number (i))
5437 : XVECTOR (val)->contents[i]);
5438 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5439 }
5440 }
5441 else /* INTEGERP (val) */
5442 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5443 }
5444 CODING_ADD_COMPOSITION_END (coding, end - from);
5445 }
5446 start = end;
5447 }
5448 while (start < to
5449 && find_composition (start, to, &start, &end, &prop, obj)
5450 && end <= to);
5451
5452 /* Make coding->cmp_data point to the first memory block. */
5453 while (coding->cmp_data->prev)
5454 coding->cmp_data = coding->cmp_data->prev;
5455 coding->cmp_data_start = 0;
5456 }
5457
5458 /* Reflect the saved information about compositions to OBJ.
5459 CODING->cmp_data points to a memory block for the information. OBJ
5460 is a buffer or a string, defaults to the current buffer. */
5461
5462 void
5463 coding_restore_composition (coding, obj)
5464 struct coding_system *coding;
5465 Lisp_Object obj;
5466 {
5467 struct composition_data *cmp_data = coding->cmp_data;
5468
5469 if (!cmp_data)
5470 return;
5471
5472 while (cmp_data->prev)
5473 cmp_data = cmp_data->prev;
5474
5475 while (cmp_data)
5476 {
5477 int i;
5478
5479 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5480 i += cmp_data->data[i])
5481 {
5482 int *data = cmp_data->data + i;
5483 enum composition_method method = (enum composition_method) data[3];
5484 Lisp_Object components;
5485
5486 if (data[0] < 0 || i + data[0] > cmp_data->used)
5487 /* Invalid composition data. */
5488 break;
5489
5490 if (method == COMPOSITION_RELATIVE)
5491 components = Qnil;
5492 else
5493 {
5494 int len = data[0] - 4, j;
5495 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5496
5497 if (method == COMPOSITION_WITH_RULE_ALTCHARS
5498 && len % 2 == 0)
5499 len --;
5500 if (len < 1)
5501 /* Invalid composition data. */
5502 break;
5503 for (j = 0; j < len; j++)
5504 args[j] = make_number (data[4 + j]);
5505 components = (method == COMPOSITION_WITH_ALTCHARS
5506 ? Fstring (len, args)
5507 : Fvector (len, args));
5508 }
5509 compose_text (data[1], data[2], components, Qnil, obj);
5510 }
5511 cmp_data = cmp_data->next;
5512 }
5513 }
5514
5515 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5516 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5517 coding system CODING, and return the status code of code conversion
5518 (currently, this value has no meaning).
5519
5520 How many characters (and bytes) are converted to how many
5521 characters (and bytes) are recorded in members of the structure
5522 CODING.
5523
5524 If REPLACE is nonzero, we do various things as if the original text
5525 is deleted and a new text is inserted. See the comments in
5526 replace_range (insdel.c) to know what we are doing.
5527
5528 If REPLACE is zero, it is assumed that the source text is unibyte.
5529 Otherwise, it is assumed that the source text is multibyte. */
5530
5531 int
5532 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5533 int from, from_byte, to, to_byte, encodep, replace;
5534 struct coding_system *coding;
5535 {
5536 int len = to - from, len_byte = to_byte - from_byte;
5537 int nchars_del = 0, nbytes_del = 0;
5538 int require, inserted, inserted_byte;
5539 int head_skip, tail_skip, total_skip = 0;
5540 Lisp_Object saved_coding_symbol;
5541 int first = 1;
5542 unsigned char *src, *dst;
5543 Lisp_Object deletion;
5544 int orig_point = PT, orig_len = len;
5545 int prev_Z;
5546 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5547
5548 deletion = Qnil;
5549 saved_coding_symbol = coding->symbol;
5550
5551 if (from < PT && PT < to)
5552 {
5553 TEMP_SET_PT_BOTH (from, from_byte);
5554 orig_point = from;
5555 }
5556
5557 if (replace)
5558 {
5559 int saved_from = from;
5560 int saved_inhibit_modification_hooks;
5561
5562 prepare_to_modify_buffer (from, to, &from);
5563 if (saved_from != from)
5564 {
5565 to = from + len;
5566 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5567 len_byte = to_byte - from_byte;
5568 }
5569
5570 /* The code conversion routine can not preserve text properties
5571 for now. So, we must remove all text properties in the
5572 region. Here, we must suppress all modification hooks. */
5573 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5574 inhibit_modification_hooks = 1;
5575 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5576 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5577 }
5578
5579 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5580 {
5581 /* We must detect encoding of text and eol format. */
5582
5583 if (from < GPT && to > GPT)
5584 move_gap_both (from, from_byte);
5585 if (coding->type == coding_type_undecided)
5586 {
5587 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5588 if (coding->type == coding_type_undecided)
5589 {
5590 /* It seems that the text contains only ASCII, but we
5591 should not leave it undecided because the deeper
5592 decoding routine (decode_coding) tries to detect the
5593 encodings again in vain. */
5594 coding->type = coding_type_emacs_mule;
5595 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5596 /* As emacs-mule decoder will handle composition, we
5597 need this setting to allocate coding->cmp_data
5598 later. */
5599 coding->composing = COMPOSITION_NO;
5600 }
5601 }
5602 if (coding->eol_type == CODING_EOL_UNDECIDED
5603 && coding->type != coding_type_ccl)
5604 {
5605 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5606 if (coding->eol_type == CODING_EOL_UNDECIDED)
5607 coding->eol_type = CODING_EOL_LF;
5608 /* We had better recover the original eol format if we
5609 encounter an inconsistent eol format while decoding. */
5610 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5611 }
5612 }
5613
5614 /* Now we convert the text. */
5615
5616 /* For encoding, we must process pre-write-conversion in advance. */
5617 if (! inhibit_pre_post_conversion
5618 && encodep
5619 && SYMBOLP (coding->pre_write_conversion)
5620 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5621 {
5622 /* The function in pre-write-conversion may put a new text in a
5623 new buffer. */
5624 struct buffer *prev = current_buffer;
5625 Lisp_Object new;
5626
5627 record_unwind_protect (code_convert_region_unwind,
5628 Fcons (Vlast_coding_system_used, Qnil));
5629 /* We should not call any more pre-write/post-read-conversion
5630 functions while this pre-write-conversion is running. */
5631 inhibit_pre_post_conversion = 1;
5632 call2 (coding->pre_write_conversion,
5633 make_number (from), make_number (to));
5634 inhibit_pre_post_conversion = 0;
5635 /* Discard the unwind protect. */
5636 specpdl_ptr--;
5637
5638 if (current_buffer != prev)
5639 {
5640 len = ZV - BEGV;
5641 new = Fcurrent_buffer ();
5642 set_buffer_internal_1 (prev);
5643 del_range_2 (from, from_byte, to, to_byte, 0);
5644 TEMP_SET_PT_BOTH (from, from_byte);
5645 insert_from_buffer (XBUFFER (new), 1, len, 0);
5646 Fkill_buffer (new);
5647 if (orig_point >= to)
5648 orig_point += len - orig_len;
5649 else if (orig_point > from)
5650 orig_point = from;
5651 orig_len = len;
5652 to = from + len;
5653 from_byte = CHAR_TO_BYTE (from);
5654 to_byte = CHAR_TO_BYTE (to);
5655 len_byte = to_byte - from_byte;
5656 TEMP_SET_PT_BOTH (from, from_byte);
5657 }
5658 }
5659
5660 if (replace)
5661 {
5662 if (! EQ (current_buffer->undo_list, Qt))
5663 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5664 else
5665 {
5666 nchars_del = to - from;
5667 nbytes_del = to_byte - from_byte;
5668 }
5669 }
5670
5671 if (coding->composing != COMPOSITION_DISABLED)
5672 {
5673 if (encodep)
5674 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5675 else
5676 coding_allocate_composition_data (coding, from);
5677 }
5678
5679 /* Try to skip the heading and tailing ASCIIs. We can't skip them
5680 if we must run CCL program or there are compositions to
5681 encode. */
5682 if (coding->type != coding_type_ccl
5683 && (! coding->cmp_data || coding->cmp_data->used == 0))
5684 {
5685 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5686
5687 if (from < GPT && GPT < to)
5688 move_gap_both (from, from_byte);
5689 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5690 if (from_byte == to_byte
5691 && (encodep || NILP (coding->post_read_conversion))
5692 && ! CODING_REQUIRE_FLUSHING (coding))
5693 {
5694 coding->produced = len_byte;
5695 coding->produced_char = len;
5696 if (!replace)
5697 /* We must record and adjust for this new text now. */
5698 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5699 coding_free_composition_data (coding);
5700 return 0;
5701 }
5702
5703 head_skip = from_byte - from_byte_orig;
5704 tail_skip = to_byte_orig - to_byte;
5705 total_skip = head_skip + tail_skip;
5706 from += head_skip;
5707 to -= tail_skip;
5708 len -= total_skip; len_byte -= total_skip;
5709 }
5710
5711 /* For conversion, we must put the gap before the text in addition to
5712 making the gap larger for efficient decoding. The required gap
5713 size starts from 2000 which is the magic number used in make_gap.
5714 But, after one batch of conversion, it will be incremented if we
5715 find that it is not enough . */
5716 require = 2000;
5717
5718 if (GAP_SIZE < require)
5719 make_gap (require - GAP_SIZE);
5720 move_gap_both (from, from_byte);
5721
5722 inserted = inserted_byte = 0;
5723
5724 GAP_SIZE += len_byte;
5725 ZV -= len;
5726 Z -= len;
5727 ZV_BYTE -= len_byte;
5728 Z_BYTE -= len_byte;
5729
5730 if (GPT - BEG < BEG_UNCHANGED)
5731 BEG_UNCHANGED = GPT - BEG;
5732 if (Z - GPT < END_UNCHANGED)
5733 END_UNCHANGED = Z - GPT;
5734
5735 if (!encodep && coding->src_multibyte)
5736 {
5737 /* Decoding routines expects that the source text is unibyte.
