Merge from trunk
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <setjmp.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "character.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
33
34 #include <sys/types.h>
35 #include "regex.h"
36
37 #define REGEXP_CACHE_SIZE 20
38
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
42 {
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 /* Syntax table for which the regexp applies. We need this because
46 of character classes. If this is t, then the compiled pattern is valid
47 for any syntax-table. */
48 Lisp_Object syntax_table;
49 struct re_pattern_buffer buf;
50 char fastmap[0400];
51 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
52 char posix;
53 };
54
55 /* The instances of that struct. */
56 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
57
58 /* The head of the linked list; points to the most recently used buffer. */
59 struct regexp_cache *searchbuf_head;
60
61
62 /* Every call to re_match, etc., must pass &search_regs as the regs
63 argument unless you can show it is unnecessary (i.e., if re_match
64 is certainly going to be called again before region-around-match
65 can be called).
66
67 Since the registers are now dynamically allocated, we need to make
68 sure not to refer to the Nth register before checking that it has
69 been allocated by checking search_regs.num_regs.
70
71 The regex code keeps track of whether it has allocated the search
72 buffer using bits in the re_pattern_buffer. This means that whenever
73 you compile a new pattern, it completely forgets whether it has
74 allocated any registers, and will allocate new registers the next
75 time you call a searching or matching function. Therefore, we need
76 to call re_set_registers after compiling a new pattern or after
77 setting the match registers, so that the regex functions will be
78 able to free or re-allocate it properly. */
79 static struct re_registers search_regs;
80
81 /* The buffer in which the last search was performed, or
82 Qt if the last search was done in a string;
83 Qnil if no searching has been done yet. */
84 static Lisp_Object last_thing_searched;
85
86 /* error condition signaled when regexp compile_pattern fails */
87
88 Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches */
91 Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (EMACS_INT, EMACS_INT);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, EMACS_INT,
96 EMACS_INT, Lisp_Object, EMACS_INT, EMACS_INT,
97 EMACS_INT, EMACS_INT);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, EMACS_INT,
99 Lisp_Object, Lisp_Object, EMACS_INT,
100 EMACS_INT, int);
101 static EMACS_INT search_buffer (Lisp_Object, EMACS_INT, EMACS_INT,
102 EMACS_INT, EMACS_INT, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
105
106 static void
107 matcher_overflow (void)
108 {
109 error ("Stack overflow in regexp matcher");
110 }
111
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
118
119 The behavior also depends on Vsearch_spaces_regexp. */
120
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
181 }
182 }
183
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
191 {
192 int i;
193
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
200 }
201
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
212
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 EMACS_INT s1, s2;
276 register EMACS_INT i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
333 {
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
338 }
339
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
370 {
371 int val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos, pos_byte;
374 int i;
375
376 if (running_asynch_code)
377 save_search_regs ();
378
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
381
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
385 {
386 EMACS_INT len = SCHARS (string);
387
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
395 }
396
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
400
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
410
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
417
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
421
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
425
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
429 {
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
434 }
435
436 return make_number (string_byte_to_char (string, val));
437 }
438
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
446
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
450 {
451 return string_match_1 (regexp, string, start, 0);
452 }
453
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
463 {
464 return string_match_1 (regexp, string, start, 1);
465 }
466
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
470
471 int
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
473 {
474 int val;
475 struct re_pattern_buffer *bufp;
476
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
481
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
487 }
488
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
493
494 int
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
496 {
497 int val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
500
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
505 0);
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
510 }
511
512 /* Like fast_string_match but ignore case. */
513
514 int
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
516 {
517 int val;
518 struct re_pattern_buffer *bufp;
519
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
524
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
530 }
531 \f
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
537
538 EMACS_INT
539 fast_looking_at (Lisp_Object regexp, EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT limit, EMACS_INT limit_byte, Lisp_Object string)
540 {
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 EMACS_INT s1, s2;
545 EMACS_INT len;
546
547 if (STRINGP (string))
548 {
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
559 }
560 else
561 {
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
573 {
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
577 }
578 if (s2 < 0)
579 {
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
582 }
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
585 }
586
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
592
593 return len;
594 }
595
596 \f
597 /* The newline cache: remembering which sections of text have no newlines. */
598
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
605 {
606 if (NILP (BVAR (buf, cache_long_line_scans)))
607 {
608 /* It should be off. */
609 if (buf->newline_cache)
610 {
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
613 }
614 }
615 else
616 {
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
620 }
621 }
622
623 \f
624 /* Search for COUNT instances of the character TARGET between START and END.
625
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
630
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
633
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
637
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
640
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
643
644 EMACS_INT
645 scan_buffer (register int target, EMACS_INT start, EMACS_INT end,
646 EMACS_INT count, int *shortage, int allow_quit)
647 {
648 struct region_cache *newline_cache;
649 int direction;
650
651 if (count > 0)
652 {
653 direction = 1;
654 if (! end) end = ZV;
655 }
656 else
657 {
658 direction = -1;
659 if (! end) end = BEGV;
660 }
661
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
664
665 if (shortage != 0)
666 *shortage = 0;
667
668 immediate_quit = allow_quit;
669
670 if (count > 0)
671 while (start != end)
672 {
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 EMACS_INT start_byte = CHAR_TO_BYTE (start);
680 EMACS_INT tem;
681
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
685 {
686 EMACS_INT next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
692
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
696
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
700 }
701
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
708
709 {
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
716
717 while (cursor < ceiling_addr)
718 {
719 unsigned char *scan_start = cursor;
720
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
723 ;
724
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 start_byte + scan_start - base,
730 start_byte + cursor - base);
731
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
734 {
735 if (--count == 0)
736 {
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
739 }
740 cursor++;
741 }
742 }
743
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
745 }
746 }
747 else
748 while (start > end)
749 {
750 /* The last character to check before the next obstacle. */
751 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end);
752 EMACS_INT start_byte = CHAR_TO_BYTE (start);
753 EMACS_INT tem;
754
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
757 {
758 EMACS_INT next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
764
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
768
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
772 }
773
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
777
778 {
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
783
784 while (cursor >= ceiling_addr)
785 {
786 unsigned char *scan_start = cursor;
787
788 while (*cursor != target && --cursor >= ceiling_addr)
789 ;
790
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 start_byte + cursor - base,
796 start_byte + scan_start - base);
797
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
800 {
801 if (++count >= 0)
802 {
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
805 }
806 cursor--;
807 }
808 }
809
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
811 }
812 }
813
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
818 }
819 \f
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
823
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
825
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
828
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
833
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
836
837 EMACS_INT
838 scan_newline (EMACS_INT start, EMACS_INT start_byte,
839 EMACS_INT limit, EMACS_INT limit_byte,
840 register EMACS_INT count, int allow_quit)
841 {
842 int direction = ((count > 0) ? 1 : -1);
843
844 register unsigned char *cursor;
845 unsigned char *base;
846
847 EMACS_INT ceiling;
848 register unsigned char *ceiling_addr;
849
850 int old_immediate_quit = immediate_quit;
851
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
854
855 if (allow_quit)
856 immediate_quit++;
857
858 start_byte = CHAR_TO_BYTE (start);
859
860 if (count > 0)
861 {
862 while (start_byte < limit_byte)
863 {
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
869 {
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
871 ;
872
873 if (cursor != ceiling_addr)
874 {
875 if (--count == 0)
876 {
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
882 }
883 else
884 if (++cursor == ceiling_addr)
885 break;
886 }
887 else
888 break;
889 }
890 start_byte += cursor - base;
891 }
892 }
893 else
894 {
895 while (start_byte > limit_byte)
896 {
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
902 {
903 while (--cursor != ceiling_addr && *cursor != '\n')
904 ;
905
906 if (cursor != ceiling_addr)
907 {
908 if (++count == 0)
909 {
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
916 }
917 }
918 else
919 break;
920 }
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
924 }
925 }
926
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
929
930 return count * direction;
931 }
932
933 EMACS_INT
934 find_next_newline_no_quit (EMACS_INT from, EMACS_INT cnt)
935 {
936 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
937 }
938
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
942
943 EMACS_INT
944 find_before_next_newline (EMACS_INT from, EMACS_INT to, EMACS_INT cnt)
945 {
946 int shortage;
947 EMACS_INT pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
948
949 if (shortage == 0)
950 pos--;
951
952 return pos;
953 }
954 \f
955 /* Subroutines of Lisp buffer search functions. */
956
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
960 {
961 register int np;
962 EMACS_INT lim, lim_byte;
963 int n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 EMACS_INT len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, EMACS_INT pos, EMACS_INT pos_byte,
1103 EMACS_INT lim, EMACS_INT lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 EMACS_INT len = SCHARS (string);
1107 EMACS_INT len_byte = SBYTES (string);
1108 register int i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 EMACS_INT s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 EMACS_INT val;
1161 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1162 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1163 (NILP (Vinhibit_changing_match_data)
1164 ? &search_regs : &search_regs_1),
1165 /* Don't allow match past current point */
1166 pos_byte - BEGV_BYTE);
1167 if (val == -2)
1168 {
1169 matcher_overflow ();
1170 }
1171 if (val >= 0)
1172 {
1173 if (NILP (Vinhibit_changing_match_data))
1174 {
1175 pos_byte = search_regs.start[0] + BEGV_BYTE;
1176 for (i = 0; i < search_regs.num_regs; i++)
1177 if (search_regs.start[i] >= 0)
1178 {
1179 search_regs.start[i]
1180 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1181 search_regs.end[i]
1182 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1183 }
1184 XSETBUFFER (last_thing_searched, current_buffer);
1185 /* Set pos to the new position. */
1186 pos = search_regs.start[0];
1187 }
1188 else
1189 {
1190 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1191 /* Set pos to the new position. */
1192 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1193 }
1194 }
1195 else
1196 {
1197 immediate_quit = 0;
1198 return (n);
1199 }
1200 n++;
1201 }
1202 while (n > 0)
1203 {
1204 EMACS_INT val;
1205 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1206 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1207 (NILP (Vinhibit_changing_match_data)
1208 ? &search_regs : &search_regs_1),
1209 lim_byte - BEGV_BYTE);
1210 if (val == -2)
1211 {
1212 matcher_overflow ();
1213 }
1214 if (val >= 0)
1215 {
1216 if (NILP (Vinhibit_changing_match_data))
1217 {
1218 pos_byte = search_regs.end[0] + BEGV_BYTE;
1219 for (i = 0; i < search_regs.num_regs; i++)
1220 if (search_regs.start[i] >= 0)
1221 {
1222 search_regs.start[i]
1223 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1224 search_regs.end[i]
1225 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1226 }
1227 XSETBUFFER (last_thing_searched, current_buffer);
1228 pos = search_regs.end[0];
1229 }
1230 else
1231 {
1232 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1233 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1234 }
1235 }
1236 else
1237 {
1238 immediate_quit = 0;
1239 return (0 - n);
1240 }
1241 n--;
1242 }
1243 immediate_quit = 0;
1244 return (pos);
1245 }
1246 else /* non-RE case */
1247 {
1248 unsigned char *raw_pattern, *pat;
1249 EMACS_INT raw_pattern_size;
1250 EMACS_INT raw_pattern_size_byte;
1251 unsigned char *patbuf;
1252 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1253 unsigned char *base_pat;
1254 /* Set to positive if we find a non-ASCII char that need
1255 translation. Otherwise set to zero later. */
1256 int char_base = -1;
1257 int boyer_moore_ok = 1;
1258
1259 /* MULTIBYTE says whether the text to be searched is multibyte.
