(PATFETCH): Remove the translating fetch.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* BUGS:
23 - (x?)*y\1z should match both xxxxyxz and xxxyz.
24 TODO:
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
31 */
32
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
35 #pragma alloca
36 #endif
37
38 #undef _GNU_SOURCE
39 #define _GNU_SOURCE
40
41 #ifdef HAVE_CONFIG_H
42 # include <config.h>
43 #endif
44
45 #if defined STDC_HEADERS && !defined emacs
46 # include <stddef.h>
47 #else
48 /* We need this for `regex.h', and perhaps for the Emacs include files. */
49 # include <sys/types.h>
50 #endif
51
52 /* Whether to use ISO C Amendment 1 wide char functions.
53 Those should not be used for Emacs since it uses its own. */
54 #if defined _LIBC
55 #define WIDE_CHAR_SUPPORT 1
56 #else
57 #define WIDE_CHAR_SUPPORT \
58 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
59 #endif
60
61 /* For platform which support the ISO C amendement 1 functionality we
62 support user defined character classes. */
63 #if WIDE_CHAR_SUPPORT
64 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65 # include <wchar.h>
66 # include <wctype.h>
67 #endif
68
69 #ifdef _LIBC
70 /* We have to keep the namespace clean. */
71 # define regfree(preg) __regfree (preg)
72 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74 # define regerror(errcode, preg, errbuf, errbuf_size) \
75 __regerror(errcode, preg, errbuf, errbuf_size)
76 # define re_set_registers(bu, re, nu, st, en) \
77 __re_set_registers (bu, re, nu, st, en)
78 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80 # define re_match(bufp, string, size, pos, regs) \
81 __re_match (bufp, string, size, pos, regs)
82 # define re_search(bufp, string, size, startpos, range, regs) \
83 __re_search (bufp, string, size, startpos, range, regs)
84 # define re_compile_pattern(pattern, length, bufp) \
85 __re_compile_pattern (pattern, length, bufp)
86 # define re_set_syntax(syntax) __re_set_syntax (syntax)
87 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90
91 /* Make sure we call libc's function even if the user overrides them. */
92 # define btowc __btowc
93 # define iswctype __iswctype
94 # define wctype __wctype
95
96 # define WEAK_ALIAS(a,b) weak_alias (a, b)
97
98 /* We are also using some library internals. */
99 # include <locale/localeinfo.h>
100 # include <locale/elem-hash.h>
101 # include <langinfo.h>
102 #else
103 # define WEAK_ALIAS(a,b)
104 #endif
105
106 /* This is for other GNU distributions with internationalized messages. */
107 #if HAVE_LIBINTL_H || defined _LIBC
108 # include <libintl.h>
109 #else
110 # define gettext(msgid) (msgid)
111 #endif
112
113 #ifndef gettext_noop
114 /* This define is so xgettext can find the internationalizable
115 strings. */
116 # define gettext_noop(String) String
117 #endif
118
119 /* The `emacs' switch turns on certain matching commands
120 that make sense only in Emacs. */
121 #ifdef emacs
122
123 # include "lisp.h"
124 # include "buffer.h"
125
126 /* Make syntax table lookup grant data in gl_state. */
127 # define SYNTAX_ENTRY_VIA_PROPERTY
128
129 # include "syntax.h"
130 # include "charset.h"
131 # include "category.h"
132
133 # ifdef malloc
134 # undef malloc
135 # endif
136 # define malloc xmalloc
137 # ifdef realloc
138 # undef realloc
139 # endif
140 # define realloc xrealloc
141 # ifdef free
142 # undef free
143 # endif
144 # define free xfree
145
146 /* Converts the pointer to the char to BEG-based offset from the start. */
147 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
148 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
149
150 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
151 # define RE_STRING_CHAR(p, s) \
152 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
153 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
154 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
155
156 /* Set C a (possibly multibyte) character before P. P points into a
157 string which is the virtual concatenation of STR1 (which ends at
158 END1) or STR2 (which ends at END2). */
159 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
160 do { \
161 if (multibyte) \
162 { \
163 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
164 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
165 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
166 c = STRING_CHAR (dtemp, (p) - dtemp); \
167 } \
168 else \
169 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
170 } while (0)
171
172
173 #else /* not emacs */
174
175 /* If we are not linking with Emacs proper,
176 we can't use the relocating allocator
177 even if config.h says that we can. */
178 # undef REL_ALLOC
179
180 # if defined STDC_HEADERS || defined _LIBC
181 # include <stdlib.h>
182 # else
183 char *malloc ();
184 char *realloc ();
185 # endif
186
187 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
188 If nothing else has been done, use the method below. */
189 # ifdef INHIBIT_STRING_HEADER
190 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
191 # if !defined bzero && !defined bcopy
192 # undef INHIBIT_STRING_HEADER
193 # endif
194 # endif
195 # endif
196
197 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
198 This is used in most programs--a few other programs avoid this
199 by defining INHIBIT_STRING_HEADER. */
200 # ifndef INHIBIT_STRING_HEADER
201 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
202 # include <string.h>
203 # ifndef bzero
204 # ifndef _LIBC
205 # define bzero(s, n) (memset (s, '\0', n), (s))
206 # else
207 # define bzero(s, n) __bzero (s, n)
208 # endif
209 # endif
210 # else
211 # include <strings.h>
212 # ifndef memcmp
213 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
214 # endif
215 # ifndef memcpy
216 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
217 # endif
218 # endif
219 # endif
220
221 /* Define the syntax stuff for \<, \>, etc. */
222
223 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
224 enum syntaxcode { Swhitespace = 0, Sword = 1 };
225
226 # ifdef SWITCH_ENUM_BUG
227 # define SWITCH_ENUM_CAST(x) ((int)(x))
228 # else
229 # define SWITCH_ENUM_CAST(x) (x)
230 # endif
231
232 /* Dummy macros for non-Emacs environments. */
233 # define BASE_LEADING_CODE_P(c) (0)
234 # define CHAR_CHARSET(c) 0
235 # define CHARSET_LEADING_CODE_BASE(c) 0
236 # define MAX_MULTIBYTE_LENGTH 1
237 # define RE_MULTIBYTE_P(x) 0
238 # define WORD_BOUNDARY_P(c1, c2) (0)
239 # define CHAR_HEAD_P(p) (1)
240 # define SINGLE_BYTE_CHAR_P(c) (1)
241 # define SAME_CHARSET_P(c1, c2) (1)
242 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
243 # define STRING_CHAR(p, s) (*(p))
244 # define RE_STRING_CHAR STRING_CHAR
245 # define CHAR_STRING(c, s) (*(s) = (c), 1)
246 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
247 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
248 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
249 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
250 # define MAKE_CHAR(charset, c1, c2) (c1)
251 #endif /* not emacs */
252
253 #ifndef RE_TRANSLATE
254 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
255 # define RE_TRANSLATE_P(TBL) (TBL)
256 #endif
257 \f
258 /* Get the interface, including the syntax bits. */
259 #include "regex.h"
260
261 /* isalpha etc. are used for the character classes. */
262 #include <ctype.h>
263
264 #ifdef emacs
265
266 /* 1 if C is an ASCII character. */
267 # define IS_REAL_ASCII(c) ((c) < 0200)
268
269 /* 1 if C is a unibyte character. */
270 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
271
272 /* The Emacs definitions should not be directly affected by locales. */
273
274 /* In Emacs, these are only used for single-byte characters. */
275 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
276 # define ISCNTRL(c) ((c) < ' ')
277 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
278 || ((c) >= 'a' && (c) <= 'f') \
279 || ((c) >= 'A' && (c) <= 'F'))
280
281 /* This is only used for single-byte characters. */
282 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
283
284 /* The rest must handle multibyte characters. */
285
286 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
287 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
288 : 1)
289
290 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
291 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
292 : 1)
293
294 # define ISALNUM(c) (IS_REAL_ASCII (c) \
295 ? (((c) >= 'a' && (c) <= 'z') \
296 || ((c) >= 'A' && (c) <= 'Z') \
297 || ((c) >= '0' && (c) <= '9')) \
298 : SYNTAX (c) == Sword)
299
300 # define ISALPHA(c) (IS_REAL_ASCII (c) \
301 ? (((c) >= 'a' && (c) <= 'z') \
302 || ((c) >= 'A' && (c) <= 'Z')) \
303 : SYNTAX (c) == Sword)
304
305 # define ISLOWER(c) (LOWERCASEP (c))
306
307 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
308 ? ((c) > ' ' && (c) < 0177 \
309 && !(((c) >= 'a' && (c) <= 'z') \
310 || ((c) >= 'A' && (c) <= 'Z') \
311 || ((c) >= '0' && (c) <= '9'))) \
312 : SYNTAX (c) != Sword)
313
314 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
315
316 # define ISUPPER(c) (UPPERCASEP (c))
317
318 # define ISWORD(c) (SYNTAX (c) == Sword)
319
320 #else /* not emacs */
321
322 /* Jim Meyering writes:
323
324 "... Some ctype macros are valid only for character codes that
325 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
326 using /bin/cc or gcc but without giving an ansi option). So, all
327 ctype uses should be through macros like ISPRINT... If
328 STDC_HEADERS is defined, then autoconf has verified that the ctype
329 macros don't need to be guarded with references to isascii. ...
330 Defining isascii to 1 should let any compiler worth its salt
331 eliminate the && through constant folding."
332 Solaris defines some of these symbols so we must undefine them first. */
333
334 # undef ISASCII
335 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
336 # define ISASCII(c) 1
337 # else
338 # define ISASCII(c) isascii(c)
339 # endif
340
341 /* 1 if C is an ASCII character. */
342 # define IS_REAL_ASCII(c) ((c) < 0200)
343
344 /* This distinction is not meaningful, except in Emacs. */
345 # define ISUNIBYTE(c) 1
346
347 # ifdef isblank
348 # define ISBLANK(c) (ISASCII (c) && isblank (c))
349 # else
350 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351 # endif
352 # ifdef isgraph
353 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
354 # else
355 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
356 # endif
357
358 # undef ISPRINT
359 # define ISPRINT(c) (ISASCII (c) && isprint (c))
360 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
361 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
362 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
363 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
364 # define ISLOWER(c) (ISASCII (c) && islower (c))
365 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
366 # define ISSPACE(c) (ISASCII (c) && isspace (c))
367 # define ISUPPER(c) (ISASCII (c) && isupper (c))
368 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
369
370 # define ISWORD(c) ISALPHA(c)
371
372 # ifdef _tolower
373 # define TOLOWER(c) _tolower(c)
374 # else
375 # define TOLOWER(c) tolower(c)
376 # endif
377
378 /* How many characters in the character set. */
379 # define CHAR_SET_SIZE 256
380
381 # ifdef SYNTAX_TABLE
382
383 extern char *re_syntax_table;
384
385 # else /* not SYNTAX_TABLE */
386
387 static char re_syntax_table[CHAR_SET_SIZE];
388
389 static void
390 init_syntax_once ()
391 {
392 register int c;
393 static int done = 0;
394
395 if (done)
396 return;
397
398 bzero (re_syntax_table, sizeof re_syntax_table);
399
400 for (c = 0; c < CHAR_SET_SIZE; ++c)
401 if (ISALNUM (c))
402 re_syntax_table[c] = Sword;
403
404 re_syntax_table['_'] = Sword;
405
406 done = 1;
407 }
408
409 # endif /* not SYNTAX_TABLE */
410
411 # define SYNTAX(c) re_syntax_table[(c)]
412
413 #endif /* not emacs */
414 \f
415 #ifndef NULL
416 # define NULL (void *)0
417 #endif
418
419 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
420 since ours (we hope) works properly with all combinations of
421 machines, compilers, `char' and `unsigned char' argument types.
422 (Per Bothner suggested the basic approach.) */
423 #undef SIGN_EXTEND_CHAR
424 #if __STDC__
425 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
426 #else /* not __STDC__ */
427 /* As in Harbison and Steele. */
428 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
429 #endif
430 \f
431 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
432 use `alloca' instead of `malloc'. This is because using malloc in
433 re_search* or re_match* could cause memory leaks when C-g is used in
434 Emacs; also, malloc is slower and causes storage fragmentation. On
435 the other hand, malloc is more portable, and easier to debug.
