Tried to make docstring less `colloquial'...
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef HAVE_FCNTL_H
70 #define INCLUDED_FCNTL
71 #include <fcntl.h>
72 #endif
73 #ifndef O_WRONLY
74 #define O_WRONLY 1
75 #endif
76
77 #ifdef DOUG_LEA_MALLOC
78
79 #include <malloc.h>
80 /* malloc.h #defines this as size_t, at least in glibc2. */
81 #ifndef __malloc_size_t
82 #define __malloc_size_t int
83 #endif
84
85 /* Specify maximum number of areas to mmap. It would be nice to use a
86 value that explicitly means "no limit". */
87
88 #define MMAP_MAX_AREAS 100000000
89
90 #else /* not DOUG_LEA_MALLOC */
91
92 /* The following come from gmalloc.c. */
93
94 #define __malloc_size_t size_t
95 extern __malloc_size_t _bytes_used;
96 extern __malloc_size_t __malloc_extra_blocks;
97
98 #endif /* not DOUG_LEA_MALLOC */
99
100 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
101
102 /* When GTK uses the file chooser dialog, different backends can be loaded
103 dynamically. One such a backend is the Gnome VFS backend that gets loaded
104 if you run Gnome. That backend creates several threads and also allocates
105 memory with malloc.
106
107 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
108 functions below are called from malloc, there is a chance that one
109 of these threads preempts the Emacs main thread and the hook variables
110 end up in an inconsistent state. So we have a mutex to prevent that (note
111 that the backend handles concurrent access to malloc within its own threads
112 but Emacs code running in the main thread is not included in that control).
113
114 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
115 happens in one of the backend threads we will have two threads that tries
116 to run Emacs code at once, and the code is not prepared for that.
117 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
118
119 static pthread_mutex_t alloc_mutex;
120
121 #define BLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_lock (&alloc_mutex); \
125 if (pthread_self () == main_thread) \
126 BLOCK_INPUT; \
127 } \
128 while (0)
129 #define UNBLOCK_INPUT_ALLOC \
130 do \
131 { \
132 if (pthread_self () == main_thread) \
133 UNBLOCK_INPUT; \
134 pthread_mutex_unlock (&alloc_mutex); \
135 } \
136 while (0)
137
138 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
141 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
142
143 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
144
145 /* Value of _bytes_used, when spare_memory was freed. */
146
147 static __malloc_size_t bytes_used_when_full;
148
149 static __malloc_size_t bytes_used_when_reconsidered;
150
151 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
152 to a struct Lisp_String. */
153
154 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
155 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
156 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
157
158 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
159 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
160 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
161
162 /* Value is the number of bytes/chars of S, a pointer to a struct
163 Lisp_String. This must be used instead of STRING_BYTES (S) or
164 S->size during GC, because S->size contains the mark bit for
165 strings. */
166
167 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
168 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
169
170 /* Number of bytes of consing done since the last gc. */
171
172 int consing_since_gc;
173
174 /* Count the amount of consing of various sorts of space. */
175
176 EMACS_INT cons_cells_consed;
177 EMACS_INT floats_consed;
178 EMACS_INT vector_cells_consed;
179 EMACS_INT symbols_consed;
180 EMACS_INT string_chars_consed;
181 EMACS_INT misc_objects_consed;
182 EMACS_INT intervals_consed;
183 EMACS_INT strings_consed;
184
185 /* Minimum number of bytes of consing since GC before next GC. */
186
187 EMACS_INT gc_cons_threshold;
188
189 /* Similar minimum, computed from Vgc_cons_percentage. */
190
191 EMACS_INT gc_relative_threshold;
192
193 static Lisp_Object Vgc_cons_percentage;
194
195 /* Minimum number of bytes of consing since GC before next GC,
196 when memory is full. */
197
198 EMACS_INT memory_full_cons_threshold;
199
200 /* Nonzero during GC. */
201
202 int gc_in_progress;
203
204 /* Nonzero means abort if try to GC.
205 This is for code which is written on the assumption that
206 no GC will happen, so as to verify that assumption. */
207
208 int abort_on_gc;
209
210 /* Nonzero means display messages at beginning and end of GC. */
211
212 int garbage_collection_messages;
213
214 #ifndef VIRT_ADDR_VARIES
215 extern
216 #endif /* VIRT_ADDR_VARIES */
217 int malloc_sbrk_used;
218
219 #ifndef VIRT_ADDR_VARIES
220 extern
221 #endif /* VIRT_ADDR_VARIES */
222 int malloc_sbrk_unused;
223
224 /* Number of live and free conses etc. */
225
226 static int total_conses, total_markers, total_symbols, total_vector_size;
227 static int total_free_conses, total_free_markers, total_free_symbols;
228 static int total_free_floats, total_floats;
229
230 /* Points to memory space allocated as "spare", to be freed if we run
231 out of memory. We keep one large block, four cons-blocks, and
232 two string blocks. */
233
234 char *spare_memory[7];
235
236 /* Amount of spare memory to keep in large reserve block. */
237
238 #define SPARE_MEMORY (1 << 14)
239
240 /* Number of extra blocks malloc should get when it needs more core. */
241
242 static int malloc_hysteresis;
243
244 /* Non-nil means defun should do purecopy on the function definition. */
245
246 Lisp_Object Vpurify_flag;
247
248 /* Non-nil means we are handling a memory-full error. */
249
250 Lisp_Object Vmemory_full;
251
252 #ifndef HAVE_SHM
253
254 /* Initialize it to a nonzero value to force it into data space
255 (rather than bss space). That way unexec will remap it into text
256 space (pure), on some systems. We have not implemented the
257 remapping on more recent systems because this is less important
258 nowadays than in the days of small memories and timesharing. */
259
260 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
261 #define PUREBEG (char *) pure
262
263 #else /* HAVE_SHM */
264
265 #define pure PURE_SEG_BITS /* Use shared memory segment */
266 #define PUREBEG (char *)PURE_SEG_BITS
267
268 #endif /* HAVE_SHM */
269
270 /* Pointer to the pure area, and its size. */
271
272 static char *purebeg;
273 static size_t pure_size;
274
275 /* Number of bytes of pure storage used before pure storage overflowed.
276 If this is non-zero, this implies that an overflow occurred. */
277
278 static size_t pure_bytes_used_before_overflow;
279
280 /* Value is non-zero if P points into pure space. */
281
282 #define PURE_POINTER_P(P) \
283 (((PNTR_COMPARISON_TYPE) (P) \
284 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
285 && ((PNTR_COMPARISON_TYPE) (P) \
286 >= (PNTR_COMPARISON_TYPE) purebeg))
287
288 /* Index in pure at which next pure object will be allocated.. */
289
290 EMACS_INT pure_bytes_used;
291
292 /* If nonzero, this is a warning delivered by malloc and not yet
293 displayed. */
294
295 char *pending_malloc_warning;
296
297 /* Pre-computed signal argument for use when memory is exhausted. */
298
299 Lisp_Object Vmemory_signal_data;
300
301 /* Maximum amount of C stack to save when a GC happens. */
302
303 #ifndef MAX_SAVE_STACK
304 #define MAX_SAVE_STACK 16000
305 #endif
306
307 /* Buffer in which we save a copy of the C stack at each GC. */
308
309 char *stack_copy;
310 int stack_copy_size;
311
312 /* Non-zero means ignore malloc warnings. Set during initialization.
313 Currently not used. */
314
315 int ignore_warnings;
316
317 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
318
319 /* Hook run after GC has finished. */
320
321 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
322
323 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
324 EMACS_INT gcs_done; /* accumulated GCs */
325
326 static void mark_buffer P_ ((Lisp_Object));
327 extern void mark_kboards P_ ((void));
328 extern void mark_backtrace P_ ((void));
329 static void gc_sweep P_ ((void));
330 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
331 static void mark_face_cache P_ ((struct face_cache *));
332
333 #ifdef HAVE_WINDOW_SYSTEM
334 extern void mark_fringe_data P_ ((void));
335 static void mark_image P_ ((struct image *));
336 static void mark_image_cache P_ ((struct frame *));
337 #endif /* HAVE_WINDOW_SYSTEM */
338
339 static struct Lisp_String *allocate_string P_ ((void));
340 static void compact_small_strings P_ ((void));
341 static void free_large_strings P_ ((void));
342 static void sweep_strings P_ ((void));
343
344 extern int message_enable_multibyte;
345
346 /* When scanning the C stack for live Lisp objects, Emacs keeps track
347 of what memory allocated via lisp_malloc is intended for what
348 purpose. This enumeration specifies the type of memory. */
349
350 enum mem_type
351 {
352 MEM_TYPE_NON_LISP,
353 MEM_TYPE_BUFFER,
354 MEM_TYPE_CONS,
355 MEM_TYPE_STRING,
356 MEM_TYPE_MISC,
357 MEM_TYPE_SYMBOL,
358 MEM_TYPE_FLOAT,
359 /* Keep the following vector-like types together, with
360 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
361 first. Or change the code of live_vector_p, for instance. */
362 MEM_TYPE_VECTOR,
363 MEM_TYPE_PROCESS,
364 MEM_TYPE_HASH_TABLE,
365 MEM_TYPE_FRAME,
366 MEM_TYPE_WINDOW
367 };
368
369 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
370 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
371 void refill_memory_reserve ();
372
373
374 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
375
376 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
377 #include <stdio.h> /* For fprintf. */
378 #endif
379
380 /* A unique object in pure space used to make some Lisp objects
381 on free lists recognizable in O(1). */
382
383 Lisp_Object Vdead;
384
385 #ifdef GC_MALLOC_CHECK
386
387 enum mem_type allocated_mem_type;
388 int dont_register_blocks;
389
390 #endif /* GC_MALLOC_CHECK */
391
392 /* A node in the red-black tree describing allocated memory containing
393 Lisp data. Each such block is recorded with its start and end
394 address when it is allocated, and removed from the tree when it
395 is freed.
396
397 A red-black tree is a balanced binary tree with the following
398 properties:
399
400 1. Every node is either red or black.
401 2. Every leaf is black.
402 3. If a node is red, then both of its children are black.
403 4. Every simple path from a node to a descendant leaf contains
404 the same number of black nodes.
405 5. The root is always black.
406
407 When nodes are inserted into the tree, or deleted from the tree,
408 the tree is "fixed" so that these properties are always true.
409
410 A red-black tree with N internal nodes has height at most 2
411 log(N+1). Searches, insertions and deletions are done in O(log N).
412 Please see a text book about data structures for a detailed
413 description of red-black trees. Any book worth its salt should
414 describe them. */
415
416 struct mem_node
417 {
418 /* Children of this node. These pointers are never NULL. When there
419 is no child, the value is MEM_NIL, which points to a dummy node. */
420 struct mem_node *left, *right;
421
422 /* The parent of this node. In the root node, this is NULL. */
423 struct mem_node *parent;
424
425 /* Start and end of allocated region. */
426 void *start, *end;
427
428 /* Node color. */
429 enum {MEM_BLACK, MEM_RED} color;
430
431 /* Memory type. */
432 enum mem_type type;
433 };
434
435 /* Base address of stack. Set in main. */
436
437 Lisp_Object *stack_base;
438
439 /* Root of the tree describing allocated Lisp memory. */
440
441 static struct mem_node *mem_root;
442
443 /* Lowest and highest known address in the heap. */
444
445 static void *min_heap_address, *max_heap_address;
446
447 /* Sentinel node of the tree. */
448
449 static struct mem_node mem_z;
450 #define MEM_NIL &mem_z
451
452 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
453 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
454 static void lisp_free P_ ((POINTER_TYPE *));
455 static void mark_stack P_ ((void));
456 static int live_vector_p P_ ((struct mem_node *, void *));
457 static int live_buffer_p P_ ((struct mem_node *, void *));
458 static int live_string_p P_ ((struct mem_node *, void *));
459 static int live_cons_p P_ ((struct mem_node *, void *));
460 static int live_symbol_p P_ ((struct mem_node *, void *));
461 static int live_float_p P_ ((struct mem_node *, void *));
462 static int live_misc_p P_ ((struct mem_node *, void *));
463 static void mark_maybe_object P_ ((Lisp_Object));
464 static void mark_memory P_ ((void *, void *));
465 static void mem_init P_ ((void));
466 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
467 static void mem_insert_fixup P_ ((struct mem_node *));
468 static void mem_rotate_left P_ ((struct mem_node *));
469 static void mem_rotate_right P_ ((struct mem_node *));
470 static void mem_delete P_ ((struct mem_node *));
471 static void mem_delete_fixup P_ ((struct mem_node *));
472 static INLINE struct mem_node *mem_find P_ ((void *));
473
474
475 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
476 static void check_gcpros P_ ((void));
477 #endif
478
479 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
480
481 /* Recording what needs to be marked for gc. */
482
483 struct gcpro *gcprolist;
484
485 /* Addresses of staticpro'd variables. Initialize it to a nonzero
486 value; otherwise some compilers put it into BSS. */
487
488 #define NSTATICS 1280
489 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
490
491 /* Index of next unused slot in staticvec. */
492
493 int staticidx = 0;
494
495 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
496
497
498 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
499 ALIGNMENT must be a power of 2. */
500
501 #define ALIGN(ptr, ALIGNMENT) \
502 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
503 & ~((ALIGNMENT) - 1)))
504
505
506 \f
507 /************************************************************************
508 Malloc
509 ************************************************************************/
510
511 /* Function malloc calls this if it finds we are near exhausting storage. */
512
513 void
514 malloc_warning (str)
515 char *str;
516 {
517 pending_malloc_warning = str;
518 }
519
520
521 /* Display an already-pending malloc warning. */
522
523 void
524 display_malloc_warning ()
525 {
526 call3 (intern ("display-warning"),
527 intern ("alloc"),
528 build_string (pending_malloc_warning),
529 intern ("emergency"));
530 pending_malloc_warning = 0;
531 }
532
533
534 #ifdef DOUG_LEA_MALLOC
535 # define BYTES_USED (mallinfo ().uordblks)
536 #else
537 # define BYTES_USED _bytes_used
538 #endif
539 \f
540 /* Called if we can't allocate relocatable space for a buffer. */
541
542 void
543 buffer_memory_full ()
544 {
545 /* If buffers use the relocating allocator, no need to free
546 spare_memory, because we may have plenty of malloc space left
547 that we could get, and if we don't, the malloc that fails will
548 itself cause spare_memory to be freed. If buffers don't use the
549 relocating allocator, treat this like any other failing
550 malloc. */
551
552 #ifndef REL_ALLOC
553 memory_full ();
554 #endif
555
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
558 while (1)
559 Fsignal (Qnil, Vmemory_signal_data);
560 }
561
562
563 #ifdef XMALLOC_OVERRUN_CHECK
564
565 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574 */
575
576
577 #define XMALLOC_OVERRUN_CHECK_SIZE 16
578
579 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
590 /* Macros to insert and extract the block size in the header. */
591
592 #define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598 #define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
605 /* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
614 add overhead again, return 10032
615 xmalloc returns 10032.
616
617 (time passes).
618
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
623
624 static int check_depth;
625
626 /* Like malloc, but wraps allocated block with header and trailer. */
627
628 POINTER_TYPE *
629 overrun_check_malloc (size)
630 size_t size;
631 {
632 register unsigned char *val;
633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
634
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
639 val += XMALLOC_OVERRUN_CHECK_SIZE;
640 XMALLOC_PUT_SIZE(val, size);
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 --check_depth;
644 return (POINTER_TYPE *)val;
645 }
646
647
648 /* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
651 POINTER_TYPE *
652 overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655 {
656 register unsigned char *val = (unsigned char *)block;
657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
658
659 if (val
660 && check_depth == 1
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
665 size_t osize = XMALLOC_GET_SIZE (val);
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
673 }
674
675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
676
677 if (val && check_depth == 1)
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
680 val += XMALLOC_OVERRUN_CHECK_SIZE;
681 XMALLOC_PUT_SIZE(val, size);
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
684 --check_depth;
685 return (POINTER_TYPE *)val;
686 }
687
688 /* Like free, but checks block for overrun. */
689
690 void
691 overrun_check_free (block)
692 POINTER_TYPE *block;
693 {
694 unsigned char *val = (unsigned char *)block;
695
696 ++check_depth;
697 if (val
698 && check_depth == 1
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
703 size_t osize = XMALLOC_GET_SIZE (val);
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
708 #ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711 #else
712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
715 #endif
716 }
717
718 free (val);
719 --check_depth;
720 }
721
722 #undef malloc
723 #undef realloc
724 #undef free
725 #define malloc overrun_check_malloc
726 #define realloc overrun_check_realloc
727 #define free overrun_check_free
728 #endif
729
730
731 /* Like malloc but check for no memory and block interrupt input.. */
732
733 POINTER_TYPE *
734 xmalloc (size)
735 size_t size;
736 {
737 register POINTER_TYPE *val;
738
739 BLOCK_INPUT;
740 val = (POINTER_TYPE *) malloc (size);
741 UNBLOCK_INPUT;
742
743 if (!val && size)
744 memory_full ();
745 return val;
746 }
747
748
749 /* Like realloc but check for no memory and block interrupt input.. */
750
751 POINTER_TYPE *
752 xrealloc (block, size)
753 POINTER_TYPE *block;
754 size_t size;
755 {
756 register POINTER_TYPE *val;
757
758 BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = (POINTER_TYPE *) malloc (size);
763 else
764 val = (POINTER_TYPE *) realloc (block, size);
765 UNBLOCK_INPUT;
766
767 if (!val && size) memory_full ();
768 return val;
769 }
770
771
772 /* Like free but block interrupt input. */
773
774 void
775 xfree (block)
776 POINTER_TYPE *block;
777 {
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781 /* We don't call refill_memory_reserve here
782 because that duplicates doing so in emacs_blocked_free
783 and the criterion should go there. */
784 }
785
786
787 /* Like strdup, but uses xmalloc. */
788
789 char *
790 xstrdup (s)
791 const char *s;
792 {
793 size_t len = strlen (s) + 1;
794 char *p = (char *) xmalloc (len);
795 bcopy (s, p, len);
796 return p;
797 }
798
799
800 /* Unwind for SAFE_ALLOCA */
801
802 Lisp_Object
803 safe_alloca_unwind (arg)
804 Lisp_Object arg;
805 {
806 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
807
808 p->dogc = 0;
809 xfree (p->pointer);
810 p->pointer = 0;
811 free_misc (arg);
812 return Qnil;
813 }
814
815
816 /* Like malloc but used for allocating Lisp data. NBYTES is the
817 number of bytes to allocate, TYPE describes the intended use of the
818 allcated memory block (for strings, for conses, ...). */
819
820 #ifndef USE_LSB_TAG
821 static void *lisp_malloc_loser;
822 #endif
823
824 static POINTER_TYPE *
825 lisp_malloc (nbytes, type)
826 size_t nbytes;
827 enum mem_type type;
828 {
829 register void *val;
830
831 BLOCK_INPUT;
832
833 #ifdef GC_MALLOC_CHECK
834 allocated_mem_type = type;
835 #endif
836
837 val = (void *) malloc (nbytes);
838
839 #ifndef USE_LSB_TAG
840 /* If the memory just allocated cannot be addressed thru a Lisp
841 object's pointer, and it needs to be,
842 that's equivalent to running out of memory. */
843 if (val && type != MEM_TYPE_NON_LISP)
844 {
845 Lisp_Object tem;
846 XSETCONS (tem, (char *) val + nbytes - 1);
847 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
848 {
849 lisp_malloc_loser = val;
850 free (val);
851 val = 0;
852 }
853 }
854 #endif
855
856 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
857 if (val && type != MEM_TYPE_NON_LISP)
858 mem_insert (val, (char *) val + nbytes, type);
859 #endif
860
861 UNBLOCK_INPUT;
862 if (!val && nbytes)
863 memory_full ();
864 return val;
865 }
866
867 /* Free BLOCK. This must be called to free memory allocated with a
868 call to lisp_malloc. */
869
870 static void
871 lisp_free (block)
872 POINTER_TYPE *block;
873 {
874 BLOCK_INPUT;
875 free (block);
876 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
877 mem_delete (mem_find (block));
878 #endif
879 UNBLOCK_INPUT;
880 }
881
882 /* Allocation of aligned blocks of memory to store Lisp data. */
883 /* The entry point is lisp_align_malloc which returns blocks of at most */
884 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
885
886
887 /* BLOCK_ALIGN has to be a power of 2. */
888 #define BLOCK_ALIGN (1 << 10)
889
890 /* Padding to leave at the end of a malloc'd block. This is to give
891 malloc a chance to minimize the amount of memory wasted to alignment.
892 It should be tuned to the particular malloc library used.
893 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
894 posix_memalign on the other hand would ideally prefer a value of 4
895 because otherwise, there's 1020 bytes wasted between each ablocks.
896 In Emacs, testing shows that those 1020 can most of the time be
897 efficiently used by malloc to place other objects, so a value of 0 can
898 still preferable unless you have a lot of aligned blocks and virtually
899 nothing else. */
900 #define BLOCK_PADDING 0
901 #define BLOCK_BYTES \
902 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
903
904 /* Internal data structures and constants. */
905
906 #define ABLOCKS_SIZE 16
907
908 /* An aligned block of memory. */
909 struct ablock
910 {
911 union
912 {
913 char payload[BLOCK_BYTES];
914 struct ablock *next_free;
915 } x;
916 /* `abase' is the aligned base of the ablocks. */
917 /* It is overloaded to hold the virtual `busy' field that counts
918 the number of used ablock in the parent ablocks.
919 The first ablock has the `busy' field, the others have the `abase'
920 field. To tell the difference, we assume that pointers will have
921 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
922 is used to tell whether the real base of the parent ablocks is `abase'
923 (if not, the word before the first ablock holds a pointer to the
924 real base). */
925 struct ablocks *abase;
926 /* The padding of all but the last ablock is unused. The padding of
927 the last ablock in an ablocks is not allocated. */
928 #if BLOCK_PADDING
929 char padding[BLOCK_PADDING];
930 #endif
931 };
932
933 /* A bunch of consecutive aligned blocks. */
934 struct ablocks
935 {
936 struct ablock blocks[ABLOCKS_SIZE];
937 };
938
939 /* Size of the block requested from malloc or memalign. */
940 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
941
942 #define ABLOCK_ABASE(block) \
943 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
944 ? (struct ablocks *)(block) \
945 : (block)->abase)
946
947 /* Virtual `busy' field. */
948 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
949
950 /* Pointer to the (not necessarily aligned) malloc block. */
951 #ifdef HAVE_POSIX_MEMALIGN
952 #define ABLOCKS_BASE(abase) (abase)
953 #else
954 #define ABLOCKS_BASE(abase) \
955 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
956 #endif
957
958 /* The list of free ablock. */
959 static struct ablock *free_ablock;
960
961 /* Allocate an aligned block of nbytes.
