* lisp.h (toplevel): Add comment about using Lisp_Save_Value
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, EMACS_TIME,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 ptrdiff_t pos;
237
238 if (MARKERP (position)
239 && current_buffer == XMARKER (position)->buffer)
240 {
241 pos = marker_position (position);
242 if (pos < BEGV)
243 SET_PT_BOTH (BEGV, BEGV_BYTE);
244 else if (pos > ZV)
245 SET_PT_BOTH (ZV, ZV_BYTE);
246 else
247 SET_PT_BOTH (pos, marker_byte_position (position));
248
249 return position;
250 }
251
252 CHECK_NUMBER_COERCE_MARKER (position);
253
254 pos = clip_to_bounds (BEGV, XINT (position), ZV);
255 SET_PT (pos);
256 return position;
257 }
258
259
260 /* Return the start or end position of the region.
261 BEGINNINGP means return the start.
262 If there is no region active, signal an error. */
263
264 static Lisp_Object
265 region_limit (bool beginningp)
266 {
267 Lisp_Object m;
268
269 if (!NILP (Vtransient_mark_mode)
270 && NILP (Vmark_even_if_inactive)
271 && NILP (BVAR (current_buffer, mark_active)))
272 xsignal0 (Qmark_inactive);
273
274 m = Fmarker_position (BVAR (current_buffer, mark));
275 if (NILP (m))
276 error ("The mark is not set now, so there is no region");
277
278 /* Clip to the current narrowing (bug#11770). */
279 return make_number ((PT < XFASTINT (m)) == beginningp
280 ? PT
281 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
282 }
283
284 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
285 doc: /* Return the integer value of point or mark, whichever is smaller. */)
286 (void)
287 {
288 return region_limit (1);
289 }
290
291 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
292 doc: /* Return the integer value of point or mark, whichever is larger. */)
293 (void)
294 {
295 return region_limit (0);
296 }
297
298 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
299 doc: /* Return this buffer's mark, as a marker object.
300 Watch out! Moving this marker changes the mark position.
301 If you set the marker not to point anywhere, the buffer will have no mark. */)
302 (void)
303 {
304 return BVAR (current_buffer, mark);
305 }
306
307 \f
308 /* Find all the overlays in the current buffer that touch position POS.
309 Return the number found, and store them in a vector in VEC
310 of length LEN. */
311
312 static ptrdiff_t
313 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
314 {
315 Lisp_Object overlay, start, end;
316 struct Lisp_Overlay *tail;
317 ptrdiff_t startpos, endpos;
318 ptrdiff_t idx = 0;
319
320 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
321 {
322 XSETMISC (overlay, tail);
323
324 end = OVERLAY_END (overlay);
325 endpos = OVERLAY_POSITION (end);
326 if (endpos < pos)
327 break;
328 start = OVERLAY_START (overlay);
329 startpos = OVERLAY_POSITION (start);
330 if (startpos <= pos)
331 {
332 if (idx < len)
333 vec[idx] = overlay;
334 /* Keep counting overlays even if we can't return them all. */
335 idx++;
336 }
337 }
338
339 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
340 {
341 XSETMISC (overlay, tail);
342
343 start = OVERLAY_START (overlay);
344 startpos = OVERLAY_POSITION (start);
345 if (pos < startpos)
346 break;
347 end = OVERLAY_END (overlay);
348 endpos = OVERLAY_POSITION (end);
349 if (pos <= endpos)
350 {
351 if (idx < len)
352 vec[idx] = overlay;
353 idx++;
354 }
355 }
356
357 return idx;
358 }
359
360 /* Return the value of property PROP, in OBJECT at POSITION.
361 It's the value of PROP that a char inserted at POSITION would get.
362 OBJECT is optional and defaults to the current buffer.
363 If OBJECT is a buffer, then overlay properties are considered as well as
364 text properties.
365 If OBJECT is a window, then that window's buffer is used, but
366 window-specific overlays are considered only if they are associated
367 with OBJECT. */
368 Lisp_Object
369 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
370 {
371 CHECK_NUMBER_COERCE_MARKER (position);
372
373 if (NILP (object))
374 XSETBUFFER (object, current_buffer);
375 else if (WINDOWP (object))
376 object = XWINDOW (object)->buffer;
377
378 if (!BUFFERP (object))
379 /* pos-property only makes sense in buffers right now, since strings
380 have no overlays and no notion of insertion for which stickiness
381 could be obeyed. */
382 return Fget_text_property (position, prop, object);
383 else
384 {
385 EMACS_INT posn = XINT (position);
386 ptrdiff_t noverlays;
387 Lisp_Object *overlay_vec, tem;
388 struct buffer *obuf = current_buffer;
389
390 set_buffer_temp (XBUFFER (object));
391
392 /* First try with room for 40 overlays. */
393 noverlays = 40;
394 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
395 noverlays = overlays_around (posn, overlay_vec, noverlays);
396
397 /* If there are more than 40,
398 make enough space for all, and try again. */
399 if (noverlays > 40)
400 {
401 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
402 noverlays = overlays_around (posn, overlay_vec, noverlays);
403 }
404 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
405
406 set_buffer_temp (obuf);
407
408 /* Now check the overlays in order of decreasing priority. */
409 while (--noverlays >= 0)
410 {
411 Lisp_Object ol = overlay_vec[noverlays];
412 tem = Foverlay_get (ol, prop);
413 if (!NILP (tem))
414 {
415 /* Check the overlay is indeed active at point. */
416 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
417 if ((OVERLAY_POSITION (start) == posn
418 && XMARKER (start)->insertion_type == 1)
419 || (OVERLAY_POSITION (finish) == posn
420 && XMARKER (finish)->insertion_type == 0))
421 ; /* The overlay will not cover a char inserted at point. */
422 else
423 {
424 return tem;
425 }
426 }
427 }
428
429 { /* Now check the text properties. */
430 int stickiness = text_property_stickiness (prop, position, object);
431 if (stickiness > 0)
432 return Fget_text_property (position, prop, object);
433 else if (stickiness < 0
434 && XINT (position) > BUF_BEGV (XBUFFER (object)))
435 return Fget_text_property (make_number (XINT (position) - 1),
436 prop, object);
437 else
438 return Qnil;
439 }
440 }
441 }
442
443 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
444 the value of point is used instead. If BEG or END is null,
445 means don't store the beginning or end of the field.
446
447 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
448 results; they do not effect boundary behavior.
449
450 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
451 position of a field, then the beginning of the previous field is
452 returned instead of the beginning of POS's field (since the end of a
453 field is actually also the beginning of the next input field, this
454 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
455 non-nil case, if two fields are separated by a field with the special
456 value `boundary', and POS lies within it, then the two separated
457 fields are considered to be adjacent, and POS between them, when
458 finding the beginning and ending of the "merged" field.
459
460 Either BEG or END may be 0, in which case the corresponding value
461 is not stored. */
462
463 static void
464 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
465 Lisp_Object beg_limit,
466 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
467 {
468 /* Fields right before and after the point. */
469 Lisp_Object before_field, after_field;
470 /* True if POS counts as the start of a field. */
471 bool at_field_start = 0;
472 /* True if POS counts as the end of a field. */
473 bool at_field_end = 0;
474
475 if (NILP (pos))
476 XSETFASTINT (pos, PT);
477 else
478 CHECK_NUMBER_COERCE_MARKER (pos);
479
480 after_field
481 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
482 before_field
483 = (XFASTINT (pos) > BEGV
484 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
485 Qfield, Qnil, NULL)
486 /* Using nil here would be a more obvious choice, but it would
487 fail when the buffer starts with a non-sticky field. */
488 : after_field);
489
490 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
491 and POS is at beginning of a field, which can also be interpreted
492 as the end of the previous field. Note that the case where if
493 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
494 more natural one; then we avoid treating the beginning of a field
495 specially. */
496 if (NILP (merge_at_boundary))
497 {
498 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
499 if (!EQ (field, after_field))
500 at_field_end = 1;
501 if (!EQ (field, before_field))
502 at_field_start = 1;
503 if (NILP (field) && at_field_start && at_field_end)
504 /* If an inserted char would have a nil field while the surrounding
505 text is non-nil, we're probably not looking at a
506 zero-length field, but instead at a non-nil field that's
507 not intended for editing (such as comint's prompts). */
508 at_field_end = at_field_start = 0;
509 }
510
511 /* Note about special `boundary' fields:
512
513 Consider the case where the point (`.') is between the fields `x' and `y':
514
515 xxxx.yyyy
516
517 In this situation, if merge_at_boundary is non-nil, consider the
518 `x' and `y' fields as forming one big merged field, and so the end
519 of the field is the end of `y'.
520
521 However, if `x' and `y' are separated by a special `boundary' field
522 (a field with a `field' char-property of 'boundary), then ignore
523 this special field when merging adjacent fields. Here's the same
524 situation, but with a `boundary' field between the `x' and `y' fields:
525
526 xxx.BBBByyyy
527
528 Here, if point is at the end of `x', the beginning of `y', or
529 anywhere in-between (within the `boundary' field), merge all
530 three fields and consider the beginning as being the beginning of
531 the `x' field, and the end as being the end of the `y' field. */
532
533 if (beg)
534 {
535 if (at_field_start)
536 /* POS is at the edge of a field, and we should consider it as
537 the beginning of the following field. */
538 *beg = XFASTINT (pos);
539 else
540 /* Find the previous field boundary. */
541 {
542 Lisp_Object p = pos;
543 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
544 /* Skip a `boundary' field. */
545 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
546 beg_limit);
547
548 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
549 beg_limit);
550 *beg = NILP (p) ? BEGV : XFASTINT (p);
551 }
552 }
553
554 if (end)
555 {
556 if (at_field_end)
557 /* POS is at the edge of a field, and we should consider it as
558 the end of the previous field. */
559 *end = XFASTINT (pos);
560 else
561 /* Find the next field boundary. */
562 {
563 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
564 /* Skip a `boundary' field. */
565 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
566 end_limit);
567
568 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
569 end_limit);
570 *end = NILP (pos) ? ZV : XFASTINT (pos);
571 }
572 }
573 }
574
575 \f
576 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
577 doc: /* Delete the field surrounding POS.
578 A field is a region of text with the same `field' property.
579 If POS is nil, the value of point is used for POS. */)
580 (Lisp_Object pos)
581 {
582 ptrdiff_t beg, end;
583 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
584 if (beg != end)
585 del_range (beg, end);
586 return Qnil;
587 }
588
589 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
590 doc: /* Return the contents of the field surrounding POS as a string.
591 A field is a region of text with the same `field' property.
592 If POS is nil, the value of point is used for POS. */)
593 (Lisp_Object pos)
594 {
595 ptrdiff_t beg, end;
596 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
597 return make_buffer_string (beg, end, 1);
598 }
599
600 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
601 doc: /* Return the contents of the field around POS, without text properties.
602 A field is a region of text with the same `field' property.
603 If POS is nil, the value of point is used for POS. */)
604 (Lisp_Object pos)
605 {
606 ptrdiff_t beg, end;
607 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
608 return make_buffer_string (beg, end, 0);
609 }
610
611 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
612 doc: /* Return the beginning of the field surrounding POS.
613 A field is a region of text with the same `field' property.
614 If POS is nil, the value of point is used for POS.
615 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
616 field, then the beginning of the *previous* field is returned.
617 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
618 is before LIMIT, then LIMIT will be returned instead. */)
619 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
620 {
621 ptrdiff_t beg;
622 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
623 return make_number (beg);
624 }
625
626 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
627 doc: /* Return the end of the field surrounding POS.
628 A field is a region of text with the same `field' property.
629 If POS is nil, the value of point is used for POS.
630 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
631 then the end of the *following* field is returned.
632 If LIMIT is non-nil, it is a buffer position; if the end of the field
633 is after LIMIT, then LIMIT will be returned instead. */)
634 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
635 {
636 ptrdiff_t end;
637 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
638 return make_number (end);
639 }
640
641 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
642 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
643 A field is a region of text with the same `field' property.
644
645 If NEW-POS is nil, then use the current point instead, and move point
646 to the resulting constrained position, in addition to returning that
647 position.
648
649 If OLD-POS is at the boundary of two fields, then the allowable
650 positions for NEW-POS depends on the value of the optional argument
651 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
652 constrained to the field that has the same `field' char-property
653 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
654 is non-nil, NEW-POS is constrained to the union of the two adjacent
655 fields. Additionally, if two fields are separated by another field with
656 the special value `boundary', then any point within this special field is
657 also considered to be `on the boundary'.
658
659 If the optional argument ONLY-IN-LINE is non-nil and constraining
660 NEW-POS would move it to a different line, NEW-POS is returned
661 unconstrained. This useful for commands that move by line, like
662 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
663 only in the case where they can still move to the right line.
664
665 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
666 a non-nil property of that name, then any field boundaries are ignored.
667
668 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
669 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
670 {
671 /* If non-zero, then the original point, before re-positioning. */
672 ptrdiff_t orig_point = 0;
673 bool fwd;
674 Lisp_Object prev_old, prev_new;
675
676 if (NILP (new_pos))
677 /* Use the current point, and afterwards, set it. */
678 {
679 orig_point = PT;
680 XSETFASTINT (new_pos, PT);
681 }
682
683 CHECK_NUMBER_COERCE_MARKER (new_pos);
684 CHECK_NUMBER_COERCE_MARKER (old_pos);
685
686 fwd = (XINT (new_pos) > XINT (old_pos));
687
688 prev_old = make_number (XINT (old_pos) - 1);
689 prev_new = make_number (XINT (new_pos) - 1);
690
691 if (NILP (Vinhibit_field_text_motion)
692 && !EQ (new_pos, old_pos)
693 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
694 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
695 /* To recognize field boundaries, we must also look at the
696 previous positions; we could use `get_pos_property'
697 instead, but in itself that would fail inside non-sticky
698 fields (like comint prompts). */
699 || (XFASTINT (new_pos) > BEGV
700 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
701 || (XFASTINT (old_pos) > BEGV
702 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
703 && (NILP (inhibit_capture_property)
704 /* Field boundaries are again a problem; but now we must
705 decide the case exactly, so we need to call
706 `get_pos_property' as well. */
707 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
708 && (XFASTINT (old_pos) <= BEGV
709 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
710 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
711 /* It is possible that NEW_POS is not within the same field as
712 OLD_POS; try to move NEW_POS so that it is. */
713 {
714 ptrdiff_t shortage;
715 Lisp_Object field_bound;
716
717 if (fwd)
718 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
719 else
720 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
721
722 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
723 other side of NEW_POS, which would mean that NEW_POS is
724 already acceptable, and it's not necessary to constrain it
725 to FIELD_BOUND. */
726 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
727 /* NEW_POS should be constrained, but only if either
728 ONLY_IN_LINE is nil (in which case any constraint is OK),
729 or NEW_POS and FIELD_BOUND are on the same line (in which
730 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
731 && (NILP (only_in_line)
732 /* This is the ONLY_IN_LINE case, check that NEW_POS and
733 FIELD_BOUND are on the same line by seeing whether
734 there's an intervening newline or not. */
735 || (scan_buffer ('\n',
736 XFASTINT (new_pos), XFASTINT (field_bound),
737 fwd ? -1 : 1, &shortage, 1),
738 shortage != 0)))
739 /* Constrain NEW_POS to FIELD_BOUND. */
740 new_pos = field_bound;
741
742 if (orig_point && XFASTINT (new_pos) != orig_point)
743 /* The NEW_POS argument was originally nil, so automatically set PT. */
744 SET_PT (XFASTINT (new_pos));
745 }
746
747 return new_pos;
748 }
749
750 \f
751 DEFUN ("line-beginning-position",
752 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
753 doc: /* Return the character position of the first character on the current line.
754 With optional argument N, scan forward N - 1 lines first.
755 If the scan reaches the end of the buffer, return that position.
756
757 This function ignores text display directionality; it returns the
758 position of the first character in logical order, i.e. the smallest
759 character position on the line.
760
761 This function constrains the returned position to the current field
762 unless that position would be on a different line than the original,
763 unconstrained result. If N is nil or 1, and a front-sticky field
764 starts at point, the scan stops as soon as it starts. To ignore field
765 boundaries, bind `inhibit-field-text-motion' to t.
766
767 This function does not move point. */)
768 (Lisp_Object n)
769 {
770 ptrdiff_t orig, orig_byte, end;
771 ptrdiff_t count = SPECPDL_INDEX ();
772 specbind (Qinhibit_point_motion_hooks, Qt);
773
774 if (NILP (n))
775 XSETFASTINT (n, 1);
776 else
777 CHECK_NUMBER (n);
778
779 orig = PT;
780 orig_byte = PT_BYTE;
781 Fforward_line (make_number (XINT (n) - 1));
782 end = PT;
783
784 SET_PT_BOTH (orig, orig_byte);
785
786 unbind_to (count, Qnil);
787
788 /* Return END constrained to the current input field. */
789 return Fconstrain_to_field (make_number (end), make_number (orig),
790 XINT (n) != 1 ? Qt : Qnil,
791 Qt, Qnil);
792 }
793
794 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
795 doc: /* Return the character position of the last character on the current line.
796 With argument N not nil or 1, move forward N - 1 lines first.
797 If scan reaches end of buffer, return that position.
798
799 This function ignores text display directionality; it returns the
800 position of the last character in logical order, i.e. the largest
801 character position on the line.
802
803 This function constrains the returned position to the current field
804 unless that would be on a different line than the original,
805 unconstrained result. If N is nil or 1, and a rear-sticky field ends
806 at point, the scan stops as soon as it starts. To ignore field
807 boundaries bind `inhibit-field-text-motion' to t.
808
809 This function does not move point. */)
810 (Lisp_Object n)
811 {
812 ptrdiff_t clipped_n;
813 ptrdiff_t end_pos;
814 ptrdiff_t orig = PT;
815
816 if (NILP (n))
817 XSETFASTINT (n, 1);
818 else
819 CHECK_NUMBER (n);
820
821 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
822 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0));
823
824 /* Return END_POS constrained to the current input field. */
825 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
826 Qnil, Qt, Qnil);
827 }
828
829 /* Save current buffer state for `save-excursion' special form.