436
437 Because we sometimes use alloca, some routines have to be macros,
438 not functions -- `alloca'-allocated space disappears at the end of the
439 function it is called in. */
440
441 #ifdef REGEX_MALLOC
442
443 # define REGEX_ALLOCATE malloc
444 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
445 # define REGEX_FREE free
446
447 #else /* not REGEX_MALLOC */
448
449 /* Emacs already defines alloca, sometimes. */
450 # ifndef alloca
451
452 /* Make alloca work the best possible way. */
453 # ifdef __GNUC__
454 # define alloca __builtin_alloca
455 # else /* not __GNUC__ */
456 # if HAVE_ALLOCA_H
457 # include <alloca.h>
458 # endif /* HAVE_ALLOCA_H */
459 # endif /* not __GNUC__ */
460
461 # endif /* not alloca */
462
463 # define REGEX_ALLOCATE alloca
464
465 /* Assumes a `char *destination' variable. */
466 # define REGEX_REALLOCATE(source, osize, nsize) \
467 (destination = (char *) alloca (nsize), \
468 memcpy (destination, source, osize))
469
470 /* No need to do anything to free, after alloca. */
471 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
472
473 #endif /* not REGEX_MALLOC */
474
475 /* Define how to allocate the failure stack. */
476
477 #if defined REL_ALLOC && defined REGEX_MALLOC
478
479 # define REGEX_ALLOCATE_STACK(size) \
480 r_alloc (&failure_stack_ptr, (size))
481 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
482 r_re_alloc (&failure_stack_ptr, (nsize))
483 # define REGEX_FREE_STACK(ptr) \
484 r_alloc_free (&failure_stack_ptr)
485
486 #else /* not using relocating allocator */
487
488 # ifdef REGEX_MALLOC
489
490 # define REGEX_ALLOCATE_STACK malloc
491 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
492 # define REGEX_FREE_STACK free
493
494 # else /* not REGEX_MALLOC */
495
496 # define REGEX_ALLOCATE_STACK alloca
497
498 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
499 REGEX_REALLOCATE (source, osize, nsize)
500 /* No need to explicitly free anything. */
501 # define REGEX_FREE_STACK(arg) ((void)0)
502
503 # endif /* not REGEX_MALLOC */
504 #endif /* not using relocating allocator */
505
506
507 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
508 `string1' or just past its end. This works if PTR is NULL, which is
509 a good thing. */
510 #define FIRST_STRING_P(ptr) \
511 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
512
513 /* (Re)Allocate N items of type T using malloc, or fail. */
514 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
515 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
516 #define RETALLOC_IF(addr, n, t) \
517 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
518 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
519
520 #define BYTEWIDTH 8 /* In bits. */
521
522 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
523
524 #undef MAX
525 #undef MIN
526 #define MAX(a, b) ((a) > (b) ? (a) : (b))
527 #define MIN(a, b) ((a) < (b) ? (a) : (b))
528
529 /* Type of source-pattern and string chars. */
530 typedef const unsigned char re_char;
531
532 typedef char boolean;
533 #define false 0
534 #define true 1
535
536 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
537 re_char *string1, int size1,
538 re_char *string2, int size2,
539 int pos,
540 struct re_registers *regs,
541 int stop));
542 \f
543 /* These are the command codes that appear in compiled regular
544 expressions. Some opcodes are followed by argument bytes. A
545 command code can specify any interpretation whatsoever for its
546 arguments. Zero bytes may appear in the compiled regular expression. */
547
548 typedef enum
549 {
550 no_op = 0,
551
552 /* Succeed right away--no more backtracking. */
553 succeed,
554
555 /* Followed by one byte giving n, then by n literal bytes. */
556 exactn,
557
558 /* Matches any (more or less) character. */
559 anychar,
560
561 /* Matches any one char belonging to specified set. First
562 following byte is number of bitmap bytes. Then come bytes
563 for a bitmap saying which chars are in. Bits in each byte
564 are ordered low-bit-first. A character is in the set if its
565 bit is 1. A character too large to have a bit in the map is
566 automatically not in the set.
567
568 If the length byte has the 0x80 bit set, then that stuff
569 is followed by a range table:
570 2 bytes of flags for character sets (low 8 bits, high 8 bits)
571 See RANGE_TABLE_WORK_BITS below.
572 2 bytes, the number of pairs that follow (upto 32767)
573 pairs, each 2 multibyte characters,
574 each multibyte character represented as 3 bytes. */
575 charset,
576
577 /* Same parameters as charset, but match any character that is
578 not one of those specified. */
579 charset_not,
580
581 /* Start remembering the text that is matched, for storing in a
582 register. Followed by one byte with the register number, in
583 the range 0 to one less than the pattern buffer's re_nsub
584 field. */
585 start_memory,
586
587 /* Stop remembering the text that is matched and store it in a
588 memory register. Followed by one byte with the register
589 number, in the range 0 to one less than `re_nsub' in the
590 pattern buffer. */
591 stop_memory,
592
593 /* Match a duplicate of something remembered. Followed by one
594 byte containing the register number. */
595 duplicate,
596
597 /* Fail unless at beginning of line. */
598 begline,
599
600 /* Fail unless at end of line. */
601 endline,
602
603 /* Succeeds if at beginning of buffer (if emacs) or at beginning
604 of string to be matched (if not). */
605 begbuf,
606
607 /* Analogously, for end of buffer/string. */
608 endbuf,
609
610 /* Followed by two byte relative address to which to jump. */
611 jump,
612
613 /* Followed by two-byte relative address of place to resume at
614 in case of failure. */
615 on_failure_jump,
616
617 /* Like on_failure_jump, but pushes a placeholder instead of the
618 current string position when executed. */
619 on_failure_keep_string_jump,
620
621 /* Just like `on_failure_jump', except that it checks that we
622 don't get stuck in an infinite loop (matching an empty string
623 indefinitely). */
624 on_failure_jump_loop,
625
626 /* Just like `on_failure_jump_loop', except that it checks for
627 a different kind of loop (the kind that shows up with non-greedy
628 operators). This operation has to be immediately preceded
629 by a `no_op'. */
630 on_failure_jump_nastyloop,
631
632 /* A smart `on_failure_jump' used for greedy * and + operators.
633 It analyses the loop before which it is put and if the
634 loop does not require backtracking, it changes itself to
635 `on_failure_keep_string_jump' and short-circuits the loop,
636 else it just defaults to changing itself into `on_failure_jump'.
637 It assumes that it is pointing to just past a `jump'. */
638 on_failure_jump_smart,
639
640 /* Followed by two-byte relative address and two-byte number n.
641 After matching N times, jump to the address upon failure.
642 Does not work if N starts at 0: use on_failure_jump_loop
643 instead. */
644 succeed_n,
645
646 /* Followed by two-byte relative address, and two-byte number n.
647 Jump to the address N times, then fail. */
648 jump_n,
649
650 /* Set the following two-byte relative address to the
651 subsequent two-byte number. The address *includes* the two
652 bytes of number. */
653 set_number_at,
654
655 wordbeg, /* Succeeds if at word beginning. */
656 wordend, /* Succeeds if at word end. */
657
658 wordbound, /* Succeeds if at a word boundary. */
659 notwordbound, /* Succeeds if not at a word boundary. */
660
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
666 notsyntaxspec
667
668 #ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
672
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
682 #endif /* emacs */
683 } re_opcode_t;
684 \f
685 /* Common operations on the compiled pattern. */
686
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689 #define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699 #define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708 #define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714 #ifdef DEBUG
715 static void extract_number _RE_ARGS ((int *dest, re_char *source));
716 static void
717 extract_number (dest, source)
718 int *dest;
719 re_char *source;
720 {
721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
722 *dest = *source & 0377;
723 *dest += temp << 8;
724 }
725
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
730
731 #endif /* DEBUG */
732
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
739 (source) += 2; \
740 } while (0)
741
742 #ifdef DEBUG
743 static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
745 static void
746 extract_number_and_incr (destination, source)
747 int *destination;
748 re_char **source;
749 {
750 extract_number (destination, *source);
751 *source += 2;
752 }
753
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
759
760 #endif /* DEBUG */
761 \f
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
765
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
776
777 #define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785 /* Macros for charset. */
786
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
793
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
804
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
813 and end. */
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854 \f
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
860
861 #ifdef DEBUG
862
863 /* We use standard I/O for debugging. */
864 # include <stdio.h>
865
866 /* It is useful to test things that ``must'' be true when debugging. */
867 # include <assert.h>
868
869 static int debug = -100000;
870
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880
881
882 /* Print the fastmap in human-readable form. */
883
884 void
885 print_fastmap (fastmap)
886 char *fastmap;
887 {
888 unsigned was_a_range = 0;
889 unsigned i = 0;
890
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
902 if (was_a_range)
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
908 }
909 putchar ('\n');
910 }
911
912
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916 void
917 print_partial_compiled_pattern (start, end)
918 re_char *start;
919 re_char *end;
920 {
921 int mcnt, mcnt2;
922 re_char *p = start;
923 re_char *pend = end;
924
925 if (start == NULL)
926 {
927 printf ("(null)\n");
928 return;
929 }
930
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 printf ("%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
938 case no_op:
939 printf ("/no_op");
940 break;
941
942 case succeed:
943 printf ("/succeed");
944 break;
945
946 case exactn:
947 mcnt = *p++;
948 printf ("/exactn/%d", mcnt);
949 do
950 {
951 putchar ('/');
952 putchar (*p++);
953 }
954 while (--mcnt);
955 break;
956
957 case start_memory:
958 printf ("/start_memory/%d", *p++);
959 break;
960
961 case stop_memory:
962 printf ("/stop_memory/%d", *p++);
963 break;
964
965 case duplicate:
966 printf ("/duplicate/%d", *p++);
967 break;
968
969 case anychar:
970 printf ("/anychar");
971 break;
972
973 case charset:
974 case charset_not:
975 {
976 register int c, last = -100;
977 register int in_range = 0;
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
980
981 printf ("/charset [%s",
982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
983
984 assert (p + *p < pend);
985
986 for (c = 0; c < 256; c++)
987 if (c / 8 < length
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 putchar ('-');
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
998 {
999 putchar (last);
1000 in_range = 0;
1001 }
1002
1003 if (! in_range)
1004 putchar (c);
1005
1006 last = c;
1007 }
1008
1009 if (in_range)
1010 putchar (last);
1011
1012 putchar (']');
1013
1014 p += 1 + length;
1015
1016 if (has_range_table)
1017 {
1018 int count;
1019 printf ("has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
1026 }
1027 break;
1028
1029 case begline:
1030 printf ("/begline");
1031 break;
1032
1033 case endline:
1034 printf ("/endline");
1035 break;
1036
1037 case on_failure_jump:
1038 extract_number_and_incr (&mcnt, &p);
1039 printf ("/on_failure_jump to %d", p + mcnt - start);
1040 break;
1041
1042 case on_failure_keep_string_jump:
1043 extract_number_and_incr (&mcnt, &p);
1044 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
1046
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
1052 case on_failure_jump_loop:
1053 extract_number_and_incr (&mcnt, &p);
1054 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
1055 break;
1056
1057 case on_failure_jump_smart:
1058 extract_number_and_incr (&mcnt, &p);
1059 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
1060 break;
1061
1062 case jump:
1063 extract_number_and_incr (&mcnt, &p);
1064 printf ("/jump to %d", p + mcnt - start);
1065 break;
1066
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
1070 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1071 break;
1072
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
1076 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1077 break;
1078
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
1082 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1083 break;
1084
1085 case wordbound:
1086 printf ("/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 printf ("/notwordbound");
1091 break;
1092
1093 case wordbeg:
1094 printf ("/wordbeg");
1095 break;
1096
1097 case wordend:
1098 printf ("/wordend");
1099
1100 case syntaxspec:
1101 printf ("/syntaxspec");
1102 mcnt = *p++;
1103 printf ("/%d", mcnt);
1104 break;
1105
1106 case notsyntaxspec:
1107 printf ("/notsyntaxspec");
1108 mcnt = *p++;
1109 printf ("/%d", mcnt);
1110 break;
1111
1112 # ifdef emacs
1113 case before_dot:
1114 printf ("/before_dot");
1115 break;
1116
1117 case at_dot:
1118 printf ("/at_dot");
1119 break;
1120
1121 case after_dot:
1122 printf ("/after_dot");
1123 break;
1124
1125 case categoryspec:
1126 printf ("/categoryspec");
1127 mcnt = *p++;
1128 printf ("/%d", mcnt);
1129 break;
1130
1131 case notcategoryspec:
1132 printf ("/notcategoryspec");
1133 mcnt = *p++;
1134 printf ("/%d", mcnt);
1135 break;
1136 # endif /* emacs */
1137
1138 case begbuf:
1139 printf ("/begbuf");
1140 break;
1141
1142 case endbuf:
1143 printf ("/endbuf");
1144 break;
1145
1146 default:
1147 printf ("?%d", *(p-1));
1148 }
1149
1150 putchar ('\n');
1151 }
1152
1153 printf ("%d:\tend of pattern.\n", p - start);
1154 }
1155
1156
1157 void
1158 print_compiled_pattern (bufp)
1159 struct re_pattern_buffer *bufp;
1160 {
1161 re_char *buffer = bufp->buffer;
1162
1163 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1164 printf ("%ld bytes used/%ld bytes allocated.\n",
1165 bufp->used, bufp->allocated);
1166
1167 if (bufp->fastmap_accurate && bufp->fastmap)
1168 {
1169 printf ("fastmap: ");
1170 print_fastmap (bufp->fastmap);
1171 }
1172
1173 printf ("re_nsub: %d\t", bufp->re_nsub);
1174 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1175 printf ("can_be_null: %d\t", bufp->can_be_null);
1176 printf ("no_sub: %d\t", bufp->no_sub);
1177 printf ("not_bol: %d\t", bufp->not_bol);
1178 printf ("not_eol: %d\t", bufp->not_eol);
1179 printf ("syntax: %lx\n", bufp->syntax);
1180 fflush (stdout);
1181 /* Perhaps we should print the translate table? */
1182 }
1183
1184
1185 void
1186 print_double_string (where, string1, size1, string2, size2)
1187 re_char *where;
1188 re_char *string1;
1189 re_char *string2;
1190 int size1;
1191 int size2;
1192 {
1193 int this_char;
1194
1195 if (where == NULL)
1196 printf ("(null)");
1197 else
1198 {
1199 if (FIRST_STRING_P (where))
1200 {
1201 for (this_char = where - string1; this_char < size1; this_char++)
1202 putchar (string1[this_char]);
1203
1204 where = string2;
1205 }
1206
1207 for (this_char = where - string2; this_char < size2; this_char++)
1208 putchar (string2[this_char]);
1209 }
1210 }
1211
1212 #else /* not DEBUG */
1213
1214 # undef assert
1215 # define assert(e)
1216
1217 # define DEBUG_STATEMENT(e)
1218 # define DEBUG_PRINT1(x)
1219 # define DEBUG_PRINT2(x1, x2)
1220 # define DEBUG_PRINT3(x1, x2, x3)
1221 # define DEBUG_PRINT4(x1, x2, x3, x4)
1222 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1223 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1224
1225 #endif /* not DEBUG */
1226 \f
1227 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1228 also be assigned to arbitrarily: each pattern buffer stores its own
1229 syntax, so it can be changed between regex compilations. */
1230 /* This has no initializer because initialized variables in Emacs
1231 become read-only after dumping. */
1232 reg_syntax_t re_syntax_options;
1233
1234
1235 /* Specify the precise syntax of regexps for compilation. This provides
1236 for compatibility for various utilities which historically have
1237 different, incompatible syntaxes.