1260 We must convert PATTERN to match that, or we will not really
1261 find things right. */
1262
1263 if (multibyte == STRING_MULTIBYTE (string))
1264 {
1265 raw_pattern = SDATA (string);
1266 raw_pattern_size = SCHARS (string);
1267 raw_pattern_size_byte = SBYTES (string);
1268 }
1269 else if (multibyte)
1270 {
1271 raw_pattern_size = SCHARS (string);
1272 raw_pattern_size_byte
1273 = count_size_as_multibyte (SDATA (string),
1274 raw_pattern_size);
1275 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1276 copy_text (SDATA (string), raw_pattern,
1277 SCHARS (string), 0, 1);
1278 }
1279 else
1280 {
1281 /* Converting multibyte to single-byte.
1282
1283 ??? Perhaps this conversion should be done in a special way
1284 by subtracting nonascii-insert-offset from each non-ASCII char,
1285 so that only the multibyte chars which really correspond to
1286 the chosen single-byte character set can possibly match. */
1287 raw_pattern_size = SCHARS (string);
1288 raw_pattern_size_byte = SCHARS (string);
1289 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1290 copy_text (SDATA (string), raw_pattern,
1291 SBYTES (string), 1, 0);
1292 }
1293
1294 /* Copy and optionally translate the pattern. */
1295 len = raw_pattern_size;
1296 len_byte = raw_pattern_size_byte;
1297 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1298 pat = patbuf;
1299 base_pat = raw_pattern;
1300 if (multibyte)
1301 {
1302 /* Fill patbuf by translated characters in STRING while
1303 checking if we can use boyer-moore search. If TRT is
1304 non-nil, we can use boyer-moore search only if TRT can be
1305 represented by the byte array of 256 elements. For that,
1306 all non-ASCII case-equivalents of all case-senstive
1307 characters in STRING must belong to the same charset and
1308 row. */
1309
1310 while (--len >= 0)
1311 {
1312 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1313 int c, translated, inverse;
1314 int in_charlen, charlen;
1315
1316 /* If we got here and the RE flag is set, it's because we're
1317 dealing with a regexp known to be trivial, so the backslash
1318 just quotes the next character. */
1319 if (RE && *base_pat == '\\')
1320 {
1321 len--;
1322 raw_pattern_size--;
1323 len_byte--;
1324 base_pat++;
1325 }
1326
1327 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1328
1329 if (NILP (trt))
1330 {
1331 str = base_pat;
1332 charlen = in_charlen;
1333 }
1334 else
1335 {
1336 /* Translate the character. */
1337 TRANSLATE (translated, trt, c);
1338 charlen = CHAR_STRING (translated, str_base);
1339 str = str_base;
1340
1341 /* Check if C has any other case-equivalents. */
1342 TRANSLATE (inverse, inverse_trt, c);
1343 /* If so, check if we can use boyer-moore. */
1344 if (c != inverse && boyer_moore_ok)
1345 {
1346 /* Check if all equivalents belong to the same
1347 group of characters. Note that the check of C
1348 itself is done by the last iteration. */
1349 int this_char_base = -1;
1350
1351 while (boyer_moore_ok)
1352 {
1353 if (ASCII_BYTE_P (inverse))
1354 {
1355 if (this_char_base > 0)
1356 boyer_moore_ok = 0;
1357 else
1358 this_char_base = 0;
1359 }
1360 else if (CHAR_BYTE8_P (inverse))
1361 /* Boyer-moore search can't handle a
1362 translation of an eight-bit
1363 character. */
1364 boyer_moore_ok = 0;
1365 else if (this_char_base < 0)
1366 {
1367 this_char_base = inverse & ~0x3F;
1368 if (char_base < 0)
1369 char_base = this_char_base;
1370 else if (this_char_base != char_base)
1371 boyer_moore_ok = 0;
1372 }
1373 else if ((inverse & ~0x3F) != this_char_base)
1374 boyer_moore_ok = 0;
1375 if (c == inverse)
1376 break;
1377 TRANSLATE (inverse, inverse_trt, inverse);
1378 }
1379 }
1380 }
1381
1382 /* Store this character into the translated pattern. */
1383 memcpy (pat, str, charlen);
1384 pat += charlen;
1385 base_pat += in_charlen;
1386 len_byte -= in_charlen;
1387 }
1388
1389 /* If char_base is still negative we didn't find any translated
1390 non-ASCII characters. */
1391 if (char_base < 0)
1392 char_base = 0;
1393 }
1394 else
1395 {
1396 /* Unibyte buffer. */
1397 char_base = 0;
1398 while (--len >= 0)
1399 {
1400 int c, translated;
1401
1402 /* If we got here and the RE flag is set, it's because we're
1403 dealing with a regexp known to be trivial, so the backslash
1404 just quotes the next character. */
1405 if (RE && *base_pat == '\\')
1406 {
1407 len--;
1408 raw_pattern_size--;
1409 base_pat++;
1410 }
1411 c = *base_pat++;
1412 TRANSLATE (translated, trt, c);
1413 *pat++ = translated;
1414 }
1415 }
1416
1417 len_byte = pat - patbuf;
1418 pat = base_pat = patbuf;
1419
1420 if (boyer_moore_ok)
1421 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1422 pos_byte, lim_byte,
1423 char_base);
1424 else
1425 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1426 pos, pos_byte, lim, lim_byte);
1427 }
1428 }
1429 \f
1430 /* Do a simple string search N times for the string PAT,
1431 whose length is LEN/LEN_BYTE,
1432 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1433 TRT is the translation table.