830 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
831 offload some work from GC. */
832
833 Lisp_Object
834 save_excursion_save (void)
835 {
836 return make_save_value
837 ("oooo",
838 Fpoint_marker (),
839 /* Do not copy the mark if it points to nowhere. */
840 (XMARKER (BVAR (current_buffer, mark))->buffer
841 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
842 : Qnil),
843 /* Selected window if current buffer is shown in it, nil otherwise. */
844 ((XBUFFER (XWINDOW (selected_window)->buffer) == current_buffer)
845 ? selected_window : Qnil),
846 BVAR (current_buffer, mark_active));
847 }
848
849 /* Restore saved buffer before leaving `save-excursion' special form. */
850
851 Lisp_Object
852 save_excursion_restore (Lisp_Object info)
853 {
854 Lisp_Object tem, tem1, omark, nmark;
855 struct gcpro gcpro1, gcpro2, gcpro3;
856
857 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
858 /* If we're unwinding to top level, saved buffer may be deleted. This
859 means that all of its markers are unchained and so tem is nil. */
860 if (NILP (tem))
861 goto out;
862
863 omark = nmark = Qnil;
864 GCPRO3 (info, omark, nmark);
865
866 Fset_buffer (tem);
867
868 /* Point marker. */
869 tem = XSAVE_OBJECT (info, 0);
870 Fgoto_char (tem);
871 unchain_marker (XMARKER (tem));
872
873 /* Mark marker. */
874 tem = XSAVE_OBJECT (info, 1);
875 omark = Fmarker_position (BVAR (current_buffer, mark));
876 if (NILP (tem))
877 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
878 else
879 {
880 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
881 nmark = Fmarker_position (tem);
882 unchain_marker (XMARKER (tem));
883 }
884
885 /* Mark active. */
886 tem = XSAVE_OBJECT (info, 3);
887 tem1 = BVAR (current_buffer, mark_active);
888 bset_mark_active (current_buffer, tem);
889
890 /* If mark is active now, and either was not active
891 or was at a different place, run the activate hook. */
892 if (! NILP (tem))
893 {
894 if (! EQ (omark, nmark))
895 {
896 tem = intern ("activate-mark-hook");
897 Frun_hooks (1, &tem);
898 }
899 }
900 /* If mark has ceased to be active, run deactivate hook. */
901 else if (! NILP (tem1))
902 {
903 tem = intern ("deactivate-mark-hook");
904 Frun_hooks (1, &tem);
905 }
906
907 /* If buffer was visible in a window, and a different window was
908 selected, and the old selected window is still showing this
909 buffer, restore point in that window. */
910 tem = XSAVE_OBJECT (info, 2);
911 if (WINDOWP (tem)
912 && !EQ (tem, selected_window)
913 && (tem1 = XWINDOW (tem)->buffer,
914 (/* Window is live... */
915 BUFFERP (tem1)
916 /* ...and it shows the current buffer. */
917 && XBUFFER (tem1) == current_buffer)))
918 Fset_window_point (tem, make_number (PT));
919
920 UNGCPRO;
921
922 out:
923
924 free_misc (info);
925 return Qnil;
926 }
927
928 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
929 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
930 Executes BODY just like `progn'.
931 The values of point, mark and the current buffer are restored
932 even in case of abnormal exit (throw or error).
933 The state of activation of the mark is also restored.
934
935 This construct does not save `deactivate-mark', and therefore
936 functions that change the buffer will still cause deactivation
937 of the mark at the end of the command. To prevent that, bind
938 `deactivate-mark' with `let'.
939
940 If you only want to save the current buffer but not point nor mark,
941 then just use `save-current-buffer', or even `with-current-buffer'.
942
943 usage: (save-excursion &rest BODY) */)
944 (Lisp_Object args)
945 {
946 register Lisp_Object val;
947 ptrdiff_t count = SPECPDL_INDEX ();
948
949 record_unwind_protect (save_excursion_restore, save_excursion_save ());
950
951 val = Fprogn (args);
952 return unbind_to (count, val);
953 }
954
955 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
956 doc: /* Record which buffer is current; execute BODY; make that buffer current.
957 BODY is executed just like `progn'.
958 usage: (save-current-buffer &rest BODY) */)
959 (Lisp_Object args)
960 {
961 ptrdiff_t count = SPECPDL_INDEX ();
962
963 record_unwind_current_buffer ();
964 return unbind_to (count, Fprogn (args));
965 }
966 \f
967 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
968 doc: /* Return the number of characters in the current buffer.
969 If BUFFER, return the number of characters in that buffer instead. */)
970 (Lisp_Object buffer)
971 {
972 if (NILP (buffer))
973 return make_number (Z - BEG);
974 else
975 {
976 CHECK_BUFFER (buffer);
977 return make_number (BUF_Z (XBUFFER (buffer))
978 - BUF_BEG (XBUFFER (buffer)));
979 }
980 }
981
982 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
983 doc: /* Return the minimum permissible value of point in the current buffer.
984 This is 1, unless narrowing (a buffer restriction) is in effect. */)
985 (void)
986 {
987 Lisp_Object temp;
988 XSETFASTINT (temp, BEGV);
989 return temp;
990 }
991
992 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
993 doc: /* Return a marker to the minimum permissible value of point in this buffer.
994 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
995 (void)
996 {
997 return build_marker (current_buffer, BEGV, BEGV_BYTE);
998 }
999
1000 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1001 doc: /* Return the maximum permissible value of point in the current buffer.
1002 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1003 is in effect, in which case it is less. */)
1004 (void)
1005 {
1006 Lisp_Object temp;
1007 XSETFASTINT (temp, ZV);
1008 return temp;
1009 }
1010
1011 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1012 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1013 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1014 is in effect, in which case it is less. */)
1015 (void)
1016 {
1017 return build_marker (current_buffer, ZV, ZV_BYTE);
1018 }
1019
1020 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1021 doc: /* Return the position of the gap, in the current buffer.
1022 See also `gap-size'. */)
1023 (void)
1024 {
1025 Lisp_Object temp;
1026 XSETFASTINT (temp, GPT);
1027 return temp;
1028 }
1029
1030 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1031 doc: /* Return the size of the current buffer's gap.
1032 See also `gap-position'. */)
1033 (void)
1034 {
1035 Lisp_Object temp;
1036 XSETFASTINT (temp, GAP_SIZE);
1037 return temp;
1038 }
1039
1040 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1041 doc: /* Return the byte position for character position POSITION.
1042 If POSITION is out of range, the value is nil. */)
1043 (Lisp_Object position)
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (position);
1046 if (XINT (position) < BEG || XINT (position) > Z)
1047 return Qnil;
1048 return make_number (CHAR_TO_BYTE (XINT (position)));
1049 }
1050
1051 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1052 doc: /* Return the character position for byte position BYTEPOS.
1053 If BYTEPOS is out of range, the value is nil. */)
1054 (Lisp_Object bytepos)
1055 {
1056 CHECK_NUMBER (bytepos);
1057 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1058 return Qnil;
1059 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1060 }
1061 \f
1062 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1063 doc: /* Return the character following point, as a number.
1064 At the end of the buffer or accessible region, return 0. */)
1065 (void)
1066 {
1067 Lisp_Object temp;
1068 if (PT >= ZV)
1069 XSETFASTINT (temp, 0);
1070 else
1071 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1072 return temp;
1073 }
1074
1075 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1076 doc: /* Return the character preceding point, as a number.
1077 At the beginning of the buffer or accessible region, return 0. */)
1078 (void)
1079 {
1080 Lisp_Object temp;
1081 if (PT <= BEGV)
1082 XSETFASTINT (temp, 0);
1083 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1084 {
1085 ptrdiff_t pos = PT_BYTE;
1086 DEC_POS (pos);
1087 XSETFASTINT (temp, FETCH_CHAR (pos));
1088 }
1089 else
1090 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1091 return temp;
1092 }
1093
1094 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1095 doc: /* Return t if point is at the beginning of the buffer.
1096 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1097 (void)
1098 {
1099 if (PT == BEGV)
1100 return Qt;
1101 return Qnil;
1102 }
1103
1104 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1105 doc: /* Return t if point is at the end of the buffer.
1106 If the buffer is narrowed, this means the end of the narrowed part. */)
1107 (void)
1108 {
1109 if (PT == ZV)
1110 return Qt;
1111 return Qnil;
1112 }
1113
1114 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1115 doc: /* Return t if point is at the beginning of a line. */)
1116 (void)
1117 {
1118 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1124 doc: /* Return t if point is at the end of a line.
1125 `End of a line' includes point being at the end of the buffer. */)
1126 (void)
1127 {
1128 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1129 return Qt;
1130 return Qnil;
1131 }
1132
1133 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1134 doc: /* Return character in current buffer at position POS.
1135 POS is an integer or a marker and defaults to point.
1136 If POS is out of range, the value is nil. */)
1137 (Lisp_Object pos)
1138 {
1139 register ptrdiff_t pos_byte;
1140
1141 if (NILP (pos))
1142 {
1143 pos_byte = PT_BYTE;
1144 XSETFASTINT (pos, PT);
1145 }
1146
1147 if (MARKERP (pos))
1148 {
1149 pos_byte = marker_byte_position (pos);
1150 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1151 return Qnil;
1152 }
1153 else
1154 {
1155 CHECK_NUMBER_COERCE_MARKER (pos);
1156 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1157 return Qnil;
1158
1159 pos_byte = CHAR_TO_BYTE (XINT (pos));
1160 }
1161
1162 return make_number (FETCH_CHAR (pos_byte));
1163 }
1164
1165 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1166 doc: /* Return character in current buffer preceding position POS.
1167 POS is an integer or a marker and defaults to point.
1168 If POS is out of range, the value is nil. */)
1169 (Lisp_Object pos)
1170 {
1171 register Lisp_Object val;
1172 register ptrdiff_t pos_byte;
1173
1174 if (NILP (pos))
1175 {
1176 pos_byte = PT_BYTE;
1177 XSETFASTINT (pos, PT);
1178 }
1179
1180 if (MARKERP (pos))
1181 {
1182 pos_byte = marker_byte_position (pos);
1183
1184 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1185 return Qnil;
1186 }
1187 else
1188 {
1189 CHECK_NUMBER_COERCE_MARKER (pos);
1190
1191 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1192 return Qnil;
1193
1194 pos_byte = CHAR_TO_BYTE (XINT (pos));
1195 }
1196
1197 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1198 {
1199 DEC_POS (pos_byte);
1200 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1201 }
1202 else
1203 {
1204 pos_byte--;
1205 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1206 }
1207 return val;
1208 }
1209 \f
1210 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1211 doc: /* Return the name under which the user logged in, as a string.
1212 This is based on the effective uid, not the real uid.
1213 Also, if the environment variables LOGNAME or USER are set,
1214 that determines the value of this function.
1215
1216 If optional argument UID is an integer or a float, return the login name
1217 of the user with that uid, or nil if there is no such user. */)
1218 (Lisp_Object uid)
1219 {
1220 struct passwd *pw;
1221 uid_t id;
1222
1223 /* Set up the user name info if we didn't do it before.
1224 (That can happen if Emacs is dumpable
1225 but you decide to run `temacs -l loadup' and not dump. */
1226 if (INTEGERP (Vuser_login_name))
1227 init_editfns ();
1228
1229 if (NILP (uid))
1230 return Vuser_login_name;
1231
1232 CONS_TO_INTEGER (uid, uid_t, id);
1233 block_input ();
1234 pw = getpwuid (id);
1235 unblock_input ();
1236 return (pw ? build_string (pw->pw_name) : Qnil);
1237 }
1238
1239 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1240 0, 0, 0,
1241 doc: /* Return the name of the user's real uid, as a string.
1242 This ignores the environment variables LOGNAME and USER, so it differs from
1243 `user-login-name' when running under `su'. */)
1244 (void)
1245 {
1246 /* Set up the user name info if we didn't do it before.
1247 (That can happen if Emacs is dumpable
1248 but you decide to run `temacs -l loadup' and not dump. */
1249 if (INTEGERP (Vuser_login_name))
1250 init_editfns ();
1251 return Vuser_real_login_name;
1252 }
1253
1254 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1255 doc: /* Return the effective uid of Emacs.
1256 Value is an integer or a float, depending on the value. */)
1257 (void)
1258 {
1259 uid_t euid = geteuid ();
1260 return make_fixnum_or_float (euid);
1261 }
1262
1263 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1264 doc: /* Return the real uid of Emacs.
1265 Value is an integer or a float, depending on the value. */)
1266 (void)
1267 {
1268 uid_t uid = getuid ();
1269 return make_fixnum_or_float (uid);
1270 }
1271
1272 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1273 doc: /* Return the effective gid of Emacs.
1274 Value is an integer or a float, depending on the value. */)
1275 (void)
1276 {
1277 gid_t egid = getegid ();
1278 return make_fixnum_or_float (egid);
1279 }
1280
1281 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1282 doc: /* Return the real gid of Emacs.
1283 Value is an integer or a float, depending on the value. */)
1284 (void)
1285 {
1286 gid_t gid = getgid ();
1287 return make_fixnum_or_float (gid);
1288 }
1289
1290 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1291 doc: /* Return the full name of the user logged in, as a string.
1292 If the full name corresponding to Emacs's userid is not known,
1293 return "unknown".
1294
1295 If optional argument UID is an integer or float, return the full name
1296 of the user with that uid, or nil if there is no such user.
1297 If UID is a string, return the full name of the user with that login
1298 name, or nil if there is no such user. */)
1299 (Lisp_Object uid)
1300 {
1301 struct passwd *pw;
1302 register char *p, *q;
1303 Lisp_Object full;
1304
1305 if (NILP (uid))
1306 return Vuser_full_name;
1307 else if (NUMBERP (uid))
1308 {
1309 uid_t u;
1310 CONS_TO_INTEGER (uid, uid_t, u);
1311 block_input ();
1312 pw = getpwuid (u);
1313 unblock_input ();
1314 }
1315 else if (STRINGP (uid))
1316 {
1317 block_input ();
1318 pw = getpwnam (SSDATA (uid));
1319 unblock_input ();
1320 }
1321 else
1322 error ("Invalid UID specification");
1323
1324 if (!pw)
1325 return Qnil;
1326
1327 p = USER_FULL_NAME;
1328 /* Chop off everything after the first comma. */
1329 q = strchr (p, ',');
1330 full = make_string (p, q ? q - p : strlen (p));
1331
1332 #ifdef AMPERSAND_FULL_NAME
1333 p = SSDATA (full);
1334 q = strchr (p, '&');
1335 /* Substitute the login name for the &, upcasing the first character. */
1336 if (q)
1337 {
1338 register char *r;
1339 Lisp_Object login;
1340
1341 login = Fuser_login_name (make_number (pw->pw_uid));
1342 r = alloca (strlen (p) + SCHARS (login) + 1);
1343 memcpy (r, p, q - p);
1344 r[q - p] = 0;
1345 strcat (r, SSDATA (login));
1346 r[q - p] = upcase ((unsigned char) r[q - p]);
1347 strcat (r, q + 1);
1348 full = build_string (r);
1349 }
1350 #endif /* AMPERSAND_FULL_NAME */
1351
1352 return full;
1353 }
1354
1355 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1356 doc: /* Return the host name of the machine you are running on, as a string. */)
1357 (void)
1358 {
1359 return Vsystem_name;
1360 }
1361
1362 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1363 doc: /* Return the process ID of Emacs, as a number. */)
1364 (void)
1365 {
1366 pid_t pid = getpid ();
1367 return make_fixnum_or_float (pid);
1368 }
1369
1370 \f
1371
1372 #ifndef TIME_T_MIN
1373 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1374 #endif
1375 #ifndef TIME_T_MAX
1376 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1377 #endif
1378
1379 /* Report that a time value is out of range for Emacs. */
1380 void
1381 time_overflow (void)
1382 {
1383 error ("Specified time is not representable");
1384 }
1385
1386 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1387 static EMACS_INT
1388 hi_time (time_t t)
1389 {
1390 time_t hi = t >> 16;
1391
1392 /* Check for overflow, helping the compiler for common cases where
1393 no runtime check is needed, and taking care not to convert
1394 negative numbers to unsigned before comparing them. */
1395 if (! ((! TYPE_SIGNED (time_t)
1396 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1397 || MOST_NEGATIVE_FIXNUM <= hi)
1398 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1399 || hi <= MOST_POSITIVE_FIXNUM)))
1400 time_overflow ();
1401
1402 return hi;
1403 }
1404
1405 /* Return the bottom 16 bits of the time T. */
1406 static int
1407 lo_time (time_t t)
1408 {
1409 return t & ((1 << 16) - 1);
1410 }
1411
1412 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1413 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1414 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1415 HIGH has the most significant bits of the seconds, while LOW has the
1416 least significant 16 bits. USEC and PSEC are the microsecond and
1417 picosecond counts. */)
1418 (void)
1419 {
1420 return make_lisp_time (current_emacs_time ());
1421 }
1422
1423 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1424 0, 0, 0,
1425 doc: /* Return the current run time used by Emacs.
1426 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1427 style as (current-time).
1428
1429 On systems that can't determine the run time, `get-internal-run-time'
1430 does the same thing as `current-time'. */)
1431 (void)
1432 {
1433 #ifdef HAVE_GETRUSAGE
1434 struct rusage usage;
1435 time_t secs;
1436 int usecs;
1437
1438 if (getrusage (RUSAGE_SELF, &usage) < 0)
1439 /* This shouldn't happen. What action is appropriate? */
1440 xsignal0 (Qerror);
1441
1442 /* Sum up user time and system time. */
1443 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1444 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1445 if (usecs >= 1000000)
1446 {
1447 usecs -= 1000000;
1448 secs++;
1449 }
1450 return make_lisp_time (make_emacs_time (secs, usecs * 1000));
1451 #else /* ! HAVE_GETRUSAGE */
1452 #ifdef WINDOWSNT
1453 return w32_get_internal_run_time ();
1454 #else /* ! WINDOWSNT */
1455 return Fcurrent_time ();
1456 #endif /* WINDOWSNT */
1457 #endif /* HAVE_GETRUSAGE */
1458 }
1459 \f
1460
1461 /* Make a Lisp list that represents the time T with fraction TAIL. */
1462 static Lisp_Object
1463 make_time_tail (time_t t, Lisp_Object tail)
1464 {
1465 return Fcons (make_number (hi_time (t)),
1466 Fcons (make_number (lo_time (t)), tail));
1467 }
1468
1469 /* Make a Lisp list that represents the system time T. */
1470 static Lisp_Object
1471 make_time (time_t t)
1472 {
1473 return make_time_tail (t, Qnil);
1474 }
1475
1476 /* Make a Lisp list that represents the Emacs time T. T may be an
1477 invalid time, with a slightly negative tv_nsec value such as
1478 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1479 correspondingly negative picosecond count. */
1480 Lisp_Object
1481 make_lisp_time (EMACS_TIME t)
1482 {
1483 int ns = EMACS_NSECS (t);
1484 return make_time_tail (EMACS_SECS (t),
1485 list2 (make_number (ns / 1000),
1486 make_number (ns % 1000 * 1000)));
1487 }
1488
1489 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1490 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1491 Return true if successful. */
1492 static bool
1493 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1494 Lisp_Object *plow, Lisp_Object *pusec,
1495 Lisp_Object *ppsec)
1496 {
1497 if (CONSP (specified_time))
1498 {
1499 Lisp_Object low = XCDR (specified_time);
1500 Lisp_Object usec = make_number (0);
1501 Lisp_Object psec = make_number (0);
1502 if (CONSP (low))
1503 {
1504 Lisp_Object low_tail = XCDR (low);
1505 low = XCAR (low);
1506 if (CONSP (low_tail))
1507 {
1508 usec = XCAR (low_tail);
1509 low_tail = XCDR (low_tail);
1510 if (CONSP (low_tail))
1511 psec = XCAR (low_tail);
1512 }
1513 else if (!NILP (low_tail))
1514 usec = low_tail;
1515 }
1516
1517 *phigh = XCAR (specified_time);
1518 *plow = low;
1519 *pusec = usec;
1520 *ppsec = psec;
1521 return 1;
1522 }
1523
1524 return 0;
1525 }
1526
1527 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1528 list, generate the corresponding time value.