1238
1239 The argument SYNTAX is a bit mask comprised of the various bits
1240 defined in regex.h. We return the old syntax. */
1241
1242 reg_syntax_t
1243 re_set_syntax (syntax)
1244 reg_syntax_t syntax;
1245 {
1246 reg_syntax_t ret = re_syntax_options;
1247
1248 re_syntax_options = syntax;
1249 return ret;
1250 }
1251 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1252 \f
1253 /* This table gives an error message for each of the error codes listed
1254 in regex.h. Obviously the order here has to be same as there.
1255 POSIX doesn't require that we do anything for REG_NOERROR,
1256 but why not be nice? */
1257
1258 static const char *re_error_msgid[] =
1259 {
1260 gettext_noop ("Success"), /* REG_NOERROR */
1261 gettext_noop ("No match"), /* REG_NOMATCH */
1262 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1263 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1264 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1265 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1266 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1267 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1268 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1269 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1270 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1271 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1272 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1273 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1274 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1275 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1276 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1277 };
1278 \f
1279 /* Avoiding alloca during matching, to placate r_alloc. */
1280
1281 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1282 searching and matching functions should not call alloca. On some
1283 systems, alloca is implemented in terms of malloc, and if we're
1284 using the relocating allocator routines, then malloc could cause a
1285 relocation, which might (if the strings being searched are in the
1286 ralloc heap) shift the data out from underneath the regexp
1287 routines.
1288
1289 Here's another reason to avoid allocation: Emacs
1290 processes input from X in a signal handler; processing X input may
1291 call malloc; if input arrives while a matching routine is calling
1292 malloc, then we're scrod. But Emacs can't just block input while
1293 calling matching routines; then we don't notice interrupts when
1294 they come in. So, Emacs blocks input around all regexp calls
1295 except the matching calls, which it leaves unprotected, in the
1296 faith that they will not malloc. */
1297
1298 /* Normally, this is fine. */
1299 #define MATCH_MAY_ALLOCATE
1300
1301 /* When using GNU C, we are not REALLY using the C alloca, no matter
1302 what config.h may say. So don't take precautions for it. */
1303 #ifdef __GNUC__
1304 # undef C_ALLOCA
1305 #endif
1306
1307 /* The match routines may not allocate if (1) they would do it with malloc
1308 and (2) it's not safe for them to use malloc.
1309 Note that if REL_ALLOC is defined, matching would not use malloc for the
1310 failure stack, but we would still use it for the register vectors;
1311 so REL_ALLOC should not affect this. */
1312 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1313 # undef MATCH_MAY_ALLOCATE
1314 #endif
1315
1316 \f
1317 /* Failure stack declarations and macros; both re_compile_fastmap and
1318 re_match_2 use a failure stack. These have to be macros because of
1319 REGEX_ALLOCATE_STACK. */
1320
1321
1322 /* Approximate number of failure points for which to initially allocate space
1323 when matching. If this number is exceeded, we allocate more
1324 space, so it is not a hard limit. */
1325 #ifndef INIT_FAILURE_ALLOC
1326 # define INIT_FAILURE_ALLOC 20
1327 #endif
1328
1329 /* Roughly the maximum number of failure points on the stack. Would be
1330 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1331 This is a variable only so users of regex can assign to it; we never
1332 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1333 before using it, so it should probably be a byte-count instead. */
1334 # if defined MATCH_MAY_ALLOCATE
1335 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1336 whose default stack limit is 2mb. In order for a larger
1337 value to work reliably, you have to try to make it accord
1338 with the process stack limit. */
1339 size_t re_max_failures = 40000;
1340 # else
1341 size_t re_max_failures = 4000;
1342 # endif
1343
1344 union fail_stack_elt
1345 {
1346 re_char *pointer;
1347 /* This should be the biggest `int' that's no bigger than a pointer. */
1348 long integer;
1349 };
1350
1351 typedef union fail_stack_elt fail_stack_elt_t;
1352
1353 typedef struct
1354 {
1355 fail_stack_elt_t *stack;
1356 size_t size;
1357 size_t avail; /* Offset of next open position. */
1358 size_t frame; /* Offset of the cur constructed frame. */
1359 } fail_stack_type;
1360
1361 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1362 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1363
1364
1365 /* Define macros to initialize and free the failure stack.
1366 Do `return -2' if the alloc fails. */
1367
1368 #ifdef MATCH_MAY_ALLOCATE
1369 # define INIT_FAIL_STACK() \
1370 do { \
1371 fail_stack.stack = (fail_stack_elt_t *) \
1372 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1373 * sizeof (fail_stack_elt_t)); \
1374 \
1375 if (fail_stack.stack == NULL) \
1376 return -2; \
1377 \
1378 fail_stack.size = INIT_FAILURE_ALLOC; \
1379 fail_stack.avail = 0; \
1380 fail_stack.frame = 0; \
1381 } while (0)
1382
1383 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1384 #else
1385 # define INIT_FAIL_STACK() \
1386 do { \
1387 fail_stack.avail = 0; \
1388 fail_stack.frame = 0; \
1389 } while (0)
1390
1391 # define RESET_FAIL_STACK() ((void)0)
1392 #endif
1393
1394
1395 /* Double the size of FAIL_STACK, up to a limit
1396 which allows approximately `re_max_failures' items.
1397
1398 Return 1 if succeeds, and 0 if either ran out of memory
1399 allocating space for it or it was already too large.
1400
1401 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1402
1403 /* Factor to increase the failure stack size by
1404 when we increase it.
1405 This used to be 2, but 2 was too wasteful
1406 because the old discarded stacks added up to as much space
1407 were as ultimate, maximum-size stack. */
1408 #define FAIL_STACK_GROWTH_FACTOR 4
1409
1410 #define GROW_FAIL_STACK(fail_stack) \
1411 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1412 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1413 ? 0 \
1414 : ((fail_stack).stack \
1415 = (fail_stack_elt_t *) \
1416 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1417 (fail_stack).size * sizeof (fail_stack_elt_t), \
1418 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1419 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 * FAIL_STACK_GROWTH_FACTOR))), \
1421 \
1422 (fail_stack).stack == NULL \
1423 ? 0 \
1424 : ((fail_stack).size \
1425 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1426 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1427 * FAIL_STACK_GROWTH_FACTOR)) \
1428 / sizeof (fail_stack_elt_t)), \
1429 1)))
1430
1431
1432 /* Push a pointer value onto the failure stack.
1433 Assumes the variable `fail_stack'. Probably should only
1434 be called from within `PUSH_FAILURE_POINT'. */
1435 #define PUSH_FAILURE_POINTER(item) \
1436 fail_stack.stack[fail_stack.avail++].pointer = (item)
1437
1438 /* This pushes an integer-valued item onto the failure stack.
1439 Assumes the variable `fail_stack'. Probably should only
1440 be called from within `PUSH_FAILURE_POINT'. */
1441 #define PUSH_FAILURE_INT(item) \
1442 fail_stack.stack[fail_stack.avail++].integer = (item)
1443
1444 /* Push a fail_stack_elt_t value onto the failure stack.
1445 Assumes the variable `fail_stack'. Probably should only
1446 be called from within `PUSH_FAILURE_POINT'. */
1447 #define PUSH_FAILURE_ELT(item) \
1448 fail_stack.stack[fail_stack.avail++] = (item)
1449
1450 /* These three POP... operations complement the three PUSH... operations.
1451 All assume that `fail_stack' is nonempty. */
1452 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1453 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1454 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1455
1456 /* Individual items aside from the registers. */
1457 #define NUM_NONREG_ITEMS 3
1458
1459 /* Used to examine the stack (to detect infinite loops). */
1460 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1461 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1462 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1463 #define TOP_FAILURE_HANDLE() fail_stack.frame
1464
1465
1466 #define ENSURE_FAIL_STACK(space) \
1467 while (REMAINING_AVAIL_SLOTS <= space) { \
1468 if (!GROW_FAIL_STACK (fail_stack)) \
1469 return -2; \
1470 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1471 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1472 }
1473
1474 /* Push register NUM onto the stack. */
1475 #define PUSH_FAILURE_REG(num) \
1476 do { \
1477 char *destination; \
1478 ENSURE_FAIL_STACK(3); \
1479 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1480 num, regstart[num], regend[num]); \
1481 PUSH_FAILURE_POINTER (regstart[num]); \
1482 PUSH_FAILURE_POINTER (regend[num]); \
1483 PUSH_FAILURE_INT (num); \
1484 } while (0)
1485
1486 /* Change the counter's value to VAL, but make sure that it will
1487 be reset when backtracking. */
1488 #define PUSH_NUMBER(ptr,val) \
1489 do { \
1490 char *destination; \
1491 int c; \
1492 ENSURE_FAIL_STACK(3); \
1493 EXTRACT_NUMBER (c, ptr); \
1494 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1495 PUSH_FAILURE_INT (c); \
1496 PUSH_FAILURE_POINTER (ptr); \
1497 PUSH_FAILURE_INT (-1); \
1498 STORE_NUMBER (ptr, val); \
1499 } while (0)
1500
1501 /* Pop a saved register off the stack. */
1502 #define POP_FAILURE_REG_OR_COUNT() \
1503 do { \
1504 int reg = POP_FAILURE_INT (); \
1505 if (reg == -1) \
1506 { \
1507 /* It's a counter. */ \
1508 /* Here, we discard `const', making re_match non-reentrant. */ \
1509 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1510 reg = POP_FAILURE_INT (); \
1511 STORE_NUMBER (ptr, reg); \
1512 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1513 } \
1514 else \
1515 { \
1516 regend[reg] = POP_FAILURE_POINTER (); \
1517 regstart[reg] = POP_FAILURE_POINTER (); \
1518 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1519 reg, regstart[reg], regend[reg]); \
1520 } \
1521 } while (0)
1522
1523 /* Discard a saved register off the stack. */
1524 #define DISCARD_FAILURE_REG_OR_COUNT() \
1525 do { \
1526 int reg = POP_FAILURE_INT (); \
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
1530 POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 DEBUG_PRINT3 (" Discard counter %p = %d\n", ptr, reg); \
1533 } \
1534 else \
1535 { \
1536 POP_FAILURE_POINTER (); \
1537 POP_FAILURE_POINTER (); \
1538 DEBUG_PRINT4 (" Discard reg %d (spanning %p -> %p)\n", \
1539 reg, regstart[reg], regend[reg]); \
1540 } \
1541 } while (0)
1542
1543 /* Check that we are not stuck in an infinite loop. */
1544 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1545 do { \
1546 int failure = TOP_FAILURE_HANDLE (); \
1547 /* Check for infinite matching loops */ \
1548 while (failure > 0 \
1549 && (FAILURE_STR (failure) == string_place \
1550 || FAILURE_STR (failure) == NULL)) \
1551 { \
1552 assert (FAILURE_PAT (failure) >= bufp->buffer \
1553 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1554 if (FAILURE_PAT (failure) == pat_cur) \
1555 { \
1556 while (fail_stack.frame < fail_stack.avail) \
1557 DISCARD_FAILURE_REG_OR_COUNT (); \
1558 goto fail; \
1559 } \
1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564 } while (0)
1565
1566 /* Push the information about the state we will need
1567 if we ever fail back to it.
1568
1569 Requires variables fail_stack, regstart, regend and
1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1571 declared.
1572
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
1575 #define PUSH_FAILURE_POINT(pattern, string_place) \
1576 do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604 } while (0)
1605
1606 /* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
1609 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1610 #define TYPICAL_FAILURE_SIZE 20
1611
1612 /* How many items can still be added to the stack without overflowing it. */
1613 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616 /* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
1621 REGSTART, REGEND -- arrays of string positions.
1622
1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1624 `pend', `string1', `size1', `string2', and `size2'. */
1625
1626 #define POP_FAILURE_POINT(str, pat) \
1627 do { \
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1634 \
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
1637 POP_FAILURE_REG_OR_COUNT (); \
1638 \
1639 pat = POP_FAILURE_POINTER (); \
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
1646 str = POP_FAILURE_POINTER (); \
1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1653 \
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
1656 \
1657 DEBUG_STATEMENT (nfailure_points_popped++); \
1658 } while (0) /* POP_FAILURE_POINT */
1659
1660
1661 \f
1662 /* Registers are set to a sentinel when they haven't yet matched. */
1663 #define REG_UNSET(e) ((e) == NULL)
1664 \f
1665 /* Subroutine declarations and macros for regex_compile. */
1666
1667 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
1677 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
1679 reg_syntax_t syntax));
1680 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
1682 reg_syntax_t syntax));
1683 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1685 char *fastmap, const int multibyte));
1686
1687 /* Fetch the next character in the uncompiled pattern, with no
1688 translation. */
1689 #define PATFETCH(c) \
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
1695 } while (0)
1696
1697
1698 /* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
1702 #ifndef TRANSLATE
1703 # define TRANSLATE(d) \
1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1705 #endif
1706
1707
1708 /* Macros for outputting the compiled pattern into `buffer'. */
1709
1710 /* If the buffer isn't allocated when it comes in, use this. */
1711 #define INIT_BUF_SIZE 32
1712
1713 /* Make sure we have at least N more bytes of space in buffer. */
1714 #define GET_BUFFER_SPACE(n) \
1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1716 EXTEND_BUFFER ()
1717
1718 /* Make sure we have one more byte of buffer space and then add C to it. */
1719 #define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727 #define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
1735 /* As with BUF_PUSH_2, except for three bytes. */
1736 #define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745 /* Store a jump with opcode OP at LOC to location TO. We store a
1746 relative address offset by the three bytes the jump itself occupies. */
1747 #define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750 /* Likewise, for a two-argument jump. */
1751 #define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
1754 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1755 #define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759 #define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763 /* This is not an arbitrary limit: the arguments which represent offsets
1764 into the pattern are two bytes long. So if 2^16 bytes turns out to
1765 be too small, many things would have to change. */
1766 /* Any other compiler which, like MSC, has allocation limit below 2^16
1767 bytes will have to use approach similar to what was done below for
1768 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1769 reallocating to 0 bytes. Such thing is not going to work too well.
