(HAVE_TERMIO, SIGNALS_VIA_CHARACTERS): Defined.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.11.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
31
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38 #ifdef emacs
39
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
43
44 /* Emacs uses `NULL' as a predicate. */
45 #undef NULL
46
47 #else /* not emacs */
48
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n) memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n) memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
65
66 #ifdef STDC_HEADERS
67 #include <stdlib.h>
68 #else
69 char *malloc ();
70 char *realloc ();
71 #endif
72
73
74 /* Define the syntax stuff for \<, \>, etc. */
75
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78 #ifndef Sword
79 #define Sword 1
80 #endif
81
82 #ifdef SYNTAX_TABLE
83
84 extern char *re_syntax_table;
85
86 #else /* not SYNTAX_TABLE */
87
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
90
91 static char re_syntax_table[CHAR_SET_SIZE];
92
93 static void
94 init_syntax_once ()
95 {
96 register int c;
97 static int done = 0;
98
99 if (done)
100 return;
101
102 bzero (re_syntax_table, sizeof re_syntax_table);
103
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
106
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
109
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
112
113 re_syntax_table['_'] = Sword;
114
115 done = 1;
116 }
117
118 #endif /* not SYNTAX_TABLE */
119
120 #define SYNTAX(c) re_syntax_table[c]
121
122 #endif /* not emacs */
123 \f
124 /* Get the interface, including the syntax bits. */
125 #include "regex.h"
126
127 /* isalpha etc. are used for the character classes. */
128 #include <ctype.h>
129
130 #ifndef isascii
131 #define isascii(c) 1
132 #endif
133
134 #ifdef isblank
135 #define ISBLANK(c) (isascii (c) && isblank (c))
136 #else
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138 #endif
139 #ifdef isgraph
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
141 #else
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143 #endif
144
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
155
156 #ifndef NULL
157 #define NULL 0
158 #endif
159
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164 #undef SIGN_EXTEND_CHAR
165 #if __STDC__
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else /* not __STDC__ */
168 /* As in Harbison and Steele. */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170 #endif
171 \f
172 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
177
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
181
182 #ifdef REGEX_MALLOC
183
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
186
187 #else /* not REGEX_MALLOC */
188
189 /* Emacs already defines alloca, sometimes. */
190 #ifndef alloca
191
192 /* Make alloca work the best possible way. */
193 #ifdef __GNUC__
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
196 #if HAVE_ALLOCA_H
197 #include <alloca.h>
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top. */
200 char *alloca ();
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
204
205 #endif /* not alloca */
206
207 #define REGEX_ALLOCATE alloca
208
209 /* Assumes a `char *destination' variable. */
210 #define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
213 destination)
214
215 #endif /* not REGEX_MALLOC */
216
217
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
220 a good thing. */
221 #define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
223
224 /* (Re)Allocate N items of type T using malloc, or fail. */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
228
229 #define BYTEWIDTH 8 /* In bits. */
230
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
232
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
235
236 typedef char boolean;
237 #define false 0
238 #define true 1
239 \f
240 /* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
244
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
248
249 typedef enum
250 {
251 no_op = 0,
252
253 /* Followed by one byte giving n, then by n literal bytes. */
254 exactn = 1,
255
256 /* Matches any (more or less) character. */
257 anychar,
258
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
265 charset,
266
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
269 charset_not,
270
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
277 of re_match_2.) */
278 start_memory,
279
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
287 stop_memory,
288
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
291 duplicate,
292
293 /* Fail unless at beginning of line. */
294 begline,
295
296 /* Fail unless at end of line. */
297 endline,
298
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
301 begbuf,
302
303 /* Analogously, for end of buffer/string. */
304 endbuf,
305
306 /* Followed by two byte relative address to which to jump. */
307 jump,
308
309 /* Same as jump, but marks the end of an alternative. */
310 jump_past_alt,
311
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
314 on_failure_jump,
315
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump,
319
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
322 pop_failure_jump,
323
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
331 maybe_pop_jump,
332
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
338 dummy_failure_jump,
339
340 /* Push a dummy failure point and continue. Used at the end of
341 alternatives. */
342 push_dummy_failure,
343
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
346 succeed_n,
347
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
350 jump_n,
351
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
354 bytes of number. */
355 set_number_at,
356
357 wordchar, /* Matches any word-constituent character. */
358 notwordchar, /* Matches any char that is not a word-constituent. */
359
360 wordbeg, /* Succeeds if at word beginning. */
361 wordend, /* Succeeds if at word end. */
362
363 wordbound, /* Succeeds if at a word boundary. */
364 notwordbound /* Succeeds if not at a word boundary. */
365
366 #ifdef emacs
367 ,before_dot, /* Succeeds if before point. */
368 at_dot, /* Succeeds if at point. */
369 after_dot, /* Succeeds if after point. */
370
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
373 syntaxspec,
374
375 /* Matches any character whose syntax is not that specified. */
376 notsyntaxspec
377 #endif /* emacs */
378 } re_opcode_t;
379 \f
380 /* Common operations on the compiled pattern. */
381
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
383
384 #define STORE_NUMBER(destination, number) \
385 do { \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
388 } while (0)
389
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
393
394 #define STORE_NUMBER_AND_INCR(destination, number) \
395 do { \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
398 } while (0)
399
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
401 at SOURCE. */
402
403 #define EXTRACT_NUMBER(destination, source) \
404 do { \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
407 } while (0)
408
409 #ifdef DEBUG
410 static void
411 extract_number (dest, source)
412 int *dest;
413 unsigned char *source;
414 {
415 int temp = SIGN_EXTEND_CHAR (*(source + 1));
416 *dest = *source & 0377;
417 *dest += temp << 8;
418 }
419
420 #ifndef EXTRACT_MACROS /* To debug the macros. */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
424
425 #endif /* DEBUG */
426
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
429
430 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
431 do { \
432 EXTRACT_NUMBER (destination, source); \
433 (source) += 2; \
434 } while (0)
435
436 #ifdef DEBUG
437 static void
438 extract_number_and_incr (destination, source)
439 int *destination;
440 unsigned char **source;
441 {
442 extract_number (destination, *source);
443 *source += 2;
444 }
445
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
451
452 #endif /* DEBUG */
453 \f
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
459
460 #ifdef DEBUG
461
462 /* We use standard I/O for debugging. */
463 #include <stdio.h>
464
465 /* It is useful to test things that ``must'' be true when debugging. */
466 #include <assert.h>
467
468 static int debug = 0;
469
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
479
480
481 extern void printchar ();
482
483 /* Print the fastmap in human-readable form. */
484
485 void
486 print_fastmap (fastmap)
487 char *fastmap;
488 {
489 unsigned was_a_range = 0;
490 unsigned i = 0;
491
492 while (i < (1 << BYTEWIDTH))
493 {
494 if (fastmap[i++])
495 {
496 was_a_range = 0;
497 printchar (i - 1);
498 while (i < (1 << BYTEWIDTH) && fastmap[i])
499 {
500 was_a_range = 1;
501 i++;
502 }
503 if (was_a_range)
504 {
505 printf ("-");
506 printchar (i - 1);
507 }
508 }
509 }
510 putchar ('\n');
511 }
512
513
514 /* Print a compiled pattern string in human-readable form, starting at
515 the START pointer into it and ending just before the pointer END. */
516
517 void
518 print_partial_compiled_pattern (start, end)
519 unsigned char *start;
520 unsigned char *end;
521 {
522 int mcnt, mcnt2;
523 unsigned char *p = start;
524 unsigned char *pend = end;
525
526 if (start == NULL)
527 {
528 printf ("(null)\n");
529 return;
530 }
531
532 /* Loop over pattern commands. */
533 while (p < pend)
534 {
535 switch ((re_opcode_t) *p++)
536 {
537 case no_op:
538 printf ("/no_op");
539 break;
540
541 case exactn:
542 mcnt = *p++;
543 printf ("/exactn/%d", mcnt);
544 do
545 {
546 putchar ('/');
547 printchar (*p++);
548 }
549 while (--mcnt);
550 break;
551
552 case start_memory:
553 mcnt = *p++;
554 printf ("/start_memory/%d/%d", mcnt, *p++);
555 break;
556
557 case stop_memory:
558 mcnt = *p++;
559 printf ("/stop_memory/%d/%d", mcnt, *p++);
560 break;
561
562 case duplicate:
563 printf ("/duplicate/%d", *p++);
564 break;
565
566 case anychar:
567 printf ("/anychar");
568 break;
569
570 case charset:
571 case charset_not:
572 {
573 register int c;
574
575 printf ("/charset%s",
576 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
577
578 assert (p + *p < pend);
579
580 for (c = 0; c < *p; c++)
581 {
582 unsigned bit;
583 unsigned char map_byte = p[1 + c];
584
585 putchar ('/');
586
587 for (bit = 0; bit < BYTEWIDTH; bit++)
588 if (map_byte & (1 << bit))
589 printchar (c * BYTEWIDTH + bit);
590 }
591 p += 1 + *p;
592 break;
593 }
594
595 case begline:
596 printf ("/begline");
597 break;
598
599 case endline:
600 printf ("/endline");
601 break;
602
603 case on_failure_jump:
604 extract_number_and_incr (&mcnt, &p);
605 printf ("/on_failure_jump/0/%d", mcnt);
606 break;
607
608 case on_failure_keep_string_jump:
609 extract_number_and_incr (&mcnt, &p);
610 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
611 break;
612
613 case dummy_failure_jump:
614 extract_number_and_incr (&mcnt, &p);
615 printf ("/dummy_failure_jump/0/%d", mcnt);
616 break;
617
618 case push_dummy_failure:
619 printf ("/push_dummy_failure");
620 break;
621
622 case maybe_pop_jump:
623 extract_number_and_incr (&mcnt, &p);
624 printf ("/maybe_pop_jump/0/%d", mcnt);
625 break;
626
627 case pop_failure_jump:
628 extract_number_and_incr (&mcnt, &p);
629 printf ("/pop_failure_jump/0/%d", mcnt);
630 break;
631
632 case jump_past_alt:
633 extract_number_and_incr (&mcnt, &p);
634 printf ("/jump_past_alt/0/%d", mcnt);
635 break;
636
637 case jump:
638 extract_number_and_incr (&mcnt, &p);
639 printf ("/jump/0/%d", mcnt);
640 break;
641
642 case succeed_n:
643 extract_number_and_incr (&mcnt, &p);
644 extract_number_and_incr (&mcnt2, &p);
645 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
646 break;
647
648 case jump_n:
649 extract_number_and_incr (&mcnt, &p);
650 extract_number_and_incr (&mcnt2, &p);
651 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
652 break;
653
654 case set_number_at:
655 extract_number_and_incr (&mcnt, &p);
656 extract_number_and_incr (&mcnt2, &p);
657 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
658 break;
659
660 case wordbound:
661 printf ("/wordbound");
662 break;
663
664 case notwordbound:
665 printf ("/notwordbound");
666 break;
667
668 case wordbeg:
669 printf ("/wordbeg");
670 break;
671
672 case wordend:
673 printf ("/wordend");
674
675 #ifdef emacs
676 case before_dot:
677 printf ("/before_dot");
678 break;
679
680 case at_dot:
681 printf ("/at_dot");
682 break;
683
684 case after_dot:
685 printf ("/after_dot");
686 break;
687
688 case syntaxspec:
689 printf ("/syntaxspec");
690 mcnt = *p++;
691 printf ("/%d", mcnt);
692 break;
693
694 case notsyntaxspec:
695 printf ("/notsyntaxspec");
696 mcnt = *p++;
697 printf ("/%d", mcnt);
698 break;
699 #endif /* emacs */
700
701 case wordchar:
702 printf ("/wordchar");
703 break;
704
705 case notwordchar:
706 printf ("/notwordchar");
707 break;
708
709 case begbuf:
710 printf ("/begbuf");
711 break;
712
713 case endbuf:
714 printf ("/endbuf");
715 break;
716
717 default:
718 printf ("?%d", *(p-1));
719 }
720 }
721 printf ("/\n");
722 }
723
724
725 void
726 print_compiled_pattern (bufp)
727 struct re_pattern_buffer *bufp;
728 {
729 unsigned char *buffer = bufp->buffer;
730
731 print_partial_compiled_pattern (buffer, buffer + bufp->used);
732 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
733
734 if (bufp->fastmap_accurate && bufp->fastmap)
735 {
736 printf ("fastmap: ");
737 print_fastmap (bufp->fastmap);
738 }
739
740 printf ("re_nsub: %d\t", bufp->re_nsub);
741 printf ("regs_alloc: %d\t", bufp->regs_allocated);
742 printf ("can_be_null: %d\t", bufp->can_be_null);
743 printf ("newline_anchor: %d\n", bufp->newline_anchor);
744 printf ("no_sub: %d\t", bufp->no_sub);
745 printf ("not_bol: %d\t", bufp->not_bol);
746 printf ("not_eol: %d\t", bufp->not_eol);
747 printf ("syntax: %d\n", bufp->syntax);
748 /* Perhaps we should print the translate table? */
749 }
750
751
752 void
753 print_double_string (where, string1, size1, string2, size2)
754 const char *where;
755 const char *string1;
756 const char *string2;
757 int size1;
758 int size2;
759 {
760 unsigned this_char;
761
762 if (where == NULL)
763 printf ("(null)");
764 else
765 {
766 if (FIRST_STRING_P (where))
767 {
768 for (this_char = where - string1; this_char < size1; this_char++)
769 printchar (string1[this_char]);
770
771 where = string2;
772 }
773
774 for (this_char = where - string2; this_char < size2; this_char++)
775 printchar (string2[this_char]);
776 }
777 }
778
779 #else /* not DEBUG */
780
781 #undef assert
782 #define assert(e)
783
784 #define DEBUG_STATEMENT(e)
785 #define DEBUG_PRINT1(x)
786 #define DEBUG_PRINT2(x1, x2)
787 #define DEBUG_PRINT3(x1, x2, x3)
788 #define DEBUG_PRINT4(x1, x2, x3, x4)
789 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
791
792 #endif /* not DEBUG */
793 \f
794 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
795 also be assigned to arbitrarily: each pattern buffer stores its own
796 syntax, so it can be changed between regex compilations. */
797 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
798
799
800 /* Specify the precise syntax of regexps for compilation. This provides
801 for compatibility for various utilities which historically have
802 different, incompatible syntaxes.