1529
1530 If RESULT is not null, store into *RESULT the converted time;
1531 this can fail if the converted time does not fit into EMACS_TIME.
1532 If *DRESULT is not null, store into *DRESULT the number of
1533 seconds since the start of the POSIX Epoch.
1534
1535 Return true if successful. */
1536 bool
1537 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1538 Lisp_Object psec,
1539 EMACS_TIME *result, double *dresult)
1540 {
1541 EMACS_INT hi, lo, us, ps;
1542 if (! (INTEGERP (high) && INTEGERP (low)
1543 && INTEGERP (usec) && INTEGERP (psec)))
1544 return 0;
1545 hi = XINT (high);
1546 lo = XINT (low);
1547 us = XINT (usec);
1548 ps = XINT (psec);
1549
1550 /* Normalize out-of-range lower-order components by carrying
1551 each overflow into the next higher-order component. */
1552 us += ps / 1000000 - (ps % 1000000 < 0);
1553 lo += us / 1000000 - (us % 1000000 < 0);
1554 hi += lo >> 16;
1555 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1556 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1557 lo &= (1 << 16) - 1;
1558
1559 if (result)
1560 {
1561 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1562 && hi <= TIME_T_MAX >> 16)
1563 {
1564 /* Return the greatest representable time that is not greater
1565 than the requested time. */
1566 time_t sec = hi;
1567 *result = make_emacs_time ((sec << 16) + lo, us * 1000 + ps / 1000);
1568 }
1569 else
1570 {
1571 /* Overflow in the highest-order component. */
1572 return 0;
1573 }
1574 }
1575
1576 if (dresult)
1577 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1578
1579 return 1;
1580 }
1581
1582 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1583 If SPECIFIED_TIME is nil, use the current time.
1584
1585 Round the time down to the nearest EMACS_TIME value.
1586 Return seconds since the Epoch.
1587 Signal an error if unsuccessful. */
1588 EMACS_TIME
1589 lisp_time_argument (Lisp_Object specified_time)
1590 {
1591 EMACS_TIME t;
1592 if (NILP (specified_time))
1593 t = current_emacs_time ();
1594 else
1595 {
1596 Lisp_Object high, low, usec, psec;
1597 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1598 && decode_time_components (high, low, usec, psec, &t, 0)))
1599 error ("Invalid time specification");
1600 }
1601 return t;
1602 }
1603
1604 /* Like lisp_time_argument, except decode only the seconds part,
1605 do not allow out-of-range time stamps, do not check the subseconds part,
1606 and always round down. */
1607 static time_t
1608 lisp_seconds_argument (Lisp_Object specified_time)
1609 {
1610 if (NILP (specified_time))
1611 return time (NULL);
1612 else
1613 {
1614 Lisp_Object high, low, usec, psec;
1615 EMACS_TIME t;
1616 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1617 && decode_time_components (high, low, make_number (0),
1618 make_number (0), &t, 0)))
1619 error ("Invalid time specification");
1620 return EMACS_SECS (t);
1621 }
1622 }
1623
1624 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1625 doc: /* Return the current time, as a float number of seconds since the epoch.
1626 If SPECIFIED-TIME is given, it is the time to convert to float
1627 instead of the current time. The argument should have the form
1628 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1629 you can use times from `current-time' and from `file-attributes'.
1630 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1631 considered obsolete.
1632
1633 WARNING: Since the result is floating point, it may not be exact.
1634 If precise time stamps are required, use either `current-time',
1635 or (if you need time as a string) `format-time-string'. */)
1636 (Lisp_Object specified_time)
1637 {
1638 double t;
1639 if (NILP (specified_time))
1640 {
1641 EMACS_TIME now = current_emacs_time ();
1642 t = EMACS_SECS (now) + EMACS_NSECS (now) / 1e9;
1643 }
1644 else
1645 {
1646 Lisp_Object high, low, usec, psec;
1647 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1648 && decode_time_components (high, low, usec, psec, 0, &t)))
1649 error ("Invalid time specification");
1650 }
1651 return make_float (t);
1652 }
1653
1654 /* Write information into buffer S of size MAXSIZE, according to the
1655 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1656 Default to Universal Time if UT, local time otherwise.
1657 Use NS as the number of nanoseconds in the %N directive.
1658 Return the number of bytes written, not including the terminating
1659 '\0'. If S is NULL, nothing will be written anywhere; so to
1660 determine how many bytes would be written, use NULL for S and
1661 ((size_t) -1) for MAXSIZE.
1662
1663 This function behaves like nstrftime, except it allows null
1664 bytes in FORMAT and it does not support nanoseconds. */
1665 static size_t
1666 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1667 size_t format_len, const struct tm *tp, bool ut, int ns)
1668 {
1669 size_t total = 0;
1670
1671 /* Loop through all the null-terminated strings in the format
1672 argument. Normally there's just one null-terminated string, but
1673 there can be arbitrarily many, concatenated together, if the
1674 format contains '\0' bytes. nstrftime stops at the first
1675 '\0' byte so we must invoke it separately for each such string. */
1676 for (;;)
1677 {
1678 size_t len;
1679 size_t result;
1680
1681 if (s)
1682 s[0] = '\1';
1683
1684 result = nstrftime (s, maxsize, format, tp, ut, ns);
1685
1686 if (s)
1687 {
1688 if (result == 0 && s[0] != '\0')
1689 return 0;
1690 s += result + 1;
1691 }
1692
1693 maxsize -= result + 1;
1694 total += result;
1695 len = strlen (format);
1696 if (len == format_len)
1697 return total;
1698 total++;
1699 format += len + 1;
1700 format_len -= len + 1;
1701 }
1702 }
1703
1704 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1705 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1706 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1707 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1708 is also still accepted.
1709 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1710 as Universal Time; nil means describe TIME in the local time zone.
1711 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1712 by text that describes the specified date and time in TIME:
1713
1714 %Y is the year, %y within the century, %C the century.
1715 %G is the year corresponding to the ISO week, %g within the century.
1716 %m is the numeric month.
1717 %b and %h are the locale's abbreviated month name, %B the full name.
1718 %d is the day of the month, zero-padded, %e is blank-padded.
1719 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1720 %a is the locale's abbreviated name of the day of week, %A the full name.
1721 %U is the week number starting on Sunday, %W starting on Monday,
1722 %V according to ISO 8601.
1723 %j is the day of the year.
1724
1725 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1726 only blank-padded, %l is like %I blank-padded.
1727 %p is the locale's equivalent of either AM or PM.
1728 %M is the minute.
1729 %S is the second.
1730 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1731 %Z is the time zone name, %z is the numeric form.
1732 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1733
1734 %c is the locale's date and time format.
1735 %x is the locale's "preferred" date format.
1736 %D is like "%m/%d/%y".
1737
1738 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1739 %X is the locale's "preferred" time format.
1740
1741 Finally, %n is a newline, %t is a tab, %% is a literal %.
1742
1743 Certain flags and modifiers are available with some format controls.
1744 The flags are `_', `-', `^' and `#'. For certain characters X,
1745 %_X is like %X, but padded with blanks; %-X is like %X,
1746 but without padding. %^X is like %X, but with all textual
1747 characters up-cased; %#X is like %X, but with letter-case of
1748 all textual characters reversed.
1749 %NX (where N stands for an integer) is like %X,
1750 but takes up at least N (a number) positions.
1751 The modifiers are `E' and `O'. For certain characters X,
1752 %EX is a locale's alternative version of %X;
1753 %OX is like %X, but uses the locale's number symbols.
1754
1755 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1756
1757 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1758 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1759 {
1760 EMACS_TIME t = lisp_time_argument (timeval);
1761 struct tm tm;
1762
1763 CHECK_STRING (format_string);
1764 format_string = code_convert_string_norecord (format_string,
1765 Vlocale_coding_system, 1);
1766 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1767 t, ! NILP (universal), &tm);
1768 }
1769
1770 static Lisp_Object
1771 format_time_string (char const *format, ptrdiff_t formatlen,
1772 EMACS_TIME t, bool ut, struct tm *tmp)
1773 {
1774 char buffer[4000];
1775 char *buf = buffer;
1776 ptrdiff_t size = sizeof buffer;
1777 size_t len;
1778 Lisp_Object bufstring;
1779 int ns = EMACS_NSECS (t);
1780 struct tm *tm;
1781 USE_SAFE_ALLOCA;
1782
1783 while (1)
1784 {
1785 time_t *taddr = emacs_secs_addr (&t);
1786 block_input ();
1787
1788 synchronize_system_time_locale ();
1789
1790 tm = ut ? gmtime (taddr) : localtime (taddr);
1791 if (! tm)
1792 {
1793 unblock_input ();
1794 time_overflow ();
1795 }
1796 *tmp = *tm;
1797
1798 buf[0] = '\1';
1799 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1800 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1801 break;
1802
1803 /* Buffer was too small, so make it bigger and try again. */
1804 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1805 unblock_input ();
1806 if (STRING_BYTES_BOUND <= len)
1807 string_overflow ();
1808 size = len + 1;
1809 buf = SAFE_ALLOCA (size);
1810 }
1811
1812 unblock_input ();
1813 bufstring = make_unibyte_string (buf, len);
1814 SAFE_FREE ();
1815 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1816 }
1817
1818 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1819 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1820 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1821 as from `current-time' and `file-attributes', or nil to use the
1822 current time. The obsolete form (HIGH . LOW) is also still accepted.
1823 The list has the following nine members: SEC is an integer between 0
1824 and 60; SEC is 60 for a leap second, which only some operating systems
1825 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1826 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1827 integer between 1 and 12. YEAR is an integer indicating the
1828 four-digit year. DOW is the day of week, an integer between 0 and 6,
1829 where 0 is Sunday. DST is t if daylight saving time is in effect,
1830 otherwise nil. ZONE is an integer indicating the number of seconds
1831 east of Greenwich. (Note that Common Lisp has different meanings for
1832 DOW and ZONE.) */)
1833 (Lisp_Object specified_time)
1834 {
1835 time_t time_spec = lisp_seconds_argument (specified_time);
1836 struct tm save_tm;
1837 struct tm *decoded_time;
1838 Lisp_Object list_args[9];
1839
1840 block_input ();
1841 decoded_time = localtime (&time_spec);
1842 if (decoded_time)
1843 save_tm = *decoded_time;
1844 unblock_input ();
1845 if (! (decoded_time
1846 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1847 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1848 time_overflow ();
1849 XSETFASTINT (list_args[0], save_tm.tm_sec);
1850 XSETFASTINT (list_args[1], save_tm.tm_min);
1851 XSETFASTINT (list_args[2], save_tm.tm_hour);
1852 XSETFASTINT (list_args[3], save_tm.tm_mday);
1853 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1854 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1855 cast below avoids overflow in int arithmetics. */
1856 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1857 XSETFASTINT (list_args[6], save_tm.tm_wday);
1858 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1859
1860 block_input ();
1861 decoded_time = gmtime (&time_spec);
1862 if (decoded_time == 0)
1863 list_args[8] = Qnil;
1864 else
1865 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1866 unblock_input ();
1867 return Flist (9, list_args);
1868 }
1869
1870 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1871 the result is representable as an int. Assume OFFSET is small and
1872 nonnegative. */
1873 static int
1874 check_tm_member (Lisp_Object obj, int offset)
1875 {
1876 EMACS_INT n;
1877 CHECK_NUMBER (obj);
1878 n = XINT (obj);
1879 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1880 time_overflow ();
1881 return n - offset;
1882 }
1883
1884 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1885 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1886 This is the reverse operation of `decode-time', which see.
1887 ZONE defaults to the current time zone rule. This can
1888 be a string or t (as from `set-time-zone-rule'), or it can be a list
1889 \(as from `current-time-zone') or an integer (as from `decode-time')
1890 applied without consideration for daylight saving time.
1891
1892 You can pass more than 7 arguments; then the first six arguments
1893 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1894 The intervening arguments are ignored.
1895 This feature lets (apply 'encode-time (decode-time ...)) work.
1896
1897 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1898 for example, a DAY of 0 means the day preceding the given month.
1899 Year numbers less than 100 are treated just like other year numbers.
1900 If you want them to stand for years in this century, you must do that yourself.
1901
1902 Years before 1970 are not guaranteed to work. On some systems,
1903 year values as low as 1901 do work.
1904
1905 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1906 (ptrdiff_t nargs, Lisp_Object *args)
1907 {
1908 time_t value;
1909 struct tm tm;
1910 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1911
1912 tm.tm_sec = check_tm_member (args[0], 0);
1913 tm.tm_min = check_tm_member (args[1], 0);
1914 tm.tm_hour = check_tm_member (args[2], 0);
1915 tm.tm_mday = check_tm_member (args[3], 0);
1916 tm.tm_mon = check_tm_member (args[4], 1);
1917 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1918 tm.tm_isdst = -1;
1919
1920 if (CONSP (zone))
1921 zone = XCAR (zone);
1922 if (NILP (zone))
1923 {
1924 block_input ();
1925 value = mktime (&tm);
1926 unblock_input ();
1927 }
1928 else
1929 {
1930 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1931 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1932 char *old_tzstring;
1933 const char *tzstring;
1934 USE_SAFE_ALLOCA;
1935
1936 if (EQ (zone, Qt))
1937 tzstring = "UTC0";
1938 else if (STRINGP (zone))
1939 tzstring = SSDATA (zone);
1940 else if (INTEGERP (zone))
1941 {
1942 EMACS_INT abszone = eabs (XINT (zone));
1943 EMACS_INT zone_hr = abszone / (60*60);
1944 int zone_min = (abszone/60) % 60;
1945 int zone_sec = abszone % 60;
1946 sprintf (tzbuf, tzbuf_format, "-" + (XINT (zone) < 0),
1947 zone_hr, zone_min, zone_sec);
1948 tzstring = tzbuf;
1949 }
1950 else
1951 error ("Invalid time zone specification");
1952
1953 old_tzstring = getenv ("TZ");
1954 if (old_tzstring)
1955 {
1956 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1957 old_tzstring = strcpy (buf, old_tzstring);
1958 }
1959
1960 block_input ();
1961
1962 /* Set TZ before calling mktime; merely adjusting mktime's returned
1963 value doesn't suffice, since that would mishandle leap seconds. */
1964 set_time_zone_rule (tzstring);
1965
1966 value = mktime (&tm);
1967
1968 set_time_zone_rule (old_tzstring);
1969 #ifdef LOCALTIME_CACHE
1970 tzset ();
1971 #endif
1972 unblock_input ();
1973 SAFE_FREE ();
1974 }
1975
1976 if (value == (time_t) -1)
1977 time_overflow ();
1978
1979 return make_time (value);
1980 }
1981
1982 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1983 doc: /* Return the current local time, as a human-readable string.
1984 Programs can use this function to decode a time,
1985 since the number of columns in each field is fixed
1986 if the year is in the range 1000-9999.
1987 The format is `Sun Sep 16 01:03:52 1973'.
1988 However, see also the functions `decode-time' and `format-time-string'
1989 which provide a much more powerful and general facility.
1990
1991 If SPECIFIED-TIME is given, it is a time to format instead of the
1992 current time. The argument should have the form (HIGH LOW . IGNORED).
1993 Thus, you can use times obtained from `current-time' and from
1994 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1995 but this is considered obsolete. */)
1996 (Lisp_Object specified_time)
1997 {
1998 time_t value = lisp_seconds_argument (specified_time);
1999 struct tm *tm;
2000 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2001 int len IF_LINT (= 0);
2002
2003 /* Convert to a string in ctime format, except without the trailing
2004 newline, and without the 4-digit year limit. Don't use asctime
2005 or ctime, as they might dump core if the year is outside the
2006 range -999 .. 9999. */
2007 block_input ();
2008 tm = localtime (&value);
2009 if (tm)
2010 {
2011 static char const wday_name[][4] =
2012 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2013 static char const mon_name[][4] =
2014 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2015 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2016 printmax_t year_base = TM_YEAR_BASE;
2017
2018 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2019 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2020 tm->tm_hour, tm->tm_min, tm->tm_sec,
2021 tm->tm_year + year_base);
2022 }
2023 unblock_input ();
2024 if (! tm)
2025 time_overflow ();
2026
2027 return make_unibyte_string (buf, len);
2028 }
2029
2030 /* Yield A - B, measured in seconds.
2031 This function is copied from the GNU C Library. */
2032 static int
2033 tm_diff (struct tm *a, struct tm *b)
2034 {
2035 /* Compute intervening leap days correctly even if year is negative.
2036 Take care to avoid int overflow in leap day calculations,
2037 but it's OK to assume that A and B are close to each other. */
2038 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2039 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2040 int a100 = a4 / 25 - (a4 % 25 < 0);
2041 int b100 = b4 / 25 - (b4 % 25 < 0);
2042 int a400 = a100 >> 2;
2043 int b400 = b100 >> 2;
2044 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2045 int years = a->tm_year - b->tm_year;
2046 int days = (365 * years + intervening_leap_days
2047 + (a->tm_yday - b->tm_yday));
2048 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2049 + (a->tm_min - b->tm_min))
2050 + (a->tm_sec - b->tm_sec));
2051 }
2052
2053 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2054 doc: /* Return the offset and name for the local time zone.