1770 You have been warned!! */
1771 #if defined _MSC_VER && !defined WIN32
1772 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1773 # define MAX_BUF_SIZE 65500L
1774 #else
1775 # define MAX_BUF_SIZE (1L << 16)
1776 #endif
1777
1778 /* Extend the buffer by twice its current size via realloc and
1779 reset the pointers that pointed into the old block to point to the
1780 correct places in the new one. If extending the buffer results in it
1781 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1782 #if __BOUNDED_POINTERS__
1783 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1784 # define MOVE_BUFFER_POINTER(P) \
1785 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1786 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1787 else \
1788 { \
1789 SET_HIGH_BOUND (b); \
1790 SET_HIGH_BOUND (begalt); \
1791 if (fixup_alt_jump) \
1792 SET_HIGH_BOUND (fixup_alt_jump); \
1793 if (laststart) \
1794 SET_HIGH_BOUND (laststart); \
1795 if (pending_exact) \
1796 SET_HIGH_BOUND (pending_exact); \
1797 }
1798 #else
1799 # define MOVE_BUFFER_POINTER(P) (P) += incr
1800 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1801 #endif
1802 #define EXTEND_BUFFER() \
1803 do { \
1804 re_char *old_buffer = bufp->buffer; \
1805 if (bufp->allocated == MAX_BUF_SIZE) \
1806 return REG_ESIZE; \
1807 bufp->allocated <<= 1; \
1808 if (bufp->allocated > MAX_BUF_SIZE) \
1809 bufp->allocated = MAX_BUF_SIZE; \
1810 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1811 if (bufp->buffer == NULL) \
1812 return REG_ESPACE; \
1813 /* If the buffer moved, move all the pointers into it. */ \
1814 if (old_buffer != bufp->buffer) \
1815 { \
1816 int incr = bufp->buffer - old_buffer; \
1817 MOVE_BUFFER_POINTER (b); \
1818 MOVE_BUFFER_POINTER (begalt); \
1819 if (fixup_alt_jump) \
1820 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1821 if (laststart) \
1822 MOVE_BUFFER_POINTER (laststart); \
1823 if (pending_exact) \
1824 MOVE_BUFFER_POINTER (pending_exact); \
1825 } \
1826 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1827 } while (0)
1828
1829
1830 /* Since we have one byte reserved for the register number argument to
1831 {start,stop}_memory, the maximum number of groups we can report
1832 things about is what fits in that byte. */
1833 #define MAX_REGNUM 255
1834
1835 /* But patterns can have more than `MAX_REGNUM' registers. We just
1836 ignore the excess. */
1837 typedef unsigned regnum_t;
1838
1839
1840 /* Macros for the compile stack. */
1841
1842 /* Since offsets can go either forwards or backwards, this type needs to
1843 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1844 /* int may be not enough when sizeof(int) == 2. */
1845 typedef long pattern_offset_t;
1846
1847 typedef struct
1848 {
1849 pattern_offset_t begalt_offset;
1850 pattern_offset_t fixup_alt_jump;
1851 pattern_offset_t laststart_offset;
1852 regnum_t regnum;
1853 } compile_stack_elt_t;
1854
1855
1856 typedef struct
1857 {
1858 compile_stack_elt_t *stack;
1859 unsigned size;
1860 unsigned avail; /* Offset of next open position. */
1861 } compile_stack_type;
1862
1863
1864 #define INIT_COMPILE_STACK_SIZE 32
1865
1866 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1867 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1868
1869 /* The next available element. */
1870 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1871
1872
1873 /* Structure to manage work area for range table. */
1874 struct range_table_work_area
1875 {
1876 int *table; /* actual work area. */
1877 int allocated; /* allocated size for work area in bytes. */
1878 int used; /* actually used size in words. */
1879 int bits; /* flag to record character classes */
1880 };
1881
1882 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1883 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1884 do { \
1885 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1886 { \
1887 (work_area).allocated += 16 * sizeof (int); \
1888 if ((work_area).table) \
1889 (work_area).table \
1890 = (int *) realloc ((work_area).table, (work_area).allocated); \
1891 else \
1892 (work_area).table \
1893 = (int *) malloc ((work_area).allocated); \
1894 if ((work_area).table == 0) \
1895 FREE_STACK_RETURN (REG_ESPACE); \
1896 } \
1897 } while (0)
1898
1899 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1900 (work_area).bits |= (bit)
1901
1902 /* Bits used to implement the multibyte-part of the various character classes
1903 such as [:alnum:] in a charset's range table. */
1904 #define BIT_WORD 0x1
1905 #define BIT_LOWER 0x2
1906 #define BIT_PUNCT 0x4
1907 #define BIT_SPACE 0x8
1908 #define BIT_UPPER 0x10
1909 #define BIT_MULTIBYTE 0x20
1910
1911 /* Set a range START..END to WORK_AREA.
1912 The range is passed through TRANSLATE, so START and END
1913 should be untranslated. */
1914 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1915 do { \
1916 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1917 set_image_of_range (&work_area, start, end, translate); \
1918 } while (0)
1919
1920 /* Free allocated memory for WORK_AREA. */
1921 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1922 do { \
1923 if ((work_area).table) \
1924 free ((work_area).table); \
1925 } while (0)
1926
1927 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1928 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1929 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1930 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1931
1932
1933 /* Set the bit for character C in a list. */
1934 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1935
1936
1937 /* Get the next unsigned number in the uncompiled pattern. */
1938 #define GET_UNSIGNED_NUMBER(num) \
1939 do { if (p != pend) \
1940 { \
1941 PATFETCH (c); \
1942 if (c == ' ') \
1943 FREE_STACK_RETURN (REG_BADBR); \
1944 while ('0' <= c && c <= '9') \
1945 { \
1946 int prev; \
1947 if (num < 0) \
1948 num = 0; \
1949 prev = num; \
1950 num = num * 10 + c - '0'; \
1951 if (num / 10 != prev) \
1952 FREE_STACK_RETURN (REG_BADBR); \
1953 if (p == pend) \
1954 break; \
1955 PATFETCH (c); \
1956 } \
1957 if (c == ' ') \
1958 FREE_STACK_RETURN (REG_BADBR); \
1959 } \
1960 } while (0)
1961
1962 #if WIDE_CHAR_SUPPORT
1963 /* The GNU C library provides support for user-defined character classes
1964 and the functions from ISO C amendement 1. */
1965 # ifdef CHARCLASS_NAME_MAX
1966 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1967 # else
1968 /* This shouldn't happen but some implementation might still have this
1969 problem. Use a reasonable default value. */
1970 # define CHAR_CLASS_MAX_LENGTH 256
1971 # endif
1972 typedef wctype_t re_wctype_t;
1973 typedef wchar_t re_wchar_t;
1974 # define re_wctype wctype
1975 # define re_iswctype iswctype
1976 # define re_wctype_to_bit(cc) 0
1977 #else
1978 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1979 # define btowc(c) c
1980
1981 /* Character classes. */
1982 typedef enum { RECC_ERROR = 0,
1983 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1984 RECC_GRAPH, RECC_PRINT,
1985 RECC_LOWER, RECC_UPPER,
1986 RECC_PUNCT, RECC_CNTRL,
1987 RECC_DIGIT, RECC_XDIGIT,
1988 RECC_BLANK, RECC_SPACE,
1989 RECC_MULTIBYTE, RECC_NONASCII,
1990 RECC_ASCII, RECC_UNIBYTE
1991 } re_wctype_t;
1992
1993 typedef int re_wchar_t;
1994
1995 /* Map a string to the char class it names (if any). */
1996 static re_wctype_t
1997 re_wctype (str)
1998 re_char *str;
1999 {
2000 const char *string = str;
2001 if (STREQ (string, "alnum")) return RECC_ALNUM;
2002 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2003 else if (STREQ (string, "word")) return RECC_WORD;
2004 else if (STREQ (string, "ascii")) return RECC_ASCII;
2005 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2006 else if (STREQ (string, "graph")) return RECC_GRAPH;
2007 else if (STREQ (string, "lower")) return RECC_LOWER;
2008 else if (STREQ (string, "print")) return RECC_PRINT;
2009 else if (STREQ (string, "punct")) return RECC_PUNCT;
2010 else if (STREQ (string, "space")) return RECC_SPACE;
2011 else if (STREQ (string, "upper")) return RECC_UPPER;
2012 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2013 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2014 else if (STREQ (string, "digit")) return RECC_DIGIT;
2015 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2016 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2017 else if (STREQ (string, "blank")) return RECC_BLANK;
2018 else return 0;
2019 }
2020
2021 /* True iff CH is in the char class CC. */
2022 static boolean
2023 re_iswctype (ch, cc)
2024 int ch;
2025 re_wctype_t cc;
2026 {
2027 switch (cc)
2028 {
2029 case RECC_ALNUM: return ISALNUM (ch);
2030 case RECC_ALPHA: return ISALPHA (ch);
2031 case RECC_BLANK: return ISBLANK (ch);
2032 case RECC_CNTRL: return ISCNTRL (ch);
2033 case RECC_DIGIT: return ISDIGIT (ch);
2034 case RECC_GRAPH: return ISGRAPH (ch);
2035 case RECC_LOWER: return ISLOWER (ch);
2036 case RECC_PRINT: return ISPRINT (ch);
2037 case RECC_PUNCT: return ISPUNCT (ch);
2038 case RECC_SPACE: return ISSPACE (ch);
2039 case RECC_UPPER: return ISUPPER (ch);
2040 case RECC_XDIGIT: return ISXDIGIT (ch);
2041 case RECC_ASCII: return IS_REAL_ASCII (ch);
2042 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2043 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2044 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2045 case RECC_WORD: return ISWORD (ch);
2046 case RECC_ERROR: return false;
2047 default:
2048 abort();
2049 }
2050 }
2051
2052 /* Return a bit-pattern to use in the range-table bits to match multibyte
2053 chars of class CC. */
2054 static int
2055 re_wctype_to_bit (cc)
2056 re_wctype_t cc;
2057 {
2058 switch (cc)
2059 {
2060 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2061 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2062 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2063 case RECC_LOWER: return BIT_LOWER;
2064 case RECC_UPPER: return BIT_UPPER;
2065 case RECC_PUNCT: return BIT_PUNCT;
2066 case RECC_SPACE: return BIT_SPACE;
2067 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2068 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2069 default:
2070 abort();
2071 }
2072 }
2073 #endif
2074
2075
2076
2077 /* We need to find the image of the range start..end when passed through
2078 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2079 and is not even necessarily contiguous.
2080 We approximate it with the smallest contiguous range that contains
2081 all the chars we need. */
2082 static void
2083 set_image_of_range (work_area, start, end, translate)
2084 RE_TRANSLATE_TYPE translate;
2085 struct range_table_work_area *work_area;
2086 re_wchar_t start, end;
2087 {
2088 re_wchar_t cmin = TRANSLATE (start), cmax = TRANSLATE (end);
2089 if (RE_TRANSLATE_P (translate))
2090 for (; start <= end; start++)
2091 {
2092 re_wchar_t c = TRANSLATE (start);
2093 cmin = MIN (cmin, c);
2094 cmax = MAX (cmax, c);
2095 }
2096 work_area->table[work_area->used++] = (cmin);
2097 work_area->table[work_area->used++] = (cmax);
2098 }
2099
2100 /* Explicit quit checking is only used on NTemacs. */
2101 #if defined WINDOWSNT && defined emacs && defined QUIT
2102 extern int immediate_quit;
2103 # define IMMEDIATE_QUIT_CHECK \
2104 do { \
2105 if (immediate_quit) QUIT; \
2106 } while (0)
2107 #else
2108 # define IMMEDIATE_QUIT_CHECK ((void)0)
2109 #endif
2110 \f
2111 #ifndef MATCH_MAY_ALLOCATE
2112
2113 /* If we cannot allocate large objects within re_match_2_internal,
2114 we make the fail stack and register vectors global.
2115 The fail stack, we grow to the maximum size when a regexp
2116 is compiled.
2117 The register vectors, we adjust in size each time we
2118 compile a regexp, according to the number of registers it needs. */
2119
2120 static fail_stack_type fail_stack;
2121
2122 /* Size with which the following vectors are currently allocated.
2123 That is so we can make them bigger as needed,
2124 but never make them smaller. */
2125 static int regs_allocated_size;
2126
2127 static re_char ** regstart, ** regend;
2128 static re_char **best_regstart, **best_regend;
2129
2130 /* Make the register vectors big enough for NUM_REGS registers,
2131 but don't make them smaller. */
2132
2133 static
2134 regex_grow_registers (num_regs)
2135 int num_regs;
2136 {
2137 if (num_regs > regs_allocated_size)
2138 {
2139 RETALLOC_IF (regstart, num_regs, re_char *);
2140 RETALLOC_IF (regend, num_regs, re_char *);
2141 RETALLOC_IF (best_regstart, num_regs, re_char *);
2142 RETALLOC_IF (best_regend, num_regs, re_char *);
2143
2144 regs_allocated_size = num_regs;
2145 }
2146 }
2147
2148 #endif /* not MATCH_MAY_ALLOCATE */
2149 \f
2150 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2151 compile_stack,
2152 regnum_t regnum));
2153
2154 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2155 Returns one of error codes defined in `regex.h', or zero for success.