1434
1435 Return the character position where the match is found.
1436 Otherwise, if M matches remained to be found, return -M.
1437
1438 This kind of search works regardless of what is in PAT and
1439 regardless of what is in TRT. It is used in cases where
1440 boyer_moore cannot work. */
1441
1442 static EMACS_INT
1443 simple_search (EMACS_INT n, unsigned char *pat,
1444 EMACS_INT len, EMACS_INT len_byte, Lisp_Object trt,
1445 EMACS_INT pos, EMACS_INT pos_byte,
1446 EMACS_INT lim, EMACS_INT lim_byte)
1447 {
1448 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1449 int forward = n > 0;
1450 /* Number of buffer bytes matched. Note that this may be different
1451 from len_byte in a multibyte buffer. */
1452 EMACS_INT match_byte;
1453
1454 if (lim > pos && multibyte)
1455 while (n > 0)
1456 {
1457 while (1)
1458 {
1459 /* Try matching at position POS. */
1460 EMACS_INT this_pos = pos;
1461 EMACS_INT this_pos_byte = pos_byte;
1462 EMACS_INT this_len = len;
1463 unsigned char *p = pat;
1464 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1465 goto stop;
1466
1467 while (this_len > 0)
1468 {
1469 int charlen, buf_charlen;
1470 int pat_ch, buf_ch;
1471
1472 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1473 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1474 buf_charlen);
1475 TRANSLATE (buf_ch, trt, buf_ch);
1476
1477 if (buf_ch != pat_ch)
1478 break;
1479
1480 this_len--;
1481 p += charlen;
1482
1483 this_pos_byte += buf_charlen;
1484 this_pos++;
1485 }
1486
1487 if (this_len == 0)
1488 {
1489 match_byte = this_pos_byte - pos_byte;
1490 pos += len;
1491 pos_byte += match_byte;
1492 break;
1493 }
1494
1495 INC_BOTH (pos, pos_byte);
1496 }
1497
1498 n--;
1499 }
1500 else if (lim > pos)
1501 while (n > 0)
1502 {
1503 while (1)
1504 {
1505 /* Try matching at position POS. */
1506 EMACS_INT this_pos = pos;
1507 EMACS_INT this_len = len;
1508 unsigned char *p = pat;
1509
1510 if (pos + len > lim)
1511 goto stop;
1512
1513 while (this_len > 0)
1514 {
1515 int pat_ch = *p++;
1516 int buf_ch = FETCH_BYTE (this_pos);
1517 TRANSLATE (buf_ch, trt, buf_ch);
1518
1519 if (buf_ch != pat_ch)
1520 break;
1521
1522 this_len--;
1523 this_pos++;
1524 }
1525
1526 if (this_len == 0)
1527 {
1528 match_byte = len;
1529 pos += len;
1530 break;
1531 }
1532
1533 pos++;
1534 }
1535
1536 n--;
1537 }
1538 /* Backwards search. */
1539 else if (lim < pos && multibyte)
1540 while (n < 0)
1541 {
1542 while (1)
1543 {
1544 /* Try matching at position POS. */
1545 EMACS_INT this_pos = pos;
1546 EMACS_INT this_pos_byte = pos_byte;
1547 EMACS_INT this_len = len;
1548 const unsigned char *p = pat + len_byte;
1549
1550 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1551 goto stop;
1552
1553 while (this_len > 0)
1554 {
1555 int pat_ch, buf_ch;
1556
1557 DEC_BOTH (this_pos, this_pos_byte);
1558 PREV_CHAR_BOUNDARY (p, pat);
1559 pat_ch = STRING_CHAR (p);
1560 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1561 TRANSLATE (buf_ch, trt, buf_ch);
1562
1563 if (buf_ch != pat_ch)
1564 break;
1565
1566 this_len--;
1567 }
1568
1569 if (this_len == 0)
1570 {
1571 match_byte = pos_byte - this_pos_byte;
1572 pos = this_pos;
1573 pos_byte = this_pos_byte;
1574 break;
1575 }
1576
1577 DEC_BOTH (pos, pos_byte);
1578 }
1579
1580 n++;
1581 }
1582 else if (lim < pos)
1583 while (n < 0)
1584 {
1585 while (1)
1586 {
1587 /* Try matching at position POS. */
1588 EMACS_INT this_pos = pos - len;
1589 EMACS_INT this_len = len;
1590 unsigned char *p = pat;
1591
1592 if (this_pos < lim)
1593 goto stop;
1594
1595 while (this_len > 0)
1596 {
1597 int pat_ch = *p++;
1598 int buf_ch = FETCH_BYTE (this_pos);
1599 TRANSLATE (buf_ch, trt, buf_ch);
1600
1601 if (buf_ch != pat_ch)
1602 break;
1603 this_len--;
1604 this_pos++;
1605 }
1606
1607 if (this_len == 0)
1608 {
1609 match_byte = len;
1610 pos -= len;
1611 break;
1612 }
1613
1614 pos--;
1615 }
1616
1617 n++;
1618 }
1619
1620 stop:
1621 if (n == 0)
1622 {
1623 if (forward)
1624 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1625 else
1626 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1627
1628 return pos;
1629 }
1630 else if (n > 0)
1631 return -n;
1632 else
1633 return n;
1634 }
1635 \f
1636 /* Do Boyer-Moore search N times for the string BASE_PAT,
1637 whose length is LEN_BYTE,
1638 from buffer position POS_BYTE until LIM_BYTE.
1639 DIRECTION says which direction we search in.
1640 TRT and INVERSE_TRT are translation tables.
1641 Characters in PAT are already translated by TRT.
1642
1643 This kind of search works if all the characters in BASE_PAT that
1644 have nontrivial translation are the same aside from the last byte.
1645 This makes it possible to translate just the last byte of a
1646 character, and do so after just a simple test of the context.
1647 CHAR_BASE is nonzero if there is such a non-ASCII character.
1648
1649 If that criterion is not satisfied, do not call this function. */
1650
1651 static EMACS_INT
1652 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1653 EMACS_INT len_byte,
1654 Lisp_Object trt, Lisp_Object inverse_trt,
1655 EMACS_INT pos_byte, EMACS_INT lim_byte,
1656 int char_base)
1657 {
1658 int direction = ((n > 0) ? 1 : -1);
1659 register EMACS_INT dirlen;
1660 EMACS_INT limit;
1661 int stride_for_teases = 0;
1662 int BM_tab[0400];
1663 register unsigned char *cursor, *p_limit;
1664 register EMACS_INT i;
1665 register int j;
1666 unsigned char *pat, *pat_end;
1667 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1668
1669 unsigned char simple_translate[0400];
1670 /* These are set to the preceding bytes of a byte to be translated
1671 if char_base is nonzero. As the maximum byte length of a
1672 multibyte character is 5, we have to check at most four previous
1673 bytes. */
1674 int translate_prev_byte1 = 0;
1675 int translate_prev_byte2 = 0;
1676 int translate_prev_byte3 = 0;
1677 int translate_prev_byte4 = 0;
1678
1679 /* The general approach is that we are going to maintain that we know
1680 the first (closest to the present position, in whatever direction
1681 we're searching) character that could possibly be the last
1682 (furthest from present position) character of a valid match. We
1683 advance the state of our knowledge by looking at that character
1684 and seeing whether it indeed matches the last character of the
1685 pattern. If it does, we take a closer look. If it does not, we
1686 move our pointer (to putative last characters) as far as is
1687 logically possible. This amount of movement, which I call a
1688 stride, will be the length of the pattern if the actual character
1689 appears nowhere in the pattern, otherwise it will be the distance
1690 from the last occurrence of that character to the end of the
1691 pattern. If the amount is zero we have a possible match. */
1692
1693 /* Here we make a "mickey mouse" BM table. The stride of the search
1694 is determined only by the last character of the putative match.
1695 If that character does not match, we will stride the proper
1696 distance to propose a match that superimposes it on the last
1697 instance of a character that matches it (per trt), or misses
1698 it entirely if there is none. */
1699
1700 dirlen = len_byte * direction;
1701
1702 /* Record position after the end of the pattern. */
1703 pat_end = base_pat + len_byte;
1704 /* BASE_PAT points to a character that we start scanning from.
1705 It is the first character in a forward search,
1706 the last character in a backward search. */
1707 if (direction < 0)
1708 base_pat = pat_end - 1;
1709
1710 /* A character that does not appear in the pattern induces a
1711 stride equal to the pattern length. */
1712 for (i = 0; i < 0400; i++)
1713 BM_tab[i] = dirlen;
1714
1715 /* We use this for translation, instead of TRT itself.
1716 We fill this in to handle the characters that actually
1717 occur in the pattern. Others don't matter anyway! */
1718 for (i = 0; i < 0400; i++)
1719 simple_translate[i] = i;
1720
1721 if (char_base)
1722 {
1723 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1724 byte following them are the target of translation. */
1725 unsigned char str[MAX_MULTIBYTE_LENGTH];
1726 int cblen = CHAR_STRING (char_base, str);
1727
1728 translate_prev_byte1 = str[cblen - 2];
1729 if (cblen > 2)
1730 {
1731 translate_prev_byte2 = str[cblen - 3];
1732 if (cblen > 3)
1733 {
1734 translate_prev_byte3 = str[cblen - 4];
1735 if (cblen > 4)
1736 translate_prev_byte4 = str[cblen - 5];
1737 }
1738 }
1739 }
1740
1741 i = 0;
1742 while (i != dirlen)
1743 {
1744 unsigned char *ptr = base_pat + i;
1745 i += direction;
1746 if (! NILP (trt))
1747 {
1748 /* If the byte currently looking at is the last of a
1749 character to check case-equivalents, set CH to that
1750 character. An ASCII character and a non-ASCII character
1751 matching with CHAR_BASE are to be checked. */
1752 int ch = -1;
1753
1754 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1755 ch = *ptr;
1756 else if (char_base
1757 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1758 {
1759 unsigned char *charstart = ptr - 1;
1760
1761 while (! (CHAR_HEAD_P (*charstart)))
1762 charstart--;
1763 ch = STRING_CHAR (charstart);
1764 if (char_base != (ch & ~0x3F))
1765 ch = -1;
1766 }
1767
1768 if (ch >= 0200)
1769 j = (ch & 0x3F) | 0200;
1770 else
1771 j = *ptr;
1772
1773 if (i == dirlen)
1774 stride_for_teases = BM_tab[j];
1775
1776 BM_tab[j] = dirlen - i;
1777 /* A translation table is accompanied by its inverse -- see
1778 comment following downcase_table for details. */
1779 if (ch >= 0)
1780 {
1781 int starting_ch = ch;
1782 int starting_j = j;
1783
1784 while (1)
1785 {
1786 TRANSLATE (ch, inverse_trt, ch);
1787 if (ch >= 0200)
1788 j = (ch & 0x3F) | 0200;
1789 else
1790 j = ch;
1791
1792 /* For all the characters that map into CH,
1793 set up simple_translate to map the last byte
1794 into STARTING_J. */
1795 simple_translate[j] = starting_j;
1796 if (ch == starting_ch)
1797 break;
1798 BM_tab[j] = dirlen - i;
1799 }
1800 }
1801 }
1802 else
1803 {
1804 j = *ptr;
1805
1806 if (i == dirlen)
1807 stride_for_teases = BM_tab[j];
1808 BM_tab[j] = dirlen - i;
1809 }
1810 /* stride_for_teases tells how much to stride if we get a
1811 match on the far character but are subsequently
1812 disappointed, by recording what the stride would have been
1813 for that character if the last character had been
1814 different. */
1815 }
1816 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1817 /* loop invariant - POS_BYTE points at where last char (first
1818 char if reverse) of pattern would align in a possible match. */
1819 while (n != 0)
1820 {
1821 EMACS_INT tail_end;
1822 unsigned char *tail_end_ptr;