5738 We must convert 8-bit characters of multibyte form to
5739 unibyte. */
5740 int len_byte_orig = len_byte;
5741 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5742 if (len_byte < len_byte_orig)
5743 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5744 len_byte);
5745 coding->src_multibyte = 0;
5746 }
5747
5748 for (;;)
5749 {
5750 int result;
5751
5752 /* The buffer memory is now:
5753 +--------+converted-text+---------+-------original-text-------+---+
5754 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5755 |<---------------------- GAP ----------------------->| */
5756 src = GAP_END_ADDR - len_byte;
5757 dst = GPT_ADDR + inserted_byte;
5758
5759 if (encodep)
5760 result = encode_coding (coding, src, dst, len_byte, 0);
5761 else
5762 {
5763 if (coding->composing != COMPOSITION_DISABLED)
5764 coding->cmp_data->char_offset = from + inserted;
5765 result = decode_coding (coding, src, dst, len_byte, 0);
5766 }
5767
5768 /* The buffer memory is now:
5769 +--------+-------converted-text----+--+------original-text----+---+
5770 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5771 |<---------------------- GAP ----------------------->| */
5772
5773 inserted += coding->produced_char;
5774 inserted_byte += coding->produced;
5775 len_byte -= coding->consumed;
5776
5777 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5778 {
5779 coding_allocate_composition_data (coding, from + inserted);
5780 continue;
5781 }
5782
5783 src += coding->consumed;
5784 dst += coding->produced;
5785
5786 if (result == CODING_FINISH_NORMAL)
5787 {
5788 src += len_byte;
5789 break;
5790 }
5791 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5792 {
5793 unsigned char *pend = dst, *p = pend - inserted_byte;
5794 Lisp_Object eol_type;
5795
5796 /* Encode LFs back to the original eol format (CR or CRLF). */
5797 if (coding->eol_type == CODING_EOL_CR)
5798 {
5799 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5800 }
5801 else
5802 {
5803 int count = 0;
5804
5805 while (p < pend) if (*p++ == '\n') count++;
5806 if (src - dst < count)
5807 {
5808 /* We don't have sufficient room for encoding LFs
5809 back to CRLF. We must record converted and
5810 not-yet-converted text back to the buffer
5811 content, enlarge the gap, then record them out of
5812 the buffer contents again. */
5813 int add = len_byte + inserted_byte;
5814
5815 GAP_SIZE -= add;
5816 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5817 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5818 make_gap (count - GAP_SIZE);
5819 GAP_SIZE += add;
5820 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5821 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5822 /* Don't forget to update SRC, DST, and PEND. */
5823 src = GAP_END_ADDR - len_byte;
5824 dst = GPT_ADDR + inserted_byte;
5825 pend = dst;
5826 }
5827 inserted += count;
5828 inserted_byte += count;
5829 coding->produced += count;
5830 p = dst = pend + count;
5831 while (count)
5832 {
5833 *--p = *--pend;
5834 if (*p == '\n') count--, *--p = '\r';
5835 }
5836 }
5837
5838 /* Suppress eol-format conversion in the further conversion. */
5839 coding->eol_type = CODING_EOL_LF;
5840
5841 /* Set the coding system symbol to that for Unix-like EOL. */
5842 eol_type = Fget (saved_coding_symbol, Qeol_type);
5843 if (VECTORP (eol_type)
5844 && XVECTOR (eol_type)->size == 3
5845 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5846 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5847 else
5848 coding->symbol = saved_coding_symbol;
5849
5850 continue;
5851 }
5852 if (len_byte <= 0)
5853 {
5854 if (coding->type != coding_type_ccl
5855 || coding->mode & CODING_MODE_LAST_BLOCK)
5856 break;
5857 coding->mode |= CODING_MODE_LAST_BLOCK;
5858 continue;
5859 }
5860 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5861 {
5862 /* The source text ends in invalid codes. Let's just
5863 make them valid buffer contents, and finish conversion. */
5864 if (multibyte_p)
5865 {
5866 unsigned char *start = dst;
5867
5868 inserted += len_byte;
5869 while (len_byte--)
5870 {
5871 int c = *src++;
5872 dst += CHAR_STRING (c, dst);
5873 }
5874
5875 inserted_byte += dst - start;
5876 }
5877 else
5878 {
5879 inserted += len_byte;
5880 inserted_byte += len_byte;
5881 while (len_byte--)
5882 *dst++ = *src++;
5883 }
5884 break;
5885 }
5886 if (result == CODING_FINISH_INTERRUPT)
5887 {
5888 /* The conversion procedure was interrupted by a user. */
5889 break;
5890 }
5891 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5892 if (coding->consumed < 1)
5893 {
5894 /* It's quite strange to require more memory without
5895 consuming any bytes. Perhaps CCL program bug. */
5896 break;
5897 }
5898 if (first)
5899 {
5900 /* We have just done the first batch of conversion which was
5901 stopped because of insufficient gap. Let's reconsider the
5902 required gap size (i.e. SRT - DST) now.
5903
5904 We have converted ORIG bytes (== coding->consumed) into
5905 NEW bytes (coding->produced). To convert the remaining
5906 LEN bytes, we may need REQUIRE bytes of gap, where:
5907 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5908 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5909 Here, we are sure that NEW >= ORIG. */
5910
5911 if (coding->produced <= coding->consumed)
5912 {
5913 /* This happens because of CCL-based coding system with
5914 eol-type CRLF. */
5915 require = 0;
5916 }
5917 else
5918 {
5919 float ratio = coding->produced - coding->consumed;
5920 ratio /= coding->consumed;
5921 require = len_byte * ratio;
5922 }
5923 first = 0;
5924 }
5925 if ((src - dst) < (require + 2000))
5926 {
5927 /* See the comment above the previous call of make_gap. */
5928 int add = len_byte + inserted_byte;
5929
5930 GAP_SIZE -= add;
5931 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5932 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5933 make_gap (require + 2000);
5934 GAP_SIZE += add;
5935 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5936 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5937 }
5938 }
5939 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5940
5941 if (encodep && coding->dst_multibyte)
5942 {
5943 /* The output is unibyte. We must convert 8-bit characters to
5944 multibyte form. */
5945 if (inserted_byte * 2 > GAP_SIZE)
5946 {
5947 GAP_SIZE -= inserted_byte;
5948 ZV += inserted_byte; Z += inserted_byte;
5949 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5950 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5951 make_gap (inserted_byte - GAP_SIZE);
5952 GAP_SIZE += inserted_byte;
5953 ZV -= inserted_byte; Z -= inserted_byte;
5954 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5955 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5956 }
5957 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5958 }
5959
5960 /* If we shrank the conversion area, adjust it now. */
5961 if (total_skip > 0)
5962 {
5963 if (tail_skip > 0)
5964 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5965 inserted += total_skip; inserted_byte += total_skip;
5966 GAP_SIZE += total_skip;
5967 GPT -= head_skip; GPT_BYTE -= head_skip;
5968 ZV -= total_skip; ZV_BYTE -= total_skip;
5969 Z -= total_skip; Z_BYTE -= total_skip;
5970 from -= head_skip; from_byte -= head_skip;
5971 to += tail_skip; to_byte += tail_skip;
5972 }
5973
5974 prev_Z = Z;
5975 if (! EQ (current_buffer->undo_list, Qt))
5976 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5977 else
5978 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5979 inserted, inserted_byte);
5980 inserted = Z - prev_Z;
5981
5982 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5983 coding_restore_composition (coding, Fcurrent_buffer ());
5984 coding_free_composition_data (coding);
5985
5986 if (! inhibit_pre_post_conversion
5987 && ! encodep && ! NILP (coding->post_read_conversion))
5988 {
5989 Lisp_Object val;
5990 Lisp_Object saved_coding_system;
5991
5992 if (from != PT)
5993 TEMP_SET_PT_BOTH (from, from_byte);
5994 prev_Z = Z;
5995 record_unwind_protect (code_convert_region_unwind,
5996 Fcons (Vlast_coding_system_used, Qnil));
5997 saved_coding_system = Vlast_coding_system_used;
5998 Vlast_coding_system_used = coding->symbol;
5999 /* We should not call any more pre-write/post-read-conversion
6000 functions while this post-read-conversion is running. */
6001 inhibit_pre_post_conversion = 1;
6002 val = call1 (coding->post_read_conversion, make_number (inserted));
6003 inhibit_pre_post_conversion = 0;
6004 coding->symbol = Vlast_coding_system_used;
6005 Vlast_coding_system_used = saved_coding_system;
6006 /* Discard the unwind protect. */
6007 specpdl_ptr--;
6008 CHECK_NUMBER (val);
6009 inserted += Z - prev_Z;
6010 }
6011
6012 if (orig_point >= from)
6013 {
6014 if (orig_point >= from + orig_len)
6015 orig_point += inserted - orig_len;
6016 else
6017 orig_point = from;
6018 TEMP_SET_PT (orig_point);
6019 }
6020
6021 if (replace)
6022 {
6023 signal_after_change (from, to - from, inserted);
6024 update_compositions (from, from + inserted, CHECK_BORDER);
6025 }
6026
6027 {
6028 coding->consumed = to_byte - from_byte;
6029 coding->consumed_char = to - from;
6030 coding->produced = inserted_byte;
6031 coding->produced_char = inserted;
6032 }
6033
6034 return 0;
6035 }
6036
6037 /* Name (or base name) of work buffer for code conversion. */
6038 static Lisp_Object Vcode_conversion_workbuf_name;
6039
6040 /* Set the current buffer to the working buffer prepared for
6041 code-conversion. MULTIBYTE specifies the multibyteness of the
6042 buffer. Return the buffer we set if it must be killed after use.
6043 Otherwise return Qnil. */
6044
6045 static Lisp_Object
6046 set_conversion_work_buffer (multibyte)
6047 int multibyte;
6048 {
6049 Lisp_Object buffer, buffer_to_kill;
6050 struct buffer *buf;
6051
6052 buffer = Fget_buffer_create (Vcode_conversion_workbuf_name);
6053 buf = XBUFFER (buffer);
6054 if (buf == current_buffer)
6055 {
6056 /* As we are already in the work buffer, we must generate a new
6057 buffer for the work. */
6058 Lisp_Object name;
6059
6060 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
6061 buffer = buffer_to_kill = Fget_buffer_create (name);
6062 buf = XBUFFER (buffer);
6063 }
6064 else
6065 buffer_to_kill = Qnil;
6066
6067 delete_all_overlays (buf);
6068 buf->directory = current_buffer->directory;
6069 buf->read_only = Qnil;
6070 buf->filename = Qnil;
6071 buf->undo_list = Qt;
6072 eassert (buf->overlays_before == NULL);
6073 eassert (buf->overlays_after == NULL);
6074 set_buffer_internal (buf);
6075 if (BEG != BEGV || Z != ZV)
6076 Fwiden ();
6077 del_range_2 (BEG, BEG_BYTE, Z, Z_BYTE, 0);
6078 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
6079 return buffer_to_kill;
6080 }
6081
6082 Lisp_Object
6083 run_pre_post_conversion_on_str (str, coding, encodep)
6084 Lisp_Object str;
6085 struct coding_system *coding;
6086 int encodep;
6087 {
6088 int count = SPECPDL_INDEX ();
6089 struct gcpro gcpro1, gcpro2;
6090 int multibyte = STRING_MULTIBYTE (str);
6091 Lisp_Object old_deactivate_mark;
6092 Lisp_Object buffer_to_kill;
6093 Lisp_Object unwind_arg;
6094
6095 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
6096 /* It is not crucial to specbind this. */
6097 old_deactivate_mark = Vdeactivate_mark;
6098 GCPRO2 (str, old_deactivate_mark);
6099
6100 /* We must insert the contents of STR as is without
6101 unibyte<->multibyte conversion. For that, we adjust the
6102 multibyteness of the working buffer to that of STR. */
6103 buffer_to_kill = set_conversion_work_buffer (multibyte);
6104 if (NILP (buffer_to_kill))
6105 unwind_arg = Fcons (Vlast_coding_system_used, Qnil);
6106 else
6107 unwind_arg = list2 (Vlast_coding_system_used, buffer_to_kill);
6108 record_unwind_protect (code_convert_region_unwind, unwind_arg);
6109
6110 insert_from_string (str, 0, 0,
6111 SCHARS (str), SBYTES (str), 0);
6112 UNGCPRO;
6113 inhibit_pre_post_conversion = 1;
6114 if (encodep)
6115 {
6116 struct buffer *prev = current_buffer;
6117
6118 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
6119 if (prev != current_buffer)
6120 /* We must kill the current buffer too. */
6121 Fsetcdr (unwind_arg, Fcons (Fcurrent_buffer (), XCDR (unwind_arg)));
6122 }
6123 else
6124 {
6125 Vlast_coding_system_used = coding->symbol;
6126 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
6127 call1 (coding->post_read_conversion, make_number (Z - BEG));
6128 coding->symbol = Vlast_coding_system_used;
6129 }
6130 inhibit_pre_post_conversion = 0;
6131 Vdeactivate_mark = old_deactivate_mark;
6132 str = make_buffer_string (BEG, Z, 1);
6133 return unbind_to (count, str);
6134 }
6135
6136
6137 /* Run pre-write-conversion function of CODING on NCHARS/NBYTES
6138 text in *STR. *SIZE is the allocated bytes for STR. As it
6139 is intended that this function is called from encode_terminal_code,
6140 the pre-write-conversion function is run by safe_call and thus
6141 "Error during redisplay: ..." is logged when an error occurs.