962 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
963 smaller or equal to BLOCK_BYTES. */
964 static POINTER_TYPE *
965 lisp_align_malloc (nbytes, type)
966 size_t nbytes;
967 enum mem_type type;
968 {
969 void *base, *val;
970 struct ablocks *abase;
971
972 eassert (nbytes <= BLOCK_BYTES);
973
974 BLOCK_INPUT;
975
976 #ifdef GC_MALLOC_CHECK
977 allocated_mem_type = type;
978 #endif
979
980 if (!free_ablock)
981 {
982 int i;
983 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
984
985 #ifdef DOUG_LEA_MALLOC
986 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
987 because mapped region contents are not preserved in
988 a dumped Emacs. */
989 mallopt (M_MMAP_MAX, 0);
990 #endif
991
992 #ifdef HAVE_POSIX_MEMALIGN
993 {
994 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
995 if (err)
996 base = NULL;
997 abase = base;
998 }
999 #else
1000 base = malloc (ABLOCKS_BYTES);
1001 abase = ALIGN (base, BLOCK_ALIGN);
1002 #endif
1003
1004 if (base == 0)
1005 {
1006 UNBLOCK_INPUT;
1007 memory_full ();
1008 }
1009
1010 aligned = (base == abase);
1011 if (!aligned)
1012 ((void**)abase)[-1] = base;
1013
1014 #ifdef DOUG_LEA_MALLOC
1015 /* Back to a reasonable maximum of mmap'ed areas. */
1016 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1017 #endif
1018
1019 #ifndef USE_LSB_TAG
1020 /* If the memory just allocated cannot be addressed thru a Lisp
1021 object's pointer, and it needs to be, that's equivalent to
1022 running out of memory. */
1023 if (type != MEM_TYPE_NON_LISP)
1024 {
1025 Lisp_Object tem;
1026 char *end = (char *) base + ABLOCKS_BYTES - 1;
1027 XSETCONS (tem, end);
1028 if ((char *) XCONS (tem) != end)
1029 {
1030 lisp_malloc_loser = base;
1031 free (base);
1032 UNBLOCK_INPUT;
1033 memory_full ();
1034 }
1035 }
1036 #endif
1037
1038 /* Initialize the blocks and put them on the free list.
1039 Is `base' was not properly aligned, we can't use the last block. */
1040 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1041 {
1042 abase->blocks[i].abase = abase;
1043 abase->blocks[i].x.next_free = free_ablock;
1044 free_ablock = &abase->blocks[i];
1045 }
1046 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1047
1048 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1049 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1050 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1051 eassert (ABLOCKS_BASE (abase) == base);
1052 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1053 }
1054
1055 abase = ABLOCK_ABASE (free_ablock);
1056 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1057 val = free_ablock;
1058 free_ablock = free_ablock->x.next_free;
1059
1060 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1061 if (val && type != MEM_TYPE_NON_LISP)
1062 mem_insert (val, (char *) val + nbytes, type);
1063 #endif
1064
1065 UNBLOCK_INPUT;
1066 if (!val && nbytes)
1067 memory_full ();
1068
1069 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1070 return val;
1071 }
1072
1073 static void
1074 lisp_align_free (block)
1075 POINTER_TYPE *block;
1076 {
1077 struct ablock *ablock = block;
1078 struct ablocks *abase = ABLOCK_ABASE (ablock);
1079
1080 BLOCK_INPUT;
1081 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1082 mem_delete (mem_find (block));
1083 #endif
1084 /* Put on free list. */
1085 ablock->x.next_free = free_ablock;
1086 free_ablock = ablock;
1087 /* Update busy count. */
1088 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1089
1090 if (2 > (long) ABLOCKS_BUSY (abase))
1091 { /* All the blocks are free. */
1092 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1093 struct ablock **tem = &free_ablock;
1094 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1095
1096 while (*tem)
1097 {
1098 if (*tem >= (struct ablock *) abase && *tem < atop)
1099 {
1100 i++;
1101 *tem = (*tem)->x.next_free;
1102 }
1103 else
1104 tem = &(*tem)->x.next_free;
1105 }
1106 eassert ((aligned & 1) == aligned);
1107 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1108 #ifdef HAVE_POSIX_MEMALIGN
1109 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1110 #endif
1111 free (ABLOCKS_BASE (abase));
1112 }
1113 UNBLOCK_INPUT;
1114 }
1115
1116 /* Return a new buffer structure allocated from the heap with
1117 a call to lisp_malloc. */
1118
1119 struct buffer *
1120 allocate_buffer ()
1121 {
1122 struct buffer *b
1123 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1124 MEM_TYPE_BUFFER);
1125 return b;
1126 }
1127
1128 \f
1129 #ifndef SYSTEM_MALLOC
1130
1131 /* Arranging to disable input signals while we're in malloc.
1132
1133 This only works with GNU malloc. To help out systems which can't
1134 use GNU malloc, all the calls to malloc, realloc, and free
1135 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1136 pair; unfortunately, we have no idea what C library functions
1137 might call malloc, so we can't really protect them unless you're
1138 using GNU malloc. Fortunately, most of the major operating systems
1139 can use GNU malloc. */
1140
1141 #ifndef SYNC_INPUT
1142
1143 #ifndef DOUG_LEA_MALLOC
1144 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1145 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1146 extern void (*__free_hook) P_ ((void *, const void *));
1147 /* Else declared in malloc.h, perhaps with an extra arg. */
1148 #endif /* DOUG_LEA_MALLOC */
1149 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1150 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1151 static void (*old_free_hook) P_ ((void*, const void*));
1152
1153 /* This function is used as the hook for free to call. */
1154
1155 static void
1156 emacs_blocked_free (ptr, ptr2)
1157 void *ptr;
1158 const void *ptr2;
1159 {
1160 EMACS_INT bytes_used_now;
1161
1162 BLOCK_INPUT_ALLOC;
1163
1164 #ifdef GC_MALLOC_CHECK
1165 if (ptr)
1166 {
1167 struct mem_node *m;
1168
1169 m = mem_find (ptr);
1170 if (m == MEM_NIL || m->start != ptr)
1171 {
1172 fprintf (stderr,
1173 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1174 abort ();
1175 }
1176 else
1177 {
1178 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1179 mem_delete (m);
1180 }
1181 }
1182 #endif /* GC_MALLOC_CHECK */
1183
1184 __free_hook = old_free_hook;
1185 free (ptr);
1186
1187 /* If we released our reserve (due to running out of memory),
1188 and we have a fair amount free once again,
1189 try to set aside another reserve in case we run out once more. */
1190 if (! NILP (Vmemory_full)
1191 /* Verify there is enough space that even with the malloc
1192 hysteresis this call won't run out again.
1193 The code here is correct as long as SPARE_MEMORY
1194 is substantially larger than the block size malloc uses. */
1195 && (bytes_used_when_full
1196 > ((bytes_used_when_reconsidered = BYTES_USED)
1197 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1198 refill_memory_reserve ();
1199
1200 __free_hook = emacs_blocked_free;
1201 UNBLOCK_INPUT_ALLOC;
1202 }
1203
1204
1205 /* This function is the malloc hook that Emacs uses. */
1206
1207 static void *
1208 emacs_blocked_malloc (size, ptr)
1209 size_t size;
1210 const void *ptr;
1211 {
1212 void *value;
1213
1214 BLOCK_INPUT_ALLOC;
1215 __malloc_hook = old_malloc_hook;
1216 #ifdef DOUG_LEA_MALLOC
1217 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1218 #else
1219 __malloc_extra_blocks = malloc_hysteresis;
1220 #endif
1221
1222 value = (void *) malloc (size);
1223
1224 #ifdef GC_MALLOC_CHECK
1225 {
1226 struct mem_node *m = mem_find (value);
1227 if (m != MEM_NIL)
1228 {
1229 fprintf (stderr, "Malloc returned %p which is already in use\n",
1230 value);
1231 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1232 m->start, m->end, (char *) m->end - (char *) m->start,
1233 m->type);
1234 abort ();
1235 }
1236
1237 if (!dont_register_blocks)
1238 {
1239 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1240 allocated_mem_type = MEM_TYPE_NON_LISP;
1241 }
1242 }
1243 #endif /* GC_MALLOC_CHECK */
1244
1245 __malloc_hook = emacs_blocked_malloc;
1246 UNBLOCK_INPUT_ALLOC;
1247
1248 /* fprintf (stderr, "%p malloc\n", value); */
1249 return value;
1250 }
1251
1252
1253 /* This function is the realloc hook that Emacs uses. */
1254
1255 static void *
1256 emacs_blocked_realloc (ptr, size, ptr2)
1257 void *ptr;
1258 size_t size;
1259 const void *ptr2;
1260 {
1261 void *value;
1262
1263 BLOCK_INPUT_ALLOC;
1264 __realloc_hook = old_realloc_hook;
1265
1266 #ifdef GC_MALLOC_CHECK
1267 if (ptr)
1268 {
1269 struct mem_node *m = mem_find (ptr);
1270 if (m == MEM_NIL || m->start != ptr)
1271 {
1272 fprintf (stderr,
1273 "Realloc of %p which wasn't allocated with malloc\n",
1274 ptr);
1275 abort ();
1276 }
1277
1278 mem_delete (m);
1279 }
1280
1281 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1282
1283 /* Prevent malloc from registering blocks. */
1284 dont_register_blocks = 1;
1285 #endif /* GC_MALLOC_CHECK */
1286
1287 value = (void *) realloc (ptr, size);
1288
1289 #ifdef GC_MALLOC_CHECK
1290 dont_register_blocks = 0;
1291
1292 {
1293 struct mem_node *m = mem_find (value);
1294 if (m != MEM_NIL)
1295 {
1296 fprintf (stderr, "Realloc returns memory that is already in use\n");
1297 abort ();
1298 }
1299
1300 /* Can't handle zero size regions in the red-black tree. */
1301 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1302 }
1303
1304 /* fprintf (stderr, "%p <- realloc\n", value); */
1305 #endif /* GC_MALLOC_CHECK */
1306
1307 __realloc_hook = emacs_blocked_realloc;
1308 UNBLOCK_INPUT_ALLOC;
1309
1310 return value;
1311 }
1312
1313
1314 #ifdef HAVE_GTK_AND_PTHREAD
1315 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1316 normal malloc. Some thread implementations need this as they call
1317 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1318 calls malloc because it is the first call, and we have an endless loop. */
1319
1320 void
1321 reset_malloc_hooks ()
1322 {
1323 __free_hook = 0;
1324 __malloc_hook = 0;
1325 __realloc_hook = 0;
1326 }
1327 #endif /* HAVE_GTK_AND_PTHREAD */
1328
1329
1330 /* Called from main to set up malloc to use our hooks. */
1331
1332 void
1333 uninterrupt_malloc ()
1334 {
1335 #ifdef HAVE_GTK_AND_PTHREAD
1336 pthread_mutexattr_t attr;
1337
1338 /* GLIBC has a faster way to do this, but lets keep it portable.
1339 This is according to the Single UNIX Specification. */
1340 pthread_mutexattr_init (&attr);
1341 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1342 pthread_mutex_init (&alloc_mutex, &attr);
1343 #endif /* HAVE_GTK_AND_PTHREAD */
1344
1345 if (__free_hook != emacs_blocked_free)
1346 old_free_hook = __free_hook;
1347 __free_hook = emacs_blocked_free;
1348
1349 if (__malloc_hook != emacs_blocked_malloc)
1350 old_malloc_hook = __malloc_hook;
1351 __malloc_hook = emacs_blocked_malloc;
1352
1353 if (__realloc_hook != emacs_blocked_realloc)
1354 old_realloc_hook = __realloc_hook;
1355 __realloc_hook = emacs_blocked_realloc;
1356 }
1357
1358 #endif /* not SYNC_INPUT */
1359 #endif /* not SYSTEM_MALLOC */
1360
1361
1362 \f
1363 /***********************************************************************
1364 Interval Allocation
1365 ***********************************************************************/
1366
1367 /* Number of intervals allocated in an interval_block structure.
1368 The 1020 is 1024 minus malloc overhead. */
1369
1370 #define INTERVAL_BLOCK_SIZE \
1371 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1372
1373 /* Intervals are allocated in chunks in form of an interval_block
1374 structure. */
1375
1376 struct interval_block
1377 {
1378 /* Place `intervals' first, to preserve alignment. */
1379 struct interval intervals[INTERVAL_BLOCK_SIZE];
1380 struct interval_block *next;
1381 };
1382
1383 /* Current interval block. Its `next' pointer points to older
1384 blocks. */
1385
1386 struct interval_block *interval_block;
1387
1388 /* Index in interval_block above of the next unused interval
1389 structure. */
1390
1391 static int interval_block_index;
1392
1393 /* Number of free and live intervals. */
1394
1395 static int total_free_intervals, total_intervals;
1396
1397 /* List of free intervals. */
1398
1399 INTERVAL interval_free_list;
1400
1401 /* Total number of interval blocks now in use. */
1402
1403 int n_interval_blocks;
1404
1405
1406 /* Initialize interval allocation. */
1407
1408 static void
1409 init_intervals ()
1410 {
1411 interval_block = NULL;
1412 interval_block_index = INTERVAL_BLOCK_SIZE;
1413 interval_free_list = 0;
1414 n_interval_blocks = 0;
1415 }
1416
1417
1418 /* Return a new interval. */
1419
1420 INTERVAL
1421 make_interval ()
1422 {
1423 INTERVAL val;
1424
1425 /* eassert (!handling_signal); */
1426
1427 #ifndef SYNC_INPUT
1428 BLOCK_INPUT;
1429 #endif
1430
1431 if (interval_free_list)
1432 {
1433 val = interval_free_list;
1434 interval_free_list = INTERVAL_PARENT (interval_free_list);
1435 }
1436 else
1437 {
1438 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1439 {
1440 register struct interval_block *newi;
1441
1442 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1443 MEM_TYPE_NON_LISP);
1444
1445 newi->next = interval_block;
1446 interval_block = newi;
1447 interval_block_index = 0;
1448 n_interval_blocks++;
1449 }
1450 val = &interval_block->intervals[interval_block_index++];
1451 }
1452
1453 #ifndef SYNC_INPUT
1454 UNBLOCK_INPUT;
1455 #endif
1456
1457 consing_since_gc += sizeof (struct interval);
1458 intervals_consed++;
1459 RESET_INTERVAL (val);
1460 val->gcmarkbit = 0;
1461 return val;
1462 }
1463
1464
1465 /* Mark Lisp objects in interval I. */
1466
1467 static void
1468 mark_interval (i, dummy)
1469 register INTERVAL i;
1470 Lisp_Object dummy;
1471 {
1472 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1473 i->gcmarkbit = 1;
1474 mark_object (i->plist);
1475 }
1476
1477
1478 /* Mark the interval tree rooted in TREE. Don't call this directly;
1479 use the macro MARK_INTERVAL_TREE instead. */
1480
1481 static void
1482 mark_interval_tree (tree)
1483 register INTERVAL tree;
1484 {
1485 /* No need to test if this tree has been marked already; this
1486 function is always called through the MARK_INTERVAL_TREE macro,
1487 which takes care of that. */
1488
1489 traverse_intervals_noorder (tree, mark_interval, Qnil);
1490 }
1491
1492
1493 /* Mark the interval tree rooted in I. */
1494
1495 #define MARK_INTERVAL_TREE(i) \
1496 do { \
1497 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1498 mark_interval_tree (i); \
1499 } while (0)
1500
1501
1502 #define UNMARK_BALANCE_INTERVALS(i) \
1503 do { \
1504 if (! NULL_INTERVAL_P (i)) \
1505 (i) = balance_intervals (i); \
1506 } while (0)
1507
1508 \f
1509 /* Number support. If NO_UNION_TYPE isn't in effect, we
1510 can't create number objects in macros. */
1511 #ifndef make_number
1512 Lisp_Object
1513 make_number (n)
1514 EMACS_INT n;
1515 {
1516 Lisp_Object obj;
1517 obj.s.val = n;
1518 obj.s.type = Lisp_Int;
1519 return obj;
1520 }
1521 #endif
1522 \f
1523 /***********************************************************************
1524 String Allocation
1525 ***********************************************************************/
1526
1527 /* Lisp_Strings are allocated in string_block structures. When a new
1528 string_block is allocated, all the Lisp_Strings it contains are
1529 added to a free-list string_free_list. When a new Lisp_String is
1530 needed, it is taken from that list. During the sweep phase of GC,
1531 string_blocks that are entirely free are freed, except two which
1532 we keep.
1533
1534 String data is allocated from sblock structures. Strings larger
1535 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1536 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1537
1538 Sblocks consist internally of sdata structures, one for each
1539 Lisp_String. The sdata structure points to the Lisp_String it
1540 belongs to. The Lisp_String points back to the `u.data' member of
1541 its sdata structure.
1542
1543 When a Lisp_String is freed during GC, it is put back on
1544 string_free_list, and its `data' member and its sdata's `string'
1545 pointer is set to null. The size of the string is recorded in the
1546 `u.nbytes' member of the sdata. So, sdata structures that are no
1547 longer used, can be easily recognized, and it's easy to compact the
1548 sblocks of small strings which we do in compact_small_strings. */
1549
1550 /* Size in bytes of an sblock structure used for small strings. This
1551 is 8192 minus malloc overhead. */
1552
1553 #define SBLOCK_SIZE 8188
1554
1555 /* Strings larger than this are considered large strings. String data
1556 for large strings is allocated from individual sblocks. */
1557
1558 #define LARGE_STRING_BYTES 1024
1559
1560 /* Structure describing string memory sub-allocated from an sblock.
1561 This is where the contents of Lisp strings are stored. */
1562
1563 struct sdata
1564 {
1565 /* Back-pointer to the string this sdata belongs to. If null, this
1566 structure is free, and the NBYTES member of the union below
1567 contains the string's byte size (the same value that STRING_BYTES
1568 would return if STRING were non-null). If non-null, STRING_BYTES
1569 (STRING) is the size of the data, and DATA contains the string's
1570 contents. */
1571 struct Lisp_String *string;
1572
1573 #ifdef GC_CHECK_STRING_BYTES
1574
1575 EMACS_INT nbytes;
1576 unsigned char data[1];
1577
1578 #define SDATA_NBYTES(S) (S)->nbytes
1579 #define SDATA_DATA(S) (S)->data
1580
1581 #else /* not GC_CHECK_STRING_BYTES */
1582
1583 union
1584 {
1585 /* When STRING in non-null. */
1586 unsigned char data[1];
1587
1588 /* When STRING is null. */
1589 EMACS_INT nbytes;
1590 } u;
1591
1592
1593 #define SDATA_NBYTES(S) (S)->u.nbytes
1594 #define SDATA_DATA(S) (S)->u.data
1595
1596 #endif /* not GC_CHECK_STRING_BYTES */
1597 };
1598
1599
1600 /* Structure describing a block of memory which is sub-allocated to
1601 obtain string data memory for strings. Blocks for small strings
1602 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1603 as large as needed. */
1604
1605 struct sblock
1606 {
1607 /* Next in list. */
1608 struct sblock *next;
1609
1610 /* Pointer to the next free sdata block. This points past the end
1611 of the sblock if there isn't any space left in this block. */
1612 struct sdata *next_free;
1613
1614 /* Start of data. */
1615 struct sdata first_data;
1616 };
1617
1618 /* Number of Lisp strings in a string_block structure. The 1020 is
1619 1024 minus malloc overhead. */
1620
1621 #define STRING_BLOCK_SIZE \
1622 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1623
1624 /* Structure describing a block from which Lisp_String structures
1625 are allocated. */
1626
1627 struct string_block
1628 {
1629 /* Place `strings' first, to preserve alignment. */
1630 struct Lisp_String strings[STRING_BLOCK_SIZE];
1631 struct string_block *next;
1632 };
1633
1634 /* Head and tail of the list of sblock structures holding Lisp string
1635 data. We always allocate from current_sblock. The NEXT pointers
1636 in the sblock structures go from oldest_sblock to current_sblock. */
1637
1638 static struct sblock *oldest_sblock, *current_sblock;
1639
1640 /* List of sblocks for large strings. */
1641
1642 static struct sblock *large_sblocks;
1643
1644 /* List of string_block structures, and how many there are. */
1645
1646 static struct string_block *string_blocks;
1647 static int n_string_blocks;
1648
1649 /* Free-list of Lisp_Strings. */
1650
1651 static struct Lisp_String *string_free_list;
1652
1653 /* Number of live and free Lisp_Strings. */
1654
1655 static int total_strings, total_free_strings;
1656
1657 /* Number of bytes used by live strings. */
1658
1659 static int total_string_size;
1660
1661 /* Given a pointer to a Lisp_String S which is on the free-list
1662 string_free_list, return a pointer to its successor in the
1663 free-list. */
1664
1665 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1666
1667 /* Return a pointer to the sdata structure belonging to Lisp string S.