2055 This returns a list of the form (OFFSET NAME).
2056 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2057 A negative value means west of Greenwich.
2058 NAME is a string giving the name of the time zone.
2059 If SPECIFIED-TIME is given, the time zone offset is determined from it
2060 instead of using the current time. The argument should have the form
2061 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2062 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2063 have the form (HIGH . LOW), but this is considered obsolete.
2064
2065 Some operating systems cannot provide all this information to Emacs;
2066 in this case, `current-time-zone' returns a list containing nil for
2067 the data it can't find. */)
2068 (Lisp_Object specified_time)
2069 {
2070 EMACS_TIME value;
2071 int offset;
2072 struct tm *t;
2073 struct tm localtm;
2074 Lisp_Object zone_offset, zone_name;
2075
2076 zone_offset = Qnil;
2077 value = make_emacs_time (lisp_seconds_argument (specified_time), 0);
2078 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2079 block_input ();
2080 t = gmtime (emacs_secs_addr (&value));
2081 if (t)
2082 offset = tm_diff (&localtm, t);
2083 unblock_input ();
2084
2085 if (t)
2086 {
2087 zone_offset = make_number (offset);
2088 if (SCHARS (zone_name) == 0)
2089 {
2090 /* No local time zone name is available; use "+-NNNN" instead. */
2091 int m = offset / 60;
2092 int am = offset < 0 ? - m : m;
2093 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2094 zone_name = make_formatted_string (buf, "%c%02d%02d",
2095 (offset < 0 ? '-' : '+'),
2096 am / 60, am % 60);
2097 }
2098 }
2099
2100 return list2 (zone_offset, zone_name);
2101 }
2102
2103 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2104 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2105 If TZ is nil, use implementation-defined default time zone information.
2106 If TZ is t, use Universal Time.
2107
2108 Instead of calling this function, you typically want (setenv "TZ" TZ).
2109 That changes both the environment of the Emacs process and the
2110 variable `process-environment', whereas `set-time-zone-rule' affects
2111 only the former. */)
2112 (Lisp_Object tz)
2113 {
2114 const char *tzstring;
2115
2116 if (! (NILP (tz) || EQ (tz, Qt)))
2117 CHECK_STRING (tz);
2118
2119 if (NILP (tz))
2120 tzstring = initial_tz;
2121 else if (EQ (tz, Qt))
2122 tzstring = "UTC0";
2123 else
2124 tzstring = SSDATA (tz);
2125
2126 block_input ();
2127 set_time_zone_rule (tzstring);
2128 unblock_input ();
2129
2130 return Qnil;
2131 }
2132
2133 /* Set the local time zone rule to TZSTRING.
2134
2135 This function is not thread-safe, partly because putenv, unsetenv
2136 and tzset are not, and partly because of the static storage it
2137 updates. Other threads that invoke localtime etc. may be adversely
2138 affected while this function is executing. */
2139
2140 void
2141 set_time_zone_rule (const char *tzstring)
2142 {
2143 /* A buffer holding a string of the form "TZ=value", intended
2144 to be part of the environment. */
2145 static char *tzvalbuf;
2146 static ptrdiff_t tzvalbufsize;
2147
2148 int tzeqlen = sizeof "TZ=" - 1;
2149
2150 #ifdef LOCALTIME_CACHE
2151 /* These two values are known to load tz files in buggy implementations,
2152 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2153 Their values shouldn't matter in non-buggy implementations.
2154 We don't use string literals for these strings,
2155 since if a string in the environment is in readonly
2156 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2157 See Sun bugs 1113095 and 1114114, ``Timezone routines
2158 improperly modify environment''. */
2159
2160 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2161 = { "TZ=GMT+0", "TZ=GMT+1" };
2162
2163 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2164 "US/Pacific" that loads a tz file, then changes to a value like
2165 "XXX0" that does not load a tz file, and then changes back to
2166 its original value, the last change is (incorrectly) ignored.
2167 Also, if TZ changes twice in succession to values that do
2168 not load a tz file, tzset can dump core (see Sun bug#1225179).
2169 The following code works around these bugs. */
2170
2171 if (tzstring)
2172 {
2173 /* Temporarily set TZ to a value that loads a tz file
2174 and that differs from tzstring. */
2175 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2176 xputenv (set_time_zone_rule_tz[eq0]);
2177 }
2178 else
2179 {
2180 /* The implied tzstring is unknown, so temporarily set TZ to
2181 two different values that each load a tz file. */
2182 xputenv (set_time_zone_rule_tz[0]);
2183 tzset ();
2184 xputenv (set_time_zone_rule_tz[1]);
2185 }
2186 tzset ();
2187 tzvalbuf_in_environ = 0;
2188 #endif
2189
2190 if (!tzstring)
2191 {
2192 unsetenv ("TZ");
2193 tzvalbuf_in_environ = 0;
2194 }
2195 else
2196 {
2197 ptrdiff_t tzstringlen = strlen (tzstring);
2198
2199 if (tzvalbufsize <= tzeqlen + tzstringlen)
2200 {
2201 unsetenv ("TZ");
2202 tzvalbuf_in_environ = 0;
2203 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2204 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2205 memcpy (tzvalbuf, "TZ=", tzeqlen);
2206 }
2207
2208 strcpy (tzvalbuf + tzeqlen, tzstring);
2209
2210 if (!tzvalbuf_in_environ)
2211 {
2212 xputenv (tzvalbuf);
2213 tzvalbuf_in_environ = 1;
2214 }
2215 }
2216
2217 #ifdef LOCALTIME_CACHE
2218 tzset ();
2219 #endif
2220 }
2221 \f
2222 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2223 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2224 type of object is Lisp_String). INHERIT is passed to
2225 INSERT_FROM_STRING_FUNC as the last argument. */
2226
2227 static void
2228 general_insert_function (void (*insert_func)
2229 (const char *, ptrdiff_t),
2230 void (*insert_from_string_func)
2231 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2232 ptrdiff_t, ptrdiff_t, bool),
2233 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2234 {
2235 ptrdiff_t argnum;
2236 Lisp_Object val;
2237
2238 for (argnum = 0; argnum < nargs; argnum++)
2239 {
2240 val = args[argnum];
2241 if (CHARACTERP (val))
2242 {
2243 int c = XFASTINT (val);
2244 unsigned char str[MAX_MULTIBYTE_LENGTH];
2245 int len;
2246
2247 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2248 len = CHAR_STRING (c, str);
2249 else
2250 {
2251 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2252 len = 1;
2253 }
2254 (*insert_func) ((char *) str, len);
2255 }
2256 else if (STRINGP (val))
2257 {
2258 (*insert_from_string_func) (val, 0, 0,
2259 SCHARS (val),
2260 SBYTES (val),
2261 inherit);
2262 }
2263 else
2264 wrong_type_argument (Qchar_or_string_p, val);
2265 }
2266 }
2267
2268 void
2269 insert1 (Lisp_Object arg)
2270 {
2271 Finsert (1, &arg);
2272 }
2273
2274
2275 /* Callers passing one argument to Finsert need not gcpro the
2276 argument "array", since the only element of the array will
2277 not be used after calling insert or insert_from_string, so
2278 we don't care if it gets trashed. */
2279
2280 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2281 doc: /* Insert the arguments, either strings or characters, at point.
2282 Point and before-insertion markers move forward to end up
2283 after the inserted text.
2284 Any other markers at the point of insertion remain before the text.
2285
2286 If the current buffer is multibyte, unibyte strings are converted
2287 to multibyte for insertion (see `string-make-multibyte').
2288 If the current buffer is unibyte, multibyte strings are converted
2289 to unibyte for insertion (see `string-make-unibyte').
2290
2291 When operating on binary data, it may be necessary to preserve the
2292 original bytes of a unibyte string when inserting it into a multibyte
2293 buffer; to accomplish this, apply `string-as-multibyte' to the string
2294 and insert the result.
2295
2296 usage: (insert &rest ARGS) */)
2297 (ptrdiff_t nargs, Lisp_Object *args)
2298 {
2299 general_insert_function (insert, insert_from_string, 0, nargs, args);
2300 return Qnil;
2301 }
2302
2303 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2304 0, MANY, 0,
2305 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2306 Point and before-insertion markers move forward to end up
2307 after the inserted text.
2308 Any other markers at the point of insertion remain before the text.
2309
2310 If the current buffer is multibyte, unibyte strings are converted
2311 to multibyte for insertion (see `unibyte-char-to-multibyte').
2312 If the current buffer is unibyte, multibyte strings are converted
2313 to unibyte for insertion.
2314
2315 usage: (insert-and-inherit &rest ARGS) */)
2316 (ptrdiff_t nargs, Lisp_Object *args)
2317 {
2318 general_insert_function (insert_and_inherit, insert_from_string, 1,
2319 nargs, args);
2320 return Qnil;
2321 }
2322
2323 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2324 doc: /* Insert strings or characters at point, relocating markers after the text.
2325 Point and markers move forward to end up after the inserted text.
2326
2327 If the current buffer is multibyte, unibyte strings are converted
2328 to multibyte for insertion (see `unibyte-char-to-multibyte').
2329 If the current buffer is unibyte, multibyte strings are converted
2330 to unibyte for insertion.
2331
2332 usage: (insert-before-markers &rest ARGS) */)
2333 (ptrdiff_t nargs, Lisp_Object *args)
2334 {
2335 general_insert_function (insert_before_markers,
2336 insert_from_string_before_markers, 0,
2337 nargs, args);
2338 return Qnil;
2339 }
2340
2341 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2342 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2343 doc: /* Insert text at point, relocating markers and inheriting properties.
2344 Point and markers move forward to end up after the inserted text.
2345
2346 If the current buffer is multibyte, unibyte strings are converted
2347 to multibyte for insertion (see `unibyte-char-to-multibyte').
2348 If the current buffer is unibyte, multibyte strings are converted
2349 to unibyte for insertion.
2350
2351 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2352 (ptrdiff_t nargs, Lisp_Object *args)
2353 {
2354 general_insert_function (insert_before_markers_and_inherit,
2355 insert_from_string_before_markers, 1,
2356 nargs, args);
2357 return Qnil;
2358 }
2359 \f
2360 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2361 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2362 (prefix-numeric-value current-prefix-arg)\
2363 t))",
2364 doc: /* Insert COUNT copies of CHARACTER.
2365 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2366 of these ways:
2367
2368 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2369 Completion is available; if you type a substring of the name
2370 preceded by an asterisk `*', Emacs shows all names which include
2371 that substring, not necessarily at the beginning of the name.
2372
2373 - As a hexadecimal code point, e.g. 263A. Note that code points in
2374 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2375 the Unicode code space).
2376
2377 - As a code point with a radix specified with #, e.g. #o21430
2378 (octal), #x2318 (hex), or #10r8984 (decimal).
2379
2380 If called interactively, COUNT is given by the prefix argument. If
2381 omitted or nil, it defaults to 1.
2382
2383 Inserting the character(s) relocates point and before-insertion
2384 markers in the same ways as the function `insert'.
2385
2386 The optional third argument INHERIT, if non-nil, says to inherit text
2387 properties from adjoining text, if those properties are sticky. If
2388 called interactively, INHERIT is t. */)
2389 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2390 {
2391 int i, stringlen;
2392 register ptrdiff_t n;
2393 int c, len;
2394 unsigned char str[MAX_MULTIBYTE_LENGTH];
2395 char string[4000];
2396
2397 CHECK_CHARACTER (character);
2398 if (NILP (count))
2399 XSETFASTINT (count, 1);
2400 CHECK_NUMBER (count);
2401 c = XFASTINT (character);
2402
2403 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2404 len = CHAR_STRING (c, str);
2405 else
2406 str[0] = c, len = 1;
2407 if (XINT (count) <= 0)
2408 return Qnil;
2409 if (BUF_BYTES_MAX / len < XINT (count))
2410 buffer_overflow ();
2411 n = XINT (count) * len;
2412 stringlen = min (n, sizeof string - sizeof string % len);
2413 for (i = 0; i < stringlen; i++)
2414 string[i] = str[i % len];
2415 while (n > stringlen)
2416 {
2417 QUIT;
2418 if (!NILP (inherit))
2419 insert_and_inherit (string, stringlen);
2420 else
2421 insert (string, stringlen);
2422 n -= stringlen;
2423 }
2424 if (!NILP (inherit))
2425 insert_and_inherit (string, n);
2426 else
2427 insert (string, n);
2428 return Qnil;
2429 }
2430
2431 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2432 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2433 Both arguments are required.
2434 BYTE is a number of the range 0..255.
2435
2436 If BYTE is 128..255 and the current buffer is multibyte, the
2437 corresponding eight-bit character is inserted.
2438
2439 Point, and before-insertion markers, are relocated as in the function `insert'.
2440 The optional third arg INHERIT, if non-nil, says to inherit text properties
2441 from adjoining text, if those properties are sticky. */)
2442 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2443 {
2444 CHECK_NUMBER (byte);
2445 if (XINT (byte) < 0 || XINT (byte) > 255)
2446 args_out_of_range_3 (byte, make_number (0), make_number (255));
2447 if (XINT (byte) >= 128
2448 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2449 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2450 return Finsert_char (byte, count, inherit);
2451 }
2452
2453 \f
2454 /* Making strings from buffer contents. */
2455
2456 /* Return a Lisp_String containing the text of the current buffer from
2457 START to END. If text properties are in use and the current buffer
2458 has properties in the range specified, the resulting string will also
2459 have them, if PROPS is true.
2460
2461 We don't want to use plain old make_string here, because it calls
2462 make_uninit_string, which can cause the buffer arena to be
2463 compacted. make_string has no way of knowing that the data has
2464 been moved, and thus copies the wrong data into the string. This
2465 doesn't effect most of the other users of make_string, so it should
2466 be left as is. But we should use this function when conjuring
2467 buffer substrings. */
2468
2469 Lisp_Object
2470 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2471 {
2472 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2473 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2474
2475 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2476 }
2477
2478 /* Return a Lisp_String containing the text of the current buffer from
2479 START / START_BYTE to END / END_BYTE.
2480
2481 If text properties are in use and the current buffer
2482 has properties in the range specified, the resulting string will also
2483 have them, if PROPS is true.
2484
2485 We don't want to use plain old make_string here, because it calls
2486 make_uninit_string, which can cause the buffer arena to be
2487 compacted. make_string has no way of knowing that the data has
2488 been moved, and thus copies the wrong data into the string. This
2489 doesn't effect most of the other users of make_string, so it should
2490 be left as is. But we should use this function when conjuring
2491 buffer substrings. */
2492
2493 Lisp_Object
2494 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2495 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2496 {
2497 Lisp_Object result, tem, tem1;
2498
2499 if (start < GPT && GPT < end)
2500 move_gap_both (start, start_byte);
2501
2502 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2503 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2504 else
2505 result = make_uninit_string (end - start);
2506 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2507
2508 /* If desired, update and copy the text properties. */
2509 if (props)
2510 {
2511 update_buffer_properties (start, end);
2512
2513 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2514 tem1 = Ftext_properties_at (make_number (start), Qnil);
2515
2516 if (XINT (tem) != end || !NILP (tem1))
2517 copy_intervals_to_string (result, current_buffer, start,
2518 end - start);
2519 }
2520
2521 return result;
2522 }
2523
2524 /* Call Vbuffer_access_fontify_functions for the range START ... END
2525 in the current buffer, if necessary. */
2526
2527 static void
2528 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2529 {
2530 /* If this buffer has some access functions,
2531 call them, specifying the range of the buffer being accessed. */
2532 if (!NILP (Vbuffer_access_fontify_functions))
2533 {
2534 Lisp_Object args[3];
2535 Lisp_Object tem;
2536
2537 args[0] = Qbuffer_access_fontify_functions;
2538 XSETINT (args[1], start);
2539 XSETINT (args[2], end);
2540
2541 /* But don't call them if we can tell that the work
2542 has already been done. */
2543 if (!NILP (Vbuffer_access_fontified_property))
2544 {
2545 tem = Ftext_property_any (args[1], args[2],
2546 Vbuffer_access_fontified_property,
2547 Qnil, Qnil);
2548 if (! NILP (tem))
2549 Frun_hook_with_args (3, args);
2550 }
2551 else
2552 Frun_hook_with_args (3, args);
2553 }
2554 }
2555
2556 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2557 doc: /* Return the contents of part of the current buffer as a string.
2558 The two arguments START and END are character positions;
2559 they can be in either order.
2560 The string returned is multibyte if the buffer is multibyte.
2561
2562 This function copies the text properties of that part of the buffer
2563 into the result string; if you don't want the text properties,
2564 use `buffer-substring-no-properties' instead. */)
2565 (Lisp_Object start, Lisp_Object end)
2566 {
2567 register ptrdiff_t b, e;
2568
2569 validate_region (&start, &end);
2570 b = XINT (start);
2571 e = XINT (end);
2572
2573 return make_buffer_string (b, e, 1);
2574 }
2575
2576 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2577 Sbuffer_substring_no_properties, 2, 2, 0,
2578 doc: /* Return the characters of part of the buffer, without the text properties.
2579 The two arguments START and END are character positions;
2580 they can be in either order. */)
2581 (Lisp_Object start, Lisp_Object end)
2582 {
2583 register ptrdiff_t b, e;
2584
2585 validate_region (&start, &end);
2586 b = XINT (start);
2587 e = XINT (end);
2588
2589 return make_buffer_string (b, e, 0);
2590 }
2591
2592 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2593 doc: /* Return the contents of the current buffer as a string.
2594 If narrowing is in effect, this function returns only the visible part
2595 of the buffer. */)
2596 (void)
2597 {
2598 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2599 }
2600
2601 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2602 1, 3, 0,
2603 doc: /* Insert before point a substring of the contents of BUFFER.