803
804 The argument SYNTAX is a bit mask comprised of the various bits
805 defined in regex.h. We return the old syntax. */
806
807 reg_syntax_t
808 re_set_syntax (syntax)
809 reg_syntax_t syntax;
810 {
811 reg_syntax_t ret = re_syntax_options;
812
813 re_syntax_options = syntax;
814 return ret;
815 }
816 \f
817 /* This table gives an error message for each of the error codes listed
818 in regex.h. Obviously the order here has to be same as there. */
819
820 static const char *re_error_msg[] =
821 { NULL, /* REG_NOERROR */
822 "No match", /* REG_NOMATCH */
823 "Invalid regular expression", /* REG_BADPAT */
824 "Invalid collation character", /* REG_ECOLLATE */
825 "Invalid character class name", /* REG_ECTYPE */
826 "Trailing backslash", /* REG_EESCAPE */
827 "Invalid back reference", /* REG_ESUBREG */
828 "Unmatched [ or [^", /* REG_EBRACK */
829 "Unmatched ( or \\(", /* REG_EPAREN */
830 "Unmatched \\{", /* REG_EBRACE */
831 "Invalid content of \\{\\}", /* REG_BADBR */
832 "Invalid range end", /* REG_ERANGE */
833 "Memory exhausted", /* REG_ESPACE */
834 "Invalid preceding regular expression", /* REG_BADRPT */
835 "Premature end of regular expression", /* REG_EEND */
836 "Regular expression too big", /* REG_ESIZE */
837 "Unmatched ) or \\)", /* REG_ERPAREN */
838 };
839 \f
840 /* Subroutine declarations and macros for regex_compile. */
841
842 static void store_op1 (), store_op2 ();
843 static void insert_op1 (), insert_op2 ();
844 static boolean at_begline_loc_p (), at_endline_loc_p ();
845 static boolean group_in_compile_stack ();
846 static reg_errcode_t compile_range ();
847
848 /* Fetch the next character in the uncompiled pattern---translating it
849 if necessary. Also cast from a signed character in the constant
850 string passed to us by the user to an unsigned char that we can use
851 as an array index (in, e.g., `translate'). */
852 #define PATFETCH(c) \
853 do {if (p == pend) return REG_EEND; \
854 c = (unsigned char) *p++; \
855 if (translate) c = translate[c]; \
856 } while (0)
857
858 /* Fetch the next character in the uncompiled pattern, with no
859 translation. */
860 #define PATFETCH_RAW(c) \
861 do {if (p == pend) return REG_EEND; \
862 c = (unsigned char) *p++; \
863 } while (0)
864
865 /* Go backwards one character in the pattern. */
866 #define PATUNFETCH p--
867
868
869 /* If `translate' is non-null, return translate[D], else just D. We
870 cast the subscript to translate because some data is declared as
871 `char *', to avoid warnings when a string constant is passed. But
872 when we use a character as a subscript we must make it unsigned. */
873 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
874
875
876 /* Macros for outputting the compiled pattern into `buffer'. */
877
878 /* If the buffer isn't allocated when it comes in, use this. */
879 #define INIT_BUF_SIZE 32
880
881 /* Make sure we have at least N more bytes of space in buffer. */
882 #define GET_BUFFER_SPACE(n) \
883 while (b - bufp->buffer + (n) > bufp->allocated) \
884 EXTEND_BUFFER ()
885
886 /* Make sure we have one more byte of buffer space and then add C to it. */
887 #define BUF_PUSH(c) \
888 do { \
889 GET_BUFFER_SPACE (1); \
890 *b++ = (unsigned char) (c); \
891 } while (0)
892
893
894 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
895 #define BUF_PUSH_2(c1, c2) \
896 do { \
897 GET_BUFFER_SPACE (2); \
898 *b++ = (unsigned char) (c1); \
899 *b++ = (unsigned char) (c2); \
900 } while (0)
901
902
903 /* As with BUF_PUSH_2, except for three bytes. */
904 #define BUF_PUSH_3(c1, c2, c3) \
905 do { \
906 GET_BUFFER_SPACE (3); \
907 *b++ = (unsigned char) (c1); \
908 *b++ = (unsigned char) (c2); \
909 *b++ = (unsigned char) (c3); \
910 } while (0)
911
912
913 /* Store a jump with opcode OP at LOC to location TO. We store a
914 relative address offset by the three bytes the jump itself occupies. */
915 #define STORE_JUMP(op, loc, to) \
916 store_op1 (op, loc, (to) - (loc) - 3)
917
918 /* Likewise, for a two-argument jump. */
919 #define STORE_JUMP2(op, loc, to, arg) \
920 store_op2 (op, loc, (to) - (loc) - 3, arg)
921
922 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
923 #define INSERT_JUMP(op, loc, to) \
924 insert_op1 (op, loc, (to) - (loc) - 3, b)
925
926 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
927 #define INSERT_JUMP2(op, loc, to, arg) \
928 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
929
930
931 /* This is not an arbitrary limit: the arguments which represent offsets
932 into the pattern are two bytes long. So if 2^16 bytes turns out to
933 be too small, many things would have to change. */
934 #define MAX_BUF_SIZE (1L << 16)
935
936
937 /* Extend the buffer by twice its current size via realloc and
938 reset the pointers that pointed into the old block to point to the
939 correct places in the new one. If extending the buffer results in it
940 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
941 #define EXTEND_BUFFER() \
942 do { \
943 unsigned char *old_buffer = bufp->buffer; \
944 if (bufp->allocated == MAX_BUF_SIZE) \
945 return REG_ESIZE; \
946 bufp->allocated <<= 1; \
947 if (bufp->allocated > MAX_BUF_SIZE) \
948 bufp->allocated = MAX_BUF_SIZE; \
949 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950 if (bufp->buffer == NULL) \
951 return REG_ESPACE; \
952 /* If the buffer moved, move all the pointers into it. */ \
953 if (old_buffer != bufp->buffer) \
954 { \
955 b = (b - old_buffer) + bufp->buffer; \
956 begalt = (begalt - old_buffer) + bufp->buffer; \
957 if (fixup_alt_jump) \
958 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
959 if (laststart) \
960 laststart = (laststart - old_buffer) + bufp->buffer; \
961 if (pending_exact) \
962 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
963 } \
964 } while (0)
965
966
967 /* Since we have one byte reserved for the register number argument to
968 {start,stop}_memory, the maximum number of groups we can report
969 things about is what fits in that byte. */
970 #define MAX_REGNUM 255
971
972 /* But patterns can have more than `MAX_REGNUM' registers. We just
973 ignore the excess. */
974 typedef unsigned regnum_t;
975
976
977 /* Macros for the compile stack. */
978
979 /* Since offsets can go either forwards or backwards, this type needs to
980 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
981 typedef int pattern_offset_t;
982
983 typedef struct
984 {
985 pattern_offset_t begalt_offset;
986 pattern_offset_t fixup_alt_jump;
987 pattern_offset_t inner_group_offset;
988 pattern_offset_t laststart_offset;
989 regnum_t regnum;
990 } compile_stack_elt_t;
991
992
993 typedef struct
994 {
995 compile_stack_elt_t *stack;
996 unsigned size;
997 unsigned avail; /* Offset of next open position. */
998 } compile_stack_type;
999
1000
1001 #define INIT_COMPILE_STACK_SIZE 32
1002
1003 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1004 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1005
1006 /* The next available element. */
1007 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1008
1009
1010 /* Set the bit for character C in a list. */
1011 #define SET_LIST_BIT(c) \
1012 (b[((unsigned char) (c)) / BYTEWIDTH] \
1013 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1014
1015
1016 /* Get the next unsigned number in the uncompiled pattern. */
1017 #define GET_UNSIGNED_NUMBER(num) \
1018 { if (p != pend) \
1019 { \
1020 PATFETCH (c); \
1021 while (ISDIGIT (c)) \
1022 { \
1023 if (num < 0) \
1024 num = 0; \
1025 num = num * 10 + c - '0'; \
1026 if (p == pend) \
1027 break; \
1028 PATFETCH (c); \
1029 } \
1030 } \
1031 }
1032
1033 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1034
1035 #define IS_CHAR_CLASS(string) \
1036 (STREQ (string, "alpha") || STREQ (string, "upper") \
1037 || STREQ (string, "lower") || STREQ (string, "digit") \
1038 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1039 || STREQ (string, "space") || STREQ (string, "print") \
1040 || STREQ (string, "punct") || STREQ (string, "graph") \
1041 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1042 \f
1043 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044 Returns one of error codes defined in `regex.h', or zero for success.
1045
1046 Assumes the `allocated' (and perhaps `buffer') and `translate'
1047 fields are set in BUFP on entry.
1048
1049 If it succeeds, results are put in BUFP (if it returns an error, the
1050 contents of BUFP are undefined):
1051 `buffer' is the compiled pattern;
1052 `syntax' is set to SYNTAX;
1053 `used' is set to the length of the compiled pattern;
1054 `fastmap_accurate' is zero;
1055 `re_nsub' is the number of subexpressions in PATTERN;
1056 `not_bol' and `not_eol' are zero;
1057
1058 The `fastmap' and `newline_anchor' fields are neither
1059 examined nor set. */
1060
1061 static reg_errcode_t
1062 regex_compile (pattern, size, syntax, bufp)
1063 const char *pattern;
1064 int size;
1065 reg_syntax_t syntax;
1066 struct re_pattern_buffer *bufp;
1067 {
1068 /* We fetch characters from PATTERN here. Even though PATTERN is
1069 `char *' (i.e., signed), we declare these variables as unsigned, so
1070 they can be reliably used as array indices. */
1071 register unsigned char c, c1;
1072
1073 /* A random tempory spot in PATTERN. */
1074 const char *p1;
1075
1076 /* Points to the end of the buffer, where we should append. */
1077 register unsigned char *b;
1078
1079 /* Keeps track of unclosed groups. */
1080 compile_stack_type compile_stack;
1081
1082 /* Points to the current (ending) position in the pattern. */
1083 const char *p = pattern;
1084 const char *pend = pattern + size;
1085
1086 /* How to translate the characters in the pattern. */
1087 char *translate = bufp->translate;
1088
1089 /* Address of the count-byte of the most recently inserted `exactn'
1090 command. This makes it possible to tell if a new exact-match
1091 character can be added to that command or if the character requires
1092 a new `exactn' command. */
1093 unsigned char *pending_exact = 0;
1094
1095 /* Address of start of the most recently finished expression.
1096 This tells, e.g., postfix * where to find the start of its
1097 operand. Reset at the beginning of groups and alternatives. */
1098 unsigned char *laststart = 0;
1099
1100 /* Address of beginning of regexp, or inside of last group. */
1101 unsigned char *begalt;
1102
1103 /* Place in the uncompiled pattern (i.e., the {) to
1104 which to go back if the interval is invalid. */
1105 const char *beg_interval;
1106
1107 /* Address of the place where a forward jump should go to the end of
1108 the containing expression. Each alternative of an `or' -- except the
1109 last -- ends with a forward jump of this sort. */
1110 unsigned char *fixup_alt_jump = 0;
1111
1112 /* Counts open-groups as they are encountered. Remembered for the
1113 matching close-group on the compile stack, so the same register
1114 number is put in the stop_memory as the start_memory. */
1115 regnum_t regnum = 0;
1116
1117 #ifdef DEBUG
1118 DEBUG_PRINT1 ("\nCompiling pattern: ");
1119 if (debug)
1120 {
1121 unsigned debug_count;
1122
1123 for (debug_count = 0; debug_count < size; debug_count++)
1124 printchar (pattern[debug_count]);
1125 putchar ('\n');
1126 }
1127 #endif /* DEBUG */
1128
1129 /* Initialize the compile stack. */
1130 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1131 if (compile_stack.stack == NULL)
1132 return REG_ESPACE;
1133
1134 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1135 compile_stack.avail = 0;
1136
1137 /* Initialize the pattern buffer. */
1138 bufp->syntax = syntax;
1139 bufp->fastmap_accurate = 0;
1140 bufp->not_bol = bufp->not_eol = 0;
1141
1142 /* Set `used' to zero, so that if we return an error, the pattern
1143 printer (for debugging) will think there's no pattern. We reset it
1144 at the end. */
1145 bufp->used = 0;
1146
1147 /* Always count groups, whether or not bufp->no_sub is set. */
1148 bufp->re_nsub = 0;
1149
1150 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1151 /* Initialize the syntax table. */
1152 init_syntax_once ();
1153 #endif
1154
1155 if (bufp->allocated == 0)
1156 {
1157 if (bufp->buffer)
1158 { /* If zero allocated, but buffer is non-null, try to realloc
1159 enough space. This loses if buffer's address is bogus, but
1160 that is the user's responsibility. */
1161 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1162 }
1163 else
1164 { /* Caller did not allocate a buffer. Do it for them. */
1165 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1166 }
1167 if (!bufp->buffer) return REG_ESPACE;
1168
1169 bufp->allocated = INIT_BUF_SIZE;
1170 }
1171
1172 begalt = b = bufp->buffer;
1173
1174 /* Loop through the uncompiled pattern until we're at the end. */
1175 while (p != pend)
1176 {
1177 PATFETCH (c);
1178
1179 switch (c)
1180 {
1181 case '^':
1182 {
1183 if ( /* If at start of pattern, it's an operator. */
1184 p == pattern + 1
1185 /* If context independent, it's an operator. */
1186 || syntax & RE_CONTEXT_INDEP_ANCHORS
1187 /* Otherwise, depends on what's come before. */
1188 || at_begline_loc_p (pattern, p, syntax))
1189 BUF_PUSH (begline);
1190 else
1191 goto normal_char;
1192 }
1193 break;
1194
1195
1196 case '$':
1197 {
1198 if ( /* If at end of pattern, it's an operator. */
1199 p == pend
1200 /* If context independent, it's an operator. */
1201 || syntax & RE_CONTEXT_INDEP_ANCHORS
1202 /* Otherwise, depends on what's next. */
1203 || at_endline_loc_p (p, pend, syntax))
1204 BUF_PUSH (endline);
1205 else
1206 goto normal_char;
1207 }
1208 break;
1209
1210
1211 case '+':
1212 case '?':
1213 if ((syntax & RE_BK_PLUS_QM)
1214 || (syntax & RE_LIMITED_OPS))
1215 goto normal_char;
1216 handle_plus:
1217 case '*':
1218 /* If there is no previous pattern... */
1219 if (!laststart)
1220 {
1221 if (syntax & RE_CONTEXT_INVALID_OPS)
1222 return REG_BADRPT;
1223 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1224 goto normal_char;
1225 }
1226
1227 {
1228 /* Are we optimizing this jump? */
1229 boolean keep_string_p = false;
1230
1231 /* 1 means zero (many) matches is allowed. */
1232 char zero_times_ok = 0, many_times_ok = 0;
1233
1234 /* If there is a sequence of repetition chars, collapse it
1235 down to just one (the right one). We can't combine
1236 interval operators with these because of, e.g., `a{2}*',
1237 which should only match an even number of `a's. */
1238
1239 for (;;)
1240 {
1241 zero_times_ok |= c != '+';
1242 many_times_ok |= c != '?';
1243
1244 if (p == pend)
1245 break;
1246
1247 PATFETCH (c);
1248
1249 if (c == '*'
1250 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1251 ;
1252
1253 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1254 {
1255 if (p == pend) return REG_EESCAPE;
1256
1257 PATFETCH (c1);
1258 if (!(c1 == '+' || c1 == '?'))
1259 {
1260 PATUNFETCH;
1261 PATUNFETCH;
1262 break;
1263 }
1264
1265 c = c1;
1266 }
1267 else
1268 {
1269 PATUNFETCH;
1270 break;
1271 }
1272
1273 /* If we get here, we found another repeat character. */
1274 }
1275
1276 /* Star, etc. applied to an empty pattern is equivalent
1277 to an empty pattern. */
1278 if (!laststart)
1279 break;
1280
1281 /* Now we know whether or not zero matches is allowed
1282 and also whether or not two or more matches is allowed. */
1283 if (many_times_ok)
1284 { /* More than one repetition is allowed, so put in at the
1285 end a backward relative jump from `b' to before the next
1286 jump we're going to put in below (which jumps from
1287 laststart to after this jump).