1668 S must be live, i.e. S->data must not be null. S->data is actually
1669 a pointer to the `u.data' member of its sdata structure; the
1670 structure starts at a constant offset in front of that. */
1671
1672 #ifdef GC_CHECK_STRING_BYTES
1673
1674 #define SDATA_OF_STRING(S) \
1675 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1676 - sizeof (EMACS_INT)))
1677
1678 #else /* not GC_CHECK_STRING_BYTES */
1679
1680 #define SDATA_OF_STRING(S) \
1681 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1682
1683 #endif /* not GC_CHECK_STRING_BYTES */
1684
1685
1686 #ifdef GC_CHECK_STRING_OVERRUN
1687
1688 /* We check for overrun in string data blocks by appending a small
1689 "cookie" after each allocated string data block, and check for the
1690 presence of this cookie during GC. */
1691
1692 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1693 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1694 { 0xde, 0xad, 0xbe, 0xef };
1695
1696 #else
1697 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1698 #endif
1699
1700 /* Value is the size of an sdata structure large enough to hold NBYTES
1701 bytes of string data. The value returned includes a terminating
1702 NUL byte, the size of the sdata structure, and padding. */
1703
1704 #ifdef GC_CHECK_STRING_BYTES
1705
1706 #define SDATA_SIZE(NBYTES) \
1707 ((sizeof (struct Lisp_String *) \
1708 + (NBYTES) + 1 \
1709 + sizeof (EMACS_INT) \
1710 + sizeof (EMACS_INT) - 1) \
1711 & ~(sizeof (EMACS_INT) - 1))
1712
1713 #else /* not GC_CHECK_STRING_BYTES */
1714
1715 #define SDATA_SIZE(NBYTES) \
1716 ((sizeof (struct Lisp_String *) \
1717 + (NBYTES) + 1 \
1718 + sizeof (EMACS_INT) - 1) \
1719 & ~(sizeof (EMACS_INT) - 1))
1720
1721 #endif /* not GC_CHECK_STRING_BYTES */
1722
1723 /* Extra bytes to allocate for each string. */
1724
1725 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1726
1727 /* Initialize string allocation. Called from init_alloc_once. */
1728
1729 void
1730 init_strings ()
1731 {
1732 total_strings = total_free_strings = total_string_size = 0;
1733 oldest_sblock = current_sblock = large_sblocks = NULL;
1734 string_blocks = NULL;
1735 n_string_blocks = 0;
1736 string_free_list = NULL;
1737 }
1738
1739
1740 #ifdef GC_CHECK_STRING_BYTES
1741
1742 static int check_string_bytes_count;
1743
1744 void check_string_bytes P_ ((int));
1745 void check_sblock P_ ((struct sblock *));
1746
1747 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1748
1749
1750 /* Like GC_STRING_BYTES, but with debugging check. */
1751
1752 int
1753 string_bytes (s)
1754 struct Lisp_String *s;
1755 {
1756 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1757 if (!PURE_POINTER_P (s)
1758 && s->data
1759 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1760 abort ();
1761 return nbytes;
1762 }
1763
1764 /* Check validity of Lisp strings' string_bytes member in B. */
1765
1766 void
1767 check_sblock (b)
1768 struct sblock *b;
1769 {
1770 struct sdata *from, *end, *from_end;
1771
1772 end = b->next_free;
1773
1774 for (from = &b->first_data; from < end; from = from_end)
1775 {
1776 /* Compute the next FROM here because copying below may
1777 overwrite data we need to compute it. */
1778 int nbytes;
1779
1780 /* Check that the string size recorded in the string is the
1781 same as the one recorded in the sdata structure. */
1782 if (from->string)
1783 CHECK_STRING_BYTES (from->string);
1784
1785 if (from->string)
1786 nbytes = GC_STRING_BYTES (from->string);
1787 else
1788 nbytes = SDATA_NBYTES (from);
1789
1790 nbytes = SDATA_SIZE (nbytes);
1791 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1792 }
1793 }
1794
1795
1796 /* Check validity of Lisp strings' string_bytes member. ALL_P
1797 non-zero means check all strings, otherwise check only most
1798 recently allocated strings. Used for hunting a bug. */
1799
1800 void
1801 check_string_bytes (all_p)
1802 int all_p;
1803 {
1804 if (all_p)
1805 {
1806 struct sblock *b;
1807
1808 for (b = large_sblocks; b; b = b->next)
1809 {
1810 struct Lisp_String *s = b->first_data.string;
1811 if (s)
1812 CHECK_STRING_BYTES (s);
1813 }
1814
1815 for (b = oldest_sblock; b; b = b->next)
1816 check_sblock (b);
1817 }
1818 else
1819 check_sblock (current_sblock);
1820 }
1821
1822 #endif /* GC_CHECK_STRING_BYTES */
1823
1824 #ifdef GC_CHECK_STRING_FREE_LIST
1825
1826 /* Walk through the string free list looking for bogus next pointers.
1827 This may catch buffer overrun from a previous string. */
1828
1829 static void
1830 check_string_free_list ()
1831 {
1832 struct Lisp_String *s;
1833
1834 /* Pop a Lisp_String off the free-list. */
1835 s = string_free_list;
1836 while (s != NULL)
1837 {
1838 if ((unsigned)s < 1024)
1839 abort();
1840 s = NEXT_FREE_LISP_STRING (s);
1841 }
1842 }
1843 #else
1844 #define check_string_free_list()
1845 #endif
1846
1847 /* Return a new Lisp_String. */
1848
1849 static struct Lisp_String *
1850 allocate_string ()
1851 {
1852 struct Lisp_String *s;
1853
1854 /* eassert (!handling_signal); */
1855
1856 #ifndef SYNC_INPUT
1857 BLOCK_INPUT;
1858 #endif
1859
1860 /* If the free-list is empty, allocate a new string_block, and
1861 add all the Lisp_Strings in it to the free-list. */
1862 if (string_free_list == NULL)
1863 {
1864 struct string_block *b;
1865 int i;
1866
1867 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1868 bzero (b, sizeof *b);
1869 b->next = string_blocks;
1870 string_blocks = b;
1871 ++n_string_blocks;
1872
1873 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1874 {
1875 s = b->strings + i;
1876 NEXT_FREE_LISP_STRING (s) = string_free_list;
1877 string_free_list = s;
1878 }
1879
1880 total_free_strings += STRING_BLOCK_SIZE;
1881 }
1882
1883 check_string_free_list ();
1884
1885 /* Pop a Lisp_String off the free-list. */
1886 s = string_free_list;
1887 string_free_list = NEXT_FREE_LISP_STRING (s);
1888
1889 #ifndef SYNC_INPUT
1890 UNBLOCK_INPUT;
1891 #endif
1892
1893 /* Probably not strictly necessary, but play it safe. */
1894 bzero (s, sizeof *s);
1895
1896 --total_free_strings;
1897 ++total_strings;
1898 ++strings_consed;
1899 consing_since_gc += sizeof *s;
1900
1901 #ifdef GC_CHECK_STRING_BYTES
1902 if (!noninteractive
1903 #ifdef MAC_OS8
1904 && current_sblock
1905 #endif
1906 )
1907 {
1908 if (++check_string_bytes_count == 200)
1909 {
1910 check_string_bytes_count = 0;
1911 check_string_bytes (1);
1912 }
1913 else
1914 check_string_bytes (0);
1915 }
1916 #endif /* GC_CHECK_STRING_BYTES */
1917
1918 return s;
1919 }
1920
1921
1922 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1923 plus a NUL byte at the end. Allocate an sdata structure for S, and
1924 set S->data to its `u.data' member. Store a NUL byte at the end of
1925 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1926 S->data if it was initially non-null. */
1927
1928 void
1929 allocate_string_data (s, nchars, nbytes)
1930 struct Lisp_String *s;
1931 int nchars, nbytes;
1932 {
1933 struct sdata *data, *old_data;
1934 struct sblock *b;
1935 int needed, old_nbytes;
1936
1937 /* Determine the number of bytes needed to store NBYTES bytes
1938 of string data. */
1939 needed = SDATA_SIZE (nbytes);
1940 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1941 old_nbytes = GC_STRING_BYTES (s);
1942
1943 #ifndef SYNC_INPUT
1944 BLOCK_INPUT;
1945 #endif
1946
1947 if (nbytes > LARGE_STRING_BYTES)
1948 {
1949 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1950
1951 #ifdef DOUG_LEA_MALLOC
1952 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1953 because mapped region contents are not preserved in
1954 a dumped Emacs.
1955
1956 In case you think of allowing it in a dumped Emacs at the
1957 cost of not being able to re-dump, there's another reason:
1958 mmap'ed data typically have an address towards the top of the
1959 address space, which won't fit into an EMACS_INT (at least on
1960 32-bit systems with the current tagging scheme). --fx */
1961 BLOCK_INPUT;
1962 mallopt (M_MMAP_MAX, 0);
1963 UNBLOCK_INPUT;
1964 #endif
1965
1966 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1967
1968 #ifdef DOUG_LEA_MALLOC
1969 /* Back to a reasonable maximum of mmap'ed areas. */
1970 BLOCK_INPUT;
1971 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1972 UNBLOCK_INPUT;
1973 #endif
1974
1975 b->next_free = &b->first_data;
1976 b->first_data.string = NULL;
1977 b->next = large_sblocks;
1978 large_sblocks = b;
1979 }
1980 else if (current_sblock == NULL
1981 || (((char *) current_sblock + SBLOCK_SIZE
1982 - (char *) current_sblock->next_free)
1983 < (needed + GC_STRING_EXTRA)))
1984 {
1985 /* Not enough room in the current sblock. */
1986 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1987 b->next_free = &b->first_data;
1988 b->first_data.string = NULL;
1989 b->next = NULL;
1990
1991 if (current_sblock)
1992 current_sblock->next = b;
1993 else
1994 oldest_sblock = b;
1995 current_sblock = b;
1996 }
1997 else
1998 b = current_sblock;
1999
2000 data = b->next_free;
2001 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2002
2003 #ifndef SYNC_INPUT
2004 UNBLOCK_INPUT;
2005 #endif
2006
2007 data->string = s;
2008 s->data = SDATA_DATA (data);
2009 #ifdef GC_CHECK_STRING_BYTES
2010 SDATA_NBYTES (data) = nbytes;
2011 #endif
2012 s->size = nchars;
2013 s->size_byte = nbytes;
2014 s->data[nbytes] = '\0';
2015 #ifdef GC_CHECK_STRING_OVERRUN
2016 bcopy (string_overrun_cookie, (char *) data + needed,
2017 GC_STRING_OVERRUN_COOKIE_SIZE);
2018 #endif
2019
2020 /* If S had already data assigned, mark that as free by setting its
2021 string back-pointer to null, and recording the size of the data
2022 in it. */
2023 if (old_data)
2024 {
2025 SDATA_NBYTES (old_data) = old_nbytes;
2026 old_data->string = NULL;
2027 }
2028
2029 consing_since_gc += needed;
2030 }
2031
2032
2033 /* Sweep and compact strings. */
2034
2035 static void
2036 sweep_strings ()
2037 {
2038 struct string_block *b, *next;
2039 struct string_block *live_blocks = NULL;
2040
2041 string_free_list = NULL;
2042 total_strings = total_free_strings = 0;
2043 total_string_size = 0;
2044
2045 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2046 for (b = string_blocks; b; b = next)
2047 {
2048 int i, nfree = 0;
2049 struct Lisp_String *free_list_before = string_free_list;
2050
2051 next = b->next;
2052
2053 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2054 {
2055 struct Lisp_String *s = b->strings + i;
2056
2057 if (s->data)
2058 {
2059 /* String was not on free-list before. */
2060 if (STRING_MARKED_P (s))
2061 {
2062 /* String is live; unmark it and its intervals. */
2063 UNMARK_STRING (s);
2064
2065 if (!NULL_INTERVAL_P (s->intervals))
2066 UNMARK_BALANCE_INTERVALS (s->intervals);
2067
2068 ++total_strings;
2069 total_string_size += STRING_BYTES (s);
2070 }
2071 else
2072 {
2073 /* String is dead. Put it on the free-list. */
2074 struct sdata *data = SDATA_OF_STRING (s);
2075
2076 /* Save the size of S in its sdata so that we know
2077 how large that is. Reset the sdata's string
2078 back-pointer so that we know it's free. */
2079 #ifdef GC_CHECK_STRING_BYTES
2080 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2081 abort ();
2082 #else
2083 data->u.nbytes = GC_STRING_BYTES (s);
2084 #endif
2085 data->string = NULL;
2086
2087 /* Reset the strings's `data' member so that we
2088 know it's free. */
2089 s->data = NULL;
2090
2091 /* Put the string on the free-list. */
2092 NEXT_FREE_LISP_STRING (s) = string_free_list;
2093 string_free_list = s;
2094 ++nfree;
2095 }
2096 }
2097 else
2098 {
2099 /* S was on the free-list before. Put it there again. */
2100 NEXT_FREE_LISP_STRING (s) = string_free_list;
2101 string_free_list = s;
2102 ++nfree;
2103 }
2104 }
2105
2106 /* Free blocks that contain free Lisp_Strings only, except
2107 the first two of them. */
2108 if (nfree == STRING_BLOCK_SIZE
2109 && total_free_strings > STRING_BLOCK_SIZE)
2110 {
2111 lisp_free (b);
2112 --n_string_blocks;
2113 string_free_list = free_list_before;
2114 }
2115 else
2116 {
2117 total_free_strings += nfree;
2118 b->next = live_blocks;
2119 live_blocks = b;
2120 }
2121 }
2122
2123 check_string_free_list ();
2124
2125 string_blocks = live_blocks;
2126 free_large_strings ();
2127 compact_small_strings ();
2128
2129 check_string_free_list ();
2130 }
2131
2132
2133 /* Free dead large strings. */
2134
2135 static void
2136 free_large_strings ()
2137 {
2138 struct sblock *b, *next;
2139 struct sblock *live_blocks = NULL;
2140
2141 for (b = large_sblocks; b; b = next)
2142 {
2143 next = b->next;
2144
2145 if (b->first_data.string == NULL)
2146 lisp_free (b);
2147 else
2148 {
2149 b->next = live_blocks;
2150 live_blocks = b;
2151 }
2152 }
2153
2154 large_sblocks = live_blocks;
2155 }
2156
2157
2158 /* Compact data of small strings. Free sblocks that don't contain
2159 data of live strings after compaction. */
2160
2161 static void
2162 compact_small_strings ()
2163 {
2164 struct sblock *b, *tb, *next;
2165 struct sdata *from, *to, *end, *tb_end;
2166 struct sdata *to_end, *from_end;
2167
2168 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2169 to, and TB_END is the end of TB. */
2170 tb = oldest_sblock;
2171 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2172 to = &tb->first_data;
2173
2174 /* Step through the blocks from the oldest to the youngest. We
2175 expect that old blocks will stabilize over time, so that less
2176 copying will happen this way. */
2177 for (b = oldest_sblock; b; b = b->next)
2178 {
2179 end = b->next_free;
2180 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2181
2182 for (from = &b->first_data; from < end; from = from_end)
2183 {
2184 /* Compute the next FROM here because copying below may
2185 overwrite data we need to compute it. */
2186 int nbytes;
2187
2188 #ifdef GC_CHECK_STRING_BYTES
2189 /* Check that the string size recorded in the string is the
2190 same as the one recorded in the sdata structure. */
2191 if (from->string
2192 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2193 abort ();
2194 #endif /* GC_CHECK_STRING_BYTES */
2195
2196 if (from->string)
2197 nbytes = GC_STRING_BYTES (from->string);
2198 else
2199 nbytes = SDATA_NBYTES (from);
2200
2201 if (nbytes > LARGE_STRING_BYTES)
2202 abort ();
2203
2204 nbytes = SDATA_SIZE (nbytes);
2205 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2206
2207 #ifdef GC_CHECK_STRING_OVERRUN
2208 if (bcmp (string_overrun_cookie,
2209 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2210 GC_STRING_OVERRUN_COOKIE_SIZE))
2211 abort ();
2212 #endif
2213
2214 /* FROM->string non-null means it's alive. Copy its data. */
2215 if (from->string)
2216 {
2217 /* If TB is full, proceed with the next sblock. */
2218 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2219 if (to_end > tb_end)
2220 {
2221 tb->next_free = to;
2222 tb = tb->next;
2223 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2224 to = &tb->first_data;
2225 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2226 }
2227
2228 /* Copy, and update the string's `data' pointer. */
2229 if (from != to)
2230 {
2231 xassert (tb != b || to <= from);
2232 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2233 to->string->data = SDATA_DATA (to);
2234 }
2235
2236 /* Advance past the sdata we copied to. */
2237 to = to_end;
2238 }
2239 }
2240 }
2241
2242 /* The rest of the sblocks following TB don't contain live data, so
2243 we can free them. */
2244 for (b = tb->next; b; b = next)
2245 {
2246 next = b->next;
2247 lisp_free (b);
2248 }
2249
2250 tb->next_free = to;
2251 tb->next = NULL;
2252 current_sblock = tb;
2253 }
2254
2255
2256 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2257 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2258 LENGTH must be an integer.