2156
2157 Assumes the `allocated' (and perhaps `buffer') and `translate'
2158 fields are set in BUFP on entry.
2159
2160 If it succeeds, results are put in BUFP (if it returns an error, the
2161 contents of BUFP are undefined):
2162 `buffer' is the compiled pattern;
2163 `syntax' is set to SYNTAX;
2164 `used' is set to the length of the compiled pattern;
2165 `fastmap_accurate' is zero;
2166 `re_nsub' is the number of subexpressions in PATTERN;
2167 `not_bol' and `not_eol' are zero;
2168
2169 The `fastmap' field is neither examined nor set. */
2170
2171 /* Insert the `jump' from the end of last alternative to "here".
2172 The space for the jump has already been allocated. */
2173 #define FIXUP_ALT_JUMP() \
2174 do { \
2175 if (fixup_alt_jump) \
2176 STORE_JUMP (jump, fixup_alt_jump, b); \
2177 } while (0)
2178
2179
2180 /* Return, freeing storage we allocated. */
2181 #define FREE_STACK_RETURN(value) \
2182 do { \
2183 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2184 free (compile_stack.stack); \
2185 return value; \
2186 } while (0)
2187
2188 static reg_errcode_t
2189 regex_compile (pattern, size, syntax, bufp)
2190 re_char *pattern;
2191 size_t size;
2192 reg_syntax_t syntax;
2193 struct re_pattern_buffer *bufp;
2194 {
2195 /* We fetch characters from PATTERN here. */
2196 register re_wchar_t c, c1;
2197
2198 /* A random temporary spot in PATTERN. */
2199 re_char *p1;
2200
2201 /* Points to the end of the buffer, where we should append. */
2202 register unsigned char *b;
2203
2204 /* Keeps track of unclosed groups. */
2205 compile_stack_type compile_stack;
2206
2207 /* Points to the current (ending) position in the pattern. */
2208 #ifdef AIX
2209 /* `const' makes AIX compiler fail. */
2210 unsigned char *p = pattern;
2211 #else
2212 re_char *p = pattern;
2213 #endif
2214 re_char *pend = pattern + size;
2215
2216 /* How to translate the characters in the pattern. */
2217 RE_TRANSLATE_TYPE translate = bufp->translate;
2218
2219 /* Address of the count-byte of the most recently inserted `exactn'
2220 command. This makes it possible to tell if a new exact-match
2221 character can be added to that command or if the character requires
2222 a new `exactn' command. */
2223 unsigned char *pending_exact = 0;
2224
2225 /* Address of start of the most recently finished expression.
2226 This tells, e.g., postfix * where to find the start of its
2227 operand. Reset at the beginning of groups and alternatives. */
2228 unsigned char *laststart = 0;
2229
2230 /* Address of beginning of regexp, or inside of last group. */
2231 unsigned char *begalt;
2232
2233 /* Place in the uncompiled pattern (i.e., the {) to
2234 which to go back if the interval is invalid. */
2235 re_char *beg_interval;
2236
2237 /* Address of the place where a forward jump should go to the end of
2238 the containing expression. Each alternative of an `or' -- except the
2239 last -- ends with a forward jump of this sort. */
2240 unsigned char *fixup_alt_jump = 0;
2241
2242 /* Counts open-groups as they are encountered. Remembered for the
2243 matching close-group on the compile stack, so the same register
2244 number is put in the stop_memory as the start_memory. */
2245 regnum_t regnum = 0;
2246
2247 /* Work area for range table of charset. */
2248 struct range_table_work_area range_table_work;
2249
2250 /* If the object matched can contain multibyte characters. */
2251 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2252
2253 #ifdef DEBUG
2254 debug++;
2255 DEBUG_PRINT1 ("\nCompiling pattern: ");
2256 if (debug > 0)
2257 {
2258 unsigned debug_count;
2259
2260 for (debug_count = 0; debug_count < size; debug_count++)
2261 putchar (pattern[debug_count]);
2262 putchar ('\n');
2263 }
2264 #endif /* DEBUG */
2265
2266 /* Initialize the compile stack. */
2267 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2268 if (compile_stack.stack == NULL)
2269 return REG_ESPACE;
2270
2271 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2272 compile_stack.avail = 0;
2273
2274 range_table_work.table = 0;
2275 range_table_work.allocated = 0;
2276
2277 /* Initialize the pattern buffer. */
2278 bufp->syntax = syntax;
2279 bufp->fastmap_accurate = 0;
2280 bufp->not_bol = bufp->not_eol = 0;
2281
2282 /* Set `used' to zero, so that if we return an error, the pattern
2283 printer (for debugging) will think there's no pattern. We reset it
2284 at the end. */
2285 bufp->used = 0;
2286
2287 /* Always count groups, whether or not bufp->no_sub is set. */
2288 bufp->re_nsub = 0;
2289
2290 #if !defined emacs && !defined SYNTAX_TABLE
2291 /* Initialize the syntax table. */
2292 init_syntax_once ();
2293 #endif
2294
2295 if (bufp->allocated == 0)
2296 {
2297 if (bufp->buffer)
2298 { /* If zero allocated, but buffer is non-null, try to realloc
2299 enough space. This loses if buffer's address is bogus, but
2300 that is the user's responsibility. */
2301 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2302 }
2303 else
2304 { /* Caller did not allocate a buffer. Do it for them. */
2305 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2306 }
2307 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2308
2309 bufp->allocated = INIT_BUF_SIZE;
2310 }
2311
2312 begalt = b = bufp->buffer;
2313
2314 /* Loop through the uncompiled pattern until we're at the end. */
2315 while (p != pend)
2316 {
2317 PATFETCH (c);
2318
2319 switch (c)
2320 {
2321 case '^':
2322 {
2323 if ( /* If at start of pattern, it's an operator. */
2324 p == pattern + 1
2325 /* If context independent, it's an operator. */
2326 || syntax & RE_CONTEXT_INDEP_ANCHORS
2327 /* Otherwise, depends on what's come before. */
2328 || at_begline_loc_p (pattern, p, syntax))
2329 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2330 else
2331 goto normal_char;
2332 }
2333 break;
2334
2335
2336 case '$':
2337 {
2338 if ( /* If at end of pattern, it's an operator. */
2339 p == pend
2340 /* If context independent, it's an operator. */
2341 || syntax & RE_CONTEXT_INDEP_ANCHORS
2342 /* Otherwise, depends on what's next. */
2343 || at_endline_loc_p (p, pend, syntax))
2344 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2345 else
2346 goto normal_char;
2347 }
2348 break;
2349
2350
2351 case '+':
2352 case '?':
2353 if ((syntax & RE_BK_PLUS_QM)
2354 || (syntax & RE_LIMITED_OPS))
2355 goto normal_char;
2356 handle_plus:
2357 case '*':
2358 /* If there is no previous pattern... */
2359 if (!laststart)
2360 {
2361 if (syntax & RE_CONTEXT_INVALID_OPS)
2362 FREE_STACK_RETURN (REG_BADRPT);
2363 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2364 goto normal_char;
2365 }
2366
2367 {
2368 /* 1 means zero (many) matches is allowed. */
2369 boolean zero_times_ok = 0, many_times_ok = 0;
2370 boolean greedy = 1;
2371
2372 /* If there is a sequence of repetition chars, collapse it
2373 down to just one (the right one). We can't combine
2374 interval operators with these because of, e.g., `a{2}*',
2375 which should only match an even number of `a's. */
2376
2377 for (;;)
2378 {
2379 if ((syntax & RE_FRUGAL)
2380 && c == '?' && (zero_times_ok || many_times_ok))
2381 greedy = 0;
2382 else
2383 {
2384 zero_times_ok |= c != '+';
2385 many_times_ok |= c != '?';
2386 }
2387
2388 if (p == pend)
2389 break;
2390 else if (*p == '*'
2391 || (!(syntax & RE_BK_PLUS_QM)
2392 && (*p == '+' || *p == '?')))
2393 ;
2394 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2395 {
2396 if (p+1 == pend)
2397 FREE_STACK_RETURN (REG_EESCAPE);
2398 if (p[1] == '+' || p[1] == '?')
2399 PATFETCH (c); /* Gobble up the backslash. */
2400 else
2401 break;
2402 }
2403 else
2404 break;
2405 /* If we get here, we found another repeat character. */
2406 PATFETCH (c);
2407 }
2408
2409 /* Star, etc. applied to an empty pattern is equivalent
2410 to an empty pattern. */
2411 if (!laststart || laststart == b)
2412 break;
2413
2414 /* Now we know whether or not zero matches is allowed
2415 and also whether or not two or more matches is allowed. */
2416 if (greedy)
2417 {
2418 if (many_times_ok)
2419 {
2420 boolean simple = skip_one_char (laststart) == b;
2421 unsigned int startoffset = 0;
2422 re_opcode_t ofj =
2423 /* Check if the loop can match the empty string. */
2424 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2425 on_failure_jump : on_failure_jump_loop;
2426 assert (skip_one_char (laststart) <= b);
2427
2428 if (!zero_times_ok && simple)
2429 { /* Since simple * loops can be made faster by using
2430 on_failure_keep_string_jump, we turn simple P+
2431 into PP* if P is simple. */
2432 unsigned char *p1, *p2;
2433 startoffset = b - laststart;
2434 GET_BUFFER_SPACE (startoffset);
2435 p1 = b; p2 = laststart;
2436 while (p2 < p1)
2437 *b++ = *p2++;
2438 zero_times_ok = 1;
2439 }
2440
2441 GET_BUFFER_SPACE (6);
2442 if (!zero_times_ok)
2443 /* A + loop. */
2444 STORE_JUMP (ofj, b, b + 6);
2445 else
2446 /* Simple * loops can use on_failure_keep_string_jump
2447 depending on what follows. But since we don't know
2448 that yet, we leave the decision up to
2449 on_failure_jump_smart. */
2450 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2451 laststart + startoffset, b + 6);
2452 b += 3;
2453 STORE_JUMP (jump, b, laststart + startoffset);
2454 b += 3;
2455 }
2456 else
2457 {
2458 /* A simple ? pattern. */
2459 assert (zero_times_ok);
2460 GET_BUFFER_SPACE (3);
2461 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2462 b += 3;
2463 }
2464 }
2465 else /* not greedy */
2466 { /* I wish the greedy and non-greedy cases could be merged. */
2467
2468 GET_BUFFER_SPACE (7); /* We might use less. */
2469 if (many_times_ok)
2470 {
2471 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2472
2473 /* The non-greedy multiple match looks like a repeat..until:
2474 we only need a conditional jump at the end of the loop */
2475 if (emptyp) BUF_PUSH (no_op);
2476 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2477 : on_failure_jump, b, laststart);
2478 b += 3;
2479 if (zero_times_ok)
2480 {
2481 /* The repeat...until naturally matches one or more.
2482 To also match zero times, we need to first jump to
2483 the end of the loop (its conditional jump). */
2484 INSERT_JUMP (jump, laststart, b);
2485 b += 3;
2486 }
2487 }
2488 else
2489 {
2490 /* non-greedy a?? */
2491 INSERT_JUMP (jump, laststart, b + 3);
2492 b += 3;
2493 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2494 b += 3;
2495 }
2496 }
2497 }
2498 pending_exact = 0;
2499 break;
2500
2501
2502 case '.':
2503 laststart = b;
2504 BUF_PUSH (anychar);
2505 break;
2506
2507
2508 case '[':
2509 {
2510 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2511
2512 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2513
2514 /* Ensure that we have enough space to push a charset: the
2515 opcode, the length count, and the bitset; 34 bytes in all. */
2516 GET_BUFFER_SPACE (34);
2517
2518 laststart = b;
2519
2520 /* We test `*p == '^' twice, instead of using an if
2521 statement, so we only need one BUF_PUSH. */
2522 BUF_PUSH (*p == '^' ? charset_not : charset);
2523 if (*p == '^')
2524 p++;
2525
2526 /* Remember the first position in the bracket expression. */
2527 p1 = p;
2528
2529 /* Push the number of bytes in the bitmap. */
2530 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2531
2532 /* Clear the whole map. */
2533 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2534
2535 /* charset_not matches newline according to a syntax bit. */
2536 if ((re_opcode_t) b[-2] == charset_not
2537 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2538 SET_LIST_BIT ('\n');
2539
2540 /* Read in characters and ranges, setting map bits. */
2541 for (;;)
2542 {
2543 boolean escaped_char = false;
2544 const unsigned char *p2 = p;
2545
2546 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2547
2548 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2549 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2550 So the translation is done later in a loop. Example:
2551 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2552 PATFETCH (c);
2553
2554 /* \ might escape characters inside [...] and [^...]. */
2555 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2556 {
2557 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2558
2559 PATFETCH (c);
2560 escaped_char = true;
2561 }
2562 else
2563 {
2564 /* Could be the end of the bracket expression. If it's
2565 not (i.e., when the bracket expression is `[]' so
2566 far), the ']' character bit gets set way below. */
2567 if (c == ']' && p2 != p1)
2568 break;
2569 }
2570
2571 /* What should we do for the character which is
2572 greater than 0x7F, but not BASE_LEADING_CODE_P?