1288
1289 But if we are at the `*' in the exact sequence `.*\n',
1290 insert an unconditional jump backwards to the .,
1291 instead of the beginning of the loop. This way we only
1292 push a failure point once, instead of every time
1293 through the loop. */
1294 assert (p - 1 > pattern);
1295
1296 /* Allocate the space for the jump. */
1297 GET_BUFFER_SPACE (3);
1298
1299 /* We know we are not at the first character of the pattern,
1300 because laststart was nonzero. And we've already
1301 incremented `p', by the way, to be the character after
1302 the `*'. Do we have to do something analogous here
1303 for null bytes, because of RE_DOT_NOT_NULL? */
1304 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1305 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1306 && !(syntax & RE_DOT_NEWLINE))
1307 { /* We have .*\n. */
1308 STORE_JUMP (jump, b, laststart);
1309 keep_string_p = true;
1310 }
1311 else
1312 /* Anything else. */
1313 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1314
1315 /* We've added more stuff to the buffer. */
1316 b += 3;
1317 }
1318
1319 /* On failure, jump from laststart to b + 3, which will be the
1320 end of the buffer after this jump is inserted. */
1321 GET_BUFFER_SPACE (3);
1322 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1323 : on_failure_jump,
1324 laststart, b + 3);
1325 pending_exact = 0;
1326 b += 3;
1327
1328 if (!zero_times_ok)
1329 {
1330 /* At least one repetition is required, so insert a
1331 `dummy_failure_jump' before the initial
1332 `on_failure_jump' instruction of the loop. This
1333 effects a skip over that instruction the first time
1334 we hit that loop. */
1335 GET_BUFFER_SPACE (3);
1336 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1337 b += 3;
1338 }
1339 }
1340 break;
1341
1342
1343 case '.':
1344 laststart = b;
1345 BUF_PUSH (anychar);
1346 break;
1347
1348
1349 case '[':
1350 {
1351 boolean had_char_class = false;
1352
1353 if (p == pend) return REG_EBRACK;
1354
1355 /* Ensure that we have enough space to push a charset: the
1356 opcode, the length count, and the bitset; 34 bytes in all. */
1357 GET_BUFFER_SPACE (34);
1358
1359 laststart = b;
1360
1361 /* We test `*p == '^' twice, instead of using an if
1362 statement, so we only need one BUF_PUSH. */
1363 BUF_PUSH (*p == '^' ? charset_not : charset);
1364 if (*p == '^')
1365 p++;
1366
1367 /* Remember the first position in the bracket expression. */
1368 p1 = p;
1369
1370 /* Push the number of bytes in the bitmap. */
1371 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1372
1373 /* Clear the whole map. */
1374 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1375
1376 /* charset_not matches newline according to a syntax bit. */
1377 if ((re_opcode_t) b[-2] == charset_not
1378 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1379 SET_LIST_BIT ('\n');
1380
1381 /* Read in characters and ranges, setting map bits. */
1382 for (;;)
1383 {
1384 if (p == pend) return REG_EBRACK;
1385
1386 PATFETCH (c);
1387
1388 /* \ might escape characters inside [...] and [^...]. */
1389 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1390 {
1391 if (p == pend) return REG_EESCAPE;
1392
1393 PATFETCH (c1);
1394 SET_LIST_BIT (c1);
1395 continue;
1396 }
1397
1398 /* Could be the end of the bracket expression. If it's
1399 not (i.e., when the bracket expression is `[]' so
1400 far), the ']' character bit gets set way below. */
1401 if (c == ']' && p != p1 + 1)
1402 break;
1403
1404 /* Look ahead to see if it's a range when the last thing
1405 was a character class. */
1406 if (had_char_class && c == '-' && *p != ']')
1407 return REG_ERANGE;
1408
1409 /* Look ahead to see if it's a range when the last thing
1410 was a character: if this is a hyphen not at the
1411 beginning or the end of a list, then it's the range
1412 operator. */
1413 if (c == '-'
1414 && !(p - 2 >= pattern && p[-2] == '[')
1415 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1416 && *p != ']')
1417 {
1418 reg_errcode_t ret
1419 = compile_range (&p, pend, translate, syntax, b);
1420 if (ret != REG_NOERROR) return ret;
1421 }
1422
1423 else if (p[0] == '-' && p[1] != ']')
1424 { /* This handles ranges made up of characters only. */
1425 reg_errcode_t ret;
1426
1427 /* Move past the `-'. */
1428 PATFETCH (c1);
1429
1430 ret = compile_range (&p, pend, translate, syntax, b);
1431 if (ret != REG_NOERROR) return ret;
1432 }
1433
1434 /* See if we're at the beginning of a possible character
1435 class. */
1436
1437 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1438 { /* Leave room for the null. */
1439 char str[CHAR_CLASS_MAX_LENGTH + 1];
1440
1441 PATFETCH (c);
1442 c1 = 0;
1443
1444 /* If pattern is `[[:'. */
1445 if (p == pend) return REG_EBRACK;
1446
1447 for (;;)
1448 {
1449 PATFETCH (c);
1450 if (c == ':' || c == ']' || p == pend
1451 || c1 == CHAR_CLASS_MAX_LENGTH)
1452 break;
1453 str[c1++] = c;
1454 }
1455 str[c1] = '\0';
1456
1457 /* If isn't a word bracketed by `[:' and:`]':
1458 undo the ending character, the letters, and leave
1459 the leading `:' and `[' (but set bits for them). */
1460 if (c == ':' && *p == ']')
1461 {
1462 int ch;
1463 boolean is_alnum = STREQ (str, "alnum");
1464 boolean is_alpha = STREQ (str, "alpha");
1465 boolean is_blank = STREQ (str, "blank");
1466 boolean is_cntrl = STREQ (str, "cntrl");
1467 boolean is_digit = STREQ (str, "digit");
1468 boolean is_graph = STREQ (str, "graph");
1469 boolean is_lower = STREQ (str, "lower");
1470 boolean is_print = STREQ (str, "print");
1471 boolean is_punct = STREQ (str, "punct");
1472 boolean is_space = STREQ (str, "space");
1473 boolean is_upper = STREQ (str, "upper");
1474 boolean is_xdigit = STREQ (str, "xdigit");
1475
1476 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1477
1478 /* Throw away the ] at the end of the character
1479 class. */
1480 PATFETCH (c);
1481
1482 if (p == pend) return REG_EBRACK;
1483
1484 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1485 {
1486 if ( (is_alnum && ISALNUM (ch))
1487 || (is_alpha && ISALPHA (ch))
1488 || (is_blank && ISBLANK (ch))
1489 || (is_cntrl && ISCNTRL (ch))
1490 || (is_digit && ISDIGIT (ch))
1491 || (is_graph && ISGRAPH (ch))
1492 || (is_lower && ISLOWER (ch))
1493 || (is_print && ISPRINT (ch))
1494 || (is_punct && ISPUNCT (ch))
1495 || (is_space && ISSPACE (ch))
1496 || (is_upper && ISUPPER (ch))
1497 || (is_xdigit && ISXDIGIT (ch)))
1498 SET_LIST_BIT (ch);
1499 }
1500 had_char_class = true;
1501 }
1502 else
1503 {
1504 c1++;
1505 while (c1--)
1506 PATUNFETCH;
1507 SET_LIST_BIT ('[');
1508 SET_LIST_BIT (':');
1509 had_char_class = false;
1510 }
1511 }
1512 else
1513 {
1514 had_char_class = false;
1515 SET_LIST_BIT (c);
1516 }
1517 }
1518
1519 /* Discard any (non)matching list bytes that are all 0 at the
1520 end of the map. Decrease the map-length byte too. */
1521 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1522 b[-1]--;
1523 b += b[-1];
1524 }
1525 break;
1526
1527
1528 case '(':
1529 if (syntax & RE_NO_BK_PARENS)
1530 goto handle_open;
1531 else
1532 goto normal_char;
1533
1534
1535 case ')':
1536 if (syntax & RE_NO_BK_PARENS)
1537 goto handle_close;
1538 else
1539 goto normal_char;
1540
1541
1542 case '\n':
1543 if (syntax & RE_NEWLINE_ALT)
1544 goto handle_alt;
1545 else
1546 goto normal_char;
1547
1548
1549 case '|':
1550 if (syntax & RE_NO_BK_VBAR)
1551 goto handle_alt;
1552 else
1553 goto normal_char;
1554
1555
1556 case '{':
1557 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1558 goto handle_interval;
1559 else
1560 goto normal_char;
1561
1562
1563 case '\\':
1564 if (p == pend) return REG_EESCAPE;
1565
1566 /* Do not translate the character after the \, so that we can
1567 distinguish, e.g., \B from \b, even if we normally would
1568 translate, e.g., B to b. */
1569 PATFETCH_RAW (c);
1570
1571 switch (c)
1572 {
1573 case '(':
1574 if (syntax & RE_NO_BK_PARENS)
1575 goto normal_backslash;
1576
1577 handle_open:
1578 bufp->re_nsub++;
1579 regnum++;
1580
1581 if (COMPILE_STACK_FULL)
1582 {
1583 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1584 compile_stack_elt_t);
1585 if (compile_stack.stack == NULL) return REG_ESPACE;
1586
1587 compile_stack.size <<= 1;
1588 }
1589
1590 /* These are the values to restore when we hit end of this
1591 group. They are all relative offsets, so that if the
1592 whole pattern moves because of realloc, they will still
1593 be valid. */
1594 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1595 COMPILE_STACK_TOP.fixup_alt_jump
1596 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1597 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1598 COMPILE_STACK_TOP.regnum = regnum;
1599
1600 /* We will eventually replace the 0 with the number of
1601 groups inner to this one. But do not push a
1602 start_memory for groups beyond the last one we can
1603 represent in the compiled pattern. */
1604 if (regnum <= MAX_REGNUM)
1605 {
1606 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1607 BUF_PUSH_3 (start_memory, regnum, 0);
1608 }
1609
1610 compile_stack.avail++;
1611
1612 fixup_alt_jump = 0;
1613 laststart = 0;
1614 begalt = b;
1615 break;
1616
1617
1618 case ')':
1619 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1620
1621 if (COMPILE_STACK_EMPTY)
1622 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1623 goto normal_backslash;
1624 else
1625 return REG_ERPAREN;
1626
1627 handle_close:
1628 if (fixup_alt_jump)
1629 { /* Push a dummy failure point at the end of the
1630 alternative for a possible future
1631 `pop_failure_jump' to pop. See comments at
1632 `push_dummy_failure' in `re_match_2'. */
1633 BUF_PUSH (push_dummy_failure);
1634
1635 /* We allocated space for this jump when we assigned
1636 to `fixup_alt_jump', in the `handle_alt' case below. */
1637 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1638 }
1639
1640 /* See similar code for backslashed left paren above. */
1641 if (COMPILE_STACK_EMPTY)
1642 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1643 goto normal_char;
1644 else
1645 return REG_ERPAREN;
1646
1647 /* Since we just checked for an empty stack above, this
1648 ``can't happen''. */
1649 assert (compile_stack.avail != 0);
1650 {
1651 /* We don't just want to restore into `regnum', because
1652 later groups should continue to be numbered higher,
1653 as in `(ab)c(de)' -- the second group is #2. */
1654 regnum_t this_group_regnum;
1655
1656 compile_stack.avail--;
1657 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1658 fixup_alt_jump
1659 = COMPILE_STACK_TOP.fixup_alt_jump
1660 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1661 : 0;
1662 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1663 this_group_regnum = COMPILE_STACK_TOP.regnum;
1664
1665 /* We're at the end of the group, so now we know how many
1666 groups were inside this one. */
1667 if (this_group_regnum <= MAX_REGNUM)
1668 {
1669 unsigned char *inner_group_loc
1670 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1671
1672 *inner_group_loc = regnum - this_group_regnum;
1673 BUF_PUSH_3 (stop_memory, this_group_regnum,
1674 regnum - this_group_regnum);
1675 }
1676 }
1677 break;
1678
1679
1680 case '|': /* `\|'. */
1681 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1682 goto normal_backslash;
1683 handle_alt:
1684 if (syntax & RE_LIMITED_OPS)
1685 goto normal_char;
1686
1687 /* Insert before the previous alternative a jump which
1688 jumps to this alternative if the former fails. */
1689 GET_BUFFER_SPACE (3);
1690 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1691 pending_exact = 0;
1692 b += 3;
1693
1694 /* The alternative before this one has a jump after it
1695 which gets executed if it gets matched. Adjust that
1696 jump so it will jump to this alternative's analogous
1697 jump (put in below, which in turn will jump to the next
1698 (if any) alternative's such jump, etc.). The last such
1699 jump jumps to the correct final destination. A picture:
1700 _____ _____
1701 | | | |
1702 | v | v
1703 a | b | c
1704
1705 If we are at `b', then fixup_alt_jump right now points to a
1706 three-byte space after `a'. We'll put in the jump, set
1707 fixup_alt_jump to right after `b', and leave behind three
1708 bytes which we'll fill in when we get to after `c'. */
1709
1710 if (fixup_alt_jump)
1711 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1712
1713 /* Mark and leave space for a jump after this alternative,
1714 to be filled in later either by next alternative or
1715 when know we're at the end of a series of alternatives. */
1716 fixup_alt_jump = b;
1717 GET_BUFFER_SPACE (3);
1718 b += 3;
1719
1720 laststart = 0;
1721 begalt = b;
1722 break;
1723
1724
1725 case '{':
1726 /* If \{ is a literal. */
1727 if (!(syntax & RE_INTERVALS)
1728 /* If we're at `\{' and it's not the open-interval
1729 operator. */
1730 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1731 || (p - 2 == pattern && p == pend))
1732 goto normal_backslash;
1733
1734 handle_interval:
1735 {
1736 /* If got here, then the syntax allows intervals. */
1737
1738 /* At least (most) this many matches must be made. */
1739 int lower_bound = -1, upper_bound = -1;
1740
1741 beg_interval = p - 1;
1742
1743 if (p == pend)
1744 {
1745 if (syntax & RE_NO_BK_BRACES)
1746 goto unfetch_interval;
1747 else
1748 return REG_EBRACE;
1749 }
1750
1751 GET_UNSIGNED_NUMBER (lower_bound);
1752
1753 if (c == ',')
1754 {
1755 GET_UNSIGNED_NUMBER (upper_bound);
1756 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1757 }
1758 else
1759 /* Interval such as `{1}' => match exactly once. */
1760 upper_bound = lower_bound;
1761
1762 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1763 || lower_bound > upper_bound)
1764 {
1765 if (syntax & RE_NO_BK_BRACES)
1766 goto unfetch_interval;
1767 else
1768 return REG_BADBR;
1769 }
1770
1771 if (!(syntax & RE_NO_BK_BRACES))
1772 {
1773 if (c != '\\') return REG_EBRACE;
1774
1775 PATFETCH (c);
1776 }
1777
1778 if (c != '}')
1779 {
1780 if (syntax & RE_NO_BK_BRACES)
1781 goto unfetch_interval;
1782 else
1783 return REG_BADBR;
1784 }
1785
1786 /* We just parsed a valid interval. */
1787
1788 /* If it's invalid to have no preceding re. */
1789 if (!laststart)
1790 {
1791 if (syntax & RE_CONTEXT_INVALID_OPS)
1792 return REG_BADRPT;
1793 else if (syntax & RE_CONTEXT_INDEP_OPS)
1794 laststart = b;
1795 else
1796 goto unfetch_interval;
1797 }
1798
1799 /* If the upper bound is zero, don't want to succeed at
1800 all; jump from `laststart' to `b + 3', which will be
1801 the end of the buffer after we insert the jump. */
1802 if (upper_bound == 0)
1803 {
1804 GET_BUFFER_SPACE (3);
1805 INSERT_JUMP (jump, laststart, b + 3);
1806 b += 3;
1807 }
1808
1809 /* Otherwise, we have a nontrivial interval. When
1810 we're all done, the pattern will look like:
1811 set_number_at <jump count> <upper bound>
1812 set_number_at <succeed_n count> <lower bound>
1813 succeed_n <after jump addr> <succed_n count>
1814 <body of loop>
1815 jump_n <succeed_n addr> <jump count>
1816 (The upper bound and `jump_n' are omitted if
1817 `upper_bound' is 1, though.) */
1818 else
1819 { /* If the upper bound is > 1, we need to insert
1820 more at the end of the loop. */
1821 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1822
1823 GET_BUFFER_SPACE (nbytes);
1824
1825 /* Initialize lower bound of the `succeed_n', even
1826 though it will be set during matching by its
1827 attendant `set_number_at' (inserted next),
1828 because `re_compile_fastmap' needs to know.
1829 Jump to the `jump_n' we might insert below. */
1830 INSERT_JUMP2 (succeed_n, laststart,
1831 b + 5 + (upper_bound > 1) * 5,
1832 lower_bound);
1833 b += 5;
1834
1835 /* Code to initialize the lower bound. Insert
1836 before the `succeed_n'. The `5' is the last two
1837 bytes of this `set_number_at', plus 3 bytes of
1838 the following `succeed_n'. */
1839 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1840 b += 5;
1841
1842 if (upper_bound > 1)
1843 { /* More than one repetition is allowed, so
1844 append a backward jump to the `succeed_n'
1845 that starts this interval.
1846
1847 When we've reached this during matching,
1848 we'll have matched the interval once, so
1849 jump back only `upper_bound - 1' times. */
1850 STORE_JUMP2 (jump_n, b, laststart + 5,
1851 upper_bound - 1);
1852 b += 5;
1853
1854 /* The location we want to set is the second
1855 parameter of the `jump_n'; that is `b-2' as
1856 an absolute address. `laststart' will be
1857 the `set_number_at' we're about to insert;
1858 `laststart+3' the number to set, the source
1859 for the relative address. But we are
1860 inserting into the middle of the pattern --
1861 so everything is getting moved up by 5.
1862 Conclusion: (b - 2) - (laststart + 3) + 5,
1863 i.e., b - laststart.
1864
1865 We insert this at the beginning of the loop
1866 so that if we fail during matching, we'll
1867 reinitialize the bounds. */
1868 insert_op2 (set_number_at, laststart, b - laststart,
1869 upper_bound - 1, b);
1870 b += 5;
1871 }
1872 }
1873 pending_exact = 0;
1874 beg_interval = NULL;
1875 }
1876 break;
1877
1878 unfetch_interval:
1879 /* If an invalid interval, match the characters as literals. */
1880 assert (beg_interval);
1881 p = beg_interval;
1882 beg_interval = NULL;
1883
1884 /* normal_char and normal_backslash need `c'. */
1885 PATFETCH (c);
1886
1887 if (!(syntax & RE_NO_BK_BRACES))
1888 {
1889 if (p > pattern && p[-1] == '\\')
1890 goto normal_backslash;
1891 }
1892 goto normal_char;
1893
1894 #ifdef emacs
1895 /* There is no way to specify the before_dot and after_dot
1896 operators. rms says this is ok. --karl */
1897 case '=':
1898 BUF_PUSH (at_dot);
1899 break;
1900
1901 case 's':
1902 laststart = b;
1903 PATFETCH (c);
1904 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1905 break;
1906
1907 case 'S':
1908 laststart = b;
1909 PATFETCH (c);
1910 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1911 break;
1912 #endif /* emacs */
1913
1914
1915 case 'w':
1916 laststart = b;
1917 BUF_PUSH (wordchar);
1918 break;
1919
1920
1921 case 'W':
1922 laststart = b;
1923 BUF_PUSH (notwordchar);
1924 break;
1925
1926
1927 case '<':
1928 BUF_PUSH (wordbeg);
1929 break;
1930
1931 case '>':
1932 BUF_PUSH (wordend);
1933 break;
1934
1935 case 'b':
1936 BUF_PUSH (wordbound);
1937 break;
1938
1939 case 'B':
1940 BUF_PUSH (notwordbound);
1941 break;
1942
1943 case '`':
1944 BUF_PUSH (begbuf);
1945 break;
1946
1947 case '\'':
1948 BUF_PUSH (endbuf);
1949 break;
1950
1951 case '1': case '2': case '3': case '4': case '5':
1952 case '6': case '7': case '8': case '9':
1953 if (syntax & RE_NO_BK_REFS)
1954 goto normal_char;
1955
1956 c1 = c - '0';
1957
1958 if (c1 > regnum)
1959 return REG_ESUBREG;
1960
1961 /* Can't back reference to a subexpression if inside of it. */
1962 if (group_in_compile_stack (compile_stack, c1))
1963 goto normal_char;
1964
1965 laststart = b;
1966 BUF_PUSH_2 (duplicate, c1);
1967 break;
1968
1969
1970 case '+':
1971 case '?':
1972 if (syntax & RE_BK_PLUS_QM)
1973 goto handle_plus;
1974 else
1975 goto normal_backslash;
1976
1977 default:
1978 normal_backslash:
1979 /* You might think it would be useful for \ to mean
1980 not to translate; but if we don't translate it
1981 it will never match anything. */
1982 c = TRANSLATE (c);
1983 goto normal_char;
1984 }
1985 break;
1986
1987
1988 default:
1989 /* Expects the character in `c'. */
1990 normal_char:
1991 /* If no exactn currently being built. */
1992 if (!pending_exact
1993
1994 /* If last exactn not at current position. */
1995 || pending_exact + *pending_exact + 1 != b
1996
1997 /* We have only one byte following the exactn for the count. */
1998 || *pending_exact == (1 << BYTEWIDTH) - 1
1999
2000 /* If followed by a repetition operator. */
2001 || *p == '*' || *p == '^'
2002 || ((syntax & RE_BK_PLUS_QM)
2003 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2004 : (*p == '+' || *p == '?'))
