Remove duplicate #include directives.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 /* A unique object in pure space used to make some Lisp objects
251 on free lists recognizable in O(1). */
252
253 static Lisp_Object Vdead;
254 #define DEADP(x) EQ (x, Vdead)
255
256 #ifdef GC_MALLOC_CHECK
257
258 enum mem_type allocated_mem_type;
259
260 #endif /* GC_MALLOC_CHECK */
261
262 /* A node in the red-black tree describing allocated memory containing
263 Lisp data. Each such block is recorded with its start and end
264 address when it is allocated, and removed from the tree when it
265 is freed.
266
267 A red-black tree is a balanced binary tree with the following
268 properties:
269
270 1. Every node is either red or black.
271 2. Every leaf is black.
272 3. If a node is red, then both of its children are black.
273 4. Every simple path from a node to a descendant leaf contains
274 the same number of black nodes.
275 5. The root is always black.
276
277 When nodes are inserted into the tree, or deleted from the tree,
278 the tree is "fixed" so that these properties are always true.
279
280 A red-black tree with N internal nodes has height at most 2
281 log(N+1). Searches, insertions and deletions are done in O(log N).
282 Please see a text book about data structures for a detailed
283 description of red-black trees. Any book worth its salt should
284 describe them. */
285
286 struct mem_node
287 {
288 /* Children of this node. These pointers are never NULL. When there
289 is no child, the value is MEM_NIL, which points to a dummy node. */
290 struct mem_node *left, *right;
291
292 /* The parent of this node. In the root node, this is NULL. */
293 struct mem_node *parent;
294
295 /* Start and end of allocated region. */
296 void *start, *end;
297
298 /* Node color. */
299 enum {MEM_BLACK, MEM_RED} color;
300
301 /* Memory type. */
302 enum mem_type type;
303 };
304
305 /* Base address of stack. Set in main. */
306
307 Lisp_Object *stack_base;
308
309 /* Root of the tree describing allocated Lisp memory. */
310
311 static struct mem_node *mem_root;
312
313 /* Lowest and highest known address in the heap. */
314
315 static void *min_heap_address, *max_heap_address;
316
317 /* Sentinel node of the tree. */
318
319 static struct mem_node mem_z;
320 #define MEM_NIL &mem_z
321
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
323 static struct mem_node *mem_insert (void *, void *, enum mem_type);
324 static void mem_insert_fixup (struct mem_node *);
325 static void mem_rotate_left (struct mem_node *);
326 static void mem_rotate_right (struct mem_node *);
327 static void mem_delete (struct mem_node *);
328 static void mem_delete_fixup (struct mem_node *);
329 static struct mem_node *mem_find (void *);
330 #endif
331
332 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
333
334 #ifndef DEADP
335 # define DEADP(x) 0
336 #endif
337
338 /* Recording what needs to be marked for gc. */
339
340 struct gcpro *gcprolist;
341
342 /* Addresses of staticpro'd variables. Initialize it to a nonzero
343 value; otherwise some compilers put it into BSS. */
344
345 #define NSTATICS 0x800
346 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
347
348 /* Index of next unused slot in staticvec. */
349
350 static int staticidx;
351
352 static void *pure_alloc (size_t, int);
353
354
355 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
356 ALIGNMENT must be a power of 2. */
357
358 #define ALIGN(ptr, ALIGNMENT) \
359 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
360 & ~ ((ALIGNMENT) - 1)))
361
362 static void
363 XFLOAT_INIT (Lisp_Object f, double n)
364 {
365 XFLOAT (f)->u.data = n;
366 }
367
368 \f
369 /************************************************************************
370 Malloc
371 ************************************************************************/
372
373 /* Function malloc calls this if it finds we are near exhausting storage. */
374
375 void
376 malloc_warning (const char *str)
377 {
378 pending_malloc_warning = str;
379 }
380
381
382 /* Display an already-pending malloc warning. */
383
384 void
385 display_malloc_warning (void)
386 {
387 call3 (intern ("display-warning"),
388 intern ("alloc"),
389 build_string (pending_malloc_warning),
390 intern ("emergency"));
391 pending_malloc_warning = 0;
392 }
393 \f
394 /* Called if we can't allocate relocatable space for a buffer. */
395
396 void
397 buffer_memory_full (ptrdiff_t nbytes)
398 {
399 /* If buffers use the relocating allocator, no need to free
400 spare_memory, because we may have plenty of malloc space left
401 that we could get, and if we don't, the malloc that fails will
402 itself cause spare_memory to be freed. If buffers don't use the
403 relocating allocator, treat this like any other failing
404 malloc. */
405
406 #ifndef REL_ALLOC
407 memory_full (nbytes);
408 #else
409 /* This used to call error, but if we've run out of memory, we could
410 get infinite recursion trying to build the string. */
411 xsignal (Qnil, Vmemory_signal_data);
412 #endif
413 }
414
415 /* A common multiple of the positive integers A and B. Ideally this
416 would be the least common multiple, but there's no way to do that
417 as a constant expression in C, so do the best that we can easily do. */
418 #define COMMON_MULTIPLE(a, b) \
419 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
420
421 #ifndef XMALLOC_OVERRUN_CHECK
422 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
423 #else
424
425 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
426 around each block.
427
428 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
429 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
430 block size in little-endian order. The trailer consists of
431 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
432
433 The header is used to detect whether this block has been allocated
434 through these functions, as some low-level libc functions may
435 bypass the malloc hooks. */
436
437 #define XMALLOC_OVERRUN_CHECK_SIZE 16
438 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
439 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
440
441 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
442 hold a size_t value and (2) the header size is a multiple of the
443 alignment that Emacs needs for C types and for USE_LSB_TAG. */
444 #define XMALLOC_BASE_ALIGNMENT \
445 alignof (union { long double d; intmax_t i; void *p; })
446
447 #if USE_LSB_TAG
448 # define XMALLOC_HEADER_ALIGNMENT \
449 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
450 #else
451 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
452 #endif
453 #define XMALLOC_OVERRUN_SIZE_SIZE \
454 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
455 + XMALLOC_HEADER_ALIGNMENT - 1) \
456 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
457 - XMALLOC_OVERRUN_CHECK_SIZE)
458
459 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
460 { '\x9a', '\x9b', '\xae', '\xaf',
461 '\xbf', '\xbe', '\xce', '\xcf',
462 '\xea', '\xeb', '\xec', '\xed',
463 '\xdf', '\xde', '\x9c', '\x9d' };
464
465 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
466 { '\xaa', '\xab', '\xac', '\xad',
467 '\xba', '\xbb', '\xbc', '\xbd',
468 '\xca', '\xcb', '\xcc', '\xcd',
469 '\xda', '\xdb', '\xdc', '\xdd' };
470
471 /* Insert and extract the block size in the header. */
472
473 static void
474 xmalloc_put_size (unsigned char *ptr, size_t size)
475 {
476 int i;
477 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
478 {
479 *--ptr = size & ((1 << CHAR_BIT) - 1);
480 size >>= CHAR_BIT;
481 }
482 }
483
484 static size_t
485 xmalloc_get_size (unsigned char *ptr)
486 {
487 size_t size = 0;
488 int i;
489 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
490 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
491 {
492 size <<= CHAR_BIT;
493 size += *ptr++;
494 }
495 return size;
496 }
497
498
499 /* Like malloc, but wraps allocated block with header and trailer. */
500
501 static void *
502 overrun_check_malloc (size_t size)
503 {
504 register unsigned char *val;
505 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
506 emacs_abort ();
507
508 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
509 if (val)
510 {
511 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
512 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
513 xmalloc_put_size (val, size);
514 memcpy (val + size, xmalloc_overrun_check_trailer,
515 XMALLOC_OVERRUN_CHECK_SIZE);
516 }
517 return val;
518 }
519
520
521 /* Like realloc, but checks old block for overrun, and wraps new block
522 with header and trailer. */
523
524 static void *
525 overrun_check_realloc (void *block, size_t size)
526 {
527 register unsigned char *val = (unsigned char *) block;
528 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
529 emacs_abort ();
530
531 if (val
532 && memcmp (xmalloc_overrun_check_header,
533 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
534 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
535 {
536 size_t osize = xmalloc_get_size (val);
537 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
538 XMALLOC_OVERRUN_CHECK_SIZE))
539 emacs_abort ();
540 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
541 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
542 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
543 }
544
545 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
546
547 if (val)
548 {
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
554 }
555 return val;
556 }
557
558 /* Like free, but checks block for overrun. */
559
560 static void
561 overrun_check_free (void *block)
562 {
563 unsigned char *val = (unsigned char *) block;
564
565 if (val
566 && memcmp (xmalloc_overrun_check_header,
567 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
568 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
569 {
570 size_t osize = xmalloc_get_size (val);
571 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
572 XMALLOC_OVERRUN_CHECK_SIZE))
573 emacs_abort ();
574 #ifdef XMALLOC_CLEAR_FREE_MEMORY
575 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
576 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
577 #else
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
581 #endif
582 }
583
584 free (val);
585 }
586
587 #undef malloc
588 #undef realloc
589 #undef free
590 #define malloc overrun_check_malloc
591 #define realloc overrun_check_realloc
592 #define free overrun_check_free
593 #endif
594
595 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
596 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
597 If that variable is set, block input while in one of Emacs's memory
598 allocation functions. There should be no need for this debugging
599 option, since signal handlers do not allocate memory, but Emacs
600 formerly allocated memory in signal handlers and this compile-time
601 option remains as a way to help debug the issue should it rear its
602 ugly head again. */
603 #ifdef XMALLOC_BLOCK_INPUT_CHECK
604 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
605 static void
606 malloc_block_input (void)
607 {
608 if (block_input_in_memory_allocators)
609 block_input ();
610 }
611 static void
612 malloc_unblock_input (void)
613 {
614 if (block_input_in_memory_allocators)
615 unblock_input ();
616 }
617 # define MALLOC_BLOCK_INPUT malloc_block_input ()
618 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
619 #else
620 # define MALLOC_BLOCK_INPUT ((void) 0)
621 # define MALLOC_UNBLOCK_INPUT ((void) 0)
622 #endif
623
624 #define MALLOC_PROBE(size) \
625 do { \
626 if (profiler_memory_running) \
627 malloc_probe (size); \
628 } while (0)
629
630
631 /* Like malloc but check for no memory and block interrupt input.. */
632
633 void *
634 xmalloc (size_t size)
635 {
636 void *val;
637
638 MALLOC_BLOCK_INPUT;
639 val = malloc (size);
640 MALLOC_UNBLOCK_INPUT;
641
642 if (!val && size)
643 memory_full (size);
644 MALLOC_PROBE (size);
645 return val;
646 }
647
648 /* Like the above, but zeroes out the memory just allocated. */
649
650 void *
651 xzalloc (size_t size)
652 {
653 void *val;
654
655 MALLOC_BLOCK_INPUT;
656 val = malloc (size);
657 MALLOC_UNBLOCK_INPUT;
658
659 if (!val && size)
660 memory_full (size);
661 memset (val, 0, size);
662 MALLOC_PROBE (size);
663 return val;
664 }
665
666 /* Like realloc but check for no memory and block interrupt input.. */
667
668 void *
669 xrealloc (void *block, size_t size)
670 {
671 void *val;
672
673 MALLOC_BLOCK_INPUT;
674 /* We must call malloc explicitly when BLOCK is 0, since some
675 reallocs don't do this. */
676 if (! block)
677 val = malloc (size);
678 else
679 val = realloc (block, size);
680 MALLOC_UNBLOCK_INPUT;
681
682 if (!val && size)
683 memory_full (size);
684 MALLOC_PROBE (size);
685 return val;
686 }
687
688
689 /* Like free but block interrupt input. */
690
691 void
692 xfree (void *block)
693 {
694 if (!block)
695 return;
696 MALLOC_BLOCK_INPUT;
697 free (block);
698 MALLOC_UNBLOCK_INPUT;
699 /* We don't call refill_memory_reserve here
700 because in practice the call in r_alloc_free seems to suffice. */
701 }
702
703
704 /* Other parts of Emacs pass large int values to allocator functions
705 expecting ptrdiff_t. This is portable in practice, but check it to
706 be safe. */
707 verify (INT_MAX <= PTRDIFF_MAX);
708
709
710 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
711 Signal an error on memory exhaustion, and block interrupt input. */
712
713 void *
714 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
715 {
716 eassert (0 <= nitems && 0 < item_size);
717 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
718 memory_full (SIZE_MAX);
719 return xmalloc (nitems * item_size);
720 }
721
722
723 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
724 Signal an error on memory exhaustion, and block interrupt input. */
725
726 void *
727 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
728 {
729 eassert (0 <= nitems && 0 < item_size);
730 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
731 memory_full (SIZE_MAX);
732 return xrealloc (pa, nitems * item_size);
733 }
734
735
736 /* Grow PA, which points to an array of *NITEMS items, and return the
737 location of the reallocated array, updating *NITEMS to reflect its
738 new size. The new array will contain at least NITEMS_INCR_MIN more
739 items, but will not contain more than NITEMS_MAX items total.
740 ITEM_SIZE is the size of each item, in bytes.
741
742 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
743 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
744 infinity.
745
746 If PA is null, then allocate a new array instead of reallocating
747 the old one.
748
749 Block interrupt input as needed. If memory exhaustion occurs, set
750 *NITEMS to zero if PA is null, and signal an error (i.e., do not
751 return).
752
753 Thus, to grow an array A without saving its old contents, do
754 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
755 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
756 and signals an error, and later this code is reexecuted and
757 attempts to free A. */
758
759 void *
760 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
761 ptrdiff_t nitems_max, ptrdiff_t item_size)
762 {
763 /* The approximate size to use for initial small allocation
764 requests. This is the largest "small" request for the GNU C
765 library malloc. */
766 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
767
768 /* If the array is tiny, grow it to about (but no greater than)
769 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
770 ptrdiff_t n = *nitems;
771 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
772 ptrdiff_t half_again = n >> 1;
773 ptrdiff_t incr_estimate = max (tiny_max, half_again);
774
775 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
776 NITEMS_MAX, and what the C language can represent safely. */
777 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
778 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
779 ? nitems_max : C_language_max);
780 ptrdiff_t nitems_incr_max = n_max - n;
781 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
782
783 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
784 if (! pa)
785 *nitems = 0;
786 if (nitems_incr_max < incr)
787 memory_full (SIZE_MAX);
788 n += incr;
789 pa = xrealloc (pa, n * item_size);
790 *nitems = n;
791 return pa;
792 }
793
794
795 /* Like strdup, but uses xmalloc. */
796
797 char *
798 xstrdup (const char *s)
799 {
800 size_t len = strlen (s) + 1;
801 char *p = xmalloc (len);
802 memcpy (p, s, len);
803 return p;
804 }
805
806 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
807 argument is a const pointer. */
808
809 void
810 xputenv (char const *string)
811 {
812 if (putenv ((char *) string) != 0)
813 memory_full (0);
814 }
815
816 /* Unwind for SAFE_ALLOCA */
817
818 Lisp_Object
819 safe_alloca_unwind (Lisp_Object arg)
820 {
821 free_save_value (arg);
822 return Qnil;
823 }
824
825 /* Return a newly allocated memory block of SIZE bytes, remembering
826 to free it when unwinding. */
827 void *
828 record_xmalloc (size_t size)
829 {
830 void *p = xmalloc (size);
831 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
832 return p;
833 }
834
835
836 /* Like malloc but used for allocating Lisp data. NBYTES is the
837 number of bytes to allocate, TYPE describes the intended use of the
838 allocated memory block (for strings, for conses, ...). */
839
840 #if ! USE_LSB_TAG
841 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
842 #endif
843
844 static void *
845 lisp_malloc (size_t nbytes, enum mem_type type)
846 {
847 register void *val;
848
849 MALLOC_BLOCK_INPUT;
850
851 #ifdef GC_MALLOC_CHECK
852 allocated_mem_type = type;
853 #endif
854
855 val = malloc (nbytes);
856
857 #if ! USE_LSB_TAG
858 /* If the memory just allocated cannot be addressed thru a Lisp
859 object's pointer, and it needs to be,
860 that's equivalent to running out of memory. */
861 if (val && type != MEM_TYPE_NON_LISP)
862 {
863 Lisp_Object tem;
864 XSETCONS (tem, (char *) val + nbytes - 1);
865 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
866 {
867 lisp_malloc_loser = val;
868 free (val);
869 val = 0;
870 }
871 }
872 #endif
873
874 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
875 if (val && type != MEM_TYPE_NON_LISP)
876 mem_insert (val, (char *) val + nbytes, type);
877 #endif
878
879 MALLOC_UNBLOCK_INPUT;
880 if (!val && nbytes)
881 memory_full (nbytes);
882 MALLOC_PROBE (nbytes);
883 return val;
884 }
885
886 /* Free BLOCK. This must be called to free memory allocated with a
887 call to lisp_malloc. */
888
889 static void
890 lisp_free (void *block)
891 {
892 MALLOC_BLOCK_INPUT;
893 free (block);
894 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
895 mem_delete (mem_find (block));
896 #endif
897 MALLOC_UNBLOCK_INPUT;
898 }
899
900 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
901
902 /* The entry point is lisp_align_malloc which returns blocks of at most
903 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
904
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
908
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
911
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
925
926 /* Internal data structures and constants. */
927
928 #define ABLOCKS_SIZE 16
929
930 /* An aligned block of memory. */
931 struct ablock
932 {
933 union
934 {
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
953 };
954
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
957 {
958 struct ablock blocks[ABLOCKS_SIZE];
959 };
960
961 /* Size of the block requested from malloc or posix_memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963
964 #define ABLOCK_ABASE(block) \
965 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
968
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
979
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
982
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static void *
987 lisp_align_malloc (size_t nbytes, enum mem_type type)
988 {
989 void *base, *val;
990 struct ablocks *abase;
991
992 eassert (nbytes <= BLOCK_BYTES);
993
994 MALLOC_BLOCK_INPUT;
995
996 #ifdef GC_MALLOC_CHECK
997 allocated_mem_type = type;
998 #endif
999
1000 if (!free_ablock)
1001 {
1002 int i;
1003 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1004
1005 #ifdef DOUG_LEA_MALLOC
1006 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1007 because mapped region contents are not preserved in
1008 a dumped Emacs. */
1009 mallopt (M_MMAP_MAX, 0);
1010 #endif
1011
1012 #ifdef USE_POSIX_MEMALIGN
1013 {
1014 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1015 if (err)
1016 base = NULL;
1017 abase = base;
1018 }
1019 #else
1020 base = malloc (ABLOCKS_BYTES);
1021 abase = ALIGN (base, BLOCK_ALIGN);
1022 #endif
1023
1024 if (base == 0)
1025 {
1026 MALLOC_UNBLOCK_INPUT;
1027 memory_full (ABLOCKS_BYTES);
1028 }
1029
1030 aligned = (base == abase);
1031 if (!aligned)
1032 ((void**)abase)[-1] = base;
1033
1034 #ifdef DOUG_LEA_MALLOC
1035 /* Back to a reasonable maximum of mmap'ed areas. */
1036 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1037 #endif
1038
1039 #if ! USE_LSB_TAG
1040 /* If the memory just allocated cannot be addressed thru a Lisp
1041 object's pointer, and it needs to be, that's equivalent to
1042 running out of memory. */
1043 if (type != MEM_TYPE_NON_LISP)
1044 {
1045 Lisp_Object tem;
1046 char *end = (char *) base + ABLOCKS_BYTES - 1;
1047 XSETCONS (tem, end);
1048 if ((char *) XCONS (tem) != end)
1049 {
1050 lisp_malloc_loser = base;
1051 free (base);
1052 MALLOC_UNBLOCK_INPUT;
1053 memory_full (SIZE_MAX);
1054 }
1055 }
1056 #endif
1057
1058 /* Initialize the blocks and put them on the free list.
1059 If `base' was not properly aligned, we can't use the last block. */
1060 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1061 {
1062 abase->blocks[i].abase = abase;
1063 abase->blocks[i].x.next_free = free_ablock;
1064 free_ablock = &abase->blocks[i];
1065 }
1066 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1067
1068 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1069 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1070 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1071 eassert (ABLOCKS_BASE (abase) == base);
1072 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1073 }
1074
1075 abase = ABLOCK_ABASE (free_ablock);
1076 ABLOCKS_BUSY (abase) =
1077 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1078 val = free_ablock;
1079 free_ablock = free_ablock->x.next_free;
1080
1081 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1082 if (type != MEM_TYPE_NON_LISP)
1083 mem_insert (val, (char *) val + nbytes, type);
1084 #endif
1085
1086 MALLOC_UNBLOCK_INPUT;
1087
1088 MALLOC_PROBE (nbytes);
1089
1090 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1091 return val;
1092 }
1093
1094 static void
1095 lisp_align_free (void *block)
1096 {
1097 struct ablock *ablock = block;
1098 struct ablocks *abase = ABLOCK_ABASE (ablock);
1099
1100 MALLOC_BLOCK_INPUT;
1101 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1102 mem_delete (mem_find (block));
1103 #endif
1104 /* Put on free list. */
1105 ablock->x.next_free = free_ablock;
1106 free_ablock = ablock;
1107 /* Update busy count. */
1108 ABLOCKS_BUSY (abase)
1109 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1110
1111 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1112 { /* All the blocks are free. */
1113 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1114 struct ablock **tem = &free_ablock;
1115 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1116
1117 while (*tem)
1118 {
1119 if (*tem >= (struct ablock *) abase && *tem < atop)
1120 {
1121 i++;
1122 *tem = (*tem)->x.next_free;
1123 }
1124 else
1125 tem = &(*tem)->x.next_free;
1126 }
1127 eassert ((aligned & 1) == aligned);
1128 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1129 #ifdef USE_POSIX_MEMALIGN
1130 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1131 #endif
1132 free (ABLOCKS_BASE (abase));
1133 }
1134 MALLOC_UNBLOCK_INPUT;
1135 }
1136
1137 \f
1138 /***********************************************************************
1139 Interval Allocation
1140 ***********************************************************************/
1141
1142 /* Number of intervals allocated in an interval_block structure.