2604 BUFFER may be a buffer or a buffer name.
2605 Arguments START and END are character positions specifying the substring.
2606 They default to the values of (point-min) and (point-max) in BUFFER. */)
2607 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2608 {
2609 register EMACS_INT b, e, temp;
2610 register struct buffer *bp, *obuf;
2611 Lisp_Object buf;
2612
2613 buf = Fget_buffer (buffer);
2614 if (NILP (buf))
2615 nsberror (buffer);
2616 bp = XBUFFER (buf);
2617 if (!BUFFER_LIVE_P (bp))
2618 error ("Selecting deleted buffer");
2619
2620 if (NILP (start))
2621 b = BUF_BEGV (bp);
2622 else
2623 {
2624 CHECK_NUMBER_COERCE_MARKER (start);
2625 b = XINT (start);
2626 }
2627 if (NILP (end))
2628 e = BUF_ZV (bp);
2629 else
2630 {
2631 CHECK_NUMBER_COERCE_MARKER (end);
2632 e = XINT (end);
2633 }
2634
2635 if (b > e)
2636 temp = b, b = e, e = temp;
2637
2638 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2639 args_out_of_range (start, end);
2640
2641 obuf = current_buffer;
2642 set_buffer_internal_1 (bp);
2643 update_buffer_properties (b, e);
2644 set_buffer_internal_1 (obuf);
2645
2646 insert_from_buffer (bp, b, e - b, 0);
2647 return Qnil;
2648 }
2649
2650 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2651 6, 6, 0,
2652 doc: /* Compare two substrings of two buffers; return result as number.
2653 Return -N if first string is less after N-1 chars, +N if first string is
2654 greater after N-1 chars, or 0 if strings match. Each substring is
2655 represented as three arguments: BUFFER, START and END. That makes six
2656 args in all, three for each substring.
2657
2658 The value of `case-fold-search' in the current buffer
2659 determines whether case is significant or ignored. */)
2660 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2661 {
2662 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2663 register struct buffer *bp1, *bp2;
2664 register Lisp_Object trt
2665 = (!NILP (BVAR (current_buffer, case_fold_search))
2666 ? BVAR (current_buffer, case_canon_table) : Qnil);
2667 ptrdiff_t chars = 0;
2668 ptrdiff_t i1, i2, i1_byte, i2_byte;
2669
2670 /* Find the first buffer and its substring. */
2671
2672 if (NILP (buffer1))
2673 bp1 = current_buffer;
2674 else
2675 {
2676 Lisp_Object buf1;
2677 buf1 = Fget_buffer (buffer1);
2678 if (NILP (buf1))
2679 nsberror (buffer1);
2680 bp1 = XBUFFER (buf1);
2681 if (!BUFFER_LIVE_P (bp1))
2682 error ("Selecting deleted buffer");
2683 }
2684
2685 if (NILP (start1))
2686 begp1 = BUF_BEGV (bp1);
2687 else
2688 {
2689 CHECK_NUMBER_COERCE_MARKER (start1);
2690 begp1 = XINT (start1);
2691 }
2692 if (NILP (end1))
2693 endp1 = BUF_ZV (bp1);
2694 else
2695 {
2696 CHECK_NUMBER_COERCE_MARKER (end1);
2697 endp1 = XINT (end1);
2698 }
2699
2700 if (begp1 > endp1)
2701 temp = begp1, begp1 = endp1, endp1 = temp;
2702
2703 if (!(BUF_BEGV (bp1) <= begp1
2704 && begp1 <= endp1
2705 && endp1 <= BUF_ZV (bp1)))
2706 args_out_of_range (start1, end1);
2707
2708 /* Likewise for second substring. */
2709
2710 if (NILP (buffer2))
2711 bp2 = current_buffer;
2712 else
2713 {
2714 Lisp_Object buf2;
2715 buf2 = Fget_buffer (buffer2);
2716 if (NILP (buf2))
2717 nsberror (buffer2);
2718 bp2 = XBUFFER (buf2);
2719 if (!BUFFER_LIVE_P (bp2))
2720 error ("Selecting deleted buffer");
2721 }
2722
2723 if (NILP (start2))
2724 begp2 = BUF_BEGV (bp2);
2725 else
2726 {
2727 CHECK_NUMBER_COERCE_MARKER (start2);
2728 begp2 = XINT (start2);
2729 }
2730 if (NILP (end2))
2731 endp2 = BUF_ZV (bp2);
2732 else
2733 {
2734 CHECK_NUMBER_COERCE_MARKER (end2);
2735 endp2 = XINT (end2);
2736 }
2737
2738 if (begp2 > endp2)
2739 temp = begp2, begp2 = endp2, endp2 = temp;
2740
2741 if (!(BUF_BEGV (bp2) <= begp2
2742 && begp2 <= endp2
2743 && endp2 <= BUF_ZV (bp2)))
2744 args_out_of_range (start2, end2);
2745
2746 i1 = begp1;
2747 i2 = begp2;
2748 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2749 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2750
2751 while (i1 < endp1 && i2 < endp2)
2752 {
2753 /* When we find a mismatch, we must compare the
2754 characters, not just the bytes. */
2755 int c1, c2;
2756
2757 QUIT;
2758
2759 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2760 {
2761 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2762 BUF_INC_POS (bp1, i1_byte);
2763 i1++;
2764 }
2765 else
2766 {
2767 c1 = BUF_FETCH_BYTE (bp1, i1);
2768 MAKE_CHAR_MULTIBYTE (c1);
2769 i1++;
2770 }
2771
2772 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2773 {
2774 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2775 BUF_INC_POS (bp2, i2_byte);
2776 i2++;
2777 }
2778 else
2779 {
2780 c2 = BUF_FETCH_BYTE (bp2, i2);
2781 MAKE_CHAR_MULTIBYTE (c2);
2782 i2++;
2783 }
2784
2785 if (!NILP (trt))
2786 {
2787 c1 = char_table_translate (trt, c1);
2788 c2 = char_table_translate (trt, c2);
2789 }
2790 if (c1 < c2)
2791 return make_number (- 1 - chars);
2792 if (c1 > c2)
2793 return make_number (chars + 1);
2794
2795 chars++;
2796 }
2797
2798 /* The strings match as far as they go.
2799 If one is shorter, that one is less. */
2800 if (chars < endp1 - begp1)
2801 return make_number (chars + 1);
2802 else if (chars < endp2 - begp2)
2803 return make_number (- chars - 1);
2804
2805 /* Same length too => they are equal. */
2806 return make_number (0);
2807 }
2808 \f
2809 static Lisp_Object
2810 subst_char_in_region_unwind (Lisp_Object arg)
2811 {
2812 bset_undo_list (current_buffer, arg);
2813 return arg;
2814 }
2815
2816 static Lisp_Object
2817 subst_char_in_region_unwind_1 (Lisp_Object arg)
2818 {
2819 bset_filename (current_buffer, arg);
2820 return arg;
2821 }
2822
2823 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2824 Ssubst_char_in_region, 4, 5, 0,
2825 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2826 If optional arg NOUNDO is non-nil, don't record this change for undo
2827 and don't mark the buffer as really changed.
2828 Both characters must have the same length of multi-byte form. */)
2829 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2830 {
2831 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2832 /* Keep track of the first change in the buffer:
2833 if 0 we haven't found it yet.
2834 if < 0 we've found it and we've run the before-change-function.
2835 if > 0 we've actually performed it and the value is its position. */
2836 ptrdiff_t changed = 0;
2837 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2838 unsigned char *p;
2839 ptrdiff_t count = SPECPDL_INDEX ();
2840 #define COMBINING_NO 0
2841 #define COMBINING_BEFORE 1
2842 #define COMBINING_AFTER 2
2843 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2844 int maybe_byte_combining = COMBINING_NO;
2845 ptrdiff_t last_changed = 0;
2846 bool multibyte_p
2847 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2848 int fromc, toc;
2849
2850 restart:
2851
2852 validate_region (&start, &end);
2853 CHECK_CHARACTER (fromchar);
2854 CHECK_CHARACTER (tochar);
2855 fromc = XFASTINT (fromchar);
2856 toc = XFASTINT (tochar);
2857
2858 if (multibyte_p)
2859 {
2860 len = CHAR_STRING (fromc, fromstr);
2861 if (CHAR_STRING (toc, tostr) != len)
2862 error ("Characters in `subst-char-in-region' have different byte-lengths");
2863 if (!ASCII_BYTE_P (*tostr))
2864 {
2865 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2866 complete multibyte character, it may be combined with the
2867 after bytes. If it is in the range 0xA0..0xFF, it may be
2868 combined with the before and after bytes. */
2869 if (!CHAR_HEAD_P (*tostr))
2870 maybe_byte_combining = COMBINING_BOTH;
2871 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2872 maybe_byte_combining = COMBINING_AFTER;
2873 }
2874 }
2875 else
2876 {
2877 len = 1;
2878 fromstr[0] = fromc;
2879 tostr[0] = toc;
2880 }
2881
2882 pos = XINT (start);
2883 pos_byte = CHAR_TO_BYTE (pos);
2884 stop = CHAR_TO_BYTE (XINT (end));
2885 end_byte = stop;
2886
2887 /* If we don't want undo, turn off putting stuff on the list.
2888 That's faster than getting rid of things,
2889 and it prevents even the entry for a first change.
2890 Also inhibit locking the file. */
2891 if (!changed && !NILP (noundo))
2892 {
2893 record_unwind_protect (subst_char_in_region_unwind,
2894 BVAR (current_buffer, undo_list));
2895 bset_undo_list (current_buffer, Qt);
2896 /* Don't do file-locking. */
2897 record_unwind_protect (subst_char_in_region_unwind_1,
2898 BVAR (current_buffer, filename));
2899 bset_filename (current_buffer, Qnil);
2900 }
2901
2902 if (pos_byte < GPT_BYTE)
2903 stop = min (stop, GPT_BYTE);
2904 while (1)
2905 {
2906 ptrdiff_t pos_byte_next = pos_byte;
2907
2908 if (pos_byte >= stop)
2909 {
2910 if (pos_byte >= end_byte) break;
2911 stop = end_byte;
2912 }
2913 p = BYTE_POS_ADDR (pos_byte);
2914 if (multibyte_p)
2915 INC_POS (pos_byte_next);
2916 else
2917 ++pos_byte_next;
2918 if (pos_byte_next - pos_byte == len
2919 && p[0] == fromstr[0]
2920 && (len == 1
2921 || (p[1] == fromstr[1]
2922 && (len == 2 || (p[2] == fromstr[2]
2923 && (len == 3 || p[3] == fromstr[3]))))))
2924 {
2925 if (changed < 0)
2926 /* We've already seen this and run the before-change-function;
2927 this time we only need to record the actual position. */
2928 changed = pos;
2929 else if (!changed)
2930 {
2931 changed = -1;
2932 modify_region_1 (pos, XINT (end), false);
2933
2934 if (! NILP (noundo))
2935 {
2936 if (MODIFF - 1 == SAVE_MODIFF)
2937 SAVE_MODIFF++;
2938 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2939 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2940 }
2941
2942 /* The before-change-function may have moved the gap
2943 or even modified the buffer so we should start over. */
2944 goto restart;
2945 }
2946
2947 /* Take care of the case where the new character
2948 combines with neighboring bytes. */
2949 if (maybe_byte_combining
2950 && (maybe_byte_combining == COMBINING_AFTER
2951 ? (pos_byte_next < Z_BYTE
2952 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2953 : ((pos_byte_next < Z_BYTE
2954 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2955 || (pos_byte > BEG_BYTE
2956 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2957 {
2958 Lisp_Object tem, string;
2959
2960 struct gcpro gcpro1;
2961
2962 tem = BVAR (current_buffer, undo_list);
2963 GCPRO1 (tem);
2964
2965 /* Make a multibyte string containing this single character. */
2966 string = make_multibyte_string ((char *) tostr, 1, len);
2967 /* replace_range is less efficient, because it moves the gap,
2968 but it handles combining correctly. */
2969 replace_range (pos, pos + 1, string,
2970 0, 0, 1);
2971 pos_byte_next = CHAR_TO_BYTE (pos);
2972 if (pos_byte_next > pos_byte)
2973 /* Before combining happened. We should not increment
2974 POS. So, to cancel the later increment of POS,
2975 decrease it now. */
2976 pos--;
2977 else
2978 INC_POS (pos_byte_next);
2979
2980 if (! NILP (noundo))
2981 bset_undo_list (current_buffer, tem);
2982
2983 UNGCPRO;
2984 }
2985 else
2986 {
2987 if (NILP (noundo))
2988 record_change (pos, 1);
2989 for (i = 0; i < len; i++) *p++ = tostr[i];
2990 }
2991 last_changed = pos + 1;
2992 }
2993 pos_byte = pos_byte_next;
2994 pos++;
2995 }
2996
2997 if (changed > 0)
2998 {
2999 signal_after_change (changed,
3000 last_changed - changed, last_changed - changed);
3001 update_compositions (changed, last_changed, CHECK_ALL);
3002 }
3003
3004 unbind_to (count, Qnil);
3005 return Qnil;
3006 }
3007
3008
3009 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3010 Lisp_Object);
3011
3012 /* Helper function for Ftranslate_region_internal.
3013
3014 Check if a character sequence at POS (POS_BYTE) matches an element
3015 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3016 element is found, return it. Otherwise return Qnil. */
3017
3018 static Lisp_Object
3019 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3020 Lisp_Object val)
3021 {
3022 int buf_size = 16, buf_used = 0;
3023 int *buf = alloca (sizeof (int) * buf_size);
3024
3025 for (; CONSP (val); val = XCDR (val))
3026 {
3027 Lisp_Object elt;
3028 ptrdiff_t len, i;
3029
3030 elt = XCAR (val);
3031 if (! CONSP (elt))
3032 continue;
3033 elt = XCAR (elt);
3034 if (! VECTORP (elt))
3035 continue;
3036 len = ASIZE (elt);
3037 if (len <= end - pos)
3038 {
3039 for (i = 0; i < len; i++)
3040 {
3041 if (buf_used <= i)
3042 {
3043 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3044 int len1;
3045
3046 if (buf_used == buf_size)
3047 {
3048 int *newbuf;
3049
3050 buf_size += 16;
3051 newbuf = alloca (sizeof (int) * buf_size);
3052 memcpy (newbuf, buf, sizeof (int) * buf_used);
3053 buf = newbuf;
3054 }
3055 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3056 pos_byte += len1;
3057 }
3058 if (XINT (AREF (elt, i)) != buf[i])
3059 break;
3060 }
3061 if (i == len)
3062 return XCAR (val);
3063 }
3064 }
3065 return Qnil;
3066 }
3067
3068
3069 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3070 Stranslate_region_internal, 3, 3, 0,
3071 doc: /* Internal use only.
3072 From START to END, translate characters according to TABLE.
3073 TABLE is a string or a char-table; the Nth character in it is the
3074 mapping for the character with code N.
3075 It returns the number of characters changed. */)
3076 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3077 {
3078 register unsigned char *tt; /* Trans table. */
3079 register int nc; /* New character. */
3080 int cnt; /* Number of changes made. */
3081 ptrdiff_t size; /* Size of translate table. */
3082 ptrdiff_t pos, pos_byte, end_pos;
3083 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3084 bool string_multibyte IF_LINT (= 0);
3085
3086 validate_region (&start, &end);
3087 if (CHAR_TABLE_P (table))
3088 {
3089 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3090 error ("Not a translation table");
3091 size = MAX_CHAR;
3092 tt = NULL;
3093 }
3094 else
3095 {
3096 CHECK_STRING (table);
3097
3098 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3099 table = string_make_unibyte (table);
3100 string_multibyte = SCHARS (table) < SBYTES (table);
3101 size = SBYTES (table);
3102 tt = SDATA (table);
3103 }
3104
3105 pos = XINT (start);
3106 pos_byte = CHAR_TO_BYTE (pos);
3107 end_pos = XINT (end);
3108 modify_region_1 (pos, end_pos, false);
3109
3110 cnt = 0;
3111 for (; pos < end_pos; )
3112 {
3113 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3114 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3115 int len, str_len;
3116 int oc;
3117 Lisp_Object val;
3118
3119 if (multibyte)
3120 oc = STRING_CHAR_AND_LENGTH (p, len);
3121 else
3122 oc = *p, len = 1;
3123 if (oc < size)
3124 {
3125 if (tt)
3126 {
3127 /* Reload as signal_after_change in last iteration may GC. */
3128 tt = SDATA (table);
3129 if (string_multibyte)
3130 {
3131 str = tt + string_char_to_byte (table, oc);
3132 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3133 }
3134 else
3135 {
3136 nc = tt[oc];
3137 if (! ASCII_BYTE_P (nc) && multibyte)
3138 {
3139 str_len = BYTE8_STRING (nc, buf);
3140 str = buf;
3141 }
3142 else
3143 {
3144 str_len = 1;
3145 str = tt + oc;
3146 }
3147 }
3148 }
3149 else
3150 {
3151 nc = oc;
3152 val = CHAR_TABLE_REF (table, oc);
3153 if (CHARACTERP (val))
3154 {
3155 nc = XFASTINT (val);
3156 str_len = CHAR_STRING (nc, buf);
3157 str = buf;
3158 }
3159 else if (VECTORP (val) || (CONSP (val)))
3160 {
3161 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3162 where TO is TO-CHAR or [TO-CHAR ...]. */
3163 nc = -1;
3164 }
3165 }
3166
3167 if (nc != oc && nc >= 0)
3168 {
3169 /* Simple one char to one char translation. */
3170 if (len != str_len)
3171 {
3172 Lisp_Object string;
3173
3174 /* This is less efficient, because it moves the gap,
3175 but it should handle multibyte characters correctly. */
3176 string = make_multibyte_string ((char *) str, 1, str_len);
3177 replace_range (pos, pos + 1, string, 1, 0, 1);
3178 len = str_len;
3179 }
3180 else
3181 {
3182 record_change (pos, 1);
3183 while (str_len-- > 0)
3184 *p++ = *str++;
3185 signal_after_change (pos, 1, 1);
3186 update_compositions (pos, pos + 1, CHECK_BORDER);
3187 }
3188 ++cnt;
3189 }
3190 else if (nc < 0)
3191 {
3192 Lisp_Object string;
3193
3194 if (CONSP (val))
3195 {
3196 val = check_translation (pos, pos_byte, end_pos, val);
3197 if (NILP (val))
3198 {
3199 pos_byte += len;
3200 pos++;
3201 continue;
3202 }
3203 /* VAL is ([FROM-CHAR ...] . TO). */
3204 len = ASIZE (XCAR (val));
3205 val = XCDR (val);
3206 }
3207 else
3208 len = 1;
3209
3210 if (VECTORP (val))
3211 {
3212 string = Fconcat (1, &val);
3213 }
3214 else
3215 {
3216 string = Fmake_string (make_number (1), val);
3217 }
3218 replace_range (pos, pos + len, string, 1, 0, 1);
3219 pos_byte += SBYTES (string);
3220 pos += SCHARS (string);
3221 cnt += SCHARS (string);
3222 end_pos += SCHARS (string) - len;
3223 continue;
3224 }
3225 }
3226 pos_byte += len;
3227 pos++;
3228 }
3229
3230 return make_number (cnt);
3231 }
3232
3233 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3234 doc: /* Delete the text between START and END.