6142
6143 Store the resulting text in *STR and set CODING->produced_char and
6144 CODING->produced to the number of characters and bytes
6145 respectively. If the size of *STR is too small, enlarge it by
6146 xrealloc and update *STR and *SIZE. */
6147
6148 void
6149 run_pre_write_conversin_on_c_str (str, size, nchars, nbytes, coding)
6150 unsigned char **str;
6151 int *size, nchars, nbytes;
6152 struct coding_system *coding;
6153 {
6154 struct gcpro gcpro1, gcpro2;
6155 struct buffer *cur = current_buffer;
6156 struct buffer *prev;
6157 Lisp_Object old_deactivate_mark, old_last_coding_system_used;
6158 Lisp_Object args[3];
6159 Lisp_Object buffer_to_kill;
6160
6161 /* It is not crucial to specbind this. */
6162 old_deactivate_mark = Vdeactivate_mark;
6163 old_last_coding_system_used = Vlast_coding_system_used;
6164 GCPRO2 (old_deactivate_mark, old_last_coding_system_used);
6165
6166 /* We must insert the contents of STR as is without
6167 unibyte<->multibyte conversion. For that, we adjust the
6168 multibyteness of the working buffer to that of STR. */
6169 buffer_to_kill = set_conversion_work_buffer (coding->src_multibyte);
6170 insert_1_both (*str, nchars, nbytes, 0, 0, 0);
6171 UNGCPRO;
6172 inhibit_pre_post_conversion = 1;
6173 prev = current_buffer;
6174 args[0] = coding->pre_write_conversion;
6175 args[1] = make_number (BEG);
6176 args[2] = make_number (Z);
6177 safe_call (3, args);
6178 inhibit_pre_post_conversion = 0;
6179 Vdeactivate_mark = old_deactivate_mark;
6180 Vlast_coding_system_used = old_last_coding_system_used;
6181 coding->produced_char = Z - BEG;
6182 coding->produced = Z_BYTE - BEG_BYTE;
6183 if (coding->produced > *size)
6184 {
6185 *size = coding->produced;
6186 *str = xrealloc (*str, *size);
6187 }
6188 if (BEG < GPT && GPT < Z)
6189 move_gap (BEG);
6190 bcopy (BEG_ADDR, *str, coding->produced);
6191 coding->src_multibyte
6192 = ! NILP (current_buffer->enable_multibyte_characters);
6193 if (prev != current_buffer)
6194 Fkill_buffer (Fcurrent_buffer ());
6195 set_buffer_internal (cur);
6196 if (! NILP (buffer_to_kill))
6197 Fkill_buffer (buffer_to_kill);
6198 }
6199
6200
6201 Lisp_Object
6202 decode_coding_string (str, coding, nocopy)
6203 Lisp_Object str;
6204 struct coding_system *coding;
6205 int nocopy;
6206 {
6207 int len;
6208 struct conversion_buffer buf;
6209 int from, to_byte;
6210 Lisp_Object saved_coding_symbol;
6211 int result;
6212 int require_decoding;
6213 int shrinked_bytes = 0;
6214 Lisp_Object newstr;
6215 int consumed, consumed_char, produced, produced_char;
6216
6217 from = 0;
6218 to_byte = SBYTES (str);
6219
6220 saved_coding_symbol = coding->symbol;
6221 coding->src_multibyte = STRING_MULTIBYTE (str);
6222 coding->dst_multibyte = 1;
6223 if (CODING_REQUIRE_DETECTION (coding))
6224 {
6225 /* See the comments in code_convert_region. */
6226 if (coding->type == coding_type_undecided)
6227 {
6228 detect_coding (coding, SDATA (str), to_byte);
6229 if (coding->type == coding_type_undecided)
6230 {
6231 coding->type = coding_type_emacs_mule;
6232 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
6233 /* As emacs-mule decoder will handle composition, we
6234 need this setting to allocate coding->cmp_data
6235 later. */
6236 coding->composing = COMPOSITION_NO;
6237 }
6238 }
6239 if (coding->eol_type == CODING_EOL_UNDECIDED
6240 && coding->type != coding_type_ccl)
6241 {
6242 saved_coding_symbol = coding->symbol;
6243 detect_eol (coding, SDATA (str), to_byte);
6244 if (coding->eol_type == CODING_EOL_UNDECIDED)
6245 coding->eol_type = CODING_EOL_LF;
6246 /* We had better recover the original eol format if we
6247 encounter an inconsistent eol format while decoding. */
6248 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
6249 }
6250 }
6251
6252 if (coding->type == coding_type_no_conversion
6253 || coding->type == coding_type_raw_text)
6254 coding->dst_multibyte = 0;
6255
6256 require_decoding = CODING_REQUIRE_DECODING (coding);
6257
6258 if (STRING_MULTIBYTE (str))
6259 {
6260 /* Decoding routines expect the source text to be unibyte. */
6261 str = Fstring_as_unibyte (str);
6262 to_byte = SBYTES (str);
6263 nocopy = 1;
6264 coding->src_multibyte = 0;
6265 }
6266
6267 /* Try to skip the heading and tailing ASCIIs. */
6268 if (require_decoding && coding->type != coding_type_ccl)
6269 {
6270 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6271 0);
6272 if (from == to_byte)
6273 require_decoding = 0;
6274 shrinked_bytes = from + (SBYTES (str) - to_byte);
6275 }
6276
6277 if (!require_decoding
6278 && !(SYMBOLP (coding->post_read_conversion)
6279 && !NILP (Ffboundp (coding->post_read_conversion))))
6280 {
6281 coding->consumed = SBYTES (str);
6282 coding->consumed_char = SCHARS (str);
6283 if (coding->dst_multibyte)
6284 {
6285 str = Fstring_as_multibyte (str);
6286 nocopy = 1;
6287 }
6288 coding->produced = SBYTES (str);
6289 coding->produced_char = SCHARS (str);
6290 return (nocopy ? str : Fcopy_sequence (str));
6291 }
6292
6293 if (coding->composing != COMPOSITION_DISABLED)
6294 coding_allocate_composition_data (coding, from);
6295 len = decoding_buffer_size (coding, to_byte - from);
6296 allocate_conversion_buffer (buf, len);
6297
6298 consumed = consumed_char = produced = produced_char = 0;
6299 while (1)
6300 {
6301 result = decode_coding (coding, SDATA (str) + from + consumed,
6302 buf.data + produced, to_byte - from - consumed,
6303 buf.size - produced);
6304 consumed += coding->consumed;
6305 consumed_char += coding->consumed_char;
6306 produced += coding->produced;
6307 produced_char += coding->produced_char;
6308 if (result == CODING_FINISH_NORMAL
6309 || result == CODING_FINISH_INTERRUPT
6310 || (result == CODING_FINISH_INSUFFICIENT_SRC
6311 && coding->consumed == 0))
6312 break;
6313 if (result == CODING_FINISH_INSUFFICIENT_CMP)
6314 coding_allocate_composition_data (coding, from + produced_char);
6315 else if (result == CODING_FINISH_INSUFFICIENT_DST)
6316 extend_conversion_buffer (&buf);
6317 else if (result == CODING_FINISH_INCONSISTENT_EOL)
6318 {
6319 Lisp_Object eol_type;
6320
6321 /* Recover the original EOL format. */
6322 if (coding->eol_type == CODING_EOL_CR)
6323 {
6324 unsigned char *p;
6325 for (p = buf.data; p < buf.data + produced; p++)
6326 if (*p == '\n') *p = '\r';
6327 }
6328 else if (coding->eol_type == CODING_EOL_CRLF)
6329 {
6330 int num_eol = 0;
6331 unsigned char *p0, *p1;
6332 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
6333 if (*p0 == '\n') num_eol++;
6334 if (produced + num_eol >= buf.size)
6335 extend_conversion_buffer (&buf);
6336 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
6337 {
6338 *--p1 = *--p0;
6339 if (*p0 == '\n') *--p1 = '\r';
6340 }
6341 produced += num_eol;
6342 produced_char += num_eol;
6343 }
6344 /* Suppress eol-format conversion in the further conversion. */
6345 coding->eol_type = CODING_EOL_LF;
6346
6347 /* Set the coding system symbol to that for Unix-like EOL. */
6348 eol_type = Fget (saved_coding_symbol, Qeol_type);
6349 if (VECTORP (eol_type)
6350 && XVECTOR (eol_type)->size == 3
6351 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
6352 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
6353 else
6354 coding->symbol = saved_coding_symbol;
6355
6356
6357 }
6358 }
6359
6360 coding->consumed = consumed;
6361 coding->consumed_char = consumed_char;
6362 coding->produced = produced;
6363 coding->produced_char = produced_char;
6364
6365 if (coding->dst_multibyte)
6366 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6367 produced + shrinked_bytes);
6368 else
6369 newstr = make_uninit_string (produced + shrinked_bytes);
6370 if (from > 0)
6371 STRING_COPYIN (newstr, 0, SDATA (str), from);
6372 STRING_COPYIN (newstr, from, buf.data, produced);
6373 if (shrinked_bytes > from)
6374 STRING_COPYIN (newstr, from + produced,
6375 SDATA (str) + to_byte,
6376 shrinked_bytes - from);
6377 free_conversion_buffer (&buf);
6378
6379 coding->consumed += shrinked_bytes;
6380 coding->consumed_char += shrinked_bytes;
6381 coding->produced += shrinked_bytes;
6382 coding->produced_char += shrinked_bytes;
6383
6384 if (coding->cmp_data && coding->cmp_data->used)
6385 coding_restore_composition (coding, newstr);
6386 coding_free_composition_data (coding);
6387
6388 if (SYMBOLP (coding->post_read_conversion)
6389 && !NILP (Ffboundp (coding->post_read_conversion)))
6390 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6391
6392 return newstr;
6393 }
6394
6395 Lisp_Object
6396 encode_coding_string (str, coding, nocopy)
6397 Lisp_Object str;
6398 struct coding_system *coding;
6399 int nocopy;
6400 {
6401 int len;
6402 struct conversion_buffer buf;
6403 int from, to, to_byte;
6404 int result;
6405 int shrinked_bytes = 0;
6406 Lisp_Object newstr;
6407 int consumed, consumed_char, produced, produced_char;
6408
6409 if (SYMBOLP (coding->pre_write_conversion)
6410 && !NILP (Ffboundp (coding->pre_write_conversion)))
6411 {
6412 str = run_pre_post_conversion_on_str (str, coding, 1);
6413 /* As STR is just newly generated, we don't have to copy it
6414 anymore. */
6415 nocopy = 1;
6416 }
6417
6418 from = 0;
6419 to = SCHARS (str);
6420 to_byte = SBYTES (str);
6421
6422 /* Encoding routines determine the multibyteness of the source text
6423 by coding->src_multibyte. */
6424 coding->src_multibyte = SCHARS (str) < SBYTES (str);
6425 coding->dst_multibyte = 0;
6426 if (! CODING_REQUIRE_ENCODING (coding))
6427 goto no_need_of_encoding;
6428
6429 if (coding->composing != COMPOSITION_DISABLED)
6430 coding_save_composition (coding, from, to, str);
6431
6432 /* Try to skip the heading and tailing ASCIIs. We can't skip them
6433 if we must run CCL program or there are compositions to
6434 encode. */
6435 if (coding->type != coding_type_ccl
6436 && (! coding->cmp_data || coding->cmp_data->used == 0))
6437 {
6438 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6439 1);
6440 if (from == to_byte)
6441 {
6442 coding_free_composition_data (coding);
6443 goto no_need_of_encoding;
6444 }
6445 shrinked_bytes = from + (SBYTES (str) - to_byte);
6446 }
6447
6448 len = encoding_buffer_size (coding, to_byte - from);
6449 allocate_conversion_buffer (buf, len);
6450
6451 consumed = consumed_char = produced = produced_char = 0;
6452 while (1)
6453 {
6454 result = encode_coding (coding, SDATA (str) + from + consumed,
6455 buf.data + produced, to_byte - from - consumed,
6456 buf.size - produced);
6457 consumed += coding->consumed;
6458 consumed_char += coding->consumed_char;
6459 produced += coding->produced;
6460 produced_char += coding->produced_char;
6461 if (result == CODING_FINISH_NORMAL
6462 || result == CODING_FINISH_INTERRUPT
6463 || (result == CODING_FINISH_INSUFFICIENT_SRC
6464 && coding->consumed == 0))
6465 break;
6466 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6467 extend_conversion_buffer (&buf);
6468 }
6469
6470 coding->consumed = consumed;
6471 coding->consumed_char = consumed_char;
6472 coding->produced = produced;
6473 coding->produced_char = produced_char;
6474
6475 newstr = make_uninit_string (produced + shrinked_bytes);
6476 if (from > 0)
6477 STRING_COPYIN (newstr, 0, SDATA (str), from);
6478 STRING_COPYIN (newstr, from, buf.data, produced);
6479 if (shrinked_bytes > from)
6480 STRING_COPYIN (newstr, from + produced,
6481 SDATA (str) + to_byte,
6482 shrinked_bytes - from);
6483
6484 free_conversion_buffer (&buf);
6485 coding_free_composition_data (coding);
6486
6487 return newstr;
6488
6489 no_need_of_encoding:
6490 coding->consumed = SBYTES (str);
6491 coding->consumed_char = SCHARS (str);
6492 if (STRING_MULTIBYTE (str))
6493 {
6494 if (nocopy)
6495 /* We are sure that STR doesn't contain a multibyte
6496 character. */
6497 STRING_SET_UNIBYTE (str);
6498 else
6499 {
6500 str = Fstring_as_unibyte (str);
6501 nocopy = 1;
6502 }
6503 }
6504 coding->produced = SBYTES (str);
6505 coding->produced_char = SCHARS (str);
6506 return (nocopy ? str : Fcopy_sequence (str));
6507 }
6508
6509 \f
6510 #ifdef emacs
6511 /*** 8. Emacs Lisp library functions ***/
6512
6513 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6514 doc: /* Return t if OBJECT is nil or a coding-system.