1143 The 1020 is 1024 minus malloc overhead. */
1144
1145 #define INTERVAL_BLOCK_SIZE \
1146 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1147
1148 /* Intervals are allocated in chunks in the form of an interval_block
1149 structure. */
1150
1151 struct interval_block
1152 {
1153 /* Place `intervals' first, to preserve alignment. */
1154 struct interval intervals[INTERVAL_BLOCK_SIZE];
1155 struct interval_block *next;
1156 };
1157
1158 /* Current interval block. Its `next' pointer points to older
1159 blocks. */
1160
1161 static struct interval_block *interval_block;
1162
1163 /* Index in interval_block above of the next unused interval
1164 structure. */
1165
1166 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1167
1168 /* Number of free and live intervals. */
1169
1170 static EMACS_INT total_free_intervals, total_intervals;
1171
1172 /* List of free intervals. */
1173
1174 static INTERVAL interval_free_list;
1175
1176 /* Return a new interval. */
1177
1178 INTERVAL
1179 make_interval (void)
1180 {
1181 INTERVAL val;
1182
1183 MALLOC_BLOCK_INPUT;
1184
1185 if (interval_free_list)
1186 {
1187 val = interval_free_list;
1188 interval_free_list = INTERVAL_PARENT (interval_free_list);
1189 }
1190 else
1191 {
1192 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1193 {
1194 struct interval_block *newi
1195 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1196
1197 newi->next = interval_block;
1198 interval_block = newi;
1199 interval_block_index = 0;
1200 total_free_intervals += INTERVAL_BLOCK_SIZE;
1201 }
1202 val = &interval_block->intervals[interval_block_index++];
1203 }
1204
1205 MALLOC_UNBLOCK_INPUT;
1206
1207 consing_since_gc += sizeof (struct interval);
1208 intervals_consed++;
1209 total_free_intervals--;
1210 RESET_INTERVAL (val);
1211 val->gcmarkbit = 0;
1212 return val;
1213 }
1214
1215
1216 /* Mark Lisp objects in interval I. */
1217
1218 static void
1219 mark_interval (register INTERVAL i, Lisp_Object dummy)
1220 {
1221 /* Intervals should never be shared. So, if extra internal checking is
1222 enabled, GC aborts if it seems to have visited an interval twice. */
1223 eassert (!i->gcmarkbit);
1224 i->gcmarkbit = 1;
1225 mark_object (i->plist);
1226 }
1227
1228 /* Mark the interval tree rooted in I. */
1229
1230 #define MARK_INTERVAL_TREE(i) \
1231 do { \
1232 if (i && !i->gcmarkbit) \
1233 traverse_intervals_noorder (i, mark_interval, Qnil); \
1234 } while (0)
1235
1236 /***********************************************************************
1237 String Allocation
1238 ***********************************************************************/
1239
1240 /* Lisp_Strings are allocated in string_block structures. When a new
1241 string_block is allocated, all the Lisp_Strings it contains are
1242 added to a free-list string_free_list. When a new Lisp_String is
1243 needed, it is taken from that list. During the sweep phase of GC,
1244 string_blocks that are entirely free are freed, except two which
1245 we keep.
1246
1247 String data is allocated from sblock structures. Strings larger
1248 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1249 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1250
1251 Sblocks consist internally of sdata structures, one for each
1252 Lisp_String. The sdata structure points to the Lisp_String it
1253 belongs to. The Lisp_String points back to the `u.data' member of
1254 its sdata structure.
1255
1256 When a Lisp_String is freed during GC, it is put back on
1257 string_free_list, and its `data' member and its sdata's `string'
1258 pointer is set to null. The size of the string is recorded in the
1259 `n.nbytes' member of the sdata. So, sdata structures that are no
1260 longer used, can be easily recognized, and it's easy to compact the
1261 sblocks of small strings which we do in compact_small_strings. */
1262
1263 /* Size in bytes of an sblock structure used for small strings. This
1264 is 8192 minus malloc overhead. */
1265
1266 #define SBLOCK_SIZE 8188
1267
1268 /* Strings larger than this are considered large strings. String data
1269 for large strings is allocated from individual sblocks. */
1270
1271 #define LARGE_STRING_BYTES 1024
1272
1273 /* Struct or union describing string memory sub-allocated from an sblock.
1274 This is where the contents of Lisp strings are stored. */
1275
1276 #ifdef GC_CHECK_STRING_BYTES
1277
1278 typedef struct
1279 {
1280 /* Back-pointer to the string this sdata belongs to. If null, this
1281 structure is free, and the NBYTES member of the union below
1282 contains the string's byte size (the same value that STRING_BYTES
1283 would return if STRING were non-null). If non-null, STRING_BYTES
1284 (STRING) is the size of the data, and DATA contains the string's
1285 contents. */
1286 struct Lisp_String *string;
1287
1288 ptrdiff_t nbytes;
1289 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1290 } sdata;
1291
1292 #define SDATA_NBYTES(S) (S)->nbytes
1293 #define SDATA_DATA(S) (S)->data
1294 #define SDATA_SELECTOR(member) member
1295
1296 #else
1297
1298 typedef union
1299 {
1300 struct Lisp_String *string;
1301
1302 /* When STRING is non-null. */
1303 struct
1304 {
1305 struct Lisp_String *string;
1306 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1307 } u;
1308
1309 /* When STRING is null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 ptrdiff_t nbytes;
1314 } n;
1315 } sdata;
1316
1317 #define SDATA_NBYTES(S) (S)->n.nbytes
1318 #define SDATA_DATA(S) (S)->u.data
1319 #define SDATA_SELECTOR(member) u.member
1320
1321 #endif /* not GC_CHECK_STRING_BYTES */
1322
1323 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1324
1325
1326 /* Structure describing a block of memory which is sub-allocated to
1327 obtain string data memory for strings. Blocks for small strings
1328 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1329 as large as needed. */
1330
1331 struct sblock
1332 {
1333 /* Next in list. */
1334 struct sblock *next;
1335
1336 /* Pointer to the next free sdata block. This points past the end
1337 of the sblock if there isn't any space left in this block. */
1338 sdata *next_free;
1339
1340 /* Start of data. */
1341 sdata first_data;
1342 };
1343
1344 /* Number of Lisp strings in a string_block structure. The 1020 is
1345 1024 minus malloc overhead. */
1346
1347 #define STRING_BLOCK_SIZE \
1348 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1349
1350 /* Structure describing a block from which Lisp_String structures
1351 are allocated. */
1352
1353 struct string_block
1354 {
1355 /* Place `strings' first, to preserve alignment. */
1356 struct Lisp_String strings[STRING_BLOCK_SIZE];
1357 struct string_block *next;
1358 };
1359
1360 /* Head and tail of the list of sblock structures holding Lisp string
1361 data. We always allocate from current_sblock. The NEXT pointers
1362 in the sblock structures go from oldest_sblock to current_sblock. */
1363
1364 static struct sblock *oldest_sblock, *current_sblock;
1365
1366 /* List of sblocks for large strings. */
1367
1368 static struct sblock *large_sblocks;
1369
1370 /* List of string_block structures. */
1371
1372 static struct string_block *string_blocks;
1373
1374 /* Free-list of Lisp_Strings. */
1375
1376 static struct Lisp_String *string_free_list;
1377
1378 /* Number of live and free Lisp_Strings. */
1379
1380 static EMACS_INT total_strings, total_free_strings;
1381
1382 /* Number of bytes used by live strings. */
1383
1384 static EMACS_INT total_string_bytes;
1385
1386 /* Given a pointer to a Lisp_String S which is on the free-list
1387 string_free_list, return a pointer to its successor in the
1388 free-list. */
1389
1390 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1391
1392 /* Return a pointer to the sdata structure belonging to Lisp string S.
1393 S must be live, i.e. S->data must not be null. S->data is actually
1394 a pointer to the `u.data' member of its sdata structure; the
1395 structure starts at a constant offset in front of that. */
1396
1397 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1398
1399
1400 #ifdef GC_CHECK_STRING_OVERRUN
1401
1402 /* We check for overrun in string data blocks by appending a small
1403 "cookie" after each allocated string data block, and check for the
1404 presence of this cookie during GC. */
1405
1406 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1407 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1408 { '\xde', '\xad', '\xbe', '\xef' };
1409
1410 #else
1411 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1412 #endif
1413
1414 /* Value is the size of an sdata structure large enough to hold NBYTES
1415 bytes of string data. The value returned includes a terminating
1416 NUL byte, the size of the sdata structure, and padding. */
1417
1418 #ifdef GC_CHECK_STRING_BYTES
1419
1420 #define SDATA_SIZE(NBYTES) \
1421 ((SDATA_DATA_OFFSET \
1422 + (NBYTES) + 1 \
1423 + sizeof (ptrdiff_t) - 1) \
1424 & ~(sizeof (ptrdiff_t) - 1))
1425
1426 #else /* not GC_CHECK_STRING_BYTES */
1427
1428 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1429 less than the size of that member. The 'max' is not needed when
1430 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1431 alignment code reserves enough space. */
1432
1433 #define SDATA_SIZE(NBYTES) \
1434 ((SDATA_DATA_OFFSET \
1435 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1436 ? NBYTES \
1437 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1438 + 1 \
1439 + sizeof (ptrdiff_t) - 1) \
1440 & ~(sizeof (ptrdiff_t) - 1))
1441
1442 #endif /* not GC_CHECK_STRING_BYTES */
1443
1444 /* Extra bytes to allocate for each string. */
1445
1446 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1447
1448 /* Exact bound on the number of bytes in a string, not counting the
1449 terminating null. A string cannot contain more bytes than
1450 STRING_BYTES_BOUND, nor can it be so long that the size_t
1451 arithmetic in allocate_string_data would overflow while it is
1452 calculating a value to be passed to malloc. */
1453 static ptrdiff_t const STRING_BYTES_MAX =
1454 min (STRING_BYTES_BOUND,
1455 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1456 - GC_STRING_EXTRA
1457 - offsetof (struct sblock, first_data)
1458 - SDATA_DATA_OFFSET)
1459 & ~(sizeof (EMACS_INT) - 1)));
1460
1461 /* Initialize string allocation. Called from init_alloc_once. */
1462
1463 static void
1464 init_strings (void)
1465 {
1466 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1467 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1468 }
1469
1470
1471 #ifdef GC_CHECK_STRING_BYTES
1472
1473 static int check_string_bytes_count;
1474
1475 /* Like STRING_BYTES, but with debugging check. Can be
1476 called during GC, so pay attention to the mark bit. */
1477
1478 ptrdiff_t
1479 string_bytes (struct Lisp_String *s)
1480 {
1481 ptrdiff_t nbytes =
1482 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1483
1484 if (!PURE_POINTER_P (s)
1485 && s->data
1486 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1487 emacs_abort ();
1488 return nbytes;
1489 }
1490
1491 /* Check validity of Lisp strings' string_bytes member in B. */
1492
1493 static void
1494 check_sblock (struct sblock *b)
1495 {
1496 sdata *from, *end, *from_end;
1497
1498 end = b->next_free;
1499
1500 for (from = &b->first_data; from < end; from = from_end)
1501 {
1502 /* Compute the next FROM here because copying below may
1503 overwrite data we need to compute it. */
1504 ptrdiff_t nbytes;
1505
1506 /* Check that the string size recorded in the string is the
1507 same as the one recorded in the sdata structure. */
1508 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1509 : SDATA_NBYTES (from));
1510 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1511 }
1512 }
1513
1514
1515 /* Check validity of Lisp strings' string_bytes member. ALL_P
1516 means check all strings, otherwise check only most
1517 recently allocated strings. Used for hunting a bug. */
1518
1519 static void
1520 check_string_bytes (bool all_p)
1521 {
1522 if (all_p)
1523 {
1524 struct sblock *b;
1525
1526 for (b = large_sblocks; b; b = b->next)
1527 {
1528 struct Lisp_String *s = b->first_data.string;
1529 if (s)
1530 string_bytes (s);
1531 }
1532
1533 for (b = oldest_sblock; b; b = b->next)
1534 check_sblock (b);
1535 }
1536 else if (current_sblock)
1537 check_sblock (current_sblock);
1538 }
1539
1540 #else /* not GC_CHECK_STRING_BYTES */
1541
1542 #define check_string_bytes(all) ((void) 0)
1543
1544 #endif /* GC_CHECK_STRING_BYTES */
1545
1546 #ifdef GC_CHECK_STRING_FREE_LIST
1547
1548 /* Walk through the string free list looking for bogus next pointers.
1549 This may catch buffer overrun from a previous string. */
1550
1551 static void
1552 check_string_free_list (void)
1553 {
1554 struct Lisp_String *s;
1555
1556 /* Pop a Lisp_String off the free-list. */
1557 s = string_free_list;
1558 while (s != NULL)
1559 {
1560 if ((uintptr_t) s < 1024)
1561 emacs_abort ();
1562 s = NEXT_FREE_LISP_STRING (s);
1563 }
1564 }
1565 #else
1566 #define check_string_free_list()
1567 #endif
1568
1569 /* Return a new Lisp_String. */
1570
1571 static struct Lisp_String *
1572 allocate_string (void)
1573 {
1574 struct Lisp_String *s;
1575
1576 MALLOC_BLOCK_INPUT;
1577
1578 /* If the free-list is empty, allocate a new string_block, and
1579 add all the Lisp_Strings in it to the free-list. */
1580 if (string_free_list == NULL)
1581 {
1582 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1583 int i;
1584
1585 b->next = string_blocks;
1586 string_blocks = b;
1587
1588 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1589 {
1590 s = b->strings + i;
1591 /* Every string on a free list should have NULL data pointer. */
1592 s->data = NULL;
1593 NEXT_FREE_LISP_STRING (s) = string_free_list;
1594 string_free_list = s;
1595 }
1596
1597 total_free_strings += STRING_BLOCK_SIZE;
1598 }
1599
1600 check_string_free_list ();
1601
1602 /* Pop a Lisp_String off the free-list. */
1603 s = string_free_list;
1604 string_free_list = NEXT_FREE_LISP_STRING (s);
1605
1606 MALLOC_UNBLOCK_INPUT;
1607
1608 --total_free_strings;
1609 ++total_strings;
1610 ++strings_consed;
1611 consing_since_gc += sizeof *s;
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614 if (!noninteractive)
1615 {
1616 if (++check_string_bytes_count == 200)
1617 {
1618 check_string_bytes_count = 0;
1619 check_string_bytes (1);
1620 }
1621 else
1622 check_string_bytes (0);
1623 }
1624 #endif /* GC_CHECK_STRING_BYTES */
1625
1626 return s;
1627 }
1628
1629
1630 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1631 plus a NUL byte at the end. Allocate an sdata structure for S, and
1632 set S->data to its `u.data' member. Store a NUL byte at the end of
1633 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1634 S->data if it was initially non-null. */
1635
1636 void
1637 allocate_string_data (struct Lisp_String *s,
1638 EMACS_INT nchars, EMACS_INT nbytes)
1639 {
1640 sdata *data, *old_data;
1641 struct sblock *b;
1642 ptrdiff_t needed, old_nbytes;
1643
1644 if (STRING_BYTES_MAX < nbytes)
1645 string_overflow ();
1646
1647 /* Determine the number of bytes needed to store NBYTES bytes
1648 of string data. */
1649 needed = SDATA_SIZE (nbytes);
1650 if (s->data)
1651 {
1652 old_data = SDATA_OF_STRING (s);
1653 old_nbytes = STRING_BYTES (s);
1654 }
1655 else
1656 old_data = NULL;
1657
1658 MALLOC_BLOCK_INPUT;
1659
1660 if (nbytes > LARGE_STRING_BYTES)
1661 {
1662 size_t size = offsetof (struct sblock, first_data) + needed;
1663
1664 #ifdef DOUG_LEA_MALLOC
1665 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1666 because mapped region contents are not preserved in
1667 a dumped Emacs.
1668
1669 In case you think of allowing it in a dumped Emacs at the
1670 cost of not being able to re-dump, there's another reason:
1671 mmap'ed data typically have an address towards the top of the
1672 address space, which won't fit into an EMACS_INT (at least on
1673 32-bit systems with the current tagging scheme). --fx */
1674 mallopt (M_MMAP_MAX, 0);
1675 #endif
1676
1677 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1678
1679 #ifdef DOUG_LEA_MALLOC
1680 /* Back to a reasonable maximum of mmap'ed areas. */
1681 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1682 #endif
1683
1684 b->next_free = &b->first_data;
1685 b->first_data.string = NULL;
1686 b->next = large_sblocks;
1687 large_sblocks = b;
1688 }
1689 else if (current_sblock == NULL
1690 || (((char *) current_sblock + SBLOCK_SIZE
1691 - (char *) current_sblock->next_free)
1692 < (needed + GC_STRING_EXTRA)))
1693 {
1694 /* Not enough room in the current sblock. */
1695 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1696 b->next_free = &b->first_data;
1697 b->first_data.string = NULL;
1698 b->next = NULL;
1699
1700 if (current_sblock)
1701 current_sblock->next = b;
1702 else
1703 oldest_sblock = b;
1704 current_sblock = b;
1705 }
1706 else
1707 b = current_sblock;
1708
1709 data = b->next_free;
1710 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1711
1712 MALLOC_UNBLOCK_INPUT;
1713
1714 data->string = s;
1715 s->data = SDATA_DATA (data);
1716 #ifdef GC_CHECK_STRING_BYTES
1717 SDATA_NBYTES (data) = nbytes;
1718 #endif
1719 s->size = nchars;
1720 s->size_byte = nbytes;
1721 s->data[nbytes] = '\0';
1722 #ifdef GC_CHECK_STRING_OVERRUN
1723 memcpy ((char *) data + needed, string_overrun_cookie,
1724 GC_STRING_OVERRUN_COOKIE_SIZE);
1725 #endif
1726
1727 /* Note that Faset may call to this function when S has already data
1728 assigned. In this case, mark data as free by setting it's string
1729 back-pointer to null, and record the size of the data in it. */
1730 if (old_data)
1731 {
1732 SDATA_NBYTES (old_data) = old_nbytes;
1733 old_data->string = NULL;
1734 }
1735
1736 consing_since_gc += needed;
1737 }
1738
1739
1740 /* Sweep and compact strings. */
1741
1742 static void
1743 sweep_strings (void)
1744 {
1745 struct string_block *b, *next;
1746 struct string_block *live_blocks = NULL;
1747
1748 string_free_list = NULL;
1749 total_strings = total_free_strings = 0;
1750 total_string_bytes = 0;
1751
1752 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1753 for (b = string_blocks; b; b = next)
1754 {
1755 int i, nfree = 0;
1756 struct Lisp_String *free_list_before = string_free_list;
1757
1758 next = b->next;
1759
1760 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1761 {
1762 struct Lisp_String *s = b->strings + i;
1763
1764 if (s->data)
1765 {
1766 /* String was not on free-list before. */
1767 if (STRING_MARKED_P (s))
1768 {
1769 /* String is live; unmark it and its intervals. */
1770 UNMARK_STRING (s);
1771
1772 /* Do not use string_(set|get)_intervals here. */
1773 s->intervals = balance_intervals (s->intervals);
1774
1775 ++total_strings;
1776 total_string_bytes += STRING_BYTES (s);
1777 }
1778 else
1779 {
1780 /* String is dead. Put it on the free-list. */
1781 sdata *data = SDATA_OF_STRING (s);
1782
1783 /* Save the size of S in its sdata so that we know
1784 how large that is. Reset the sdata's string
1785 back-pointer so that we know it's free. */
1786 #ifdef GC_CHECK_STRING_BYTES
1787 if (string_bytes (s) != SDATA_NBYTES (data))
1788 emacs_abort ();
1789 #else
1790 data->n.nbytes = STRING_BYTES (s);
1791 #endif
1792 data->string = NULL;
1793
1794 /* Reset the strings's `data' member so that we
1795 know it's free. */
1796 s->data = NULL;
1797
1798 /* Put the string on the free-list. */
1799 NEXT_FREE_LISP_STRING (s) = string_free_list;
1800 string_free_list = s;
1801 ++nfree;
1802 }
1803 }
1804 else
1805 {
1806 /* S was on the free-list before. Put it there again. */
1807 NEXT_FREE_LISP_STRING (s) = string_free_list;
1808 string_free_list = s;
1809 ++nfree;
1810 }
1811 }
1812
1813 /* Free blocks that contain free Lisp_Strings only, except
1814 the first two of them. */
1815 if (nfree == STRING_BLOCK_SIZE
1816 && total_free_strings > STRING_BLOCK_SIZE)
1817 {
1818 lisp_free (b);
1819 string_free_list = free_list_before;
1820 }
1821 else
1822 {
1823 total_free_strings += nfree;
1824 b->next = live_blocks;
1825 live_blocks = b;
1826 }
1827 }
1828
1829 check_string_free_list ();
1830
1831 string_blocks = live_blocks;
1832 free_large_strings ();
1833 compact_small_strings ();
1834
1835 check_string_free_list ();
1836 }
1837
1838
1839 /* Free dead large strings. */
1840
1841 static void
1842 free_large_strings (void)
1843 {
1844 struct sblock *b, *next;
1845 struct sblock *live_blocks = NULL;
1846
1847 for (b = large_sblocks; b; b = next)
1848 {
1849 next = b->next;
1850
1851 if (b->first_data.string == NULL)
1852 lisp_free (b);
1853 else
1854 {
1855 b->next = live_blocks;
1856 live_blocks = b;
1857 }
1858 }
1859
1860 large_sblocks = live_blocks;
1861 }
1862
1863
1864 /* Compact data of small strings. Free sblocks that don't contain
1865 data of live strings after compaction. */
1866
1867 static void
1868 compact_small_strings (void)
1869 {
1870 struct sblock *b, *tb, *next;
1871 sdata *from, *to, *end, *tb_end;
1872 sdata *to_end, *from_end;
1873
1874 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1875 to, and TB_END is the end of TB. */
1876 tb = oldest_sblock;
1877 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1878 to = &tb->first_data;
1879
1880 /* Step through the blocks from the oldest to the youngest. We
1881 expect that old blocks will stabilize over time, so that less
1882 copying will happen this way. */
1883 for (b = oldest_sblock; b; b = b->next)
1884 {
1885 end = b->next_free;
1886 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1887
1888 for (from = &b->first_data; from < end; from = from_end)
1889 {
1890 /* Compute the next FROM here because copying below may
1891 overwrite data we need to compute it. */
1892 ptrdiff_t nbytes;
1893 struct Lisp_String *s = from->string;
1894
1895 #ifdef GC_CHECK_STRING_BYTES
1896 /* Check that the string size recorded in the string is the
1897 same as the one recorded in the sdata structure. */
1898 if (s && string_bytes (s) != SDATA_NBYTES (from))
1899 emacs_abort ();
1900 #endif /* GC_CHECK_STRING_BYTES */
1901
1902 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1903 eassert (nbytes <= LARGE_STRING_BYTES);
1904
1905 nbytes = SDATA_SIZE (nbytes);
1906 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1907
1908 #ifdef GC_CHECK_STRING_OVERRUN
1909 if (memcmp (string_overrun_cookie,
1910 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1911 GC_STRING_OVERRUN_COOKIE_SIZE))
1912 emacs_abort ();
1913 #endif
1914
1915 /* Non-NULL S means it's alive. Copy its data. */
1916 if (s)
1917 {
1918 /* If TB is full, proceed with the next sblock. */
1919 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1920 if (to_end > tb_end)
1921 {
1922 tb->next_free = to;
1923 tb = tb->next;
1924 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1925 to = &tb->first_data;
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 }
1928
1929 /* Copy, and update the string's `data' pointer. */
1930 if (from != to)
1931 {
1932 eassert (tb != b || to < from);
1933 memmove (to, from, nbytes + GC_STRING_EXTRA);
1934 to->string->data = SDATA_DATA (to);
1935 }
1936
1937 /* Advance past the sdata we copied to. */
1938 to = to_end;
1939 }
1940 }
1941 }
1942
1943 /* The rest of the sblocks following TB don't contain live data, so
1944 we can free them. */
1945 for (b = tb->next; b; b = next)
1946 {
1947 next = b->next;
1948 lisp_free (b);
1949 }
1950
1951 tb->next_free = to;
1952 tb->next = NULL;
1953 current_sblock = tb;
1954 }
1955
1956 void
1957 string_overflow (void)
1958 {
1959 error ("Maximum string size exceeded");
1960 }
1961
1962 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1963 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1964 LENGTH must be an integer.