2259 INIT must be an integer that represents a character. */)
2260 (length, init)
2261 Lisp_Object length, init;
2262 {
2263 register Lisp_Object val;
2264 register unsigned char *p, *end;
2265 int c, nbytes;
2266
2267 CHECK_NATNUM (length);
2268 CHECK_NUMBER (init);
2269
2270 c = XINT (init);
2271 if (SINGLE_BYTE_CHAR_P (c))
2272 {
2273 nbytes = XINT (length);
2274 val = make_uninit_string (nbytes);
2275 p = SDATA (val);
2276 end = p + SCHARS (val);
2277 while (p != end)
2278 *p++ = c;
2279 }
2280 else
2281 {
2282 unsigned char str[MAX_MULTIBYTE_LENGTH];
2283 int len = CHAR_STRING (c, str);
2284
2285 nbytes = len * XINT (length);
2286 val = make_uninit_multibyte_string (XINT (length), nbytes);
2287 p = SDATA (val);
2288 end = p + nbytes;
2289 while (p != end)
2290 {
2291 bcopy (str, p, len);
2292 p += len;
2293 }
2294 }
2295
2296 *p = 0;
2297 return val;
2298 }
2299
2300
2301 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2302 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2303 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2304 (length, init)
2305 Lisp_Object length, init;
2306 {
2307 register Lisp_Object val;
2308 struct Lisp_Bool_Vector *p;
2309 int real_init, i;
2310 int length_in_chars, length_in_elts, bits_per_value;
2311
2312 CHECK_NATNUM (length);
2313
2314 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2315
2316 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2317 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2318 / BOOL_VECTOR_BITS_PER_CHAR);
2319
2320 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2321 slot `size' of the struct Lisp_Bool_Vector. */
2322 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2323 p = XBOOL_VECTOR (val);
2324
2325 /* Get rid of any bits that would cause confusion. */
2326 p->vector_size = 0;
2327 XSETBOOL_VECTOR (val, p);
2328 p->size = XFASTINT (length);
2329
2330 real_init = (NILP (init) ? 0 : -1);
2331 for (i = 0; i < length_in_chars ; i++)
2332 p->data[i] = real_init;
2333
2334 /* Clear the extraneous bits in the last byte. */
2335 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2336 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2337 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2338
2339 return val;
2340 }
2341
2342
2343 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2344 of characters from the contents. This string may be unibyte or
2345 multibyte, depending on the contents. */
2346
2347 Lisp_Object
2348 make_string (contents, nbytes)
2349 const char *contents;
2350 int nbytes;
2351 {
2352 register Lisp_Object val;
2353 int nchars, multibyte_nbytes;
2354
2355 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2356 if (nbytes == nchars || nbytes != multibyte_nbytes)
2357 /* CONTENTS contains no multibyte sequences or contains an invalid
2358 multibyte sequence. We must make unibyte string. */
2359 val = make_unibyte_string (contents, nbytes);
2360 else
2361 val = make_multibyte_string (contents, nchars, nbytes);
2362 return val;
2363 }
2364
2365
2366 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2367
2368 Lisp_Object
2369 make_unibyte_string (contents, length)
2370 const char *contents;
2371 int length;
2372 {
2373 register Lisp_Object val;
2374 val = make_uninit_string (length);
2375 bcopy (contents, SDATA (val), length);
2376 STRING_SET_UNIBYTE (val);
2377 return val;
2378 }
2379
2380
2381 /* Make a multibyte string from NCHARS characters occupying NBYTES
2382 bytes at CONTENTS. */
2383
2384 Lisp_Object
2385 make_multibyte_string (contents, nchars, nbytes)
2386 const char *contents;
2387 int nchars, nbytes;
2388 {
2389 register Lisp_Object val;
2390 val = make_uninit_multibyte_string (nchars, nbytes);
2391 bcopy (contents, SDATA (val), nbytes);
2392 return val;
2393 }
2394
2395
2396 /* Make a string from NCHARS characters occupying NBYTES bytes at
2397 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2398
2399 Lisp_Object
2400 make_string_from_bytes (contents, nchars, nbytes)
2401 const char *contents;
2402 int nchars, nbytes;
2403 {
2404 register Lisp_Object val;
2405 val = make_uninit_multibyte_string (nchars, nbytes);
2406 bcopy (contents, SDATA (val), nbytes);
2407 if (SBYTES (val) == SCHARS (val))
2408 STRING_SET_UNIBYTE (val);
2409 return val;
2410 }
2411
2412
2413 /* Make a string from NCHARS characters occupying NBYTES bytes at
2414 CONTENTS. The argument MULTIBYTE controls whether to label the
2415 string as multibyte. If NCHARS is negative, it counts the number of
2416 characters by itself. */
2417
2418 Lisp_Object
2419 make_specified_string (contents, nchars, nbytes, multibyte)
2420 const char *contents;
2421 int nchars, nbytes;
2422 int multibyte;
2423 {
2424 register Lisp_Object val;
2425
2426 if (nchars < 0)
2427 {
2428 if (multibyte)
2429 nchars = multibyte_chars_in_text (contents, nbytes);
2430 else
2431 nchars = nbytes;
2432 }
2433 val = make_uninit_multibyte_string (nchars, nbytes);
2434 bcopy (contents, SDATA (val), nbytes);
2435 if (!multibyte)
2436 STRING_SET_UNIBYTE (val);
2437 return val;
2438 }
2439
2440
2441 /* Make a string from the data at STR, treating it as multibyte if the
2442 data warrants. */
2443
2444 Lisp_Object
2445 build_string (str)
2446 const char *str;
2447 {
2448 return make_string (str, strlen (str));
2449 }
2450
2451
2452 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2453 occupying LENGTH bytes. */
2454
2455 Lisp_Object
2456 make_uninit_string (length)
2457 int length;
2458 {
2459 Lisp_Object val;
2460 val = make_uninit_multibyte_string (length, length);
2461 STRING_SET_UNIBYTE (val);
2462 return val;
2463 }
2464
2465
2466 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2467 which occupy NBYTES bytes. */
2468
2469 Lisp_Object
2470 make_uninit_multibyte_string (nchars, nbytes)
2471 int nchars, nbytes;
2472 {
2473 Lisp_Object string;
2474 struct Lisp_String *s;
2475
2476 if (nchars < 0)
2477 abort ();
2478
2479 s = allocate_string ();
2480 allocate_string_data (s, nchars, nbytes);
2481 XSETSTRING (string, s);
2482 string_chars_consed += nbytes;
2483 return string;
2484 }
2485
2486
2487 \f
2488 /***********************************************************************
2489 Float Allocation
2490 ***********************************************************************/
2491
2492 /* We store float cells inside of float_blocks, allocating a new
2493 float_block with malloc whenever necessary. Float cells reclaimed
2494 by GC are put on a free list to be reallocated before allocating
2495 any new float cells from the latest float_block. */
2496
2497 #define FLOAT_BLOCK_SIZE \
2498 (((BLOCK_BYTES - sizeof (struct float_block *) \
2499 /* The compiler might add padding at the end. */ \
2500 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2501 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2502
2503 #define GETMARKBIT(block,n) \
2504 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2505 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2506 & 1)
2507
2508 #define SETMARKBIT(block,n) \
2509 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2510 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2511
2512 #define UNSETMARKBIT(block,n) \
2513 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2514 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2515
2516 #define FLOAT_BLOCK(fptr) \
2517 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2518
2519 #define FLOAT_INDEX(fptr) \
2520 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2521
2522 struct float_block
2523 {
2524 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2525 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2526 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2527 struct float_block *next;
2528 };
2529
2530 #define FLOAT_MARKED_P(fptr) \
2531 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2532
2533 #define FLOAT_MARK(fptr) \
2534 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2535
2536 #define FLOAT_UNMARK(fptr) \
2537 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2538
2539 /* Current float_block. */
2540
2541 struct float_block *float_block;
2542
2543 /* Index of first unused Lisp_Float in the current float_block. */
2544
2545 int float_block_index;
2546
2547 /* Total number of float blocks now in use. */
2548
2549 int n_float_blocks;
2550
2551 /* Free-list of Lisp_Floats. */
2552
2553 struct Lisp_Float *float_free_list;
2554
2555
2556 /* Initialize float allocation. */
2557
2558 void
2559 init_float ()
2560 {
2561 float_block = NULL;
2562 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2563 float_free_list = 0;
2564 n_float_blocks = 0;
2565 }
2566
2567
2568 /* Explicitly free a float cell by putting it on the free-list. */
2569
2570 void
2571 free_float (ptr)
2572 struct Lisp_Float *ptr;
2573 {
2574 ptr->u.chain = float_free_list;
2575 float_free_list = ptr;
2576 }
2577
2578
2579 /* Return a new float object with value FLOAT_VALUE. */
2580
2581 Lisp_Object
2582 make_float (float_value)
2583 double float_value;
2584 {
2585 register Lisp_Object val;
2586
2587 /* eassert (!handling_signal); */
2588
2589 #ifndef SYNC_INPUT
2590 BLOCK_INPUT;
2591 #endif
2592
2593 if (float_free_list)
2594 {
2595 /* We use the data field for chaining the free list
2596 so that we won't use the same field that has the mark bit. */
2597 XSETFLOAT (val, float_free_list);
2598 float_free_list = float_free_list->u.chain;
2599 }
2600 else
2601 {
2602 if (float_block_index == FLOAT_BLOCK_SIZE)
2603 {
2604 register struct float_block *new;
2605
2606 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2607 MEM_TYPE_FLOAT);
2608 new->next = float_block;
2609 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2610 float_block = new;
2611 float_block_index = 0;
2612 n_float_blocks++;
2613 }
2614 XSETFLOAT (val, &float_block->floats[float_block_index]);
2615 float_block_index++;
2616 }
2617
2618 #ifndef SYNC_INPUT
2619 UNBLOCK_INPUT;
2620 #endif
2621
2622 XFLOAT_DATA (val) = float_value;
2623 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2624 consing_since_gc += sizeof (struct Lisp_Float);
2625 floats_consed++;
2626 return val;
2627 }
2628
2629
2630 \f
2631 /***********************************************************************
2632 Cons Allocation
2633 ***********************************************************************/
2634
2635 /* We store cons cells inside of cons_blocks, allocating a new
2636 cons_block with malloc whenever necessary. Cons cells reclaimed by
2637 GC are put on a free list to be reallocated before allocating
2638 any new cons cells from the latest cons_block. */
2639
2640 #define CONS_BLOCK_SIZE \
2641 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2642 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2643
2644 #define CONS_BLOCK(fptr) \
2645 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2646
2647 #define CONS_INDEX(fptr) \
2648 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2649
2650 struct cons_block
2651 {
2652 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2653 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2654 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2655 struct cons_block *next;
2656 };
2657
2658 #define CONS_MARKED_P(fptr) \
2659 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2660
2661 #define CONS_MARK(fptr) \
2662 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2663
2664 #define CONS_UNMARK(fptr) \
2665 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2666
2667 /* Current cons_block. */
2668
2669 struct cons_block *cons_block;
2670
2671 /* Index of first unused Lisp_Cons in the current block. */
2672
2673 int cons_block_index;
2674
2675 /* Free-list of Lisp_Cons structures. */
2676
2677 struct Lisp_Cons *cons_free_list;
2678
2679 /* Total number of cons blocks now in use. */
2680
2681 int n_cons_blocks;
2682
2683
2684 /* Initialize cons allocation. */
2685
2686 void
2687 init_cons ()
2688 {
2689 cons_block = NULL;
2690 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2691 cons_free_list = 0;
2692 n_cons_blocks = 0;
2693 }
2694
2695
2696 /* Explicitly free a cons cell by putting it on the free-list. */
2697
2698 void
2699 free_cons (ptr)
2700 struct Lisp_Cons *ptr;
2701 {
2702 ptr->u.chain = cons_free_list;
2703 #if GC_MARK_STACK
2704 ptr->car = Vdead;
2705 #endif
2706 cons_free_list = ptr;
2707 }
2708
2709 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2710 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2711 (car, cdr)
2712 Lisp_Object car, cdr;
2713 {
2714 register Lisp_Object val;
2715
2716 /* eassert (!handling_signal); */
2717
2718 #ifndef SYNC_INPUT
2719 BLOCK_INPUT;
2720 #endif
2721
2722 if (cons_free_list)
2723 {
2724 /* We use the cdr for chaining the free list
2725 so that we won't use the same field that has the mark bit. */
2726 XSETCONS (val, cons_free_list);
2727 cons_free_list = cons_free_list->u.chain;
2728 }
2729 else
2730 {
2731 if (cons_block_index == CONS_BLOCK_SIZE)
2732 {
2733 register struct cons_block *new;
2734 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2735 MEM_TYPE_CONS);
2736 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2737 new->next = cons_block;
2738 cons_block = new;
2739 cons_block_index = 0;
2740 n_cons_blocks++;
2741 }
2742 XSETCONS (val, &cons_block->conses[cons_block_index]);
2743 cons_block_index++;
2744 }
2745
2746 #ifndef SYNC_INPUT
2747 UNBLOCK_INPUT;
2748 #endif
2749
2750 XSETCAR (val, car);
2751 XSETCDR (val, cdr);
2752 eassert (!CONS_MARKED_P (XCONS (val)));
2753 consing_since_gc += sizeof (struct Lisp_Cons);
2754 cons_cells_consed++;
2755 return val;
2756 }
2757
2758 /* Get an error now if there's any junk in the cons free list. */
2759 void
2760 check_cons_list ()
2761 {
2762 #ifdef GC_CHECK_CONS_LIST
2763 struct Lisp_Cons *tail = cons_free_list;
2764
2765 while (tail)
2766 tail = tail->u.chain;
2767 #endif
2768 }
2769
2770 /* Make a list of 2, 3, 4 or 5 specified objects. */
2771
2772 Lisp_Object
2773 list2 (arg1, arg2)
2774 Lisp_Object arg1, arg2;
2775 {
2776 return Fcons (arg1, Fcons (arg2, Qnil));
2777 }
2778
2779
2780 Lisp_Object
2781 list3 (arg1, arg2, arg3)
2782 Lisp_Object arg1, arg2, arg3;
2783 {
2784 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2785 }
2786
2787
2788 Lisp_Object
2789 list4 (arg1, arg2, arg3, arg4)
2790 Lisp_Object arg1, arg2, arg3, arg4;
2791 {
2792 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2793 }
2794
2795
2796 Lisp_Object
2797 list5 (arg1, arg2, arg3, arg4, arg5)
2798 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2799 {
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2801 Fcons (arg5, Qnil)))));
2802 }
2803
2804
2805 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2806 doc: /* Return a newly created list with specified arguments as elements.
2807 Any number of arguments, even zero arguments, are allowed.
2808 usage: (list &rest OBJECTS) */)
2809 (nargs, args)
2810 int nargs;
2811 register Lisp_Object *args;
2812 {
2813 register Lisp_Object val;
2814 val = Qnil;
2815
2816 while (nargs > 0)
2817 {
2818 nargs--;
2819 val = Fcons (args[nargs], val);
2820 }
2821 return val;
2822 }
2823
2824
2825 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2826 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2827 (length, init)
2828 register Lisp_Object length, init;
2829 {
2830 register Lisp_Object val;
2831 register int size;
2832
2833 CHECK_NATNUM (length);
2834 size = XFASTINT (length);
2835
2836 val = Qnil;
2837 while (size > 0)
2838 {
2839 val = Fcons (init, val);
2840 --size;
2841
2842 if (size > 0)
2843 {
2844 val = Fcons (init, val);
2845 --size;
2846
2847 if (size > 0)
2848 {
2849 val = Fcons (init, val);
2850 --size;
2851
2852 if (size > 0)
2853 {
2854 val = Fcons (init, val);
2855 --size;
2856
2857 if (size > 0)
2858 {
2859 val = Fcons (init, val);
2860 --size;
2861 }
2862 }
2863 }
2864 }
2865
2866 QUIT;
2867 }
2868
2869 return val;
2870 }
2871
2872
2873 \f
2874 /***********************************************************************
2875 Vector Allocation
2876 ***********************************************************************/
2877
2878 /* Singly-linked list of all vectors. */
2879
2880 struct Lisp_Vector *all_vectors;
2881
2882 /* Total number of vector-like objects now in use. */
2883
2884 int n_vectors;
2885
2886
2887 /* Value is a pointer to a newly allocated Lisp_Vector structure
2888 with room for LEN Lisp_Objects. */
2889
2890 static struct Lisp_Vector *
2891 allocate_vectorlike (len, type)
2892 EMACS_INT len;
2893 enum mem_type type;
2894 {
2895 struct Lisp_Vector *p;
2896 size_t nbytes;
2897
2898 #ifdef DOUG_LEA_MALLOC
2899 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2900 because mapped region contents are not preserved in
2901 a dumped Emacs. */
2902 BLOCK_INPUT;
2903 mallopt (M_MMAP_MAX, 0);
2904 UNBLOCK_INPUT;
2905 #endif
2906
2907 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2908 /* eassert (!handling_signal); */
2909
2910 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2911 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2912
2913 #ifdef DOUG_LEA_MALLOC
2914 /* Back to a reasonable maximum of mmap'ed areas. */
2915 BLOCK_INPUT;
2916 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2917 UNBLOCK_INPUT;
2918 #endif
2919
2920 consing_since_gc += nbytes;
2921 vector_cells_consed += len;
2922
2923 #ifndef SYNC_INPUT
2924 BLOCK_INPUT;
2925 #endif
2926
2927 p->next = all_vectors;
2928 all_vectors = p;
2929
2930 #ifndef SYNC_INPUT
2931 UNBLOCK_INPUT;
2932 #endif
2933
2934 ++n_vectors;
2935 return p;
2936 }
2937
2938
2939 /* Allocate a vector with NSLOTS slots. */
2940
2941 struct Lisp_Vector *
2942 allocate_vector (nslots)
2943 EMACS_INT nslots;
2944 {
2945 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2946 v->size = nslots;
2947 return v;
2948 }
2949
2950
2951 /* Allocate other vector-like structures. */
2952
2953 struct Lisp_Hash_Table *
2954 allocate_hash_table ()
2955 {
2956 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2957 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2958 EMACS_INT i;
2959
2960 v->size = len;
2961 for (i = 0; i < len; ++i)
2962 v->contents[i] = Qnil;
2963
2964 return (struct Lisp_Hash_Table *) v;
2965 }
2966
2967
2968 struct window *
2969 allocate_window ()
2970 {
2971 EMACS_INT len = VECSIZE (struct window);
2972 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2973 EMACS_INT i;
2974
2975 for (i = 0; i < len; ++i)
2976 v->contents[i] = Qnil;
2977 v->size = len;
2978
2979 return (struct window *) v;
2980 }
2981
2982
2983 struct frame *
2984 allocate_frame ()
2985 {
2986 EMACS_INT len = VECSIZE (struct frame);
2987 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2988 EMACS_INT i;
2989
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = make_number (0);
2992 v->size = len;
2993 return (struct frame *) v;
2994 }
2995
2996
2997 struct Lisp_Process *
2998 allocate_process ()
2999 {
3000 EMACS_INT len = VECSIZE (struct Lisp_Process);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
3002 EMACS_INT i;
3003
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
3007
3008 return (struct Lisp_Process *) v;
3009 }
3010
3011
3012 struct Lisp_Vector *
3013 allocate_other_vector (len)
3014 EMACS_INT len;
3015 {
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3017 EMACS_INT i;
3018
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = Qnil;
3021 v->size = len;
3022
3023 return v;
3024 }
3025
3026
3027 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3028 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3029 See also the function `vector'. */)
3030 (length, init)
3031 register Lisp_Object length, init;
3032 {
3033 Lisp_Object vector;
3034 register EMACS_INT sizei;
3035 register int index;
3036 register struct Lisp_Vector *p;
3037
3038 CHECK_NATNUM (length);
3039 sizei = XFASTINT (length);
3040
3041 p = allocate_vector (sizei);
3042 for (index = 0; index < sizei; index++)
3043 p->contents[index] = init;
3044
3045 XSETVECTOR (vector, p);
3046 return vector;
3047 }
3048
3049
3050 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3051 doc: /* Return a newly created char-table, with purpose PURPOSE.
3052 Each element is initialized to INIT, which defaults to nil.
3053 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3054 The property's value should be an integer between 0 and 10. */)
3055 (purpose, init)
3056 register Lisp_Object purpose, init;
3057 {
3058 Lisp_Object vector;
3059 Lisp_Object n;
3060 CHECK_SYMBOL (purpose);
3061 n = Fget (purpose, Qchar_table_extra_slots);
3062 CHECK_NUMBER (n);
3063 if (XINT (n) < 0 || XINT (n) > 10)
3064 args_out_of_range (n, Qnil);
3065 /* Add 2 to the size for the defalt and parent slots. */
3066 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3067 init);
3068 XCHAR_TABLE (vector)->top = Qt;
3069 XCHAR_TABLE (vector)->parent = Qnil;
3070 XCHAR_TABLE (vector)->purpose = purpose;
3071 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3072 return vector;
3073 }
3074
3075
3076 /* Return a newly created sub char table with slots initialized by INIT.
3077 Since a sub char table does not appear as a top level Emacs Lisp
3078 object, we don't need a Lisp interface to make it. */
3079
3080 Lisp_Object
3081 make_sub_char_table (init)
3082 Lisp_Object init;
3083 {
3084 Lisp_Object vector
3085 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3086 XCHAR_TABLE (vector)->top = Qnil;
3087 XCHAR_TABLE (vector)->defalt = Qnil;
3088 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3089 return vector;
3090 }
3091
3092
3093 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3094 doc: /* Return a newly created vector with specified arguments as elements.
3095 Any number of arguments, even zero arguments, are allowed.
3096 usage: (vector &rest OBJECTS) */)
3097 (nargs, args)
3098 register int nargs;
3099 Lisp_Object *args;
3100 {
3101 register Lisp_Object len, val;
3102 register int index;
3103 register struct Lisp_Vector *p;
3104
3105 XSETFASTINT (len, nargs);
3106 val = Fmake_vector (len, Qnil);
3107 p = XVECTOR (val);
3108 for (index = 0; index < nargs; index++)
3109 p->contents[index] = args[index];
3110 return val;
3111 }
3112
3113
3114 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3115 doc: /* Create a byte-code object with specified arguments as elements.
3116 The arguments should be the arglist, bytecode-string, constant vector,
3117 stack size, (optional) doc string, and (optional) interactive spec.
3118 The first four arguments are required; at most six have any
3119 significance.
3120 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3121 (nargs, args)
3122 register int nargs;
3123 Lisp_Object *args;
3124 {
3125 register Lisp_Object len, val;
3126 register int index;
3127 register struct Lisp_Vector *p;
3128
3129 XSETFASTINT (len, nargs);
3130 if (!NILP (Vpurify_flag))
3131 val = make_pure_vector ((EMACS_INT) nargs);
3132 else
3133 val = Fmake_vector (len, Qnil);
3134
3135 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3136 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3137 earlier because they produced a raw 8-bit string for byte-code
3138 and now such a byte-code string is loaded as multibyte while
3139 raw 8-bit characters converted to multibyte form. Thus, now we
3140 must convert them back to the original unibyte form. */
3141 args[1] = Fstring_as_unibyte (args[1]);
3142
3143 p = XVECTOR (val);
3144 for (index = 0; index < nargs; index++)
3145 {
3146 if (!NILP (Vpurify_flag))
3147 args[index] = Fpurecopy (args[index]);
3148 p->contents[index] = args[index];
3149 }
3150 XSETCOMPILED (val, p);
3151 return val;
3152 }
3153
3154
3155 \f
3156 /***********************************************************************
3157 Symbol Allocation
3158 ***********************************************************************/
3159
3160 /* Each symbol_block is just under 1020 bytes long, since malloc
3161 really allocates in units of powers of two and uses 4 bytes for its
3162 own overhead. */
3163
3164 #define SYMBOL_BLOCK_SIZE \
3165 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3166
3167 struct symbol_block
3168 {
3169 /* Place `symbols' first, to preserve alignment. */
3170 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3171 struct symbol_block *next;
3172 };
3173
3174 /* Current symbol block and index of first unused Lisp_Symbol
3175 structure in it. */
3176
3177 struct symbol_block *symbol_block;
3178 int symbol_block_index;
3179
3180 /* List of free symbols. */
3181
3182 struct Lisp_Symbol *symbol_free_list;
3183
3184 /* Total number of symbol blocks now in use. */
3185
3186 int n_symbol_blocks;
3187
3188
3189 /* Initialize symbol allocation. */
3190
3191 void
3192 init_symbol ()
3193 {
3194 symbol_block = NULL;
3195 symbol_block_index = SYMBOL_BLOCK_SIZE;
3196 symbol_free_list = 0;
3197 n_symbol_blocks = 0;
3198 }
3199
3200
3201 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3202 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3203 Its value and function definition are void, and its property list is nil. */)
3204 (name)
3205 Lisp_Object name;
3206 {
3207 register Lisp_Object val;
3208 register struct Lisp_Symbol *p;
3209
3210 CHECK_STRING (name);
3211
3212 eassert (!handling_signal);
3213
3214 #ifndef SYNC_INPUT
3215 BLOCK_INPUT;
3216 #endif
3217
3218 if (symbol_free_list)
3219 {
3220 XSETSYMBOL (val, symbol_free_list);
3221 symbol_free_list = symbol_free_list->next;
3222 }
3223 else
3224 {
3225 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3226 {
3227 struct symbol_block *new;
3228 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3229 MEM_TYPE_SYMBOL);
3230 new->next = symbol_block;
3231 symbol_block = new;
3232 symbol_block_index = 0;
3233 n_symbol_blocks++;
3234 }
3235 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3236 symbol_block_index++;
3237 }
3238
3239 #ifndef SYNC_INPUT
3240 UNBLOCK_INPUT;
3241 #endif
3242
3243 p = XSYMBOL (val);
3244 p->xname = name;
3245 p->plist = Qnil;
3246 p->value = Qunbound;
3247 p->function = Qunbound;
3248 p->next = NULL;
3249 p->gcmarkbit = 0;
3250 p->interned = SYMBOL_UNINTERNED;
3251 p->constant = 0;
3252 p->indirect_variable = 0;
3253 consing_since_gc += sizeof (struct Lisp_Symbol);
3254 symbols_consed++;
3255 return val;
3256 }
3257
3258
3259 \f
3260 /***********************************************************************
3261 Marker (Misc) Allocation
3262 ***********************************************************************/
3263
3264 /* Allocation of markers and other objects that share that structure.
3265 Works like allocation of conses. */
3266
3267 #define MARKER_BLOCK_SIZE \
3268 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3269
3270 struct marker_block
3271 {
3272 /* Place `markers' first, to preserve alignment. */
3273 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3274 struct marker_block *next;
3275 };
3276
3277 struct marker_block *marker_block;
3278 int marker_block_index;
3279
3280 union Lisp_Misc *marker_free_list;
3281
3282 /* Total number of marker blocks now in use. */
3283
3284 int n_marker_blocks;
3285
3286 void
3287 init_marker ()
3288 {
3289 marker_block = NULL;
3290 marker_block_index = MARKER_BLOCK_SIZE;
3291 marker_free_list = 0;
3292 n_marker_blocks = 0;
3293 }
3294
3295 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3296
3297 Lisp_Object
3298 allocate_misc ()
3299 {
3300 Lisp_Object val;
3301
3302 /* eassert (!handling_signal); */
3303
3304 #ifndef SYNC_INPUT
3305 BLOCK_INPUT;
3306 #endif
3307
3308 if (marker_free_list)
3309 {
3310 XSETMISC (val, marker_free_list);
3311 marker_free_list = marker_free_list->u_free.chain;
3312 }
3313 else
3314 {
3315 if (marker_block_index == MARKER_BLOCK_SIZE)
3316 {
3317 struct marker_block *new;
3318 new = (struct marker_block *) lisp_malloc (sizeof *new,
3319 MEM_TYPE_MISC);
3320 new->next = marker_block;
3321 marker_block = new;
3322 marker_block_index = 0;
3323 n_marker_blocks++;
3324 total_free_markers += MARKER_BLOCK_SIZE;
3325 }
3326 XSETMISC (val, &marker_block->markers[marker_block_index]);
3327 marker_block_index++;
3328 }
3329
3330 #ifndef SYNC_INPUT
3331 UNBLOCK_INPUT;
3332 #endif
3333
3334 --total_free_markers;
3335 consing_since_gc += sizeof (union Lisp_Misc);
3336 misc_objects_consed++;
3337 XMARKER (val)->gcmarkbit = 0;
3338 return val;
3339 }
3340
3341 /* Free a Lisp_Misc object */
3342
3343 void
3344 free_misc (misc)
3345 Lisp_Object misc;
3346 {
3347 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3348 XMISC (misc)->u_free.chain = marker_free_list;
3349 marker_free_list = XMISC (misc);
3350
3351 total_free_markers++;
3352 }
3353
3354 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3355 INTEGER. This is used to package C values to call record_unwind_protect.