6515 See the documentation of `make-coding-system' for information
6516 about coding-system objects. */)
6517 (obj)
6518 Lisp_Object obj;
6519 {
6520 if (NILP (obj))
6521 return Qt;
6522 if (!SYMBOLP (obj))
6523 return Qnil;
6524 if (! NILP (Fget (obj, Qcoding_system_define_form)))
6525 return Qt;
6526 /* Get coding-spec vector for OBJ. */
6527 obj = Fget (obj, Qcoding_system);
6528 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6529 ? Qt : Qnil);
6530 }
6531
6532 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6533 Sread_non_nil_coding_system, 1, 1, 0,
6534 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6535 (prompt)
6536 Lisp_Object prompt;
6537 {
6538 Lisp_Object val;
6539 do
6540 {
6541 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6542 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6543 }
6544 while (SCHARS (val) == 0);
6545 return (Fintern (val, Qnil));
6546 }
6547
6548 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6549 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6550 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6551 (prompt, default_coding_system)
6552 Lisp_Object prompt, default_coding_system;
6553 {
6554 Lisp_Object val;
6555 if (SYMBOLP (default_coding_system))
6556 default_coding_system = SYMBOL_NAME (default_coding_system);
6557 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6558 Qt, Qnil, Qcoding_system_history,
6559 default_coding_system, Qnil);
6560 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
6561 }
6562
6563 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6564 1, 1, 0,
6565 doc: /* Check validity of CODING-SYSTEM.
6566 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6567 It is valid if it is nil or a symbol with a non-nil `coding-system' property.
6568 The value of this property should be a vector of length 5. */)
6569 (coding_system)
6570 Lisp_Object coding_system;
6571 {
6572 Lisp_Object define_form;
6573
6574 define_form = Fget (coding_system, Qcoding_system_define_form);
6575 if (! NILP (define_form))
6576 {
6577 Fput (coding_system, Qcoding_system_define_form, Qnil);
6578 safe_eval (define_form);
6579 }
6580 if (!NILP (Fcoding_system_p (coding_system)))
6581 return coding_system;
6582 while (1)
6583 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6584 }
6585 \f
6586 Lisp_Object
6587 detect_coding_system (src, src_bytes, highest, multibytep)
6588 const unsigned char *src;
6589 int src_bytes, highest;
6590 int multibytep;
6591 {
6592 int coding_mask, eol_type;
6593 Lisp_Object val, tmp;
6594 int dummy;
6595
6596 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6597 eol_type = detect_eol_type (src, src_bytes, &dummy);
6598 if (eol_type == CODING_EOL_INCONSISTENT)
6599 eol_type = CODING_EOL_UNDECIDED;
6600
6601 if (!coding_mask)
6602 {
6603 val = Qundecided;
6604 if (eol_type != CODING_EOL_UNDECIDED)
6605 {
6606 Lisp_Object val2;
6607 val2 = Fget (Qundecided, Qeol_type);
6608 if (VECTORP (val2))
6609 val = XVECTOR (val2)->contents[eol_type];
6610 }
6611 return (highest ? val : Fcons (val, Qnil));
6612 }
6613
6614 /* At first, gather possible coding systems in VAL. */
6615 val = Qnil;
6616 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6617 {
6618 Lisp_Object category_val, category_index;
6619
6620 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6621 category_val = Fsymbol_value (XCAR (tmp));
6622 if (!NILP (category_val)
6623 && NATNUMP (category_index)
6624 && (coding_mask & (1 << XFASTINT (category_index))))
6625 {
6626 val = Fcons (category_val, val);
6627 if (highest)
6628 break;
6629 }
6630 }
6631 if (!highest)
6632 val = Fnreverse (val);
6633
6634 /* Then, replace the elements with subsidiary coding systems. */
6635 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6636 {
6637 if (eol_type != CODING_EOL_UNDECIDED
6638 && eol_type != CODING_EOL_INCONSISTENT)
6639 {
6640 Lisp_Object eol;
6641 eol = Fget (XCAR (tmp), Qeol_type);
6642 if (VECTORP (eol))
6643 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6644 }
6645 }
6646 return (highest ? XCAR (val) : val);
6647 }
6648
6649 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6650 2, 3, 0,
6651 doc: /* Detect how the byte sequence in the region is encoded.
6652 Return a list of possible coding systems used on decoding a byte
6653 sequence containing the bytes in the region between START and END when
6654 the coding system `undecided' is specified. The list is ordered by
6655 priority decided in the current language environment.
6656
6657 If only ASCII characters are found, it returns a list of single element
6658 `undecided' or its subsidiary coding system according to a detected
6659 end-of-line format.
6660
6661 If optional argument HIGHEST is non-nil, return the coding system of
6662 highest priority. */)
6663 (start, end, highest)
6664 Lisp_Object start, end, highest;
6665 {
6666 int from, to;
6667 int from_byte, to_byte;
6668 int include_anchor_byte = 0;
6669
6670 CHECK_NUMBER_COERCE_MARKER (start);
6671 CHECK_NUMBER_COERCE_MARKER (end);
6672
6673 validate_region (&start, &end);
6674 from = XINT (start), to = XINT (end);
6675 from_byte = CHAR_TO_BYTE (from);
6676 to_byte = CHAR_TO_BYTE (to);
6677
6678 if (from < GPT && to >= GPT)
6679 move_gap_both (to, to_byte);
6680 /* If we an anchor byte `\0' follows the region, we include it in
6681 the detecting source. Then code detectors can handle the tailing
6682 byte sequence more accurately.
6683
6684 Fix me: This is not a perfect solution. It is better that we
6685 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6686 */
6687 if (to == Z || (to == GPT && GAP_SIZE > 0))
6688 include_anchor_byte = 1;
6689 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6690 to_byte - from_byte + include_anchor_byte,
6691 !NILP (highest),
6692 !NILP (current_buffer
6693 ->enable_multibyte_characters));
6694 }
6695
6696 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6697 1, 2, 0,
6698 doc: /* Detect how the byte sequence in STRING is encoded.
6699 Return a list of possible coding systems used on decoding a byte
6700 sequence containing the bytes in STRING when the coding system
6701 `undecided' is specified. The list is ordered by priority decided in
6702 the current language environment.
6703
6704 If only ASCII characters are found, it returns a list of single element
6705 `undecided' or its subsidiary coding system according to a detected
6706 end-of-line format.
6707
6708 If optional argument HIGHEST is non-nil, return the coding system of
6709 highest priority. */)
6710 (string, highest)
6711 Lisp_Object string, highest;
6712 {
6713 CHECK_STRING (string);
6714
6715 return detect_coding_system (SDATA (string),
6716 /* "+ 1" is to include the anchor byte
6717 `\0'. With this, code detectors can
6718 handle the tailing bytes more
6719 accurately. */
6720 SBYTES (string) + 1,
6721 !NILP (highest),
6722 STRING_MULTIBYTE (string));
6723 }
6724
6725 /* Subroutine for Ffind_coding_systems_region_internal.
6726
6727 Return a list of coding systems that safely encode the multibyte
6728 text between P and PEND. SAFE_CODINGS, if non-nil, is an alist of
6729 possible coding systems. If it is nil, it means that we have not
6730 yet found any coding systems.
6731
6732 WORK_TABLE a char-table of which element is set to t once the
6733 element is looked up.