2005 || ((syntax & RE_INTERVALS)
2006 && ((syntax & RE_NO_BK_BRACES)
2007 ? *p == '{'
2008 : (p[0] == '\\' && p[1] == '{'))))
2009 {
2010 /* Start building a new exactn. */
2011
2012 laststart = b;
2013
2014 BUF_PUSH_2 (exactn, 0);
2015 pending_exact = b - 1;
2016 }
2017
2018 BUF_PUSH (c);
2019 (*pending_exact)++;
2020 break;
2021 } /* switch (c) */
2022 } /* while p != pend */
2023
2024
2025 /* Through the pattern now. */
2026
2027 if (fixup_alt_jump)
2028 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2029
2030 if (!COMPILE_STACK_EMPTY)
2031 return REG_EPAREN;
2032
2033 free (compile_stack.stack);
2034
2035 /* We have succeeded; set the length of the buffer. */
2036 bufp->used = b - bufp->buffer;
2037
2038 #ifdef DEBUG
2039 if (debug)
2040 {
2041 DEBUG_PRINT1 ("\nCompiled pattern: ");
2042 print_compiled_pattern (bufp);
2043 }
2044 #endif /* DEBUG */
2045
2046 return REG_NOERROR;
2047 } /* regex_compile */
2048 \f
2049 /* Subroutines for `regex_compile'. */
2050
2051 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2052
2053 static void
2054 store_op1 (op, loc, arg)
2055 re_opcode_t op;
2056 unsigned char *loc;
2057 int arg;
2058 {
2059 *loc = (unsigned char) op;
2060 STORE_NUMBER (loc + 1, arg);
2061 }
2062
2063
2064 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2065
2066 static void
2067 store_op2 (op, loc, arg1, arg2)
2068 re_opcode_t op;
2069 unsigned char *loc;
2070 int arg1, arg2;
2071 {
2072 *loc = (unsigned char) op;
2073 STORE_NUMBER (loc + 1, arg1);
2074 STORE_NUMBER (loc + 3, arg2);
2075 }
2076
2077
2078 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2079 for OP followed by two-byte integer parameter ARG. */
2080
2081 static void
2082 insert_op1 (op, loc, arg, end)
2083 re_opcode_t op;
2084 unsigned char *loc;
2085 int arg;
2086 unsigned char *end;
2087 {
2088 register unsigned char *pfrom = end;
2089 register unsigned char *pto = end + 3;
2090
2091 while (pfrom != loc)
2092 *--pto = *--pfrom;
2093
2094 store_op1 (op, loc, arg);
2095 }
2096
2097
2098 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2099
2100 static void
2101 insert_op2 (op, loc, arg1, arg2, end)
2102 re_opcode_t op;
2103 unsigned char *loc;
2104 int arg1, arg2;
2105 unsigned char *end;
2106 {
2107 register unsigned char *pfrom = end;
2108 register unsigned char *pto = end + 5;
2109
2110 while (pfrom != loc)
2111 *--pto = *--pfrom;
2112
2113 store_op2 (op, loc, arg1, arg2);
2114 }
2115
2116
2117 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2118 after an alternative or a begin-subexpression. We assume there is at
2119 least one character before the ^. */
2120
2121 static boolean
2122 at_begline_loc_p (pattern, p, syntax)
2123 const char *pattern, *p;
2124 reg_syntax_t syntax;
2125 {
2126 const char *prev = p - 2;
2127 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2128
2129 return
2130 /* After a subexpression? */
2131 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2132 /* After an alternative? */
2133 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2134 }
2135
2136
2137 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2138 at least one character after the $, i.e., `P < PEND'. */
2139
2140 static boolean
2141 at_endline_loc_p (p, pend, syntax)
2142 const char *p, *pend;
2143 int syntax;
2144 {
2145 const char *next = p;
2146 boolean next_backslash = *next == '\\';
2147 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2148
2149 return
2150 /* Before a subexpression? */
2151 (syntax & RE_NO_BK_PARENS ? *next == ')'
2152 : next_backslash && next_next && *next_next == ')')
2153 /* Before an alternative? */
2154 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2155 : next_backslash && next_next && *next_next == '|');
2156 }
2157
2158
2159 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2160 false if it's not. */
2161
2162 static boolean
2163 group_in_compile_stack (compile_stack, regnum)
2164 compile_stack_type compile_stack;
2165 regnum_t regnum;
2166 {
2167 int this_element;
2168
2169 for (this_element = compile_stack.avail - 1;
2170 this_element >= 0;
2171 this_element--)
2172 if (compile_stack.stack[this_element].regnum == regnum)
2173 return true;
2174
2175 return false;
2176 }
2177
2178
2179 /* Read the ending character of a range (in a bracket expression) from the
2180 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2181 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2182 Then we set the translation of all bits between the starting and
2183 ending characters (inclusive) in the compiled pattern B.
2184
2185 Return an error code.
2186
2187 We use these short variable names so we can use the same macros as
2188 `regex_compile' itself. */
2189
2190 static reg_errcode_t
2191 compile_range (p_ptr, pend, translate, syntax, b)
2192 const char **p_ptr, *pend;
2193 char *translate;
2194 reg_syntax_t syntax;
2195 unsigned char *b;
2196 {
2197 unsigned this_char;
2198
2199 const char *p = *p_ptr;
2200 int range_start, range_end;
2201
2202 if (p == pend)
2203 return REG_ERANGE;
2204
2205 /* Even though the pattern is a signed `char *', we need to fetch
2206 with unsigned char *'s; if the high bit of the pattern character
2207 is set, the range endpoints will be negative if we fetch using a
2208 signed char *.
2209
2210 We also want to fetch the endpoints without translating them; the
2211 appropriate translation is done in the bit-setting loop below. */
2212 range_start = ((unsigned char *) p)[-2];
2213 range_end = ((unsigned char *) p)[0];
2214
2215 /* Have to increment the pointer into the pattern string, so the
2216 caller isn't still at the ending character. */
2217 (*p_ptr)++;
2218
2219 /* If the start is after the end, the range is empty. */
2220 if (range_start > range_end)
2221 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2222
2223 /* Here we see why `this_char' has to be larger than an `unsigned
2224 char' -- the range is inclusive, so if `range_end' == 0xff
2225 (assuming 8-bit characters), we would otherwise go into an infinite
2226 loop, since all characters <= 0xff. */
2227 for (this_char = range_start; this_char <= range_end; this_char++)
2228 {
2229 SET_LIST_BIT (TRANSLATE (this_char));
2230 }
2231
2232 return REG_NOERROR;
2233 }
2234 \f
2235 /* Failure stack declarations and macros; both re_compile_fastmap and
2236 re_match_2 use a failure stack. These have to be macros because of
2237 REGEX_ALLOCATE. */
2238
2239
2240 /* Number of failure points for which to initially allocate space
2241 when matching. If this number is exceeded, we allocate more
2242 space, so it is not a hard limit. */
2243 #ifndef INIT_FAILURE_ALLOC
2244 #define INIT_FAILURE_ALLOC 5
2245 #endif
2246
2247 /* Roughly the maximum number of failure points on the stack. Would be
2248 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2249 This is a variable only so users of regex can assign to it; we never
2250 change it ourselves. */
2251 int re_max_failures = 2000;
2252
2253 typedef const unsigned char *fail_stack_elt_t;
2254
2255 typedef struct
2256 {
2257 fail_stack_elt_t *stack;
2258 unsigned size;
2259 unsigned avail; /* Offset of next open position. */
2260 } fail_stack_type;
2261
2262 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2263 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2264 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2265 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2266
2267
2268 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2269
2270 #define INIT_FAIL_STACK() \
2271 do { \
2272 fail_stack.stack = (fail_stack_elt_t *) \
2273 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2274 \
2275 if (fail_stack.stack == NULL) \
2276 return -2; \
2277 \
2278 fail_stack.size = INIT_FAILURE_ALLOC; \
2279 fail_stack.avail = 0; \
2280 } while (0)
2281
2282
2283 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2284
2285 Return 1 if succeeds, and 0 if either ran out of memory
2286 allocating space for it or it was already too large.
2287
2288 REGEX_REALLOCATE requires `destination' be declared. */
2289
2290 #define DOUBLE_FAIL_STACK(fail_stack) \
2291 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2292 ? 0 \
2293 : ((fail_stack).stack = (fail_stack_elt_t *) \
2294 REGEX_REALLOCATE ((fail_stack).stack, \
2295 (fail_stack).size * sizeof (fail_stack_elt_t), \
2296 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2297 \
2298 (fail_stack).stack == NULL \
2299 ? 0 \
2300 : ((fail_stack).size <<= 1, \
2301 1)))
2302
2303
2304 /* Push PATTERN_OP on FAIL_STACK.
2305
2306 Return 1 if was able to do so and 0 if ran out of memory allocating
2307 space to do so. */
2308 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2309 ((FAIL_STACK_FULL () \
2310 && !DOUBLE_FAIL_STACK (fail_stack)) \
2311 ? 0 \
2312 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2313 1))
2314
2315 /* This pushes an item onto the failure stack. Must be a four-byte
2316 value. Assumes the variable `fail_stack'. Probably should only
2317 be called from within `PUSH_FAILURE_POINT'. */
2318 #define PUSH_FAILURE_ITEM(item) \
2319 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2320
2321 /* The complement operation. Assumes `fail_stack' is nonempty. */
2322 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2323
2324 /* Used to omit pushing failure point id's when we're not debugging. */
2325 #ifdef DEBUG
2326 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2327 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2328 #else
2329 #define DEBUG_PUSH(item)
2330 #define DEBUG_POP(item_addr)
2331 #endif
2332
2333
2334 /* Push the information about the state we will need
2335 if we ever fail back to it.
2336
2337 Requires variables fail_stack, regstart, regend, reg_info, and
2338 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2339 declared.
2340
2341 Does `return FAILURE_CODE' if runs out of memory. */
2342
2343 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2344 do { \
2345 char *destination; \
2346 /* Must be int, so when we don't save any registers, the arithmetic \
2347 of 0 + -1 isn't done as unsigned. */ \
2348 int this_reg; \
2349 \
2350 DEBUG_STATEMENT (failure_id++); \
2351 DEBUG_STATEMENT (nfailure_points_pushed++); \
2352 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2353 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2354 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2355 \
2356 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2357 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2358 \
2359 /* Ensure we have enough space allocated for what we will push. */ \
2360 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2361 { \
2362 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2363 return failure_code; \
2364 \
2365 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2366 (fail_stack).size); \
2367 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2368 } \
2369 \
2370 /* Push the info, starting with the registers. */ \
2371 DEBUG_PRINT1 ("\n"); \
2372 \
2373 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2374 this_reg++) \
2375 { \
2376 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2377 DEBUG_STATEMENT (num_regs_pushed++); \
2378 \
2379 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2380 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2381 \
2382 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2383 PUSH_FAILURE_ITEM (regend[this_reg]); \
2384 \
2385 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2386 DEBUG_PRINT2 (" match_null=%d", \
2387 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2388 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2389 DEBUG_PRINT2 (" matched_something=%d", \
2390 MATCHED_SOMETHING (reg_info[this_reg])); \
2391 DEBUG_PRINT2 (" ever_matched=%d", \
2392 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2393 DEBUG_PRINT1 ("\n"); \
2394 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2395 } \
2396 \
2397 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2398 PUSH_FAILURE_ITEM (lowest_active_reg); \
2399 \
2400 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2401 PUSH_FAILURE_ITEM (highest_active_reg); \
2402 \
2403 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2404 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2405 PUSH_FAILURE_ITEM (pattern_place); \
2406 \
2407 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2408 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2409 size2); \
2410 DEBUG_PRINT1 ("'\n"); \
2411 PUSH_FAILURE_ITEM (string_place); \
2412 \
2413 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2414 DEBUG_PUSH (failure_id); \
2415 } while (0)
2416
2417 /* This is the number of items that are pushed and popped on the stack
2418 for each register. */
2419 #define NUM_REG_ITEMS 3
2420
2421 /* Individual items aside from the registers. */
2422 #ifdef DEBUG
2423 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2424 #else
2425 #define NUM_NONREG_ITEMS 4
2426 #endif
2427
2428 /* We push at most this many items on the stack. */
2429 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2430
2431 /* We actually push this many items. */
2432 #define NUM_FAILURE_ITEMS \
2433 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2434 + NUM_NONREG_ITEMS)
2435
2436 /* How many items can still be added to the stack without overflowing it. */
2437 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2438
2439
2440 /* Pops what PUSH_FAIL_STACK pushes.
2441
2442 We restore into the parameters, all of which should be lvalues:
2443 STR -- the saved data position.
2444 PAT -- the saved pattern position.
2445 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2446 REGSTART, REGEND -- arrays of string positions.
2447 REG_INFO -- array of information about each subexpression.
2448
2449 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2450 `pend', `string1', `size1', `string2', and `size2'. */
2451
2452 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2453 { \
2454 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2455 int this_reg; \
2456 const unsigned char *string_temp; \
2457 \
2458 assert (!FAIL_STACK_EMPTY ()); \
2459 \
2460 /* Remove failure points and point to how many regs pushed. */ \
2461 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2462 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2463 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2464 \
2465 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2466 \
2467 DEBUG_POP (&failure_id); \
2468 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2469 \
2470 /* If the saved string location is NULL, it came from an \
2471 on_failure_keep_string_jump opcode, and we want to throw away the \
2472 saved NULL, thus retaining our current position in the string. */ \
2473 string_temp = POP_FAILURE_ITEM (); \
2474 if (string_temp != NULL) \
2475 str = (const char *) string_temp; \
2476 \
2477 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2478 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2479 DEBUG_PRINT1 ("'\n"); \
2480 \
2481 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2482 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2483 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2484 \
2485 /* Restore register info. */ \
2486 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2487 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2488 \
2489 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2490 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2491 \
2492 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2493 { \
2494 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2495 \
2496 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2497 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2498 \
2499 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2500 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2501 \
2502 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2503 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2504 } \
2505 \
2506 DEBUG_STATEMENT (nfailure_points_popped++); \
2507 } /* POP_FAILURE_POINT */
2508 \f
2509 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2510 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2511 characters can start a string that matches the pattern. This fastmap
2512 is used by re_search to skip quickly over impossible starting points.
2513
2514 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2515 area as BUFP->fastmap.
2516
2517 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2518 the pattern buffer.