1823
1824 /* It's been reported that some (broken) compiler thinks that
1825 Boolean expressions in an arithmetic context are unsigned.
1826 Using an explicit ?1:0 prevents this. */
1827 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1828 < 0)
1829 return (n * (0 - direction));
1830 /* First we do the part we can by pointers (maybe nothing) */
1831 QUIT;
1832 pat = base_pat;
1833 limit = pos_byte - dirlen + direction;
1834 if (direction > 0)
1835 {
1836 limit = BUFFER_CEILING_OF (limit);
1837 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1838 can take on without hitting edge of buffer or the gap. */
1839 limit = min (limit, pos_byte + 20000);
1840 limit = min (limit, lim_byte - 1);
1841 }
1842 else
1843 {
1844 limit = BUFFER_FLOOR_OF (limit);
1845 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1846 can take on without hitting edge of buffer or the gap. */
1847 limit = max (limit, pos_byte - 20000);
1848 limit = max (limit, lim_byte);
1849 }
1850 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1851 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1852
1853 if ((limit - pos_byte) * direction > 20)
1854 {
1855 unsigned char *p2;
1856
1857 p_limit = BYTE_POS_ADDR (limit);
1858 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1859 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1860 while (1) /* use one cursor setting as long as i can */
1861 {
1862 if (direction > 0) /* worth duplicating */
1863 {
1864 while (cursor <= p_limit)
1865 {
1866 if (BM_tab[*cursor] == 0)
1867 goto hit;
1868 cursor += BM_tab[*cursor];
1869 }
1870 }
1871 else
1872 {
1873 while (cursor >= p_limit)
1874 {
1875 if (BM_tab[*cursor] == 0)
1876 goto hit;
1877 cursor += BM_tab[*cursor];
1878 }
1879 }
1880 /* If you are here, cursor is beyond the end of the
1881 searched region. You fail to match within the
1882 permitted region and would otherwise try a character
1883 beyond that region. */
1884 break;
1885
1886 hit:
1887 i = dirlen - direction;
1888 if (! NILP (trt))
1889 {
1890 while ((i -= direction) + direction != 0)
1891 {
1892 int ch;
1893 cursor -= direction;
1894 /* Translate only the last byte of a character. */
1895 if (! multibyte
1896 || ((cursor == tail_end_ptr
1897 || CHAR_HEAD_P (cursor[1]))
1898 && (CHAR_HEAD_P (cursor[0])
1899 /* Check if this is the last byte of
1900 a translable character. */
1901 || (translate_prev_byte1 == cursor[-1]
1902 && (CHAR_HEAD_P (translate_prev_byte1)
1903 || (translate_prev_byte2 == cursor[-2]
1904 && (CHAR_HEAD_P (translate_prev_byte2)
1905 || (translate_prev_byte3 == cursor[-3]))))))))
1906 ch = simple_translate[*cursor];
1907 else
1908 ch = *cursor;
1909 if (pat[i] != ch)
1910 break;
1911 }
1912 }
1913 else
1914 {
1915 while ((i -= direction) + direction != 0)
1916 {
1917 cursor -= direction;
1918 if (pat[i] != *cursor)
1919 break;
1920 }
1921 }
1922 cursor += dirlen - i - direction; /* fix cursor */
1923 if (i + direction == 0)
1924 {
1925 EMACS_INT position, start, end;
1926
1927 cursor -= direction;
1928
1929 position = pos_byte + cursor - p2 + ((direction > 0)
1930 ? 1 - len_byte : 0);
1931 set_search_regs (position, len_byte);
1932
1933 if (NILP (Vinhibit_changing_match_data))
1934 {
1935 start = search_regs.start[0];
1936 end = search_regs.end[0];
1937 }
1938 else
1939 /* If Vinhibit_changing_match_data is non-nil,
1940 search_regs will not be changed. So let's
1941 compute start and end here. */
1942 {
1943 start = BYTE_TO_CHAR (position);
1944 end = BYTE_TO_CHAR (position + len_byte);
1945 }
1946
1947 if ((n -= direction) != 0)
1948 cursor += dirlen; /* to resume search */
1949 else
1950 return direction > 0 ? end : start;
1951 }
1952 else
1953 cursor += stride_for_teases; /* <sigh> we lose - */
1954 }
1955 pos_byte += cursor - p2;
1956 }
1957 else
1958 /* Now we'll pick up a clump that has to be done the hard
1959 way because it covers a discontinuity. */
1960 {
1961 limit = ((direction > 0)
1962 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1963 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1964 limit = ((direction > 0)
1965 ? min (limit + len_byte, lim_byte - 1)
1966 : max (limit - len_byte, lim_byte));
1967 /* LIMIT is now the last value POS_BYTE can have
1968 and still be valid for a possible match. */
1969 while (1)
1970 {
1971 /* This loop can be coded for space rather than
1972 speed because it will usually run only once.
1973 (the reach is at most len + 21, and typically
1974 does not exceed len). */
1975 while ((limit - pos_byte) * direction >= 0)
1976 {
1977 int ch = FETCH_BYTE (pos_byte);
1978 if (BM_tab[ch] == 0)
1979 goto hit2;
1980 pos_byte += BM_tab[ch];
1981 }
1982 break; /* ran off the end */
1983
1984 hit2:
1985 /* Found what might be a match. */
1986 i = dirlen - direction;
1987 while ((i -= direction) + direction != 0)
1988 {
1989 int ch;
1990 unsigned char *ptr;
1991 pos_byte -= direction;
1992 ptr = BYTE_POS_ADDR (pos_byte);
1993 /* Translate only the last byte of a character. */
1994 if (! multibyte
1995 || ((ptr == tail_end_ptr
1996 || CHAR_HEAD_P (ptr[1]))
1997 && (CHAR_HEAD_P (ptr[0])
1998 /* Check if this is the last byte of a
1999 translable character. */
2000 || (translate_prev_byte1 == ptr[-1]
2001 && (CHAR_HEAD_P (translate_prev_byte1)
2002 || (translate_prev_byte2 == ptr[-2]
2003 && (CHAR_HEAD_P (translate_prev_byte2)
2004 || translate_prev_byte3 == ptr[-3])))))))
2005 ch = simple_translate[*ptr];
2006 else
2007 ch = *ptr;
2008 if (pat[i] != ch)
2009 break;
2010 }
2011 /* Above loop has moved POS_BYTE part or all the way
2012 back to the first pos (last pos if reverse).
2013 Set it once again at the last (first if reverse) char. */
2014 pos_byte += dirlen - i - direction;
2015 if (i + direction == 0)
2016 {
2017 EMACS_INT position, start, end;
2018 pos_byte -= direction;
2019
2020 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2021 set_search_regs (position, len_byte);
2022
2023 if (NILP (Vinhibit_changing_match_data))
2024 {
2025 start = search_regs.start[0];
2026 end = search_regs.end[0];
2027 }
2028 else
2029 /* If Vinhibit_changing_match_data is non-nil,
2030 search_regs will not be changed. So let's
2031 compute start and end here. */
2032 {
2033 start = BYTE_TO_CHAR (position);
2034 end = BYTE_TO_CHAR (position + len_byte);
2035 }
2036
2037 if ((n -= direction) != 0)
2038 pos_byte += dirlen; /* to resume search */
2039 else
2040 return direction > 0 ? end : start;
2041 }
2042 else
2043 pos_byte += stride_for_teases;
2044 }
2045 }
2046 /* We have done one clump. Can we continue? */
2047 if ((lim_byte - pos_byte) * direction < 0)
2048 return ((0 - n) * direction);
2049 }
2050 return BYTE_TO_CHAR (pos_byte);
2051 }
2052
2053 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2054 for the overall match just found in the current buffer.