6734
6735 If a non-ASCII single byte char is found, set
6736 *single_byte_char_found to 1. */
6737
6738 static Lisp_Object
6739 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6740 unsigned char *p, *pend;
6741 Lisp_Object safe_codings, work_table;
6742 int *single_byte_char_found;
6743 {
6744 int c, len;
6745 Lisp_Object val, ch;
6746 Lisp_Object prev, tail;
6747
6748 if (NILP (safe_codings))
6749 goto done_safe_codings;
6750 while (p < pend)
6751 {
6752 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6753 p += len;
6754 if (ASCII_BYTE_P (c))
6755 /* We can ignore ASCII characters here. */
6756 continue;
6757 if (SINGLE_BYTE_CHAR_P (c))
6758 *single_byte_char_found = 1;
6759 /* Check the safe coding systems for C. */
6760 ch = make_number (c);
6761 val = Faref (work_table, ch);
6762 if (EQ (val, Qt))
6763 /* This element was already checked. Ignore it. */
6764 continue;
6765 /* Remember that we checked this element. */
6766 Faset (work_table, ch, Qt);
6767
6768 for (prev = tail = safe_codings; CONSP (tail); tail = XCDR (tail))
6769 {
6770 Lisp_Object elt, translation_table, hash_table, accept_latin_extra;
6771 int encodable;
6772
6773 elt = XCAR (tail);
6774 if (CONSP (XCDR (elt)))
6775 {
6776 /* This entry has this format now:
6777 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6778 ACCEPT-LATIN-EXTRA ) */
6779 val = XCDR (elt);
6780 encodable = ! NILP (Faref (XCAR (val), ch));
6781 if (! encodable)
6782 {
6783 val = XCDR (val);
6784 translation_table = XCAR (val);
6785 hash_table = XCAR (XCDR (val));
6786 accept_latin_extra = XCAR (XCDR (XCDR (val)));
6787 }
6788 }
6789 else
6790 {
6791 /* This entry has this format now: ( CODING . SAFE-CHARS) */
6792 encodable = ! NILP (Faref (XCDR (elt), ch));
6793 if (! encodable)
6794 {
6795 /* Transform the format to:
6796 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6797 ACCEPT-LATIN-EXTRA ) */
6798 val = Fget (XCAR (elt), Qcoding_system);
6799 translation_table
6800 = Fplist_get (AREF (val, 3),
6801 Qtranslation_table_for_encode);
6802 if (SYMBOLP (translation_table))
6803 translation_table = Fget (translation_table,
6804 Qtranslation_table);
6805 hash_table
6806 = (CHAR_TABLE_P (translation_table)
6807 ? XCHAR_TABLE (translation_table)->extras[1]
6808 : Qnil);
6809 accept_latin_extra
6810 = ((EQ (AREF (val, 0), make_number (2))
6811 && VECTORP (AREF (val, 4)))
6812 ? AREF (AREF (val, 4), 16)
6813 : Qnil);
6814 XSETCAR (tail, list5 (XCAR (elt), XCDR (elt),
6815 translation_table, hash_table,
6816 accept_latin_extra));
6817 }
6818 }
6819
6820 if (! encodable
6821 && ((CHAR_TABLE_P (translation_table)
6822 && ! NILP (Faref (translation_table, ch)))
6823 || (HASH_TABLE_P (hash_table)
6824 && ! NILP (Fgethash (ch, hash_table, Qnil)))
6825 || (SINGLE_BYTE_CHAR_P (c)
6826 && ! NILP (accept_latin_extra)
6827 && VECTORP (Vlatin_extra_code_table)
6828 && ! NILP (AREF (Vlatin_extra_code_table, c)))))
6829 encodable = 1;
6830 if (encodable)
6831 prev = tail;
6832 else
6833 {
6834 /* Exclude this coding system from SAFE_CODINGS. */
6835 if (EQ (tail, safe_codings))
6836 {
6837 safe_codings = XCDR (safe_codings);
6838 if (NILP (safe_codings))
6839 goto done_safe_codings;
6840 }
6841 else
6842 XSETCDR (prev, XCDR (tail));
6843 }
6844 }
6845 }
6846
6847 done_safe_codings:
6848 /* If the above loop was terminated before P reaches PEND, it means
6849 SAFE_CODINGS was set to nil. If we have not yet found an
6850 non-ASCII single-byte char, check it now. */
6851 if (! *single_byte_char_found)
6852 while (p < pend)
6853 {
6854 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6855 p += len;
6856 if (! ASCII_BYTE_P (c)
6857 && SINGLE_BYTE_CHAR_P (c))
6858 {
6859 *single_byte_char_found = 1;
6860 break;
6861 }
6862 }
6863 return safe_codings;
6864 }
6865
6866 DEFUN ("find-coding-systems-region-internal",
6867 Ffind_coding_systems_region_internal,
6868 Sfind_coding_systems_region_internal, 2, 2, 0,
6869 doc: /* Internal use only. */)
6870 (start, end)
6871 Lisp_Object start, end;
6872 {
6873 Lisp_Object work_table, safe_codings;
6874 int non_ascii_p = 0;
6875 int single_byte_char_found = 0;
6876 const unsigned char *p1, *p1end, *p2, *p2end, *p;
6877
6878 if (STRINGP (start))
6879 {
6880 if (!STRING_MULTIBYTE (start))
6881 return Qt;
6882 p1 = SDATA (start), p1end = p1 + SBYTES (start);
6883 p2 = p2end = p1end;
6884 if (SCHARS (start) != SBYTES (start))
6885 non_ascii_p = 1;
6886 }
6887 else
6888 {
6889 int from, to, stop;
6890
6891 CHECK_NUMBER_COERCE_MARKER (start);
6892 CHECK_NUMBER_COERCE_MARKER (end);
6893 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6894 args_out_of_range (start, end);
6895 if (NILP (current_buffer->enable_multibyte_characters))
6896 return Qt;
6897 from = CHAR_TO_BYTE (XINT (start));
6898 to = CHAR_TO_BYTE (XINT (end));
6899 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6900 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6901 if (stop == to)
6902 p2 = p2end = p1end;
6903 else
6904 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6905 if (XINT (end) - XINT (start) != to - from)
6906 non_ascii_p = 1;
6907 }
6908
6909 if (!non_ascii_p)
6910 {
6911 /* We are sure that the text contains no multibyte character.
6912 Check if it contains eight-bit-graphic. */
6913 p = p1;
6914 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6915 if (p == p1end)
6916 {
6917 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6918 if (p == p2end)
6919 return Qt;
6920 }
6921 }
6922
6923 /* The text contains non-ASCII characters. */
6924
6925 work_table = Fmake_char_table (Qchar_coding_system, Qnil);
6926 safe_codings = Fcopy_sequence (XCDR (Vcoding_system_safe_chars));
6927
6928 safe_codings = find_safe_codings (p1, p1end, safe_codings, work_table,
6929 &single_byte_char_found);
6930 if (p2 < p2end)
6931 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6932 &single_byte_char_found);
6933 if (EQ (safe_codings, XCDR (Vcoding_system_safe_chars)))
6934 safe_codings = Qt;
6935 else
6936 {
6937 /* Turn safe_codings to a list of coding systems... */
6938 Lisp_Object val;
6939
6940 if (single_byte_char_found)
6941 /* ... and append these for eight-bit chars. */
6942 val = Fcons (Qraw_text,
6943 Fcons (Qemacs_mule, Fcons (Qno_conversion, Qnil)));
6944 else
6945 /* ... and append generic coding systems. */
6946 val = Fcopy_sequence (XCAR (Vcoding_system_safe_chars));
6947
6948 for (; CONSP (safe_codings); safe_codings = XCDR (safe_codings))
6949 val = Fcons (XCAR (XCAR (safe_codings)), val);
6950 safe_codings = val;
6951 }
6952
6953 return safe_codings;
6954 }
6955
6956
6957 /* Search from position POS for such characters that are unencodable
6958 accoding to SAFE_CHARS, and return a list of their positions. P
6959 points where in the memory the character at POS exists. Limit the
6960 search at PEND or when Nth unencodable characters are found.
6961
6962 If SAFE_CHARS is a char table, an element for an unencodable
6963 character is nil.
6964
6965 If SAFE_CHARS is nil, all non-ASCII characters are unencodable.
6966
6967 Otherwise, SAFE_CHARS is t, and only eight-bit-contrl and
6968 eight-bit-graphic characters are unencodable. */
6969
6970 static Lisp_Object
6971 unencodable_char_position (safe_chars, pos, p, pend, n)
6972 Lisp_Object safe_chars;
6973 int pos;
6974 unsigned char *p, *pend;
6975 int n;
6976 {
6977 Lisp_Object pos_list;
6978
6979 pos_list = Qnil;
6980 while (p < pend)
6981 {
6982 int len;
6983 int c = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
6984
6985 if (c >= 128
6986 && (CHAR_TABLE_P (safe_chars)
6987 ? NILP (CHAR_TABLE_REF (safe_chars, c))
6988 : (NILP (safe_chars) || c < 256)))
6989 {
6990 pos_list = Fcons (make_number (pos), pos_list);
6991 if (--n <= 0)
6992 break;
6993 }
6994 pos++;
6995 p += len;
6996 }
6997 return Fnreverse (pos_list);
6998 }
6999
7000
7001 DEFUN ("unencodable-char-position", Funencodable_char_position,
7002 Sunencodable_char_position, 3, 5, 0,
7003 doc: /*
7004 Return position of first un-encodable character in a region.
7005 START and END specfiy the region and CODING-SYSTEM specifies the
7006 encoding to check. Return nil if CODING-SYSTEM does encode the region.
7007
7008 If optional 4th argument COUNT is non-nil, it specifies at most how
7009 many un-encodable characters to search. In this case, the value is a
7010 list of positions.
7011
7012 If optional 5th argument STRING is non-nil, it is a string to search
7013 for un-encodable characters. In that case, START and END are indexes
7014 to the string. */)
7015 (start, end, coding_system, count, string)
7016 Lisp_Object start, end, coding_system, count, string;
7017 {
7018 int n;
7019 Lisp_Object safe_chars;
7020 struct coding_system coding;
7021 Lisp_Object positions;
7022 int from, to;
7023 unsigned char *p, *pend;
7024
7025 if (NILP (string))
7026 {
7027 validate_region (&start, &end);
7028 from = XINT (start);
7029 to = XINT (end);
7030 if (NILP (current_buffer->enable_multibyte_characters))
7031 return Qnil;
7032 p = CHAR_POS_ADDR (from);
7033 if (to == GPT)
7034 pend = GPT_ADDR;
7035 else
7036 pend = CHAR_POS_ADDR (to);
7037 }
7038 else
7039 {
7040 CHECK_STRING (string);
7041 CHECK_NATNUM (start);
7042 CHECK_NATNUM (end);
7043 from = XINT (start);
7044 to = XINT (end);
7045 if (from > to
7046 || to > SCHARS (string))
7047 args_out_of_range_3 (string, start, end);
7048 if (! STRING_MULTIBYTE (string))
7049 return Qnil;
7050 p = SDATA (string) + string_char_to_byte (string, from);
7051 pend = SDATA (string) + string_char_to_byte (string, to);
7052 }
7053
7054 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
7055
7056 if (NILP (count))
7057 n = 1;
7058 else
7059 {
7060 CHECK_NATNUM (count);
7061 n = XINT (count);
7062 }
7063
7064 if (coding.type == coding_type_no_conversion
7065 || coding.type == coding_type_raw_text)
7066 return Qnil;
7067
7068 if (coding.type == coding_type_undecided)
7069 safe_chars = Qnil;
7070 else
7071 safe_chars = coding_safe_chars (coding_system);
7072
7073 if (STRINGP (string)
7074 || from >= GPT || to <= GPT)
7075 positions = unencodable_char_position (safe_chars, from, p, pend, n);
7076 else
7077 {
7078 Lisp_Object args[2];
7079
7080 args[0] = unencodable_char_position (safe_chars, from, p, GPT_ADDR, n);
7081 n -= XINT (Flength (args[0]));
7082 if (n <= 0)
7083 positions = args[0];
7084 else
7085 {
7086 args[1] = unencodable_char_position (safe_chars, GPT, GAP_END_ADDR,
7087 pend, n);
7088 positions = Fappend (2, args);
7089 }
7090 }
7091
7092 return (NILP (count) ? Fcar (positions) : positions);
7093 }
7094
7095
7096 Lisp_Object
7097 code_convert_region1 (start, end, coding_system, encodep)
7098 Lisp_Object start, end, coding_system;
7099 int encodep;
7100 {
7101 struct coding_system coding;
7102 int from, to;
7103
7104 CHECK_NUMBER_COERCE_MARKER (start);
7105 CHECK_NUMBER_COERCE_MARKER (end);
7106 CHECK_SYMBOL (coding_system);
7107
7108 validate_region (&start, &end);
7109 from = XFASTINT (start);
7110 to = XFASTINT (end);
7111
7112 if (NILP (coding_system))
7113 return make_number (to - from);
7114
7115 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7116 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7117
7118 coding.mode |= CODING_MODE_LAST_BLOCK;
7119 coding.src_multibyte = coding.dst_multibyte
7120 = !NILP (current_buffer->enable_multibyte_characters);
7121 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
7122 &coding, encodep, 1);
7123 Vlast_coding_system_used = coding.symbol;
7124 return make_number (coding.produced_char);
7125 }
7126
7127 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
7128 3, 3, "r\nzCoding system: ",
7129 doc: /* Decode the current region from the specified coding system.