3235 If called interactively, delete the region between point and mark.
3236 This command deletes buffer text without modifying the kill ring. */)
3237 (Lisp_Object start, Lisp_Object end)
3238 {
3239 validate_region (&start, &end);
3240 del_range (XINT (start), XINT (end));
3241 return Qnil;
3242 }
3243
3244 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3245 Sdelete_and_extract_region, 2, 2, 0,
3246 doc: /* Delete the text between START and END and return it. */)
3247 (Lisp_Object start, Lisp_Object end)
3248 {
3249 validate_region (&start, &end);
3250 if (XINT (start) == XINT (end))
3251 return empty_unibyte_string;
3252 return del_range_1 (XINT (start), XINT (end), 1, 1);
3253 }
3254 \f
3255 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3256 doc: /* Remove restrictions (narrowing) from current buffer.
3257 This allows the buffer's full text to be seen and edited. */)
3258 (void)
3259 {
3260 if (BEG != BEGV || Z != ZV)
3261 current_buffer->clip_changed = 1;
3262 BEGV = BEG;
3263 BEGV_BYTE = BEG_BYTE;
3264 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3265 /* Changing the buffer bounds invalidates any recorded current column. */
3266 invalidate_current_column ();
3267 return Qnil;
3268 }
3269
3270 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3271 doc: /* Restrict editing in this buffer to the current region.
3272 The rest of the text becomes temporarily invisible and untouchable
3273 but is not deleted; if you save the buffer in a file, the invisible
3274 text is included in the file. \\[widen] makes all visible again.
3275 See also `save-restriction'.
3276
3277 When calling from a program, pass two arguments; positions (integers
3278 or markers) bounding the text that should remain visible. */)
3279 (register Lisp_Object start, Lisp_Object end)
3280 {
3281 CHECK_NUMBER_COERCE_MARKER (start);
3282 CHECK_NUMBER_COERCE_MARKER (end);
3283
3284 if (XINT (start) > XINT (end))
3285 {
3286 Lisp_Object tem;
3287 tem = start; start = end; end = tem;
3288 }
3289
3290 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3291 args_out_of_range (start, end);
3292
3293 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3294 current_buffer->clip_changed = 1;
3295
3296 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3297 SET_BUF_ZV (current_buffer, XFASTINT (end));
3298 if (PT < XFASTINT (start))
3299 SET_PT (XFASTINT (start));
3300 if (PT > XFASTINT (end))
3301 SET_PT (XFASTINT (end));
3302 /* Changing the buffer bounds invalidates any recorded current column. */
3303 invalidate_current_column ();
3304 return Qnil;
3305 }
3306
3307 Lisp_Object
3308 save_restriction_save (void)
3309 {
3310 if (BEGV == BEG && ZV == Z)
3311 /* The common case that the buffer isn't narrowed.
3312 We return just the buffer object, which save_restriction_restore
3313 recognizes as meaning `no restriction'. */
3314 return Fcurrent_buffer ();
3315 else
3316 /* We have to save a restriction, so return a pair of markers, one
3317 for the beginning and one for the end. */
3318 {
3319 Lisp_Object beg, end;
3320
3321 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3322 end = build_marker (current_buffer, ZV, ZV_BYTE);
3323
3324 /* END must move forward if text is inserted at its exact location. */
3325 XMARKER (end)->insertion_type = 1;
3326
3327 return Fcons (beg, end);
3328 }
3329 }
3330
3331 Lisp_Object
3332 save_restriction_restore (Lisp_Object data)
3333 {
3334 struct buffer *cur = NULL;
3335 struct buffer *buf = (CONSP (data)
3336 ? XMARKER (XCAR (data))->buffer
3337 : XBUFFER (data));
3338
3339 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3340 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3341 is the case if it is or has an indirect buffer), then make
3342 sure it is current before we update BEGV, so
3343 set_buffer_internal takes care of managing those markers. */
3344 cur = current_buffer;
3345 set_buffer_internal (buf);
3346 }
3347
3348 if (CONSP (data))
3349 /* A pair of marks bounding a saved restriction. */
3350 {
3351 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3352 struct Lisp_Marker *end = XMARKER (XCDR (data));
3353 eassert (buf == end->buffer);
3354
3355 if (buf /* Verify marker still points to a buffer. */
3356 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3357 /* The restriction has changed from the saved one, so restore
3358 the saved restriction. */
3359 {
3360 ptrdiff_t pt = BUF_PT (buf);
3361
3362 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3363 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3364
3365 if (pt < beg->charpos || pt > end->charpos)
3366 /* The point is outside the new visible range, move it inside. */
3367 SET_BUF_PT_BOTH (buf,
3368 clip_to_bounds (beg->charpos, pt, end->charpos),
3369 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3370 end->bytepos));
3371
3372 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3373 }
3374 /* These aren't needed anymore, so don't wait for GC. */
3375 free_marker (XCAR (data));
3376 free_marker (XCDR (data));
3377 free_cons (XCONS (data));
3378 }
3379 else
3380 /* A buffer, which means that there was no old restriction. */
3381 {
3382 if (buf /* Verify marker still points to a buffer. */
3383 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3384 /* The buffer has been narrowed, get rid of the narrowing. */
3385 {
3386 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3387 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3388
3389 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3390 }
3391 }
3392
3393 /* Changing the buffer bounds invalidates any recorded current column. */
3394 invalidate_current_column ();
3395
3396 if (cur)
3397 set_buffer_internal (cur);
3398
3399 return Qnil;
3400 }
3401
3402 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3403 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3404 The buffer's restrictions make parts of the beginning and end invisible.
3405 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3406 This special form, `save-restriction', saves the current buffer's restrictions
3407 when it is entered, and restores them when it is exited.
3408 So any `narrow-to-region' within BODY lasts only until the end of the form.
3409 The old restrictions settings are restored
3410 even in case of abnormal exit (throw or error).
3411
3412 The value returned is the value of the last form in BODY.
3413
3414 Note: if you are using both `save-excursion' and `save-restriction',
3415 use `save-excursion' outermost:
3416 (save-excursion (save-restriction ...))
3417
3418 usage: (save-restriction &rest BODY) */)
3419 (Lisp_Object body)
3420 {
3421 register Lisp_Object val;
3422 ptrdiff_t count = SPECPDL_INDEX ();
3423
3424 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3425 val = Fprogn (body);
3426 return unbind_to (count, val);
3427 }
3428 \f
3429 /* Buffer for the most recent text displayed by Fmessage_box. */
3430 static char *message_text;
3431
3432 /* Allocated length of that buffer. */
3433 static ptrdiff_t message_length;
3434
3435 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3436 doc: /* Display a message at the bottom of the screen.
3437 The message also goes into the `*Messages*' buffer, if `message-log-max'
3438 is non-nil. (In keyboard macros, that's all it does.)
3439 Return the message.
3440
3441 The first argument is a format control string, and the rest are data
3442 to be formatted under control of the string. See `format' for details.
3443
3444 Note: Use (message "%s" VALUE) to print the value of expressions and
3445 variables to avoid accidentally interpreting `%' as format specifiers.
3446
3447 If the first argument is nil or the empty string, the function clears
3448 any existing message; this lets the minibuffer contents show. See
3449 also `current-message'.
3450
3451 usage: (message FORMAT-STRING &rest ARGS) */)
3452 (ptrdiff_t nargs, Lisp_Object *args)
3453 {
3454 if (NILP (args[0])
3455 || (STRINGP (args[0])
3456 && SBYTES (args[0]) == 0))
3457 {
3458 message (0);
3459 return args[0];
3460 }
3461 else
3462 {
3463 register Lisp_Object val;
3464 val = Fformat (nargs, args);
3465 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3466 return val;
3467 }
3468 }
3469
3470 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3471 doc: /* Display a message, in a dialog box if possible.
3472 If a dialog box is not available, use the echo area.
3473 The first argument is a format control string, and the rest are data
3474 to be formatted under control of the string. See `format' for details.
3475
3476 If the first argument is nil or the empty string, clear any existing
3477 message; let the minibuffer contents show.
3478
3479 usage: (message-box FORMAT-STRING &rest ARGS) */)
3480 (ptrdiff_t nargs, Lisp_Object *args)
3481 {
3482 if (NILP (args[0]))
3483 {
3484 message (0);
3485 return Qnil;
3486 }
3487 else
3488 {
3489 register Lisp_Object val;
3490 val = Fformat (nargs, args);
3491 #ifdef HAVE_MENUS
3492 /* The MS-DOS frames support popup menus even though they are
3493 not FRAME_WINDOW_P. */
3494 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3495 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3496 {
3497 Lisp_Object pane, menu;
3498 struct gcpro gcpro1;
3499 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3500 GCPRO1 (pane);
3501 menu = Fcons (val, pane);
3502 Fx_popup_dialog (Qt, menu, Qt);
3503 UNGCPRO;
3504 return val;
3505 }
3506 #endif /* HAVE_MENUS */
3507 /* Copy the data so that it won't move when we GC. */
3508 if (SBYTES (val) > message_length)
3509 {
3510 ptrdiff_t new_length = SBYTES (val) + 80;
3511 message_text = xrealloc (message_text, new_length);
3512 message_length = new_length;
3513 }
3514 memcpy (message_text, SDATA (val), SBYTES (val));
3515 message2 (message_text, SBYTES (val),
3516 STRING_MULTIBYTE (val));
3517 return val;
3518 }
3519 }
3520
3521 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3522 doc: /* Display a message in a dialog box or in the echo area.
3523 If this command was invoked with the mouse, use a dialog box if
3524 `use-dialog-box' is non-nil.
3525 Otherwise, use the echo area.
3526 The first argument is a format control string, and the rest are data
3527 to be formatted under control of the string. See `format' for details.
3528
3529 If the first argument is nil or the empty string, clear any existing
3530 message; let the minibuffer contents show.
3531
3532 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3533 (ptrdiff_t nargs, Lisp_Object *args)
3534 {
3535 #ifdef HAVE_MENUS
3536 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3537 && use_dialog_box)
3538 return Fmessage_box (nargs, args);
3539 #endif
3540 return Fmessage (nargs, args);
3541 }
3542
3543 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3544 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3545 (void)
3546 {
3547 return current_message ();
3548 }
3549
3550
3551 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3552 doc: /* Return a copy of STRING with text properties added.
3553 First argument is the string to copy.
3554 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3555 properties to add to the result.
3556 usage: (propertize STRING &rest PROPERTIES) */)
3557 (ptrdiff_t nargs, Lisp_Object *args)
3558 {
3559 Lisp_Object properties, string;
3560 struct gcpro gcpro1, gcpro2;
3561 ptrdiff_t i;
3562
3563 /* Number of args must be odd. */
3564 if ((nargs & 1) == 0)
3565 error ("Wrong number of arguments");
3566
3567 properties = string = Qnil;
3568 GCPRO2 (properties, string);
3569
3570 /* First argument must be a string. */
3571 CHECK_STRING (args[0]);
3572 string = Fcopy_sequence (args[0]);
3573
3574 for (i = 1; i < nargs; i += 2)
3575 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3576
3577 Fadd_text_properties (make_number (0),
3578 make_number (SCHARS (string)),
3579 properties, string);
3580 RETURN_UNGCPRO (string);
3581 }
3582
3583 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3584 doc: /* Format a string out of a format-string and arguments.
3585 The first argument is a format control string.
3586 The other arguments are substituted into it to make the result, a string.
3587
3588 The format control string may contain %-sequences meaning to substitute
3589 the next available argument:
3590
3591 %s means print a string argument. Actually, prints any object, with `princ'.
3592 %d means print as number in decimal (%o octal, %x hex).
3593 %X is like %x, but uses upper case.
3594 %e means print a number in exponential notation.
3595 %f means print a number in decimal-point notation.
3596 %g means print a number in exponential notation
3597 or decimal-point notation, whichever uses fewer characters.
3598 %c means print a number as a single character.
3599 %S means print any object as an s-expression (using `prin1').
3600
3601 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3602 Use %% to put a single % into the output.
3603
3604 A %-sequence may contain optional flag, width, and precision
3605 specifiers, as follows:
3606
3607 %<flags><width><precision>character
3608
3609 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3610
3611 The + flag character inserts a + before any positive number, while a
3612 space inserts a space before any positive number; these flags only
3613 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3614 The - and 0 flags affect the width specifier, as described below.
3615
3616 The # flag means to use an alternate display form for %o, %x, %X, %e,
3617 %f, and %g sequences: for %o, it ensures that the result begins with
3618 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3619 for %e, %f, and %g, it causes a decimal point to be included even if
3620 the precision is zero.
3621
3622 The width specifier supplies a lower limit for the length of the
3623 printed representation. The padding, if any, normally goes on the
3624 left, but it goes on the right if the - flag is present. The padding
3625 character is normally a space, but it is 0 if the 0 flag is present.
3626 The 0 flag is ignored if the - flag is present, or the format sequence
3627 is something other than %d, %e, %f, and %g.
3628
3629 For %e, %f, and %g sequences, the number after the "." in the
3630 precision specifier says how many decimal places to show; if zero, the
3631 decimal point itself is omitted. For %s and %S, the precision
3632 specifier truncates the string to the given width.
3633
3634 usage: (format STRING &rest OBJECTS) */)
3635 (ptrdiff_t nargs, Lisp_Object *args)
3636 {
3637 ptrdiff_t n; /* The number of the next arg to substitute */
3638 char initial_buffer[4000];
3639 char *buf = initial_buffer;
3640 ptrdiff_t bufsize = sizeof initial_buffer;
3641 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3642 char *p;
3643 Lisp_Object buf_save_value IF_LINT (= {0});
3644 char *format, *end, *format_start;
3645 ptrdiff_t formatlen, nchars;
3646 /* True if the format is multibyte. */
3647 bool multibyte_format = 0;
3648 /* True if the output should be a multibyte string,
3649 which is true if any of the inputs is one. */
3650 bool multibyte = 0;
3651 /* When we make a multibyte string, we must pay attention to the
3652 byte combining problem, i.e., a byte may be combined with a
3653 multibyte character of the previous string. This flag tells if we
3654 must consider such a situation or not. */
3655 bool maybe_combine_byte;
3656 Lisp_Object val;
3657 bool arg_intervals = 0;
3658 USE_SAFE_ALLOCA;
3659
3660 /* discarded[I] is 1 if byte I of the format
3661 string was not copied into the output.
3662 It is 2 if byte I was not the first byte of its character. */
3663 char *discarded;
3664
3665 /* Each element records, for one argument,
3666 the start and end bytepos in the output string,
3667 whether the argument has been converted to string (e.g., due to "%S"),
3668 and whether the argument is a string with intervals.
3669 info[0] is unused. Unused elements have -1 for start. */
3670 struct info
3671 {
3672 ptrdiff_t start, end;
3673 unsigned converted_to_string : 1;
3674 unsigned intervals : 1;
3675 } *info = 0;
3676
3677 /* It should not be necessary to GCPRO ARGS, because
3678 the caller in the interpreter should take care of that. */
3679
3680 CHECK_STRING (args[0]);
3681 format_start = SSDATA (args[0]);
3682 formatlen = SBYTES (args[0]);
3683
3684 /* Allocate the info and discarded tables. */
3685 {
3686 ptrdiff_t i;
3687 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3688 memory_full (SIZE_MAX);
3689 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3690 discarded = (char *) &info[nargs + 1];
3691 for (i = 0; i < nargs + 1; i++)
3692 {
3693 info[i].start = -1;
3694 info[i].intervals = info[i].converted_to_string = 0;
3695 }
3696 memset (discarded, 0, formatlen);
3697 }
3698
3699 /* Try to determine whether the result should be multibyte.
3700 This is not always right; sometimes the result needs to be multibyte
3701 because of an object that we will pass through prin1,
3702 and in that case, we won't know it here. */
3703 multibyte_format = STRING_MULTIBYTE (args[0]);
3704 multibyte = multibyte_format;
3705 for (n = 1; !multibyte && n < nargs; n++)
3706 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3707 multibyte = 1;
3708
3709 /* If we start out planning a unibyte result,
3710 then discover it has to be multibyte, we jump back to retry. */
3711 retry:
3712
3713 p = buf;
3714 nchars = 0;
3715 n = 0;
3716
3717 /* Scan the format and store result in BUF. */
3718 format = format_start;
3719 end = format + formatlen;
3720 maybe_combine_byte = 0;
3721
3722 while (format != end)
3723 {
3724 /* The values of N and FORMAT when the loop body is entered. */
3725 ptrdiff_t n0 = n;
3726 char *format0 = format;
3727
3728 /* Bytes needed to represent the output of this conversion. */
3729 ptrdiff_t convbytes;
3730
3731 if (*format == '%')
3732 {
3733 /* General format specifications look like
3734
3735 '%' [flags] [field-width] [precision] format
3736
3737 where
3738
3739 flags ::= [-+0# ]+
3740 field-width ::= [0-9]+
3741 precision ::= '.' [0-9]*
3742
3743 If a field-width is specified, it specifies to which width
3744 the output should be padded with blanks, if the output
3745 string is shorter than field-width.
3746
3747 If precision is specified, it specifies the number of
3748 digits to print after the '.' for floats, or the max.
3749 number of chars to print from a string. */
3750
3751 bool minus_flag = 0;
3752 bool plus_flag = 0;
3753 bool space_flag = 0;
3754 bool sharp_flag = 0;
3755 bool zero_flag = 0;
3756 ptrdiff_t field_width;
3757 bool precision_given;
3758 uintmax_t precision = UINTMAX_MAX;
3759 char *num_end;
3760 char conversion;
3761
3762 while (1)
3763 {
3764 switch (*++format)
3765 {
3766 case '-': minus_flag = 1; continue;
3767 case '+': plus_flag = 1; continue;
3768 case ' ': space_flag = 1; continue;
3769 case '#': sharp_flag = 1; continue;
3770 case '0': zero_flag = 1; continue;
3771 }
3772 break;
3773 }
3774
3775 /* Ignore flags when sprintf ignores them. */
3776 space_flag &= ~ plus_flag;
3777 zero_flag &= ~ minus_flag;
3778
3779 {
3780 uintmax_t w = strtoumax (format, &num_end, 10);
3781 if (max_bufsize <= w)
3782 string_overflow ();
3783 field_width = w;
3784 }
3785 precision_given = *num_end == '.';
3786 if (precision_given)
3787 precision = strtoumax (num_end + 1, &num_end, 10);
3788 format = num_end;
3789
3790 if (format == end)
3791 error ("Format string ends in middle of format specifier");
3792
3793 memset (&discarded[format0 - format_start], 1, format - format0);
3794 conversion = *format;
3795 if (conversion == '%')
3796 goto copy_char;
3797 discarded[format - format_start] = 1;
3798 format++;
3799
3800 ++n;
3801 if (! (n < nargs))
3802 error ("Not enough arguments for format string");
3803
3804 /* For 'S', prin1 the argument, and then treat like 's'.