1965 INIT must be an integer that represents a character. */)
1966 (Lisp_Object length, Lisp_Object init)
1967 {
1968 register Lisp_Object val;
1969 register unsigned char *p, *end;
1970 int c;
1971 EMACS_INT nbytes;
1972
1973 CHECK_NATNUM (length);
1974 CHECK_CHARACTER (init);
1975
1976 c = XFASTINT (init);
1977 if (ASCII_CHAR_P (c))
1978 {
1979 nbytes = XINT (length);
1980 val = make_uninit_string (nbytes);
1981 p = SDATA (val);
1982 end = p + SCHARS (val);
1983 while (p != end)
1984 *p++ = c;
1985 }
1986 else
1987 {
1988 unsigned char str[MAX_MULTIBYTE_LENGTH];
1989 int len = CHAR_STRING (c, str);
1990 EMACS_INT string_len = XINT (length);
1991
1992 if (string_len > STRING_BYTES_MAX / len)
1993 string_overflow ();
1994 nbytes = len * string_len;
1995 val = make_uninit_multibyte_string (string_len, nbytes);
1996 p = SDATA (val);
1997 end = p + nbytes;
1998 while (p != end)
1999 {
2000 memcpy (p, str, len);
2001 p += len;
2002 }
2003 }
2004
2005 *p = 0;
2006 return val;
2007 }
2008
2009
2010 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2011 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2012 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2013 (Lisp_Object length, Lisp_Object init)
2014 {
2015 register Lisp_Object val;
2016 struct Lisp_Bool_Vector *p;
2017 ptrdiff_t length_in_chars;
2018 EMACS_INT length_in_elts;
2019 int bits_per_value;
2020 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2021 / word_size);
2022
2023 CHECK_NATNUM (length);
2024
2025 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2026
2027 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2028
2029 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2030
2031 /* No Lisp_Object to trace in there. */
2032 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2033
2034 p = XBOOL_VECTOR (val);
2035 p->size = XFASTINT (length);
2036
2037 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2038 / BOOL_VECTOR_BITS_PER_CHAR);
2039 if (length_in_chars)
2040 {
2041 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2042
2043 /* Clear any extraneous bits in the last byte. */
2044 p->data[length_in_chars - 1]
2045 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2046 }
2047
2048 return val;
2049 }
2050
2051
2052 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2053 of characters from the contents. This string may be unibyte or
2054 multibyte, depending on the contents. */
2055
2056 Lisp_Object
2057 make_string (const char *contents, ptrdiff_t nbytes)
2058 {
2059 register Lisp_Object val;
2060 ptrdiff_t nchars, multibyte_nbytes;
2061
2062 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2063 &nchars, &multibyte_nbytes);
2064 if (nbytes == nchars || nbytes != multibyte_nbytes)
2065 /* CONTENTS contains no multibyte sequences or contains an invalid
2066 multibyte sequence. We must make unibyte string. */
2067 val = make_unibyte_string (contents, nbytes);
2068 else
2069 val = make_multibyte_string (contents, nchars, nbytes);
2070 return val;
2071 }
2072
2073
2074 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2075
2076 Lisp_Object
2077 make_unibyte_string (const char *contents, ptrdiff_t length)
2078 {
2079 register Lisp_Object val;
2080 val = make_uninit_string (length);
2081 memcpy (SDATA (val), contents, length);
2082 return val;
2083 }
2084
2085
2086 /* Make a multibyte string from NCHARS characters occupying NBYTES
2087 bytes at CONTENTS. */
2088
2089 Lisp_Object
2090 make_multibyte_string (const char *contents,
2091 ptrdiff_t nchars, ptrdiff_t nbytes)
2092 {
2093 register Lisp_Object val;
2094 val = make_uninit_multibyte_string (nchars, nbytes);
2095 memcpy (SDATA (val), contents, nbytes);
2096 return val;
2097 }
2098
2099
2100 /* Make a string from NCHARS characters occupying NBYTES bytes at
2101 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2102
2103 Lisp_Object
2104 make_string_from_bytes (const char *contents,
2105 ptrdiff_t nchars, ptrdiff_t nbytes)
2106 {
2107 register Lisp_Object val;
2108 val = make_uninit_multibyte_string (nchars, nbytes);
2109 memcpy (SDATA (val), contents, nbytes);
2110 if (SBYTES (val) == SCHARS (val))
2111 STRING_SET_UNIBYTE (val);
2112 return val;
2113 }
2114
2115
2116 /* Make a string from NCHARS characters occupying NBYTES bytes at
2117 CONTENTS. The argument MULTIBYTE controls whether to label the
2118 string as multibyte. If NCHARS is negative, it counts the number of
2119 characters by itself. */
2120
2121 Lisp_Object
2122 make_specified_string (const char *contents,
2123 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2124 {
2125 Lisp_Object val;
2126
2127 if (nchars < 0)
2128 {
2129 if (multibyte)
2130 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2131 nbytes);
2132 else
2133 nchars = nbytes;
2134 }
2135 val = make_uninit_multibyte_string (nchars, nbytes);
2136 memcpy (SDATA (val), contents, nbytes);
2137 if (!multibyte)
2138 STRING_SET_UNIBYTE (val);
2139 return val;
2140 }
2141
2142
2143 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2144 occupying LENGTH bytes. */
2145
2146 Lisp_Object
2147 make_uninit_string (EMACS_INT length)
2148 {
2149 Lisp_Object val;
2150
2151 if (!length)
2152 return empty_unibyte_string;
2153 val = make_uninit_multibyte_string (length, length);
2154 STRING_SET_UNIBYTE (val);
2155 return val;
2156 }
2157
2158
2159 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2160 which occupy NBYTES bytes. */
2161
2162 Lisp_Object
2163 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2164 {
2165 Lisp_Object string;
2166 struct Lisp_String *s;
2167
2168 if (nchars < 0)
2169 emacs_abort ();
2170 if (!nbytes)
2171 return empty_multibyte_string;
2172
2173 s = allocate_string ();
2174 s->intervals = NULL;
2175 allocate_string_data (s, nchars, nbytes);
2176 XSETSTRING (string, s);
2177 string_chars_consed += nbytes;
2178 return string;
2179 }
2180
2181 /* Print arguments to BUF according to a FORMAT, then return
2182 a Lisp_String initialized with the data from BUF. */
2183
2184 Lisp_Object
2185 make_formatted_string (char *buf, const char *format, ...)
2186 {
2187 va_list ap;
2188 int length;
2189
2190 va_start (ap, format);
2191 length = vsprintf (buf, format, ap);
2192 va_end (ap);
2193 return make_string (buf, length);
2194 }
2195
2196 \f
2197 /***********************************************************************
2198 Float Allocation
2199 ***********************************************************************/
2200
2201 /* We store float cells inside of float_blocks, allocating a new
2202 float_block with malloc whenever necessary. Float cells reclaimed
2203 by GC are put on a free list to be reallocated before allocating
2204 any new float cells from the latest float_block. */
2205
2206 #define FLOAT_BLOCK_SIZE \
2207 (((BLOCK_BYTES - sizeof (struct float_block *) \
2208 /* The compiler might add padding at the end. */ \
2209 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2210 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2211
2212 #define GETMARKBIT(block,n) \
2213 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2214 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2215 & 1)
2216
2217 #define SETMARKBIT(block,n) \
2218 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2219 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2220
2221 #define UNSETMARKBIT(block,n) \
2222 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2223 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2224
2225 #define FLOAT_BLOCK(fptr) \
2226 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2227
2228 #define FLOAT_INDEX(fptr) \
2229 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2230
2231 struct float_block
2232 {
2233 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2234 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2235 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2236 struct float_block *next;
2237 };
2238
2239 #define FLOAT_MARKED_P(fptr) \
2240 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2241
2242 #define FLOAT_MARK(fptr) \
2243 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2244
2245 #define FLOAT_UNMARK(fptr) \
2246 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2247
2248 /* Current float_block. */
2249
2250 static struct float_block *float_block;
2251
2252 /* Index of first unused Lisp_Float in the current float_block. */
2253
2254 static int float_block_index = FLOAT_BLOCK_SIZE;
2255
2256 /* Free-list of Lisp_Floats. */
2257
2258 static struct Lisp_Float *float_free_list;
2259
2260 /* Return a new float object with value FLOAT_VALUE. */
2261
2262 Lisp_Object
2263 make_float (double float_value)
2264 {
2265 register Lisp_Object val;
2266
2267 MALLOC_BLOCK_INPUT;
2268
2269 if (float_free_list)
2270 {
2271 /* We use the data field for chaining the free list
2272 so that we won't use the same field that has the mark bit. */
2273 XSETFLOAT (val, float_free_list);
2274 float_free_list = float_free_list->u.chain;
2275 }
2276 else
2277 {
2278 if (float_block_index == FLOAT_BLOCK_SIZE)
2279 {
2280 struct float_block *new
2281 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2282 new->next = float_block;
2283 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2284 float_block = new;
2285 float_block_index = 0;
2286 total_free_floats += FLOAT_BLOCK_SIZE;
2287 }
2288 XSETFLOAT (val, &float_block->floats[float_block_index]);
2289 float_block_index++;
2290 }
2291
2292 MALLOC_UNBLOCK_INPUT;
2293
2294 XFLOAT_INIT (val, float_value);
2295 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2296 consing_since_gc += sizeof (struct Lisp_Float);
2297 floats_consed++;
2298 total_free_floats--;
2299 return val;
2300 }
2301
2302
2303 \f
2304 /***********************************************************************
2305 Cons Allocation
2306 ***********************************************************************/
2307
2308 /* We store cons cells inside of cons_blocks, allocating a new
2309 cons_block with malloc whenever necessary. Cons cells reclaimed by
2310 GC are put on a free list to be reallocated before allocating
2311 any new cons cells from the latest cons_block. */
2312
2313 #define CONS_BLOCK_SIZE \
2314 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2315 /* The compiler might add padding at the end. */ \
2316 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2317 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2318
2319 #define CONS_BLOCK(fptr) \
2320 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2321
2322 #define CONS_INDEX(fptr) \
2323 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2324
2325 struct cons_block
2326 {
2327 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2328 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2329 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2330 struct cons_block *next;
2331 };
2332
2333 #define CONS_MARKED_P(fptr) \
2334 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2335
2336 #define CONS_MARK(fptr) \
2337 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2338
2339 #define CONS_UNMARK(fptr) \
2340 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2341
2342 /* Current cons_block. */
2343
2344 static struct cons_block *cons_block;
2345
2346 /* Index of first unused Lisp_Cons in the current block. */
2347
2348 static int cons_block_index = CONS_BLOCK_SIZE;
2349
2350 /* Free-list of Lisp_Cons structures. */
2351
2352 static struct Lisp_Cons *cons_free_list;
2353
2354 /* Explicitly free a cons cell by putting it on the free-list. */
2355
2356 void
2357 free_cons (struct Lisp_Cons *ptr)
2358 {
2359 ptr->u.chain = cons_free_list;
2360 #if GC_MARK_STACK
2361 ptr->car = Vdead;
2362 #endif
2363 cons_free_list = ptr;
2364 consing_since_gc -= sizeof *ptr;
2365 total_free_conses++;
2366 }
2367
2368 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2369 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2370 (Lisp_Object car, Lisp_Object cdr)
2371 {
2372 register Lisp_Object val;
2373
2374 MALLOC_BLOCK_INPUT;
2375
2376 if (cons_free_list)
2377 {
2378 /* We use the cdr for chaining the free list
2379 so that we won't use the same field that has the mark bit. */
2380 XSETCONS (val, cons_free_list);
2381 cons_free_list = cons_free_list->u.chain;
2382 }
2383 else
2384 {
2385 if (cons_block_index == CONS_BLOCK_SIZE)
2386 {
2387 struct cons_block *new
2388 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2389 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2390 new->next = cons_block;
2391 cons_block = new;
2392 cons_block_index = 0;
2393 total_free_conses += CONS_BLOCK_SIZE;
2394 }
2395 XSETCONS (val, &cons_block->conses[cons_block_index]);
2396 cons_block_index++;
2397 }
2398
2399 MALLOC_UNBLOCK_INPUT;
2400
2401 XSETCAR (val, car);
2402 XSETCDR (val, cdr);
2403 eassert (!CONS_MARKED_P (XCONS (val)));
2404 consing_since_gc += sizeof (struct Lisp_Cons);
2405 total_free_conses--;
2406 cons_cells_consed++;
2407 return val;
2408 }
2409
2410 #ifdef GC_CHECK_CONS_LIST
2411 /* Get an error now if there's any junk in the cons free list. */
2412 void
2413 check_cons_list (void)
2414 {
2415 struct Lisp_Cons *tail = cons_free_list;
2416
2417 while (tail)
2418 tail = tail->u.chain;
2419 }
2420 #endif
2421
2422 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2423
2424 Lisp_Object
2425 list1 (Lisp_Object arg1)
2426 {
2427 return Fcons (arg1, Qnil);
2428 }
2429
2430 Lisp_Object
2431 list2 (Lisp_Object arg1, Lisp_Object arg2)
2432 {
2433 return Fcons (arg1, Fcons (arg2, Qnil));
2434 }
2435
2436
2437 Lisp_Object
2438 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2439 {
2440 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2441 }
2442
2443
2444 Lisp_Object
2445 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2446 {
2447 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2448 }
2449
2450
2451 Lisp_Object
2452 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2453 {
2454 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2455 Fcons (arg5, Qnil)))));
2456 }
2457
2458 /* Make a list of COUNT Lisp_Objects, where ARG is the
2459 first one. Allocate conses from pure space if TYPE
2460 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2461
2462 Lisp_Object
2463 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2464 {
2465 va_list ap;
2466 ptrdiff_t i;
2467 Lisp_Object val, *objp;
2468
2469 /* Change to SAFE_ALLOCA if you hit this eassert. */
2470 eassert (count <= MAX_ALLOCA / word_size);
2471
2472 objp = alloca (count * word_size);
2473 objp[0] = arg;
2474 va_start (ap, arg);
2475 for (i = 1; i < count; i++)
2476 objp[i] = va_arg (ap, Lisp_Object);
2477 va_end (ap);
2478
2479 for (val = Qnil, i = count - 1; i >= 0; i--)
2480 {
2481 if (type == CONSTYPE_PURE)
2482 val = pure_cons (objp[i], val);
2483 else if (type == CONSTYPE_HEAP)
2484 val = Fcons (objp[i], val);
2485 else
2486 emacs_abort ();
2487 }
2488 return val;
2489 }
2490
2491 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2492 doc: /* Return a newly created list with specified arguments as elements.
2493 Any number of arguments, even zero arguments, are allowed.
2494 usage: (list &rest OBJECTS) */)
2495 (ptrdiff_t nargs, Lisp_Object *args)
2496 {
2497 register Lisp_Object val;
2498 val = Qnil;
2499
2500 while (nargs > 0)
2501 {
2502 nargs--;
2503 val = Fcons (args[nargs], val);
2504 }
2505 return val;
2506 }
2507
2508
2509 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2510 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2511 (register Lisp_Object length, Lisp_Object init)
2512 {
2513 register Lisp_Object val;
2514 register EMACS_INT size;
2515
2516 CHECK_NATNUM (length);
2517 size = XFASTINT (length);
2518
2519 val = Qnil;
2520 while (size > 0)
2521 {
2522 val = Fcons (init, val);
2523 --size;
2524
2525 if (size > 0)
2526 {
2527 val = Fcons (init, val);
2528 --size;
2529
2530 if (size > 0)
2531 {
2532 val = Fcons (init, val);
2533 --size;
2534
2535 if (size > 0)
2536 {
2537 val = Fcons (init, val);
2538 --size;
2539
2540 if (size > 0)
2541 {
2542 val = Fcons (init, val);
2543 --size;
2544 }
2545 }
2546 }
2547 }
2548
2549 QUIT;
2550 }
2551
2552 return val;
2553 }
2554
2555
2556 \f
2557 /***********************************************************************
2558 Vector Allocation
2559 ***********************************************************************/
2560
2561 /* This value is balanced well enough to avoid too much internal overhead
2562 for the most common cases; it's not required to be a power of two, but
2563 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2564
2565 #define VECTOR_BLOCK_SIZE 4096
2566
2567 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2568 enum
2569 {
2570 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2571 };
2572
2573 /* ROUNDUP_SIZE must be a power of 2. */
2574 verify ((roundup_size & (roundup_size - 1)) == 0);
2575
2576 /* Verify assumptions described above. */
2577 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2578 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2579
2580 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2581
2582 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2583
2584 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2585
2586 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2587
2588 /* Size of the minimal vector allocated from block. */
2589
2590 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2591
2592 /* Size of the largest vector allocated from block. */
2593
2594 #define VBLOCK_BYTES_MAX \
2595 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2596
2597 /* We maintain one free list for each possible block-allocated
2598 vector size, and this is the number of free lists we have. */
2599
2600 #define VECTOR_MAX_FREE_LIST_INDEX \
2601 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2602
2603 /* Common shortcut to advance vector pointer over a block data. */
2604
2605 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2606
2607 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2608
2609 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2610
2611 /* Get and set the next field in block-allocated vectorlike objects on
2612 the free list. Doing it this way respects C's aliasing rules.