7130 When called from a program, takes three arguments:
7131 START, END, and CODING-SYSTEM. START and END are buffer positions.
7132 This function sets `last-coding-system-used' to the precise coding system
7133 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7134 not fully specified.)
7135 It returns the length of the decoded text. */)
7136 (start, end, coding_system)
7137 Lisp_Object start, end, coding_system;
7138 {
7139 return code_convert_region1 (start, end, coding_system, 0);
7140 }
7141
7142 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
7143 3, 3, "r\nzCoding system: ",
7144 doc: /* Encode the current region into the specified coding system.
7145 When called from a program, takes three arguments:
7146 START, END, and CODING-SYSTEM. START and END are buffer positions.
7147 This function sets `last-coding-system-used' to the precise coding system
7148 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7149 not fully specified.)
7150 It returns the length of the encoded text. */)
7151 (start, end, coding_system)
7152 Lisp_Object start, end, coding_system;
7153 {
7154 return code_convert_region1 (start, end, coding_system, 1);
7155 }
7156
7157 Lisp_Object
7158 code_convert_string1 (string, coding_system, nocopy, encodep)
7159 Lisp_Object string, coding_system, nocopy;
7160 int encodep;
7161 {
7162 struct coding_system coding;
7163
7164 CHECK_STRING (string);
7165 CHECK_SYMBOL (coding_system);
7166
7167 if (NILP (coding_system))
7168 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
7169
7170 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7171 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7172
7173 coding.mode |= CODING_MODE_LAST_BLOCK;
7174 string = (encodep
7175 ? encode_coding_string (string, &coding, !NILP (nocopy))
7176 : decode_coding_string (string, &coding, !NILP (nocopy)));
7177 Vlast_coding_system_used = coding.symbol;
7178
7179 return string;
7180 }
7181
7182 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
7183 2, 3, 0,
7184 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
7185 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7186 if the decoding operation is trivial.
7187 This function sets `last-coding-system-used' to the precise coding system
7188 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7189 not fully specified.) */)
7190 (string, coding_system, nocopy)
7191 Lisp_Object string, coding_system, nocopy;
7192 {
7193 return code_convert_string1 (string, coding_system, nocopy, 0);
7194 }
7195
7196 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
7197 2, 3, 0,
7198 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
7199 Optional arg NOCOPY non-nil means it is OK to return STRING itself
7200 if the encoding operation is trivial.
7201 This function sets `last-coding-system-used' to the precise coding system
7202 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7203 not fully specified.) */)
7204 (string, coding_system, nocopy)
7205 Lisp_Object string, coding_system, nocopy;
7206 {
7207 return code_convert_string1 (string, coding_system, nocopy, 1);
7208 }
7209
7210 /* Encode or decode STRING according to CODING_SYSTEM.
7211 Do not set Vlast_coding_system_used.
7212
7213 This function is called only from macros DECODE_FILE and
7214 ENCODE_FILE, thus we ignore character composition. */
7215
7216 Lisp_Object
7217 code_convert_string_norecord (string, coding_system, encodep)
7218 Lisp_Object string, coding_system;
7219 int encodep;
7220 {
7221 struct coding_system coding;
7222
7223 CHECK_STRING (string);
7224 CHECK_SYMBOL (coding_system);
7225
7226 if (NILP (coding_system))
7227 return string;
7228
7229 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7230 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7231
7232 coding.composing = COMPOSITION_DISABLED;
7233 coding.mode |= CODING_MODE_LAST_BLOCK;
7234 return (encodep
7235 ? encode_coding_string (string, &coding, 1)
7236 : decode_coding_string (string, &coding, 1));
7237 }
7238 \f
7239 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
7240 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
7241 Return the corresponding character. */)
7242 (code)
7243 Lisp_Object code;
7244 {
7245 unsigned char c1, c2, s1, s2;
7246 Lisp_Object val;
7247
7248 CHECK_NUMBER (code);
7249 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
7250 if (s1 == 0)
7251 {
7252 if (s2 < 0x80)
7253 XSETFASTINT (val, s2);
7254 else if (s2 >= 0xA0 || s2 <= 0xDF)
7255 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
7256 else
7257 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7258 }
7259 else
7260 {
7261 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
7262 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
7263 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7264 DECODE_SJIS (s1, s2, c1, c2);
7265 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
7266 }
7267 return val;
7268 }
7269
7270 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
7271 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
7272 Return the corresponding code in SJIS. */)
7273 (ch)
7274 Lisp_Object ch;
7275 {
7276 int charset, c1, c2, s1, s2;
7277 Lisp_Object val;
7278
7279 CHECK_NUMBER (ch);
7280 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7281 if (charset == CHARSET_ASCII)
7282 {
7283 val = ch;
7284 }
7285 else if (charset == charset_jisx0208
7286 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
7287 {
7288 ENCODE_SJIS (c1, c2, s1, s2);
7289 XSETFASTINT (val, (s1 << 8) | s2);
7290 }
7291 else if (charset == charset_katakana_jisx0201
7292 && c1 > 0x20 && c2 < 0xE0)
7293 {
7294 XSETFASTINT (val, c1 | 0x80);
7295 }
7296 else
7297 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
7298 return val;
7299 }
7300
7301 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
7302 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
7303 Return the corresponding character. */)
7304 (code)
7305 Lisp_Object code;
7306 {
7307 int charset;
7308 unsigned char b1, b2, c1, c2;
7309 Lisp_Object val;
7310
7311 CHECK_NUMBER (code);
7312 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
7313 if (b1 == 0)
7314 {
7315 if (b2 >= 0x80)
7316 error ("Invalid BIG5 code: %x", XFASTINT (code));
7317 val = code;
7318 }
7319 else
7320 {
7321 if ((b1 < 0xA1 || b1 > 0xFE)
7322 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
7323 error ("Invalid BIG5 code: %x", XFASTINT (code));
7324 DECODE_BIG5 (b1, b2, charset, c1, c2);
7325 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
7326 }
7327 return val;
7328 }
7329
7330 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
7331 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
7332 Return the corresponding character code in Big5. */)
7333 (ch)
7334 Lisp_Object ch;
7335 {
7336 int charset, c1, c2, b1, b2;
7337 Lisp_Object val;
7338
7339 CHECK_NUMBER (ch);
7340 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7341 if (charset == CHARSET_ASCII)
7342 {
7343 val = ch;
7344 }
7345 else if ((charset == charset_big5_1
7346 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
7347 || (charset == charset_big5_2
7348 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
7349 {
7350 ENCODE_BIG5 (charset, c1, c2, b1, b2);
7351 XSETFASTINT (val, (b1 << 8) | b2);
7352 }
7353 else
7354 error ("Can't encode to Big5: %d", XFASTINT (ch));
7355 return val;
7356 }
7357 \f
7358 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
7359 Sset_terminal_coding_system_internal, 1, 1, 0,
7360 doc: /* Internal use only. */)
7361 (coding_system)
7362 Lisp_Object coding_system;
7363 {
7364 CHECK_SYMBOL (coding_system);
7365 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
7366 /* We had better not send unsafe characters to terminal. */
7367 terminal_coding.mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
7368 /* Character composition should be disabled. */
7369 terminal_coding.composing = COMPOSITION_DISABLED;
7370 /* Error notification should be suppressed. */
7371 terminal_coding.suppress_error = 1;
7372 terminal_coding.src_multibyte = 1;
7373 terminal_coding.dst_multibyte = 0;
7374 return Qnil;
7375 }
7376
7377 DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal,
7378 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
7379 doc: /* Internal use only. */)
7380 (coding_system)
7381 Lisp_Object coding_system;
7382 {
7383 CHECK_SYMBOL (coding_system);
7384 setup_coding_system (Fcheck_coding_system (coding_system),
7385 &safe_terminal_coding);
7386 /* Character composition should be disabled. */
7387 safe_terminal_coding.composing = COMPOSITION_DISABLED;
7388 /* Error notification should be suppressed. */
7389 safe_terminal_coding.suppress_error = 1;
7390 safe_terminal_coding.src_multibyte = 1;
7391 safe_terminal_coding.dst_multibyte = 0;
7392 return Qnil;
7393 }
7394
7395 DEFUN ("terminal-coding-system", Fterminal_coding_system,
7396 Sterminal_coding_system, 0, 0, 0,
7397 doc: /* Return coding system specified for terminal output. */)
7398 ()
7399 {
7400 return terminal_coding.symbol;
7401 }
7402
7403 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
7404 Sset_keyboard_coding_system_internal, 1, 1, 0,
7405 doc: /* Internal use only. */)
7406 (coding_system)
7407 Lisp_Object coding_system;
7408 {
7409 CHECK_SYMBOL (coding_system);
7410 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
7411 /* Character composition should be disabled. */
7412 keyboard_coding.composing = COMPOSITION_DISABLED;
7413 return Qnil;
7414 }
7415
7416 DEFUN ("keyboard-coding-system", Fkeyboard_coding_system,
7417 Skeyboard_coding_system, 0, 0, 0,
7418 doc: /* Return coding system specified for decoding keyboard input. */)
7419 ()
7420 {
7421 return keyboard_coding.symbol;
7422 }
7423
7424 \f
7425 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
7426 Sfind_operation_coding_system, 1, MANY, 0,
7427 doc: /* Choose a coding system for an operation based on the target name.
7428 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
7429 DECODING-SYSTEM is the coding system to use for decoding
7430 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
7431 for encoding (in case OPERATION does encoding).
7432
7433 The first argument OPERATION specifies an I/O primitive:
7434 For file I/O, `insert-file-contents' or `write-region'.
7435 For process I/O, `call-process', `call-process-region', or `start-process'.
7436 For network I/O, `open-network-stream'.
7437
7438 The remaining arguments should be the same arguments that were passed
7439 to the primitive. Depending on which primitive, one of those arguments
7440 is selected as the TARGET. For example, if OPERATION does file I/O,
7441 whichever argument specifies the file name is TARGET.
7442
7443 TARGET has a meaning which depends on OPERATION:
7444 For file I/O, TARGET is a file name.
7445 For process I/O, TARGET is a process name.
7446 For network I/O, TARGET is a service name or a port number
7447
7448 This function looks up what specified for TARGET in,
7449 `file-coding-system-alist', `process-coding-system-alist',
7450 or `network-coding-system-alist' depending on OPERATION.
7451 They may specify a coding system, a cons of coding systems,
7452 or a function symbol to call.
7453 In the last case, we call the function with one argument,
7454 which is a list of all the arguments given to this function.