2573 XXX */
2574
2575 /* See if we're at the beginning of a possible character
2576 class. */
2577
2578 if (!escaped_char &&
2579 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2580 {
2581 /* Leave room for the null. */
2582 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2583 const unsigned char *class_beg;
2584
2585 PATFETCH (c);
2586 c1 = 0;
2587 class_beg = p;
2588
2589 /* If pattern is `[[:'. */
2590 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2591
2592 for (;;)
2593 {
2594 PATFETCH (c);
2595 if ((c == ':' && *p == ']') || p == pend)
2596 break;
2597 if (c1 < CHAR_CLASS_MAX_LENGTH)
2598 str[c1++] = c;
2599 else
2600 /* This is in any case an invalid class name. */
2601 str[0] = '\0';
2602 }
2603 str[c1] = '\0';
2604
2605 /* If isn't a word bracketed by `[:' and `:]':
2606 undo the ending character, the letters, and
2607 leave the leading `:' and `[' (but set bits for
2608 them). */
2609 if (c == ':' && *p == ']')
2610 {
2611 re_wchar_t ch;
2612 re_wctype_t cc;
2613
2614 cc = re_wctype (str);
2615
2616 if (cc == 0)
2617 FREE_STACK_RETURN (REG_ECTYPE);
2618
2619 /* Throw away the ] at the end of the character
2620 class. */
2621 PATFETCH (c);
2622
2623 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2624
2625 /* Most character classes in a multibyte match
2626 just set a flag. Exceptions are is_blank,
2627 is_digit, is_cntrl, and is_xdigit, since
2628 they can only match ASCII characters. We
2629 don't need to handle them for multibyte.
2630 They are distinguished by a negative wctype. */
2631
2632 if (multibyte)
2633 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2634 re_wctype_to_bit (cc));
2635
2636 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2637 {
2638 int translated = TRANSLATE (ch);
2639 if (re_iswctype (btowc (ch), cc))
2640 SET_LIST_BIT (translated);
2641 }
2642
2643 /* Repeat the loop. */
2644 continue;
2645 }
2646 else
2647 {
2648 /* Go back to right after the "[:". */
2649 p = class_beg;
2650 SET_LIST_BIT ('[');
2651
2652 /* Because the `:' may starts the range, we
2653 can't simply set bit and repeat the loop.
2654 Instead, just set it to C and handle below. */
2655 c = ':';
2656 }
2657 }
2658
2659 if (p < pend && p[0] == '-' && p[1] != ']')
2660 {
2661
2662 /* Discard the `-'. */
2663 PATFETCH (c1);
2664
2665 /* Fetch the character which ends the range. */
2666 PATFETCH (c1);
2667
2668 if (SINGLE_BYTE_CHAR_P (c))
2669 {
2670 if (! SINGLE_BYTE_CHAR_P (c1))
2671 {
2672 /* Handle a range starting with a
2673 character of less than 256, and ending
2674 with a character of not less than 256.
2675 Split that into two ranges, the low one
2676 ending at 0377, and the high one
2677 starting at the smallest character in
2678 the charset of C1 and ending at C1. */
2679 int charset = CHAR_CHARSET (c1);
2680 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2681
2682 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2683 c2, c1);
2684 c1 = 0377;
2685 }
2686 }
2687 else if (!SAME_CHARSET_P (c, c1))
2688 FREE_STACK_RETURN (REG_ERANGE);
2689 }
2690 else
2691 /* Range from C to C. */
2692 c1 = c;
2693
2694 /* Set the range ... */
2695 if (SINGLE_BYTE_CHAR_P (c))
2696 /* ... into bitmap. */
2697 {
2698 re_wchar_t this_char;
2699 re_wchar_t range_start = c, range_end = c1;
2700
2701 /* If the start is after the end, the range is empty. */
2702 if (range_start > range_end)
2703 {
2704 if (syntax & RE_NO_EMPTY_RANGES)
2705 FREE_STACK_RETURN (REG_ERANGE);
2706 /* Else, repeat the loop. */
2707 }
2708 else
2709 {
2710 for (this_char = range_start; this_char <= range_end;
2711 this_char++)
2712 SET_LIST_BIT (TRANSLATE (this_char));
2713 }
2714 }
2715 else
2716 /* ... into range table. */
2717 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2718 }
2719
2720 /* Discard any (non)matching list bytes that are all 0 at the
2721 end of the map. Decrease the map-length byte too. */
2722 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2723 b[-1]--;
2724 b += b[-1];
2725
2726 /* Build real range table from work area. */
2727 if (RANGE_TABLE_WORK_USED (range_table_work)
2728 || RANGE_TABLE_WORK_BITS (range_table_work))
2729 {
2730 int i;
2731 int used = RANGE_TABLE_WORK_USED (range_table_work);
2732
2733 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2734 bytes for flags, two for COUNT, and three bytes for
2735 each character. */
2736 GET_BUFFER_SPACE (4 + used * 3);
2737
2738 /* Indicate the existence of range table. */
2739 laststart[1] |= 0x80;
2740
2741 /* Store the character class flag bits into the range table.
2742 If not in emacs, these flag bits are always 0. */
2743 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2744 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2745
2746 STORE_NUMBER_AND_INCR (b, used / 2);
2747 for (i = 0; i < used; i++)
2748 STORE_CHARACTER_AND_INCR
2749 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2750 }
2751 }
2752 break;
2753
2754
2755 case '(':
2756 if (syntax & RE_NO_BK_PARENS)
2757 goto handle_open;
2758 else
2759 goto normal_char;
2760
2761
2762 case ')':
2763 if (syntax & RE_NO_BK_PARENS)
2764 goto handle_close;
2765 else
2766 goto normal_char;
2767
2768
2769 case '\n':
2770 if (syntax & RE_NEWLINE_ALT)
2771 goto handle_alt;
2772 else
2773 goto normal_char;
2774
2775
2776 case '|':
2777 if (syntax & RE_NO_BK_VBAR)
2778 goto handle_alt;
2779 else
2780 goto normal_char;
2781
2782
2783 case '{':
2784 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2785 goto handle_interval;
2786 else
2787 goto normal_char;
2788
2789
2790 case '\\':
2791 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2792
2793 /* Do not translate the character after the \, so that we can
2794 distinguish, e.g., \B from \b, even if we normally would
2795 translate, e.g., B to b. */
2796 PATFETCH (c);
2797
2798 switch (c)
2799 {
2800 case '(':
2801 if (syntax & RE_NO_BK_PARENS)
2802 goto normal_backslash;
2803
2804 handle_open:
2805 {
2806 int shy = 0;
2807 if (p+1 < pend)
2808 {
2809 /* Look for a special (?...) construct */
2810 if ((syntax & RE_SHY_GROUPS) && *p == '?')
2811 {
2812 PATFETCH (c); /* Gobble up the '?'. */
2813 PATFETCH (c);
2814 switch (c)
2815 {
2816 case ':': shy = 1; break;
2817 default:
2818 /* Only (?:...) is supported right now. */
2819 FREE_STACK_RETURN (REG_BADPAT);
2820 }
2821 }
2822 }
2823
2824 if (!shy)
2825 {
2826 bufp->re_nsub++;
2827 regnum++;
2828 }
2829
2830 if (COMPILE_STACK_FULL)
2831 {
2832 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2833 compile_stack_elt_t);
2834 if (compile_stack.stack == NULL) return REG_ESPACE;
2835
2836 compile_stack.size <<= 1;
2837 }
2838
2839 /* These are the values to restore when we hit end of this
2840 group. They are all relative offsets, so that if the
2841 whole pattern moves because of realloc, they will still
2842 be valid. */
2843 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2844 COMPILE_STACK_TOP.fixup_alt_jump
2845 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2846 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2847 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2848
2849 /* Do not push a
2850 start_memory for groups beyond the last one we can
2851 represent in the compiled pattern. */
2852 if (regnum <= MAX_REGNUM && !shy)
2853 BUF_PUSH_2 (start_memory, regnum);
2854
2855 compile_stack.avail++;
2856
2857 fixup_alt_jump = 0;
2858 laststart = 0;
2859 begalt = b;
2860 /* If we've reached MAX_REGNUM groups, then this open
2861 won't actually generate any code, so we'll have to
2862 clear pending_exact explicitly. */
2863 pending_exact = 0;
2864 break;
2865 }
2866
2867 case ')':
2868 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2869
2870 if (COMPILE_STACK_EMPTY)
2871 {
2872 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2873 goto normal_backslash;
2874 else
2875 FREE_STACK_RETURN (REG_ERPAREN);
2876 }
2877
2878 handle_close:
2879 FIXUP_ALT_JUMP ();
2880
2881 /* See similar code for backslashed left paren above. */
2882 if (COMPILE_STACK_EMPTY)
2883 {
2884 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2885 goto normal_char;
2886 else
2887 FREE_STACK_RETURN (REG_ERPAREN);
2888 }
2889
2890 /* Since we just checked for an empty stack above, this
2891 ``can't happen''. */
2892 assert (compile_stack.avail != 0);
2893 {
2894 /* We don't just want to restore into `regnum', because
2895 later groups should continue to be numbered higher,
2896 as in `(ab)c(de)' -- the second group is #2. */
2897 regnum_t this_group_regnum;
2898
2899 compile_stack.avail--;
2900 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2901 fixup_alt_jump
2902 = COMPILE_STACK_TOP.fixup_alt_jump
2903 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2904 : 0;
2905 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2906 this_group_regnum = COMPILE_STACK_TOP.regnum;
2907 /* If we've reached MAX_REGNUM groups, then this open
2908 won't actually generate any code, so we'll have to
2909 clear pending_exact explicitly. */
2910 pending_exact = 0;
2911
2912 /* We're at the end of the group, so now we know how many
2913 groups were inside this one. */
2914 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2915 BUF_PUSH_2 (stop_memory, this_group_regnum);
2916 }
2917 break;
2918
2919
2920 case '|': /* `\|'. */
2921 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2922 goto normal_backslash;
2923 handle_alt:
2924 if (syntax & RE_LIMITED_OPS)
2925 goto normal_char;
2926
2927 /* Insert before the previous alternative a jump which
2928 jumps to this alternative if the former fails. */
2929 GET_BUFFER_SPACE (3);
2930 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2931 pending_exact = 0;
2932 b += 3;
2933
2934 /* The alternative before this one has a jump after it
2935 which gets executed if it gets matched. Adjust that
2936 jump so it will jump to this alternative's analogous
2937 jump (put in below, which in turn will jump to the next
2938 (if any) alternative's such jump, etc.). The last such
2939 jump jumps to the correct final destination. A picture:
2940 _____ _____
2941 | | | |
2942 | v | v
2943 a | b | c
2944
2945 If we are at `b', then fixup_alt_jump right now points to a
2946 three-byte space after `a'. We'll put in the jump, set
2947 fixup_alt_jump to right after `b', and leave behind three
2948 bytes which we'll fill in when we get to after `c'. */
2949
2950 FIXUP_ALT_JUMP ();
2951
2952 /* Mark and leave space for a jump after this alternative,
2953 to be filled in later either by next alternative or
2954 when know we're at the end of a series of alternatives. */
2955 fixup_alt_jump = b;
2956 GET_BUFFER_SPACE (3);
2957 b += 3;
2958
2959 laststart = 0;
2960 begalt = b;
2961 break;
2962
2963
2964 case '{':
2965 /* If \{ is a literal. */
2966 if (!(syntax & RE_INTERVALS)
2967 /* If we're at `\{' and it's not the open-interval
2968 operator. */
2969 || (syntax & RE_NO_BK_BRACES))
2970 goto normal_backslash;
2971
2972 handle_interval:
2973 {
2974 /* If got here, then the syntax allows intervals. */
2975
2976 /* At least (most) this many matches must be made. */
2977 int lower_bound = 0, upper_bound = -1;
2978
2979 beg_interval = p;
2980
2981 if (p == pend)
2982 FREE_STACK_RETURN (REG_EBRACE);
2983
2984 GET_UNSIGNED_NUMBER (lower_bound);
2985
2986 if (c == ',')
2987 GET_UNSIGNED_NUMBER (upper_bound);
2988 else
2989 /* Interval such as `{1}' => match exactly once. */
2990 upper_bound = lower_bound;
2991
2992 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2993 || (upper_bound >= 0 && lower_bound > upper_bound))
2994 FREE_STACK_RETURN (REG_BADBR);
2995
2996 if (!(syntax & RE_NO_BK_BRACES))
2997 {
2998 if (c != '\\')
2999 FREE_STACK_RETURN (REG_BADBR);
3000
3001 PATFETCH (c);
3002 }
3003
3004 if (c != '}')
3005 FREE_STACK_RETURN (REG_BADBR);
3006
3007 /* We just parsed a valid interval. */
3008
3009 /* If it's invalid to have no preceding re. */
3010 if (!laststart)
3011 {
3012 if (syntax & RE_CONTEXT_INVALID_OPS)
3013 FREE_STACK_RETURN (REG_BADRPT);
3014 else if (syntax & RE_CONTEXT_INDEP_OPS)
3015 laststart = b;
3016 else
3017 goto unfetch_interval;
3018 }
3019
3020 if (upper_bound == 0)
3021 /* If the upper bound is zero, just drop the sub pattern
3022 altogether. */
3023 b = laststart;
3024 else if (lower_bound == 1 && upper_bound == 1)
3025 /* Just match it once: nothing to do here. */
3026 ;
3027
3028 /* Otherwise, we have a nontrivial interval. When
3029 we're all done, the pattern will look like:
3030 set_number_at <jump count> <upper bound>
3031 set_number_at <succeed_n count> <lower bound>
3032 succeed_n <after jump addr> <succeed_n count>
3033 <body of loop>
3034 jump_n <succeed_n addr> <jump count>
3035 (The upper bound and `jump_n' are omitted if
3036 `upper_bound' is 1, though.) */
3037 else
3038 { /* If the upper bound is > 1, we need to insert
3039 more at the end of the loop. */
3040 unsigned int nbytes = (upper_bound < 0 ? 3
3041 : upper_bound > 1 ? 5 : 0);
3042 unsigned int startoffset = 0;
3043
3044 GET_BUFFER_SPACE (20); /* We might use less. */
3045
3046 if (lower_bound == 0)
3047 {
3048 /* A succeed_n that starts with 0 is really a
3049 a simple on_failure_jump_loop. */
3050 INSERT_JUMP (on_failure_jump_loop, laststart,
3051 b + 3 + nbytes);
3052 b += 3;
3053 }
3054 else
3055 {
3056 /* Initialize lower bound of the `succeed_n', even
3057 though it will be set during matching by its
3058 attendant `set_number_at' (inserted next),
3059 because `re_compile_fastmap' needs to know.