2613 We could instead make 'contents' a union, but that would mean
2614 changes everywhere that the code uses 'contents'. */
2615 static struct Lisp_Vector *
2616 next_in_free_list (struct Lisp_Vector *v)
2617 {
2618 intptr_t i = XLI (v->contents[0]);
2619 return (struct Lisp_Vector *) i;
2620 }
2621 static void
2622 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2623 {
2624 v->contents[0] = XIL ((intptr_t) next);
2625 }
2626
2627 /* Common shortcut to setup vector on a free list. */
2628
2629 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2630 do { \
2631 (tmp) = ((nbytes - header_size) / word_size); \
2632 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2633 eassert ((nbytes) % roundup_size == 0); \
2634 (tmp) = VINDEX (nbytes); \
2635 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2636 set_next_in_free_list (v, vector_free_lists[tmp]); \
2637 vector_free_lists[tmp] = (v); \
2638 total_free_vector_slots += (nbytes) / word_size; \
2639 } while (0)
2640
2641 /* This internal type is used to maintain the list of large vectors
2642 which are allocated at their own, e.g. outside of vector blocks. */
2643
2644 struct large_vector
2645 {
2646 union {
2647 struct large_vector *vector;
2648 #if USE_LSB_TAG
2649 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2650 unsigned char c[vroundup (sizeof (struct large_vector *))];
2651 #endif
2652 } next;
2653 struct Lisp_Vector v;
2654 };
2655
2656 /* This internal type is used to maintain an underlying storage
2657 for small vectors. */
2658
2659 struct vector_block
2660 {
2661 char data[VECTOR_BLOCK_BYTES];
2662 struct vector_block *next;
2663 };
2664
2665 /* Chain of vector blocks. */
2666
2667 static struct vector_block *vector_blocks;
2668
2669 /* Vector free lists, where NTH item points to a chain of free
2670 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2671
2672 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2673
2674 /* Singly-linked list of large vectors. */
2675
2676 static struct large_vector *large_vectors;
2677
2678 /* The only vector with 0 slots, allocated from pure space. */
2679
2680 Lisp_Object zero_vector;
2681
2682 /* Number of live vectors. */
2683
2684 static EMACS_INT total_vectors;
2685
2686 /* Total size of live and free vectors, in Lisp_Object units. */
2687
2688 static EMACS_INT total_vector_slots, total_free_vector_slots;
2689
2690 /* Get a new vector block. */
2691
2692 static struct vector_block *
2693 allocate_vector_block (void)
2694 {
2695 struct vector_block *block = xmalloc (sizeof *block);
2696
2697 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2698 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2699 MEM_TYPE_VECTOR_BLOCK);
2700 #endif
2701
2702 block->next = vector_blocks;
2703 vector_blocks = block;
2704 return block;
2705 }
2706
2707 /* Called once to initialize vector allocation. */
2708
2709 static void
2710 init_vectors (void)
2711 {
2712 zero_vector = make_pure_vector (0);
2713 }
2714
2715 /* Allocate vector from a vector block. */
2716
2717 static struct Lisp_Vector *
2718 allocate_vector_from_block (size_t nbytes)
2719 {
2720 struct Lisp_Vector *vector;
2721 struct vector_block *block;
2722 size_t index, restbytes;
2723
2724 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2725 eassert (nbytes % roundup_size == 0);
2726
2727 /* First, try to allocate from a free list
2728 containing vectors of the requested size. */
2729 index = VINDEX (nbytes);
2730 if (vector_free_lists[index])
2731 {
2732 vector = vector_free_lists[index];
2733 vector_free_lists[index] = next_in_free_list (vector);
2734 total_free_vector_slots -= nbytes / word_size;
2735 return vector;
2736 }
2737
2738 /* Next, check free lists containing larger vectors. Since
2739 we will split the result, we should have remaining space
2740 large enough to use for one-slot vector at least. */
2741 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2742 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2743 if (vector_free_lists[index])
2744 {
2745 /* This vector is larger than requested. */
2746 vector = vector_free_lists[index];
2747 vector_free_lists[index] = next_in_free_list (vector);
2748 total_free_vector_slots -= nbytes / word_size;
2749
2750 /* Excess bytes are used for the smaller vector,
2751 which should be set on an appropriate free list. */
2752 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2753 eassert (restbytes % roundup_size == 0);
2754 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2755 return vector;
2756 }
2757
2758 /* Finally, need a new vector block. */
2759 block = allocate_vector_block ();
2760
2761 /* New vector will be at the beginning of this block. */
2762 vector = (struct Lisp_Vector *) block->data;
2763
2764 /* If the rest of space from this block is large enough
2765 for one-slot vector at least, set up it on a free list. */
2766 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2767 if (restbytes >= VBLOCK_BYTES_MIN)
2768 {
2769 eassert (restbytes % roundup_size == 0);
2770 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2771 }
2772 return vector;
2773 }
2774
2775 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2776
2777 #define VECTOR_IN_BLOCK(vector, block) \
2778 ((char *) (vector) <= (block)->data \
2779 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2780
2781 /* Return the memory footprint of V in bytes. */
2782
2783 static ptrdiff_t
2784 vector_nbytes (struct Lisp_Vector *v)
2785 {
2786 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2787
2788 if (size & PSEUDOVECTOR_FLAG)
2789 {
2790 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2791 size = (bool_header_size
2792 + (((struct Lisp_Bool_Vector *) v)->size
2793 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2794 / BOOL_VECTOR_BITS_PER_CHAR);
2795 else
2796 size = (header_size
2797 + ((size & PSEUDOVECTOR_SIZE_MASK)
2798 + ((size & PSEUDOVECTOR_REST_MASK)
2799 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2800 }
2801 else
2802 size = header_size + size * word_size;
2803 return vroundup (size);
2804 }
2805
2806 /* Reclaim space used by unmarked vectors. */
2807
2808 static void
2809 sweep_vectors (void)
2810 {
2811 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2812 struct large_vector *lv, **lvprev = &large_vectors;
2813 struct Lisp_Vector *vector, *next;
2814
2815 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2816 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2817
2818 /* Looking through vector blocks. */
2819
2820 for (block = vector_blocks; block; block = *bprev)
2821 {
2822 bool free_this_block = 0;
2823 ptrdiff_t nbytes;
2824
2825 for (vector = (struct Lisp_Vector *) block->data;
2826 VECTOR_IN_BLOCK (vector, block); vector = next)
2827 {
2828 if (VECTOR_MARKED_P (vector))
2829 {
2830 VECTOR_UNMARK (vector);
2831 total_vectors++;
2832 nbytes = vector_nbytes (vector);
2833 total_vector_slots += nbytes / word_size;
2834 next = ADVANCE (vector, nbytes);
2835 }
2836 else
2837 {
2838 ptrdiff_t total_bytes;
2839
2840 nbytes = vector_nbytes (vector);
2841 total_bytes = nbytes;
2842 next = ADVANCE (vector, nbytes);
2843
2844 /* While NEXT is not marked, try to coalesce with VECTOR,
2845 thus making VECTOR of the largest possible size. */
2846
2847 while (VECTOR_IN_BLOCK (next, block))
2848 {
2849 if (VECTOR_MARKED_P (next))
2850 break;
2851 nbytes = vector_nbytes (next);
2852 total_bytes += nbytes;
2853 next = ADVANCE (next, nbytes);
2854 }
2855
2856 eassert (total_bytes % roundup_size == 0);
2857
2858 if (vector == (struct Lisp_Vector *) block->data
2859 && !VECTOR_IN_BLOCK (next, block))
2860 /* This block should be freed because all of it's
2861 space was coalesced into the only free vector. */
2862 free_this_block = 1;
2863 else
2864 {
2865 int tmp;
2866 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2867 }
2868 }
2869 }
2870
2871 if (free_this_block)
2872 {
2873 *bprev = block->next;
2874 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2875 mem_delete (mem_find (block->data));
2876 #endif
2877 xfree (block);
2878 }
2879 else
2880 bprev = &block->next;
2881 }
2882
2883 /* Sweep large vectors. */
2884
2885 for (lv = large_vectors; lv; lv = *lvprev)
2886 {
2887 vector = &lv->v;
2888 if (VECTOR_MARKED_P (vector))
2889 {
2890 VECTOR_UNMARK (vector);
2891 total_vectors++;
2892 if (vector->header.size & PSEUDOVECTOR_FLAG)
2893 {
2894 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2895
2896 /* All non-bool pseudovectors are small enough to be allocated
2897 from vector blocks. This code should be redesigned if some
2898 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2899 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2900
2901 total_vector_slots
2902 += (bool_header_size
2903 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2904 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2905 }
2906 else
2907 total_vector_slots
2908 += header_size / word_size + vector->header.size;
2909 lvprev = &lv->next.vector;
2910 }
2911 else
2912 {
2913 *lvprev = lv->next.vector;
2914 lisp_free (lv);
2915 }
2916 }
2917 }
2918
2919 /* Value is a pointer to a newly allocated Lisp_Vector structure
2920 with room for LEN Lisp_Objects. */
2921
2922 static struct Lisp_Vector *
2923 allocate_vectorlike (ptrdiff_t len)
2924 {
2925 struct Lisp_Vector *p;
2926
2927 MALLOC_BLOCK_INPUT;
2928
2929 if (len == 0)
2930 p = XVECTOR (zero_vector);
2931 else
2932 {
2933 size_t nbytes = header_size + len * word_size;
2934
2935 #ifdef DOUG_LEA_MALLOC
2936 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2937 because mapped region contents are not preserved in
2938 a dumped Emacs. */
2939 mallopt (M_MMAP_MAX, 0);
2940 #endif
2941
2942 if (nbytes <= VBLOCK_BYTES_MAX)
2943 p = allocate_vector_from_block (vroundup (nbytes));
2944 else
2945 {
2946 struct large_vector *lv
2947 = lisp_malloc ((offsetof (struct large_vector, v.contents)
2948 + len * word_size),
2949 MEM_TYPE_VECTORLIKE);
2950 lv->next.vector = large_vectors;
2951 large_vectors = lv;
2952 p = &lv->v;
2953 }
2954
2955 #ifdef DOUG_LEA_MALLOC
2956 /* Back to a reasonable maximum of mmap'ed areas. */
2957 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2958 #endif
2959
2960 consing_since_gc += nbytes;
2961 vector_cells_consed += len;
2962 }
2963
2964 MALLOC_UNBLOCK_INPUT;
2965
2966 return p;
2967 }
2968
2969
2970 /* Allocate a vector with LEN slots. */
2971
2972 struct Lisp_Vector *
2973 allocate_vector (EMACS_INT len)
2974 {
2975 struct Lisp_Vector *v;
2976 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2977
2978 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2979 memory_full (SIZE_MAX);
2980 v = allocate_vectorlike (len);
2981 v->header.size = len;
2982 return v;
2983 }
2984
2985
2986 /* Allocate other vector-like structures. */
2987
2988 struct Lisp_Vector *
2989 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2990 {
2991 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2992 int i;
2993
2994 /* Catch bogus values. */
2995 eassert (tag <= PVEC_FONT);
2996 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2997 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2998
2999 /* Only the first lisplen slots will be traced normally by the GC. */
3000 for (i = 0; i < lisplen; ++i)
3001 v->contents[i] = Qnil;
3002
3003 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3004 return v;
3005 }
3006
3007 struct buffer *
3008 allocate_buffer (void)
3009 {
3010 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3011
3012 BUFFER_PVEC_INIT (b);
3013 /* Put B on the chain of all buffers including killed ones. */
3014 b->next = all_buffers;
3015 all_buffers = b;
3016 /* Note that the rest fields of B are not initialized. */
3017 return b;
3018 }
3019
3020 struct Lisp_Hash_Table *
3021 allocate_hash_table (void)
3022 {
3023 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3024 }
3025
3026 struct window *
3027 allocate_window (void)
3028 {
3029 struct window *w;
3030
3031 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3032 /* Users assumes that non-Lisp data is zeroed. */
3033 memset (&w->current_matrix, 0,
3034 sizeof (*w) - offsetof (struct window, current_matrix));
3035 return w;
3036 }
3037
3038 struct terminal *
3039 allocate_terminal (void)
3040 {
3041 struct terminal *t;
3042
3043 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3044 /* Users assumes that non-Lisp data is zeroed. */
3045 memset (&t->next_terminal, 0,
3046 sizeof (*t) - offsetof (struct terminal, next_terminal));
3047 return t;
3048 }
3049
3050 struct frame *
3051 allocate_frame (void)
3052 {
3053 struct frame *f;
3054
3055 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3056 /* Users assumes that non-Lisp data is zeroed. */
3057 memset (&f->face_cache, 0,
3058 sizeof (*f) - offsetof (struct frame, face_cache));
3059 return f;
3060 }
3061
3062 struct Lisp_Process *
3063 allocate_process (void)
3064 {
3065 struct Lisp_Process *p;
3066
3067 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3068 /* Users assumes that non-Lisp data is zeroed. */
3069 memset (&p->pid, 0,
3070 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3071 return p;
3072 }
3073
3074 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3075 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3076 See also the function `vector'. */)
3077 (register Lisp_Object length, Lisp_Object init)
3078 {
3079 Lisp_Object vector;
3080 register ptrdiff_t sizei;
3081 register ptrdiff_t i;
3082 register struct Lisp_Vector *p;
3083
3084 CHECK_NATNUM (length);
3085
3086 p = allocate_vector (XFASTINT (length));
3087 sizei = XFASTINT (length);
3088 for (i = 0; i < sizei; i++)
3089 p->contents[i] = init;
3090
3091 XSETVECTOR (vector, p);
3092 return vector;
3093 }
3094
3095
3096 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3097 doc: /* Return a newly created vector with specified arguments as elements.
3098 Any number of arguments, even zero arguments, are allowed.
3099 usage: (vector &rest OBJECTS) */)
3100 (ptrdiff_t nargs, Lisp_Object *args)
3101 {
3102 ptrdiff_t i;
3103 register Lisp_Object val = make_uninit_vector (nargs);
3104 register struct Lisp_Vector *p = XVECTOR (val);
3105
3106 for (i = 0; i < nargs; i++)
3107 p->contents[i] = args[i];
3108 return val;
3109 }
3110
3111 void
3112 make_byte_code (struct Lisp_Vector *v)
3113 {
3114 if (v->header.size > 1 && STRINGP (v->contents[1])
3115 && STRING_MULTIBYTE (v->contents[1]))
3116 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3117 earlier because they produced a raw 8-bit string for byte-code
3118 and now such a byte-code string is loaded as multibyte while
3119 raw 8-bit characters converted to multibyte form. Thus, now we
3120 must convert them back to the original unibyte form. */
3121 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3122 XSETPVECTYPE (v, PVEC_COMPILED);
3123 }
3124
3125 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3126 doc: /* Create a byte-code object with specified arguments as elements.
3127 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3128 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3129 and (optional) INTERACTIVE-SPEC.
3130 The first four arguments are required; at most six have any
3131 significance.
3132 The ARGLIST can be either like the one of `lambda', in which case the arguments
3133 will be dynamically bound before executing the byte code, or it can be an
3134 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3135 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3136 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3137 argument to catch the left-over arguments. If such an integer is used, the
3138 arguments will not be dynamically bound but will be instead pushed on the
3139 stack before executing the byte-code.
3140 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3141 (ptrdiff_t nargs, Lisp_Object *args)
3142 {
3143 ptrdiff_t i;
3144 register Lisp_Object val = make_uninit_vector (nargs);
3145 register struct Lisp_Vector *p = XVECTOR (val);
3146
3147 /* We used to purecopy everything here, if purify-flag was set. This worked
3148 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3149 dangerous, since make-byte-code is used during execution to build
3150 closures, so any closure built during the preload phase would end up
3151 copied into pure space, including its free variables, which is sometimes
3152 just wasteful and other times plainly wrong (e.g. those free vars may want
3153 to be setcar'd). */
3154
3155 for (i = 0; i < nargs; i++)
3156 p->contents[i] = args[i];
3157 make_byte_code (p);
3158 XSETCOMPILED (val, p);
3159 return val;
3160 }
3161
3162
3163 \f
3164 /***********************************************************************
3165 Symbol Allocation
3166 ***********************************************************************/
3167
3168 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3169 of the required alignment if LSB tags are used. */
3170
3171 union aligned_Lisp_Symbol
3172 {
3173 struct Lisp_Symbol s;
3174 #if USE_LSB_TAG
3175 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3176 & -GCALIGNMENT];
3177 #endif
3178 };
3179
3180 /* Each symbol_block is just under 1020 bytes long, since malloc
3181 really allocates in units of powers of two and uses 4 bytes for its
3182 own overhead. */
3183
3184 #define SYMBOL_BLOCK_SIZE \
3185 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3186
3187 struct symbol_block
3188 {
3189 /* Place `symbols' first, to preserve alignment. */
3190 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3191 struct symbol_block *next;
3192 };
3193
3194 /* Current symbol block and index of first unused Lisp_Symbol
3195 structure in it. */
3196
3197 static struct symbol_block *symbol_block;
3198 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3199
3200 /* List of free symbols. */
3201
3202 static struct Lisp_Symbol *symbol_free_list;
3203
3204 static void
3205 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3206 {
3207 XSYMBOL (sym)->name = name;
3208 }
3209
3210 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3211 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3212 Its value is void, and its function definition and property list are nil. */)
3213 (Lisp_Object name)
3214 {
3215 register Lisp_Object val;
3216 register struct Lisp_Symbol *p;
3217
3218 CHECK_STRING (name);
3219
3220 MALLOC_BLOCK_INPUT;
3221
3222 if (symbol_free_list)
3223 {
3224 XSETSYMBOL (val, symbol_free_list);
3225 symbol_free_list = symbol_free_list->next;
3226 }
3227 else
3228 {
3229 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3230 {
3231 struct symbol_block *new
3232 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3233 new->next = symbol_block;
3234 symbol_block = new;
3235 symbol_block_index = 0;
3236 total_free_symbols += SYMBOL_BLOCK_SIZE;
3237 }
3238 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3239 symbol_block_index++;
3240 }
3241
3242 MALLOC_UNBLOCK_INPUT;
3243
3244 p = XSYMBOL (val);
3245 set_symbol_name (val, name);
3246 set_symbol_plist (val, Qnil);
3247 p->redirect = SYMBOL_PLAINVAL;
3248 SET_SYMBOL_VAL (p, Qunbound);
3249 set_symbol_function (val, Qnil);
3250 set_symbol_next (val, NULL);
3251 p->gcmarkbit = 0;
3252 p->interned = SYMBOL_UNINTERNED;
3253 p->constant = 0;
3254 p->declared_special = 0;
3255 consing_since_gc += sizeof (struct Lisp_Symbol);
3256 symbols_consed++;
3257 total_free_symbols--;
3258 return val;
3259 }
3260
3261
3262 \f
3263 /***********************************************************************
3264 Marker (Misc) Allocation
3265 ***********************************************************************/
3266
3267 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3268 the required alignment when LSB tags are used. */
3269
3270 union aligned_Lisp_Misc
3271 {
3272 union Lisp_Misc m;
3273 #if USE_LSB_TAG
3274 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3275 & -GCALIGNMENT];
3276 #endif
3277 };
3278
3279 /* Allocation of markers and other objects that share that structure.
3280 Works like allocation of conses. */
3281
3282 #define MARKER_BLOCK_SIZE \
3283 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3284
3285 struct marker_block
3286 {
3287 /* Place `markers' first, to preserve alignment. */
3288 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3289 struct marker_block *next;
3290 };
3291
3292 static struct marker_block *marker_block;
3293 static int marker_block_index = MARKER_BLOCK_SIZE;
3294
3295 static union Lisp_Misc *marker_free_list;
3296
3297 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3298
3299 static Lisp_Object
3300 allocate_misc (enum Lisp_Misc_Type type)
3301 {
3302 Lisp_Object val;
3303
3304 MALLOC_BLOCK_INPUT;
3305
3306 if (marker_free_list)
3307 {
3308 XSETMISC (val, marker_free_list);
3309 marker_free_list = marker_free_list->u_free.chain;
3310 }
3311 else
3312 {
3313 if (marker_block_index == MARKER_BLOCK_SIZE)
3314 {
3315 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3316 new->next = marker_block;
3317 marker_block = new;
3318 marker_block_index = 0;
3319 total_free_markers += MARKER_BLOCK_SIZE;
3320 }
3321 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3322 marker_block_index++;
3323 }
3324
3325 MALLOC_UNBLOCK_INPUT;
3326
3327 --total_free_markers;
3328 consing_since_gc += sizeof (union Lisp_Misc);
3329 misc_objects_consed++;
3330 XMISCANY (val)->type = type;
3331 XMISCANY (val)->gcmarkbit = 0;
3332 return val;
3333 }
3334
3335 /* Free a Lisp_Misc object. */
3336
3337 void
3338 free_misc (Lisp_Object misc)
3339 {
3340 XMISCANY (misc)->type = Lisp_Misc_Free;
3341 XMISC (misc)->u_free.chain = marker_free_list;
3342 marker_free_list = XMISC (misc);
3343 consing_since_gc -= sizeof (union Lisp_Misc);
3344 total_free_markers++;
3345 }
3346
3347 /* Verify properties of Lisp_Save_Value's representation
3348 that are assumed here and elsewhere. */
3349
3350 verify (SAVE_UNUSED == 0);
3351 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3352 >> SAVE_SLOT_BITS)
3353 == 0);
3354
3355 /* Return a Lisp_Save_Value object with the data saved according to
3356 DATA_TYPE. DATA_TYPE should be one of SAVE_TYPE_INT_INT, etc. */
3357
3358 Lisp_Object
3359 make_save_value (enum Lisp_Save_Type save_type, ...)
3360 {
3361 va_list ap;
3362 int i;
3363 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3364 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3365
3366 eassert (0 < save_type
3367 && (save_type < 1 << (SAVE_TYPE_BITS - 1)
3368 || save_type == SAVE_TYPE_MEMORY));
3369 p->save_type = save_type;
3370 va_start (ap, save_type);
3371 save_type &= ~ (1 << (SAVE_TYPE_BITS - 1));
3372
3373 for (i = 0; save_type; i++, save_type >>= SAVE_SLOT_BITS)
3374 switch (save_type & ((1 << SAVE_SLOT_BITS) - 1))
3375 {
3376 case SAVE_POINTER:
3377 p->data[i].pointer = va_arg (ap, void *);
3378 break;
3379
3380 case SAVE_FUNCPOINTER:
3381 p->data[i].funcpointer = va_arg (ap, voidfuncptr);
3382 break;
3383
3384 case SAVE_INTEGER:
3385 p->data[i].integer = va_arg (ap, ptrdiff_t);
3386 break;
3387
3388 case SAVE_OBJECT:
3389 p->data[i].object = va_arg (ap, Lisp_Object);
3390 break;
3391
3392 default:
3393 emacs_abort ();
3394 }
3395
3396 va_end (ap);
3397 return val;
3398 }
3399
3400 /* The most common task it to save just one C pointer. */
3401
3402 Lisp_Object
3403 make_save_pointer (void *pointer)
3404 {
3405 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3406 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3407 p->save_type = SAVE_POINTER;
3408 p->data[0].pointer = pointer;
3409 return val;
3410 }
3411
3412 /* Free a Lisp_Save_Value object. Do not use this function
3413 if SAVE contains pointer other than returned by xmalloc. */
3414
3415 static void
3416 free_save_value (Lisp_Object save)
3417 {
3418 xfree (XSAVE_POINTER (save, 0));
3419 free_misc (save);
3420 }
3421
3422 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3423
3424 Lisp_Object
3425 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3426 {
3427 register Lisp_Object overlay;
3428
3429 overlay = allocate_misc (Lisp_Misc_Overlay);
3430 OVERLAY_START (overlay) = start;
3431 OVERLAY_END (overlay) = end;
3432 set_overlay_plist (overlay, plist);
3433 XOVERLAY (overlay)->next = NULL;
3434 return overlay;
3435 }
3436
3437 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3438 doc: /* Return a newly allocated marker which does not point at any place. */)
3439 (void)
3440 {
3441 register Lisp_Object val;
3442 register struct Lisp_Marker *p;
3443
3444 val = allocate_misc (Lisp_Misc_Marker);
3445 p = XMARKER (val);
3446 p->buffer = 0;
3447 p->bytepos = 0;
3448 p->charpos = 0;
3449 p->next = NULL;
3450 p->insertion_type = 0;
3451 return val;
3452 }
3453
3454 /* Return a newly allocated marker which points into BUF
3455 at character position CHARPOS and byte position BYTEPOS. */
3456
3457 Lisp_Object
3458 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3459 {
3460 Lisp_Object obj;
3461 struct Lisp_Marker *m;
3462
3463 /* No dead buffers here. */
3464 eassert (BUFFER_LIVE_P (buf));
3465
3466 /* Every character is at least one byte. */
3467 eassert (charpos <= bytepos);
3468
3469 obj = allocate_misc (Lisp_Misc_Marker);
3470 m = XMARKER (obj);
3471 m->buffer = buf;
3472 m->charpos = charpos;
3473 m->bytepos = bytepos;
3474 m->insertion_type = 0;
3475 m->next = BUF_MARKERS (buf);
3476 BUF_MARKERS (buf) = m;
3477 return obj;
3478 }
3479
3480 /* Put MARKER back on the free list after using it temporarily. */
3481
3482 void
3483 free_marker (Lisp_Object marker)
3484 {
3485 unchain_marker (XMARKER (marker));
3486 free_misc (marker);
3487 }
3488
3489 \f
3490 /* Return a newly created vector or string with specified arguments as
3491 elements. If all the arguments are characters that can fit
3492 in a string of events, make a string; otherwise, make a vector.
3493
3494 Any number of arguments, even zero arguments, are allowed. */
3495
3496 Lisp_Object
3497 make_event_array (register int nargs, Lisp_Object *args)
3498 {
3499 int i;
3500
3501 for (i = 0; i < nargs; i++)
3502 /* The things that fit in a string
3503 are characters that are in 0...127,
3504 after discarding the meta bit and all the bits above it. */
3505 if (!INTEGERP (args[i])
3506 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3507 return Fvector (nargs, args);
3508
3509 /* Since the loop exited, we know that all the things in it are
3510 characters, so we can make a string. */
3511 {
3512 Lisp_Object result;
3513
3514 result = Fmake_string (make_number (nargs), make_number (0));
3515 for (i = 0; i < nargs; i++)
3516 {
3517 SSET (result, i, XINT (args[i]));
3518 /* Move the meta bit to the right place for a string char. */
3519 if (XINT (args[i]) & CHAR_META)
3520 SSET (result, i, SREF (result, i) | 0x80);
3521 }
3522
3523 return result;
3524 }
3525 }
3526
3527
3528 \f
3529 /************************************************************************
3530 Memory Full Handling
3531 ************************************************************************/
3532
3533
3534 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3535 there may have been size_t overflow so that malloc was never
3536 called, or perhaps malloc was invoked successfully but the
3537 resulting pointer had problems fitting into a tagged EMACS_INT. In
3538 either case this counts as memory being full even though malloc did
3539 not fail. */
3540
3541 void
3542 memory_full (size_t nbytes)
3543 {
3544 /* Do not go into hysterics merely because a large request failed. */
3545 bool enough_free_memory = 0;
3546 if (SPARE_MEMORY < nbytes)
3547 {
3548 void *p;
3549
3550 MALLOC_BLOCK_INPUT;
3551 p = malloc (SPARE_MEMORY);
3552 if (p)
3553 {
3554 free (p);
3555 enough_free_memory = 1;
3556 }
3557 MALLOC_UNBLOCK_INPUT;
3558 }
3559
3560 if (! enough_free_memory)
3561 {
3562 int i;
3563
3564 Vmemory_full = Qt;
3565
3566 memory_full_cons_threshold = sizeof (struct cons_block);
3567
3568 /* The first time we get here, free the spare memory. */
3569 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3570 if (spare_memory[i])
3571 {
3572 if (i == 0)
3573 free (spare_memory[i]);
3574 else if (i >= 1 && i <= 4)
3575 lisp_align_free (spare_memory[i]);
3576 else
3577 lisp_free (spare_memory[i]);
3578 spare_memory[i] = 0;
3579 }
3580 }
3581
3582 /* This used to call error, but if we've run out of memory, we could
3583 get infinite recursion trying to build the string. */
3584 xsignal (Qnil, Vmemory_signal_data);
3585 }
3586
3587 /* If we released our reserve (due to running out of memory),
3588 and we have a fair amount free once again,
3589 try to set aside another reserve in case we run out once more.