7455
7456 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
7457 (nargs, args)
7458 int nargs;
7459 Lisp_Object *args;
7460 {
7461 Lisp_Object operation, target_idx, target, val;
7462 register Lisp_Object chain;
7463
7464 if (nargs < 2)
7465 error ("Too few arguments");
7466 operation = args[0];
7467 if (!SYMBOLP (operation)
7468 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
7469 error ("Invalid first argument");
7470 if (nargs < 1 + XINT (target_idx))
7471 error ("Too few arguments for operation: %s",
7472 SDATA (SYMBOL_NAME (operation)));
7473 /* For write-region, if the 6th argument (i.e. VISIT, the 5th
7474 argument to write-region) is string, it must be treated as a
7475 target file name. */
7476 if (EQ (operation, Qwrite_region)
7477 && nargs > 5
7478 && STRINGP (args[5]))
7479 target_idx = make_number (4);
7480 target = args[XINT (target_idx) + 1];
7481 if (!(STRINGP (target)
7482 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
7483 error ("Invalid argument %d", XINT (target_idx) + 1);
7484
7485 chain = ((EQ (operation, Qinsert_file_contents)
7486 || EQ (operation, Qwrite_region))
7487 ? Vfile_coding_system_alist
7488 : (EQ (operation, Qopen_network_stream)
7489 ? Vnetwork_coding_system_alist
7490 : Vprocess_coding_system_alist));
7491 if (NILP (chain))
7492 return Qnil;
7493
7494 for (; CONSP (chain); chain = XCDR (chain))
7495 {
7496 Lisp_Object elt;
7497 elt = XCAR (chain);
7498
7499 if (CONSP (elt)
7500 && ((STRINGP (target)
7501 && STRINGP (XCAR (elt))
7502 && fast_string_match (XCAR (elt), target) >= 0)
7503 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
7504 {
7505 val = XCDR (elt);
7506 /* Here, if VAL is both a valid coding system and a valid
7507 function symbol, we return VAL as a coding system. */
7508 if (CONSP (val))
7509 return val;
7510 if (! SYMBOLP (val))
7511 return Qnil;
7512 if (! NILP (Fcoding_system_p (val)))
7513 return Fcons (val, val);
7514 if (! NILP (Ffboundp (val)))
7515 {
7516 val = call1 (val, Flist (nargs, args));
7517 if (CONSP (val))
7518 return val;
7519 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
7520 return Fcons (val, val);
7521 }
7522 return Qnil;
7523 }
7524 }
7525 return Qnil;
7526 }
7527
7528 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
7529 Supdate_coding_systems_internal, 0, 0, 0,
7530 doc: /* Update internal database for ISO2022 and CCL based coding systems.
7531 When values of any coding categories are changed, you must
7532 call this function. */)
7533 ()
7534 {
7535 int i;
7536
7537 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
7538 {
7539 Lisp_Object val;
7540
7541 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
7542 if (!NILP (val))
7543 {
7544 if (! coding_system_table[i])
7545 coding_system_table[i] = ((struct coding_system *)
7546 xmalloc (sizeof (struct coding_system)));
7547 setup_coding_system (val, coding_system_table[i]);
7548 }
7549 else if (coding_system_table[i])
7550 {
7551 xfree (coding_system_table[i]);
7552 coding_system_table[i] = NULL;
7553 }
7554 }
7555
7556 return Qnil;
7557 }
7558
7559 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
7560 Sset_coding_priority_internal, 0, 0, 0,
7561 doc: /* Update internal database for the current value of `coding-category-list'.
7562 This function is internal use only. */)
7563 ()
7564 {
7565 int i = 0, idx;
7566 Lisp_Object val;
7567
7568 val = Vcoding_category_list;
7569
7570 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
7571 {
7572 if (! SYMBOLP (XCAR (val)))
7573 break;
7574 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
7575 if (idx >= CODING_CATEGORY_IDX_MAX)
7576 break;
7577 coding_priorities[i++] = (1 << idx);
7578 val = XCDR (val);
7579 }
7580 /* If coding-category-list is valid and contains all coding
7581 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
7582 the following code saves Emacs from crashing. */
7583 while (i < CODING_CATEGORY_IDX_MAX)
7584 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
7585
7586 return Qnil;
7587 }
7588
7589 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
7590 Sdefine_coding_system_internal, 1, 1, 0,
7591 doc: /* Register CODING-SYSTEM as a base coding system.
7592 This function is internal use only. */)
7593 (coding_system)
7594 Lisp_Object coding_system;
7595 {
7596 Lisp_Object safe_chars, slot;
7597
7598 if (NILP (Fcheck_coding_system (coding_system)))
7599 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
7600 safe_chars = coding_safe_chars (coding_system);
7601 if (! EQ (safe_chars, Qt) && ! CHAR_TABLE_P (safe_chars))
7602 error ("No valid safe-chars property for %s",
7603 SDATA (SYMBOL_NAME (coding_system)));
7604 if (EQ (safe_chars, Qt))
7605 {
7606 if (NILP (Fmemq (coding_system, XCAR (Vcoding_system_safe_chars))))
7607 XSETCAR (Vcoding_system_safe_chars,
7608 Fcons (coding_system, XCAR (Vcoding_system_safe_chars)));
7609 }
7610 else
7611 {
7612 slot = Fassq (coding_system, XCDR (Vcoding_system_safe_chars));
7613 if (NILP (slot))
7614 XSETCDR (Vcoding_system_safe_chars,
7615 nconc2 (XCDR (Vcoding_system_safe_chars),
7616 Fcons (Fcons (coding_system, safe_chars), Qnil)));
7617 else
7618 XSETCDR (slot, safe_chars);
7619 }
7620 return Qnil;
7621 }
7622
7623 #endif /* emacs */
7624
7625 \f
7626 /*** 9. Post-amble ***/
7627
7628 void
7629 init_coding_once ()
7630 {
7631 int i;
7632
7633 /* Emacs' internal format specific initialize routine. */
7634 for (i = 0; i <= 0x20; i++)
7635 emacs_code_class[i] = EMACS_control_code;
7636 emacs_code_class[0x0A] = EMACS_linefeed_code;
7637 emacs_code_class[0x0D] = EMACS_carriage_return_code;
7638 for (i = 0x21 ; i < 0x7F; i++)
7639 emacs_code_class[i] = EMACS_ascii_code;
7640 emacs_code_class[0x7F] = EMACS_control_code;
7641 for (i = 0x80; i < 0xFF; i++)
7642 emacs_code_class[i] = EMACS_invalid_code;
7643 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7644 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7645 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7646 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7647
7648 /* ISO2022 specific initialize routine. */
7649 for (i = 0; i < 0x20; i++)
7650 iso_code_class[i] = ISO_control_0;
7651 for (i = 0x21; i < 0x7F; i++)
7652 iso_code_class[i] = ISO_graphic_plane_0;
7653 for (i = 0x80; i < 0xA0; i++)
7654 iso_code_class[i] = ISO_control_1;
7655 for (i = 0xA1; i < 0xFF; i++)
7656 iso_code_class[i] = ISO_graphic_plane_1;
7657 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7658 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7659 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7660 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7661 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7662 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7663 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7664 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7665 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7666 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7667
7668 setup_coding_system (Qnil, &keyboard_coding);
7669 setup_coding_system (Qnil, &terminal_coding);
7670 setup_coding_system (Qnil, &safe_terminal_coding);
7671 setup_coding_system (Qnil, &default_buffer_file_coding);
7672
7673 bzero (coding_system_table, sizeof coding_system_table);
7674
7675 bzero (ascii_skip_code, sizeof ascii_skip_code);
7676 for (i = 0; i < 128; i++)
7677 ascii_skip_code[i] = 1;
7678
7679 #if defined (MSDOS) || defined (WINDOWSNT)
7680 system_eol_type = CODING_EOL_CRLF;
7681 #else
7682 system_eol_type = CODING_EOL_LF;
7683 #endif
7684
7685 inhibit_pre_post_conversion = 0;
7686 }
7687
7688 #ifdef emacs
7689
7690 void
7691 syms_of_coding ()
7692 {
7693 staticpro (&Vcode_conversion_workbuf_name);
7694 Vcode_conversion_workbuf_name = build_string (" *code-conversion-work*");
7695
7696 Qtarget_idx = intern ("target-idx");
7697 staticpro (&Qtarget_idx);
7698
7699 Qcoding_system_history = intern ("coding-system-history");
7700 staticpro (&Qcoding_system_history);
7701 Fset (Qcoding_system_history, Qnil);
7702
7703 /* Target FILENAME is the first argument. */
7704 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7705 /* Target FILENAME is the third argument. */
7706 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7707
7708 Qcall_process = intern ("call-process");
7709 staticpro (&Qcall_process);
7710 /* Target PROGRAM is the first argument. */
7711 Fput (Qcall_process, Qtarget_idx, make_number (0));
7712
7713 Qcall_process_region = intern ("call-process-region");
7714 staticpro (&Qcall_process_region);
7715 /* Target PROGRAM is the third argument. */
7716 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7717
7718 Qstart_process = intern ("start-process");
7719 staticpro (&Qstart_process);
7720 /* Target PROGRAM is the third argument. */
7721 Fput (Qstart_process, Qtarget_idx, make_number (2));
7722
7723 Qopen_network_stream = intern ("open-network-stream");
7724 staticpro (&Qopen_network_stream);
7725 /* Target SERVICE is the fourth argument. */
7726 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7727
7728 Qcoding_system = intern ("coding-system");
7729 staticpro (&Qcoding_system);
7730
7731 Qeol_type = intern ("eol-type");
7732 staticpro (&Qeol_type);
7733
7734 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7735 staticpro (&Qbuffer_file_coding_system);
7736
7737 Qpost_read_conversion = intern ("post-read-conversion");
7738 staticpro (&Qpost_read_conversion);
7739
7740 Qpre_write_conversion = intern ("pre-write-conversion");
7741 staticpro (&Qpre_write_conversion);
7742
7743 Qno_conversion = intern ("no-conversion");
7744 staticpro (&Qno_conversion);
7745
7746 Qundecided = intern ("undecided");
7747 staticpro (&Qundecided);
7748
7749 Qcoding_system_p = intern ("coding-system-p");
7750 staticpro (&Qcoding_system_p);
7751
7752 Qcoding_system_error = intern ("coding-system-error");
7753 staticpro (&Qcoding_system_error);
7754
7755 Fput (Qcoding_system_error, Qerror_conditions,
7756 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7757 Fput (Qcoding_system_error, Qerror_message,
7758 build_string ("Invalid coding system"));
7759
7760 Qcoding_category = intern ("coding-category");
7761 staticpro (&Qcoding_category);
7762 Qcoding_category_index = intern ("coding-category-index");
7763 staticpro (&Qcoding_category_index);
7764
7765 Vcoding_category_table
7766 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7767 staticpro (&Vcoding_category_table);
7768 {
7769 int i;
7770 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7771 {
7772 XVECTOR (Vcoding_category_table)->contents[i]
7773 = intern (coding_category_name[i]);
7774 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7775 Qcoding_category_index, make_number (i));
7776 }
7777 }
7778
7779 Vcoding_system_safe_chars = Fcons (Qnil, Qnil);
7780 staticpro (&Vcoding_system_safe_chars);
7781
7782 Qtranslation_table = intern ("translation-table");
7783 staticpro (&Qtranslation_table);
7784 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
7785
7786 Qtranslation_table_id = intern ("translation-table-id");
7787 staticpro (&Qtranslation_table_id);
7788
7789 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7790 staticpro (&Qtranslation_table_for_decode);
7791
7792 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7793 staticpro (&Qtranslation_table_for_encode);
7794
7795 Qsafe_chars = intern ("safe-chars");
7796 staticpro (&Qsafe_chars);
7797
7798 Qchar_coding_system = intern ("char-coding-system");
7799 staticpro (&Qchar_coding_system);
7800
7801 /* Intern this now in case it isn't already done.