2519
2520 Returns 0 if we succeed, -2 if an internal error. */
2521
2522 int
2523 re_compile_fastmap (bufp)
2524 struct re_pattern_buffer *bufp;
2525 {
2526 int j, k;
2527 fail_stack_type fail_stack;
2528 #ifndef REGEX_MALLOC
2529 char *destination;
2530 #endif
2531 /* We don't push any register information onto the failure stack. */
2532 unsigned num_regs = 0;
2533
2534 register char *fastmap = bufp->fastmap;
2535 unsigned char *pattern = bufp->buffer;
2536 unsigned long size = bufp->used;
2537 const unsigned char *p = pattern;
2538 register unsigned char *pend = pattern + size;
2539
2540 /* Assume that each path through the pattern can be null until
2541 proven otherwise. We set this false at the bottom of switch
2542 statement, to which we get only if a particular path doesn't
2543 match the empty string. */
2544 boolean path_can_be_null = true;
2545
2546 /* We aren't doing a `succeed_n' to begin with. */
2547 boolean succeed_n_p = false;
2548
2549 assert (fastmap != NULL && p != NULL);
2550
2551 INIT_FAIL_STACK ();
2552 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2553 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2554 bufp->can_be_null = 0;
2555
2556 while (p != pend || !FAIL_STACK_EMPTY ())
2557 {
2558 if (p == pend)
2559 {
2560 bufp->can_be_null |= path_can_be_null;
2561
2562 /* Reset for next path. */
2563 path_can_be_null = true;
2564
2565 p = fail_stack.stack[--fail_stack.avail];
2566 }
2567
2568 /* We should never be about to go beyond the end of the pattern. */
2569 assert (p < pend);
2570
2571 #ifdef SWITCH_ENUM_BUG
2572 switch ((int) ((re_opcode_t) *p++))
2573 #else
2574 switch ((re_opcode_t) *p++)
2575 #endif
2576 {
2577
2578 /* I guess the idea here is to simply not bother with a fastmap
2579 if a backreference is used, since it's too hard to figure out
2580 the fastmap for the corresponding group. Setting
2581 `can_be_null' stops `re_search_2' from using the fastmap, so
2582 that is all we do. */
2583 case duplicate:
2584 bufp->can_be_null = 1;
2585 return 0;
2586
2587
2588 /* Following are the cases which match a character. These end
2589 with `break'. */
2590
2591 case exactn:
2592 fastmap[p[1]] = 1;
2593 break;
2594
2595
2596 case charset:
2597 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2598 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2599 fastmap[j] = 1;
2600 break;
2601
2602
2603 case charset_not:
2604 /* Chars beyond end of map must be allowed. */
2605 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2606 fastmap[j] = 1;
2607
2608 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2609 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2610 fastmap[j] = 1;
2611 break;
2612
2613
2614 case wordchar:
2615 for (j = 0; j < (1 << BYTEWIDTH); j++)
2616 if (SYNTAX (j) == Sword)
2617 fastmap[j] = 1;
2618 break;
2619
2620
2621 case notwordchar:
2622 for (j = 0; j < (1 << BYTEWIDTH); j++)
2623 if (SYNTAX (j) != Sword)
2624 fastmap[j] = 1;
2625 break;
2626
2627
2628 case anychar:
2629 /* `.' matches anything ... */
2630 for (j = 0; j < (1 << BYTEWIDTH); j++)
2631 fastmap[j] = 1;
2632
2633 /* ... except perhaps newline. */
2634 if (!(bufp->syntax & RE_DOT_NEWLINE))
2635 fastmap['\n'] = 0;
2636
2637 /* Return if we have already set `can_be_null'; if we have,
2638 then the fastmap is irrelevant. Something's wrong here. */
2639 else if (bufp->can_be_null)
2640 return 0;
2641
2642 /* Otherwise, have to check alternative paths. */
2643 break;
2644
2645
2646 #ifdef emacs
2647 case syntaxspec:
2648 k = *p++;
2649 for (j = 0; j < (1 << BYTEWIDTH); j++)
2650 if (SYNTAX (j) == (enum syntaxcode) k)
2651 fastmap[j] = 1;
2652 break;
2653
2654
2655 case notsyntaxspec:
2656 k = *p++;
2657 for (j = 0; j < (1 << BYTEWIDTH); j++)
2658 if (SYNTAX (j) != (enum syntaxcode) k)
2659 fastmap[j] = 1;
2660 break;
2661
2662
2663 /* All cases after this match the empty string. These end with
2664 `continue'. */
2665
2666
2667 case before_dot:
2668 case at_dot:
2669 case after_dot:
2670 continue;
2671 #endif /* not emacs */
2672
2673
2674 case no_op:
2675 case begline:
2676 case endline:
2677 case begbuf:
2678 case endbuf:
2679 case wordbound:
2680 case notwordbound:
2681 case wordbeg:
2682 case wordend:
2683 case push_dummy_failure:
2684 continue;
2685
2686
2687 case jump_n:
2688 case pop_failure_jump:
2689 case maybe_pop_jump:
2690 case jump:
2691 case jump_past_alt:
2692 case dummy_failure_jump:
2693 EXTRACT_NUMBER_AND_INCR (j, p);
2694 p += j;
2695 if (j > 0)
2696 continue;
2697
2698 /* Jump backward implies we just went through the body of a
2699 loop and matched nothing. Opcode jumped to should be
2700 `on_failure_jump' or `succeed_n'. Just treat it like an
2701 ordinary jump. For a * loop, it has pushed its failure
2702 point already; if so, discard that as redundant. */
2703 if ((re_opcode_t) *p != on_failure_jump
2704 && (re_opcode_t) *p != succeed_n)
2705 continue;
2706
2707 p++;
2708 EXTRACT_NUMBER_AND_INCR (j, p);
2709 p += j;
2710
2711 /* If what's on the stack is where we are now, pop it. */
2712 if (!FAIL_STACK_EMPTY ()
2713 && fail_stack.stack[fail_stack.avail - 1] == p)
2714 fail_stack.avail--;
2715
2716 continue;
2717
2718
2719 case on_failure_jump:
2720 case on_failure_keep_string_jump:
2721 handle_on_failure_jump:
2722 EXTRACT_NUMBER_AND_INCR (j, p);
2723
2724 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2725 end of the pattern. We don't want to push such a point,
2726 since when we restore it above, entering the switch will
2727 increment `p' past the end of the pattern. We don't need
2728 to push such a point since we obviously won't find any more
2729 fastmap entries beyond `pend'. Such a pattern can match
2730 the null string, though. */
2731 if (p + j < pend)
2732 {
2733 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2734 return -2;
2735 }
2736 else
2737 bufp->can_be_null = 1;
2738
2739 if (succeed_n_p)
2740 {
2741 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2742 succeed_n_p = false;
2743 }
2744
2745 continue;
2746
2747
2748 case succeed_n:
2749 /* Get to the number of times to succeed. */
2750 p += 2;
2751
2752 /* Increment p past the n for when k != 0. */
2753 EXTRACT_NUMBER_AND_INCR (k, p);
2754 if (k == 0)
2755 {
2756 p -= 4;
2757 succeed_n_p = true; /* Spaghetti code alert. */
2758 goto handle_on_failure_jump;
2759 }
2760 continue;
2761
2762
2763 case set_number_at:
2764 p += 4;
2765 continue;
2766
2767
2768 case start_memory:
2769 case stop_memory:
2770 p += 2;
2771 continue;
2772
2773
2774 default:
2775 abort (); /* We have listed all the cases. */
2776 } /* switch *p++ */
2777
2778 /* Getting here means we have found the possible starting
2779 characters for one path of the pattern -- and that the empty
2780 string does not match. We need not follow this path further.
2781 Instead, look at the next alternative (remembered on the
2782 stack), or quit if no more. The test at the top of the loop
2783 does these things. */
2784 path_can_be_null = false;
2785 p = pend;
2786 } /* while p */
2787
2788 /* Set `can_be_null' for the last path (also the first path, if the
2789 pattern is empty). */
2790 bufp->can_be_null |= path_can_be_null;
2791 return 0;
2792 } /* re_compile_fastmap */
2793 \f
2794 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2795 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2796 this memory for recording register information. STARTS and ENDS
2797 must be allocated using the malloc library routine, and must each
2798 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2799
2800 If NUM_REGS == 0, then subsequent matches should allocate their own
2801 register data.
2802
2803 Unless this function is called, the first search or match using
2804 PATTERN_BUFFER will allocate its own register data, without
2805 freeing the old data. */
2806
2807 void
2808 re_set_registers (bufp, regs, num_regs, starts, ends)
2809 struct re_pattern_buffer *bufp;
2810 struct re_registers *regs;
2811 unsigned num_regs;
2812 regoff_t *starts, *ends;
2813 {
2814 if (num_regs)
2815 {
2816 bufp->regs_allocated = REGS_REALLOCATE;
2817 regs->num_regs = num_regs;
2818 regs->start = starts;
2819 regs->end = ends;
2820 }
2821 else
2822 {
2823 bufp->regs_allocated = REGS_UNALLOCATED;
2824 regs->num_regs = 0;
2825 regs->start = regs->end = (regoff_t) 0;
2826 }
2827 }
2828 \f
2829 /* Searching routines. */
2830
2831 /* Like re_search_2, below, but only one string is specified, and
2832 doesn't let you say where to stop matching. */
2833
2834 int
2835 re_search (bufp, string, size, startpos, range, regs)
2836 struct re_pattern_buffer *bufp;
2837 const char *string;
2838 int size, startpos, range;
2839 struct re_registers *regs;
2840 {
2841 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2842 regs, size);
2843 }
2844
2845
2846 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2847 virtual concatenation of STRING1 and STRING2, starting first at index
2848 STARTPOS, then at STARTPOS + 1, and so on.
2849
2850 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2851
2852 RANGE is how far to scan while trying to match. RANGE = 0 means try
2853 only at STARTPOS; in general, the last start tried is STARTPOS +
2854 RANGE.
2855
2856 In REGS, return the indices of the virtual concatenation of STRING1
2857 and STRING2 that matched the entire BUFP->buffer and its contained
2858 subexpressions.
2859
2860 Do not consider matching one past the index STOP in the virtual
2861 concatenation of STRING1 and STRING2.
2862
2863 We return either the position in the strings at which the match was
2864 found, -1 if no match, or -2 if error (such as failure
2865 stack overflow). */
2866
2867 int
2868 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2869 struct re_pattern_buffer *bufp;
2870 const char *string1, *string2;
2871 int size1, size2;
2872 int startpos;
2873 int range;
2874 struct re_registers *regs;
2875 int stop;
2876 {
2877 int val;
2878 register char *fastmap = bufp->fastmap;
2879 register char *translate = bufp->translate;
2880 int total_size = size1 + size2;
2881 int endpos = startpos + range;
2882
2883 /* Check for out-of-range STARTPOS. */
2884 if (startpos < 0 || startpos > total_size)
2885 return -1;
2886
2887 /* Fix up RANGE if it might eventually take us outside
2888 the virtual concatenation of STRING1 and STRING2. */
2889 if (endpos < -1)
2890 range = -1 - startpos;
2891 else if (endpos > total_size)
2892 range = total_size - startpos;
2893
2894 /* If the search isn't to be a backwards one, don't waste time in a
2895 search for a pattern that must be anchored. */
2896 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2897 {
2898 if (startpos > 0)
2899 return -1;
2900 else
2901 range = 1;
2902 }
2903
2904 /* Update the fastmap now if not correct already. */
2905 if (fastmap && !bufp->fastmap_accurate)
2906 if (re_compile_fastmap (bufp) == -2)
2907 return -2;
2908
2909 /* Loop through the string, looking for a place to start matching. */
2910 for (;;)
2911 {
2912 /* If a fastmap is supplied, skip quickly over characters that
2913 cannot be the start of a match. If the pattern can match the
2914 null string, however, we don't need to skip characters; we want
2915 the first null string. */
2916 if (fastmap && startpos < total_size && !bufp->can_be_null)
2917 {
2918 if (range > 0) /* Searching forwards. */
2919 {
2920 register const char *d;
2921 register int lim = 0;
2922 int irange = range;
2923
2924 if (startpos < size1 && startpos + range >= size1)
2925 lim = range - (size1 - startpos);
2926
2927 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2928
2929 /* Written out as an if-else to avoid testing `translate'
2930 inside the loop. */
2931 if (translate)
2932 while (range > lim
2933 && !fastmap[(unsigned char)
2934 translate[(unsigned char) *d++]])
2935 range--;
2936 else
2937 while (range > lim && !fastmap[(unsigned char) *d++])
2938 range--;
2939
2940 startpos += irange - range;
2941 }
2942 else /* Searching backwards. */
2943 {
2944 register char c = (size1 == 0 || startpos >= size1
2945 ? string2[startpos - size1]
2946 : string1[startpos]);
2947
2948 if (!fastmap[(unsigned char) TRANSLATE (c)])
2949 goto advance;
2950 }
2951 }
2952
2953 /* If can't match the null string, and that's all we have left, fail. */
2954 if (range >= 0 && startpos == total_size && fastmap
2955 && !bufp->can_be_null)
2956 return -1;
2957
2958 val = re_match_2 (bufp, string1, size1, string2, size2,
2959 startpos, regs, stop);
2960 if (val >= 0)
2961 return startpos;
2962
2963 if (val == -2)
2964 return -2;
2965
2966 advance:
2967 if (!range)
2968 break;
2969 else if (range > 0)
2970 {
2971 range--;
2972 startpos++;
2973 }
2974 else
2975 {
2976 range++;
2977 startpos--;
2978 }
2979 }
2980 return -1;
2981 } /* re_search_2 */
2982 \f
2983 /* Declarations and macros for re_match_2. */
2984
2985 static int bcmp_translate ();
2986 static boolean alt_match_null_string_p (),
2987 common_op_match_null_string_p (),
2988 group_match_null_string_p ();
2989
2990 /* Structure for per-register (a.k.a. per-group) information.
2991 This must not be longer than one word, because we push this value
2992 onto the failure stack. Other register information, such as the
2993 starting and ending positions (which are addresses), and the list of
2994 inner groups (which is a bits list) are maintained in separate
2995 variables.
2996
2997 We are making a (strictly speaking) nonportable assumption here: that
2998 the compiler will pack our bit fields into something that fits into
2999 the type of `word', i.e., is something that fits into one item on the
3000 failure stack. */
3001 typedef union
3002 {
3003 fail_stack_elt_t word;
3004 struct
3005 {
3006 /* This field is one if this group can match the empty string,
3007 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3008 #define MATCH_NULL_UNSET_VALUE 3
3009 unsigned match_null_string_p : 2;
3010 unsigned is_active : 1;
3011 unsigned matched_something : 1;
3012 unsigned ever_matched_something : 1;
3013 } bits;
3014 } register_info_type;
3015
3016 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3017 #define IS_ACTIVE(R) ((R).bits.is_active)
3018 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3019 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3020
3021
3022 /* Call this when have matched a real character; it sets `matched' flags
3023 for the subexpressions which we are currently inside. Also records
3024 that those subexprs have matched. */
3025 #define SET_REGS_MATCHED() \
3026 do \
3027 { \
3028 unsigned r; \
3029 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3030 { \
3031 MATCHED_SOMETHING (reg_info[r]) \
3032 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3033 = 1; \
3034 } \
3035 } \
3036 while (0)
3037
3038
3039 /* This converts PTR, a pointer into one of the search strings `string1'
3040 and `string2' into an offset from the beginning of that string. */
3041 #define POINTER_TO_OFFSET(ptr) \
3042 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3043
3044 /* Registers are set to a sentinel when they haven't yet matched. */
3045 #define REG_UNSET_VALUE ((char *) -1)
3046 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3047
3048
3049 /* Macros for dealing with the split strings in re_match_2. */
3050
3051 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3052
3053 /* Call before fetching a character with *d. This switches over to
3054 string2 if necessary. */
3055 #define PREFETCH() \
3056 while (d == dend) \
3057 { \
3058 /* End of string2 => fail. */ \
3059 if (dend == end_match_2) \
3060 goto fail; \
3061 /* End of string1 => advance to string2. */ \
3062 d = string2; \
3063 dend = end_match_2; \
3064 }
3065
3066
3067 /* Test if at very beginning or at very end of the virtual concatenation
3068 of `string1' and `string2'. If only one string, it's `string2'. */
3069 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3070 #define AT_STRINGS_END(d) ((d) == end2)
3071
3072
3073 /* Test if D points to a character which is word-constituent. We have
3074 two special cases to check for: if past the end of string1, look at
3075 the first character in string2; and if before the beginning of
3076 string2, look at the last character in string1. */
3077 #define WORDCHAR_P(d) \
3078 (SYNTAX ((d) == end1 ? *string2 \
3079 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3080 == Sword)
3081
3082 /* Test if the character before D and the one at D differ with respect
3083 to being word-constituent. */
3084 #define AT_WORD_BOUNDARY(d) \
3085 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3086 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3087
3088
3089 /* Free everything we malloc. */
3090 #ifdef REGEX_MALLOC
3091 #define FREE_VAR(var) if (var) free (var); var = NULL
3092 #define FREE_VARIABLES() \
3093 do { \
3094 FREE_VAR (fail_stack.stack); \
3095 FREE_VAR (regstart); \
3096 FREE_VAR (regend); \
3097 FREE_VAR (old_regstart); \
3098 FREE_VAR (old_regend); \
3099 FREE_VAR (best_regstart); \
3100 FREE_VAR (best_regend); \
3101 FREE_VAR (reg_info); \
3102 FREE_VAR (reg_dummy); \
3103 FREE_VAR (reg_info_dummy); \
3104 } while (0)
3105 #else /* not REGEX_MALLOC */
3106 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3107 #define FREE_VARIABLES() alloca (0)
3108 #endif /* not REGEX_MALLOC */
3109
3110
3111 /* These values must meet several constraints. They must not be valid
3112 register values; since we have a limit of 255 registers (because
3113 we use only one byte in the pattern for the register number), we can
3114 use numbers larger than 255. They must differ by 1, because of
3115 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3116 be larger than the value for the highest register, so we do not try
3117 to actually save any registers when none are active. */
3118 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3119 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3120 \f
3121 /* Matching routines. */
3122
3123 #ifndef emacs /* Emacs never uses this. */
3124 /* re_match is like re_match_2 except it takes only a single string. */
3125
3126 int
3127 re_match (bufp, string, size, pos, regs)
3128 struct re_pattern_buffer *bufp;
3129 const char *string;
3130 int size, pos;
3131 struct re_registers *regs;
3132 {
3133 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3134 }
3135 #endif /* not emacs */
3136
3137
3138 /* re_match_2 matches the compiled pattern in BUFP against the
3139 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3140 and SIZE2, respectively). We start matching at POS, and stop
3141 matching at STOP.
3142
3143 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3144 store offsets for the substring each group matched in REGS. See the
3145 documentation for exactly how many groups we fill.