3590
3591 This is called when a relocatable block is freed in ralloc.c,
3592 and also directly from this file, in case we're not using ralloc.c. */
3593
3594 void
3595 refill_memory_reserve (void)
3596 {
3597 #ifndef SYSTEM_MALLOC
3598 if (spare_memory[0] == 0)
3599 spare_memory[0] = malloc (SPARE_MEMORY);
3600 if (spare_memory[1] == 0)
3601 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3602 MEM_TYPE_SPARE);
3603 if (spare_memory[2] == 0)
3604 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3605 MEM_TYPE_SPARE);
3606 if (spare_memory[3] == 0)
3607 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3608 MEM_TYPE_SPARE);
3609 if (spare_memory[4] == 0)
3610 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3611 MEM_TYPE_SPARE);
3612 if (spare_memory[5] == 0)
3613 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3614 MEM_TYPE_SPARE);
3615 if (spare_memory[6] == 0)
3616 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3617 MEM_TYPE_SPARE);
3618 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3619 Vmemory_full = Qnil;
3620 #endif
3621 }
3622 \f
3623 /************************************************************************
3624 C Stack Marking
3625 ************************************************************************/
3626
3627 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3628
3629 /* Conservative C stack marking requires a method to identify possibly
3630 live Lisp objects given a pointer value. We do this by keeping
3631 track of blocks of Lisp data that are allocated in a red-black tree
3632 (see also the comment of mem_node which is the type of nodes in
3633 that tree). Function lisp_malloc adds information for an allocated
3634 block to the red-black tree with calls to mem_insert, and function
3635 lisp_free removes it with mem_delete. Functions live_string_p etc
3636 call mem_find to lookup information about a given pointer in the
3637 tree, and use that to determine if the pointer points to a Lisp
3638 object or not. */
3639
3640 /* Initialize this part of alloc.c. */
3641
3642 static void
3643 mem_init (void)
3644 {
3645 mem_z.left = mem_z.right = MEM_NIL;
3646 mem_z.parent = NULL;
3647 mem_z.color = MEM_BLACK;
3648 mem_z.start = mem_z.end = NULL;
3649 mem_root = MEM_NIL;
3650 }
3651
3652
3653 /* Value is a pointer to the mem_node containing START. Value is
3654 MEM_NIL if there is no node in the tree containing START. */
3655
3656 static struct mem_node *
3657 mem_find (void *start)
3658 {
3659 struct mem_node *p;
3660
3661 if (start < min_heap_address || start > max_heap_address)
3662 return MEM_NIL;
3663
3664 /* Make the search always successful to speed up the loop below. */
3665 mem_z.start = start;
3666 mem_z.end = (char *) start + 1;
3667
3668 p = mem_root;
3669 while (start < p->start || start >= p->end)
3670 p = start < p->start ? p->left : p->right;
3671 return p;
3672 }
3673
3674
3675 /* Insert a new node into the tree for a block of memory with start
3676 address START, end address END, and type TYPE. Value is a
3677 pointer to the node that was inserted. */
3678
3679 static struct mem_node *
3680 mem_insert (void *start, void *end, enum mem_type type)
3681 {
3682 struct mem_node *c, *parent, *x;
3683
3684 if (min_heap_address == NULL || start < min_heap_address)
3685 min_heap_address = start;
3686 if (max_heap_address == NULL || end > max_heap_address)
3687 max_heap_address = end;
3688
3689 /* See where in the tree a node for START belongs. In this
3690 particular application, it shouldn't happen that a node is already
3691 present. For debugging purposes, let's check that. */
3692 c = mem_root;
3693 parent = NULL;
3694
3695 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3696
3697 while (c != MEM_NIL)
3698 {
3699 if (start >= c->start && start < c->end)
3700 emacs_abort ();
3701 parent = c;
3702 c = start < c->start ? c->left : c->right;
3703 }
3704
3705 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3706
3707 while (c != MEM_NIL)
3708 {
3709 parent = c;
3710 c = start < c->start ? c->left : c->right;
3711 }
3712
3713 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3714
3715 /* Create a new node. */
3716 #ifdef GC_MALLOC_CHECK
3717 x = malloc (sizeof *x);
3718 if (x == NULL)
3719 emacs_abort ();
3720 #else
3721 x = xmalloc (sizeof *x);
3722 #endif
3723 x->start = start;
3724 x->end = end;
3725 x->type = type;
3726 x->parent = parent;
3727 x->left = x->right = MEM_NIL;
3728 x->color = MEM_RED;
3729
3730 /* Insert it as child of PARENT or install it as root. */
3731 if (parent)
3732 {
3733 if (start < parent->start)
3734 parent->left = x;
3735 else
3736 parent->right = x;
3737 }
3738 else
3739 mem_root = x;
3740
3741 /* Re-establish red-black tree properties. */
3742 mem_insert_fixup (x);
3743
3744 return x;
3745 }
3746
3747
3748 /* Re-establish the red-black properties of the tree, and thereby
3749 balance the tree, after node X has been inserted; X is always red. */
3750
3751 static void
3752 mem_insert_fixup (struct mem_node *x)
3753 {
3754 while (x != mem_root && x->parent->color == MEM_RED)
3755 {
3756 /* X is red and its parent is red. This is a violation of
3757 red-black tree property #3. */
3758
3759 if (x->parent == x->parent->parent->left)
3760 {
3761 /* We're on the left side of our grandparent, and Y is our
3762 "uncle". */
3763 struct mem_node *y = x->parent->parent->right;
3764
3765 if (y->color == MEM_RED)
3766 {
3767 /* Uncle and parent are red but should be black because
3768 X is red. Change the colors accordingly and proceed
3769 with the grandparent. */
3770 x->parent->color = MEM_BLACK;
3771 y->color = MEM_BLACK;
3772 x->parent->parent->color = MEM_RED;
3773 x = x->parent->parent;
3774 }
3775 else
3776 {
3777 /* Parent and uncle have different colors; parent is
3778 red, uncle is black. */
3779 if (x == x->parent->right)
3780 {
3781 x = x->parent;
3782 mem_rotate_left (x);
3783 }
3784
3785 x->parent->color = MEM_BLACK;
3786 x->parent->parent->color = MEM_RED;
3787 mem_rotate_right (x->parent->parent);
3788 }
3789 }
3790 else
3791 {
3792 /* This is the symmetrical case of above. */
3793 struct mem_node *y = x->parent->parent->left;
3794
3795 if (y->color == MEM_RED)
3796 {
3797 x->parent->color = MEM_BLACK;
3798 y->color = MEM_BLACK;
3799 x->parent->parent->color = MEM_RED;
3800 x = x->parent->parent;
3801 }
3802 else
3803 {
3804 if (x == x->parent->left)
3805 {
3806 x = x->parent;
3807 mem_rotate_right (x);
3808 }
3809
3810 x->parent->color = MEM_BLACK;
3811 x->parent->parent->color = MEM_RED;
3812 mem_rotate_left (x->parent->parent);
3813 }
3814 }
3815 }
3816
3817 /* The root may have been changed to red due to the algorithm. Set
3818 it to black so that property #5 is satisfied. */
3819 mem_root->color = MEM_BLACK;
3820 }
3821
3822
3823 /* (x) (y)
3824 / \ / \
3825 a (y) ===> (x) c
3826 / \ / \
3827 b c a b */
3828
3829 static void
3830 mem_rotate_left (struct mem_node *x)
3831 {
3832 struct mem_node *y;
3833
3834 /* Turn y's left sub-tree into x's right sub-tree. */
3835 y = x->right;
3836 x->right = y->left;
3837 if (y->left != MEM_NIL)
3838 y->left->parent = x;
3839
3840 /* Y's parent was x's parent. */
3841 if (y != MEM_NIL)
3842 y->parent = x->parent;
3843
3844 /* Get the parent to point to y instead of x. */
3845 if (x->parent)
3846 {
3847 if (x == x->parent->left)
3848 x->parent->left = y;
3849 else
3850 x->parent->right = y;
3851 }
3852 else
3853 mem_root = y;
3854
3855 /* Put x on y's left. */
3856 y->left = x;
3857 if (x != MEM_NIL)
3858 x->parent = y;
3859 }
3860
3861
3862 /* (x) (Y)
3863 / \ / \
3864 (y) c ===> a (x)
3865 / \ / \
3866 a b b c */
3867
3868 static void
3869 mem_rotate_right (struct mem_node *x)
3870 {
3871 struct mem_node *y = x->left;
3872
3873 x->left = y->right;
3874 if (y->right != MEM_NIL)
3875 y->right->parent = x;
3876
3877 if (y != MEM_NIL)
3878 y->parent = x->parent;
3879 if (x->parent)
3880 {
3881 if (x == x->parent->right)
3882 x->parent->right = y;
3883 else
3884 x->parent->left = y;
3885 }
3886 else
3887 mem_root = y;
3888
3889 y->right = x;
3890 if (x != MEM_NIL)
3891 x->parent = y;
3892 }
3893
3894
3895 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3896
3897 static void
3898 mem_delete (struct mem_node *z)
3899 {
3900 struct mem_node *x, *y;
3901
3902 if (!z || z == MEM_NIL)
3903 return;
3904
3905 if (z->left == MEM_NIL || z->right == MEM_NIL)
3906 y = z;
3907 else
3908 {
3909 y = z->right;
3910 while (y->left != MEM_NIL)
3911 y = y->left;
3912 }
3913
3914 if (y->left != MEM_NIL)
3915 x = y->left;
3916 else
3917 x = y->right;
3918
3919 x->parent = y->parent;
3920 if (y->parent)
3921 {
3922 if (y == y->parent->left)
3923 y->parent->left = x;
3924 else
3925 y->parent->right = x;
3926 }
3927 else
3928 mem_root = x;
3929
3930 if (y != z)
3931 {
3932 z->start = y->start;
3933 z->end = y->end;
3934 z->type = y->type;
3935 }
3936
3937 if (y->color == MEM_BLACK)
3938 mem_delete_fixup (x);
3939
3940 #ifdef GC_MALLOC_CHECK
3941 free (y);
3942 #else
3943 xfree (y);
3944 #endif
3945 }
3946
3947
3948 /* Re-establish the red-black properties of the tree, after a
3949 deletion. */
3950
3951 static void
3952 mem_delete_fixup (struct mem_node *x)
3953 {
3954 while (x != mem_root && x->color == MEM_BLACK)
3955 {
3956 if (x == x->parent->left)
3957 {
3958 struct mem_node *w = x->parent->right;
3959
3960 if (w->color == MEM_RED)
3961 {
3962 w->color = MEM_BLACK;
3963 x->parent->color = MEM_RED;
3964 mem_rotate_left (x->parent);
3965 w = x->parent->right;
3966 }
3967
3968 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3969 {
3970 w->color = MEM_RED;
3971 x = x->parent;
3972 }
3973 else
3974 {
3975 if (w->right->color == MEM_BLACK)
3976 {
3977 w->left->color = MEM_BLACK;
3978 w->color = MEM_RED;
3979 mem_rotate_right (w);
3980 w = x->parent->right;
3981 }
3982 w->color = x->parent->color;
3983 x->parent->color = MEM_BLACK;
3984 w->right->color = MEM_BLACK;
3985 mem_rotate_left (x->parent);
3986 x = mem_root;
3987 }
3988 }
3989 else
3990 {
3991 struct mem_node *w = x->parent->left;
3992
3993 if (w->color == MEM_RED)
3994 {
3995 w->color = MEM_BLACK;
3996 x->parent->color = MEM_RED;
3997 mem_rotate_right (x->parent);
3998 w = x->parent->left;
3999 }
4000
4001 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4002 {
4003 w->color = MEM_RED;
4004 x = x->parent;
4005 }
4006 else
4007 {
4008 if (w->left->color == MEM_BLACK)
4009 {
4010 w->right->color = MEM_BLACK;
4011 w->color = MEM_RED;
4012 mem_rotate_left (w);
4013 w = x->parent->left;
4014 }
4015
4016 w->color = x->parent->color;
4017 x->parent->color = MEM_BLACK;
4018 w->left->color = MEM_BLACK;
4019 mem_rotate_right (x->parent);
4020 x = mem_root;
4021 }
4022 }
4023 }
4024
4025 x->color = MEM_BLACK;
4026 }
4027
4028
4029 /* Value is non-zero if P is a pointer to a live Lisp string on
4030 the heap. M is a pointer to the mem_block for P. */
4031
4032 static bool
4033 live_string_p (struct mem_node *m, void *p)
4034 {
4035 if (m->type == MEM_TYPE_STRING)
4036 {
4037 struct string_block *b = (struct string_block *) m->start;
4038 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4039
4040 /* P must point to the start of a Lisp_String structure, and it
4041 must not be on the free-list. */
4042 return (offset >= 0
4043 && offset % sizeof b->strings[0] == 0
4044 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4045 && ((struct Lisp_String *) p)->data != NULL);
4046 }
4047 else
4048 return 0;
4049 }
4050
4051
4052 /* Value is non-zero if P is a pointer to a live Lisp cons on
4053 the heap. M is a pointer to the mem_block for P. */
4054
4055 static bool
4056 live_cons_p (struct mem_node *m, void *p)
4057 {
4058 if (m->type == MEM_TYPE_CONS)
4059 {
4060 struct cons_block *b = (struct cons_block *) m->start;
4061 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4062
4063 /* P must point to the start of a Lisp_Cons, not be
4064 one of the unused cells in the current cons block,
4065 and not be on the free-list. */
4066 return (offset >= 0
4067 && offset % sizeof b->conses[0] == 0
4068 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4069 && (b != cons_block
4070 || offset / sizeof b->conses[0] < cons_block_index)
4071 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4072 }
4073 else
4074 return 0;
4075 }
4076
4077
4078 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4079 the heap. M is a pointer to the mem_block for P. */
4080
4081 static bool
4082 live_symbol_p (struct mem_node *m, void *p)
4083 {
4084 if (m->type == MEM_TYPE_SYMBOL)
4085 {
4086 struct symbol_block *b = (struct symbol_block *) m->start;
4087 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4088
4089 /* P must point to the start of a Lisp_Symbol, not be
4090 one of the unused cells in the current symbol block,
4091 and not be on the free-list. */
4092 return (offset >= 0
4093 && offset % sizeof b->symbols[0] == 0
4094 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4095 && (b != symbol_block
4096 || offset / sizeof b->symbols[0] < symbol_block_index)
4097 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4098 }
4099 else
4100 return 0;
4101 }
4102
4103
4104 /* Value is non-zero if P is a pointer to a live Lisp float on
4105 the heap. M is a pointer to the mem_block for P. */
4106
4107 static bool
4108 live_float_p (struct mem_node *m, void *p)
4109 {
4110 if (m->type == MEM_TYPE_FLOAT)
4111 {
4112 struct float_block *b = (struct float_block *) m->start;
4113 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4114
4115 /* P must point to the start of a Lisp_Float and not be
4116 one of the unused cells in the current float block. */
4117 return (offset >= 0
4118 && offset % sizeof b->floats[0] == 0
4119 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4120 && (b != float_block
4121 || offset / sizeof b->floats[0] < float_block_index));
4122 }
4123 else
4124 return 0;
4125 }
4126
4127
4128 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4129 the heap. M is a pointer to the mem_block for P. */
4130
4131 static bool
4132 live_misc_p (struct mem_node *m, void *p)
4133 {
4134 if (m->type == MEM_TYPE_MISC)
4135 {
4136 struct marker_block *b = (struct marker_block *) m->start;
4137 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4138
4139 /* P must point to the start of a Lisp_Misc, not be
4140 one of the unused cells in the current misc block,
4141 and not be on the free-list. */
4142 return (offset >= 0
4143 && offset % sizeof b->markers[0] == 0
4144 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4145 && (b != marker_block
4146 || offset / sizeof b->markers[0] < marker_block_index)
4147 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4148 }
4149 else
4150 return 0;
4151 }
4152
4153
4154 /* Value is non-zero if P is a pointer to a live vector-like object.
4155 M is a pointer to the mem_block for P. */
4156
4157 static bool
4158 live_vector_p (struct mem_node *m, void *p)
4159 {
4160 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4161 {
4162 /* This memory node corresponds to a vector block. */
4163 struct vector_block *block = (struct vector_block *) m->start;
4164 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4165
4166 /* P is in the block's allocation range. Scan the block
4167 up to P and see whether P points to the start of some
4168 vector which is not on a free list. FIXME: check whether
4169 some allocation patterns (probably a lot of short vectors)
4170 may cause a substantial overhead of this loop. */
4171 while (VECTOR_IN_BLOCK (vector, block)
4172 && vector <= (struct Lisp_Vector *) p)
4173 {
4174 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4175 return 1;
4176 else
4177 vector = ADVANCE (vector, vector_nbytes (vector));
4178 }
4179 }
4180 else if (m->type == MEM_TYPE_VECTORLIKE
4181 && (char *) p == ((char *) m->start
4182 + offsetof (struct large_vector, v)))
4183 /* This memory node corresponds to a large vector. */
4184 return 1;
4185 return 0;
4186 }
4187
4188
4189 /* Value is non-zero if P is a pointer to a live buffer. M is a
4190 pointer to the mem_block for P. */
4191
4192 static bool
4193 live_buffer_p (struct mem_node *m, void *p)
4194 {
4195 /* P must point to the start of the block, and the buffer
4196 must not have been killed. */
4197 return (m->type == MEM_TYPE_BUFFER
4198 && p == m->start
4199 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4200 }
4201
4202 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4203
4204 #if GC_MARK_STACK
4205
4206 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4207
4208 /* Array of objects that are kept alive because the C stack contains
4209 a pattern that looks like a reference to them . */
4210
4211 #define MAX_ZOMBIES 10
4212 static Lisp_Object zombies[MAX_ZOMBIES];
4213
4214 /* Number of zombie objects. */
4215
4216 static EMACS_INT nzombies;
4217
4218 /* Number of garbage collections. */
4219
4220 static EMACS_INT ngcs;
4221
4222 /* Average percentage of zombies per collection. */
4223
4224 static double avg_zombies;
4225
4226 /* Max. number of live and zombie objects. */
4227
4228 static EMACS_INT max_live, max_zombies;
4229
4230 /* Average number of live objects per GC. */
4231
4232 static double avg_live;
4233
4234 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4235 doc: /* Show information about live and zombie objects. */)
4236 (void)
4237 {
4238 Lisp_Object args[8], zombie_list = Qnil;
4239 EMACS_INT i;
4240 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4241 zombie_list = Fcons (zombies[i], zombie_list);
4242 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4243 args[1] = make_number (ngcs);
4244 args[2] = make_float (avg_live);
4245 args[3] = make_float (avg_zombies);
4246 args[4] = make_float (avg_zombies / avg_live / 100);
4247 args[5] = make_number (max_live);
4248 args[6] = make_number (max_zombies);
4249 args[7] = zombie_list;
4250 return Fmessage (8, args);
4251 }
4252
4253 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4254
4255
4256 /* Mark OBJ if we can prove it's a Lisp_Object. */
4257
4258 static void
4259 mark_maybe_object (Lisp_Object obj)
4260 {
4261 void *po;
4262 struct mem_node *m;
4263
4264 if (INTEGERP (obj))
4265 return;
4266
4267 po = (void *) XPNTR (obj);
4268 m = mem_find (po);
4269
4270 if (m != MEM_NIL)
4271 {
4272 bool mark_p = 0;
4273
4274 switch (XTYPE (obj))
4275 {
4276 case Lisp_String:
4277 mark_p = (live_string_p (m, po)
4278 && !STRING_MARKED_P ((struct Lisp_String *) po));
4279 break;
4280
4281 case Lisp_Cons:
4282 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4283 break;
4284
4285 case Lisp_Symbol:
4286 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4287 break;
4288
4289 case Lisp_Float:
4290 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4291 break;
4292
4293 case Lisp_Vectorlike:
4294 /* Note: can't check BUFFERP before we know it's a
4295 buffer because checking that dereferences the pointer
4296 PO which might point anywhere. */
4297 if (live_vector_p (m, po))
4298 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4299 else if (live_buffer_p (m, po))
4300 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4301 break;
4302
4303 case Lisp_Misc:
4304 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4305 break;
4306
4307 default:
4308 break;
4309 }
4310
4311 if (mark_p)
4312 {
4313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4314 if (nzombies < MAX_ZOMBIES)
4315 zombies[nzombies] = obj;
4316 ++nzombies;
4317 #endif
4318 mark_object (obj);
4319 }
4320 }
4321 }
4322
4323
4324 /* If P points to Lisp data, mark that as live if it isn't already
4325 marked. */
4326
4327 static void
4328 mark_maybe_pointer (void *p)
4329 {
4330 struct mem_node *m;
4331
4332 /* Quickly rule out some values which can't point to Lisp data.