7802 Setting this variable twice is harmless.
7803 But don't staticpro it here--that is done in alloc.c. */
7804 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7805 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7806 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (0));
7807
7808 Qvalid_codes = intern ("valid-codes");
7809 staticpro (&Qvalid_codes);
7810
7811 Qemacs_mule = intern ("emacs-mule");
7812 staticpro (&Qemacs_mule);
7813
7814 Qraw_text = intern ("raw-text");
7815 staticpro (&Qraw_text);
7816
7817 Qutf_8 = intern ("utf-8");
7818 staticpro (&Qutf_8);
7819
7820 Qcoding_system_define_form = intern ("coding-system-define-form");
7821 staticpro (&Qcoding_system_define_form);
7822
7823 defsubr (&Scoding_system_p);
7824 defsubr (&Sread_coding_system);
7825 defsubr (&Sread_non_nil_coding_system);
7826 defsubr (&Scheck_coding_system);
7827 defsubr (&Sdetect_coding_region);
7828 defsubr (&Sdetect_coding_string);
7829 defsubr (&Sfind_coding_systems_region_internal);
7830 defsubr (&Sunencodable_char_position);
7831 defsubr (&Sdecode_coding_region);
7832 defsubr (&Sencode_coding_region);
7833 defsubr (&Sdecode_coding_string);
7834 defsubr (&Sencode_coding_string);
7835 defsubr (&Sdecode_sjis_char);
7836 defsubr (&Sencode_sjis_char);
7837 defsubr (&Sdecode_big5_char);
7838 defsubr (&Sencode_big5_char);
7839 defsubr (&Sset_terminal_coding_system_internal);
7840 defsubr (&Sset_safe_terminal_coding_system_internal);
7841 defsubr (&Sterminal_coding_system);
7842 defsubr (&Sset_keyboard_coding_system_internal);
7843 defsubr (&Skeyboard_coding_system);
7844 defsubr (&Sfind_operation_coding_system);
7845 defsubr (&Supdate_coding_systems_internal);
7846 defsubr (&Sset_coding_priority_internal);
7847 defsubr (&Sdefine_coding_system_internal);
7848
7849 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7850 doc: /* List of coding systems.
7851
7852 Do not alter the value of this variable manually. This variable should be
7853 updated by the functions `make-coding-system' and
7854 `define-coding-system-alias'. */);
7855 Vcoding_system_list = Qnil;
7856
7857 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7858 doc: /* Alist of coding system names.
7859 Each element is one element list of coding system name.
7860 This variable is given to `completing-read' as TABLE argument.
7861
7862 Do not alter the value of this variable manually. This variable should be
7863 updated by the functions `make-coding-system' and
7864 `define-coding-system-alias'. */);
7865 Vcoding_system_alist = Qnil;
7866
7867 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7868 doc: /* List of coding-categories (symbols) ordered by priority.
7869
7870 On detecting a coding system, Emacs tries code detection algorithms
7871 associated with each coding-category one by one in this order. When
7872 one algorithm agrees with a byte sequence of source text, the coding
7873 system bound to the corresponding coding-category is selected.
7874
7875 Don't modify this variable directly, but use `set-coding-priority'. */);
7876 {
7877 int i;
7878
7879 Vcoding_category_list = Qnil;
7880 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7881 Vcoding_category_list
7882 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7883 Vcoding_category_list);
7884 }
7885
7886 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7887 doc: /* Specify the coding system for read operations.
7888 It is useful to bind this variable with `let', but do not set it globally.
7889 If the value is a coding system, it is used for decoding on read operation.
7890 If not, an appropriate element is used from one of the coding system alists:
7891 There are three such tables, `file-coding-system-alist',
7892 `process-coding-system-alist', and `network-coding-system-alist'. */);
7893 Vcoding_system_for_read = Qnil;
7894
7895 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7896 doc: /* Specify the coding system for write operations.
7897 Programs bind this variable with `let', but you should not set it globally.
7898 If the value is a coding system, it is used for encoding of output,
7899 when writing it to a file and when sending it to a file or subprocess.
7900
7901 If this does not specify a coding system, an appropriate element
7902 is used from one of the coding system alists:
7903 There are three such tables, `file-coding-system-alist',
7904 `process-coding-system-alist', and `network-coding-system-alist'.
7905 For output to files, if the above procedure does not specify a coding system,
7906 the value of `buffer-file-coding-system' is used. */);
7907 Vcoding_system_for_write = Qnil;
7908
7909 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7910 doc: /* Coding system used in the latest file or process I/O.
7911 Also set by `encode-coding-region', `decode-coding-region',
7912 `encode-coding-string' and `decode-coding-string'. */);
7913 Vlast_coding_system_used = Qnil;
7914
7915 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7916 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7917 See info node `Coding Systems' and info node `Text and Binary' concerning
7918 such conversion. */);
7919 inhibit_eol_conversion = 0;
7920
7921 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7922 doc: /* Non-nil means process buffer inherits coding system of process output.
7923 Bind it to t if the process output is to be treated as if it were a file
7924 read from some filesystem. */);
7925 inherit_process_coding_system = 0;
7926
7927 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7928 doc: /* Alist to decide a coding system to use for a file I/O operation.
7929 The format is ((PATTERN . VAL) ...),
7930 where PATTERN is a regular expression matching a file name,
7931 VAL is a coding system, a cons of coding systems, or a function symbol.
7932 If VAL is a coding system, it is used for both decoding and encoding
7933 the file contents.
7934 If VAL is a cons of coding systems, the car part is used for decoding,
7935 and the cdr part is used for encoding.
7936 If VAL is a function symbol, the function must return a coding system
7937 or a cons of coding systems which are used as above. The function gets
7938 the arguments with which `find-operation-coding-system' was called.
7939
7940 See also the function `find-operation-coding-system'
7941 and the variable `auto-coding-alist'. */);
7942 Vfile_coding_system_alist = Qnil;
7943
7944 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7945 doc: /* Alist to decide a coding system to use for a process I/O operation.
7946 The format is ((PATTERN . VAL) ...),
7947 where PATTERN is a regular expression matching a program name,
7948 VAL is a coding system, a cons of coding systems, or a function symbol.
7949 If VAL is a coding system, it is used for both decoding what received
7950 from the program and encoding what sent to the program.
7951 If VAL is a cons of coding systems, the car part is used for decoding,
7952 and the cdr part is used for encoding.
7953 If VAL is a function symbol, the function must return a coding system
7954 or a cons of coding systems which are used as above.
7955
7956 See also the function `find-operation-coding-system'. */);
7957 Vprocess_coding_system_alist = Qnil;
7958
7959 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7960 doc: /* Alist to decide a coding system to use for a network I/O operation.
7961 The format is ((PATTERN . VAL) ...),
7962 where PATTERN is a regular expression matching a network service name
7963 or is a port number to connect to,
7964 VAL is a coding system, a cons of coding systems, or a function symbol.
7965 If VAL is a coding system, it is used for both decoding what received
7966 from the network stream and encoding what sent to the network stream.
7967 If VAL is a cons of coding systems, the car part is used for decoding,
7968 and the cdr part is used for encoding.
7969 If VAL is a function symbol, the function must return a coding system
7970 or a cons of coding systems which are used as above.
7971
7972 See also the function `find-operation-coding-system'. */);
7973 Vnetwork_coding_system_alist = Qnil;
7974
7975 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7976 doc: /* Coding system to use with system messages.
7977 Also used for decoding keyboard input on X Window system. */);
7978 Vlocale_coding_system = Qnil;
7979
7980 /* The eol mnemonics are reset in startup.el system-dependently. */
7981 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7982 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7983 eol_mnemonic_unix = build_string (":");
7984
7985 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7986 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7987 eol_mnemonic_dos = build_string ("\\");
7988
7989 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7990 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7991 eol_mnemonic_mac = build_string ("/");
7992
7993 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7994 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7995 eol_mnemonic_undecided = build_string (":");
7996
7997 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7998 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7999 Venable_character_translation = Qt;
8000
8001 DEFVAR_LISP ("standard-translation-table-for-decode",
8002 &Vstandard_translation_table_for_decode,
8003 doc: /* Table for translating characters while decoding. */);
8004 Vstandard_translation_table_for_decode = Qnil;
8005
8006 DEFVAR_LISP ("standard-translation-table-for-encode",
8007 &Vstandard_translation_table_for_encode,
8008 doc: /* Table for translating characters while encoding. */);
8009 Vstandard_translation_table_for_encode = Qnil;
8010
8011 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
8012 doc: /* Alist of charsets vs revision numbers.
8013 While encoding, if a charset (car part of an element) is found,
8014 designate it with the escape sequence identifying revision (cdr part of the element). */);
8015 Vcharset_revision_alist = Qnil;
8016
8017 DEFVAR_LISP ("default-process-coding-system",
8018 &Vdefault_process_coding_system,
8019 doc: /* Cons of coding systems used for process I/O by default.
8020 The car part is used for decoding a process output,
8021 the cdr part is used for encoding a text to be sent to a process. */);
8022 Vdefault_process_coding_system = Qnil;
8023
8024 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
8025 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
8026 This is a vector of length 256.
8027 If Nth element is non-nil, the existence of code N in a file
8028 \(or output of subprocess) doesn't prevent it to be detected as
8029 a coding system of ISO 2022 variant which has a flag
8030 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
8031 or reading output of a subprocess.
8032 Only 128th through 159th elements has a meaning. */);
8033 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
8034
8035 DEFVAR_LISP ("select-safe-coding-system-function",
8036 &Vselect_safe_coding_system_function,
8037 doc: /* Function to call to select safe coding system for encoding a text.
8038
8039 If set, this function is called to force a user to select a proper
8040 coding system which can encode the text in the case that a default
8041 coding system used in each operation can't encode the text.
8042
8043 The default value is `select-safe-coding-system' (which see). */);
8044 Vselect_safe_coding_system_function = Qnil;
8045
8046 DEFVAR_BOOL ("coding-system-require-warning",
8047 &coding_system_require_warning,
8048 doc: /* Internal use only.
8049 If non-nil, on writing a file, `select-safe-coding-system-function' is
8050 called even if `coding-system-for-write' is non-nil. The command
8051 `universal-coding-system-argument' binds this variable to t temporarily. */);
8052 coding_system_require_warning = 0;
8053
8054
8055 DEFVAR_BOOL ("inhibit-iso-escape-detection",
8056 &inhibit_iso_escape_detection,
8057 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
8058
8059 By default, on reading a file, Emacs tries to detect how the text is
8060 encoded. This code detection is sensitive to escape sequences. If
8061 the sequence is valid as ISO2022, the code is determined as one of
8062 the ISO2022 encodings, and the file is decoded by the corresponding
8063 coding system (e.g. `iso-2022-7bit').
8064
8065 However, there may be a case that you want to read escape sequences in
8066 a file as is. In such a case, you can set this variable to non-nil.
8067 Then, as the code detection ignores any escape sequences, no file is
8068 detected as encoded in some ISO2022 encoding. The result is that all
8069 escape sequences become visible in a buffer.
8070
8071 The default value is nil, and it is strongly recommended not to change
8072 it. That is because many Emacs Lisp source files that contain
8073 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
8074 in Emacs's distribution, and they won't be decoded correctly on
8075 reading if you suppress escape sequence detection.
8076
8077 The other way to read escape sequences in a file without decoding is
8078 to explicitly specify some coding system that doesn't use ISO2022's
8079 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
8080 inhibit_iso_escape_detection = 0;
8081
8082 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
8083 doc: /* Char table for translating self-inserting characters.
8084 This is applied to the result of input methods, not their input. See also
8085 `keyboard-translate-table'. */);
8086 Vtranslation_table_for_input = Qnil;
8087 }
8088
8089 char *
8090 emacs_strerror (error_number)
8091 int error_number;
8092 {
8093 char *str;
8094
8095 synchronize_system_messages_locale ();
8096 str = strerror (error_number);
8097
8098 if (! NILP (Vlocale_coding_system))
8099 {
8100 Lisp_Object dec = code_convert_string_norecord (build_string (str),
8101 Vlocale_coding_system,
8102 0);
8103 str = (char *) SDATA (dec);
8104 }
8105
8106 return str;
8107 }
8108
8109 #endif /* emacs */
8110
8111 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
8112 (do not change this comment) */