3060 Jump to the `jump_n' we might insert below. */
3061 INSERT_JUMP2 (succeed_n, laststart,
3062 b + 5 + nbytes,
3063 lower_bound);
3064 b += 5;
3065
3066 /* Code to initialize the lower bound. Insert
3067 before the `succeed_n'. The `5' is the last two
3068 bytes of this `set_number_at', plus 3 bytes of
3069 the following `succeed_n'. */
3070 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3071 b += 5;
3072 startoffset += 5;
3073 }
3074
3075 if (upper_bound < 0)
3076 {
3077 /* A negative upper bound stands for infinity,
3078 in which case it degenerates to a plain jump. */
3079 STORE_JUMP (jump, b, laststart + startoffset);
3080 b += 3;
3081 }
3082 else if (upper_bound > 1)
3083 { /* More than one repetition is allowed, so
3084 append a backward jump to the `succeed_n'
3085 that starts this interval.
3086
3087 When we've reached this during matching,
3088 we'll have matched the interval once, so
3089 jump back only `upper_bound - 1' times. */
3090 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3091 upper_bound - 1);
3092 b += 5;
3093
3094 /* The location we want to set is the second
3095 parameter of the `jump_n'; that is `b-2' as
3096 an absolute address. `laststart' will be
3097 the `set_number_at' we're about to insert;
3098 `laststart+3' the number to set, the source
3099 for the relative address. But we are
3100 inserting into the middle of the pattern --
3101 so everything is getting moved up by 5.
3102 Conclusion: (b - 2) - (laststart + 3) + 5,
3103 i.e., b - laststart.
3104
3105 We insert this at the beginning of the loop
3106 so that if we fail during matching, we'll
3107 reinitialize the bounds. */
3108 insert_op2 (set_number_at, laststart, b - laststart,
3109 upper_bound - 1, b);
3110 b += 5;
3111 }
3112 }
3113 pending_exact = 0;
3114 beg_interval = NULL;
3115 }
3116 break;
3117
3118 unfetch_interval:
3119 /* If an invalid interval, match the characters as literals. */
3120 assert (beg_interval);
3121 p = beg_interval;
3122 beg_interval = NULL;
3123
3124 /* normal_char and normal_backslash need `c'. */
3125 c = '{';
3126
3127 if (!(syntax & RE_NO_BK_BRACES))
3128 {
3129 assert (p > pattern && p[-1] == '\\');
3130 goto normal_backslash;
3131 }
3132 else
3133 goto normal_char;
3134
3135 #ifdef emacs
3136 /* There is no way to specify the before_dot and after_dot
3137 operators. rms says this is ok. --karl */
3138 case '=':
3139 BUF_PUSH (at_dot);
3140 break;
3141
3142 case 's':
3143 laststart = b;
3144 PATFETCH (c);
3145 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3146 break;
3147
3148 case 'S':
3149 laststart = b;
3150 PATFETCH (c);
3151 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3152 break;
3153
3154 case 'c':
3155 laststart = b;
3156 PATFETCH (c);
3157 BUF_PUSH_2 (categoryspec, c);
3158 break;
3159
3160 case 'C':
3161 laststart = b;
3162 PATFETCH (c);
3163 BUF_PUSH_2 (notcategoryspec, c);
3164 break;
3165 #endif /* emacs */
3166
3167
3168 case 'w':
3169 if (syntax & RE_NO_GNU_OPS)
3170 goto normal_char;
3171 laststart = b;
3172 BUF_PUSH_2 (syntaxspec, Sword);
3173 break;
3174
3175
3176 case 'W':
3177 if (syntax & RE_NO_GNU_OPS)
3178 goto normal_char;
3179 laststart = b;
3180 BUF_PUSH_2 (notsyntaxspec, Sword);
3181 break;
3182
3183
3184 case '<':
3185 if (syntax & RE_NO_GNU_OPS)
3186 goto normal_char;
3187 BUF_PUSH (wordbeg);
3188 break;
3189
3190 case '>':
3191 if (syntax & RE_NO_GNU_OPS)
3192 goto normal_char;
3193 BUF_PUSH (wordend);
3194 break;
3195
3196 case 'b':
3197 if (syntax & RE_NO_GNU_OPS)
3198 goto normal_char;
3199 BUF_PUSH (wordbound);
3200 break;
3201
3202 case 'B':
3203 if (syntax & RE_NO_GNU_OPS)
3204 goto normal_char;
3205 BUF_PUSH (notwordbound);
3206 break;
3207
3208 case '`':
3209 if (syntax & RE_NO_GNU_OPS)
3210 goto normal_char;
3211 BUF_PUSH (begbuf);
3212 break;
3213
3214 case '\'':
3215 if (syntax & RE_NO_GNU_OPS)
3216 goto normal_char;
3217 BUF_PUSH (endbuf);
3218 break;
3219
3220 case '1': case '2': case '3': case '4': case '5':
3221 case '6': case '7': case '8': case '9':
3222 {
3223 regnum_t reg;
3224
3225 if (syntax & RE_NO_BK_REFS)
3226 goto normal_backslash;
3227
3228 reg = c - '0';
3229
3230 /* Can't back reference to a subexpression before its end. */
3231 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3232 FREE_STACK_RETURN (REG_ESUBREG);
3233
3234 laststart = b;
3235 BUF_PUSH_2 (duplicate, reg);
3236 }
3237 break;
3238
3239
3240 case '+':
3241 case '?':
3242 if (syntax & RE_BK_PLUS_QM)
3243 goto handle_plus;
3244 else
3245 goto normal_backslash;
3246
3247 default:
3248 normal_backslash:
3249 /* You might think it would be useful for \ to mean
3250 not to translate; but if we don't translate it
3251 it will never match anything. */
3252 goto normal_char;
3253 }
3254 break;
3255
3256
3257 default:
3258 /* Expects the character in `c'. */
3259 normal_char:
3260 /* If no exactn currently being built. */
3261 if (!pending_exact
3262
3263 /* If last exactn not at current position. */
3264 || pending_exact + *pending_exact + 1 != b
3265
3266 /* We have only one byte following the exactn for the count. */
3267 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3268
3269 /* If followed by a repetition operator. */
3270 || (p != pend && (*p == '*' || *p == '^'))
3271 || ((syntax & RE_BK_PLUS_QM)
3272 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3273 : p != pend && (*p == '+' || *p == '?'))
3274 || ((syntax & RE_INTERVALS)
3275 && ((syntax & RE_NO_BK_BRACES)
3276 ? p != pend && *p == '{'
3277 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3278 {
3279 /* Start building a new exactn. */
3280
3281 laststart = b;
3282
3283 BUF_PUSH_2 (exactn, 0);
3284 pending_exact = b - 1;
3285 }
3286
3287 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3288 {
3289 int len;
3290
3291 c = TRANSLATE (c);
3292 if (multibyte)
3293 len = CHAR_STRING (c, b);
3294 else
3295 *b = c, len = 1;
3296 b += len;
3297 (*pending_exact) += len;
3298 }
3299
3300 break;
3301 } /* switch (c) */
3302 } /* while p != pend */
3303
3304
3305 /* Through the pattern now. */
3306
3307 FIXUP_ALT_JUMP ();
3308
3309 if (!COMPILE_STACK_EMPTY)
3310 FREE_STACK_RETURN (REG_EPAREN);
3311
3312 /* If we don't want backtracking, force success
3313 the first time we reach the end of the compiled pattern. */
3314 if (syntax & RE_NO_POSIX_BACKTRACKING)
3315 BUF_PUSH (succeed);
3316
3317 free (compile_stack.stack);
3318
3319 /* We have succeeded; set the length of the buffer. */
3320 bufp->used = b - bufp->buffer;
3321
3322 #ifdef DEBUG
3323 if (debug > 0)
3324 {
3325 re_compile_fastmap (bufp);
3326 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3327 print_compiled_pattern (bufp);
3328 }
3329 debug--;
3330 #endif /* DEBUG */
3331
3332 #ifndef MATCH_MAY_ALLOCATE
3333 /* Initialize the failure stack to the largest possible stack. This
3334 isn't necessary unless we're trying to avoid calling alloca in
3335 the search and match routines. */
3336 {
3337 int num_regs = bufp->re_nsub + 1;
3338
3339 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3340 {
3341 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3342
3343 if (! fail_stack.stack)
3344 fail_stack.stack
3345 = (fail_stack_elt_t *) malloc (fail_stack.size
3346 * sizeof (fail_stack_elt_t));
3347 else
3348 fail_stack.stack
3349 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3350 (fail_stack.size
3351 * sizeof (fail_stack_elt_t)));
3352 }
3353
3354 regex_grow_registers (num_regs);
3355 }
3356 #endif /* not MATCH_MAY_ALLOCATE */
3357
3358 return REG_NOERROR;
3359 } /* regex_compile */
3360 \f
3361 /* Subroutines for `regex_compile'. */
3362
3363 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3364
3365 static void
3366 store_op1 (op, loc, arg)
3367 re_opcode_t op;
3368 unsigned char *loc;
3369 int arg;
3370 {
3371 *loc = (unsigned char) op;
3372 STORE_NUMBER (loc + 1, arg);
3373 }
3374
3375
3376 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3377
3378 static void
3379 store_op2 (op, loc, arg1, arg2)
3380 re_opcode_t op;
3381 unsigned char *loc;
3382 int arg1, arg2;
3383 {
3384 *loc = (unsigned char) op;
3385 STORE_NUMBER (loc + 1, arg1);
3386 STORE_NUMBER (loc + 3, arg2);
3387 }
3388
3389
3390 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3391 for OP followed by two-byte integer parameter ARG. */
3392
3393 static void
3394 insert_op1 (op, loc, arg, end)
3395 re_opcode_t op;
3396 unsigned char *loc;
3397 int arg;
3398 unsigned char *end;
3399 {
3400 register unsigned char *pfrom = end;
3401 register unsigned char *pto = end + 3;
3402
3403 while (pfrom != loc)
3404 *--pto = *--pfrom;
3405
3406 store_op1 (op, loc, arg);
3407 }
3408
3409
3410 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3411
3412 static void
3413 insert_op2 (op, loc, arg1, arg2, end)
3414 re_opcode_t op;
3415 unsigned char *loc;
3416 int arg1, arg2;
3417 unsigned char *end;
3418 {
3419 register unsigned char *pfrom = end;
3420 register unsigned char *pto = end + 5;
3421
3422 while (pfrom != loc)
3423 *--pto = *--pfrom;
3424
3425 store_op2 (op, loc, arg1, arg2);
3426 }
3427
3428
3429 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3430 after an alternative or a begin-subexpression. We assume there is at
3431 least one character before the ^. */
3432
3433 static boolean
3434 at_begline_loc_p (pattern, p, syntax)
3435 re_char *pattern, *p;
3436 reg_syntax_t syntax;
3437 {
3438 re_char *prev = p - 2;
3439 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3440
3441 return
3442 /* After a subexpression? */
3443 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3444 /* After an alternative? */
3445 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3446 /* After a shy subexpression? */
3447 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3448 && prev[-1] == '?' && prev[-2] == '('
3449 && (syntax & RE_NO_BK_PARENS
3450 || (prev - 3 >= pattern && prev[-3] == '\\')));
3451 }
3452
3453
3454 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3455 at least one character after the $, i.e., `P < PEND'. */
3456
3457 static boolean
3458 at_endline_loc_p (p, pend, syntax)
3459 re_char *p, *pend;
3460 reg_syntax_t syntax;
3461 {
3462 re_char *next = p;
3463 boolean next_backslash = *next == '\\';
3464 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3465
3466 return
3467 /* Before a subexpression? */
3468 (syntax & RE_NO_BK_PARENS ? *next == ')'
3469 : next_backslash && next_next && *next_next == ')')
3470 /* Before an alternative? */
3471 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3472 : next_backslash && next_next && *next_next == '|');
3473 }
3474
3475
3476 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3477 false if it's not. */
3478
3479 static boolean
3480 group_in_compile_stack (compile_stack, regnum)
3481 compile_stack_type compile_stack;
3482 regnum_t regnum;
3483 {
3484 int this_element;
3485
3486 for (this_element = compile_stack.avail - 1;
3487 this_element >= 0;
3488 this_element--)
3489 if (compile_stack.stack[this_element].regnum == regnum)
3490 return true;
3491
3492 return false;
3493 }
3494 \f
3495 /* analyse_first.
3496 If fastmap is non-NULL, go through the pattern and fill fastmap
3497 with all the possible leading chars. If fastmap is NULL, don't
3498 bother filling it up (obviously) and only return whether the
3499 pattern could potentially match the empty string.