4333 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4334 Otherwise, assume that Lisp data is aligned on even addresses. */
4335 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4336 return;
4337
4338 m = mem_find (p);
4339 if (m != MEM_NIL)
4340 {
4341 Lisp_Object obj = Qnil;
4342
4343 switch (m->type)
4344 {
4345 case MEM_TYPE_NON_LISP:
4346 case MEM_TYPE_SPARE:
4347 /* Nothing to do; not a pointer to Lisp memory. */
4348 break;
4349
4350 case MEM_TYPE_BUFFER:
4351 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4352 XSETVECTOR (obj, p);
4353 break;
4354
4355 case MEM_TYPE_CONS:
4356 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4357 XSETCONS (obj, p);
4358 break;
4359
4360 case MEM_TYPE_STRING:
4361 if (live_string_p (m, p)
4362 && !STRING_MARKED_P ((struct Lisp_String *) p))
4363 XSETSTRING (obj, p);
4364 break;
4365
4366 case MEM_TYPE_MISC:
4367 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4368 XSETMISC (obj, p);
4369 break;
4370
4371 case MEM_TYPE_SYMBOL:
4372 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4373 XSETSYMBOL (obj, p);
4374 break;
4375
4376 case MEM_TYPE_FLOAT:
4377 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4378 XSETFLOAT (obj, p);
4379 break;
4380
4381 case MEM_TYPE_VECTORLIKE:
4382 case MEM_TYPE_VECTOR_BLOCK:
4383 if (live_vector_p (m, p))
4384 {
4385 Lisp_Object tem;
4386 XSETVECTOR (tem, p);
4387 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4388 obj = tem;
4389 }
4390 break;
4391
4392 default:
4393 emacs_abort ();
4394 }
4395
4396 if (!NILP (obj))
4397 mark_object (obj);
4398 }
4399 }
4400
4401
4402 /* Alignment of pointer values. Use alignof, as it sometimes returns
4403 a smaller alignment than GCC's __alignof__ and mark_memory might
4404 miss objects if __alignof__ were used. */
4405 #define GC_POINTER_ALIGNMENT alignof (void *)
4406
4407 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4408 not suffice, which is the typical case. A host where a Lisp_Object is
4409 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4410 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4411 suffice to widen it to to a Lisp_Object and check it that way. */
4412 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4413 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4414 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4415 nor mark_maybe_object can follow the pointers. This should not occur on
4416 any practical porting target. */
4417 # error "MSB type bits straddle pointer-word boundaries"
4418 # endif
4419 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4420 pointer words that hold pointers ORed with type bits. */
4421 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4422 #else
4423 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4424 words that hold unmodified pointers. */
4425 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4426 #endif
4427
4428 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4429 or END+OFFSET..START. */
4430
4431 static void
4432 mark_memory (void *start, void *end)
4433 #if defined (__clang__) && defined (__has_feature)
4434 #if __has_feature(address_sanitizer)
4435 /* Do not allow -faddress-sanitizer to check this function, since it
4436 crosses the function stack boundary, and thus would yield many
4437 false positives. */
4438 __attribute__((no_address_safety_analysis))
4439 #endif
4440 #endif
4441 {
4442 void **pp;
4443 int i;
4444
4445 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4446 nzombies = 0;
4447 #endif
4448
4449 /* Make START the pointer to the start of the memory region,
4450 if it isn't already. */
4451 if (end < start)
4452 {
4453 void *tem = start;
4454 start = end;
4455 end = tem;
4456 }
4457
4458 /* Mark Lisp data pointed to. This is necessary because, in some
4459 situations, the C compiler optimizes Lisp objects away, so that
4460 only a pointer to them remains. Example:
4461
4462 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4463 ()
4464 {
4465 Lisp_Object obj = build_string ("test");
4466 struct Lisp_String *s = XSTRING (obj);
4467 Fgarbage_collect ();
4468 fprintf (stderr, "test `%s'\n", s->data);
4469 return Qnil;
4470 }
4471
4472 Here, `obj' isn't really used, and the compiler optimizes it
4473 away. The only reference to the life string is through the
4474 pointer `s'. */
4475
4476 for (pp = start; (void *) pp < end; pp++)
4477 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4478 {
4479 void *p = *(void **) ((char *) pp + i);
4480 mark_maybe_pointer (p);
4481 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4482 mark_maybe_object (XIL ((intptr_t) p));
4483 }
4484 }
4485
4486 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4487
4488 static bool setjmp_tested_p;
4489 static int longjmps_done;
4490
4491 #define SETJMP_WILL_LIKELY_WORK "\
4492 \n\
4493 Emacs garbage collector has been changed to use conservative stack\n\
4494 marking. Emacs has determined that the method it uses to do the\n\
4495 marking will likely work on your system, but this isn't sure.\n\
4496 \n\
4497 If you are a system-programmer, or can get the help of a local wizard\n\
4498 who is, please take a look at the function mark_stack in alloc.c, and\n\
4499 verify that the methods used are appropriate for your system.\n\
4500 \n\
4501 Please mail the result to <emacs-devel@gnu.org>.\n\
4502 "
4503
4504 #define SETJMP_WILL_NOT_WORK "\
4505 \n\
4506 Emacs garbage collector has been changed to use conservative stack\n\
4507 marking. Emacs has determined that the default method it uses to do the\n\
4508 marking will not work on your system. We will need a system-dependent\n\
4509 solution for your system.\n\
4510 \n\
4511 Please take a look at the function mark_stack in alloc.c, and\n\
4512 try to find a way to make it work on your system.\n\
4513 \n\
4514 Note that you may get false negatives, depending on the compiler.\n\
4515 In particular, you need to use -O with GCC for this test.\n\
4516 \n\
4517 Please mail the result to <emacs-devel@gnu.org>.\n\
4518 "
4519
4520
4521 /* Perform a quick check if it looks like setjmp saves registers in a
4522 jmp_buf. Print a message to stderr saying so. When this test
4523 succeeds, this is _not_ a proof that setjmp is sufficient for
4524 conservative stack marking. Only the sources or a disassembly
4525 can prove that. */
4526
4527 static void
4528 test_setjmp (void)
4529 {
4530 char buf[10];
4531 register int x;
4532 sys_jmp_buf jbuf;
4533
4534 /* Arrange for X to be put in a register. */
4535 sprintf (buf, "1");
4536 x = strlen (buf);
4537 x = 2 * x - 1;
4538
4539 sys_setjmp (jbuf);
4540 if (longjmps_done == 1)
4541 {
4542 /* Came here after the longjmp at the end of the function.
4543
4544 If x == 1, the longjmp has restored the register to its
4545 value before the setjmp, and we can hope that setjmp
4546 saves all such registers in the jmp_buf, although that
4547 isn't sure.
4548
4549 For other values of X, either something really strange is
4550 taking place, or the setjmp just didn't save the register. */
4551
4552 if (x == 1)
4553 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4554 else
4555 {
4556 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4557 exit (1);
4558 }
4559 }
4560
4561 ++longjmps_done;
4562 x = 2;
4563 if (longjmps_done == 1)
4564 sys_longjmp (jbuf, 1);
4565 }
4566
4567 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4568
4569
4570 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4571
4572 /* Abort if anything GCPRO'd doesn't survive the GC. */
4573
4574 static void
4575 check_gcpros (void)
4576 {
4577 struct gcpro *p;
4578 ptrdiff_t i;
4579
4580 for (p = gcprolist; p; p = p->next)
4581 for (i = 0; i < p->nvars; ++i)
4582 if (!survives_gc_p (p->var[i]))
4583 /* FIXME: It's not necessarily a bug. It might just be that the
4584 GCPRO is unnecessary or should release the object sooner. */
4585 emacs_abort ();
4586 }
4587
4588 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4589
4590 static void
4591 dump_zombies (void)
4592 {
4593 int i;
4594
4595 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4596 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4597 {
4598 fprintf (stderr, " %d = ", i);
4599 debug_print (zombies[i]);
4600 }
4601 }
4602
4603 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4604
4605
4606 /* Mark live Lisp objects on the C stack.
4607
4608 There are several system-dependent problems to consider when
4609 porting this to new architectures:
4610
4611 Processor Registers
4612
4613 We have to mark Lisp objects in CPU registers that can hold local
4614 variables or are used to pass parameters.
4615
4616 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4617 something that either saves relevant registers on the stack, or
4618 calls mark_maybe_object passing it each register's contents.
4619
4620 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4621 implementation assumes that calling setjmp saves registers we need
4622 to see in a jmp_buf which itself lies on the stack. This doesn't
4623 have to be true! It must be verified for each system, possibly
4624 by taking a look at the source code of setjmp.
4625
4626 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4627 can use it as a machine independent method to store all registers
4628 to the stack. In this case the macros described in the previous
4629 two paragraphs are not used.
4630
4631 Stack Layout
4632
4633 Architectures differ in the way their processor stack is organized.
4634 For example, the stack might look like this
4635
4636 +----------------+
4637 | Lisp_Object | size = 4
4638 +----------------+
4639 | something else | size = 2
4640 +----------------+
4641 | Lisp_Object | size = 4
4642 +----------------+
4643 | ... |
4644
4645 In such a case, not every Lisp_Object will be aligned equally. To
4646 find all Lisp_Object on the stack it won't be sufficient to walk
4647 the stack in steps of 4 bytes. Instead, two passes will be
4648 necessary, one starting at the start of the stack, and a second
4649 pass starting at the start of the stack + 2. Likewise, if the
4650 minimal alignment of Lisp_Objects on the stack is 1, four passes
4651 would be necessary, each one starting with one byte more offset
4652 from the stack start. */
4653
4654 static void
4655 mark_stack (void)
4656 {
4657 void *end;
4658
4659 #ifdef HAVE___BUILTIN_UNWIND_INIT
4660 /* Force callee-saved registers and register windows onto the stack.
4661 This is the preferred method if available, obviating the need for
4662 machine dependent methods. */
4663 __builtin_unwind_init ();
4664 end = &end;
4665 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4666 #ifndef GC_SAVE_REGISTERS_ON_STACK
4667 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4668 union aligned_jmpbuf {
4669 Lisp_Object o;
4670 sys_jmp_buf j;
4671 } j;
4672 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4673 #endif
4674 /* This trick flushes the register windows so that all the state of
4675 the process is contained in the stack. */
4676 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4677 needed on ia64 too. See mach_dep.c, where it also says inline
4678 assembler doesn't work with relevant proprietary compilers. */
4679 #ifdef __sparc__
4680 #if defined (__sparc64__) && defined (__FreeBSD__)
4681 /* FreeBSD does not have a ta 3 handler. */
4682 asm ("flushw");
4683 #else
4684 asm ("ta 3");
4685 #endif
4686 #endif
4687
4688 /* Save registers that we need to see on the stack. We need to see
4689 registers used to hold register variables and registers used to
4690 pass parameters. */
4691 #ifdef GC_SAVE_REGISTERS_ON_STACK
4692 GC_SAVE_REGISTERS_ON_STACK (end);
4693 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4694
4695 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4696 setjmp will definitely work, test it
4697 and print a message with the result
4698 of the test. */
4699 if (!setjmp_tested_p)
4700 {
4701 setjmp_tested_p = 1;
4702 test_setjmp ();
4703 }
4704 #endif /* GC_SETJMP_WORKS */
4705
4706 sys_setjmp (j.j);
4707 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4708 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4709 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4710
4711 /* This assumes that the stack is a contiguous region in memory. If
4712 that's not the case, something has to be done here to iterate
4713 over the stack segments. */
4714 mark_memory (stack_base, end);
4715
4716 /* Allow for marking a secondary stack, like the register stack on the
4717 ia64. */
4718 #ifdef GC_MARK_SECONDARY_STACK
4719 GC_MARK_SECONDARY_STACK ();
4720 #endif
4721
4722 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4723 check_gcpros ();
4724 #endif
4725 }
4726
4727 #endif /* GC_MARK_STACK != 0 */
4728
4729
4730 /* Determine whether it is safe to access memory at address P. */
4731 static int
4732 valid_pointer_p (void *p)
4733 {
4734 #ifdef WINDOWSNT
4735 return w32_valid_pointer_p (p, 16);
4736 #else
4737 int fd[2];
4738
4739 /* Obviously, we cannot just access it (we would SEGV trying), so we
4740 trick the o/s to tell us whether p is a valid pointer.
4741 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4742 not validate p in that case. */
4743
4744 if (pipe (fd) == 0)
4745 {
4746 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4747 emacs_close (fd[1]);
4748 emacs_close (fd[0]);
4749 return valid;
4750 }
4751
4752 return -1;
4753 #endif
4754 }
4755
4756 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4757 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4758 cannot validate OBJ. This function can be quite slow, so its primary
4759 use is the manual debugging. The only exception is print_object, where
4760 we use it to check whether the memory referenced by the pointer of
4761 Lisp_Save_Value object contains valid objects. */
4762
4763 int
4764 valid_lisp_object_p (Lisp_Object obj)
4765 {
4766 void *p;
4767 #if GC_MARK_STACK
4768 struct mem_node *m;
4769 #endif
4770
4771 if (INTEGERP (obj))
4772 return 1;
4773
4774 p = (void *) XPNTR (obj);
4775 if (PURE_POINTER_P (p))
4776 return 1;
4777
4778 if (p == &buffer_defaults || p == &buffer_local_symbols)
4779 return 2;
4780
4781 #if !GC_MARK_STACK
4782 return valid_pointer_p (p);
4783 #else
4784
4785 m = mem_find (p);
4786
4787 if (m == MEM_NIL)
4788 {
4789 int valid = valid_pointer_p (p);
4790 if (valid <= 0)
4791 return valid;
4792
4793 if (SUBRP (obj))
4794 return 1;
4795
4796 return 0;
4797 }
4798
4799 switch (m->type)
4800 {
4801 case MEM_TYPE_NON_LISP:
4802 case MEM_TYPE_SPARE:
4803 return 0;
4804
4805 case MEM_TYPE_BUFFER:
4806 return live_buffer_p (m, p) ? 1 : 2;
4807
4808 case MEM_TYPE_CONS:
4809 return live_cons_p (m, p);
4810
4811 case MEM_TYPE_STRING:
4812 return live_string_p (m, p);
4813
4814 case MEM_TYPE_MISC:
4815 return live_misc_p (m, p);
4816
4817 case MEM_TYPE_SYMBOL:
4818 return live_symbol_p (m, p);
4819
4820 case MEM_TYPE_FLOAT:
4821 return live_float_p (m, p);
4822
4823 case MEM_TYPE_VECTORLIKE:
4824 case MEM_TYPE_VECTOR_BLOCK:
4825 return live_vector_p (m, p);
4826
4827 default:
4828 break;
4829 }
4830
4831 return 0;
4832 #endif
4833 }
4834
4835
4836
4837 \f
4838 /***********************************************************************
4839 Pure Storage Management
4840 ***********************************************************************/
4841
4842 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4843 pointer to it. TYPE is the Lisp type for which the memory is
4844 allocated. TYPE < 0 means it's not used for a Lisp object. */
4845
4846 static void *
4847 pure_alloc (size_t size, int type)
4848 {
4849 void *result;
4850 #if USE_LSB_TAG
4851 size_t alignment = GCALIGNMENT;
4852 #else
4853 size_t alignment = alignof (EMACS_INT);
4854
4855 /* Give Lisp_Floats an extra alignment. */
4856 if (type == Lisp_Float)
4857 alignment = alignof (struct Lisp_Float);
4858 #endif
4859
4860 again:
4861 if (type >= 0)
4862 {
4863 /* Allocate space for a Lisp object from the beginning of the free
4864 space with taking account of alignment. */
4865 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4866 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4867 }
4868 else
4869 {
4870 /* Allocate space for a non-Lisp object from the end of the free
4871 space. */
4872 pure_bytes_used_non_lisp += size;
4873 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4874 }
4875 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4876
4877 if (pure_bytes_used <= pure_size)
4878 return result;
4879
4880 /* Don't allocate a large amount here,
4881 because it might get mmap'd and then its address
4882 might not be usable. */
4883 purebeg = xmalloc (10000);
4884 pure_size = 10000;
4885 pure_bytes_used_before_overflow += pure_bytes_used - size;
4886 pure_bytes_used = 0;
4887 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4888 goto again;
4889 }
4890
4891
4892 /* Print a warning if PURESIZE is too small. */
4893
4894 void
4895 check_pure_size (void)
4896 {
4897 if (pure_bytes_used_before_overflow)
4898 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4899 " bytes needed)"),
4900 pure_bytes_used + pure_bytes_used_before_overflow);
4901 }
4902
4903
4904 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4905 the non-Lisp data pool of the pure storage, and return its start
4906 address. Return NULL if not found. */
4907
4908 static char *
4909 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4910 {
4911 int i;
4912 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4913 const unsigned char *p;
4914 char *non_lisp_beg;
4915
4916 if (pure_bytes_used_non_lisp <= nbytes)
4917 return NULL;
4918
4919 /* Set up the Boyer-Moore table. */
4920 skip = nbytes + 1;
4921 for (i = 0; i < 256; i++)
4922 bm_skip[i] = skip;
4923
4924 p = (const unsigned char *) data;
4925 while (--skip > 0)
4926 bm_skip[*p++] = skip;
4927
4928 last_char_skip = bm_skip['\0'];
4929
4930 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4931 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4932
4933 /* See the comments in the function `boyer_moore' (search.c) for the
4934 use of `infinity'. */
4935 infinity = pure_bytes_used_non_lisp + 1;
4936 bm_skip['\0'] = infinity;
4937
4938 p = (const unsigned char *) non_lisp_beg + nbytes;
4939 start = 0;
4940 do
4941 {
4942 /* Check the last character (== '\0'). */
4943 do
4944 {
4945 start += bm_skip[*(p + start)];
4946 }
4947 while (start <= start_max);
4948
4949 if (start < infinity)
4950 /* Couldn't find the last character. */
4951 return NULL;
4952
4953 /* No less than `infinity' means we could find the last
4954 character at `p[start - infinity]'. */
4955 start -= infinity;
4956
4957 /* Check the remaining characters. */
4958 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4959 /* Found. */
4960 return non_lisp_beg + start;
4961
4962 start += last_char_skip;
4963 }
4964 while (start <= start_max);
4965
4966 return NULL;
4967 }
4968
4969
4970 /* Return a string allocated in pure space. DATA is a buffer holding
4971 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4972 means make the result string multibyte.
4973
4974 Must get an error if pure storage is full, since if it cannot hold
4975 a large string it may be able to hold conses that point to that
4976 string; then the string is not protected from gc. */
4977
4978 Lisp_Object
4979 make_pure_string (const char *data,
4980 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4981 {
4982 Lisp_Object string;
4983 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4984 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4985 if (s->data == NULL)
4986 {
4987 s->data = pure_alloc (nbytes + 1, -1);
4988 memcpy (s->data, data, nbytes);
4989 s->data[nbytes] = '\0';
4990 }
4991 s->size = nchars;
4992 s->size_byte = multibyte ? nbytes : -1;
4993 s->intervals = NULL;
4994 XSETSTRING (string, s);
4995 return string;
4996 }
4997
4998 /* Return a string allocated in pure space. Do not
4999 allocate the string data, just point to DATA. */
5000
5001 Lisp_Object
5002 make_pure_c_string (const char *data, ptrdiff_t nchars)
5003 {
5004 Lisp_Object string;
5005 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5006 s->size = nchars;
5007 s->size_byte = -1;
5008 s->data = (unsigned char *) data;
5009 s->intervals = NULL;
5010 XSETSTRING (string, s);
5011 return string;
5012 }
5013
5014 /* Return a cons allocated from pure space. Give it pure copies
5015 of CAR as car and CDR as cdr. */
5016
5017 Lisp_Object
5018 pure_cons (Lisp_Object car, Lisp_Object cdr)
5019 {
5020 Lisp_Object new;
5021 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5022 XSETCONS (new, p);
5023 XSETCAR (new, Fpurecopy (car));
5024 XSETCDR (new, Fpurecopy (cdr));
5025 return new;
5026 }
5027
5028
5029 /* Value is a float object with value NUM allocated from pure space. */
5030
5031 static Lisp_Object
5032 make_pure_float (double num)
5033 {
5034 Lisp_Object new;
5035 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5036 XSETFLOAT (new, p);
5037 XFLOAT_INIT (new, num);
5038 return new;
5039 }
5040
5041
5042 /* Return a vector with room for LEN Lisp_Objects allocated from
5043 pure space. */
5044
5045 static Lisp_Object
5046 make_pure_vector (ptrdiff_t len)
5047 {
5048 Lisp_Object new;
5049 size_t size = header_size + len * word_size;
5050 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5051 XSETVECTOR (new, p);
5052 XVECTOR (new)->header.size = len;
5053 return new;
5054 }
5055
5056
5057 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5058 doc: /* Make a copy of object OBJ in pure storage.
5059 Recursively copies contents of vectors and cons cells.
5060 Does not copy symbols. Copies strings without text properties. */)
5061 (register Lisp_Object obj)
5062 {
5063 if (NILP (Vpurify_flag))
5064 return obj;
5065
5066 if (PURE_POINTER_P (XPNTR (obj)))
5067 return obj;
5068
5069 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5070 {
5071 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5072 if (!NILP (tmp))
5073 return tmp;
5074 }
5075
5076 if (CONSP (obj))
5077 obj = pure_cons (XCAR (obj), XCDR (obj));
5078 else if (FLOATP (obj))
5079 obj = make_pure_float (XFLOAT_DATA (obj));
5080 else if (STRINGP (obj))
5081 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5082 SBYTES (obj),
5083 STRING_MULTIBYTE (obj));
5084 else if (COMPILEDP (obj) || VECTORP (obj))
5085 {
5086 register struct Lisp_Vector *vec;
5087 register ptrdiff_t i;
5088 ptrdiff_t size;
5089
5090 size = ASIZE (obj);
5091 if (size & PSEUDOVECTOR_FLAG)
5092 size &= PSEUDOVECTOR_SIZE_MASK;
5093 vec = XVECTOR (make_pure_vector (size));
5094 for (i = 0; i < size; i++)
5095 vec->contents[i] = Fpurecopy (AREF (obj, i));
5096 if (COMPILEDP (obj))
5097 {
5098 XSETPVECTYPE (vec, PVEC_COMPILED);
5099 XSETCOMPILED (obj, vec);
5100 }
5101 else
5102 XSETVECTOR (obj, vec);
5103 }
5104 else if (MARKERP (obj))
5105 error ("Attempt to copy a marker to pure storage");
5106 else
5107 /* Not purified, don't hash-cons. */
5108 return obj;
5109
5110 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5111 Fputhash (obj, obj, Vpurify_flag);
5112
5113 return obj;
5114 }
5115
5116
5117 \f
5118 /***********************************************************************
5119 Protection from GC
5120 ***********************************************************************/
5121
5122 /* Put an entry in staticvec, pointing at the variable with address
5123 VARADDRESS. */
5124
5125 void
5126 staticpro (Lisp_Object *varaddress)
5127 {
5128 staticvec[staticidx++] = varaddress;
5129 if (staticidx >= NSTATICS)
5130 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5131 }
5132
5133 \f
5134 /***********************************************************************
5135 Protection from GC
5136 ***********************************************************************/
5137
5138 /* Temporarily prevent garbage collection. */
5139
5140 ptrdiff_t
5141 inhibit_garbage_collection (void)
5142 {
5143 ptrdiff_t count = SPECPDL_INDEX ();
5144
5145 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5146 return count;
5147 }
5148
5149 /* Used to avoid possible overflows when
5150 converting from C to Lisp integers. */
5151
5152 static Lisp_Object
5153 bounded_number (EMACS_INT number)
5154 {
5155 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5156 }
5157
5158 /* Calculate total bytes of live objects. */
5159
5160 static size_t
5161 total_bytes_of_live_objects (void)
5162 {
5163 size_t tot = 0;
5164 tot += total_conses * sizeof (struct Lisp_Cons);
5165 tot += total_symbols * sizeof (struct Lisp_Symbol);
5166 tot += total_markers * sizeof (union Lisp_Misc);
5167 tot += total_string_bytes;
5168 tot += total_vector_slots * word_size;
5169 tot += total_floats * sizeof (struct Lisp_Float);
5170 tot += total_intervals * sizeof (struct interval);
5171 tot += total_strings * sizeof (struct Lisp_String);
5172 return tot;
5173 }
5174
5175 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5176 doc: /* Reclaim storage for Lisp objects no longer needed.
5177 Garbage collection happens automatically if you cons more than
5178 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5179 `garbage-collect' normally returns a list with info on amount of space in use,
5180 where each entry has the form (NAME SIZE USED FREE), where:
5181 - NAME is a symbol describing the kind of objects this entry represents,
5182 - SIZE is the number of bytes used by each one,
5183 - USED is the number of those objects that were found live in the heap,
5184 - FREE is the number of those objects that are not live but that Emacs
5185 keeps around for future allocations (maybe because it does not know how
5186 to return them to the OS).