3356 The unwind function can get the C values back using XSAVE_VALUE. */
3357
3358 Lisp_Object
3359 make_save_value (pointer, integer)
3360 void *pointer;
3361 int integer;
3362 {
3363 register Lisp_Object val;
3364 register struct Lisp_Save_Value *p;
3365
3366 val = allocate_misc ();
3367 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3368 p = XSAVE_VALUE (val);
3369 p->pointer = pointer;
3370 p->integer = integer;
3371 p->dogc = 0;
3372 return val;
3373 }
3374
3375 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3376 doc: /* Return a newly allocated marker which does not point at any place. */)
3377 ()
3378 {
3379 register Lisp_Object val;
3380 register struct Lisp_Marker *p;
3381
3382 val = allocate_misc ();
3383 XMISCTYPE (val) = Lisp_Misc_Marker;
3384 p = XMARKER (val);
3385 p->buffer = 0;
3386 p->bytepos = 0;
3387 p->charpos = 0;
3388 p->next = NULL;
3389 p->insertion_type = 0;
3390 return val;
3391 }
3392
3393 /* Put MARKER back on the free list after using it temporarily. */
3394
3395 void
3396 free_marker (marker)
3397 Lisp_Object marker;
3398 {
3399 unchain_marker (XMARKER (marker));
3400 free_misc (marker);
3401 }
3402
3403 \f
3404 /* Return a newly created vector or string with specified arguments as
3405 elements. If all the arguments are characters that can fit
3406 in a string of events, make a string; otherwise, make a vector.
3407
3408 Any number of arguments, even zero arguments, are allowed. */
3409
3410 Lisp_Object
3411 make_event_array (nargs, args)
3412 register int nargs;
3413 Lisp_Object *args;
3414 {
3415 int i;
3416
3417 for (i = 0; i < nargs; i++)
3418 /* The things that fit in a string
3419 are characters that are in 0...127,
3420 after discarding the meta bit and all the bits above it. */
3421 if (!INTEGERP (args[i])
3422 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3423 return Fvector (nargs, args);
3424
3425 /* Since the loop exited, we know that all the things in it are
3426 characters, so we can make a string. */
3427 {
3428 Lisp_Object result;
3429
3430 result = Fmake_string (make_number (nargs), make_number (0));
3431 for (i = 0; i < nargs; i++)
3432 {
3433 SSET (result, i, XINT (args[i]));
3434 /* Move the meta bit to the right place for a string char. */
3435 if (XINT (args[i]) & CHAR_META)
3436 SSET (result, i, SREF (result, i) | 0x80);
3437 }
3438
3439 return result;
3440 }
3441 }
3442
3443
3444 \f
3445 /************************************************************************
3446 Memory Full Handling
3447 ************************************************************************/
3448
3449
3450 /* Called if malloc returns zero. */
3451
3452 void
3453 memory_full ()
3454 {
3455 int i;
3456
3457 Vmemory_full = Qt;
3458
3459 memory_full_cons_threshold = sizeof (struct cons_block);
3460
3461 /* The first time we get here, free the spare memory. */
3462 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3463 if (spare_memory[i])
3464 {
3465 if (i == 0)
3466 free (spare_memory[i]);
3467 else if (i >= 1 && i <= 4)
3468 lisp_align_free (spare_memory[i]);
3469 else
3470 lisp_free (spare_memory[i]);
3471 spare_memory[i] = 0;
3472 }
3473
3474 /* Record the space now used. When it decreases substantially,
3475 we can refill the memory reserve. */
3476 #ifndef SYSTEM_MALLOC
3477 bytes_used_when_full = BYTES_USED;
3478 #endif
3479
3480 /* This used to call error, but if we've run out of memory, we could
3481 get infinite recursion trying to build the string. */
3482 while (1)
3483 Fsignal (Qnil, Vmemory_signal_data);
3484 }
3485
3486 /* If we released our reserve (due to running out of memory),
3487 and we have a fair amount free once again,
3488 try to set aside another reserve in case we run out once more.
3489
3490 This is called when a relocatable block is freed in ralloc.c,
3491 and also directly from this file, in case we're not using ralloc.c. */
3492
3493 void
3494 refill_memory_reserve ()
3495 {
3496 #ifndef SYSTEM_MALLOC
3497 if (spare_memory[0] == 0)
3498 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3499 if (spare_memory[1] == 0)
3500 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3501 MEM_TYPE_CONS);
3502 if (spare_memory[2] == 0)
3503 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3504 MEM_TYPE_CONS);
3505 if (spare_memory[3] == 0)
3506 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3507 MEM_TYPE_CONS);
3508 if (spare_memory[4] == 0)
3509 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3510 MEM_TYPE_CONS);
3511 if (spare_memory[5] == 0)
3512 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3513 MEM_TYPE_STRING);
3514 if (spare_memory[6] == 0)
3515 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3516 MEM_TYPE_STRING);
3517 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3518 Vmemory_full = Qnil;
3519 #endif
3520 }
3521 \f
3522 /************************************************************************
3523 C Stack Marking
3524 ************************************************************************/
3525
3526 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3527
3528 /* Conservative C stack marking requires a method to identify possibly
3529 live Lisp objects given a pointer value. We do this by keeping
3530 track of blocks of Lisp data that are allocated in a red-black tree
3531 (see also the comment of mem_node which is the type of nodes in
3532 that tree). Function lisp_malloc adds information for an allocated
3533 block to the red-black tree with calls to mem_insert, and function
3534 lisp_free removes it with mem_delete. Functions live_string_p etc
3535 call mem_find to lookup information about a given pointer in the
3536 tree, and use that to determine if the pointer points to a Lisp
3537 object or not. */
3538
3539 /* Initialize this part of alloc.c. */
3540
3541 static void
3542 mem_init ()
3543 {
3544 mem_z.left = mem_z.right = MEM_NIL;
3545 mem_z.parent = NULL;
3546 mem_z.color = MEM_BLACK;
3547 mem_z.start = mem_z.end = NULL;
3548 mem_root = MEM_NIL;
3549 }
3550
3551
3552 /* Value is a pointer to the mem_node containing START. Value is
3553 MEM_NIL if there is no node in the tree containing START. */
3554
3555 static INLINE struct mem_node *
3556 mem_find (start)
3557 void *start;
3558 {
3559 struct mem_node *p;
3560
3561 if (start < min_heap_address || start > max_heap_address)
3562 return MEM_NIL;
3563
3564 /* Make the search always successful to speed up the loop below. */
3565 mem_z.start = start;
3566 mem_z.end = (char *) start + 1;
3567
3568 p = mem_root;
3569 while (start < p->start || start >= p->end)
3570 p = start < p->start ? p->left : p->right;
3571 return p;
3572 }
3573
3574
3575 /* Insert a new node into the tree for a block of memory with start
3576 address START, end address END, and type TYPE. Value is a
3577 pointer to the node that was inserted. */
3578
3579 static struct mem_node *
3580 mem_insert (start, end, type)
3581 void *start, *end;
3582 enum mem_type type;
3583 {
3584 struct mem_node *c, *parent, *x;
3585
3586 if (start < min_heap_address)
3587 min_heap_address = start;
3588 if (end > max_heap_address)
3589 max_heap_address = end;
3590
3591 /* See where in the tree a node for START belongs. In this
3592 particular application, it shouldn't happen that a node is already
3593 present. For debugging purposes, let's check that. */
3594 c = mem_root;
3595 parent = NULL;
3596
3597 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3598
3599 while (c != MEM_NIL)
3600 {
3601 if (start >= c->start && start < c->end)
3602 abort ();
3603 parent = c;
3604 c = start < c->start ? c->left : c->right;
3605 }
3606
3607 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3608
3609 while (c != MEM_NIL)
3610 {
3611 parent = c;
3612 c = start < c->start ? c->left : c->right;
3613 }
3614
3615 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3616
3617 /* Create a new node. */
3618 #ifdef GC_MALLOC_CHECK
3619 x = (struct mem_node *) _malloc_internal (sizeof *x);
3620 if (x == NULL)
3621 abort ();
3622 #else
3623 x = (struct mem_node *) xmalloc (sizeof *x);
3624 #endif
3625 x->start = start;
3626 x->end = end;
3627 x->type = type;
3628 x->parent = parent;
3629 x->left = x->right = MEM_NIL;
3630 x->color = MEM_RED;
3631
3632 /* Insert it as child of PARENT or install it as root. */
3633 if (parent)
3634 {
3635 if (start < parent->start)
3636 parent->left = x;
3637 else
3638 parent->right = x;
3639 }
3640 else
3641 mem_root = x;
3642
3643 /* Re-establish red-black tree properties. */
3644 mem_insert_fixup (x);
3645
3646 return x;
3647 }
3648
3649
3650 /* Re-establish the red-black properties of the tree, and thereby
3651 balance the tree, after node X has been inserted; X is always red. */
3652
3653 static void
3654 mem_insert_fixup (x)
3655 struct mem_node *x;
3656 {
3657 while (x != mem_root && x->parent->color == MEM_RED)
3658 {
3659 /* X is red and its parent is red. This is a violation of
3660 red-black tree property #3. */
3661
3662 if (x->parent == x->parent->parent->left)
3663 {
3664 /* We're on the left side of our grandparent, and Y is our
3665 "uncle". */
3666 struct mem_node *y = x->parent->parent->right;
3667
3668 if (y->color == MEM_RED)
3669 {
3670 /* Uncle and parent are red but should be black because
3671 X is red. Change the colors accordingly and proceed
3672 with the grandparent. */
3673 x->parent->color = MEM_BLACK;
3674 y->color = MEM_BLACK;
3675 x->parent->parent->color = MEM_RED;
3676 x = x->parent->parent;
3677 }
3678 else
3679 {
3680 /* Parent and uncle have different colors; parent is
3681 red, uncle is black. */
3682 if (x == x->parent->right)
3683 {
3684 x = x->parent;
3685 mem_rotate_left (x);
3686 }
3687
3688 x->parent->color = MEM_BLACK;
3689 x->parent->parent->color = MEM_RED;
3690 mem_rotate_right (x->parent->parent);
3691 }
3692 }
3693 else
3694 {
3695 /* This is the symmetrical case of above. */
3696 struct mem_node *y = x->parent->parent->left;
3697
3698 if (y->color == MEM_RED)
3699 {
3700 x->parent->color = MEM_BLACK;
3701 y->color = MEM_BLACK;
3702 x->parent->parent->color = MEM_RED;
3703 x = x->parent->parent;
3704 }
3705 else
3706 {
3707 if (x == x->parent->left)
3708 {
3709 x = x->parent;
3710 mem_rotate_right (x);
3711 }
3712
3713 x->parent->color = MEM_BLACK;
3714 x->parent->parent->color = MEM_RED;
3715 mem_rotate_left (x->parent->parent);
3716 }
3717 }
3718 }
3719
3720 /* The root may have been changed to red due to the algorithm. Set
3721 it to black so that property #5 is satisfied. */
3722 mem_root->color = MEM_BLACK;
3723 }
3724
3725
3726 /* (x) (y)
3727 / \ / \
3728 a (y) ===> (x) c
3729 / \ / \
3730 b c a b */
3731
3732 static void
3733 mem_rotate_left (x)
3734 struct mem_node *x;
3735 {
3736 struct mem_node *y;
3737
3738 /* Turn y's left sub-tree into x's right sub-tree. */
3739 y = x->right;
3740 x->right = y->left;
3741 if (y->left != MEM_NIL)
3742 y->left->parent = x;
3743
3744 /* Y's parent was x's parent. */
3745 if (y != MEM_NIL)
3746 y->parent = x->parent;
3747
3748 /* Get the parent to point to y instead of x. */
3749 if (x->parent)
3750 {
3751 if (x == x->parent->left)
3752 x->parent->left = y;
3753 else
3754 x->parent->right = y;
3755 }
3756 else
3757 mem_root = y;
3758
3759 /* Put x on y's left. */
3760 y->left = x;
3761 if (x != MEM_NIL)
3762 x->parent = y;
3763 }
3764
3765
3766 /* (x) (Y)
3767 / \ / \
3768 (y) c ===> a (x)
3769 / \ / \
3770 a b b c */
3771
3772 static void
3773 mem_rotate_right (x)
3774 struct mem_node *x;
3775 {
3776 struct mem_node *y = x->left;
3777
3778 x->left = y->right;
3779 if (y->right != MEM_NIL)
3780 y->right->parent = x;
3781
3782 if (y != MEM_NIL)
3783 y->parent = x->parent;
3784 if (x->parent)
3785 {
3786 if (x == x->parent->right)
3787 x->parent->right = y;
3788 else
3789 x->parent->left = y;
3790 }
3791 else
3792 mem_root = y;
3793
3794 y->right = x;
3795 if (x != MEM_NIL)
3796 x->parent = y;
3797 }
3798
3799
3800 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3801
3802 static void
3803 mem_delete (z)
3804 struct mem_node *z;
3805 {
3806 struct mem_node *x, *y;
3807
3808 if (!z || z == MEM_NIL)
3809 return;
3810
3811 if (z->left == MEM_NIL || z->right == MEM_NIL)
3812 y = z;
3813 else
3814 {
3815 y = z->right;
3816 while (y->left != MEM_NIL)
3817 y = y->left;
3818 }
3819
3820 if (y->left != MEM_NIL)
3821 x = y->left;
3822 else
3823 x = y->right;
3824
3825 x->parent = y->parent;
3826 if (y->parent)
3827 {
3828 if (y == y->parent->left)
3829 y->parent->left = x;
3830 else
3831 y->parent->right = x;
3832 }
3833 else
3834 mem_root = x;
3835
3836 if (y != z)
3837 {
3838 z->start = y->start;
3839 z->end = y->end;
3840 z->type = y->type;
3841 }
3842
3843 if (y->color == MEM_BLACK)
3844 mem_delete_fixup (x);
3845
3846 #ifdef GC_MALLOC_CHECK
3847 _free_internal (y);
3848 #else
3849 xfree (y);
3850 #endif
3851 }
3852
3853
3854 /* Re-establish the red-black properties of the tree, after a
3855 deletion. */
3856
3857 static void
3858 mem_delete_fixup (x)
3859 struct mem_node *x;
3860 {
3861 while (x != mem_root && x->color == MEM_BLACK)
3862 {
3863 if (x == x->parent->left)
3864 {
3865 struct mem_node *w = x->parent->right;
3866
3867 if (w->color == MEM_RED)
3868 {
3869 w->color = MEM_BLACK;
3870 x->parent->color = MEM_RED;
3871 mem_rotate_left (x->parent);
3872 w = x->parent->right;
3873 }
3874
3875 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3876 {
3877 w->color = MEM_RED;
3878 x = x->parent;
3879 }
3880 else
3881 {
3882 if (w->right->color == MEM_BLACK)
3883 {
3884 w->left->color = MEM_BLACK;
3885 w->color = MEM_RED;
3886 mem_rotate_right (w);
3887 w = x->parent->right;
3888 }
3889 w->color = x->parent->color;
3890 x->parent->color = MEM_BLACK;
3891 w->right->color = MEM_BLACK;
3892 mem_rotate_left (x->parent);
3893 x = mem_root;
3894 }
3895 }
3896 else
3897 {
3898 struct mem_node *w = x->parent->left;
3899
3900 if (w->color == MEM_RED)
3901 {
3902 w->color = MEM_BLACK;
3903 x->parent->color = MEM_RED;
3904 mem_rotate_right (x->parent);
3905 w = x->parent->left;
3906 }
3907
3908 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3909 {
3910 w->color = MEM_RED;
3911 x = x->parent;
3912 }
3913 else
3914 {
3915 if (w->left->color == MEM_BLACK)
3916 {
3917 w->right->color = MEM_BLACK;
3918 w->color = MEM_RED;
3919 mem_rotate_left (w);
3920 w = x->parent->left;
3921 }
3922
3923 w->color = x->parent->color;
3924 x->parent->color = MEM_BLACK;
3925 w->left->color = MEM_BLACK;
3926 mem_rotate_right (x->parent);
3927 x = mem_root;
3928 }
3929 }
3930 }
3931
3932 x->color = MEM_BLACK;
3933 }
3934
3935
3936 /* Value is non-zero if P is a pointer to a live Lisp string on
3937 the heap. M is a pointer to the mem_block for P. */
3938
3939 static INLINE int
3940 live_string_p (m, p)
3941 struct mem_node *m;
3942 void *p;
3943 {
3944 if (m->type == MEM_TYPE_STRING)
3945 {
3946 struct string_block *b = (struct string_block *) m->start;
3947 int offset = (char *) p - (char *) &b->strings[0];
3948
3949 /* P must point to the start of a Lisp_String structure, and it
3950 must not be on the free-list. */
3951 return (offset >= 0
3952 && offset % sizeof b->strings[0] == 0
3953 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3954 && ((struct Lisp_String *) p)->data != NULL);
3955 }
3956 else
3957 return 0;
3958 }
3959
3960
3961 /* Value is non-zero if P is a pointer to a live Lisp cons on
3962 the heap. M is a pointer to the mem_block for P. */
3963
3964 static INLINE int
3965 live_cons_p (m, p)
3966 struct mem_node *m;
3967 void *p;
3968 {
3969 if (m->type == MEM_TYPE_CONS)
3970 {
3971 struct cons_block *b = (struct cons_block *) m->start;
3972 int offset = (char *) p - (char *) &b->conses[0];
3973
3974 /* P must point to the start of a Lisp_Cons, not be
3975 one of the unused cells in the current cons block,
3976 and not be on the free-list. */
3977 return (offset >= 0
3978 && offset % sizeof b->conses[0] == 0
3979 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3980 && (b != cons_block
3981 || offset / sizeof b->conses[0] < cons_block_index)
3982 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3983 }
3984 else
3985 return 0;
3986 }
3987
3988
3989 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3990 the heap. M is a pointer to the mem_block for P. */
3991
3992 static INLINE int
3993 live_symbol_p (m, p)
3994 struct mem_node *m;
3995 void *p;
3996 {
3997 if (m->type == MEM_TYPE_SYMBOL)
3998 {
3999 struct symbol_block *b = (struct symbol_block *) m->start;
4000 int offset = (char *) p - (char *) &b->symbols[0];
4001
4002 /* P must point to the start of a Lisp_Symbol, not be
4003 one of the unused cells in the current symbol block,
4004 and not be on the free-list. */
4005 return (offset >= 0
4006 && offset % sizeof b->symbols[0] == 0
4007 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4008 && (b != symbol_block
4009 || offset / sizeof b->symbols[0] < symbol_block_index)
4010 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4011 }
4012 else
4013 return 0;
4014 }
4015
4016
4017 /* Value is non-zero if P is a pointer to a live Lisp float on
4018 the heap. M is a pointer to the mem_block for P. */
4019
4020 static INLINE int
4021 live_float_p (m, p)
4022 struct mem_node *m;
4023 void *p;
4024 {
4025 if (m->type == MEM_TYPE_FLOAT)
4026 {
4027 struct float_block *b = (struct float_block *) m->start;
4028 int offset = (char *) p - (char *) &b->floats[0];
4029
4030 /* P must point to the start of a Lisp_Float and not be
4031 one of the unused cells in the current float block. */
4032 return (offset >= 0
4033 && offset % sizeof b->floats[0] == 0
4034 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4035 && (b != float_block
4036 || offset / sizeof b->floats[0] < float_block_index));
4037 }
4038 else
4039 return 0;
4040 }
4041
4042
4043 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4044 the heap. M is a pointer to the mem_block for P. */
4045
4046 static INLINE int
4047 live_misc_p (m, p)
4048 struct mem_node *m;
4049 void *p;
4050 {
4051 if (m->type == MEM_TYPE_MISC)
4052 {
4053 struct marker_block *b = (struct marker_block *) m->start;
4054 int offset = (char *) p - (char *) &b->markers[0];
4055
4056 /* P must point to the start of a Lisp_Misc, not be
4057 one of the unused cells in the current misc block,
4058 and not be on the free-list. */
4059 return (offset >= 0
4060 && offset % sizeof b->markers[0] == 0
4061 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4062 && (b != marker_block
4063 || offset / sizeof b->markers[0] < marker_block_index)
4064 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4065 }
4066 else
4067 return 0;
4068 }
4069
4070
4071 /* Value is non-zero if P is a pointer to a live vector-like object.