3146
3147 We return -1 if no match, -2 if an internal error (such as the
3148 failure stack overflowing). Otherwise, we return the length of the
3149 matched substring. */
3150
3151 int
3152 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3153 struct re_pattern_buffer *bufp;
3154 const char *string1, *string2;
3155 int size1, size2;
3156 int pos;
3157 struct re_registers *regs;
3158 int stop;
3159 {
3160 /* General temporaries. */
3161 int mcnt;
3162 unsigned char *p1;
3163
3164 /* Just past the end of the corresponding string. */
3165 const char *end1, *end2;
3166
3167 /* Pointers into string1 and string2, just past the last characters in
3168 each to consider matching. */
3169 const char *end_match_1, *end_match_2;
3170
3171 /* Where we are in the data, and the end of the current string. */
3172 const char *d, *dend;
3173
3174 /* Where we are in the pattern, and the end of the pattern. */
3175 unsigned char *p = bufp->buffer;
3176 register unsigned char *pend = p + bufp->used;
3177
3178 /* We use this to map every character in the string. */
3179 char *translate = bufp->translate;
3180
3181 /* Failure point stack. Each place that can handle a failure further
3182 down the line pushes a failure point on this stack. It consists of
3183 restart, regend, and reg_info for all registers corresponding to
3184 the subexpressions we're currently inside, plus the number of such
3185 registers, and, finally, two char *'s. The first char * is where
3186 to resume scanning the pattern; the second one is where to resume
3187 scanning the strings. If the latter is zero, the failure point is
3188 a ``dummy''; if a failure happens and the failure point is a dummy,
3189 it gets discarded and the next next one is tried. */
3190 fail_stack_type fail_stack;
3191 #ifdef DEBUG
3192 static unsigned failure_id = 0;
3193 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3194 #endif
3195
3196 /* We fill all the registers internally, independent of what we
3197 return, for use in backreferences. The number here includes
3198 an element for register zero. */
3199 unsigned num_regs = bufp->re_nsub + 1;
3200
3201 /* The currently active registers. */
3202 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3203 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3204
3205 /* Information on the contents of registers. These are pointers into
3206 the input strings; they record just what was matched (on this
3207 attempt) by a subexpression part of the pattern, that is, the
3208 regnum-th regstart pointer points to where in the pattern we began
3209 matching and the regnum-th regend points to right after where we
3210 stopped matching the regnum-th subexpression. (The zeroth register
3211 keeps track of what the whole pattern matches.) */
3212 const char **regstart, **regend;
3213
3214 /* If a group that's operated upon by a repetition operator fails to
3215 match anything, then the register for its start will need to be
3216 restored because it will have been set to wherever in the string we
3217 are when we last see its open-group operator. Similarly for a
3218 register's end. */
3219 const char **old_regstart, **old_regend;
3220
3221 /* The is_active field of reg_info helps us keep track of which (possibly
3222 nested) subexpressions we are currently in. The matched_something
3223 field of reg_info[reg_num] helps us tell whether or not we have
3224 matched any of the pattern so far this time through the reg_num-th
3225 subexpression. These two fields get reset each time through any
3226 loop their register is in. */
3227 register_info_type *reg_info;
3228
3229 /* The following record the register info as found in the above
3230 variables when we find a match better than any we've seen before.
3231 This happens as we backtrack through the failure points, which in
3232 turn happens only if we have not yet matched the entire string. */
3233 unsigned best_regs_set = false;
3234 const char **best_regstart, **best_regend;
3235
3236 /* Logically, this is `best_regend[0]'. But we don't want to have to
3237 allocate space for that if we're not allocating space for anything
3238 else (see below). Also, we never need info about register 0 for
3239 any of the other register vectors, and it seems rather a kludge to
3240 treat `best_regend' differently than the rest. So we keep track of
3241 the end of the best match so far in a separate variable. We
3242 initialize this to NULL so that when we backtrack the first time
3243 and need to test it, it's not garbage. */
3244 const char *match_end = NULL;
3245
3246 /* Used when we pop values we don't care about. */
3247 const char **reg_dummy;
3248 register_info_type *reg_info_dummy;
3249
3250 #ifdef DEBUG
3251 /* Counts the total number of registers pushed. */
3252 unsigned num_regs_pushed = 0;
3253 #endif
3254
3255 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3256
3257 INIT_FAIL_STACK ();
3258
3259 /* Do not bother to initialize all the register variables if there are
3260 no groups in the pattern, as it takes a fair amount of time. If
3261 there are groups, we include space for register 0 (the whole
3262 pattern), even though we never use it, since it simplifies the
3263 array indexing. We should fix this. */
3264 if (bufp->re_nsub)
3265 {
3266 regstart = REGEX_TALLOC (num_regs, const char *);
3267 regend = REGEX_TALLOC (num_regs, const char *);
3268 old_regstart = REGEX_TALLOC (num_regs, const char *);
3269 old_regend = REGEX_TALLOC (num_regs, const char *);
3270 best_regstart = REGEX_TALLOC (num_regs, const char *);
3271 best_regend = REGEX_TALLOC (num_regs, const char *);
3272 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3273 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3274 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3275
3276 if (!(regstart && regend && old_regstart && old_regend && reg_info
3277 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3278 {
3279 FREE_VARIABLES ();
3280 return -2;
3281 }
3282 }
3283 #ifdef REGEX_MALLOC
3284 else
3285 {
3286 /* We must initialize all our variables to NULL, so that
3287 `FREE_VARIABLES' doesn't try to free them. */
3288 regstart = regend = old_regstart = old_regend = best_regstart
3289 = best_regend = reg_dummy = NULL;
3290 reg_info = reg_info_dummy = (register_info_type *) NULL;
3291 }
3292 #endif /* REGEX_MALLOC */
3293
3294 /* The starting position is bogus. */
3295 if (pos < 0 || pos > size1 + size2)
3296 {
3297 FREE_VARIABLES ();
3298 return -1;
3299 }
3300
3301 /* Initialize subexpression text positions to -1 to mark ones that no
3302 start_memory/stop_memory has been seen for. Also initialize the
3303 register information struct. */
3304 for (mcnt = 1; mcnt < num_regs; mcnt++)
3305 {
3306 regstart[mcnt] = regend[mcnt]
3307 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3308
3309 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3310 IS_ACTIVE (reg_info[mcnt]) = 0;
3311 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3312 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3313 }
3314
3315 /* We move `string1' into `string2' if the latter's empty -- but not if
3316 `string1' is null. */
3317 if (size2 == 0 && string1 != NULL)
3318 {
3319 string2 = string1;
3320 size2 = size1;
3321 string1 = 0;
3322 size1 = 0;
3323 }
3324 end1 = string1 + size1;
3325 end2 = string2 + size2;
3326
3327 /* Compute where to stop matching, within the two strings. */
3328 if (stop <= size1)
3329 {
3330 end_match_1 = string1 + stop;
3331 end_match_2 = string2;
3332 }
3333 else
3334 {
3335 end_match_1 = end1;
3336 end_match_2 = string2 + stop - size1;
3337 }
3338
3339 /* `p' scans through the pattern as `d' scans through the data.
3340 `dend' is the end of the input string that `d' points within. `d'
3341 is advanced into the following input string whenever necessary, but
3342 this happens before fetching; therefore, at the beginning of the
3343 loop, `d' can be pointing at the end of a string, but it cannot
3344 equal `string2'. */
3345 if (size1 > 0 && pos <= size1)
3346 {
3347 d = string1 + pos;
3348 dend = end_match_1;
3349 }
3350 else
3351 {
3352 d = string2 + pos - size1;
3353 dend = end_match_2;
3354 }
3355
3356 DEBUG_PRINT1 ("The compiled pattern is: ");
3357 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3358 DEBUG_PRINT1 ("The string to match is: `");
3359 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3360 DEBUG_PRINT1 ("'\n");
3361
3362 /* This loops over pattern commands. It exits by returning from the
3363 function if the match is complete, or it drops through if the match
3364 fails at this starting point in the input data. */
3365 for (;;)
3366 {
3367 DEBUG_PRINT2 ("\n0x%x: ", p);
3368
3369 if (p == pend)
3370 { /* End of pattern means we might have succeeded. */
3371 DEBUG_PRINT1 ("end of pattern ... ");
3372
3373 /* If we haven't matched the entire string, and we want the
3374 longest match, try backtracking. */
3375 if (d != end_match_2)
3376 {
3377 DEBUG_PRINT1 ("backtracking.\n");
3378
3379 if (!FAIL_STACK_EMPTY ())
3380 { /* More failure points to try. */
3381 boolean same_str_p = (FIRST_STRING_P (match_end)
3382 == MATCHING_IN_FIRST_STRING);
3383
3384 /* If exceeds best match so far, save it. */
3385 if (!best_regs_set
3386 || (same_str_p && d > match_end)
3387 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3388 {
3389 best_regs_set = true;
3390 match_end = d;
3391
3392 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3393
3394 for (mcnt = 1; mcnt < num_regs; mcnt++)
3395 {
3396 best_regstart[mcnt] = regstart[mcnt];
3397 best_regend[mcnt] = regend[mcnt];
3398 }
3399 }
3400 goto fail;
3401 }
3402
3403 /* If no failure points, don't restore garbage. */
3404 else if (best_regs_set)
3405 {
3406 restore_best_regs:
3407 /* Restore best match. It may happen that `dend ==
3408 end_match_1' while the restored d is in string2.
3409 For example, the pattern `x.*y.*z' against the
3410 strings `x-' and `y-z-', if the two strings are
3411 not consecutive in memory. */
3412 DEBUG_PRINT1 ("Restoring best registers.\n");
3413
3414 d = match_end;
3415 dend = ((d >= string1 && d <= end1)
3416 ? end_match_1 : end_match_2);
3417
3418 for (mcnt = 1; mcnt < num_regs; mcnt++)
3419 {
3420 regstart[mcnt] = best_regstart[mcnt];
3421 regend[mcnt] = best_regend[mcnt];
3422 }
3423 }
3424 } /* d != end_match_2 */
3425
3426 DEBUG_PRINT1 ("Accepting match.\n");
3427
3428 /* If caller wants register contents data back, do it. */
3429 if (regs && !bufp->no_sub)
3430 {
3431 /* Have the register data arrays been allocated? */
3432 if (bufp->regs_allocated == REGS_UNALLOCATED)
3433 { /* No. So allocate them with malloc. We need one
3434 extra element beyond `num_regs' for the `-1' marker
3435 GNU code uses. */
3436 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3437 regs->start = TALLOC (regs->num_regs, regoff_t);
3438 regs->end = TALLOC (regs->num_regs, regoff_t);
3439 if (regs->start == NULL || regs->end == NULL)
3440 return -2;
3441 bufp->regs_allocated = REGS_REALLOCATE;
3442 }
3443 else if (bufp->regs_allocated == REGS_REALLOCATE)
3444 { /* Yes. If we need more elements than were already
3445 allocated, reallocate them. If we need fewer, just
3446 leave it alone. */
3447 if (regs->num_regs < num_regs + 1)
3448 {
3449 regs->num_regs = num_regs + 1;
3450 RETALLOC (regs->start, regs->num_regs, regoff_t);
3451 RETALLOC (regs->end, regs->num_regs, regoff_t);
3452 if (regs->start == NULL || regs->end == NULL)
3453 return -2;
3454 }
3455 }
3456 else
3457 assert (bufp->regs_allocated == REGS_FIXED);
3458
3459 /* Convert the pointer data in `regstart' and `regend' to
3460 indices. Register zero has to be set differently,
3461 since we haven't kept track of any info for it. */
3462 if (regs->num_regs > 0)
3463 {
3464 regs->start[0] = pos;
3465 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3466 : d - string2 + size1);
3467 }
3468
3469 /* Go through the first `min (num_regs, regs->num_regs)'
3470 registers, since that is all we initialized. */
3471 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3472 {
3473 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3474 regs->start[mcnt] = regs->end[mcnt] = -1;
3475 else
3476 {
3477 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3478 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3479 }
3480 }
3481
3482 /* If the regs structure we return has more elements than
3483 were in the pattern, set the extra elements to -1. If
3484 we (re)allocated the registers, this is the case,
3485 because we always allocate enough to have at least one
3486 -1 at the end. */
3487 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3488 regs->start[mcnt] = regs->end[mcnt] = -1;
3489 } /* regs && !bufp->no_sub */
3490
3491 FREE_VARIABLES ();
3492 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3493 nfailure_points_pushed, nfailure_points_popped,
3494 nfailure_points_pushed - nfailure_points_popped);
3495 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3496
3497 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3498 ? string1
3499 : string2 - size1);
3500
3501 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3502
3503 return mcnt;
3504 }
3505
3506 /* Otherwise match next pattern command. */
3507 #ifdef SWITCH_ENUM_BUG
3508 switch ((int) ((re_opcode_t) *p++))
3509 #else
3510 switch ((re_opcode_t) *p++)
3511 #endif
3512 {
3513 /* Ignore these. Used to ignore the n of succeed_n's which
3514 currently have n == 0. */
3515 case no_op:
3516 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3517 break;
3518
3519
3520 /* Match the next n pattern characters exactly. The following
3521 byte in the pattern defines n, and the n bytes after that
3522 are the characters to match. */
3523 case exactn:
3524 mcnt = *p++;
3525 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3526
3527 /* This is written out as an if-else so we don't waste time
3528 testing `translate' inside the loop. */
3529 if (translate)
3530 {
3531 do
3532 {
3533 PREFETCH ();
3534 if (translate[(unsigned char) *d++] != (char) *p++)
3535 goto fail;
3536 }
3537 while (--mcnt);
3538 }
3539 else
3540 {
3541 do
3542 {
3543 PREFETCH ();
3544 if (*d++ != (char) *p++) goto fail;
3545 }
3546 while (--mcnt);
3547 }
3548 SET_REGS_MATCHED ();
3549 break;
3550
3551
3552 /* Match any character except possibly a newline or a null. */
3553 case anychar:
3554 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3555
3556 PREFETCH ();
3557
3558 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3559 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3560 goto fail;
3561
3562 SET_REGS_MATCHED ();
3563 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3564 d++;
3565 break;
3566
3567
3568 case charset:
3569 case charset_not:
3570 {
3571 register unsigned char c;
3572 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3573
3574 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3575
3576 PREFETCH ();
3577 c = TRANSLATE (*d); /* The character to match. */
3578
3579 /* Cast to `unsigned' instead of `unsigned char' in case the
3580 bit list is a full 32 bytes long. */
3581 if (c < (unsigned) (*p * BYTEWIDTH)
3582 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3583 not = !not;
3584
3585 p += 1 + *p;
3586
3587 if (!not) goto fail;
3588
3589 SET_REGS_MATCHED ();
3590 d++;
3591 break;
3592 }
3593
3594
3595 /* The beginning of a group is represented by start_memory.
3596 The arguments are the register number in the next byte, and the
3597 number of groups inner to this one in the next. The text
3598 matched within the group is recorded (in the internal
3599 registers data structure) under the register number. */
3600 case start_memory:
3601 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3602
3603 /* Find out if this group can match the empty string. */
3604 p1 = p; /* To send to group_match_null_string_p. */
3605
3606 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3607 REG_MATCH_NULL_STRING_P (reg_info[*p])
3608 = group_match_null_string_p (&p1, pend, reg_info);
3609
3610 /* Save the position in the string where we were the last time
3611 we were at this open-group operator in case the group is
3612 operated upon by a repetition operator, e.g., with `(a*)*b'
3613 against `ab'; then we want to ignore where we are now in
3614 the string in case this attempt to match fails. */
3615 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3616 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3617 : regstart[*p];
3618 DEBUG_PRINT2 (" old_regstart: %d\n",
3619 POINTER_TO_OFFSET (old_regstart[*p]));
3620
3621 regstart[*p] = d;
3622 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3623
3624 IS_ACTIVE (reg_info[*p]) = 1;
3625 MATCHED_SOMETHING (reg_info[*p]) = 0;
3626
3627 /* This is the new highest active register. */
3628 highest_active_reg = *p;
3629
3630 /* If nothing was active before, this is the new lowest active
3631 register. */
3632 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3633 lowest_active_reg = *p;
3634
3635 /* Move past the register number and inner group count. */
3636 p += 2;
3637 break;
3638
3639
3640 /* The stop_memory opcode represents the end of a group. Its
3641 arguments are the same as start_memory's: the register
3642 number, and the number of inner groups. */
3643 case stop_memory:
3644 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3645
3646 /* We need to save the string position the last time we were at
3647 this close-group operator in case the group is operated
3648 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3649 against `aba'; then we want to ignore where we are now in
3650 the string in case this attempt to match fails. */
3651 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3652 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3653 : regend[*p];
3654 DEBUG_PRINT2 (" old_regend: %d\n",
3655 POINTER_TO_OFFSET (old_regend[*p]));
3656
3657 regend[*p] = d;
3658 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3659
3660 /* This register isn't active anymore. */
3661 IS_ACTIVE (reg_info[*p]) = 0;
3662
3663 /* If this was the only register active, nothing is active
3664 anymore. */
3665 if (lowest_active_reg == highest_active_reg)
3666 {
3667 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3668 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3669 }
3670 else
3671 { /* We must scan for the new highest active register, since
3672 it isn't necessarily one less than now: consider
3673 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3674 new highest active register is 1. */
3675 unsigned char r = *p - 1;
3676 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3677 r--;
3678
3679 /* If we end up at register zero, that means that we saved
3680 the registers as the result of an `on_failure_jump', not
3681 a `start_memory', and we jumped to past the innermost
3682 `stop_memory'. For example, in ((.)*) we save
3683 registers 1 and 2 as a result of the *, but when we pop
3684 back to the second ), we are at the stop_memory 1.
3685 Thus, nothing is active. */
3686 if (r == 0)
3687 {
3688 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3689 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3690 }
3691 else
3692 highest_active_reg = r;
3693 }
3694
3695 /* If just failed to match something this time around with a
3696 group that's operated on by a repetition operator, try to
3697 force exit from the ``loop'', and restore the register
3698 information for this group that we had before trying this
3699 last match. */
3700 if ((!MATCHED_SOMETHING (reg_info[*p])
3701 || (re_opcode_t) p[-3] == start_memory)
3702 && (p + 2) < pend)
3703 {
3704 boolean is_a_jump_n = false;
3705
3706 p1 = p + 2;
3707 mcnt = 0;
3708 switch ((re_opcode_t) *p1++)
3709 {
3710 case jump_n:
3711 is_a_jump_n = true;
3712 case pop_failure_jump:
3713 case maybe_pop_jump:
3714 case jump:
3715 case dummy_failure_jump:
3716 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3717 if (is_a_jump_n)
3718 p1 += 2;
3719 break;
3720
3721 default:
3722 /* do nothing */ ;
3723 }
3724 p1 += mcnt;
3725
3726 /* If the next operation is a jump backwards in the pattern
3727 to an on_failure_jump right before the start_memory
3728 corresponding to this stop_memory, exit from the loop
3729 by forcing a failure after pushing on the stack the
3730 on_failure_jump's jump in the pattern, and d. */
3731 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3732 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3733 {
3734 /* If this group ever matched anything, then restore
3735 what its registers were before trying this last
3736 failed match, e.g., with `(a*)*b' against `ab' for
3737 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3738 against `aba' for regend[3].