5187 However, if there was overflow in pure space, `garbage-collect'
5188 returns nil, because real GC can't be done.
5189 See Info node `(elisp)Garbage Collection'. */)
5190 (void)
5191 {
5192 struct buffer *nextb;
5193 char stack_top_variable;
5194 ptrdiff_t i;
5195 bool message_p;
5196 ptrdiff_t count = SPECPDL_INDEX ();
5197 EMACS_TIME start;
5198 Lisp_Object retval = Qnil;
5199 size_t tot_before = 0;
5200
5201 if (abort_on_gc)
5202 emacs_abort ();
5203
5204 /* Can't GC if pure storage overflowed because we can't determine
5205 if something is a pure object or not. */
5206 if (pure_bytes_used_before_overflow)
5207 return Qnil;
5208
5209 /* Record this function, so it appears on the profiler's backtraces. */
5210 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5211
5212 check_cons_list ();
5213
5214 /* Don't keep undo information around forever.
5215 Do this early on, so it is no problem if the user quits. */
5216 FOR_EACH_BUFFER (nextb)
5217 compact_buffer (nextb);
5218
5219 if (profiler_memory_running)
5220 tot_before = total_bytes_of_live_objects ();
5221
5222 start = current_emacs_time ();
5223
5224 /* In case user calls debug_print during GC,
5225 don't let that cause a recursive GC. */
5226 consing_since_gc = 0;
5227
5228 /* Save what's currently displayed in the echo area. */
5229 message_p = push_message ();
5230 record_unwind_protect (pop_message_unwind, Qnil);
5231
5232 /* Save a copy of the contents of the stack, for debugging. */
5233 #if MAX_SAVE_STACK > 0
5234 if (NILP (Vpurify_flag))
5235 {
5236 char *stack;
5237 ptrdiff_t stack_size;
5238 if (&stack_top_variable < stack_bottom)
5239 {
5240 stack = &stack_top_variable;
5241 stack_size = stack_bottom - &stack_top_variable;
5242 }
5243 else
5244 {
5245 stack = stack_bottom;
5246 stack_size = &stack_top_variable - stack_bottom;
5247 }
5248 if (stack_size <= MAX_SAVE_STACK)
5249 {
5250 if (stack_copy_size < stack_size)
5251 {
5252 stack_copy = xrealloc (stack_copy, stack_size);
5253 stack_copy_size = stack_size;
5254 }
5255 memcpy (stack_copy, stack, stack_size);
5256 }
5257 }
5258 #endif /* MAX_SAVE_STACK > 0 */
5259
5260 if (garbage_collection_messages)
5261 message1_nolog ("Garbage collecting...");
5262
5263 block_input ();
5264
5265 shrink_regexp_cache ();
5266
5267 gc_in_progress = 1;
5268
5269 /* Mark all the special slots that serve as the roots of accessibility. */
5270
5271 mark_buffer (&buffer_defaults);
5272 mark_buffer (&buffer_local_symbols);
5273
5274 for (i = 0; i < staticidx; i++)
5275 mark_object (*staticvec[i]);
5276
5277 mark_specpdl ();
5278 mark_terminals ();
5279 mark_kboards ();
5280
5281 #ifdef USE_GTK
5282 xg_mark_data ();
5283 #endif
5284
5285 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5286 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5287 mark_stack ();
5288 #else
5289 {
5290 register struct gcpro *tail;
5291 for (tail = gcprolist; tail; tail = tail->next)
5292 for (i = 0; i < tail->nvars; i++)
5293 mark_object (tail->var[i]);
5294 }
5295 mark_byte_stack ();
5296 {
5297 struct catchtag *catch;
5298 struct handler *handler;
5299
5300 for (catch = catchlist; catch; catch = catch->next)
5301 {
5302 mark_object (catch->tag);
5303 mark_object (catch->val);
5304 }
5305 for (handler = handlerlist; handler; handler = handler->next)
5306 {
5307 mark_object (handler->handler);
5308 mark_object (handler->var);
5309 }
5310 }
5311 #endif
5312
5313 #ifdef HAVE_WINDOW_SYSTEM
5314 mark_fringe_data ();
5315 #endif
5316
5317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5318 mark_stack ();
5319 #endif
5320
5321 /* Everything is now marked, except for the things that require special
5322 finalization, i.e. the undo_list.
5323 Look thru every buffer's undo list
5324 for elements that update markers that were not marked,
5325 and delete them. */
5326 FOR_EACH_BUFFER (nextb)
5327 {
5328 /* If a buffer's undo list is Qt, that means that undo is
5329 turned off in that buffer. Calling truncate_undo_list on
5330 Qt tends to return NULL, which effectively turns undo back on.
5331 So don't call truncate_undo_list if undo_list is Qt. */
5332 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5333 {
5334 Lisp_Object tail, prev;
5335 tail = nextb->INTERNAL_FIELD (undo_list);
5336 prev = Qnil;
5337 while (CONSP (tail))
5338 {
5339 if (CONSP (XCAR (tail))
5340 && MARKERP (XCAR (XCAR (tail)))
5341 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5342 {
5343 if (NILP (prev))
5344 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5345 else
5346 {
5347 tail = XCDR (tail);
5348 XSETCDR (prev, tail);
5349 }
5350 }
5351 else
5352 {
5353 prev = tail;
5354 tail = XCDR (tail);
5355 }
5356 }
5357 }
5358 /* Now that we have stripped the elements that need not be in the
5359 undo_list any more, we can finally mark the list. */
5360 mark_object (nextb->INTERNAL_FIELD (undo_list));
5361 }
5362
5363 gc_sweep ();
5364
5365 /* Clear the mark bits that we set in certain root slots. */
5366
5367 unmark_byte_stack ();
5368 VECTOR_UNMARK (&buffer_defaults);
5369 VECTOR_UNMARK (&buffer_local_symbols);
5370
5371 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5372 dump_zombies ();
5373 #endif
5374
5375 check_cons_list ();
5376
5377 gc_in_progress = 0;
5378
5379 unblock_input ();
5380
5381 consing_since_gc = 0;
5382 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5383 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5384
5385 gc_relative_threshold = 0;
5386 if (FLOATP (Vgc_cons_percentage))
5387 { /* Set gc_cons_combined_threshold. */
5388 double tot = total_bytes_of_live_objects ();
5389
5390 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5391 if (0 < tot)
5392 {
5393 if (tot < TYPE_MAXIMUM (EMACS_INT))
5394 gc_relative_threshold = tot;
5395 else
5396 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5397 }
5398 }
5399
5400 if (garbage_collection_messages)
5401 {
5402 if (message_p || minibuf_level > 0)
5403 restore_message ();
5404 else
5405 message1_nolog ("Garbage collecting...done");
5406 }
5407
5408 unbind_to (count, Qnil);
5409 {
5410 Lisp_Object total[11];
5411 int total_size = 10;
5412
5413 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5414 bounded_number (total_conses),
5415 bounded_number (total_free_conses));
5416
5417 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5418 bounded_number (total_symbols),
5419 bounded_number (total_free_symbols));
5420
5421 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5422 bounded_number (total_markers),
5423 bounded_number (total_free_markers));
5424
5425 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5426 bounded_number (total_strings),
5427 bounded_number (total_free_strings));
5428
5429 total[4] = list3 (Qstring_bytes, make_number (1),
5430 bounded_number (total_string_bytes));
5431
5432 total[5] = list3 (Qvectors,
5433 make_number (header_size + sizeof (Lisp_Object)),
5434 bounded_number (total_vectors));
5435
5436 total[6] = list4 (Qvector_slots, make_number (word_size),
5437 bounded_number (total_vector_slots),
5438 bounded_number (total_free_vector_slots));
5439
5440 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5441 bounded_number (total_floats),
5442 bounded_number (total_free_floats));
5443
5444 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5445 bounded_number (total_intervals),
5446 bounded_number (total_free_intervals));
5447
5448 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5449 bounded_number (total_buffers));
5450
5451 #ifdef DOUG_LEA_MALLOC
5452 total_size++;
5453 total[10] = list4 (Qheap, make_number (1024),
5454 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5455 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5456 #endif
5457 retval = Flist (total_size, total);
5458 }
5459
5460 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5461 {
5462 /* Compute average percentage of zombies. */
5463 double nlive
5464 = (total_conses + total_symbols + total_markers + total_strings
5465 + total_vectors + total_floats + total_intervals + total_buffers);
5466
5467 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5468 max_live = max (nlive, max_live);
5469 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5470 max_zombies = max (nzombies, max_zombies);
5471 ++ngcs;
5472 }
5473 #endif
5474
5475 if (!NILP (Vpost_gc_hook))
5476 {
5477 ptrdiff_t gc_count = inhibit_garbage_collection ();
5478 safe_run_hooks (Qpost_gc_hook);
5479 unbind_to (gc_count, Qnil);
5480 }
5481
5482 /* Accumulate statistics. */
5483 if (FLOATP (Vgc_elapsed))
5484 {
5485 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5486 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5487 + EMACS_TIME_TO_DOUBLE (since_start));
5488 }
5489
5490 gcs_done++;
5491
5492 /* Collect profiling data. */
5493 if (profiler_memory_running)
5494 {
5495 size_t swept = 0;
5496 size_t tot_after = total_bytes_of_live_objects ();
5497 if (tot_before > tot_after)
5498 swept = tot_before - tot_after;
5499 malloc_probe (swept);
5500 }
5501
5502 return retval;
5503 }
5504
5505
5506 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5507 only interesting objects referenced from glyphs are strings. */
5508
5509 static void
5510 mark_glyph_matrix (struct glyph_matrix *matrix)
5511 {
5512 struct glyph_row *row = matrix->rows;
5513 struct glyph_row *end = row + matrix->nrows;
5514
5515 for (; row < end; ++row)
5516 if (row->enabled_p)
5517 {
5518 int area;
5519 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5520 {
5521 struct glyph *glyph = row->glyphs[area];
5522 struct glyph *end_glyph = glyph + row->used[area];
5523
5524 for (; glyph < end_glyph; ++glyph)
5525 if (STRINGP (glyph->object)
5526 && !STRING_MARKED_P (XSTRING (glyph->object)))
5527 mark_object (glyph->object);
5528 }
5529 }
5530 }
5531
5532
5533 /* Mark Lisp faces in the face cache C. */
5534
5535 static void
5536 mark_face_cache (struct face_cache *c)
5537 {
5538 if (c)
5539 {
5540 int i, j;
5541 for (i = 0; i < c->used; ++i)
5542 {
5543 struct face *face = FACE_FROM_ID (c->f, i);
5544
5545 if (face)
5546 {
5547 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5548 mark_object (face->lface[j]);
5549 }
5550 }
5551 }
5552 }
5553
5554
5555 \f
5556 /* Mark reference to a Lisp_Object.
5557 If the object referred to has not been seen yet, recursively mark
5558 all the references contained in it. */
5559
5560 #define LAST_MARKED_SIZE 500
5561 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5562 static int last_marked_index;
5563
5564 /* For debugging--call abort when we cdr down this many
5565 links of a list, in mark_object. In debugging,
5566 the call to abort will hit a breakpoint.
5567 Normally this is zero and the check never goes off. */
5568 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5569
5570 static void
5571 mark_vectorlike (struct Lisp_Vector *ptr)
5572 {
5573 ptrdiff_t size = ptr->header.size;
5574 ptrdiff_t i;
5575
5576 eassert (!VECTOR_MARKED_P (ptr));
5577 VECTOR_MARK (ptr); /* Else mark it. */
5578 if (size & PSEUDOVECTOR_FLAG)
5579 size &= PSEUDOVECTOR_SIZE_MASK;
5580
5581 /* Note that this size is not the memory-footprint size, but only
5582 the number of Lisp_Object fields that we should trace.
5583 The distinction is used e.g. by Lisp_Process which places extra
5584 non-Lisp_Object fields at the end of the structure... */
5585 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5586 mark_object (ptr->contents[i]);
5587 }
5588
5589 /* Like mark_vectorlike but optimized for char-tables (and
5590 sub-char-tables) assuming that the contents are mostly integers or
5591 symbols. */
5592
5593 static void
5594 mark_char_table (struct Lisp_Vector *ptr)
5595 {
5596 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5597 int i;
5598
5599 eassert (!VECTOR_MARKED_P (ptr));
5600 VECTOR_MARK (ptr);
5601 for (i = 0; i < size; i++)
5602 {
5603 Lisp_Object val = ptr->contents[i];
5604
5605 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5606 continue;
5607 if (SUB_CHAR_TABLE_P (val))
5608 {
5609 if (! VECTOR_MARKED_P (XVECTOR (val)))
5610 mark_char_table (XVECTOR (val));
5611 }
5612 else
5613 mark_object (val);
5614 }
5615 }
5616
5617 /* Mark the chain of overlays starting at PTR. */
5618
5619 static void
5620 mark_overlay (struct Lisp_Overlay *ptr)
5621 {
5622 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5623 {
5624 ptr->gcmarkbit = 1;
5625 mark_object (ptr->start);
5626 mark_object (ptr->end);
5627 mark_object (ptr->plist);
5628 }
5629 }
5630
5631 /* Mark Lisp_Objects and special pointers in BUFFER. */
5632
5633 static void
5634 mark_buffer (struct buffer *buffer)
5635 {
5636 /* This is handled much like other pseudovectors... */
5637 mark_vectorlike ((struct Lisp_Vector *) buffer);
5638
5639 /* ...but there are some buffer-specific things. */
5640
5641 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5642
5643 /* For now, we just don't mark the undo_list. It's done later in
5644 a special way just before the sweep phase, and after stripping
5645 some of its elements that are not needed any more. */
5646
5647 mark_overlay (buffer->overlays_before);
5648 mark_overlay (buffer->overlays_after);
5649
5650 /* If this is an indirect buffer, mark its base buffer. */
5651 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5652 mark_buffer (buffer->base_buffer);
5653 }
5654
5655 /* Remove killed buffers or items whose car is a killed buffer from
5656 LIST, and mark other items. Return changed LIST, which is marked. */
5657
5658 static Lisp_Object
5659 mark_discard_killed_buffers (Lisp_Object list)
5660 {
5661 Lisp_Object tail, *prev = &list;
5662
5663 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5664 tail = XCDR (tail))
5665 {
5666 Lisp_Object tem = XCAR (tail);
5667 if (CONSP (tem))
5668 tem = XCAR (tem);
5669 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5670 *prev = XCDR (tail);
5671 else
5672 {
5673 CONS_MARK (XCONS (tail));
5674 mark_object (XCAR (tail));
5675 prev = xcdr_addr (tail);
5676 }
5677 }
5678 mark_object (tail);
5679 return list;
5680 }
5681
5682 /* Determine type of generic Lisp_Object and mark it accordingly. */
5683
5684 void
5685 mark_object (Lisp_Object arg)
5686 {
5687 register Lisp_Object obj = arg;
5688 #ifdef GC_CHECK_MARKED_OBJECTS
5689 void *po;
5690 struct mem_node *m;
5691 #endif
5692 ptrdiff_t cdr_count = 0;
5693
5694 loop:
5695
5696 if (PURE_POINTER_P (XPNTR (obj)))
5697 return;
5698
5699 last_marked[last_marked_index++] = obj;
5700 if (last_marked_index == LAST_MARKED_SIZE)
5701 last_marked_index = 0;
5702
5703 /* Perform some sanity checks on the objects marked here. Abort if
5704 we encounter an object we know is bogus. This increases GC time
5705 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5706 #ifdef GC_CHECK_MARKED_OBJECTS
5707
5708 po = (void *) XPNTR (obj);
5709
5710 /* Check that the object pointed to by PO is known to be a Lisp
5711 structure allocated from the heap. */
5712 #define CHECK_ALLOCATED() \
5713 do { \
5714 m = mem_find (po); \
5715 if (m == MEM_NIL) \
5716 emacs_abort (); \
5717 } while (0)
5718
5719 /* Check that the object pointed to by PO is live, using predicate
5720 function LIVEP. */
5721 #define CHECK_LIVE(LIVEP) \
5722 do { \
5723 if (!LIVEP (m, po)) \
5724 emacs_abort (); \
5725 } while (0)
5726
5727 /* Check both of the above conditions. */
5728 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5729 do { \
5730 CHECK_ALLOCATED (); \
5731 CHECK_LIVE (LIVEP); \
5732 } while (0) \
5733
5734 #else /* not GC_CHECK_MARKED_OBJECTS */
5735
5736 #define CHECK_LIVE(LIVEP) (void) 0
5737 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5738
5739 #endif /* not GC_CHECK_MARKED_OBJECTS */
5740
5741 switch (XTYPE (obj))
5742 {
5743 case Lisp_String:
5744 {
5745 register struct Lisp_String *ptr = XSTRING (obj);
5746 if (STRING_MARKED_P (ptr))
5747 break;
5748 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5749 MARK_STRING (ptr);
5750 MARK_INTERVAL_TREE (ptr->intervals);
5751 #ifdef GC_CHECK_STRING_BYTES
5752 /* Check that the string size recorded in the string is the
5753 same as the one recorded in the sdata structure. */
5754 string_bytes (ptr);
5755 #endif /* GC_CHECK_STRING_BYTES */
5756 }
5757 break;
5758
5759 case Lisp_Vectorlike:
5760 {
5761 register struct Lisp_Vector *ptr = XVECTOR (obj);
5762 register ptrdiff_t pvectype;
5763
5764 if (VECTOR_MARKED_P (ptr))
5765 break;
5766
5767 #ifdef GC_CHECK_MARKED_OBJECTS
5768 m = mem_find (po);
5769 if (m == MEM_NIL && !SUBRP (obj))
5770 emacs_abort ();
5771 #endif /* GC_CHECK_MARKED_OBJECTS */
5772
5773 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5774 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5775 >> PSEUDOVECTOR_AREA_BITS);
5776 else
5777 pvectype = PVEC_NORMAL_VECTOR;
5778
5779 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5780 CHECK_LIVE (live_vector_p);
5781
5782 switch (pvectype)
5783 {
5784 case PVEC_BUFFER:
5785 #ifdef GC_CHECK_MARKED_OBJECTS
5786 {
5787 struct buffer *b;
5788 FOR_EACH_BUFFER (b)
5789 if (b == po)
5790 break;
5791 if (b == NULL)
5792 emacs_abort ();
5793 }
5794 #endif /* GC_CHECK_MARKED_OBJECTS */
5795 mark_buffer ((struct buffer *) ptr);
5796 break;
5797
5798 case PVEC_COMPILED:
5799 { /* We could treat this just like a vector, but it is better
5800 to save the COMPILED_CONSTANTS element for last and avoid
5801 recursion there. */
5802 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5803 int i;
5804
5805 VECTOR_MARK (ptr);
5806 for (i = 0; i < size; i++)
5807 if (i != COMPILED_CONSTANTS)
5808 mark_object (ptr->contents[i]);
5809 if (size > COMPILED_CONSTANTS)
5810 {
5811 obj = ptr->contents[COMPILED_CONSTANTS];
5812 goto loop;
5813 }
5814 }
5815 break;
5816
5817 case PVEC_FRAME:
5818 mark_vectorlike (ptr);
5819 mark_face_cache (((struct frame *) ptr)->face_cache);
5820 break;
5821
5822 case PVEC_WINDOW:
5823 {
5824 struct window *w = (struct window *) ptr;
5825
5826 mark_vectorlike (ptr);
5827
5828 /* Mark glyph matrices, if any. Marking window
5829 matrices is sufficient because frame matrices
5830 use the same glyph memory. */
5831 if (w->current_matrix)
5832 {
5833 mark_glyph_matrix (w->current_matrix);
5834 mark_glyph_matrix (w->desired_matrix);
5835 }
5836
5837 /* Filter out killed buffers from both buffer lists
5838 in attempt to help GC to reclaim killed buffers faster.
5839 We can do it elsewhere for live windows, but this is the
5840 best place to do it for dead windows. */
5841 wset_prev_buffers
5842 (w, mark_discard_killed_buffers (w->prev_buffers));
5843 wset_next_buffers
5844 (w, mark_discard_killed_buffers (w->next_buffers));
5845 }
5846 break;
5847
5848 case PVEC_HASH_TABLE:
5849 {
5850 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5851
5852 mark_vectorlike (ptr);
5853 mark_object (h->test.name);
5854 mark_object (h->test.user_hash_function);
5855 mark_object (h->test.user_cmp_function);
5856 /* If hash table is not weak, mark all keys and values.
5857 For weak tables, mark only the vector. */
5858 if (NILP (h->weak))
5859 mark_object (h->key_and_value);
5860 else
5861 VECTOR_MARK (XVECTOR (h->key_and_value));
5862 }
5863 break;
5864
5865 case PVEC_CHAR_TABLE:
5866 mark_char_table (ptr);
5867 break;
5868
5869 case PVEC_BOOL_VECTOR:
5870 /* No Lisp_Objects to mark in a bool vector. */
5871 VECTOR_MARK (ptr);
5872 break;
5873
5874 case PVEC_SUBR:
5875 break;
5876
5877 case PVEC_FREE:
5878 emacs_abort ();
5879
5880 default:
5881 mark_vectorlike (ptr);
5882 }
5883 }
5884 break;
5885
5886 case Lisp_Symbol:
5887 {
5888 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5889 struct Lisp_Symbol *ptrx;
5890
5891 if (ptr->gcmarkbit)
5892 break;
5893 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5894 ptr->gcmarkbit = 1;
5895 mark_object (ptr->function);
5896 mark_object (ptr->plist);
5897 switch (ptr->redirect)
5898 {
5899 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5900 case SYMBOL_VARALIAS:
5901 {
5902 Lisp_Object tem;
5903 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5904 mark_object (tem);
5905 break;
5906 }
5907 case SYMBOL_LOCALIZED:
5908 {
5909 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5910 Lisp_Object where = blv->where;
5911 /* If the value is set up for a killed buffer or deleted
5912 frame, restore it's global binding. If the value is
5913 forwarded to a C variable, either it's not a Lisp_Object
5914 var, or it's staticpro'd already. */
5915 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5916 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5917 swap_in_global_binding (ptr);
5918 mark_object (blv->where);
5919 mark_object (blv->valcell);
5920 mark_object (blv->defcell);
5921 break;
5922 }
5923 case SYMBOL_FORWARDED:
5924 /* If the value is forwarded to a buffer or keyboard field,
5925 these are marked when we see the corresponding object.
5926 And if it's forwarded to a C variable, either it's not
5927 a Lisp_Object var, or it's staticpro'd already. */
5928 break;
5929 default: emacs_abort ();
5930 }
5931 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5932 MARK_STRING (XSTRING (ptr->name));
5933 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5934
5935 ptr = ptr->next;
5936 if (ptr)
5937 {
5938 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5939 XSETSYMBOL (obj, ptrx);
5940 goto loop;
5941 }
5942 }
5943 break;
5944
5945 case Lisp_Misc:
5946 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5947
5948 if (XMISCANY (obj)->gcmarkbit)
5949 break;
5950
5951 switch (XMISCTYPE (obj))
5952 {
5953 case Lisp_Misc_Marker:
5954 /* DO NOT mark thru the marker's chain.