4072 M is a pointer to the mem_block for P. */
4073
4074 static INLINE int
4075 live_vector_p (m, p)
4076 struct mem_node *m;
4077 void *p;
4078 {
4079 return (p == m->start
4080 && m->type >= MEM_TYPE_VECTOR
4081 && m->type <= MEM_TYPE_WINDOW);
4082 }
4083
4084
4085 /* Value is non-zero if P is a pointer to a live buffer. M is a
4086 pointer to the mem_block for P. */
4087
4088 static INLINE int
4089 live_buffer_p (m, p)
4090 struct mem_node *m;
4091 void *p;
4092 {
4093 /* P must point to the start of the block, and the buffer
4094 must not have been killed. */
4095 return (m->type == MEM_TYPE_BUFFER
4096 && p == m->start
4097 && !NILP (((struct buffer *) p)->name));
4098 }
4099
4100 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4101
4102 #if GC_MARK_STACK
4103
4104 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4105
4106 /* Array of objects that are kept alive because the C stack contains
4107 a pattern that looks like a reference to them . */
4108
4109 #define MAX_ZOMBIES 10
4110 static Lisp_Object zombies[MAX_ZOMBIES];
4111
4112 /* Number of zombie objects. */
4113
4114 static int nzombies;
4115
4116 /* Number of garbage collections. */
4117
4118 static int ngcs;
4119
4120 /* Average percentage of zombies per collection. */
4121
4122 static double avg_zombies;
4123
4124 /* Max. number of live and zombie objects. */
4125
4126 static int max_live, max_zombies;
4127
4128 /* Average number of live objects per GC. */
4129
4130 static double avg_live;
4131
4132 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4133 doc: /* Show information about live and zombie objects. */)
4134 ()
4135 {
4136 Lisp_Object args[8], zombie_list = Qnil;
4137 int i;
4138 for (i = 0; i < nzombies; i++)
4139 zombie_list = Fcons (zombies[i], zombie_list);
4140 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4141 args[1] = make_number (ngcs);
4142 args[2] = make_float (avg_live);
4143 args[3] = make_float (avg_zombies);
4144 args[4] = make_float (avg_zombies / avg_live / 100);
4145 args[5] = make_number (max_live);
4146 args[6] = make_number (max_zombies);
4147 args[7] = zombie_list;
4148 return Fmessage (8, args);
4149 }
4150
4151 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4152
4153
4154 /* Mark OBJ if we can prove it's a Lisp_Object. */
4155
4156 static INLINE void
4157 mark_maybe_object (obj)
4158 Lisp_Object obj;
4159 {
4160 void *po = (void *) XPNTR (obj);
4161 struct mem_node *m = mem_find (po);
4162
4163 if (m != MEM_NIL)
4164 {
4165 int mark_p = 0;
4166
4167 switch (XGCTYPE (obj))
4168 {
4169 case Lisp_String:
4170 mark_p = (live_string_p (m, po)
4171 && !STRING_MARKED_P ((struct Lisp_String *) po));
4172 break;
4173
4174 case Lisp_Cons:
4175 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4176 break;
4177
4178 case Lisp_Symbol:
4179 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4180 break;
4181
4182 case Lisp_Float:
4183 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4184 break;
4185
4186 case Lisp_Vectorlike:
4187 /* Note: can't check GC_BUFFERP before we know it's a
4188 buffer because checking that dereferences the pointer
4189 PO which might point anywhere. */
4190 if (live_vector_p (m, po))
4191 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4192 else if (live_buffer_p (m, po))
4193 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4194 break;
4195
4196 case Lisp_Misc:
4197 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4198 break;
4199
4200 case Lisp_Int:
4201 case Lisp_Type_Limit:
4202 break;
4203 }
4204
4205 if (mark_p)
4206 {
4207 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4208 if (nzombies < MAX_ZOMBIES)
4209 zombies[nzombies] = obj;
4210 ++nzombies;
4211 #endif
4212 mark_object (obj);
4213 }
4214 }
4215 }
4216
4217
4218 /* If P points to Lisp data, mark that as live if it isn't already
4219 marked. */
4220
4221 static INLINE void
4222 mark_maybe_pointer (p)
4223 void *p;
4224 {
4225 struct mem_node *m;
4226
4227 /* Quickly rule out some values which can't point to Lisp data. We
4228 assume that Lisp data is aligned on even addresses. */
4229 if ((EMACS_INT) p & 1)
4230 return;
4231
4232 m = mem_find (p);
4233 if (m != MEM_NIL)
4234 {
4235 Lisp_Object obj = Qnil;
4236
4237 switch (m->type)
4238 {
4239 case MEM_TYPE_NON_LISP:
4240 /* Nothing to do; not a pointer to Lisp memory. */
4241 break;
4242
4243 case MEM_TYPE_BUFFER:
4244 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4245 XSETVECTOR (obj, p);
4246 break;
4247
4248 case MEM_TYPE_CONS:
4249 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4250 XSETCONS (obj, p);
4251 break;
4252
4253 case MEM_TYPE_STRING:
4254 if (live_string_p (m, p)
4255 && !STRING_MARKED_P ((struct Lisp_String *) p))
4256 XSETSTRING (obj, p);
4257 break;
4258
4259 case MEM_TYPE_MISC:
4260 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4261 XSETMISC (obj, p);
4262 break;
4263
4264 case MEM_TYPE_SYMBOL:
4265 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4266 XSETSYMBOL (obj, p);
4267 break;
4268
4269 case MEM_TYPE_FLOAT:
4270 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4271 XSETFLOAT (obj, p);
4272 break;
4273
4274 case MEM_TYPE_VECTOR:
4275 case MEM_TYPE_PROCESS:
4276 case MEM_TYPE_HASH_TABLE:
4277 case MEM_TYPE_FRAME:
4278 case MEM_TYPE_WINDOW:
4279 if (live_vector_p (m, p))
4280 {
4281 Lisp_Object tem;
4282 XSETVECTOR (tem, p);
4283 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4284 obj = tem;
4285 }
4286 break;
4287
4288 default:
4289 abort ();
4290 }
4291
4292 if (!GC_NILP (obj))
4293 mark_object (obj);
4294 }
4295 }
4296
4297
4298 /* Mark Lisp objects referenced from the address range START..END. */
4299
4300 static void
4301 mark_memory (start, end)
4302 void *start, *end;
4303 {
4304 Lisp_Object *p;
4305 void **pp;
4306
4307 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4308 nzombies = 0;
4309 #endif
4310
4311 /* Make START the pointer to the start of the memory region,
4312 if it isn't already. */
4313 if (end < start)
4314 {
4315 void *tem = start;
4316 start = end;
4317 end = tem;
4318 }
4319
4320 /* Mark Lisp_Objects. */
4321 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4322 mark_maybe_object (*p);
4323
4324 /* Mark Lisp data pointed to. This is necessary because, in some
4325 situations, the C compiler optimizes Lisp objects away, so that
4326 only a pointer to them remains. Example:
4327
4328 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4329 ()
4330 {
4331 Lisp_Object obj = build_string ("test");
4332 struct Lisp_String *s = XSTRING (obj);
4333 Fgarbage_collect ();
4334 fprintf (stderr, "test `%s'\n", s->data);
4335 return Qnil;
4336 }
4337
4338 Here, `obj' isn't really used, and the compiler optimizes it
4339 away. The only reference to the life string is through the
4340 pointer `s'. */
4341
4342 for (pp = (void **) start; (void *) pp < end; ++pp)
4343 mark_maybe_pointer (*pp);
4344 }
4345
4346 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4347 the GCC system configuration. In gcc 3.2, the only systems for
4348 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4349 by others?) and ns32k-pc532-min. */
4350
4351 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4352
4353 static int setjmp_tested_p, longjmps_done;
4354
4355 #define SETJMP_WILL_LIKELY_WORK "\
4356 \n\
4357 Emacs garbage collector has been changed to use conservative stack\n\
4358 marking. Emacs has determined that the method it uses to do the\n\
4359 marking will likely work on your system, but this isn't sure.\n\
4360 \n\
4361 If you are a system-programmer, or can get the help of a local wizard\n\
4362 who is, please take a look at the function mark_stack in alloc.c, and\n\
4363 verify that the methods used are appropriate for your system.\n\
4364 \n\
4365 Please mail the result to <emacs-devel@gnu.org>.\n\
4366 "
4367
4368 #define SETJMP_WILL_NOT_WORK "\
4369 \n\
4370 Emacs garbage collector has been changed to use conservative stack\n\
4371 marking. Emacs has determined that the default method it uses to do the\n\
4372 marking will not work on your system. We will need a system-dependent\n\
4373 solution for your system.\n\
4374 \n\
4375 Please take a look at the function mark_stack in alloc.c, and\n\
4376 try to find a way to make it work on your system.\n\
4377 \n\
4378 Note that you may get false negatives, depending on the compiler.\n\
4379 In particular, you need to use -O with GCC for this test.\n\
4380 \n\
4381 Please mail the result to <emacs-devel@gnu.org>.\n\
4382 "
4383
4384
4385 /* Perform a quick check if it looks like setjmp saves registers in a
4386 jmp_buf. Print a message to stderr saying so. When this test
4387 succeeds, this is _not_ a proof that setjmp is sufficient for
4388 conservative stack marking. Only the sources or a disassembly
4389 can prove that. */
4390
4391 static void
4392 test_setjmp ()
4393 {
4394 char buf[10];
4395 register int x;
4396 jmp_buf jbuf;
4397 int result = 0;
4398
4399 /* Arrange for X to be put in a register. */
4400 sprintf (buf, "1");
4401 x = strlen (buf);
4402 x = 2 * x - 1;
4403
4404 setjmp (jbuf);
4405 if (longjmps_done == 1)
4406 {
4407 /* Came here after the longjmp at the end of the function.
4408
4409 If x == 1, the longjmp has restored the register to its
4410 value before the setjmp, and we can hope that setjmp
4411 saves all such registers in the jmp_buf, although that
4412 isn't sure.
4413
4414 For other values of X, either something really strange is
4415 taking place, or the setjmp just didn't save the register. */
4416
4417 if (x == 1)
4418 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4419 else
4420 {
4421 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4422 exit (1);
4423 }
4424 }
4425
4426 ++longjmps_done;
4427 x = 2;
4428 if (longjmps_done == 1)
4429 longjmp (jbuf, 1);
4430 }
4431
4432 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4433
4434
4435 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4436
4437 /* Abort if anything GCPRO'd doesn't survive the GC. */
4438
4439 static void
4440 check_gcpros ()
4441 {
4442 struct gcpro *p;
4443 int i;
4444
4445 for (p = gcprolist; p; p = p->next)
4446 for (i = 0; i < p->nvars; ++i)
4447 if (!survives_gc_p (p->var[i]))
4448 /* FIXME: It's not necessarily a bug. It might just be that the
4449 GCPRO is unnecessary or should release the object sooner. */
4450 abort ();
4451 }
4452
4453 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4454
4455 static void
4456 dump_zombies ()
4457 {
4458 int i;
4459
4460 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4461 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4462 {
4463 fprintf (stderr, " %d = ", i);
4464 debug_print (zombies[i]);
4465 }
4466 }
4467
4468 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4469
4470
4471 /* Mark live Lisp objects on the C stack.
4472
4473 There are several system-dependent problems to consider when
4474 porting this to new architectures:
4475
4476 Processor Registers
4477
4478 We have to mark Lisp objects in CPU registers that can hold local
4479 variables or are used to pass parameters.
4480
4481 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4482 something that either saves relevant registers on the stack, or
4483 calls mark_maybe_object passing it each register's contents.
4484
4485 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4486 implementation assumes that calling setjmp saves registers we need
4487 to see in a jmp_buf which itself lies on the stack. This doesn't
4488 have to be true! It must be verified for each system, possibly
4489 by taking a look at the source code of setjmp.
4490
4491 Stack Layout
4492
4493 Architectures differ in the way their processor stack is organized.
4494 For example, the stack might look like this
4495
4496 +----------------+
4497 | Lisp_Object | size = 4
4498 +----------------+
4499 | something else | size = 2
4500 +----------------+
4501 | Lisp_Object | size = 4
4502 +----------------+
4503 | ... |
4504
4505 In such a case, not every Lisp_Object will be aligned equally. To
4506 find all Lisp_Object on the stack it won't be sufficient to walk
4507 the stack in steps of 4 bytes. Instead, two passes will be
4508 necessary, one starting at the start of the stack, and a second
4509 pass starting at the start of the stack + 2. Likewise, if the
4510 minimal alignment of Lisp_Objects on the stack is 1, four passes
4511 would be necessary, each one starting with one byte more offset
4512 from the stack start.
4513
4514 The current code assumes by default that Lisp_Objects are aligned
4515 equally on the stack. */
4516
4517 static void
4518 mark_stack ()
4519 {
4520 int i;
4521 jmp_buf j;
4522 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4523 void *end;
4524
4525 /* This trick flushes the register windows so that all the state of
4526 the process is contained in the stack. */
4527 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4528 needed on ia64 too. See mach_dep.c, where it also says inline
4529 assembler doesn't work with relevant proprietary compilers. */
4530 #ifdef sparc
4531 asm ("ta 3");
4532 #endif
4533
4534 /* Save registers that we need to see on the stack. We need to see
4535 registers used to hold register variables and registers used to
4536 pass parameters. */
4537 #ifdef GC_SAVE_REGISTERS_ON_STACK
4538 GC_SAVE_REGISTERS_ON_STACK (end);
4539 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4540
4541 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4542 setjmp will definitely work, test it
4543 and print a message with the result
4544 of the test. */
4545 if (!setjmp_tested_p)
4546 {
4547 setjmp_tested_p = 1;
4548 test_setjmp ();
4549 }
4550 #endif /* GC_SETJMP_WORKS */
4551
4552 setjmp (j);
4553 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4554 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4555
4556 /* This assumes that the stack is a contiguous region in memory. If
4557 that's not the case, something has to be done here to iterate
4558 over the stack segments. */
4559 #ifndef GC_LISP_OBJECT_ALIGNMENT
4560 #ifdef __GNUC__
4561 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4562 #else
4563 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4564 #endif
4565 #endif
4566 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4567 mark_memory ((char *) stack_base + i, end);
4568 /* Allow for marking a secondary stack, like the register stack on the
4569 ia64. */
4570 #ifdef GC_MARK_SECONDARY_STACK
4571 GC_MARK_SECONDARY_STACK ();
4572 #endif
4573
4574 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4575 check_gcpros ();
4576 #endif
4577 }
4578
4579 #endif /* GC_MARK_STACK != 0 */
4580
4581
4582
4583 /* Return 1 if OBJ is a valid lisp object.
4584 Return 0 if OBJ is NOT a valid lisp object.
4585 Return -1 if we cannot validate OBJ.
4586 This function can be quite slow,
4587 so it should only be used in code for manual debugging. */
4588
4589 int
4590 valid_lisp_object_p (obj)
4591 Lisp_Object obj;
4592 {
4593 void *p;
4594 #if !GC_MARK_STACK
4595 int fd;
4596 #else
4597 struct mem_node *m;
4598 #endif
4599
4600 if (INTEGERP (obj))
4601 return 1;
4602
4603 p = (void *) XPNTR (obj);
4604 if (PURE_POINTER_P (p))
4605 return 1;
4606
4607 #if !GC_MARK_STACK
4608 /* We need to determine whether it is safe to access memory at
4609 address P. Obviously, we cannot just access it (we would SEGV
4610 trying), so we trick the o/s to tell us whether p is a valid
4611 pointer. Unfortunately, we cannot use NULL_DEVICE here, as
4612 emacs_write may not validate p in that case. */
4613 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4614 {
4615 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4616 emacs_close (fd);
4617 unlink ("__Valid__Lisp__Object__");
4618 return valid;
4619 }
4620
4621 return -1;
4622 #else
4623
4624 m = mem_find (p);
4625
4626 if (m == MEM_NIL)
4627 return 0;
4628
4629 switch (m->type)
4630 {
4631 case MEM_TYPE_NON_LISP:
4632 return 0;
4633
4634 case MEM_TYPE_BUFFER:
4635 return live_buffer_p (m, p);
4636
4637 case MEM_TYPE_CONS:
4638 return live_cons_p (m, p);
4639
4640 case MEM_TYPE_STRING:
4641 return live_string_p (m, p);
4642
4643 case MEM_TYPE_MISC:
4644 return live_misc_p (m, p);
4645
4646 case MEM_TYPE_SYMBOL:
4647 return live_symbol_p (m, p);
4648
4649 case MEM_TYPE_FLOAT:
4650 return live_float_p (m, p);
4651
4652 case MEM_TYPE_VECTOR:
4653 case MEM_TYPE_PROCESS:
4654 case MEM_TYPE_HASH_TABLE:
4655 case MEM_TYPE_FRAME:
4656 case MEM_TYPE_WINDOW:
4657 return live_vector_p (m, p);
4658
4659 default:
4660 break;
4661 }
4662
4663 return 0;
4664 #endif
4665 }
4666
4667
4668
4669 \f
4670 /***********************************************************************
4671 Pure Storage Management
4672 ***********************************************************************/
4673
4674 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4675 pointer to it. TYPE is the Lisp type for which the memory is
4676 allocated. TYPE < 0 means it's not used for a Lisp object.
4677
4678 If store_pure_type_info is set and TYPE is >= 0, the type of
4679 the allocated object is recorded in pure_types. */
4680
4681 static POINTER_TYPE *
4682 pure_alloc (size, type)
4683 size_t size;
4684 int type;
4685 {
4686 POINTER_TYPE *result;
4687 #ifdef USE_LSB_TAG
4688 size_t alignment = (1 << GCTYPEBITS);
4689 #else
4690 size_t alignment = sizeof (EMACS_INT);
4691
4692 /* Give Lisp_Floats an extra alignment. */
4693 if (type == Lisp_Float)
4694 {
4695 #if defined __GNUC__ && __GNUC__ >= 2
4696 alignment = __alignof (struct Lisp_Float);
4697 #else
4698 alignment = sizeof (struct Lisp_Float);
4699 #endif
4700 }
4701 #endif
4702
4703 again:
4704 result = ALIGN (purebeg + pure_bytes_used, alignment);
4705 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4706
4707 if (pure_bytes_used <= pure_size)
4708 return result;
4709
4710 /* Don't allocate a large amount here,
4711 because it might get mmap'd and then its address
4712 might not be usable. */
4713 purebeg = (char *) xmalloc (10000);
4714 pure_size = 10000;
4715 pure_bytes_used_before_overflow += pure_bytes_used - size;
4716 pure_bytes_used = 0;
4717 goto again;
4718 }
4719
4720
4721 /* Print a warning if PURESIZE is too small. */
4722
4723 void
4724 check_pure_size ()
4725 {
4726 if (pure_bytes_used_before_overflow)
4727 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4728 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4729 }
4730
4731
4732 /* Return a string allocated in pure space. DATA is a buffer holding
4733 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4734 non-zero means make the result string multibyte.
4735
4736 Must get an error if pure storage is full, since if it cannot hold
4737 a large string it may be able to hold conses that point to that
4738 string; then the string is not protected from gc. */
4739
4740 Lisp_Object
4741 make_pure_string (data, nchars, nbytes, multibyte)
4742 char *data;
4743 int nchars, nbytes;
4744 int multibyte;
4745 {
4746 Lisp_Object string;
4747 struct Lisp_String *s;
4748
4749 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4750 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4751 s->size = nchars;
4752 s->size_byte = multibyte ? nbytes : -1;
4753 bcopy (data, s->data, nbytes);
4754 s->data[nbytes] = '\0';
4755 s->intervals = NULL_INTERVAL;
4756 XSETSTRING (string, s);
4757 return string;
4758 }
4759
4760
4761 /* Return a cons allocated from pure space. Give it pure copies
4762 of CAR as car and CDR as cdr. */
4763
4764 Lisp_Object
4765 pure_cons (car, cdr)
4766 Lisp_Object car, cdr;
4767 {
4768 register Lisp_Object new;
4769 struct Lisp_Cons *p;
4770
4771 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4772 XSETCONS (new, p);
4773 XSETCAR (new, Fpurecopy (car));
4774 XSETCDR (new, Fpurecopy (cdr));
4775 return new;
4776 }
4777
4778
4779 /* Value is a float object with value NUM allocated from pure space. */
4780
4781 Lisp_Object
4782 make_pure_float (num)
4783 double num;
4784 {
4785 register Lisp_Object new;
4786 struct Lisp_Float *p;
4787
4788 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4789 XSETFLOAT (new, p);
4790 XFLOAT_DATA (new) = num;
4791 return new;
4792 }
4793
4794
4795 /* Return a vector with room for LEN Lisp_Objects allocated from
4796 pure space. */
4797
4798 Lisp_Object
4799 make_pure_vector (len)
4800 EMACS_INT len;
4801 {
4802 Lisp_Object new;
4803 struct Lisp_Vector *p;
4804 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4805
4806 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4807 XSETVECTOR (new, p);
4808 XVECTOR (new)->size = len;
4809 return new;
4810 }
4811
4812
4813 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4814 doc: /* Make a copy of object OBJ in pure storage.
4815 Recursively copies contents of vectors and cons cells.
4816 Does not copy symbols. Copies strings without text properties. */)
4817 (obj)
4818 register Lisp_Object obj;
4819 {
4820 if (NILP (Vpurify_flag))
4821 return obj;
4822
4823 if (PURE_POINTER_P (XPNTR (obj)))
4824 return obj;
4825
4826 if (CONSP (obj))
4827 return pure_cons (XCAR (obj), XCDR (obj));
4828 else if (FLOATP (obj))
4829 return make_pure_float (XFLOAT_DATA (obj));
4830 else if (STRINGP (obj))
4831 return make_pure_string (SDATA (obj), SCHARS (obj),
4832 SBYTES (obj),
4833 STRING_MULTIBYTE (obj));
4834 else if (COMPILEDP (obj) || VECTORP (obj))
4835 {
4836 register struct Lisp_Vector *vec;
4837 register int i;
4838 EMACS_INT size;
4839
4840 size = XVECTOR (obj)->size;
4841 if (size & PSEUDOVECTOR_FLAG)
4842 size &= PSEUDOVECTOR_SIZE_MASK;
4843 vec = XVECTOR (make_pure_vector (size));
4844 for (i = 0; i < size; i++)
4845 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4846 if (COMPILEDP (obj))
4847 XSETCOMPILED (obj, vec);
4848 else
4849 XSETVECTOR (obj, vec);
4850 return obj;
4851 }
4852 else if (MARKERP (obj))
4853 error ("Attempt to copy a marker to pure storage");
4854
4855 return obj;
4856 }
4857
4858
4859 \f
4860 /***********************************************************************
4861 Protection from GC
4862 ***********************************************************************/
4863
4864 /* Put an entry in staticvec, pointing at the variable with address
4865 VARADDRESS. */
4866
4867 void
4868 staticpro (varaddress)
4869 Lisp_Object *varaddress;
4870 {
4871 staticvec[staticidx++] = varaddress;
4872 if (staticidx >= NSTATICS)
4873 abort ();
4874 }
4875
4876 struct catchtag
4877 {
4878 Lisp_Object tag;
4879 Lisp_Object val;
4880 struct catchtag *next;
4881 };
4882
4883 \f
4884 /***********************************************************************
4885 Protection from GC
4886 ***********************************************************************/
4887
4888 /* Temporarily prevent garbage collection. */
4889
4890 int
4891 inhibit_garbage_collection ()
4892 {
4893 int count = SPECPDL_INDEX ();
4894 int nbits = min (VALBITS, BITS_PER_INT);
4895
4896 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4897 return count;
4898 }
4899
4900
4901 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4902 doc: /* Reclaim storage for Lisp objects no longer needed.