2055 Also clear out the match data for registers 1 and up. */
2056
2057 static void
2058 set_search_regs (EMACS_INT beg_byte, EMACS_INT nbytes)
2059 {
2060 int i;
2061
2062 if (!NILP (Vinhibit_changing_match_data))
2063 return;
2064
2065 /* Make sure we have registers in which to store
2066 the match position. */
2067 if (search_regs.num_regs == 0)
2068 {
2069 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2070 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2071 search_regs.num_regs = 2;
2072 }
2073
2074 /* Clear out the other registers. */
2075 for (i = 1; i < search_regs.num_regs; i++)
2076 {
2077 search_regs.start[i] = -1;
2078 search_regs.end[i] = -1;
2079 }
2080
2081 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2082 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2083 XSETBUFFER (last_thing_searched, current_buffer);
2084 }
2085 \f
2086 /* Given STRING, a string of words separated by word delimiters,
2087 compute a regexp that matches those exact words separated by
2088 arbitrary punctuation. If LAX is nonzero, the end of the string
2089 need not match a word boundary unless it ends in whitespace. */
2090
2091 static Lisp_Object
2092 wordify (Lisp_Object string, int lax)
2093 {
2094 register unsigned char *p, *o;
2095 register EMACS_INT i, i_byte, len, punct_count = 0, word_count = 0;
2096 Lisp_Object val;
2097 int prev_c = 0;
2098 EMACS_INT adjust;
2099 int whitespace_at_end;
2100
2101 CHECK_STRING (string);
2102 p = SDATA (string);
2103 len = SCHARS (string);
2104
2105 for (i = 0, i_byte = 0; i < len; )
2106 {
2107 int c;
2108
2109 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2110
2111 if (SYNTAX (c) != Sword)
2112 {
2113 punct_count++;
2114 if (i > 0 && SYNTAX (prev_c) == Sword)
2115 word_count++;
2116 }
2117
2118 prev_c = c;
2119 }
2120
2121 if (SYNTAX (prev_c) == Sword)
2122 {
2123 word_count++;
2124 whitespace_at_end = 0;
2125 }
2126 else
2127 whitespace_at_end = 1;
2128
2129 if (!word_count)
2130 return empty_unibyte_string;
2131
2132 adjust = - punct_count + 5 * (word_count - 1)
2133 + ((lax && !whitespace_at_end) ? 2 : 4);
2134 if (STRING_MULTIBYTE (string))
2135 val = make_uninit_multibyte_string (len + adjust,
2136 SBYTES (string)
2137 + adjust);
2138 else
2139 val = make_uninit_string (len + adjust);
2140
2141 o = SDATA (val);
2142 *o++ = '\\';
2143 *o++ = 'b';
2144 prev_c = 0;
2145
2146 for (i = 0, i_byte = 0; i < len; )
2147 {
2148 int c;
2149 EMACS_INT i_byte_orig = i_byte;
2150
2151 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2152
2153 if (SYNTAX (c) == Sword)
2154 {
2155 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2156 o += i_byte - i_byte_orig;
2157 }
2158 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2159 {
2160 *o++ = '\\';
2161 *o++ = 'W';
2162 *o++ = '\\';
2163 *o++ = 'W';
2164 *o++ = '*';
2165 }
2166
2167 prev_c = c;
2168 }
2169
2170 if (!lax || whitespace_at_end)
2171 {
2172 *o++ = '\\';
2173 *o++ = 'b';
2174 }
2175
2176 return val;
2177 }
2178 \f
2179 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2180 "MSearch backward: ",
2181 doc: /* Search backward from point for STRING.
2182 Set point to the beginning of the occurrence found, and return point.
2183 An optional second argument bounds the search; it is a buffer position.
2184 The match found must not extend before that position.
2185 Optional third argument, if t, means if fail just return nil (no error).
2186 If not nil and not t, position at limit of search and return nil.
2187 Optional fourth argument is repeat count--search for successive occurrences.
2188
2189 Search case-sensitivity is determined by the value of the variable
2190 `case-fold-search', which see.
2191
2192 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2193 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2194 {
2195 return search_command (string, bound, noerror, count, -1, 0, 0);
2196 }
2197
2198 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2199 doc: /* Search forward from point for STRING.
2200 Set point to the end of the occurrence found, and return point.
2201 An optional second argument bounds the search; it is a buffer position.
2202 The match found must not extend after that position. A value of nil is
2203 equivalent to (point-max).
2204 Optional third argument, if t, means if fail just return nil (no error).
2205 If not nil and not t, move to limit of search and return nil.
2206 Optional fourth argument is repeat count--search for successive occurrences.
2207
2208 Search case-sensitivity is determined by the value of the variable
2209 `case-fold-search', which see.
2210
2211 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2212 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2213 {
2214 return search_command (string, bound, noerror, count, 1, 0, 0);
2215 }
2216
2217 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2218 "sWord search backward: ",
2219 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2220 Set point to the beginning of the occurrence found, and return point.
2221 An optional second argument bounds the search; it is a buffer position.
2222 The match found must not extend before that position.
2223 Optional third argument, if t, means if fail just return nil (no error).
2224 If not nil and not t, move to limit of search and return nil.
2225 Optional fourth argument is repeat count--search for successive occurrences. */)
2226 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2227 {
2228 return search_command (wordify (string, 0), bound, noerror, count, -1, 1, 0);
2229 }
2230
2231 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2232 "sWord search: ",
2233 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2234 Set point to the end of the occurrence found, and return point.
2235 An optional second argument bounds the search; it is a buffer position.
2236 The match found must not extend after that position.
2237 Optional third argument, if t, means if fail just return nil (no error).
2238 If not nil and not t, move to limit of search and return nil.
2239 Optional fourth argument is repeat count--search for successive occurrences. */)
2240 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2241 {
2242 return search_command (wordify (string, 0), bound, noerror, count, 1, 1, 0);
2243 }
2244
2245 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2246 "sWord search backward: ",
2247 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2248 Set point to the beginning of the occurrence found, and return point.
2249
2250 Unlike `word-search-backward', the end of STRING need not match a word
2251 boundary unless it ends in whitespace.
2252
2253 An optional second argument bounds the search; it is a buffer position.
2254 The match found must not extend before that position.
2255 Optional third argument, if t, means if fail just return nil (no error).
2256 If not nil and not t, move to limit of search and return nil.
2257 Optional fourth argument is repeat count--search for successive occurrences. */)
2258 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2259 {
2260 return search_command (wordify (string, 1), bound, noerror, count, -1, 1, 0);
2261 }
2262
2263 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2264 "sWord search: ",
2265 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2266 Set point to the end of the occurrence found, and return point.
2267
2268 Unlike `word-search-forward', the end of STRING need not match a word
2269 boundary unless it ends in whitespace.
2270
2271 An optional second argument bounds the search; it is a buffer position.
2272 The match found must not extend after that position.
2273 Optional third argument, if t, means if fail just return nil (no error).
2274 If not nil and not t, move to limit of search and return nil.
2275 Optional fourth argument is repeat count--search for successive occurrences. */)
2276 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2277 {
2278 return search_command (wordify (string, 1), bound, noerror, count, 1, 1, 0);
2279 }
2280
2281 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2282 "sRE search backward: ",
2283 doc: /* Search backward from point for match for regular expression REGEXP.
2284 Set point to the beginning of the match, and return point.
2285 The match found is the one starting last in the buffer
2286 and yet ending before the origin of the search.
2287 An optional second argument bounds the search; it is a buffer position.
2288 The match found must start at or after that position.
2289 Optional third argument, if t, means if fail just return nil (no error).
2290 If not nil and not t, move to limit of search and return nil.
2291 Optional fourth argument is repeat count--search for successive occurrences.
2292 See also the functions `match-beginning', `match-end', `match-string',
2293 and `replace-match'. */)
2294 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2295 {
2296 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2297 }
2298
2299 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2300 "sRE search: ",
2301 doc: /* Search forward from point for regular expression REGEXP.
2302 Set point to the end of the occurrence found, and return point.
2303 An optional second argument bounds the search; it is a buffer position.
2304 The match found must not extend after that position.
2305 Optional third argument, if t, means if fail just return nil (no error).
2306 If not nil and not t, move to limit of search and return nil.
2307 Optional fourth argument is repeat count--search for successive occurrences.
2308 See also the functions `match-beginning', `match-end', `match-string',
2309 and `replace-match'. */)
2310 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2311 {
2312 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2313 }
2314
2315 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2316 "sPosix search backward: ",
2317 doc: /* Search backward from point for match for regular expression REGEXP.
2318 Find the longest match in accord with Posix regular expression rules.
2319 Set point to the beginning of the match, and return point.
2320 The match found is the one starting last in the buffer
2321 and yet ending before the origin of the search.
2322 An optional second argument bounds the search; it is a buffer position.
2323 The match found must start at or after that position.
2324 Optional third argument, if t, means if fail just return nil (no error).
2325 If not nil and not t, move to limit of search and return nil.
2326 Optional fourth argument is repeat count--search for successive occurrences.
2327 See also the functions `match-beginning', `match-end', `match-string',
2328 and `replace-match'. */)
2329 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2330 {
2331 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2332 }
2333
2334 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2335 "sPosix search: ",
2336 doc: /* Search forward from point for regular expression REGEXP.
2337 Find the longest match in accord with Posix regular expression rules.
2338 Set point to the end of the occurrence found, and return point.
2339 An optional second argument bounds the search; it is a buffer position.
2340 The match found must not extend after that position.
2341 Optional third argument, if t, means if fail just return nil (no error).
2342 If not nil and not t, move to limit of search and return nil.
2343 Optional fourth argument is repeat count--search for successive occurrences.
2344 See also the functions `match-beginning', `match-end', `match-string',
2345 and `replace-match'. */)
2346 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2347 {
2348 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2349 }
2350 \f
2351 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2352 doc: /* Replace text matched by last search with NEWTEXT.
2353 Leave point at the end of the replacement text.
2354
2355 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2356 Otherwise maybe capitalize the whole text, or maybe just word initials,
2357 based on the replaced text.
2358 If the replaced text has only capital letters
2359 and has at least one multiletter word, convert NEWTEXT to all caps.
2360 Otherwise if all words are capitalized in the replaced text,
2361 capitalize each word in NEWTEXT.
2362
2363 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2364 Otherwise treat `\\' as special:
2365 `\\&' in NEWTEXT means substitute original matched text.
2366 `\\N' means substitute what matched the Nth `\\(...\\)'.
2367 If Nth parens didn't match, substitute nothing.
2368 `\\\\' means insert one `\\'.