3739
3740 Also restore the registers for inner groups for,
3741 e.g., `((a*)(b*))*' against `aba' (register 3 would
3742 otherwise get trashed). */
3743
3744 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3745 {
3746 unsigned r;
3747
3748 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3749
3750 /* Restore this and inner groups' (if any) registers. */
3751 for (r = *p; r < *p + *(p + 1); r++)
3752 {
3753 regstart[r] = old_regstart[r];
3754
3755 /* xx why this test? */
3756 if ((int) old_regend[r] >= (int) regstart[r])
3757 regend[r] = old_regend[r];
3758 }
3759 }
3760 p1++;
3761 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3762 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3763
3764 goto fail;
3765 }
3766 }
3767
3768 /* Move past the register number and the inner group count. */
3769 p += 2;
3770 break;
3771
3772
3773 /* \<digit> has been turned into a `duplicate' command which is
3774 followed by the numeric value of <digit> as the register number. */
3775 case duplicate:
3776 {
3777 register const char *d2, *dend2;
3778 int regno = *p++; /* Get which register to match against. */
3779 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3780
3781 /* Can't back reference a group which we've never matched. */
3782 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3783 goto fail;
3784
3785 /* Where in input to try to start matching. */
3786 d2 = regstart[regno];
3787
3788 /* Where to stop matching; if both the place to start and
3789 the place to stop matching are in the same string, then
3790 set to the place to stop, otherwise, for now have to use
3791 the end of the first string. */
3792
3793 dend2 = ((FIRST_STRING_P (regstart[regno])
3794 == FIRST_STRING_P (regend[regno]))
3795 ? regend[regno] : end_match_1);
3796 for (;;)
3797 {
3798 /* If necessary, advance to next segment in register
3799 contents. */
3800 while (d2 == dend2)
3801 {
3802 if (dend2 == end_match_2) break;
3803 if (dend2 == regend[regno]) break;
3804
3805 /* End of string1 => advance to string2. */
3806 d2 = string2;
3807 dend2 = regend[regno];
3808 }
3809 /* At end of register contents => success */
3810 if (d2 == dend2) break;
3811
3812 /* If necessary, advance to next segment in data. */
3813 PREFETCH ();
3814
3815 /* How many characters left in this segment to match. */
3816 mcnt = dend - d;
3817
3818 /* Want how many consecutive characters we can match in
3819 one shot, so, if necessary, adjust the count. */
3820 if (mcnt > dend2 - d2)
3821 mcnt = dend2 - d2;
3822
3823 /* Compare that many; failure if mismatch, else move
3824 past them. */
3825 if (translate
3826 ? bcmp_translate (d, d2, mcnt, translate)
3827 : bcmp (d, d2, mcnt))
3828 goto fail;
3829 d += mcnt, d2 += mcnt;
3830 }
3831 }
3832 break;
3833
3834
3835 /* begline matches the empty string at the beginning of the string
3836 (unless `not_bol' is set in `bufp'), and, if
3837 `newline_anchor' is set, after newlines. */
3838 case begline:
3839 DEBUG_PRINT1 ("EXECUTING begline.\n");
3840
3841 if (AT_STRINGS_BEG (d))
3842 {
3843 if (!bufp->not_bol) break;
3844 }
3845 else if (d[-1] == '\n' && bufp->newline_anchor)
3846 {
3847 break;
3848 }
3849 /* In all other cases, we fail. */
3850 goto fail;
3851
3852
3853 /* endline is the dual of begline. */
3854 case endline:
3855 DEBUG_PRINT1 ("EXECUTING endline.\n");
3856
3857 if (AT_STRINGS_END (d))
3858 {
3859 if (!bufp->not_eol) break;
3860 }
3861
3862 /* We have to ``prefetch'' the next character. */
3863 else if ((d == end1 ? *string2 : *d) == '\n'
3864 && bufp->newline_anchor)
3865 {
3866 break;
3867 }
3868 goto fail;
3869
3870
3871 /* Match at the very beginning of the data. */
3872 case begbuf:
3873 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3874 if (AT_STRINGS_BEG (d))
3875 break;
3876 goto fail;
3877
3878
3879 /* Match at the very end of the data. */
3880 case endbuf:
3881 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3882 if (AT_STRINGS_END (d))
3883 break;
3884 goto fail;
3885
3886
3887 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3888 pushes NULL as the value for the string on the stack. Then
3889 `pop_failure_point' will keep the current value for the
3890 string, instead of restoring it. To see why, consider
3891 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3892 then the . fails against the \n. But the next thing we want
3893 to do is match the \n against the \n; if we restored the
3894 string value, we would be back at the foo.
3895
3896 Because this is used only in specific cases, we don't need to
3897 check all the things that `on_failure_jump' does, to make
3898 sure the right things get saved on the stack. Hence we don't
3899 share its code. The only reason to push anything on the
3900 stack at all is that otherwise we would have to change
3901 `anychar's code to do something besides goto fail in this
3902 case; that seems worse than this. */
3903 case on_failure_keep_string_jump:
3904 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3905
3906 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3907 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3908
3909 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3910 break;
3911
3912
3913 /* Uses of on_failure_jump:
3914
3915 Each alternative starts with an on_failure_jump that points
3916 to the beginning of the next alternative. Each alternative
3917 except the last ends with a jump that in effect jumps past
3918 the rest of the alternatives. (They really jump to the
3919 ending jump of the following alternative, because tensioning
3920 these jumps is a hassle.)
3921
3922 Repeats start with an on_failure_jump that points past both
3923 the repetition text and either the following jump or
3924 pop_failure_jump back to this on_failure_jump. */
3925 case on_failure_jump:
3926 on_failure:
3927 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3928
3929 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3930 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3931
3932 /* If this on_failure_jump comes right before a group (i.e.,
3933 the original * applied to a group), save the information
3934 for that group and all inner ones, so that if we fail back
3935 to this point, the group's information will be correct.
3936 For example, in \(a*\)*\1, we need the preceding group,
3937 and in \(\(a*\)b*\)\2, we need the inner group. */
3938
3939 /* We can't use `p' to check ahead because we push
3940 a failure point to `p + mcnt' after we do this. */
3941 p1 = p;
3942
3943 /* We need to skip no_op's before we look for the
3944 start_memory in case this on_failure_jump is happening as
3945 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3946 against aba. */
3947 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3948 p1++;
3949
3950 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3951 {
3952 /* We have a new highest active register now. This will
3953 get reset at the start_memory we are about to get to,
3954 but we will have saved all the registers relevant to
3955 this repetition op, as described above. */
3956 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3957 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3958 lowest_active_reg = *(p1 + 1);
3959 }
3960
3961 DEBUG_PRINT1 (":\n");
3962 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3963 break;
3964
3965
3966 /* A smart repeat ends with `maybe_pop_jump'.
3967 We change it to either `pop_failure_jump' or `jump'. */
3968 case maybe_pop_jump:
3969 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3970 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3971 {
3972 register unsigned char *p2 = p;
3973
3974 /* Compare the beginning of the repeat with what in the
3975 pattern follows its end. If we can establish that there
3976 is nothing that they would both match, i.e., that we
3977 would have to backtrack because of (as in, e.g., `a*a')
3978 then we can change to pop_failure_jump, because we'll
3979 never have to backtrack.
3980
3981 This is not true in the case of alternatives: in
3982 `(a|ab)*' we do need to backtrack to the `ab' alternative
3983 (e.g., if the string was `ab'). But instead of trying to
3984 detect that here, the alternative has put on a dummy
3985 failure point which is what we will end up popping. */
3986
3987 /* Skip over open/close-group commands. */
3988 while (p2 + 2 < pend
3989 && ((re_opcode_t) *p2 == stop_memory
3990 || (re_opcode_t) *p2 == start_memory))
3991 p2 += 3; /* Skip over args, too. */
3992
3993 /* If we're at the end of the pattern, we can change. */
3994 if (p2 == pend)
3995 {
3996 /* Consider what happens when matching ":\(.*\)"
3997 against ":/". I don't really understand this code
3998 yet. */
3999 p[-3] = (unsigned char) pop_failure_jump;
4000 DEBUG_PRINT1
4001 (" End of pattern: change to `pop_failure_jump'.\n");
4002 }
4003
4004 else if ((re_opcode_t) *p2 == exactn
4005 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4006 {
4007 register unsigned char c
4008 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4009 p1 = p + mcnt;
4010
4011 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4012 to the `maybe_finalize_jump' of this case. Examine what
4013 follows. */
4014 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4015 {
4016 p[-3] = (unsigned char) pop_failure_jump;
4017 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4018 c, p1[5]);
4019 }
4020
4021 else if ((re_opcode_t) p1[3] == charset
4022 || (re_opcode_t) p1[3] == charset_not)
4023 {
4024 int not = (re_opcode_t) p1[3] == charset_not;
4025
4026 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4027 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4028 not = !not;
4029
4030 /* `not' is equal to 1 if c would match, which means
4031 that we can't change to pop_failure_jump. */
4032 if (!not)
4033 {
4034 p[-3] = (unsigned char) pop_failure_jump;
4035 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4036 }
4037 }
4038 }
4039 }
4040 p -= 2; /* Point at relative address again. */
4041 if ((re_opcode_t) p[-1] != pop_failure_jump)
4042 {
4043 p[-1] = (unsigned char) jump;
4044 DEBUG_PRINT1 (" Match => jump.\n");
4045 goto unconditional_jump;
4046 }
4047 /* Note fall through. */
4048
4049
4050 /* The end of a simple repeat has a pop_failure_jump back to
4051 its matching on_failure_jump, where the latter will push a
4052 failure point. The pop_failure_jump takes off failure
4053 points put on by this pop_failure_jump's matching
4054 on_failure_jump; we got through the pattern to here from the
4055 matching on_failure_jump, so didn't fail. */
4056 case pop_failure_jump:
4057 {
4058 /* We need to pass separate storage for the lowest and
4059 highest registers, even though we don't care about the
4060 actual values. Otherwise, we will restore only one
4061 register from the stack, since lowest will == highest in
4062 `pop_failure_point'. */
4063 unsigned dummy_low_reg, dummy_high_reg;
4064 unsigned char *pdummy;
4065 const char *sdummy;
4066
4067 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4068 POP_FAILURE_POINT (sdummy, pdummy,
4069 dummy_low_reg, dummy_high_reg,
4070 reg_dummy, reg_dummy, reg_info_dummy);
4071 }
4072 /* Note fall through. */
4073
4074
4075 /* Unconditionally jump (without popping any failure points). */
4076 case jump:
4077 unconditional_jump:
4078 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4079 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4080 p += mcnt; /* Do the jump. */
4081 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4082 break;
4083
4084
4085 /* We need this opcode so we can detect where alternatives end
4086 in `group_match_null_string_p' et al. */
4087 case jump_past_alt:
4088 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4089 goto unconditional_jump;
4090
4091
4092 /* Normally, the on_failure_jump pushes a failure point, which
4093 then gets popped at pop_failure_jump. We will end up at
4094 pop_failure_jump, also, and with a pattern of, say, `a+', we
4095 are skipping over the on_failure_jump, so we have to push
4096 something meaningless for pop_failure_jump to pop. */
4097 case dummy_failure_jump:
4098 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4099 /* It doesn't matter what we push for the string here. What
4100 the code at `fail' tests is the value for the pattern. */
4101 PUSH_FAILURE_POINT (0, 0, -2);
4102 goto unconditional_jump;
4103
4104
4105 /* At the end of an alternative, we need to push a dummy failure
4106 point in case we are followed by a `pop_failure_jump', because
4107 we don't want the failure point for the alternative to be
4108 popped. For example, matching `(a|ab)*' against `aab'
4109 requires that we match the `ab' alternative. */
4110 case push_dummy_failure:
4111 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4112 /* See comments just above at `dummy_failure_jump' about the
4113 two zeroes. */
4114 PUSH_FAILURE_POINT (0, 0, -2);
4115 break;
4116
4117 /* Have to succeed matching what follows at least n times.
4118 After that, handle like `on_failure_jump'. */
4119 case succeed_n:
4120 EXTRACT_NUMBER (mcnt, p + 2);
4121 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4122
4123 assert (mcnt >= 0);
4124 /* Originally, this is how many times we HAVE to succeed. */
4125 if (mcnt > 0)
4126 {
4127 mcnt--;
4128 p += 2;
4129 STORE_NUMBER_AND_INCR (p, mcnt);
4130 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4131 }
4132 else if (mcnt == 0)
4133 {
4134 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4135 p[2] = (unsigned char) no_op;
4136 p[3] = (unsigned char) no_op;
4137 goto on_failure;
4138 }
4139 break;
4140
4141 case jump_n:
4142 EXTRACT_NUMBER (mcnt, p + 2);
4143 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4144
4145 /* Originally, this is how many times we CAN jump. */
4146 if (mcnt)
4147 {
4148 mcnt--;
4149 STORE_NUMBER (p + 2, mcnt);
4150 goto unconditional_jump;
4151 }
4152 /* If don't have to jump any more, skip over the rest of command. */
4153 else
4154 p += 4;
4155 break;
4156
4157 case set_number_at:
4158 {
4159 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4160
4161 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4162 p1 = p + mcnt;
4163 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4164 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4165 STORE_NUMBER (p1, mcnt);
4166 break;
4167 }
4168
4169 case wordbound:
4170 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4171 if (AT_WORD_BOUNDARY (d))
4172 break;
4173 goto fail;
4174
4175 case notwordbound:
4176 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4177 if (AT_WORD_BOUNDARY (d))
4178 goto fail;
4179 break;
4180
4181 case wordbeg:
4182 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4183 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4184 break;
4185 goto fail;
4186
4187 case wordend:
4188 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4189 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4190 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4191 break;
4192 goto fail;
4193
4194 #ifdef emacs
4195 #ifdef emacs19
4196 case before_dot:
4197 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4198 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4199 goto fail;
4200 break;
4201
4202 case at_dot:
4203 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4204 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4205 goto fail;
4206 break;
4207
4208 case after_dot:
4209 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4210 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4211 goto fail;
4212 break;
4213 #else /* not emacs19 */
4214 case at_dot:
4215 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4216 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4217 goto fail;
4218 break;
4219 #endif /* not emacs19 */
4220
4221 case syntaxspec:
4222 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4223 mcnt = *p++;
4224 goto matchsyntax;
4225
4226 case wordchar:
4227 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4228 mcnt = (int) Sword;
4229 matchsyntax:
4230 PREFETCH ();
4231 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4232 goto fail;
4233 SET_REGS_MATCHED ();
4234 break;
4235
4236 case notsyntaxspec:
4237 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4238 mcnt = *p++;
4239 goto matchnotsyntax;
4240
4241 case notwordchar:
4242 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4243 mcnt = (int) Sword;
4244 matchnotsyntax:
4245 PREFETCH ();
4246 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4247 goto fail;
4248 SET_REGS_MATCHED ();
4249 break;
4250
4251 #else /* not emacs */
4252 case wordchar:
4253 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4254 PREFETCH ();
4255 if (!WORDCHAR_P (d))
4256 goto fail;
4257 SET_REGS_MATCHED ();
4258 d++;
4259 break;
4260
4261 case notwordchar:
4262 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4263 PREFETCH ();
4264 if (WORDCHAR_P (d))
4265 goto fail;
4266 SET_REGS_MATCHED ();
4267 d++;
4268 break;
4269 #endif /* not emacs */
4270
4271 default:
4272 abort ();
4273 }
4274 continue; /* Successfully executed one pattern command; keep going. */
4275
4276
4277 /* We goto here if a matching operation fails. */
4278 fail:
4279 if (!FAIL_STACK_EMPTY ())
4280 { /* A restart point is known. Restore to that state. */
4281 DEBUG_PRINT1 ("\nFAIL:\n");
4282 POP_FAILURE_POINT (d, p,
4283 lowest_active_reg, highest_active_reg,
4284 regstart, regend, reg_info);
4285
4286 /* If this failure point is a dummy, try the next one. */
4287 if (!p)
4288 goto fail;
4289
4290 /* If we failed to the end of the pattern, don't examine *p. */
4291 assert (p <= pend);
4292 if (p < pend)
4293 {
4294 boolean is_a_jump_n = false;
4295
4296 /* If failed to a backwards jump that's part of a repetition
4297 loop, need to pop this failure point and use the next one. */
4298 switch ((re_opcode_t) *p)
4299 {
4300 case jump_n:
4301 is_a_jump_n = true;
4302 case maybe_pop_jump:
4303 case pop_failure_jump:
4304 case jump:
4305 p1 = p + 1;
4306 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4307 p1 += mcnt;
4308
4309 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4310 || (!is_a_jump_n
4311 && (re_opcode_t) *p1 == on_failure_jump))
4312 goto fail;
4313 break;
4314 default:
4315 /* do nothing */ ;
4316 }
4317 }
4318
4319 if (d >= string1 && d <= end1)
4320 dend = end_match_1;
4321 }
4322 else
4323 break; /* Matching at this starting point really fails. */
4324 } /* for (;;) */
4325
4326 if (best_regs_set)
4327 goto restore_best_regs;
4328
4329 FREE_VARIABLES ();
4330
4331 return -1; /* Failure to match. */
4332 } /* re_match_2 */
4333 \f
4334 /* Subroutine definitions for re_match_2. */
4335
4336
4337 /* We are passed P pointing to a register number after a start_memory.