4903 Garbage collection happens automatically if you cons more than
4904 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4905 `garbage-collect' normally returns a list with info on amount of space in use:
4906 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4907 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4908 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4909 (USED-STRINGS . FREE-STRINGS))
4910 However, if there was overflow in pure space, `garbage-collect'
4911 returns nil, because real GC can't be done. */)
4912 ()
4913 {
4914 register struct specbinding *bind;
4915 struct catchtag *catch;
4916 struct handler *handler;
4917 char stack_top_variable;
4918 register int i;
4919 int message_p;
4920 Lisp_Object total[8];
4921 int count = SPECPDL_INDEX ();
4922 EMACS_TIME t1, t2, t3;
4923
4924 if (abort_on_gc)
4925 abort ();
4926
4927 /* Can't GC if pure storage overflowed because we can't determine
4928 if something is a pure object or not. */
4929 if (pure_bytes_used_before_overflow)
4930 return Qnil;
4931
4932 CHECK_CONS_LIST ();
4933
4934 /* Don't keep undo information around forever.
4935 Do this early on, so it is no problem if the user quits. */
4936 {
4937 register struct buffer *nextb = all_buffers;
4938
4939 while (nextb)
4940 {
4941 /* If a buffer's undo list is Qt, that means that undo is
4942 turned off in that buffer. Calling truncate_undo_list on
4943 Qt tends to return NULL, which effectively turns undo back on.
4944 So don't call truncate_undo_list if undo_list is Qt. */
4945 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4946 truncate_undo_list (nextb);
4947
4948 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4949 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4950 {
4951 /* If a buffer's gap size is more than 10% of the buffer
4952 size, or larger than 2000 bytes, then shrink it
4953 accordingly. Keep a minimum size of 20 bytes. */
4954 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4955
4956 if (nextb->text->gap_size > size)
4957 {
4958 struct buffer *save_current = current_buffer;
4959 current_buffer = nextb;
4960 make_gap (-(nextb->text->gap_size - size));
4961 current_buffer = save_current;
4962 }
4963 }
4964
4965 nextb = nextb->next;
4966 }
4967 }
4968
4969 EMACS_GET_TIME (t1);
4970
4971 /* In case user calls debug_print during GC,
4972 don't let that cause a recursive GC. */
4973 consing_since_gc = 0;
4974
4975 /* Save what's currently displayed in the echo area. */
4976 message_p = push_message ();
4977 record_unwind_protect (pop_message_unwind, Qnil);
4978
4979 /* Save a copy of the contents of the stack, for debugging. */
4980 #if MAX_SAVE_STACK > 0
4981 if (NILP (Vpurify_flag))
4982 {
4983 i = &stack_top_variable - stack_bottom;
4984 if (i < 0) i = -i;
4985 if (i < MAX_SAVE_STACK)
4986 {
4987 if (stack_copy == 0)
4988 stack_copy = (char *) xmalloc (stack_copy_size = i);
4989 else if (stack_copy_size < i)
4990 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4991 if (stack_copy)
4992 {
4993 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4994 bcopy (stack_bottom, stack_copy, i);
4995 else
4996 bcopy (&stack_top_variable, stack_copy, i);
4997 }
4998 }
4999 }
5000 #endif /* MAX_SAVE_STACK > 0 */
5001
5002 if (garbage_collection_messages)
5003 message1_nolog ("Garbage collecting...");
5004
5005 BLOCK_INPUT;
5006
5007 shrink_regexp_cache ();
5008
5009 gc_in_progress = 1;
5010
5011 /* clear_marks (); */
5012
5013 /* Mark all the special slots that serve as the roots of accessibility. */
5014
5015 for (i = 0; i < staticidx; i++)
5016 mark_object (*staticvec[i]);
5017
5018 for (bind = specpdl; bind != specpdl_ptr; bind++)
5019 {
5020 mark_object (bind->symbol);
5021 mark_object (bind->old_value);
5022 }
5023 mark_kboards ();
5024
5025 #ifdef USE_GTK
5026 {
5027 extern void xg_mark_data ();
5028 xg_mark_data ();
5029 }
5030 #endif
5031
5032 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5033 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5034 mark_stack ();
5035 #else
5036 {
5037 register struct gcpro *tail;
5038 for (tail = gcprolist; tail; tail = tail->next)
5039 for (i = 0; i < tail->nvars; i++)
5040 mark_object (tail->var[i]);
5041 }
5042 #endif
5043
5044 mark_byte_stack ();
5045 for (catch = catchlist; catch; catch = catch->next)
5046 {
5047 mark_object (catch->tag);
5048 mark_object (catch->val);
5049 }
5050 for (handler = handlerlist; handler; handler = handler->next)
5051 {
5052 mark_object (handler->handler);
5053 mark_object (handler->var);
5054 }
5055 mark_backtrace ();
5056
5057 #ifdef HAVE_WINDOW_SYSTEM
5058 mark_fringe_data ();
5059 #endif
5060
5061 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5062 mark_stack ();
5063 #endif
5064
5065 /* Everything is now marked, except for the things that require special
5066 finalization, i.e. the undo_list.
5067 Look thru every buffer's undo list
5068 for elements that update markers that were not marked,
5069 and delete them. */
5070 {
5071 register struct buffer *nextb = all_buffers;
5072
5073 while (nextb)
5074 {
5075 /* If a buffer's undo list is Qt, that means that undo is
5076 turned off in that buffer. Calling truncate_undo_list on
5077 Qt tends to return NULL, which effectively turns undo back on.
5078 So don't call truncate_undo_list if undo_list is Qt. */
5079 if (! EQ (nextb->undo_list, Qt))
5080 {
5081 Lisp_Object tail, prev;
5082 tail = nextb->undo_list;
5083 prev = Qnil;
5084 while (CONSP (tail))
5085 {
5086 if (GC_CONSP (XCAR (tail))
5087 && GC_MARKERP (XCAR (XCAR (tail)))
5088 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5089 {
5090 if (NILP (prev))
5091 nextb->undo_list = tail = XCDR (tail);
5092 else
5093 {
5094 tail = XCDR (tail);
5095 XSETCDR (prev, tail);
5096 }
5097 }
5098 else
5099 {
5100 prev = tail;
5101 tail = XCDR (tail);
5102 }
5103 }
5104 }
5105 /* Now that we have stripped the elements that need not be in the
5106 undo_list any more, we can finally mark the list. */
5107 mark_object (nextb->undo_list);
5108
5109 nextb = nextb->next;
5110 }
5111 }
5112
5113 gc_sweep ();
5114
5115 /* Clear the mark bits that we set in certain root slots. */
5116
5117 unmark_byte_stack ();
5118 VECTOR_UNMARK (&buffer_defaults);
5119 VECTOR_UNMARK (&buffer_local_symbols);
5120
5121 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5122 dump_zombies ();
5123 #endif
5124
5125 UNBLOCK_INPUT;
5126
5127 CHECK_CONS_LIST ();
5128
5129 /* clear_marks (); */
5130 gc_in_progress = 0;
5131
5132 consing_since_gc = 0;
5133 if (gc_cons_threshold < 10000)
5134 gc_cons_threshold = 10000;
5135
5136 if (FLOATP (Vgc_cons_percentage))
5137 { /* Set gc_cons_combined_threshold. */
5138 EMACS_INT total = 0;
5139
5140 total += total_conses * sizeof (struct Lisp_Cons);
5141 total += total_symbols * sizeof (struct Lisp_Symbol);
5142 total += total_markers * sizeof (union Lisp_Misc);
5143 total += total_string_size;
5144 total += total_vector_size * sizeof (Lisp_Object);
5145 total += total_floats * sizeof (struct Lisp_Float);
5146 total += total_intervals * sizeof (struct interval);
5147 total += total_strings * sizeof (struct Lisp_String);
5148
5149 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5150 }
5151 else
5152 gc_relative_threshold = 0;
5153
5154 if (garbage_collection_messages)
5155 {
5156 if (message_p || minibuf_level > 0)
5157 restore_message ();
5158 else
5159 message1_nolog ("Garbage collecting...done");
5160 }
5161
5162 unbind_to (count, Qnil);
5163
5164 total[0] = Fcons (make_number (total_conses),
5165 make_number (total_free_conses));
5166 total[1] = Fcons (make_number (total_symbols),
5167 make_number (total_free_symbols));
5168 total[2] = Fcons (make_number (total_markers),
5169 make_number (total_free_markers));
5170 total[3] = make_number (total_string_size);
5171 total[4] = make_number (total_vector_size);
5172 total[5] = Fcons (make_number (total_floats),
5173 make_number (total_free_floats));
5174 total[6] = Fcons (make_number (total_intervals),
5175 make_number (total_free_intervals));
5176 total[7] = Fcons (make_number (total_strings),
5177 make_number (total_free_strings));
5178
5179 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5180 {
5181 /* Compute average percentage of zombies. */
5182 double nlive = 0;
5183
5184 for (i = 0; i < 7; ++i)
5185 if (CONSP (total[i]))
5186 nlive += XFASTINT (XCAR (total[i]));
5187
5188 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5189 max_live = max (nlive, max_live);
5190 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5191 max_zombies = max (nzombies, max_zombies);
5192 ++ngcs;
5193 }
5194 #endif
5195
5196 if (!NILP (Vpost_gc_hook))
5197 {
5198 int count = inhibit_garbage_collection ();
5199 safe_run_hooks (Qpost_gc_hook);
5200 unbind_to (count, Qnil);
5201 }
5202
5203 /* Accumulate statistics. */
5204 EMACS_GET_TIME (t2);
5205 EMACS_SUB_TIME (t3, t2, t1);
5206 if (FLOATP (Vgc_elapsed))
5207 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5208 EMACS_SECS (t3) +
5209 EMACS_USECS (t3) * 1.0e-6);
5210 gcs_done++;
5211
5212 return Flist (sizeof total / sizeof *total, total);
5213 }
5214
5215
5216 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5217 only interesting objects referenced from glyphs are strings. */
5218
5219 static void
5220 mark_glyph_matrix (matrix)
5221 struct glyph_matrix *matrix;
5222 {
5223 struct glyph_row *row = matrix->rows;
5224 struct glyph_row *end = row + matrix->nrows;
5225
5226 for (; row < end; ++row)
5227 if (row->enabled_p)
5228 {
5229 int area;
5230 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5231 {
5232 struct glyph *glyph = row->glyphs[area];
5233 struct glyph *end_glyph = glyph + row->used[area];
5234
5235 for (; glyph < end_glyph; ++glyph)
5236 if (GC_STRINGP (glyph->object)
5237 && !STRING_MARKED_P (XSTRING (glyph->object)))
5238 mark_object (glyph->object);
5239 }
5240 }
5241 }
5242
5243
5244 /* Mark Lisp faces in the face cache C. */
5245
5246 static void
5247 mark_face_cache (c)
5248 struct face_cache *c;
5249 {
5250 if (c)
5251 {
5252 int i, j;
5253 for (i = 0; i < c->used; ++i)
5254 {
5255 struct face *face = FACE_FROM_ID (c->f, i);
5256
5257 if (face)
5258 {
5259 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5260 mark_object (face->lface[j]);
5261 }
5262 }
5263 }
5264 }
5265
5266
5267 #ifdef HAVE_WINDOW_SYSTEM
5268
5269 /* Mark Lisp objects in image IMG. */
5270
5271 static void
5272 mark_image (img)
5273 struct image *img;
5274 {
5275 mark_object (img->spec);
5276
5277 if (!NILP (img->data.lisp_val))
5278 mark_object (img->data.lisp_val);
5279 }
5280
5281
5282 /* Mark Lisp objects in image cache of frame F. It's done this way so
5283 that we don't have to include xterm.h here. */
5284
5285 static void
5286 mark_image_cache (f)
5287 struct frame *f;
5288 {
5289 forall_images_in_image_cache (f, mark_image);
5290 }
5291
5292 #endif /* HAVE_X_WINDOWS */
5293
5294
5295 \f
5296 /* Mark reference to a Lisp_Object.
5297 If the object referred to has not been seen yet, recursively mark
5298 all the references contained in it. */
5299
5300 #define LAST_MARKED_SIZE 500
5301 Lisp_Object last_marked[LAST_MARKED_SIZE];
5302 int last_marked_index;
5303
5304 /* For debugging--call abort when we cdr down this many
5305 links of a list, in mark_object. In debugging,
5306 the call to abort will hit a breakpoint.
5307 Normally this is zero and the check never goes off. */
5308 int mark_object_loop_halt;
5309
5310 void
5311 mark_object (arg)
5312 Lisp_Object arg;
5313 {
5314 register Lisp_Object obj = arg;
5315 #ifdef GC_CHECK_MARKED_OBJECTS
5316 void *po;
5317 struct mem_node *m;
5318 #endif
5319 int cdr_count = 0;
5320
5321 loop:
5322
5323 if (PURE_POINTER_P (XPNTR (obj)))
5324 return;
5325
5326 last_marked[last_marked_index++] = obj;
5327 if (last_marked_index == LAST_MARKED_SIZE)
5328 last_marked_index = 0;
5329
5330 /* Perform some sanity checks on the objects marked here. Abort if
5331 we encounter an object we know is bogus. This increases GC time
5332 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5333 #ifdef GC_CHECK_MARKED_OBJECTS
5334
5335 po = (void *) XPNTR (obj);
5336
5337 /* Check that the object pointed to by PO is known to be a Lisp
5338 structure allocated from the heap. */
5339 #define CHECK_ALLOCATED() \
5340 do { \
5341 m = mem_find (po); \
5342 if (m == MEM_NIL) \
5343 abort (); \
5344 } while (0)
5345
5346 /* Check that the object pointed to by PO is live, using predicate
5347 function LIVEP. */
5348 #define CHECK_LIVE(LIVEP) \
5349 do { \
5350 if (!LIVEP (m, po)) \
5351 abort (); \
5352 } while (0)
5353
5354 /* Check both of the above conditions. */
5355 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5356 do { \
5357 CHECK_ALLOCATED (); \
5358 CHECK_LIVE (LIVEP); \
5359 } while (0) \
5360
5361 #else /* not GC_CHECK_MARKED_OBJECTS */
5362
5363 #define CHECK_ALLOCATED() (void) 0
5364 #define CHECK_LIVE(LIVEP) (void) 0
5365 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5366
5367 #endif /* not GC_CHECK_MARKED_OBJECTS */
5368
5369 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5370 {
5371 case Lisp_String:
5372 {
5373 register struct Lisp_String *ptr = XSTRING (obj);
5374 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5375 MARK_INTERVAL_TREE (ptr->intervals);
5376 MARK_STRING (ptr);
5377 #ifdef GC_CHECK_STRING_BYTES
5378 /* Check that the string size recorded in the string is the
5379 same as the one recorded in the sdata structure. */
5380 CHECK_STRING_BYTES (ptr);
5381 #endif /* GC_CHECK_STRING_BYTES */
5382 }
5383 break;
5384
5385 case Lisp_Vectorlike:
5386 #ifdef GC_CHECK_MARKED_OBJECTS
5387 m = mem_find (po);
5388 if (m == MEM_NIL && !GC_SUBRP (obj)
5389 && po != &buffer_defaults
5390 && po != &buffer_local_symbols)
5391 abort ();
5392 #endif /* GC_CHECK_MARKED_OBJECTS */
5393
5394 if (GC_BUFFERP (obj))
5395 {
5396 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5397 {
5398 #ifdef GC_CHECK_MARKED_OBJECTS
5399 if (po != &buffer_defaults && po != &buffer_local_symbols)
5400 {
5401 struct buffer *b;
5402 for (b = all_buffers; b && b != po; b = b->next)
5403 ;
5404 if (b == NULL)
5405 abort ();
5406 }
5407 #endif /* GC_CHECK_MARKED_OBJECTS */
5408 mark_buffer (obj);
5409 }
5410 }
5411 else if (GC_SUBRP (obj))
5412 break;
5413 else if (GC_COMPILEDP (obj))
5414 /* We could treat this just like a vector, but it is better to
5415 save the COMPILED_CONSTANTS element for last and avoid
5416 recursion there. */
5417 {
5418 register struct Lisp_Vector *ptr = XVECTOR (obj);
5419 register EMACS_INT size = ptr->size;
5420 register int i;
5421
5422 if (VECTOR_MARKED_P (ptr))
5423 break; /* Already marked */
5424
5425 CHECK_LIVE (live_vector_p);
5426 VECTOR_MARK (ptr); /* Else mark it */
5427 size &= PSEUDOVECTOR_SIZE_MASK;
5428 for (i = 0; i < size; i++) /* and then mark its elements */
5429 {
5430 if (i != COMPILED_CONSTANTS)
5431 mark_object (ptr->contents[i]);
5432 }
5433 obj = ptr->contents[COMPILED_CONSTANTS];
5434 goto loop;
5435 }
5436 else if (GC_FRAMEP (obj))
5437 {
5438 register struct frame *ptr = XFRAME (obj);
5439
5440 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5441 VECTOR_MARK (ptr); /* Else mark it */
5442
5443 CHECK_LIVE (live_vector_p);
5444 mark_object (ptr->name);
5445 mark_object (ptr->icon_name);
5446 mark_object (ptr->title);
5447 mark_object (ptr->focus_frame);
5448 mark_object (ptr->selected_window);
5449 mark_object (ptr->minibuffer_window);
5450 mark_object (ptr->param_alist);
5451 mark_object (ptr->scroll_bars);
5452 mark_object (ptr->condemned_scroll_bars);
5453 mark_object (ptr->menu_bar_items);
5454 mark_object (ptr->face_alist);
5455 mark_object (ptr->menu_bar_vector);
5456 mark_object (ptr->buffer_predicate);
5457 mark_object (ptr->buffer_list);
5458 mark_object (ptr->menu_bar_window);
5459 mark_object (ptr->tool_bar_window);
5460 mark_face_cache (ptr->face_cache);
5461 #ifdef HAVE_WINDOW_SYSTEM
5462 mark_image_cache (ptr);
5463 mark_object (ptr->tool_bar_items);
5464 mark_object (ptr->desired_tool_bar_string);
5465 mark_object (ptr->current_tool_bar_string);
5466 #endif /* HAVE_WINDOW_SYSTEM */
5467 }
5468 else if (GC_BOOL_VECTOR_P (obj))
5469 {
5470 register struct Lisp_Vector *ptr = XVECTOR (obj);
5471
5472 if (VECTOR_MARKED_P (ptr))
5473 break; /* Already marked */
5474 CHECK_LIVE (live_vector_p);
5475 VECTOR_MARK (ptr); /* Else mark it */
5476 }
5477 else if (GC_WINDOWP (obj))
5478 {
5479 register struct Lisp_Vector *ptr = XVECTOR (obj);
5480 struct window *w = XWINDOW (obj);
5481 register int i;
5482
5483 /* Stop if already marked. */
5484 if (VECTOR_MARKED_P (ptr))
5485 break;
5486
5487 /* Mark it. */
5488 CHECK_LIVE (live_vector_p);
5489 VECTOR_MARK (ptr);
5490
5491 /* There is no Lisp data above The member CURRENT_MATRIX in
5492 struct WINDOW. Stop marking when that slot is reached. */
5493 for (i = 0;
5494 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5495 i++)
5496 mark_object (ptr->contents[i]);
5497
5498 /* Mark glyphs for leaf windows. Marking window matrices is
5499 sufficient because frame matrices use the same glyph
5500 memory. */
5501 if (NILP (w->hchild)
5502 && NILP (w->vchild)
5503 && w->current_matrix)
5504 {
5505 mark_glyph_matrix (w->current_matrix);
5506 mark_glyph_matrix (w->desired_matrix);
5507 }
5508 }
5509 else if (GC_HASH_TABLE_P (obj))
5510 {
5511 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5512
5513 /* Stop if already marked. */
5514 if (VECTOR_MARKED_P (h))
5515 break;
5516
5517 /* Mark it. */
5518 CHECK_LIVE (live_vector_p);
5519 VECTOR_MARK (h);
5520
5521 /* Mark contents. */
5522 /* Do not mark next_free or next_weak.
5523 Being in the next_weak chain
5524 should not keep the hash table alive.
5525 No need to mark `count' since it is an integer. */
5526 mark_object (h->test);
5527 mark_object (h->weak);
5528 mark_object (h->rehash_size);
5529 mark_object (h->rehash_threshold);
5530 mark_object (h->hash);
5531 mark_object (h->next);
5532 mark_object (h->index);
5533 mark_object (h->user_hash_function);
5534 mark_object (h->user_cmp_function);
5535
5536 /* If hash table is not weak, mark all keys and values.
5537 For weak tables, mark only the vector. */
5538 if (GC_NILP (h->weak))
5539 mark_object (h->key_and_value);
5540 else
5541 VECTOR_MARK (XVECTOR (h->key_and_value));
5542 }
5543 else
5544 {
5545 register struct Lisp_Vector *ptr = XVECTOR (obj);
5546 register EMACS_INT size = ptr->size;
5547 register int i;
5548
5549 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5550 CHECK_LIVE (live_vector_p);
5551 VECTOR_MARK (ptr); /* Else mark it */
5552 if (size & PSEUDOVECTOR_FLAG)
5553 size &= PSEUDOVECTOR_SIZE_MASK;
5554
5555 for (i = 0; i < size; i++) /* and then mark its elements */
5556 mark_object (ptr->contents[i]);
5557 }
5558 break;
5559
5560 case Lisp_Symbol:
5561 {
5562 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5563 struct Lisp_Symbol *ptrx;
5564
5565 if (ptr->gcmarkbit) break;
5566 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5567 ptr->gcmarkbit = 1;
5568 mark_object (ptr->value);
5569 mark_object (ptr->function);
5570 mark_object (ptr->plist);
5571
5572 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5573 MARK_STRING (XSTRING (ptr->xname));
5574 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5575
5576 /* Note that we do not mark the obarray of the symbol.