2369 Case conversion does not apply to these substitutions.
2370
2371 FIXEDCASE and LITERAL are optional arguments.
2372
2373 The optional fourth argument STRING can be a string to modify.
2374 This is meaningful when the previous match was done against STRING,
2375 using `string-match'. When used this way, `replace-match'
2376 creates and returns a new string made by copying STRING and replacing
2377 the part of STRING that was matched.
2378
2379 The optional fifth argument SUBEXP specifies a subexpression;
2380 it says to replace just that subexpression with NEWTEXT,
2381 rather than replacing the entire matched text.
2382 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2383 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2384 NEWTEXT in place of subexp N.
2385 This is useful only after a regular expression search or match,
2386 since only regular expressions have distinguished subexpressions. */)
2387 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2388 {
2389 enum { nochange, all_caps, cap_initial } case_action;
2390 register EMACS_INT pos, pos_byte;
2391 int some_multiletter_word;
2392 int some_lowercase;
2393 int some_uppercase;
2394 int some_nonuppercase_initial;
2395 register int c, prevc;
2396 int sub;
2397 EMACS_INT opoint, newpoint;
2398
2399 CHECK_STRING (newtext);
2400
2401 if (! NILP (string))
2402 CHECK_STRING (string);
2403
2404 case_action = nochange; /* We tried an initialization */
2405 /* but some C compilers blew it */
2406
2407 if (search_regs.num_regs <= 0)
2408 error ("`replace-match' called before any match found");
2409
2410 if (NILP (subexp))
2411 sub = 0;
2412 else
2413 {
2414 CHECK_NUMBER (subexp);
2415 sub = XINT (subexp);
2416 if (sub < 0 || sub >= search_regs.num_regs)
2417 args_out_of_range (subexp, make_number (search_regs.num_regs));
2418 }
2419
2420 if (NILP (string))
2421 {
2422 if (search_regs.start[sub] < BEGV
2423 || search_regs.start[sub] > search_regs.end[sub]
2424 || search_regs.end[sub] > ZV)
2425 args_out_of_range (make_number (search_regs.start[sub]),
2426 make_number (search_regs.end[sub]));
2427 }
2428 else
2429 {
2430 if (search_regs.start[sub] < 0
2431 || search_regs.start[sub] > search_regs.end[sub]
2432 || search_regs.end[sub] > SCHARS (string))
2433 args_out_of_range (make_number (search_regs.start[sub]),
2434 make_number (search_regs.end[sub]));
2435 }
2436
2437 if (NILP (fixedcase))
2438 {
2439 /* Decide how to casify by examining the matched text. */
2440 EMACS_INT last;
2441
2442 pos = search_regs.start[sub];
2443 last = search_regs.end[sub];
2444
2445 if (NILP (string))
2446 pos_byte = CHAR_TO_BYTE (pos);
2447 else
2448 pos_byte = string_char_to_byte (string, pos);
2449
2450 prevc = '\n';
2451 case_action = all_caps;
2452
2453 /* some_multiletter_word is set nonzero if any original word
2454 is more than one letter long. */
2455 some_multiletter_word = 0;
2456 some_lowercase = 0;
2457 some_nonuppercase_initial = 0;
2458 some_uppercase = 0;
2459
2460 while (pos < last)
2461 {
2462 if (NILP (string))
2463 {
2464 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2465 INC_BOTH (pos, pos_byte);
2466 }
2467 else
2468 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2469
2470 if (lowercasep (c))
2471 {
2472 /* Cannot be all caps if any original char is lower case */
2473
2474 some_lowercase = 1;
2475 if (SYNTAX (prevc) != Sword)
2476 some_nonuppercase_initial = 1;
2477 else
2478 some_multiletter_word = 1;
2479 }
2480 else if (uppercasep (c))
2481 {
2482 some_uppercase = 1;
2483 if (SYNTAX (prevc) != Sword)
2484 ;
2485 else
2486 some_multiletter_word = 1;
2487 }
2488 else
2489 {
2490 /* If the initial is a caseless word constituent,
2491 treat that like a lowercase initial. */
2492 if (SYNTAX (prevc) != Sword)
2493 some_nonuppercase_initial = 1;
2494 }
2495
2496 prevc = c;
2497 }
2498
2499 /* Convert to all caps if the old text is all caps
2500 and has at least one multiletter word. */
2501 if (! some_lowercase && some_multiletter_word)
2502 case_action = all_caps;
2503 /* Capitalize each word, if the old text has all capitalized words. */
2504 else if (!some_nonuppercase_initial && some_multiletter_word)
2505 case_action = cap_initial;
2506 else if (!some_nonuppercase_initial && some_uppercase)
2507 /* Should x -> yz, operating on X, give Yz or YZ?
2508 We'll assume the latter. */
2509 case_action = all_caps;
2510 else
2511 case_action = nochange;
2512 }
2513
2514 /* Do replacement in a string. */
2515 if (!NILP (string))
2516 {
2517 Lisp_Object before, after;
2518
2519 before = Fsubstring (string, make_number (0),
2520 make_number (search_regs.start[sub]));
2521 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2522
2523 /* Substitute parts of the match into NEWTEXT
2524 if desired. */
2525 if (NILP (literal))
2526 {
2527 EMACS_INT lastpos = 0;
2528 EMACS_INT lastpos_byte = 0;
2529 /* We build up the substituted string in ACCUM. */
2530 Lisp_Object accum;
2531 Lisp_Object middle;
2532 int length = SBYTES (newtext);
2533
2534 accum = Qnil;
2535
2536 for (pos_byte = 0, pos = 0; pos_byte < length;)
2537 {
2538 EMACS_INT substart = -1;
2539 EMACS_INT subend = 0;
2540 int delbackslash = 0;
2541
2542 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2543
2544 if (c == '\\')
2545 {
2546 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2547
2548 if (c == '&')
2549 {
2550 substart = search_regs.start[sub];
2551 subend = search_regs.end[sub];
2552 }
2553 else if (c >= '1' && c <= '9')
2554 {
2555 if (search_regs.start[c - '0'] >= 0
2556 && c <= search_regs.num_regs + '0')
2557 {
2558 substart = search_regs.start[c - '0'];
2559 subend = search_regs.end[c - '0'];
2560 }
2561 else
2562 {
2563 /* If that subexp did not match,
2564 replace \\N with nothing. */
2565 substart = 0;
2566 subend = 0;
2567 }
2568 }
2569 else if (c == '\\')
2570 delbackslash = 1;
2571 else
2572 error ("Invalid use of `\\' in replacement text");
2573 }
2574 if (substart >= 0)
2575 {
2576 if (pos - 2 != lastpos)
2577 middle = substring_both (newtext, lastpos,
2578 lastpos_byte,
2579 pos - 2, pos_byte - 2);
2580 else
2581 middle = Qnil;
2582 accum = concat3 (accum, middle,
2583 Fsubstring (string,
2584 make_number (substart),
2585 make_number (subend)));
2586 lastpos = pos;
2587 lastpos_byte = pos_byte;
2588 }
2589 else if (delbackslash)
2590 {
2591 middle = substring_both (newtext, lastpos,
2592 lastpos_byte,
2593 pos - 1, pos_byte - 1);
2594
2595 accum = concat2 (accum, middle);
2596 lastpos = pos;
2597 lastpos_byte = pos_byte;
2598 }
2599 }
2600
2601 if (pos != lastpos)
2602 middle = substring_both (newtext, lastpos,
2603 lastpos_byte,
2604 pos, pos_byte);
2605 else
2606 middle = Qnil;
2607
2608 newtext = concat2 (accum, middle);
2609 }
2610
2611 /* Do case substitution in NEWTEXT if desired. */
2612 if (case_action == all_caps)
2613 newtext = Fupcase (newtext);
2614 else if (case_action == cap_initial)
2615 newtext = Fupcase_initials (newtext);
2616
2617 return concat3 (before, newtext, after);
2618 }
2619
2620 /* Record point, then move (quietly) to the start of the match. */
2621 if (PT >= search_regs.end[sub])
2622 opoint = PT - ZV;
2623 else if (PT > search_regs.start[sub])
2624 opoint = search_regs.end[sub] - ZV;
2625 else
2626 opoint = PT;
2627
2628 /* If we want non-literal replacement,
2629 perform substitution on the replacement string. */
2630 if (NILP (literal))
2631 {
2632 EMACS_INT length = SBYTES (newtext);
2633 unsigned char *substed;
2634 EMACS_INT substed_alloc_size, substed_len;
2635 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2636 int str_multibyte = STRING_MULTIBYTE (newtext);
2637 int really_changed = 0;
2638
2639 substed_alloc_size = length * 2 + 100;
2640 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2641 substed_len = 0;
2642
2643 /* Go thru NEWTEXT, producing the actual text to insert in
2644 SUBSTED while adjusting multibyteness to that of the current
2645 buffer. */
2646
2647 for (pos_byte = 0, pos = 0; pos_byte < length;)
2648 {
2649 unsigned char str[MAX_MULTIBYTE_LENGTH];
2650 const unsigned char *add_stuff = NULL;
2651 EMACS_INT add_len = 0;
2652 int idx = -1;
2653
2654 if (str_multibyte)
2655 {
2656 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2657 if (!buf_multibyte)
2658 c = multibyte_char_to_unibyte (c);
2659 }
2660 else
2661 {
2662 /* Note that we don't have to increment POS. */
2663 c = SREF (newtext, pos_byte++);
2664 if (buf_multibyte)
2665 MAKE_CHAR_MULTIBYTE (c);
2666 }
2667
2668 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2669 or set IDX to a match index, which means put that part