3805 For 's', princ any argument that is not a string or
3806 symbol. But don't do this conversion twice, which might
3807 happen after retrying. */
3808 if ((conversion == 'S'
3809 || (conversion == 's'
3810 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3811 {
3812 if (! info[n].converted_to_string)
3813 {
3814 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3815 args[n] = Fprin1_to_string (args[n], noescape);
3816 info[n].converted_to_string = 1;
3817 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3818 {
3819 multibyte = 1;
3820 goto retry;
3821 }
3822 }
3823 conversion = 's';
3824 }
3825 else if (conversion == 'c')
3826 {
3827 if (FLOATP (args[n]))
3828 {
3829 double d = XFLOAT_DATA (args[n]);
3830 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3831 }
3832
3833 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3834 {
3835 if (!multibyte)
3836 {
3837 multibyte = 1;
3838 goto retry;
3839 }
3840 args[n] = Fchar_to_string (args[n]);
3841 info[n].converted_to_string = 1;
3842 }
3843
3844 if (info[n].converted_to_string)
3845 conversion = 's';
3846 zero_flag = 0;
3847 }
3848
3849 if (SYMBOLP (args[n]))
3850 {
3851 args[n] = SYMBOL_NAME (args[n]);
3852 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3853 {
3854 multibyte = 1;
3855 goto retry;
3856 }
3857 }
3858
3859 if (conversion == 's')
3860 {
3861 /* handle case (precision[n] >= 0) */
3862
3863 ptrdiff_t width, padding, nbytes;
3864 ptrdiff_t nchars_string;
3865
3866 ptrdiff_t prec = -1;
3867 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3868 prec = precision;
3869
3870 /* lisp_string_width ignores a precision of 0, but GNU
3871 libc functions print 0 characters when the precision
3872 is 0. Imitate libc behavior here. Changing
3873 lisp_string_width is the right thing, and will be
3874 done, but meanwhile we work with it. */
3875
3876 if (prec == 0)
3877 width = nchars_string = nbytes = 0;
3878 else
3879 {
3880 ptrdiff_t nch, nby;
3881 width = lisp_string_width (args[n], prec, &nch, &nby);
3882 if (prec < 0)
3883 {
3884 nchars_string = SCHARS (args[n]);
3885 nbytes = SBYTES (args[n]);
3886 }
3887 else
3888 {
3889 nchars_string = nch;
3890 nbytes = nby;
3891 }
3892 }
3893
3894 convbytes = nbytes;
3895 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3896 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3897
3898 padding = width < field_width ? field_width - width : 0;
3899
3900 if (max_bufsize - padding <= convbytes)
3901 string_overflow ();
3902 convbytes += padding;
3903 if (convbytes <= buf + bufsize - p)
3904 {
3905 if (! minus_flag)
3906 {
3907 memset (p, ' ', padding);
3908 p += padding;
3909 nchars += padding;
3910 }
3911
3912 if (p > buf
3913 && multibyte
3914 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3915 && STRING_MULTIBYTE (args[n])
3916 && !CHAR_HEAD_P (SREF (args[n], 0)))
3917 maybe_combine_byte = 1;
3918
3919 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3920 nbytes,
3921 STRING_MULTIBYTE (args[n]), multibyte);
3922
3923 info[n].start = nchars;
3924 nchars += nchars_string;
3925 info[n].end = nchars;
3926
3927 if (minus_flag)
3928 {
3929 memset (p, ' ', padding);
3930 p += padding;
3931 nchars += padding;
3932 }
3933
3934 /* If this argument has text properties, record where
3935 in the result string it appears. */
3936 if (string_intervals (args[n]))
3937 info[n].intervals = arg_intervals = 1;
3938
3939 continue;
3940 }
3941 }
3942 else if (! (conversion == 'c' || conversion == 'd'
3943 || conversion == 'e' || conversion == 'f'
3944 || conversion == 'g' || conversion == 'i'
3945 || conversion == 'o' || conversion == 'x'
3946 || conversion == 'X'))
3947 error ("Invalid format operation %%%c",
3948 STRING_CHAR ((unsigned char *) format - 1));
3949 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3950 error ("Format specifier doesn't match argument type");
3951 else
3952 {
3953 enum
3954 {
3955 /* Maximum precision for a %f conversion such that the
3956 trailing output digit might be nonzero. Any precision
3957 larger than this will not yield useful information. */
3958 USEFUL_PRECISION_MAX =
3959 ((1 - DBL_MIN_EXP)
3960 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3961 : FLT_RADIX == 16 ? 4
3962 : -1)),
3963
3964 /* Maximum number of bytes generated by any format, if
3965 precision is no more than USEFUL_PRECISION_MAX.
3966 On all practical hosts, %f is the worst case. */
3967 SPRINTF_BUFSIZE =
3968 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3969
3970 /* Length of pM (that is, of pMd without the
3971 trailing "d"). */
3972 pMlen = sizeof pMd - 2
3973 };
3974 verify (0 < USEFUL_PRECISION_MAX);
3975
3976 int prec;
3977 ptrdiff_t padding, sprintf_bytes;
3978 uintmax_t excess_precision, numwidth;
3979 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3980
3981 char sprintf_buf[SPRINTF_BUFSIZE];
3982
3983 /* Copy of conversion specification, modified somewhat.
3984 At most three flags F can be specified at once. */
3985 char convspec[sizeof "%FFF.*d" + pMlen];
3986
3987 /* Avoid undefined behavior in underlying sprintf. */
3988 if (conversion == 'd' || conversion == 'i')
3989 sharp_flag = 0;
3990
3991 /* Create the copy of the conversion specification, with
3992 any width and precision removed, with ".*" inserted,
3993 and with pM inserted for integer formats. */
3994 {
3995 char *f = convspec;
3996 *f++ = '%';
3997 *f = '-'; f += minus_flag;
3998 *f = '+'; f += plus_flag;
3999 *f = ' '; f += space_flag;
4000 *f = '#'; f += sharp_flag;
4001 *f = '0'; f += zero_flag;
4002 *f++ = '.';
4003 *f++ = '*';
4004 if (conversion == 'd' || conversion == 'i'
4005 || conversion == 'o' || conversion == 'x'
4006 || conversion == 'X')
4007 {
4008 memcpy (f, pMd, pMlen);
4009 f += pMlen;
4010 zero_flag &= ~ precision_given;
4011 }
4012 *f++ = conversion;
4013 *f = '\0';
4014 }
4015
4016 prec = -1;
4017 if (precision_given)
4018 prec = min (precision, USEFUL_PRECISION_MAX);
4019
4020 /* Use sprintf to format this number into sprintf_buf. Omit
4021 padding and excess precision, though, because sprintf limits
4022 output length to INT_MAX.
4023
4024 There are four types of conversion: double, unsigned
4025 char (passed as int), wide signed int, and wide
4026 unsigned int. Treat them separately because the
4027 sprintf ABI is sensitive to which type is passed. Be
4028 careful about integer overflow, NaNs, infinities, and
4029 conversions; for example, the min and max macros are
4030 not suitable here. */
4031 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4032 {
4033 double x = (INTEGERP (args[n])
4034 ? XINT (args[n])
4035 : XFLOAT_DATA (args[n]));
4036 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4037 }
4038 else if (conversion == 'c')
4039 {
4040 /* Don't use sprintf here, as it might mishandle prec. */
4041 sprintf_buf[0] = XINT (args[n]);
4042 sprintf_bytes = prec != 0;
4043 }
4044 else if (conversion == 'd')
4045 {
4046 /* For float, maybe we should use "%1.0f"
4047 instead so it also works for values outside
4048 the integer range. */
4049 printmax_t x;
4050 if (INTEGERP (args[n]))
4051 x = XINT (args[n]);
4052 else
4053 {
4054 double d = XFLOAT_DATA (args[n]);
4055 if (d < 0)
4056 {
4057 x = TYPE_MINIMUM (printmax_t);
4058 if (x < d)
4059 x = d;
4060 }
4061 else
4062 {
4063 x = TYPE_MAXIMUM (printmax_t);
4064 if (d < x)
4065 x = d;
4066 }
4067 }
4068 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4069 }
4070 else
4071 {
4072 /* Don't sign-extend for octal or hex printing. */
4073 uprintmax_t x;
4074 if (INTEGERP (args[n]))
4075 x = XUINT (args[n]);
4076 else
4077 {
4078 double d = XFLOAT_DATA (args[n]);
4079 if (d < 0)
4080 x = 0;
4081 else
4082 {
4083 x = TYPE_MAXIMUM (uprintmax_t);
4084 if (d < x)
4085 x = d;
4086 }
4087 }
4088 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4089 }
4090
4091 /* Now the length of the formatted item is known, except it omits
4092 padding and excess precision. Deal with excess precision
4093 first. This happens only when the format specifies
4094 ridiculously large precision. */
4095 excess_precision = precision - prec;
4096 if (excess_precision)
4097 {
4098 if (conversion == 'e' || conversion == 'f'
4099 || conversion == 'g')
4100 {
4101 if ((conversion == 'g' && ! sharp_flag)
4102 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4103 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4104 excess_precision = 0;
4105 else
4106 {
4107 if (conversion == 'g')
4108 {
4109 char *dot = strchr (sprintf_buf, '.');
4110 if (!dot)
4111 excess_precision = 0;
4112 }
4113 }
4114 trailing_zeros = excess_precision;
4115 }
4116 else
4117 leading_zeros = excess_precision;
4118 }
4119
4120 /* Compute the total bytes needed for this item, including
4121 excess precision and padding. */
4122 numwidth = sprintf_bytes + excess_precision;
4123 padding = numwidth < field_width ? field_width - numwidth : 0;
4124 if (max_bufsize - sprintf_bytes <= excess_precision
4125 || max_bufsize - padding <= numwidth)
4126 string_overflow ();
4127 convbytes = numwidth + padding;
4128
4129 if (convbytes <= buf + bufsize - p)
4130 {
4131 /* Copy the formatted item from sprintf_buf into buf,
4132 inserting padding and excess-precision zeros. */
4133
4134 char *src = sprintf_buf;
4135 char src0 = src[0];
4136 int exponent_bytes = 0;
4137 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4138 int significand_bytes;
4139 if (zero_flag
4140 && ((src[signedp] >= '0' && src[signedp] <= '9')
4141 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4142 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4143 {
4144 leading_zeros += padding;
4145 padding = 0;
4146 }
4147
4148 if (excess_precision
4149 && (conversion == 'e' || conversion == 'g'))
4150 {
4151 char *e = strchr (src, 'e');
4152 if (e)
4153 exponent_bytes = src + sprintf_bytes - e;
4154 }
4155
4156 if (! minus_flag)
4157 {
4158 memset (p, ' ', padding);
4159 p += padding;
4160 nchars += padding;
4161 }
4162
4163 *p = src0;
4164 src += signedp;
4165 p += signedp;
4166 memset (p, '0', leading_zeros);
4167 p += leading_zeros;
4168 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4169 memcpy (p, src, significand_bytes);
4170 p += significand_bytes;
4171 src += significand_bytes;
4172 memset (p, '0', trailing_zeros);
4173 p += trailing_zeros;
4174 memcpy (p, src, exponent_bytes);
4175 p += exponent_bytes;
4176
4177 info[n].start = nchars;
4178 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4179 info[n].end = nchars;
4180
4181 if (minus_flag)
4182 {
4183 memset (p, ' ', padding);
4184 p += padding;
4185 nchars += padding;
4186 }
4187
4188 continue;
4189 }
4190 }
4191 }
4192 else
4193 copy_char:
4194 {
4195 /* Copy a single character from format to buf. */
4196
4197 char *src = format;
4198 unsigned char str[MAX_MULTIBYTE_LENGTH];
4199
4200 if (multibyte_format)
4201 {
4202 /* Copy a whole multibyte character. */
4203 if (p > buf
4204 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4205 && !CHAR_HEAD_P (*format))
4206 maybe_combine_byte = 1;
4207
4208 do
4209 format++;
4210 while (! CHAR_HEAD_P (*format));
4211
4212 convbytes = format - src;
4213 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4214 }
4215 else
4216 {
4217 unsigned char uc = *format++;
4218 if (! multibyte || ASCII_BYTE_P (uc))
4219 convbytes = 1;
4220 else
4221 {
4222 int c = BYTE8_TO_CHAR (uc);
4223 convbytes = CHAR_STRING (c, str);
4224 src = (char *) str;
4225 }
4226 }
4227
4228 if (convbytes <= buf + bufsize - p)
4229 {
4230 memcpy (p, src, convbytes);
4231 p += convbytes;
4232 nchars++;
4233 continue;
4234 }
4235 }
4236
4237 /* There wasn't enough room to store this conversion or single
4238 character. CONVBYTES says how much room is needed. Allocate
4239 enough room (and then some) and do it again. */
4240 {
4241 ptrdiff_t used = p - buf;
4242
4243 if (max_bufsize - used < convbytes)
4244 string_overflow ();
4245 bufsize = used + convbytes;
4246 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4247
4248 if (buf == initial_buffer)
4249 {
4250 buf = xmalloc (bufsize);
4251 sa_must_free = 1;
4252 buf_save_value = make_save_pointer (buf);
4253 record_unwind_protect (safe_alloca_unwind, buf_save_value);
4254 memcpy (buf, initial_buffer, used);
4255 }
4256 else
4257 XSAVE_POINTER (buf_save_value, 0) = buf = xrealloc (buf, bufsize);
4258
4259 p = buf + used;
4260 }
4261
4262 format = format0;
4263 n = n0;
4264 }
4265
4266 if (bufsize < p - buf)
4267 emacs_abort ();
4268
4269 if (maybe_combine_byte)
4270 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4271 val = make_specified_string (buf, nchars, p - buf, multibyte);
4272
4273 /* If we allocated BUF with malloc, free it too. */
4274 SAFE_FREE ();
4275
4276 /* If the format string has text properties, or any of the string
4277 arguments has text properties, set up text properties of the
4278 result string. */
4279
4280 if (string_intervals (args[0]) || arg_intervals)
4281 {
4282 Lisp_Object len, new_len, props;
4283 struct gcpro gcpro1;
4284
4285 /* Add text properties from the format string. */
4286 len = make_number (SCHARS (args[0]));
4287 props = text_property_list (args[0], make_number (0), len, Qnil);
4288 GCPRO1 (props);
4289
4290 if (CONSP (props))
4291 {
4292 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4293 ptrdiff_t argn = 1;
4294 Lisp_Object list;
4295
4296 /* Adjust the bounds of each text property
4297 to the proper start and end in the output string. */
4298
4299 /* Put the positions in PROPS in increasing order, so that
4300 we can do (effectively) one scan through the position
4301 space of the format string. */
4302 props = Fnreverse (props);
4303
4304 /* BYTEPOS is the byte position in the format string,
4305 POSITION is the untranslated char position in it,
4306 TRANSLATED is the translated char position in BUF,
4307 and ARGN is the number of the next arg we will come to. */
4308 for (list = props; CONSP (list); list = XCDR (list))
4309 {
4310 Lisp_Object item;
4311 ptrdiff_t pos;
4312
4313 item = XCAR (list);
4314
4315 /* First adjust the property start position. */
4316 pos = XINT (XCAR (item));
4317
4318 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4319 up to this position. */
4320 for (; position < pos; bytepos++)
4321 {
4322 if (! discarded[bytepos])
4323 position++, translated++;
4324 else if (discarded[bytepos] == 1)
4325 {
4326 position++;
4327 if (translated == info[argn].start)
4328 {
4329 translated += info[argn].end - info[argn].start;
4330 argn++;
4331 }
4332 }
4333 }
4334
4335 XSETCAR (item, make_number (translated));
4336
4337 /* Likewise adjust the property end position. */
4338 pos = XINT (XCAR (XCDR (item)));
4339
4340 for (; position < pos; bytepos++)
4341 {
4342 if (! discarded[bytepos])
4343 position++, translated++;
4344 else if (discarded[bytepos] == 1)
4345 {
4346 position++;
4347 if (translated == info[argn].start)
4348 {
4349 translated += info[argn].end - info[argn].start;
4350 argn++;
4351 }
4352 }
4353 }
4354
4355 XSETCAR (XCDR (item), make_number (translated));
4356 }
4357
4358 add_text_properties_from_list (val, props, make_number (0));
4359 }
4360
4361 /* Add text properties from arguments. */
4362 if (arg_intervals)
4363 for (n = 1; n < nargs; ++n)
4364 if (info[n].intervals)
4365 {
4366 len = make_number (SCHARS (args[n]));
4367 new_len = make_number (info[n].end - info[n].start);
4368 props = text_property_list (args[n], make_number (0), len, Qnil);
4369 props = extend_property_ranges (props, new_len);
4370 /* If successive arguments have properties, be sure that
4371 the value of `composition' property be the copy. */
4372 if (n > 1 && info[n - 1].end)
4373 make_composition_value_copy (props);
4374 add_text_properties_from_list (val, props,
4375 make_number (info[n].start));
4376 }
4377
4378 UNGCPRO;
4379 }
4380
4381 return val;
4382 }
4383
4384 Lisp_Object
4385 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4386 {
4387 Lisp_Object args[3];
4388 args[0] = build_string (string1);
4389 args[1] = arg0;
4390 args[2] = arg1;
4391 return Fformat (3, args);
4392 }
4393 \f
4394 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4395 doc: /* Return t if two characters match, optionally ignoring case.
4396 Both arguments must be characters (i.e. integers).
4397 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4398 (register Lisp_Object c1, Lisp_Object c2)
4399 {
4400 int i1, i2;
4401 /* Check they're chars, not just integers, otherwise we could get array
4402 bounds violations in downcase. */
4403 CHECK_CHARACTER (c1);
4404 CHECK_CHARACTER (c2);
4405
4406 if (XINT (c1) == XINT (c2))
4407 return Qt;
4408 if (NILP (BVAR (current_buffer, case_fold_search)))
4409 return Qnil;
4410
4411 i1 = XFASTINT (c1);
4412 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4413 && ! ASCII_CHAR_P (i1))
4414 {
4415 MAKE_CHAR_MULTIBYTE (i1);
4416 }
4417 i2 = XFASTINT (c2);
4418 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4419 && ! ASCII_CHAR_P (i2))
4420 {
4421 MAKE_CHAR_MULTIBYTE (i2);
4422 }
4423 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4424 }
4425 \f
4426 /* Transpose the markers in two regions of the current buffer, and
4427 adjust the ones between them if necessary (i.e.: if the regions
4428 differ in size).