5955 The buffer's markers chain does not preserve markers from gc;
5956 instead, markers are removed from the chain when freed by gc. */
5957 XMISCANY (obj)->gcmarkbit = 1;
5958 break;
5959
5960 case Lisp_Misc_Save_Value:
5961 XMISCANY (obj)->gcmarkbit = 1;
5962 {
5963 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5964 /* If `save_type' is zero, `data[0].pointer' is the address
5965 of a memory area containing `data[1].integer' potential
5966 Lisp_Objects. */
5967 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5968 {
5969 Lisp_Object *p = ptr->data[0].pointer;
5970 ptrdiff_t nelt;
5971 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5972 mark_maybe_object (*p);
5973 }
5974 else
5975 {
5976 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5977 int i;
5978 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5979 if (save_type (ptr, i) == SAVE_OBJECT)
5980 mark_object (ptr->data[i].object);
5981 }
5982 }
5983 break;
5984
5985 case Lisp_Misc_Overlay:
5986 mark_overlay (XOVERLAY (obj));
5987 break;
5988
5989 default:
5990 emacs_abort ();
5991 }
5992 break;
5993
5994 case Lisp_Cons:
5995 {
5996 register struct Lisp_Cons *ptr = XCONS (obj);
5997 if (CONS_MARKED_P (ptr))
5998 break;
5999 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6000 CONS_MARK (ptr);
6001 /* If the cdr is nil, avoid recursion for the car. */
6002 if (EQ (ptr->u.cdr, Qnil))
6003 {
6004 obj = ptr->car;
6005 cdr_count = 0;
6006 goto loop;
6007 }
6008 mark_object (ptr->car);
6009 obj = ptr->u.cdr;
6010 cdr_count++;
6011 if (cdr_count == mark_object_loop_halt)
6012 emacs_abort ();
6013 goto loop;
6014 }
6015
6016 case Lisp_Float:
6017 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6018 FLOAT_MARK (XFLOAT (obj));
6019 break;
6020
6021 case_Lisp_Int:
6022 break;
6023
6024 default:
6025 emacs_abort ();
6026 }
6027
6028 #undef CHECK_LIVE
6029 #undef CHECK_ALLOCATED
6030 #undef CHECK_ALLOCATED_AND_LIVE
6031 }
6032 /* Mark the Lisp pointers in the terminal objects.
6033 Called by Fgarbage_collect. */
6034
6035 static void
6036 mark_terminals (void)
6037 {
6038 struct terminal *t;
6039 for (t = terminal_list; t; t = t->next_terminal)
6040 {
6041 eassert (t->name != NULL);
6042 #ifdef HAVE_WINDOW_SYSTEM
6043 /* If a terminal object is reachable from a stacpro'ed object,
6044 it might have been marked already. Make sure the image cache
6045 gets marked. */
6046 mark_image_cache (t->image_cache);
6047 #endif /* HAVE_WINDOW_SYSTEM */
6048 if (!VECTOR_MARKED_P (t))
6049 mark_vectorlike ((struct Lisp_Vector *)t);
6050 }
6051 }
6052
6053
6054
6055 /* Value is non-zero if OBJ will survive the current GC because it's
6056 either marked or does not need to be marked to survive. */
6057
6058 bool
6059 survives_gc_p (Lisp_Object obj)
6060 {
6061 bool survives_p;
6062
6063 switch (XTYPE (obj))
6064 {
6065 case_Lisp_Int:
6066 survives_p = 1;
6067 break;
6068
6069 case Lisp_Symbol:
6070 survives_p = XSYMBOL (obj)->gcmarkbit;
6071 break;
6072
6073 case Lisp_Misc:
6074 survives_p = XMISCANY (obj)->gcmarkbit;
6075 break;
6076
6077 case Lisp_String:
6078 survives_p = STRING_MARKED_P (XSTRING (obj));
6079 break;
6080
6081 case Lisp_Vectorlike:
6082 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6083 break;
6084
6085 case Lisp_Cons:
6086 survives_p = CONS_MARKED_P (XCONS (obj));
6087 break;
6088
6089 case Lisp_Float:
6090 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6091 break;
6092
6093 default:
6094 emacs_abort ();
6095 }
6096
6097 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6098 }
6099
6100
6101 \f
6102 /* Sweep: find all structures not marked, and free them. */
6103
6104 static void
6105 gc_sweep (void)
6106 {
6107 /* Remove or mark entries in weak hash tables.
6108 This must be done before any object is unmarked. */
6109 sweep_weak_hash_tables ();
6110
6111 sweep_strings ();
6112 check_string_bytes (!noninteractive);
6113
6114 /* Put all unmarked conses on free list */
6115 {
6116 register struct cons_block *cblk;
6117 struct cons_block **cprev = &cons_block;
6118 register int lim = cons_block_index;
6119 EMACS_INT num_free = 0, num_used = 0;
6120
6121 cons_free_list = 0;
6122
6123 for (cblk = cons_block; cblk; cblk = *cprev)
6124 {
6125 register int i = 0;
6126 int this_free = 0;
6127 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6128
6129 /* Scan the mark bits an int at a time. */
6130 for (i = 0; i < ilim; i++)
6131 {
6132 if (cblk->gcmarkbits[i] == -1)
6133 {
6134 /* Fast path - all cons cells for this int are marked. */
6135 cblk->gcmarkbits[i] = 0;
6136 num_used += BITS_PER_INT;
6137 }
6138 else
6139 {
6140 /* Some cons cells for this int are not marked.
6141 Find which ones, and free them. */
6142 int start, pos, stop;
6143
6144 start = i * BITS_PER_INT;
6145 stop = lim - start;
6146 if (stop > BITS_PER_INT)
6147 stop = BITS_PER_INT;
6148 stop += start;
6149
6150 for (pos = start; pos < stop; pos++)
6151 {
6152 if (!CONS_MARKED_P (&cblk->conses[pos]))
6153 {
6154 this_free++;
6155 cblk->conses[pos].u.chain = cons_free_list;
6156 cons_free_list = &cblk->conses[pos];
6157 #if GC_MARK_STACK
6158 cons_free_list->car = Vdead;
6159 #endif
6160 }
6161 else
6162 {
6163 num_used++;
6164 CONS_UNMARK (&cblk->conses[pos]);
6165 }
6166 }
6167 }
6168 }
6169
6170 lim = CONS_BLOCK_SIZE;
6171 /* If this block contains only free conses and we have already
6172 seen more than two blocks worth of free conses then deallocate
6173 this block. */
6174 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6175 {
6176 *cprev = cblk->next;
6177 /* Unhook from the free list. */
6178 cons_free_list = cblk->conses[0].u.chain;
6179 lisp_align_free (cblk);
6180 }
6181 else
6182 {
6183 num_free += this_free;
6184 cprev = &cblk->next;
6185 }
6186 }
6187 total_conses = num_used;
6188 total_free_conses = num_free;
6189 }
6190
6191 /* Put all unmarked floats on free list */
6192 {
6193 register struct float_block *fblk;
6194 struct float_block **fprev = &float_block;
6195 register int lim = float_block_index;
6196 EMACS_INT num_free = 0, num_used = 0;
6197
6198 float_free_list = 0;
6199
6200 for (fblk = float_block; fblk; fblk = *fprev)
6201 {
6202 register int i;
6203 int this_free = 0;
6204 for (i = 0; i < lim; i++)
6205 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6206 {
6207 this_free++;
6208 fblk->floats[i].u.chain = float_free_list;
6209 float_free_list = &fblk->floats[i];
6210 }
6211 else
6212 {
6213 num_used++;
6214 FLOAT_UNMARK (&fblk->floats[i]);
6215 }
6216 lim = FLOAT_BLOCK_SIZE;
6217 /* If this block contains only free floats and we have already
6218 seen more than two blocks worth of free floats then deallocate
6219 this block. */
6220 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6221 {
6222 *fprev = fblk->next;
6223 /* Unhook from the free list. */
6224 float_free_list = fblk->floats[0].u.chain;
6225 lisp_align_free (fblk);
6226 }
6227 else
6228 {
6229 num_free += this_free;
6230 fprev = &fblk->next;
6231 }
6232 }
6233 total_floats = num_used;
6234 total_free_floats = num_free;
6235 }
6236
6237 /* Put all unmarked intervals on free list */
6238 {
6239 register struct interval_block *iblk;
6240 struct interval_block **iprev = &interval_block;
6241 register int lim = interval_block_index;
6242 EMACS_INT num_free = 0, num_used = 0;
6243
6244 interval_free_list = 0;
6245
6246 for (iblk = interval_block; iblk; iblk = *iprev)
6247 {
6248 register int i;
6249 int this_free = 0;
6250
6251 for (i = 0; i < lim; i++)
6252 {
6253 if (!iblk->intervals[i].gcmarkbit)
6254 {
6255 set_interval_parent (&iblk->intervals[i], interval_free_list);
6256 interval_free_list = &iblk->intervals[i];
6257 this_free++;
6258 }
6259 else
6260 {
6261 num_used++;
6262 iblk->intervals[i].gcmarkbit = 0;
6263 }
6264 }
6265 lim = INTERVAL_BLOCK_SIZE;
6266 /* If this block contains only free intervals and we have already
6267 seen more than two blocks worth of free intervals then
6268 deallocate this block. */
6269 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6270 {
6271 *iprev = iblk->next;
6272 /* Unhook from the free list. */
6273 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6274 lisp_free (iblk);
6275 }
6276 else
6277 {
6278 num_free += this_free;
6279 iprev = &iblk->next;
6280 }
6281 }
6282 total_intervals = num_used;
6283 total_free_intervals = num_free;
6284 }
6285
6286 /* Put all unmarked symbols on free list */
6287 {
6288 register struct symbol_block *sblk;
6289 struct symbol_block **sprev = &symbol_block;
6290 register int lim = symbol_block_index;
6291 EMACS_INT num_free = 0, num_used = 0;
6292
6293 symbol_free_list = NULL;
6294
6295 for (sblk = symbol_block; sblk; sblk = *sprev)
6296 {
6297 int this_free = 0;
6298 union aligned_Lisp_Symbol *sym = sblk->symbols;
6299 union aligned_Lisp_Symbol *end = sym + lim;
6300
6301 for (; sym < end; ++sym)
6302 {
6303 /* Check if the symbol was created during loadup. In such a case
6304 it might be pointed to by pure bytecode which we don't trace,
6305 so we conservatively assume that it is live. */
6306 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6307
6308 if (!sym->s.gcmarkbit && !pure_p)
6309 {
6310 if (sym->s.redirect == SYMBOL_LOCALIZED)
6311 xfree (SYMBOL_BLV (&sym->s));
6312 sym->s.next = symbol_free_list;
6313 symbol_free_list = &sym->s;
6314 #if GC_MARK_STACK
6315 symbol_free_list->function = Vdead;
6316 #endif
6317 ++this_free;
6318 }
6319 else
6320 {
6321 ++num_used;
6322 if (!pure_p)
6323 UNMARK_STRING (XSTRING (sym->s.name));
6324 sym->s.gcmarkbit = 0;
6325 }
6326 }
6327
6328 lim = SYMBOL_BLOCK_SIZE;
6329 /* If this block contains only free symbols and we have already
6330 seen more than two blocks worth of free symbols then deallocate
6331 this block. */
6332 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6333 {
6334 *sprev = sblk->next;
6335 /* Unhook from the free list. */
6336 symbol_free_list = sblk->symbols[0].s.next;
6337 lisp_free (sblk);
6338 }
6339 else
6340 {
6341 num_free += this_free;
6342 sprev = &sblk->next;
6343 }
6344 }
6345 total_symbols = num_used;
6346 total_free_symbols = num_free;
6347 }
6348
6349 /* Put all unmarked misc's on free list.
6350 For a marker, first unchain it from the buffer it points into. */
6351 {
6352 register struct marker_block *mblk;
6353 struct marker_block **mprev = &marker_block;
6354 register int lim = marker_block_index;
6355 EMACS_INT num_free = 0, num_used = 0;
6356
6357 marker_free_list = 0;
6358
6359 for (mblk = marker_block; mblk; mblk = *mprev)
6360 {
6361 register int i;
6362 int this_free = 0;
6363
6364 for (i = 0; i < lim; i++)
6365 {
6366 if (!mblk->markers[i].m.u_any.gcmarkbit)
6367 {
6368 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6369 unchain_marker (&mblk->markers[i].m.u_marker);
6370 /* Set the type of the freed object to Lisp_Misc_Free.
6371 We could leave the type alone, since nobody checks it,
6372 but this might catch bugs faster. */
6373 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6374 mblk->markers[i].m.u_free.chain = marker_free_list;
6375 marker_free_list = &mblk->markers[i].m;
6376 this_free++;
6377 }
6378 else
6379 {
6380 num_used++;
6381 mblk->markers[i].m.u_any.gcmarkbit = 0;
6382 }
6383 }
6384 lim = MARKER_BLOCK_SIZE;
6385 /* If this block contains only free markers and we have already
6386 seen more than two blocks worth of free markers then deallocate
6387 this block. */
6388 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6389 {
6390 *mprev = mblk->next;
6391 /* Unhook from the free list. */
6392 marker_free_list = mblk->markers[0].m.u_free.chain;
6393 lisp_free (mblk);
6394 }
6395 else
6396 {
6397 num_free += this_free;
6398 mprev = &mblk->next;
6399 }
6400 }
6401
6402 total_markers = num_used;
6403 total_free_markers = num_free;
6404 }
6405
6406 /* Free all unmarked buffers */
6407 {
6408 register struct buffer *buffer, **bprev = &all_buffers;
6409
6410 total_buffers = 0;
6411 for (buffer = all_buffers; buffer; buffer = *bprev)
6412 if (!VECTOR_MARKED_P (buffer))
6413 {
6414 *bprev = buffer->next;
6415 lisp_free (buffer);
6416 }
6417 else
6418 {
6419 VECTOR_UNMARK (buffer);
6420 /* Do not use buffer_(set|get)_intervals here. */
6421 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6422 total_buffers++;
6423 bprev = &buffer->next;
6424 }
6425 }
6426
6427 sweep_vectors ();
6428 check_string_bytes (!noninteractive);
6429 }
6430
6431
6432
6433 \f
6434 /* Debugging aids. */
6435
6436 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6437 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6438 This may be helpful in debugging Emacs's memory usage.
6439 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6440 (void)
6441 {
6442 Lisp_Object end;
6443
6444 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6445
6446 return end;
6447 }
6448
6449 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6450 doc: /* Return a list of counters that measure how much consing there has been.
6451 Each of these counters increments for a certain kind of object.
6452 The counters wrap around from the largest positive integer to zero.
6453 Garbage collection does not decrease them.
6454 The elements of the value are as follows:
6455 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6456 All are in units of 1 = one object consed
6457 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6458 objects consed.
6459 MISCS include overlays, markers, and some internal types.
6460 Frames, windows, buffers, and subprocesses count as vectors
6461 (but the contents of a buffer's text do not count here). */)
6462 (void)
6463 {
6464 return listn (CONSTYPE_HEAP, 8,
6465 bounded_number (cons_cells_consed),
6466 bounded_number (floats_consed),
6467 bounded_number (vector_cells_consed),
6468 bounded_number (symbols_consed),
6469 bounded_number (string_chars_consed),
6470 bounded_number (misc_objects_consed),
6471 bounded_number (intervals_consed),
6472 bounded_number (strings_consed));
6473 }
6474
6475 /* Find at most FIND_MAX symbols which have OBJ as their value or
6476 function. This is used in gdbinit's `xwhichsymbols' command. */
6477
6478 Lisp_Object
6479 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6480 {
6481 struct symbol_block *sblk;
6482 ptrdiff_t gc_count = inhibit_garbage_collection ();
6483 Lisp_Object found = Qnil;
6484
6485 if (! DEADP (obj))
6486 {
6487 for (sblk = symbol_block; sblk; sblk = sblk->next)
6488 {
6489 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6490 int bn;
6491
6492 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6493 {
6494 struct Lisp_Symbol *sym = &aligned_sym->s;
6495 Lisp_Object val;
6496 Lisp_Object tem;
6497
6498 if (sblk == symbol_block && bn >= symbol_block_index)
6499 break;
6500
6501 XSETSYMBOL (tem, sym);
6502 val = find_symbol_value (tem);
6503 if (EQ (val, obj)
6504 || EQ (sym->function, obj)
6505 || (!NILP (sym->function)
6506 && COMPILEDP (sym->function)
6507 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6508 || (!NILP (val)
6509 && COMPILEDP (val)
6510 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6511 {
6512 found = Fcons (tem, found);
6513 if (--find_max == 0)
6514 goto out;
6515 }
6516 }
6517 }
6518 }
6519
6520 out:
6521 unbind_to (gc_count, Qnil);
6522 return found;
6523 }
6524
6525 #ifdef ENABLE_CHECKING
6526
6527 bool suppress_checking;
6528
6529 void
6530 die (const char *msg, const char *file, int line)
6531 {
6532 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6533 file, line, msg);
6534 terminate_due_to_signal (SIGABRT, INT_MAX);
6535 }
6536 #endif
6537 \f
6538 /* Initialization. */
6539
6540 void
6541 init_alloc_once (void)
6542 {
6543 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6544 purebeg = PUREBEG;
6545 pure_size = PURESIZE;
6546
6547 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6548 mem_init ();
6549 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6550 #endif
6551
6552 #ifdef DOUG_LEA_MALLOC
6553 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6554 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6555 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6556 #endif
6557 init_strings ();
6558 init_vectors ();
6559
6560 refill_memory_reserve ();
6561 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6562 }
6563
6564 void
6565 init_alloc (void)
6566 {
6567 gcprolist = 0;
6568 byte_stack_list = 0;
6569 #if GC_MARK_STACK
6570 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6571 setjmp_tested_p = longjmps_done = 0;
6572 #endif
6573 #endif
6574 Vgc_elapsed = make_float (0.0);
6575 gcs_done = 0;
6576 }
6577
6578 void
6579 syms_of_alloc (void)
6580 {
6581 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6582 doc: /* Number of bytes of consing between garbage collections.
6583 Garbage collection can happen automatically once this many bytes have been
6584 allocated since the last garbage collection. All data types count.
6585
6586 Garbage collection happens automatically only when `eval' is called.
6587
6588 By binding this temporarily to a large number, you can effectively
6589 prevent garbage collection during a part of the program.
6590 See also `gc-cons-percentage'. */);
6591
6592 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6593 doc: /* Portion of the heap used for allocation.
6594 Garbage collection can happen automatically once this portion of the heap
6595 has been allocated since the last garbage collection.
6596 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6597 Vgc_cons_percentage = make_float (0.1);
6598
6599 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6600 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6601
6602 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6603 doc: /* Number of cons cells that have been consed so far. */);
6604
6605 DEFVAR_INT ("floats-consed", floats_consed,
6606 doc: /* Number of floats that have been consed so far. */);
6607
6608 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6609 doc: /* Number of vector cells that have been consed so far. */);
6610
6611 DEFVAR_INT ("symbols-consed", symbols_consed,
6612 doc: /* Number of symbols that have been consed so far. */);
6613
6614 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6615 doc: /* Number of string characters that have been consed so far. */);
6616
6617 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6618 doc: /* Number of miscellaneous objects that have been consed so far.
6619 These include markers and overlays, plus certain objects not visible
6620 to users. */);
6621
6622 DEFVAR_INT ("intervals-consed", intervals_consed,
6623 doc: /* Number of intervals that have been consed so far. */);
6624
6625 DEFVAR_INT ("strings-consed", strings_consed,
6626 doc: /* Number of strings that have been consed so far. */);
6627
6628 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6629 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6630 This means that certain objects should be allocated in shared (pure) space.
6631 It can also be set to a hash-table, in which case this table is used to
6632 do hash-consing of the objects allocated to pure space. */);
6633
6634 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6635 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6636 garbage_collection_messages = 0;
6637
6638 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6639 doc: /* Hook run after garbage collection has finished. */);
6640 Vpost_gc_hook = Qnil;
6641 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6642
6643 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6644 doc: /* Precomputed `signal' argument for memory-full error. */);
6645 /* We build this in advance because if we wait until we need it, we might
6646 not be able to allocate the memory to hold it. */
6647 Vmemory_signal_data
6648 = listn (CONSTYPE_PURE, 2, Qerror,
6649 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6650
6651 DEFVAR_LISP ("memory-full", Vmemory_full,
6652 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6653 Vmemory_full = Qnil;
6654
6655 DEFSYM (Qconses, "conses");
6656 DEFSYM (Qsymbols, "symbols");
6657 DEFSYM (Qmiscs, "miscs");
6658 DEFSYM (Qstrings, "strings");
6659 DEFSYM (Qvectors, "vectors");
6660 DEFSYM (Qfloats, "floats");
6661 DEFSYM (Qintervals, "intervals");
6662 DEFSYM (Qbuffers, "buffers");
6663 DEFSYM (Qstring_bytes, "string-bytes");
6664 DEFSYM (Qvector_slots, "vector-slots");
6665 DEFSYM (Qheap, "heap");
6666 DEFSYM (Qautomatic_gc, "Automatic GC");
6667
6668 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6669 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6670
6671 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6672 doc: /* Accumulated time elapsed in garbage collections.
6673 The time is in seconds as a floating point value. */);
6674 DEFVAR_INT ("gcs-done", gcs_done,
6675 doc: /* Accumulated number of garbage collections done. */);
6676
6677 defsubr (&Scons);
6678 defsubr (&Slist);
6679 defsubr (&Svector);
6680 defsubr (&Smake_byte_code);
6681 defsubr (&Smake_list);
6682 defsubr (&Smake_vector);
6683 defsubr (&Smake_string);
6684 defsubr (&Smake_bool_vector);
6685 defsubr (&Smake_symbol);
6686 defsubr (&Smake_marker);
6687 defsubr (&Spurecopy);
6688 defsubr (&Sgarbage_collect);
6689 defsubr (&Smemory_limit);
6690 defsubr (&Smemory_use_counts);
6691
6692 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6693 defsubr (&Sgc_status);
6694 #endif
6695 }
6696
6697 /* When compiled with GCC, GDB might say "No enum type named
6698 pvec_type" if we don't have at least one symbol with that type, and
6699 then xbacktrace could fail. Similarly for the other enums and
6700 their values. Some non-GCC compilers don't like these constructs. */
6701 #ifdef __GNUC__
6702 union
6703 {
6704 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6705 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6706 enum char_bits char_bits;
6707 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6708 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6709 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6710 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6711 enum Lisp_Bits Lisp_Bits;
6712 enum Lisp_Compiled Lisp_Compiled;
6713 enum maxargs maxargs;
6714 enum MAX_ALLOCA MAX_ALLOCA;
6715 enum More_Lisp_Bits More_Lisp_Bits;
6716 enum pvec_type pvec_type;
6717 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6718 #endif /* __GNUC__ */