4338
4339 Return true if the pattern up to the corresponding stop_memory can
4340 match the empty string, and false otherwise.
4341
4342 If we find the matching stop_memory, sets P to point to one past its number.
4343 Otherwise, sets P to an undefined byte less than or equal to END.
4344
4345 We don't handle duplicates properly (yet). */
4346
4347 static boolean
4348 group_match_null_string_p (p, end, reg_info)
4349 unsigned char **p, *end;
4350 register_info_type *reg_info;
4351 {
4352 int mcnt;
4353 /* Point to after the args to the start_memory. */
4354 unsigned char *p1 = *p + 2;
4355
4356 while (p1 < end)
4357 {
4358 /* Skip over opcodes that can match nothing, and return true or
4359 false, as appropriate, when we get to one that can't, or to the
4360 matching stop_memory. */
4361
4362 switch ((re_opcode_t) *p1)
4363 {
4364 /* Could be either a loop or a series of alternatives. */
4365 case on_failure_jump:
4366 p1++;
4367 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4368
4369 /* If the next operation is not a jump backwards in the
4370 pattern. */
4371
4372 if (mcnt >= 0)
4373 {
4374 /* Go through the on_failure_jumps of the alternatives,
4375 seeing if any of the alternatives cannot match nothing.
4376 The last alternative starts with only a jump,
4377 whereas the rest start with on_failure_jump and end
4378 with a jump, e.g., here is the pattern for `a|b|c':
4379
4380 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4381 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4382 /exactn/1/c
4383
4384 So, we have to first go through the first (n-1)
4385 alternatives and then deal with the last one separately. */
4386
4387
4388 /* Deal with the first (n-1) alternatives, which start
4389 with an on_failure_jump (see above) that jumps to right
4390 past a jump_past_alt. */
4391
4392 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4393 {
4394 /* `mcnt' holds how many bytes long the alternative
4395 is, including the ending `jump_past_alt' and
4396 its number. */
4397
4398 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4399 reg_info))
4400 return false;
4401
4402 /* Move to right after this alternative, including the
4403 jump_past_alt. */
4404 p1 += mcnt;
4405
4406 /* Break if it's the beginning of an n-th alternative
4407 that doesn't begin with an on_failure_jump. */
4408 if ((re_opcode_t) *p1 != on_failure_jump)
4409 break;
4410
4411 /* Still have to check that it's not an n-th
4412 alternative that starts with an on_failure_jump. */
4413 p1++;
4414 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4415 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4416 {
4417 /* Get to the beginning of the n-th alternative. */
4418 p1 -= 3;
4419 break;
4420 }
4421 }
4422
4423 /* Deal with the last alternative: go back and get number
4424 of the `jump_past_alt' just before it. `mcnt' contains
4425 the length of the alternative. */
4426 EXTRACT_NUMBER (mcnt, p1 - 2);
4427
4428 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4429 return false;
4430
4431 p1 += mcnt; /* Get past the n-th alternative. */
4432 } /* if mcnt > 0 */
4433 break;
4434
4435
4436 case stop_memory:
4437 assert (p1[1] == **p);
4438 *p = p1 + 2;
4439 return true;
4440
4441
4442 default:
4443 if (!common_op_match_null_string_p (&p1, end, reg_info))
4444 return false;
4445 }
4446 } /* while p1 < end */
4447
4448 return false;
4449 } /* group_match_null_string_p */
4450
4451
4452 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4453 It expects P to be the first byte of a single alternative and END one
4454 byte past the last. The alternative can contain groups. */
4455
4456 static boolean
4457 alt_match_null_string_p (p, end, reg_info)
4458 unsigned char *p, *end;
4459 register_info_type *reg_info;
4460 {
4461 int mcnt;
4462 unsigned char *p1 = p;
4463
4464 while (p1 < end)
4465 {
4466 /* Skip over opcodes that can match nothing, and break when we get
4467 to one that can't. */
4468
4469 switch ((re_opcode_t) *p1)
4470 {
4471 /* It's a loop. */
4472 case on_failure_jump:
4473 p1++;
4474 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4475 p1 += mcnt;
4476 break;
4477
4478 default:
4479 if (!common_op_match_null_string_p (&p1, end, reg_info))
4480 return false;
4481 }
4482 } /* while p1 < end */
4483
4484 return true;
4485 } /* alt_match_null_string_p */
4486
4487
4488 /* Deals with the ops common to group_match_null_string_p and
4489 alt_match_null_string_p.
4490
4491 Sets P to one after the op and its arguments, if any. */
4492
4493 static boolean
4494 common_op_match_null_string_p (p, end, reg_info)
4495 unsigned char **p, *end;
4496 register_info_type *reg_info;
4497 {
4498 int mcnt;
4499 boolean ret;
4500 int reg_no;
4501 unsigned char *p1 = *p;
4502
4503 switch ((re_opcode_t) *p1++)
4504 {
4505 case no_op:
4506 case begline:
4507 case endline:
4508 case begbuf:
4509 case endbuf:
4510 case wordbeg:
4511 case wordend:
4512 case wordbound:
4513 case notwordbound:
4514 #ifdef emacs
4515 case before_dot:
4516 case at_dot:
4517 case after_dot:
4518 #endif
4519 break;
4520
4521 case start_memory:
4522 reg_no = *p1;
4523 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4524 ret = group_match_null_string_p (&p1, end, reg_info);
4525
4526 /* Have to set this here in case we're checking a group which
4527 contains a group and a back reference to it. */
4528
4529 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4530 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4531
4532 if (!ret)
4533 return false;
4534 break;
4535
4536 /* If this is an optimized succeed_n for zero times, make the jump. */
4537 case jump:
4538 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4539 if (mcnt >= 0)
4540 p1 += mcnt;
4541 else
4542 return false;
4543 break;
4544
4545 case succeed_n:
4546 /* Get to the number of times to succeed. */
4547 p1 += 2;
4548 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4549
4550 if (mcnt == 0)
4551 {
4552 p1 -= 4;
4553 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4554 p1 += mcnt;
4555 }
4556 else
4557 return false;
4558 break;
4559
4560 case duplicate:
4561 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4562 return false;
4563 break;
4564
4565 case set_number_at:
4566 p1 += 4;
4567
4568 default:
4569 /* All other opcodes mean we cannot match the empty string. */
4570 return false;
4571 }
4572
4573 *p = p1;
4574 return true;
4575 } /* common_op_match_null_string_p */
4576
4577
4578 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4579 bytes; nonzero otherwise. */
4580
4581 static int
4582 bcmp_translate (s1, s2, len, translate)
4583 unsigned char *s1, *s2;
4584 register int len;
4585 char *translate;
4586 {
4587 register unsigned char *p1 = s1, *p2 = s2;
4588 while (len)
4589 {
4590 if (translate[*p1++] != translate[*p2++]) return 1;
4591 len--;
4592 }
4593 return 0;
4594 }
4595 \f
4596 /* Entry points for GNU code. */
4597
4598 /* re_compile_pattern is the GNU regular expression compiler: it
4599 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4600 Returns 0 if the pattern was valid, otherwise an error string.
4601
4602 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4603 are set in BUFP on entry.
4604
4605 We call regex_compile to do the actual compilation. */
4606
4607 const char *
4608 re_compile_pattern (pattern, length, bufp)
4609 const char *pattern;
4610 int length;
4611 struct re_pattern_buffer *bufp;
4612 {
4613 reg_errcode_t ret;
4614
4615 /* GNU code is written to assume at least RE_NREGS registers will be set
4616 (and at least one extra will be -1). */
4617 bufp->regs_allocated = REGS_UNALLOCATED;
4618
4619 /* And GNU code determines whether or not to get register information
4620 by passing null for the REGS argument to re_match, etc., not by
4621 setting no_sub. */
4622 bufp->no_sub = 0;
4623
4624 /* Match anchors at newline. */
4625 bufp->newline_anchor = 1;
4626
4627 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4628
4629 return re_error_msg[(int) ret];
4630 }
4631 \f
4632 /* Entry points compatible with 4.2 BSD regex library. We don't define
4633 them if this is an Emacs or POSIX compilation. */
4634
4635 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4636
4637 /* BSD has one and only one pattern buffer. */
4638 static struct re_pattern_buffer re_comp_buf;
4639
4640 char *
4641 re_comp (s)
4642 const char *s;
4643 {
4644 reg_errcode_t ret;
4645
4646 if (!s)
4647 {
4648 if (!re_comp_buf.buffer)
4649 return "No previous regular expression";
4650 return 0;
4651 }
4652
4653 if (!re_comp_buf.buffer)
4654 {
4655 re_comp_buf.buffer = (unsigned char *) malloc (200);
4656 if (re_comp_buf.buffer == NULL)
4657 return "Memory exhausted";
4658 re_comp_buf.allocated = 200;
4659
4660 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4661 if (re_comp_buf.fastmap == NULL)
4662 return "Memory exhausted";
4663 }
4664
4665 /* Since `re_exec' always passes NULL for the `regs' argument, we
4666 don't need to initialize the pattern buffer fields which affect it. */
4667
4668 /* Match anchors at newlines. */
4669 re_comp_buf.newline_anchor = 1;
4670
4671 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4672
4673 /* Yes, we're discarding `const' here. */
4674 return (char *) re_error_msg[(int) ret];
4675 }
4676
4677
4678 int
4679 re_exec (s)
4680 const char *s;
4681 {
4682 const int len = strlen (s);
4683 return
4684 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4685 }
4686 #endif /* not emacs and not _POSIX_SOURCE */
4687 \f
4688 /* POSIX.2 functions. Don't define these for Emacs. */
4689
4690 #ifndef emacs
4691
4692 /* regcomp takes a regular expression as a string and compiles it.
4693
4694 PREG is a regex_t *. We do not expect any fields to be initialized,
4695 since POSIX says we shouldn't. Thus, we set
4696
4697 `buffer' to the compiled pattern;
4698 `used' to the length of the compiled pattern;
4699 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4700 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4701 RE_SYNTAX_POSIX_BASIC;
4702 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4703 `fastmap' and `fastmap_accurate' to zero;
4704 `re_nsub' to the number of subexpressions in PATTERN.
4705
4706 PATTERN is the address of the pattern string.
4707
4708 CFLAGS is a series of bits which affect compilation.
4709
4710 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4711 use POSIX basic syntax.
4712
4713 If REG_NEWLINE is set, then . and [^...] don't match newline.
4714 Also, regexec will try a match beginning after every newline.
4715
4716 If REG_ICASE is set, then we considers upper- and lowercase
4717 versions of letters to be equivalent when matching.
4718
4719 If REG_NOSUB is set, then when PREG is passed to regexec, that
4720 routine will report only success or failure, and nothing about the
4721 registers.
4722
4723 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4724 the return codes and their meanings.) */
4725
4726 int
4727 regcomp (preg, pattern, cflags)
4728 regex_t *preg;
4729 const char *pattern;
4730 int cflags;
4731 {
4732 reg_errcode_t ret;
4733 unsigned syntax
4734 = (cflags & REG_EXTENDED) ?
4735 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4736
4737 /* regex_compile will allocate the space for the compiled pattern. */
4738 preg->buffer = 0;
4739 preg->allocated = 0;
4740
4741 /* Don't bother to use a fastmap when searching. This simplifies the
4742 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4743 characters after newlines into the fastmap. This way, we just try
4744 every character. */
4745 preg->fastmap = 0;
4746
4747 if (cflags & REG_ICASE)
4748 {
4749 unsigned i;
4750
4751 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4752 if (preg->translate == NULL)
4753 return (int) REG_ESPACE;
4754
4755 /* Map uppercase characters to corresponding lowercase ones. */
4756 for (i = 0; i < CHAR_SET_SIZE; i++)
4757 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4758 }
4759 else
4760 preg->translate = NULL;
4761
4762 /* If REG_NEWLINE is set, newlines are treated differently. */
4763 if (cflags & REG_NEWLINE)
4764 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4765 syntax &= ~RE_DOT_NEWLINE;
4766 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4767 /* It also changes the matching behavior. */
4768 preg->newline_anchor = 1;
4769 }
4770 else
4771 preg->newline_anchor = 0;
4772
4773 preg->no_sub = !!(cflags & REG_NOSUB);
4774
4775 /* POSIX says a null character in the pattern terminates it, so we
4776 can use strlen here in compiling the pattern. */
4777 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4778
4779 /* POSIX doesn't distinguish between an unmatched open-group and an
4780 unmatched close-group: both are REG_EPAREN. */
4781 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4782
4783 return (int) ret;
4784 }
4785
4786
4787 /* regexec searches for a given pattern, specified by PREG, in the
4788 string STRING.
4789
4790 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4791 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4792 least NMATCH elements, and we set them to the offsets of the
4793 corresponding matched substrings.
4794
4795 EFLAGS specifies `execution flags' which affect matching: if
4796 REG_NOTBOL is set, then ^ does not match at the beginning of the
4797 string; if REG_NOTEOL is set, then $ does not match at the end.
4798
4799 We return 0 if we find a match and REG_NOMATCH if not. */
4800
4801 int
4802 regexec (preg, string, nmatch, pmatch, eflags)
4803 const regex_t *preg;
4804 const char *string;
4805 size_t nmatch;
4806 regmatch_t pmatch[];
4807 int eflags;
4808 {
4809 int ret;
4810 struct re_registers regs;
4811 regex_t private_preg;
4812 int len = strlen (string);
4813 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4814
4815 private_preg = *preg;
4816
4817 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4818 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4819
4820 /* The user has told us exactly how many registers to return
4821 information about, via `nmatch'. We have to pass that on to the
4822 matching routines. */
4823 private_preg.regs_allocated = REGS_FIXED;
4824
4825 if (want_reg_info)
4826 {
4827 regs.num_regs = nmatch;
4828 regs.start = TALLOC (nmatch, regoff_t);
4829 regs.end = TALLOC (nmatch, regoff_t);
4830 if (regs.start == NULL || regs.end == NULL)
4831 return (int) REG_NOMATCH;
4832 }
4833
4834 /* Perform the searching operation. */
4835 ret = re_search (&private_preg, string, len,
4836 /* start: */ 0, /* range: */ len,
4837 want_reg_info ? &regs : (struct re_registers *) 0);
4838
4839 /* Copy the register information to the POSIX structure. */
4840 if (want_reg_info)
4841 {
4842 if (ret >= 0)
4843 {
4844 unsigned r;
4845
4846 for (r = 0; r < nmatch; r++)
4847 {
4848 pmatch[r].rm_so = regs.start[r];
4849 pmatch[r].rm_eo = regs.end[r];
4850 }
4851 }
4852
4853 /* If we needed the temporary register info, free the space now. */
4854 free (regs.start);
4855 free (regs.end);
4856 }
4857
4858 /* We want zero return to mean success, unlike `re_search'. */
4859 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4860 }
4861
4862
4863 /* Returns a message corresponding to an error code, ERRCODE, returned
4864 from either regcomp or regexec. We don't use PREG here. */
4865
4866 size_t
4867 regerror (errcode, preg, errbuf, errbuf_size)
4868 int errcode;
4869 const regex_t *preg;
4870 char *errbuf;
4871 size_t errbuf_size;
4872 {
4873 const char *msg;
4874 size_t msg_size;
4875
4876 if (errcode < 0
4877 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4878 /* Only error codes returned by the rest of the code should be passed
4879 to this routine. If we are given anything else, or if other regex
4880 code generates an invalid error code, then the program has a bug.
4881 Dump core so we can fix it. */
4882 abort ();
4883
4884 msg_size = strlen (msg) + 1; /* Includes the null. */
4885
4886 if (errbuf_size != 0)
4887 {
4888 if (msg_size > errbuf_size)
4889 {
4890 strncpy (errbuf, msg, errbuf_size - 1);
4891 errbuf[errbuf_size - 1] = 0;
4892 }
4893 else
4894 strcpy (errbuf, msg);
4895 }
4896
4897 return msg_size;
4898 }
4899
4900
4901 /* Free dynamically allocated space used by PREG. */
4902
4903 void
4904 regfree (preg)
4905 regex_t *preg;
4906 {
4907 if (preg->buffer != NULL)
4908 free (preg->buffer);
4909 preg->buffer = NULL;
4910
4911 preg->allocated = 0;
4912 preg->used = 0;
4913
4914 if (preg->fastmap != NULL)
4915 free (preg->fastmap);
4916 preg->fastmap = NULL;
4917 preg->fastmap_accurate = 0;
4918
4919 if (preg->translate != NULL)
4920 free (preg->translate);
4921 preg->translate = NULL;
4922 }
4923
4924 #endif /* not emacs */
4925 \f
4926 /*
4927 Local variables:
4928 make-backup-files: t
4929 version-control: t
4930 trim-versions-without-asking: nil
4931 End:
4932 */