4429
4430 START1, END1 are the character positions of the first region.
4431 START1_BYTE, END1_BYTE are the byte positions.
4432 START2, END2 are the character positions of the second region.
4433 START2_BYTE, END2_BYTE are the byte positions.
4434
4435 Traverses the entire marker list of the buffer to do so, adding an
4436 appropriate amount to some, subtracting from some, and leaving the
4437 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4438
4439 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4440
4441 static void
4442 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4443 ptrdiff_t start2, ptrdiff_t end2,
4444 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4445 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4446 {
4447 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4448 register struct Lisp_Marker *marker;
4449
4450 /* Update point as if it were a marker. */
4451 if (PT < start1)
4452 ;
4453 else if (PT < end1)
4454 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4455 PT_BYTE + (end2_byte - end1_byte));
4456 else if (PT < start2)
4457 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4458 (PT_BYTE + (end2_byte - start2_byte)
4459 - (end1_byte - start1_byte)));
4460 else if (PT < end2)
4461 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4462 PT_BYTE - (start2_byte - start1_byte));
4463
4464 /* We used to adjust the endpoints here to account for the gap, but that
4465 isn't good enough. Even if we assume the caller has tried to move the
4466 gap out of our way, it might still be at start1 exactly, for example;
4467 and that places it `inside' the interval, for our purposes. The amount
4468 of adjustment is nontrivial if there's a `denormalized' marker whose
4469 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4470 the dirty work to Fmarker_position, below. */
4471
4472 /* The difference between the region's lengths */
4473 diff = (end2 - start2) - (end1 - start1);
4474 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4475
4476 /* For shifting each marker in a region by the length of the other
4477 region plus the distance between the regions. */
4478 amt1 = (end2 - start2) + (start2 - end1);
4479 amt2 = (end1 - start1) + (start2 - end1);
4480 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4481 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4482
4483 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4484 {
4485 mpos = marker->bytepos;
4486 if (mpos >= start1_byte && mpos < end2_byte)
4487 {
4488 if (mpos < end1_byte)
4489 mpos += amt1_byte;
4490 else if (mpos < start2_byte)
4491 mpos += diff_byte;
4492 else
4493 mpos -= amt2_byte;
4494 marker->bytepos = mpos;
4495 }
4496 mpos = marker->charpos;
4497 if (mpos >= start1 && mpos < end2)
4498 {
4499 if (mpos < end1)
4500 mpos += amt1;
4501 else if (mpos < start2)
4502 mpos += diff;
4503 else
4504 mpos -= amt2;
4505 }
4506 marker->charpos = mpos;
4507 }
4508 }
4509
4510 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4511 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4512 The regions should not be overlapping, because the size of the buffer is
4513 never changed in a transposition.
4514
4515 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4516 any markers that happen to be located in the regions.
4517
4518 Transposing beyond buffer boundaries is an error. */)
4519 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4520 {
4521 register ptrdiff_t start1, end1, start2, end2;
4522 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4523 ptrdiff_t gap, len1, len_mid, len2;
4524 unsigned char *start1_addr, *start2_addr, *temp;
4525
4526 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4527 Lisp_Object buf;
4528
4529 XSETBUFFER (buf, current_buffer);
4530 cur_intv = buffer_intervals (current_buffer);
4531
4532 validate_region (&startr1, &endr1);
4533 validate_region (&startr2, &endr2);
4534
4535 start1 = XFASTINT (startr1);
4536 end1 = XFASTINT (endr1);
4537 start2 = XFASTINT (startr2);
4538 end2 = XFASTINT (endr2);
4539 gap = GPT;
4540
4541 /* Swap the regions if they're reversed. */
4542 if (start2 < end1)
4543 {
4544 register ptrdiff_t glumph = start1;
4545 start1 = start2;
4546 start2 = glumph;
4547 glumph = end1;
4548 end1 = end2;
4549 end2 = glumph;
4550 }
4551
4552 len1 = end1 - start1;
4553 len2 = end2 - start2;
4554
4555 if (start2 < end1)
4556 error ("Transposed regions overlap");
4557 /* Nothing to change for adjacent regions with one being empty */
4558 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4559 return Qnil;
4560
4561 /* The possibilities are:
4562 1. Adjacent (contiguous) regions, or separate but equal regions
4563 (no, really equal, in this case!), or
4564 2. Separate regions of unequal size.
4565
4566 The worst case is usually No. 2. It means that (aside from
4567 potential need for getting the gap out of the way), there also
4568 needs to be a shifting of the text between the two regions. So
4569 if they are spread far apart, we are that much slower... sigh. */
4570
4571 /* It must be pointed out that the really studly thing to do would
4572 be not to move the gap at all, but to leave it in place and work
4573 around it if necessary. This would be extremely efficient,
4574 especially considering that people are likely to do
4575 transpositions near where they are working interactively, which
4576 is exactly where the gap would be found. However, such code
4577 would be much harder to write and to read. So, if you are
4578 reading this comment and are feeling squirrely, by all means have
4579 a go! I just didn't feel like doing it, so I will simply move
4580 the gap the minimum distance to get it out of the way, and then
4581 deal with an unbroken array. */
4582
4583 start1_byte = CHAR_TO_BYTE (start1);
4584 end2_byte = CHAR_TO_BYTE (end2);
4585
4586 /* Make sure the gap won't interfere, by moving it out of the text
4587 we will operate on. */
4588 if (start1 < gap && gap < end2)
4589 {
4590 if (gap - start1 < end2 - gap)
4591 move_gap_both (start1, start1_byte);
4592 else
4593 move_gap_both (end2, end2_byte);
4594 }
4595
4596 start2_byte = CHAR_TO_BYTE (start2);
4597 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4598 len2_byte = end2_byte - start2_byte;
4599
4600 #ifdef BYTE_COMBINING_DEBUG
4601 if (end1 == start2)
4602 {
4603 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4604 len2_byte, start1, start1_byte)
4605 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4606 len1_byte, end2, start2_byte + len2_byte)
4607 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4608 len1_byte, end2, start2_byte + len2_byte))
4609 emacs_abort ();
4610 }
4611 else
4612 {
4613 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4614 len2_byte, start1, start1_byte)
4615 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4616 len1_byte, start2, start2_byte)
4617 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4618 len2_byte, end1, start1_byte + len1_byte)
4619 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4620 len1_byte, end2, start2_byte + len2_byte))
4621 emacs_abort ();
4622 }
4623 #endif
4624
4625 /* Hmmm... how about checking to see if the gap is large
4626 enough to use as the temporary storage? That would avoid an
4627 allocation... interesting. Later, don't fool with it now. */
4628
4629 /* Working without memmove, for portability (sigh), so must be
4630 careful of overlapping subsections of the array... */
4631
4632 if (end1 == start2) /* adjacent regions */
4633 {
4634 modify_region_1 (start1, end2, false);
4635 record_change (start1, len1 + len2);
4636
4637 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4638 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4639 /* Don't use Fset_text_properties: that can cause GC, which can
4640 clobber objects stored in the tmp_intervals. */
4641 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4642 if (tmp_interval3)
4643 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4644
4645 /* First region smaller than second. */
4646 if (len1_byte < len2_byte)
4647 {
4648 USE_SAFE_ALLOCA;
4649
4650 temp = SAFE_ALLOCA (len2_byte);
4651
4652 /* Don't precompute these addresses. We have to compute them
4653 at the last minute, because the relocating allocator might
4654 have moved the buffer around during the xmalloc. */
4655 start1_addr = BYTE_POS_ADDR (start1_byte);
4656 start2_addr = BYTE_POS_ADDR (start2_byte);
4657
4658 memcpy (temp, start2_addr, len2_byte);
4659 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4660 memcpy (start1_addr, temp, len2_byte);
4661 SAFE_FREE ();
4662 }
4663 else
4664 /* First region not smaller than second. */
4665 {
4666 USE_SAFE_ALLOCA;
4667
4668 temp = SAFE_ALLOCA (len1_byte);
4669 start1_addr = BYTE_POS_ADDR (start1_byte);
4670 start2_addr = BYTE_POS_ADDR (start2_byte);
4671 memcpy (temp, start1_addr, len1_byte);
4672 memcpy (start1_addr, start2_addr, len2_byte);
4673 memcpy (start1_addr + len2_byte, temp, len1_byte);
4674 SAFE_FREE ();
4675 }
4676 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4677 len1, current_buffer, 0);
4678 graft_intervals_into_buffer (tmp_interval2, start1,
4679 len2, current_buffer, 0);
4680 update_compositions (start1, start1 + len2, CHECK_BORDER);
4681 update_compositions (start1 + len2, end2, CHECK_TAIL);
4682 }
4683 /* Non-adjacent regions, because end1 != start2, bleagh... */
4684 else
4685 {
4686 len_mid = start2_byte - (start1_byte + len1_byte);
4687
4688 if (len1_byte == len2_byte)
4689 /* Regions are same size, though, how nice. */
4690 {
4691 USE_SAFE_ALLOCA;
4692
4693 modify_region_1 (start1, end1, false);
4694 modify_region_1 (start2, end2, false);
4695 record_change (start1, len1);
4696 record_change (start2, len2);
4697 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4698 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4699
4700 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4701 if (tmp_interval3)
4702 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4703
4704 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4705 if (tmp_interval3)
4706 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4707
4708 temp = SAFE_ALLOCA (len1_byte);
4709 start1_addr = BYTE_POS_ADDR (start1_byte);
4710 start2_addr = BYTE_POS_ADDR (start2_byte);
4711 memcpy (temp, start1_addr, len1_byte);
4712 memcpy (start1_addr, start2_addr, len2_byte);
4713 memcpy (start2_addr, temp, len1_byte);
4714 SAFE_FREE ();
4715
4716 graft_intervals_into_buffer (tmp_interval1, start2,
4717 len1, current_buffer, 0);
4718 graft_intervals_into_buffer (tmp_interval2, start1,
4719 len2, current_buffer, 0);
4720 }
4721
4722 else if (len1_byte < len2_byte) /* Second region larger than first */
4723 /* Non-adjacent & unequal size, area between must also be shifted. */
4724 {
4725 USE_SAFE_ALLOCA;
4726
4727 modify_region_1 (start1, end2, false);
4728 record_change (start1, (end2 - start1));
4729 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4730 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4731 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4732
4733 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4734 if (tmp_interval3)
4735 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4736
4737 /* holds region 2 */
4738 temp = SAFE_ALLOCA (len2_byte);
4739 start1_addr = BYTE_POS_ADDR (start1_byte);
4740 start2_addr = BYTE_POS_ADDR (start2_byte);
4741 memcpy (temp, start2_addr, len2_byte);
4742 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4743 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4744 memcpy (start1_addr, temp, len2_byte);
4745 SAFE_FREE ();
4746
4747 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4748 len1, current_buffer, 0);
4749 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4750 len_mid, current_buffer, 0);
4751 graft_intervals_into_buffer (tmp_interval2, start1,
4752 len2, current_buffer, 0);
4753 }
4754 else
4755 /* Second region smaller than first. */
4756 {
4757 USE_SAFE_ALLOCA;
4758
4759 record_change (start1, (end2 - start1));
4760 modify_region_1 (start1, end2, false);
4761
4762 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4763 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4764 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4765
4766 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4767 if (tmp_interval3)
4768 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4769
4770 /* holds region 1 */
4771 temp = SAFE_ALLOCA (len1_byte);
4772 start1_addr = BYTE_POS_ADDR (start1_byte);
4773 start2_addr = BYTE_POS_ADDR (start2_byte);
4774 memcpy (temp, start1_addr, len1_byte);
4775 memcpy (start1_addr, start2_addr, len2_byte);
4776 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4777 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4778 SAFE_FREE ();
4779
4780 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4781 len1, current_buffer, 0);
4782 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4783 len_mid, current_buffer, 0);
4784 graft_intervals_into_buffer (tmp_interval2, start1,
4785 len2, current_buffer, 0);
4786 }
4787
4788 update_compositions (start1, start1 + len2, CHECK_BORDER);
4789 update_compositions (end2 - len1, end2, CHECK_BORDER);
4790 }
4791
4792 /* When doing multiple transpositions, it might be nice
4793 to optimize this. Perhaps the markers in any one buffer
4794 should be organized in some sorted data tree. */
4795 if (NILP (leave_markers))
4796 {
4797 transpose_markers (start1, end1, start2, end2,
4798 start1_byte, start1_byte + len1_byte,
4799 start2_byte, start2_byte + len2_byte);
4800 fix_start_end_in_overlays (start1, end2);
4801 }
4802
4803 signal_after_change (start1, end2 - start1, end2 - start1);
4804 return Qnil;
4805 }
4806
4807 \f
4808 void
4809 syms_of_editfns (void)
4810 {
4811 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4812
4813 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4814 doc: /* Non-nil means text motion commands don't notice fields. */);
4815 Vinhibit_field_text_motion = Qnil;
4816
4817 DEFVAR_LISP ("buffer-access-fontify-functions",
4818 Vbuffer_access_fontify_functions,
4819 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4820 Each function is called with two arguments which specify the range
4821 of the buffer being accessed. */);
4822 Vbuffer_access_fontify_functions = Qnil;
4823
4824 {
4825 Lisp_Object obuf;
4826 obuf = Fcurrent_buffer ();
4827 /* Do this here, because init_buffer_once is too early--it won't work. */
4828 Fset_buffer (Vprin1_to_string_buffer);
4829 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4830 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4831 Qnil);
4832 Fset_buffer (obuf);
4833 }
4834
4835 DEFVAR_LISP ("buffer-access-fontified-property",
4836 Vbuffer_access_fontified_property,
4837 doc: /* Property which (if non-nil) indicates text has been fontified.
4838 `buffer-substring' need not call the `buffer-access-fontify-functions'
4839 functions if all the text being accessed has this property. */);
4840 Vbuffer_access_fontified_property = Qnil;
4841
4842 DEFVAR_LISP ("system-name", Vsystem_name,
4843 doc: /* The host name of the machine Emacs is running on. */);
4844
4845 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4846 doc: /* The full name of the user logged in. */);
4847
4848 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4849 doc: /* The user's name, taken from environment variables if possible. */);
4850
4851 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4852 doc: /* The user's name, based upon the real uid only. */);
4853
4854 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4855 doc: /* The release of the operating system Emacs is running on. */);
4856
4857 defsubr (&Spropertize);
4858 defsubr (&Schar_equal);
4859 defsubr (&Sgoto_char);
4860 defsubr (&Sstring_to_char);
4861 defsubr (&Schar_to_string);
4862 defsubr (&Sbyte_to_string);
4863 defsubr (&Sbuffer_substring);
4864 defsubr (&Sbuffer_substring_no_properties);
4865 defsubr (&Sbuffer_string);
4866
4867 defsubr (&Spoint_marker);
4868 defsubr (&Smark_marker);
4869 defsubr (&Spoint);
4870 defsubr (&Sregion_beginning);
4871 defsubr (&Sregion_end);
4872
4873 DEFSYM (Qfield, "field");
4874 DEFSYM (Qboundary, "boundary");
4875 defsubr (&Sfield_beginning);
4876 defsubr (&Sfield_end);
4877 defsubr (&Sfield_string);
4878 defsubr (&Sfield_string_no_properties);
4879 defsubr (&Sdelete_field);
4880 defsubr (&Sconstrain_to_field);
4881
4882 defsubr (&Sline_beginning_position);
4883 defsubr (&Sline_end_position);
4884
4885 defsubr (&Ssave_excursion);
4886 defsubr (&Ssave_current_buffer);
4887
4888 defsubr (&Sbuffer_size);
4889 defsubr (&Spoint_max);
4890 defsubr (&Spoint_min);
4891 defsubr (&Spoint_min_marker);
4892 defsubr (&Spoint_max_marker);
4893 defsubr (&Sgap_position);
4894 defsubr (&Sgap_size);
4895 defsubr (&Sposition_bytes);
4896 defsubr (&Sbyte_to_position);
4897
4898 defsubr (&Sbobp);
4899 defsubr (&Seobp);
4900 defsubr (&Sbolp);
4901 defsubr (&Seolp);
4902 defsubr (&Sfollowing_char);
4903 defsubr (&Sprevious_char);
4904 defsubr (&Schar_after);
4905 defsubr (&Schar_before);
4906 defsubr (&Sinsert);
4907 defsubr (&Sinsert_before_markers);
4908 defsubr (&Sinsert_and_inherit);
4909 defsubr (&Sinsert_and_inherit_before_markers);
4910 defsubr (&Sinsert_char);
4911 defsubr (&Sinsert_byte);
4912
4913 defsubr (&Suser_login_name);
4914 defsubr (&Suser_real_login_name);
4915 defsubr (&Suser_uid);
4916 defsubr (&Suser_real_uid);
4917 defsubr (&Sgroup_gid);
4918 defsubr (&Sgroup_real_gid);
4919 defsubr (&Suser_full_name);
4920 defsubr (&Semacs_pid);
4921 defsubr (&Scurrent_time);
4922 defsubr (&Sget_internal_run_time);
4923 defsubr (&Sformat_time_string);
4924 defsubr (&Sfloat_time);
4925 defsubr (&Sdecode_time);
4926 defsubr (&Sencode_time);
4927 defsubr (&Scurrent_time_string);
4928 defsubr (&Scurrent_time_zone);
4929 defsubr (&Sset_time_zone_rule);
4930 defsubr (&Ssystem_name);
4931 defsubr (&Smessage);
4932 defsubr (&Smessage_box);
4933 defsubr (&Smessage_or_box);
4934 defsubr (&Scurrent_message);
4935 defsubr (&Sformat);
4936
4937 defsubr (&Sinsert_buffer_substring);
4938 defsubr (&Scompare_buffer_substrings);
4939 defsubr (&Ssubst_char_in_region);
4940 defsubr (&Stranslate_region_internal);
4941 defsubr (&Sdelete_region);
4942 defsubr (&Sdelete_and_extract_region);
4943 defsubr (&Swiden);
4944 defsubr (&Snarrow_to_region);
4945 defsubr (&Ssave_restriction);
4946 defsubr (&Stranspose_regions);
4947 }