2670 of the buffer text into SUBSTED. */
2671
2672 if (c == '\\')
2673 {
2674 really_changed = 1;
2675
2676 if (str_multibyte)
2677 {
2678 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2679 pos, pos_byte);
2680 if (!buf_multibyte && !ASCII_CHAR_P (c))
2681 c = multibyte_char_to_unibyte (c);
2682 }
2683 else
2684 {
2685 c = SREF (newtext, pos_byte++);
2686 if (buf_multibyte)
2687 MAKE_CHAR_MULTIBYTE (c);
2688 }
2689
2690 if (c == '&')
2691 idx = sub;
2692 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2693 {
2694 if (search_regs.start[c - '0'] >= 1)
2695 idx = c - '0';
2696 }
2697 else if (c == '\\')
2698 add_len = 1, add_stuff = (unsigned char *) "\\";
2699 else
2700 {
2701 xfree (substed);
2702 error ("Invalid use of `\\' in replacement text");
2703 }
2704 }
2705 else
2706 {
2707 add_len = CHAR_STRING (c, str);
2708 add_stuff = str;
2709 }
2710
2711 /* If we want to copy part of a previous match,
2712 set up ADD_STUFF and ADD_LEN to point to it. */
2713 if (idx >= 0)
2714 {
2715 EMACS_INT begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2716 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2717 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2718 move_gap (search_regs.start[idx]);
2719 add_stuff = BYTE_POS_ADDR (begbyte);
2720 }
2721
2722 /* Now the stuff we want to add to SUBSTED
2723 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2724
2725 /* Make sure SUBSTED is big enough. */
2726 if (substed_len + add_len >= substed_alloc_size)
2727 {
2728 substed_alloc_size = substed_len + add_len + 500;
2729 substed = (unsigned char *) xrealloc (substed,
2730 substed_alloc_size + 1);
2731 }
2732
2733 /* Now add to the end of SUBSTED. */
2734 if (add_stuff)
2735 {
2736 memcpy (substed + substed_len, add_stuff, add_len);
2737 substed_len += add_len;
2738 }
2739 }
2740
2741 if (really_changed)
2742 {
2743 if (buf_multibyte)
2744 {
2745 EMACS_INT nchars =
2746 multibyte_chars_in_text (substed, substed_len);
2747
2748 newtext = make_multibyte_string ((char *) substed, nchars,
2749 substed_len);
2750 }
2751 else
2752 newtext = make_unibyte_string ((char *) substed, substed_len);
2753 }
2754 xfree (substed);
2755 }
2756
2757 /* Replace the old text with the new in the cleanest possible way. */
2758 replace_range (search_regs.start[sub], search_regs.end[sub],
2759 newtext, 1, 0, 1);
2760 newpoint = search_regs.start[sub] + SCHARS (newtext);
2761
2762 if (case_action == all_caps)
2763 Fupcase_region (make_number (search_regs.start[sub]),
2764 make_number (newpoint));
2765 else if (case_action == cap_initial)
2766 Fupcase_initials_region (make_number (search_regs.start[sub]),
2767 make_number (newpoint));
2768
2769 /* Adjust search data for this change. */
2770 {
2771 EMACS_INT oldend = search_regs.end[sub];
2772 EMACS_INT oldstart = search_regs.start[sub];
2773 EMACS_INT change = newpoint - search_regs.end[sub];
2774 int i;
2775
2776 for (i = 0; i < search_regs.num_regs; i++)
2777 {
2778 if (search_regs.start[i] >= oldend)
2779 search_regs.start[i] += change;
2780 else if (search_regs.start[i] > oldstart)
2781 search_regs.start[i] = oldstart;
2782 if (search_regs.end[i] >= oldend)
2783 search_regs.end[i] += change;
2784 else if (search_regs.end[i] > oldstart)
2785 search_regs.end[i] = oldstart;
2786 }
2787 }
2788
2789 /* Put point back where it was in the text. */
2790 if (opoint <= 0)
2791 TEMP_SET_PT (opoint + ZV);
2792 else
2793 TEMP_SET_PT (opoint);
2794
2795 /* Now move point "officially" to the start of the inserted replacement. */
2796 move_if_not_intangible (newpoint);
2797
2798 return Qnil;
2799 }
2800 \f
2801 static Lisp_Object
2802 match_limit (Lisp_Object num, int beginningp)
2803 {
2804 register int n;
2805
2806 CHECK_NUMBER (num);
2807 n = XINT (num);
2808 if (n < 0)
2809 args_out_of_range (num, make_number (0));
2810 if (search_regs.num_regs <= 0)
2811 error ("No match data, because no search succeeded");
2812 if (n >= search_regs.num_regs
2813 || search_regs.start[n] < 0)
2814 return Qnil;
2815 return (make_number ((beginningp) ? search_regs.start[n]
2816 : search_regs.end[n]));
2817 }
2818
2819 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2820 doc: /* Return position of start of text matched by last search.
2821 SUBEXP, a number, specifies which parenthesized expression in the last
2822 regexp.
2823 Value is nil if SUBEXPth pair didn't match, or there were less than
2824 SUBEXP pairs.
2825 Zero means the entire text matched by the whole regexp or whole string. */)
2826 (Lisp_Object subexp)
2827 {
2828 return match_limit (subexp, 1);
2829 }
2830
2831 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2832 doc: /* Return position of end of text matched by last search.
2833 SUBEXP, a number, specifies which parenthesized expression in the last
2834 regexp.
2835 Value is nil if SUBEXPth pair didn't match, or there were less than
2836 SUBEXP pairs.
2837 Zero means the entire text matched by the whole regexp or whole string. */)
2838 (Lisp_Object subexp)
2839 {
2840 return match_limit (subexp, 0);
2841 }
2842
2843 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2844 doc: /* Return a list containing all info on what the last search matched.
2845 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2846 All the elements are markers or nil (nil if the Nth pair didn't match)
2847 if the last match was on a buffer; integers or nil if a string was matched.
2848 Use `set-match-data' to reinstate the data in this list.
2849
2850 If INTEGERS (the optional first argument) is non-nil, always use
2851 integers \(rather than markers) to represent buffer positions. In
2852 this case, and if the last match was in a buffer, the buffer will get
2853 stored as one additional element at the end of the list.
2854
2855 If REUSE is a list, reuse it as part of the value. If REUSE is long
2856 enough to hold all the values, and if INTEGERS is non-nil, no consing
2857 is done.
2858
2859 If optional third arg RESEAT is non-nil, any previous markers on the
2860 REUSE list will be modified to point to nowhere.
2861
2862 Return value is undefined if the last search failed. */)
2863 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2864 {
2865 Lisp_Object tail, prev;
2866 Lisp_Object *data;
2867 int i, len;
2868
2869 if (!NILP (reseat))
2870 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2871 if (MARKERP (XCAR (tail)))
2872 {
2873 unchain_marker (XMARKER (XCAR (tail)));
2874 XSETCAR (tail, Qnil);
2875 }
2876
2877 if (NILP (last_thing_searched))
2878 return Qnil;
2879
2880 prev = Qnil;
2881
2882 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2883 * sizeof (Lisp_Object));
2884
2885 len = 0;
2886 for (i = 0; i < search_regs.num_regs; i++)
2887 {
2888 int start = search_regs.start[i];
2889 if (start >= 0)
2890 {
2891 if (EQ (last_thing_searched, Qt)
2892 || ! NILP (integers))
2893 {
2894 XSETFASTINT (data[2 * i], start);
2895 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2896 }
2897 else if (BUFFERP (last_thing_searched))
2898 {
2899 data[2 * i] = Fmake_marker ();
2900 Fset_marker (data[2 * i],
2901 make_number (start),
2902 last_thing_searched);
2903 data[2 * i + 1] = Fmake_marker ();
2904 Fset_marker (data[2 * i + 1],
2905 make_number (search_regs.end[i]),
2906 last_thing_searched);
2907 }
2908 else
2909 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2910 abort ();
2911
2912 len = 2 * i + 2;
2913 }
2914 else
2915 data[2 * i] = data[2 * i + 1] = Qnil;
2916 }
2917
2918 if (BUFFERP (last_thing_searched) && !NILP (integers))
2919 {
2920 data[len] = last_thing_searched;
2921 len++;
2922 }
2923
2924 /* If REUSE is not usable, cons up the values and return them. */
2925 if (! CONSP (reuse))
2926 return Flist (len, data);
2927
2928 /* If REUSE is a list, store as many value elements as will fit
2929 into the elements of REUSE. */
2930 for (i = 0, tail = reuse; CONSP (tail);
2931 i++, tail = XCDR (tail))
2932 {
2933 if (i < len)
2934 XSETCAR (tail, data[i]);
2935 else
2936 XSETCAR (tail, Qnil);
2937 prev = tail;
2938 }
2939
2940 /* If we couldn't fit all value elements into REUSE,
2941 cons up the rest of them and add them to the end of REUSE. */
2942 if (i < len)
2943 XSETCDR (prev, Flist (len - i, data + i));
2944
2945 return reuse;
2946 }
2947
2948 /* We used to have an internal use variant of `reseat' described as:
2949
2950 If RESEAT is `evaporate', put the markers back on the free list
2951 immediately. No other references to the markers must exist in this
2952 case, so it is used only internally on the unwind stack and
2953 save-match-data from Lisp.