5577 It is safe not to do so because nothing accesses that
5578 slot except to check whether it is nil. */
5579 ptr = ptr->next;
5580 if (ptr)
5581 {
5582 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5583 XSETSYMBOL (obj, ptrx);
5584 goto loop;
5585 }
5586 }
5587 break;
5588
5589 case Lisp_Misc:
5590 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5591 if (XMARKER (obj)->gcmarkbit)
5592 break;
5593 XMARKER (obj)->gcmarkbit = 1;
5594
5595 switch (XMISCTYPE (obj))
5596 {
5597 case Lisp_Misc_Buffer_Local_Value:
5598 case Lisp_Misc_Some_Buffer_Local_Value:
5599 {
5600 register struct Lisp_Buffer_Local_Value *ptr
5601 = XBUFFER_LOCAL_VALUE (obj);
5602 /* If the cdr is nil, avoid recursion for the car. */
5603 if (EQ (ptr->cdr, Qnil))
5604 {
5605 obj = ptr->realvalue;
5606 goto loop;
5607 }
5608 mark_object (ptr->realvalue);
5609 mark_object (ptr->buffer);
5610 mark_object (ptr->frame);
5611 obj = ptr->cdr;
5612 goto loop;
5613 }
5614
5615 case Lisp_Misc_Marker:
5616 /* DO NOT mark thru the marker's chain.
5617 The buffer's markers chain does not preserve markers from gc;
5618 instead, markers are removed from the chain when freed by gc. */
5619 break;
5620
5621 case Lisp_Misc_Intfwd:
5622 case Lisp_Misc_Boolfwd:
5623 case Lisp_Misc_Objfwd:
5624 case Lisp_Misc_Buffer_Objfwd:
5625 case Lisp_Misc_Kboard_Objfwd:
5626 /* Don't bother with Lisp_Buffer_Objfwd,
5627 since all markable slots in current buffer marked anyway. */
5628 /* Don't need to do Lisp_Objfwd, since the places they point
5629 are protected with staticpro. */
5630 break;
5631
5632 case Lisp_Misc_Save_Value:
5633 #if GC_MARK_STACK
5634 {
5635 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5636 /* If DOGC is set, POINTER is the address of a memory
5637 area containing INTEGER potential Lisp_Objects. */
5638 if (ptr->dogc)
5639 {
5640 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5641 int nelt;
5642 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5643 mark_maybe_object (*p);
5644 }
5645 }
5646 #endif
5647 break;
5648
5649 case Lisp_Misc_Overlay:
5650 {
5651 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5652 mark_object (ptr->start);
5653 mark_object (ptr->end);
5654 mark_object (ptr->plist);
5655 if (ptr->next)
5656 {
5657 XSETMISC (obj, ptr->next);
5658 goto loop;
5659 }
5660 }
5661 break;
5662
5663 default:
5664 abort ();
5665 }
5666 break;
5667
5668 case Lisp_Cons:
5669 {
5670 register struct Lisp_Cons *ptr = XCONS (obj);
5671 if (CONS_MARKED_P (ptr)) break;
5672 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5673 CONS_MARK (ptr);
5674 /* If the cdr is nil, avoid recursion for the car. */
5675 if (EQ (ptr->u.cdr, Qnil))
5676 {
5677 obj = ptr->car;
5678 cdr_count = 0;
5679 goto loop;
5680 }
5681 mark_object (ptr->car);
5682 obj = ptr->u.cdr;
5683 cdr_count++;
5684 if (cdr_count == mark_object_loop_halt)
5685 abort ();
5686 goto loop;
5687 }
5688
5689 case Lisp_Float:
5690 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5691 FLOAT_MARK (XFLOAT (obj));
5692 break;
5693
5694 case Lisp_Int:
5695 break;
5696
5697 default:
5698 abort ();
5699 }
5700
5701 #undef CHECK_LIVE
5702 #undef CHECK_ALLOCATED
5703 #undef CHECK_ALLOCATED_AND_LIVE
5704 }
5705
5706 /* Mark the pointers in a buffer structure. */
5707
5708 static void
5709 mark_buffer (buf)
5710 Lisp_Object buf;
5711 {
5712 register struct buffer *buffer = XBUFFER (buf);
5713 register Lisp_Object *ptr, tmp;
5714 Lisp_Object base_buffer;
5715
5716 VECTOR_MARK (buffer);
5717
5718 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5719
5720 /* For now, we just don't mark the undo_list. It's done later in
5721 a special way just before the sweep phase, and after stripping
5722 some of its elements that are not needed any more. */
5723
5724 if (buffer->overlays_before)
5725 {
5726 XSETMISC (tmp, buffer->overlays_before);
5727 mark_object (tmp);
5728 }
5729 if (buffer->overlays_after)
5730 {
5731 XSETMISC (tmp, buffer->overlays_after);
5732 mark_object (tmp);
5733 }
5734
5735 for (ptr = &buffer->name;
5736 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5737 ptr++)
5738 mark_object (*ptr);
5739
5740 /* If this is an indirect buffer, mark its base buffer. */
5741 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5742 {
5743 XSETBUFFER (base_buffer, buffer->base_buffer);
5744 mark_buffer (base_buffer);
5745 }
5746 }
5747
5748
5749 /* Value is non-zero if OBJ will survive the current GC because it's
5750 either marked or does not need to be marked to survive. */
5751
5752 int
5753 survives_gc_p (obj)
5754 Lisp_Object obj;
5755 {
5756 int survives_p;
5757
5758 switch (XGCTYPE (obj))
5759 {
5760 case Lisp_Int:
5761 survives_p = 1;
5762 break;
5763
5764 case Lisp_Symbol:
5765 survives_p = XSYMBOL (obj)->gcmarkbit;
5766 break;
5767
5768 case Lisp_Misc:
5769 survives_p = XMARKER (obj)->gcmarkbit;
5770 break;
5771
5772 case Lisp_String:
5773 survives_p = STRING_MARKED_P (XSTRING (obj));
5774 break;
5775
5776 case Lisp_Vectorlike:
5777 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5778 break;
5779
5780 case Lisp_Cons:
5781 survives_p = CONS_MARKED_P (XCONS (obj));
5782 break;
5783
5784 case Lisp_Float:
5785 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5786 break;
5787
5788 default:
5789 abort ();
5790 }
5791
5792 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5793 }
5794
5795
5796 \f
5797 /* Sweep: find all structures not marked, and free them. */
5798
5799 static void
5800 gc_sweep ()
5801 {
5802 /* Remove or mark entries in weak hash tables.
5803 This must be done before any object is unmarked. */
5804 sweep_weak_hash_tables ();
5805
5806 sweep_strings ();
5807 #ifdef GC_CHECK_STRING_BYTES
5808 if (!noninteractive)
5809 check_string_bytes (1);
5810 #endif
5811
5812 /* Put all unmarked conses on free list */
5813 {
5814 register struct cons_block *cblk;
5815 struct cons_block **cprev = &cons_block;
5816 register int lim = cons_block_index;
5817 register int num_free = 0, num_used = 0;
5818
5819 cons_free_list = 0;
5820
5821 for (cblk = cons_block; cblk; cblk = *cprev)
5822 {
5823 register int i;
5824 int this_free = 0;
5825 for (i = 0; i < lim; i++)
5826 if (!CONS_MARKED_P (&cblk->conses[i]))
5827 {
5828 this_free++;
5829 cblk->conses[i].u.chain = cons_free_list;
5830 cons_free_list = &cblk->conses[i];
5831 #if GC_MARK_STACK
5832 cons_free_list->car = Vdead;
5833 #endif
5834 }
5835 else
5836 {
5837 num_used++;
5838 CONS_UNMARK (&cblk->conses[i]);
5839 }
5840 lim = CONS_BLOCK_SIZE;
5841 /* If this block contains only free conses and we have already
5842 seen more than two blocks worth of free conses then deallocate
5843 this block. */
5844 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5845 {
5846 *cprev = cblk->next;
5847 /* Unhook from the free list. */
5848 cons_free_list = cblk->conses[0].u.chain;
5849 lisp_align_free (cblk);
5850 n_cons_blocks--;
5851 }
5852 else
5853 {
5854 num_free += this_free;
5855 cprev = &cblk->next;
5856 }
5857 }
5858 total_conses = num_used;
5859 total_free_conses = num_free;
5860 }
5861
5862 /* Put all unmarked floats on free list */
5863 {
5864 register struct float_block *fblk;
5865 struct float_block **fprev = &float_block;
5866 register int lim = float_block_index;
5867 register int num_free = 0, num_used = 0;
5868
5869 float_free_list = 0;
5870
5871 for (fblk = float_block; fblk; fblk = *fprev)
5872 {
5873 register int i;
5874 int this_free = 0;
5875 for (i = 0; i < lim; i++)
5876 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5877 {
5878 this_free++;
5879 fblk->floats[i].u.chain = float_free_list;
5880 float_free_list = &fblk->floats[i];
5881 }
5882 else
5883 {
5884 num_used++;
5885 FLOAT_UNMARK (&fblk->floats[i]);
5886 }
5887 lim = FLOAT_BLOCK_SIZE;
5888 /* If this block contains only free floats and we have already
5889 seen more than two blocks worth of free floats then deallocate
5890 this block. */
5891 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5892 {
5893 *fprev = fblk->next;
5894 /* Unhook from the free list. */
5895 float_free_list = fblk->floats[0].u.chain;
5896 lisp_align_free (fblk);
5897 n_float_blocks--;
5898 }
5899 else
5900 {
5901 num_free += this_free;
5902 fprev = &fblk->next;
5903 }
5904 }
5905 total_floats = num_used;
5906 total_free_floats = num_free;
5907 }
5908
5909 /* Put all unmarked intervals on free list */
5910 {
5911 register struct interval_block *iblk;
5912 struct interval_block **iprev = &interval_block;
5913 register int lim = interval_block_index;
5914 register int num_free = 0, num_used = 0;
5915
5916 interval_free_list = 0;
5917
5918 for (iblk = interval_block; iblk; iblk = *iprev)
5919 {
5920 register int i;
5921 int this_free = 0;
5922
5923 for (i = 0; i < lim; i++)
5924 {
5925 if (!iblk->intervals[i].gcmarkbit)
5926 {
5927 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5928 interval_free_list = &iblk->intervals[i];
5929 this_free++;
5930 }
5931 else
5932 {
5933 num_used++;
5934 iblk->intervals[i].gcmarkbit = 0;
5935 }
5936 }
5937 lim = INTERVAL_BLOCK_SIZE;
5938 /* If this block contains only free intervals and we have already
5939 seen more than two blocks worth of free intervals then
5940 deallocate this block. */
5941 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5942 {
5943 *iprev = iblk->next;
5944 /* Unhook from the free list. */
5945 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5946 lisp_free (iblk);
5947 n_interval_blocks--;
5948 }
5949 else
5950 {
5951 num_free += this_free;
5952 iprev = &iblk->next;
5953 }
5954 }
5955 total_intervals = num_used;
5956 total_free_intervals = num_free;
5957 }
5958
5959 /* Put all unmarked symbols on free list */
5960 {
5961 register struct symbol_block *sblk;
5962 struct symbol_block **sprev = &symbol_block;
5963 register int lim = symbol_block_index;
5964 register int num_free = 0, num_used = 0;
5965
5966 symbol_free_list = NULL;
5967
5968 for (sblk = symbol_block; sblk; sblk = *sprev)
5969 {
5970 int this_free = 0;
5971 struct Lisp_Symbol *sym = sblk->symbols;
5972 struct Lisp_Symbol *end = sym + lim;
5973
5974 for (; sym < end; ++sym)
5975 {
5976 /* Check if the symbol was created during loadup. In such a case
5977 it might be pointed to by pure bytecode which we don't trace,
5978 so we conservatively assume that it is live. */
5979 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5980
5981 if (!sym->gcmarkbit && !pure_p)
5982 {
5983 sym->next = symbol_free_list;
5984 symbol_free_list = sym;
5985 #if GC_MARK_STACK
5986 symbol_free_list->function = Vdead;
5987 #endif
5988 ++this_free;
5989 }
5990 else
5991 {
5992 ++num_used;
5993 if (!pure_p)
5994 UNMARK_STRING (XSTRING (sym->xname));
5995 sym->gcmarkbit = 0;
5996 }
5997 }
5998
5999 lim = SYMBOL_BLOCK_SIZE;
6000 /* If this block contains only free symbols and we have already
6001 seen more than two blocks worth of free symbols then deallocate
6002 this block. */
6003 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6004 {
6005 *sprev = sblk->next;
6006 /* Unhook from the free list. */
6007 symbol_free_list = sblk->symbols[0].next;
6008 lisp_free (sblk);
6009 n_symbol_blocks--;
6010 }
6011 else
6012 {
6013 num_free += this_free;
6014 sprev = &sblk->next;
6015 }
6016 }
6017 total_symbols = num_used;
6018 total_free_symbols = num_free;
6019 }
6020
6021 /* Put all unmarked misc's on free list.
6022 For a marker, first unchain it from the buffer it points into. */
6023 {
6024 register struct marker_block *mblk;
6025 struct marker_block **mprev = &marker_block;
6026 register int lim = marker_block_index;
6027 register int num_free = 0, num_used = 0;
6028
6029 marker_free_list = 0;
6030
6031 for (mblk = marker_block; mblk; mblk = *mprev)
6032 {
6033 register int i;
6034 int this_free = 0;
6035
6036 for (i = 0; i < lim; i++)
6037 {
6038 if (!mblk->markers[i].u_marker.gcmarkbit)
6039 {
6040 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6041 unchain_marker (&mblk->markers[i].u_marker);
6042 /* Set the type of the freed object to Lisp_Misc_Free.
6043 We could leave the type alone, since nobody checks it,
6044 but this might catch bugs faster. */
6045 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6046 mblk->markers[i].u_free.chain = marker_free_list;
6047 marker_free_list = &mblk->markers[i];
6048 this_free++;
6049 }
6050 else
6051 {
6052 num_used++;
6053 mblk->markers[i].u_marker.gcmarkbit = 0;
6054 }
6055 }
6056 lim = MARKER_BLOCK_SIZE;
6057 /* If this block contains only free markers and we have already
6058 seen more than two blocks worth of free markers then deallocate
6059 this block. */
6060 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6061 {
6062 *mprev = mblk->next;
6063 /* Unhook from the free list. */
6064 marker_free_list = mblk->markers[0].u_free.chain;
6065 lisp_free (mblk);
6066 n_marker_blocks--;
6067 }
6068 else
6069 {
6070 num_free += this_free;
6071 mprev = &mblk->next;
6072 }
6073 }
6074
6075 total_markers = num_used;
6076 total_free_markers = num_free;
6077 }
6078
6079 /* Free all unmarked buffers */
6080 {
6081 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6082
6083 while (buffer)
6084 if (!VECTOR_MARKED_P (buffer))
6085 {
6086 if (prev)
6087 prev->next = buffer->next;
6088 else
6089 all_buffers = buffer->next;
6090 next = buffer->next;
6091 lisp_free (buffer);
6092 buffer = next;
6093 }
6094 else
6095 {
6096 VECTOR_UNMARK (buffer);
6097 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6098 prev = buffer, buffer = buffer->next;
6099 }
6100 }
6101
6102 /* Free all unmarked vectors */
6103 {
6104 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6105 total_vector_size = 0;
6106
6107 while (vector)
6108 if (!VECTOR_MARKED_P (vector))
6109 {
6110 if (prev)
6111 prev->next = vector->next;
6112 else
6113 all_vectors = vector->next;
6114 next = vector->next;
6115 lisp_free (vector);
6116 n_vectors--;
6117 vector = next;
6118
6119 }
6120 else
6121 {
6122 VECTOR_UNMARK (vector);
6123 if (vector->size & PSEUDOVECTOR_FLAG)
6124 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6125 else
6126 total_vector_size += vector->size;
6127 prev = vector, vector = vector->next;
6128 }
6129 }
6130
6131 #ifdef GC_CHECK_STRING_BYTES
6132 if (!noninteractive)
6133 check_string_bytes (1);
6134 #endif
6135 }
6136
6137
6138
6139 \f
6140 /* Debugging aids. */
6141
6142 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6143 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6144 This may be helpful in debugging Emacs's memory usage.
6145 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6146 ()
6147 {
6148 Lisp_Object end;
6149
6150 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6151
6152 return end;
6153 }
6154
6155 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6156 doc: /* Return a list of counters that measure how much consing there has been.
6157 Each of these counters increments for a certain kind of object.
6158 The counters wrap around from the largest positive integer to zero.
6159 Garbage collection does not decrease them.
6160 The elements of the value are as follows:
6161 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6162 All are in units of 1 = one object consed
6163 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6164 objects consed.
6165 MISCS include overlays, markers, and some internal types.
6166 Frames, windows, buffers, and subprocesses count as vectors
6167 (but the contents of a buffer's text do not count here). */)
6168 ()
6169 {
6170 Lisp_Object consed[8];
6171
6172 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6173 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6174 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6175 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6176 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6177 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6178 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6179 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6180
6181 return Flist (8, consed);
6182 }
6183
6184 int suppress_checking;
6185 void
6186 die (msg, file, line)
6187 const char *msg;
6188 const char *file;
6189 int line;
6190 {
6191 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6192 file, line, msg);
6193 abort ();
6194 }
6195 \f
6196 /* Initialization */
6197
6198 void
6199 init_alloc_once ()
6200 {
6201 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6202 purebeg = PUREBEG;
6203 pure_size = PURESIZE;
6204 pure_bytes_used = 0;
6205 pure_bytes_used_before_overflow = 0;
6206
6207 /* Initialize the list of free aligned blocks. */
6208 free_ablock = NULL;
6209
6210 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6211 mem_init ();
6212 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6213 #endif
6214
6215 all_vectors = 0;
6216 ignore_warnings = 1;
6217 #ifdef DOUG_LEA_MALLOC
6218 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6219 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6220 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6221 #endif
6222 init_strings ();
6223 init_cons ();
6224 init_symbol ();
6225 init_marker ();
6226 init_float ();
6227 init_intervals ();
6228
6229 #ifdef REL_ALLOC
6230 malloc_hysteresis = 32;
6231 #else
6232 malloc_hysteresis = 0;
6233 #endif
6234
6235 refill_memory_reserve ();
6236
6237 ignore_warnings = 0;
6238 gcprolist = 0;
6239 byte_stack_list = 0;
6240 staticidx = 0;
6241 consing_since_gc = 0;
6242 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6243 gc_relative_threshold = 0;
6244
6245 #ifdef VIRT_ADDR_VARIES
6246 malloc_sbrk_unused = 1<<22; /* A large number */
6247 malloc_sbrk_used = 100000; /* as reasonable as any number */
6248 #endif /* VIRT_ADDR_VARIES */
6249 }
6250
6251 void
6252 init_alloc ()
6253 {
6254 gcprolist = 0;
6255 byte_stack_list = 0;
6256 #if GC_MARK_STACK
6257 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6258 setjmp_tested_p = longjmps_done = 0;
6259 #endif
6260 #endif
6261 Vgc_elapsed = make_float (0.0);
6262 gcs_done = 0;
6263 }
6264
6265 void
6266 syms_of_alloc ()
6267 {
6268 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6269 doc: /* *Number of bytes of consing between garbage collections.
6270 Garbage collection can happen automatically once this many bytes have been
6271 allocated since the last garbage collection. All data types count.
6272
6273 Garbage collection happens automatically only when `eval' is called.
6274
6275 By binding this temporarily to a large number, you can effectively
6276 prevent garbage collection during a part of the program.
6277 See also `gc-cons-percentage'. */);
6278
6279 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6280 doc: /* *Portion of the heap used for allocation.
6281 Garbage collection can happen automatically once this portion of the heap
6282 has been allocated since the last garbage collection.
6283 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6284 Vgc_cons_percentage = make_float (0.1);
6285
6286 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6287 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6288
6289 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6290 doc: /* Number of cons cells that have been consed so far. */);
6291
6292 DEFVAR_INT ("floats-consed", &floats_consed,
6293 doc: /* Number of floats that have been consed so far. */);
6294
6295 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6296 doc: /* Number of vector cells that have been consed so far. */);
6297
6298 DEFVAR_INT ("symbols-consed", &symbols_consed,
6299 doc: /* Number of symbols that have been consed so far. */);
6300
6301 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6302 doc: /* Number of string characters that have been consed so far. */);
6303
6304 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6305 doc: /* Number of miscellaneous objects that have been consed so far. */);
6306
6307 DEFVAR_INT ("intervals-consed", &intervals_consed,
6308 doc: /* Number of intervals that have been consed so far. */);
6309
6310 DEFVAR_INT ("strings-consed", &strings_consed,
6311 doc: /* Number of strings that have been consed so far. */);
6312
6313 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6314 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6315 This means that certain objects should be allocated in shared (pure) space. */);
6316
6317 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6318 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6319 garbage_collection_messages = 0;
6320
6321 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6322 doc: /* Hook run after garbage collection has finished. */);
6323 Vpost_gc_hook = Qnil;
6324 Qpost_gc_hook = intern ("post-gc-hook");
6325 staticpro (&Qpost_gc_hook);
6326
6327 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6328 doc: /* Precomputed `signal' argument for memory-full error. */);
6329 /* We build this in advance because if we wait until we need it, we might
6330 not be able to allocate the memory to hold it. */
6331 Vmemory_signal_data
6332 = list2 (Qerror,
6333 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6334
6335 DEFVAR_LISP ("memory-full", &Vmemory_full,
6336 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6337 Vmemory_full = Qnil;
6338
6339 staticpro (&Qgc_cons_threshold);
6340 Qgc_cons_threshold = intern ("gc-cons-threshold");
6341
6342 staticpro (&Qchar_table_extra_slots);
6343 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6344
6345 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6346 doc: /* Accumulated time elapsed in garbage collections.
6347 The time is in seconds as a floating point value. */);
6348 DEFVAR_INT ("gcs-done", &gcs_done,
6349 doc: /* Accumulated number of garbage collections done. */);
6350
6351 defsubr (&Scons);
6352 defsubr (&Slist);
6353 defsubr (&Svector);
6354 defsubr (&Smake_byte_code);
6355 defsubr (&Smake_list);
6356 defsubr (&Smake_vector);
6357 defsubr (&Smake_char_table);
6358 defsubr (&Smake_string);
6359 defsubr (&Smake_bool_vector);
6360 defsubr (&Smake_symbol);
6361 defsubr (&Smake_marker);
6362 defsubr (&Spurecopy);
6363 defsubr (&Sgarbage_collect);
6364 defsubr (&Smemory_limit);
6365 defsubr (&Smemory_use_counts);
6366
6367 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6368 defsubr (&Sgc_status);
6369 #endif
6370 }
6371
6372 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6373 (do not change this comment) */