2954
2955 But it was ill-conceived: those supposedly-internal markers get exposed via
2956 the undo-list, so freeing them here is unsafe. */
2957
2958 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2959 doc: /* Set internal data on last search match from elements of LIST.
2960 LIST should have been created by calling `match-data' previously.
2961
2962 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2963 (register Lisp_Object list, Lisp_Object reseat)
2964 {
2965 register int i;
2966 register Lisp_Object marker;
2967
2968 if (running_asynch_code)
2969 save_search_regs ();
2970
2971 CHECK_LIST (list);
2972
2973 /* Unless we find a marker with a buffer or an explicit buffer
2974 in LIST, assume that this match data came from a string. */
2975 last_thing_searched = Qt;
2976
2977 /* Allocate registers if they don't already exist. */
2978 {
2979 int length = XFASTINT (Flength (list)) / 2;
2980
2981 if (length > search_regs.num_regs)
2982 {
2983 if (search_regs.num_regs == 0)
2984 {
2985 search_regs.start
2986 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2987 search_regs.end
2988 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2989 }
2990 else
2991 {
2992 search_regs.start
2993 = (regoff_t *) xrealloc (search_regs.start,
2994 length * sizeof (regoff_t));
2995 search_regs.end
2996 = (regoff_t *) xrealloc (search_regs.end,
2997 length * sizeof (regoff_t));
2998 }
2999
3000 for (i = search_regs.num_regs; i < length; i++)
3001 search_regs.start[i] = -1;
3002
3003 search_regs.num_regs = length;
3004 }
3005
3006 for (i = 0; CONSP (list); i++)
3007 {
3008 marker = XCAR (list);
3009 if (BUFFERP (marker))
3010 {
3011 last_thing_searched = marker;
3012 break;
3013 }
3014 if (i >= length)
3015 break;
3016 if (NILP (marker))
3017 {
3018 search_regs.start[i] = -1;
3019 list = XCDR (list);
3020 }
3021 else
3022 {
3023 EMACS_INT from;
3024 Lisp_Object m;
3025
3026 m = marker;
3027 if (MARKERP (marker))
3028 {
3029 if (XMARKER (marker)->buffer == 0)
3030 XSETFASTINT (marker, 0);
3031 else
3032 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3033 }
3034
3035 CHECK_NUMBER_COERCE_MARKER (marker);
3036 from = XINT (marker);
3037
3038 if (!NILP (reseat) && MARKERP (m))
3039 {
3040 unchain_marker (XMARKER (m));
3041 XSETCAR (list, Qnil);
3042 }
3043
3044 if ((list = XCDR (list), !CONSP (list)))
3045 break;
3046
3047 m = marker = XCAR (list);
3048
3049 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3050 XSETFASTINT (marker, 0);
3051
3052 CHECK_NUMBER_COERCE_MARKER (marker);
3053 search_regs.start[i] = from;
3054 search_regs.end[i] = XINT (marker);
3055
3056 if (!NILP (reseat) && MARKERP (m))
3057 {
3058 unchain_marker (XMARKER (m));
3059 XSETCAR (list, Qnil);
3060 }
3061 }
3062 list = XCDR (list);
3063 }
3064
3065 for (; i < search_regs.num_regs; i++)
3066 search_regs.start[i] = -1;
3067 }
3068
3069 return Qnil;
3070 }
3071
3072 /* If non-zero the match data have been saved in saved_search_regs
3073 during the execution of a sentinel or filter. */
3074 static int search_regs_saved;
3075 static struct re_registers saved_search_regs;
3076 static Lisp_Object saved_last_thing_searched;
3077
3078 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3079 if asynchronous code (filter or sentinel) is running. */
3080 static void
3081 save_search_regs (void)
3082 {
3083 if (!search_regs_saved)
3084 {
3085 saved_search_regs.num_regs = search_regs.num_regs;
3086 saved_search_regs.start = search_regs.start;
3087 saved_search_regs.end = search_regs.end;
3088 saved_last_thing_searched = last_thing_searched;
3089 last_thing_searched = Qnil;
3090 search_regs.num_regs = 0;
3091 search_regs.start = 0;
3092 search_regs.end = 0;
3093
3094 search_regs_saved = 1;
3095 }
3096 }
3097
3098 /* Called upon exit from filters and sentinels. */
3099 void
3100 restore_search_regs (void)
3101 {
3102 if (search_regs_saved)
3103 {
3104 if (search_regs.num_regs > 0)
3105 {
3106 xfree (search_regs.start);
3107 xfree (search_regs.end);
3108 }
3109 search_regs.num_regs = saved_search_regs.num_regs;
3110 search_regs.start = saved_search_regs.start;
3111 search_regs.end = saved_search_regs.end;
3112 last_thing_searched = saved_last_thing_searched;
3113 saved_last_thing_searched = Qnil;
3114 search_regs_saved = 0;
3115 }
3116 }
3117
3118 static Lisp_Object
3119 unwind_set_match_data (Lisp_Object list)
3120 {
3121 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3122 return Fset_match_data (list, Qt);
3123 }
3124
3125 /* Called to unwind protect the match data. */
3126 void
3127 record_unwind_save_match_data (void)
3128 {
3129 record_unwind_protect (unwind_set_match_data,
3130 Fmatch_data (Qnil, Qnil, Qnil));
3131 }
3132
3133 /* Quote a string to inactivate reg-expr chars */
3134
3135 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3136 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3137 (Lisp_Object string)
3138 {
3139 register char *in, *out, *end;
3140 register char *temp;
3141 int backslashes_added = 0;
3142
3143 CHECK_STRING (string);
3144
3145 temp = (char *) alloca (SBYTES (string) * 2);
3146
3147 /* Now copy the data into the new string, inserting escapes. */
3148
3149 in = SSDATA (string);
3150 end = in + SBYTES (string);
3151 out = temp;
3152
3153 for (; in != end; in++)
3154 {
3155 if (*in == '['
3156 || *in == '*' || *in == '.' || *in == '\\'
3157 || *in == '?' || *in == '+'
3158 || *in == '^' || *in == '$')
3159 *out++ = '\\', backslashes_added++;
3160 *out++ = *in;
3161 }
3162
3163 return make_specified_string (temp,
3164 SCHARS (string) + backslashes_added,
3165 out - temp,
3166 STRING_MULTIBYTE (string));
3167 }
3168 \f
3169 void
3170 syms_of_search (void)
3171 {
3172 register int i;
3173
3174 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3175 {
3176 searchbufs[i].buf.allocated = 100;
3177 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3178 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3179 searchbufs[i].regexp = Qnil;
3180 searchbufs[i].whitespace_regexp = Qnil;
3181 searchbufs[i].syntax_table = Qnil;
3182 staticpro (&searchbufs[i].regexp);
3183 staticpro (&searchbufs[i].whitespace_regexp);
3184 staticpro (&searchbufs[i].syntax_table);
3185 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3186 }
3187 searchbuf_head = &searchbufs[0];
3188
3189 Qsearch_failed = intern_c_string ("search-failed");
3190 staticpro (&Qsearch_failed);
3191 Qinvalid_regexp = intern_c_string ("invalid-regexp");
3192 staticpro (&Qinvalid_regexp);
3193
3194 Fput (Qsearch_failed, Qerror_conditions,
3195 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3196 Fput (Qsearch_failed, Qerror_message,
3197 make_pure_c_string ("Search failed"));
3198
3199 Fput (Qinvalid_regexp, Qerror_conditions,
3200 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3201 Fput (Qinvalid_regexp, Qerror_message,
3202 make_pure_c_string ("Invalid regexp"));
3203
3204 last_thing_searched = Qnil;
3205 staticpro (&last_thing_searched);
3206
3207 saved_last_thing_searched = Qnil;
3208 staticpro (&saved_last_thing_searched);
3209
3210 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3211 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3212 Some commands use this for user-specified regexps.
3213 Spaces that occur inside character classes or repetition operators
3214 or other such regexp constructs are not replaced with this.
3215 A value of nil (which is the normal value) means treat spaces literally. */);
3216 Vsearch_spaces_regexp = Qnil;
3217
3218 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3219 doc: /* Internal use only.
3220 If non-nil, the primitive searching and matching functions
3221 such as `looking-at', `string-match', `re-search-forward', etc.,
3222 do not set the match data. The proper way to use this variable
3223 is to bind it with `let' around a small expression. */);
3224 Vinhibit_changing_match_data = Qnil;
3225
3226 defsubr (&Slooking_at);
3227 defsubr (&Sposix_looking_at);
3228 defsubr (&Sstring_match);
3229 defsubr (&Sposix_string_match);
3230 defsubr (&Ssearch_forward);
3231 defsubr (&Ssearch_backward);
3232 defsubr (&Sword_search_forward);
3233 defsubr (&Sword_search_backward);
3234 defsubr (&Sword_search_forward_lax);
3235 defsubr (&Sword_search_backward_lax);
3236 defsubr (&Sre_search_forward);
3237 defsubr (&Sre_search_backward);
3238 defsubr (&Sposix_search_forward);
3239 defsubr (&Sposix_search_backward);
3240 defsubr (&Sreplace_match);
3241 defsubr (&Smatch_beginning);
3242 defsubr (&Smatch_end);
3243 defsubr (&Smatch_data);
3244 defsubr (&Sset_match_data);
3245 defsubr (&Sregexp_quote);
3246 }