3500
3501 Return 1 if p..pend might match the empty string.
3502 Return 0 if p..pend matches at least one char.
3503 Return -1 if fastmap was not updated accurately. */
3504
3505 static int
3506 analyse_first (p, pend, fastmap, multibyte)
3507 re_char *p, *pend;
3508 char *fastmap;
3509 const int multibyte;
3510 {
3511 int j, k;
3512 boolean not;
3513
3514 /* If all elements for base leading-codes in fastmap is set, this
3515 flag is set true. */
3516 boolean match_any_multibyte_characters = false;
3517
3518 assert (p);
3519
3520 /* The loop below works as follows:
3521 - It has a working-list kept in the PATTERN_STACK and which basically
3522 starts by only containing a pointer to the first operation.
3523 - If the opcode we're looking at is a match against some set of
3524 chars, then we add those chars to the fastmap and go on to the
3525 next work element from the worklist (done via `break').
3526 - If the opcode is a control operator on the other hand, we either
3527 ignore it (if it's meaningless at this point, such as `start_memory')
3528 or execute it (if it's a jump). If the jump has several destinations
3529 (i.e. `on_failure_jump'), then we push the other destination onto the
3530 worklist.
3531 We guarantee termination by ignoring backward jumps (more or less),
3532 so that `p' is monotonically increasing. More to the point, we
3533 never set `p' (or push) anything `<= p1'. */
3534
3535 while (p < pend)
3536 {
3537 /* `p1' is used as a marker of how far back a `on_failure_jump'
3538 can go without being ignored. It is normally equal to `p'
3539 (which prevents any backward `on_failure_jump') except right
3540 after a plain `jump', to allow patterns such as:
3541 0: jump 10
3542 3..9: <body>
3543 10: on_failure_jump 3
3544 as used for the *? operator. */
3545 re_char *p1 = p;
3546
3547 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3548 {
3549 case succeed:
3550 return 1;
3551 continue;
3552
3553 case duplicate:
3554 /* If the first character has to match a backreference, that means
3555 that the group was empty (since it already matched). Since this
3556 is the only case that interests us here, we can assume that the
3557 backreference must match the empty string. */
3558 p++;
3559 continue;
3560
3561
3562 /* Following are the cases which match a character. These end
3563 with `break'. */
3564
3565 case exactn:
3566 if (fastmap)
3567 {
3568 int c = RE_STRING_CHAR (p + 1, pend - p);
3569
3570 if (SINGLE_BYTE_CHAR_P (c))
3571 fastmap[c] = 1;
3572 else
3573 fastmap[p[1]] = 1;
3574 }
3575 break;
3576
3577
3578 case anychar:
3579 /* We could put all the chars except for \n (and maybe \0)
3580 but we don't bother since it is generally not worth it. */
3581 if (!fastmap) break;
3582 return -1;
3583
3584
3585 case charset_not:
3586 /* Chars beyond end of bitmap are possible matches.
3587 All the single-byte codes can occur in multibyte buffers.
3588 So any that are not listed in the charset
3589 are possible matches, even in multibyte buffers. */
3590 if (!fastmap) break;
3591 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3592 j < (1 << BYTEWIDTH); j++)
3593 fastmap[j] = 1;
3594 /* Fallthrough */
3595 case charset:
3596 if (!fastmap) break;
3597 not = (re_opcode_t) *(p - 1) == charset_not;
3598 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3599 j >= 0; j--)
3600 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3601 fastmap[j] = 1;
3602
3603 if ((not && multibyte)
3604 /* Any character set can possibly contain a character
3605 which doesn't match the specified set of characters. */
3606 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3607 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3608 /* If we can match a character class, we can match
3609 any character set. */
3610 {
3611 set_fastmap_for_multibyte_characters:
3612 if (match_any_multibyte_characters == false)
3613 {
3614 for (j = 0x80; j < 0xA0; j++) /* XXX */
3615 if (BASE_LEADING_CODE_P (j))
3616 fastmap[j] = 1;
3617 match_any_multibyte_characters = true;
3618 }
3619 }
3620
3621 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3622 && match_any_multibyte_characters == false)
3623 {
3624 /* Set fastmap[I] 1 where I is a base leading code of each
3625 multibyte character in the range table. */
3626 int c, count;
3627
3628 /* Make P points the range table. `+ 2' is to skip flag
3629 bits for a character class. */
3630 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3631
3632 /* Extract the number of ranges in range table into COUNT. */
3633 EXTRACT_NUMBER_AND_INCR (count, p);
3634 for (; count > 0; count--, p += 2 * 3) /* XXX */
3635 {
3636 /* Extract the start of each range. */
3637 EXTRACT_CHARACTER (c, p);
3638 j = CHAR_CHARSET (c);
3639 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3640 }
3641 }
3642 break;
3643
3644 case syntaxspec:
3645 case notsyntaxspec:
3646 if (!fastmap) break;
3647 #ifndef emacs
3648 not = (re_opcode_t)p[-1] == notsyntaxspec;
3649 k = *p++;
3650 for (j = 0; j < (1 << BYTEWIDTH); j++)
3651 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3652 fastmap[j] = 1;
3653 break;
3654 #else /* emacs */
3655 /* This match depends on text properties. These end with
3656 aborting optimizations. */
3657 return -1;
3658
3659 case categoryspec:
3660 case notcategoryspec:
3661 if (!fastmap) break;
3662 not = (re_opcode_t)p[-1] == notcategoryspec;
3663 k = *p++;
3664 for (j = 0; j < (1 << BYTEWIDTH); j++)
3665 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3666 fastmap[j] = 1;
3667
3668 if (multibyte)
3669 /* Any character set can possibly contain a character
3670 whose category is K (or not). */
3671 goto set_fastmap_for_multibyte_characters;
3672 break;
3673
3674 /* All cases after this match the empty string. These end with
3675 `continue'. */
3676
3677 case before_dot:
3678 case at_dot:
3679 case after_dot:
3680 #endif /* !emacs */
3681 case no_op:
3682 case begline:
3683 case endline:
3684 case begbuf:
3685 case endbuf:
3686 case wordbound:
3687 case notwordbound:
3688 case wordbeg:
3689 case wordend:
3690 continue;
3691
3692
3693 case jump:
3694 EXTRACT_NUMBER_AND_INCR (j, p);
3695 if (j < 0)
3696 /* Backward jumps can only go back to code that we've already
3697 visited. `re_compile' should make sure this is true. */
3698 break;
3699 p += j;
3700 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3701 {
3702 case on_failure_jump:
3703 case on_failure_keep_string_jump:
3704 case on_failure_jump_loop:
3705 case on_failure_jump_nastyloop:
3706 case on_failure_jump_smart:
3707 p++;
3708 break;
3709 default:
3710 continue;
3711 };
3712 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3713 to jump back to "just after here". */
3714 /* Fallthrough */
3715
3716 case on_failure_jump:
3717 case on_failure_keep_string_jump:
3718 case on_failure_jump_nastyloop:
3719 case on_failure_jump_loop:
3720 case on_failure_jump_smart:
3721 EXTRACT_NUMBER_AND_INCR (j, p);
3722 if (p + j <= p1)
3723 ; /* Backward jump to be ignored. */
3724 else
3725 { /* We have to look down both arms.
3726 We first go down the "straight" path so as to minimize
3727 stack usage when going through alternatives. */
3728 int r = analyse_first (p, pend, fastmap, multibyte);
3729 if (r) return r;
3730 p += j;
3731 }
3732 continue;
3733
3734
3735 case jump_n:
3736 /* This code simply does not properly handle forward jump_n. */
3737 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3738 p += 4;
3739 /* jump_n can either jump or fall through. The (backward) jump
3740 case has already been handled, so we only need to look at the
3741 fallthrough case. */
3742 continue;
3743
3744 case succeed_n:
3745 /* If N == 0, it should be an on_failure_jump_loop instead. */
3746 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3747 p += 4;
3748 /* We only care about one iteration of the loop, so we don't
3749 need to consider the case where this behaves like an
3750 on_failure_jump. */
3751 continue;
3752
3753
3754 case set_number_at:
3755 p += 4;
3756 continue;
3757
3758
3759 case start_memory:
3760 case stop_memory:
3761 p += 1;
3762 continue;
3763
3764
3765 default:
3766 abort (); /* We have listed all the cases. */
3767 } /* switch *p++ */
3768
3769 /* Getting here means we have found the possible starting
3770 characters for one path of the pattern -- and that the empty
3771 string does not match. We need not follow this path further. */
3772 return 0;
3773 } /* while p */
3774
3775 /* We reached the end without matching anything. */
3776 return 1;
3777
3778 } /* analyse_first */
3779 \f
3780 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3781 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3782 characters can start a string that matches the pattern. This fastmap
3783 is used by re_search to skip quickly over impossible starting points.
3784
3785 Character codes above (1 << BYTEWIDTH) are not represented in the
3786 fastmap, but the leading codes are represented. Thus, the fastmap
3787 indicates which character sets could start a match.
3788
3789 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3790 area as BUFP->fastmap.
3791
3792 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3793 the pattern buffer.
3794
3795 Returns 0 if we succeed, -2 if an internal error. */
3796
3797 int
3798 re_compile_fastmap (bufp)
3799 struct re_pattern_buffer *bufp;
3800 {
3801 char *fastmap = bufp->fastmap;
3802 int analysis;
3803
3804 assert (fastmap && bufp->buffer);
3805
3806 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3807 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3808
3809 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
3810 fastmap, RE_MULTIBYTE_P (bufp));
3811 bufp->can_be_null = (analysis != 0);
3812 return 0;
3813 } /* re_compile_fastmap */
3814 \f
3815 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3816 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3817 this memory for recording register information. STARTS and ENDS
3818 must be allocated using the malloc library routine, and must each
3819 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3820
3821 If NUM_REGS == 0, then subsequent matches should allocate their own
3822 register data.
3823
3824 Unless this function is called, the first search or match using
3825 PATTERN_BUFFER will allocate its own register data, without
3826 freeing the old data. */
3827
3828 void
3829 re_set_registers (bufp, regs, num_regs, starts, ends)
3830 struct re_pattern_buffer *bufp;
3831 struct re_registers *regs;
3832 unsigned num_regs;
3833 regoff_t *starts, *ends;
3834 {
3835 if (num_regs)
3836 {
3837 bufp->regs_allocated = REGS_REALLOCATE;
3838 regs->num_regs = num_regs;
3839 regs->start = starts;
3840 regs->end = ends;
3841 }
3842 else
3843 {
3844 bufp->regs_allocated = REGS_UNALLOCATED;
3845 regs->num_regs = 0;
3846 regs->start = regs->end = (regoff_t *) 0;
3847 }
3848 }
3849 WEAK_ALIAS (__re_set_registers, re_set_registers)
3850 \f
3851 /* Searching routines. */
3852
3853 /* Like re_search_2, below, but only one string is specified, and
3854 doesn't let you say where to stop matching. */
3855
3856 int
3857 re_search (bufp, string, size, startpos, range, regs)
3858 struct re_pattern_buffer *bufp;
3859 const char *string;
3860 int size, startpos, range;
3861 struct re_registers *regs;
3862 {
3863 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3864 regs, size);
3865 }
3866 WEAK_ALIAS (__re_search, re_search)
3867
3868 /* End address of virtual concatenation of string. */
3869 #define STOP_ADDR_VSTRING(P) \
3870 (((P) >= size1 ? string2 + size2 : string1 + size1))
3871
3872 /* Address of POS in the concatenation of virtual string. */
3873 #define POS_ADDR_VSTRING(POS) \
3874 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3875
3876 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3877 virtual concatenation of STRING1 and STRING2, starting first at index
3878 STARTPOS, then at STARTPOS + 1, and so on.
3879
3880 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3881
3882 RANGE is how far to scan while trying to match. RANGE = 0 means try
3883 only at STARTPOS; in general, the last start tried is STARTPOS +
3884 RANGE.
3885
3886 In REGS, return the indices of the virtual concatenation of STRING1
3887 and STRING2 that matched the entire BUFP->buffer and its contained
3888 subexpressions.
3889
3890 Do not consider matching one past the index STOP in the virtual
3891 concatenation of STRING1 and STRING2.
3892
3893 We return either the position in the strings at which the match was
3894 found, -1 if no match, or -2 if error (such as failure
3895 stack overflow). */
3896
3897 int
3898 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
3899 struct re_pattern_buffer *bufp;
3900 const char *str1, *str2;
3901 int size1, size2;
3902 int startpos;
3903 int range;
3904 struct re_registers *regs;
3905 int stop;
3906 {
3907 int val;
3908 re_char *string1 = (re_char*) str1;
3909 re_char *string2 = (re_char*) str2;
3910 register char *fastmap = bufp->fastmap;
3911 register RE_TRANSLATE_TYPE translate = bufp->translate;
3912 int total_size = size1 + size2;
3913 int endpos = startpos + range;
3914 boolean anchored_start;
3915
3916 /* Nonzero if we have to concern multibyte character. */
3917 const boolean multibyte = RE_MULTIBYTE_P (bufp);
3918
3919 /* Check for out-of-range STARTPOS. */
3920 if (startpos < 0 || startpos > total_size)
3921 return -1;
3922
3923 /* Fix up RANGE if it might eventually take us outside
3924 the virtual concatenation of STRING1 and STRING2.
3925 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3926 if (endpos < 0)
3927 range = 0 - startpos;
3928 else if (endpos > total_size)
3929 range = total_size - startpos;
3930
3931 /* If the search isn't to be a backwards one, don't waste time in a
3932 search for a pattern anchored at beginning of buffer. */
3933 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3934 {
3935 if (startpos > 0)
3936 return -1;
3937 else
3938 range = 0;
3939 }
3940
3941 #ifdef emacs
3942 /* In a forward search for something that starts with \=.
3943 don't keep searching past point. */
3944 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3945 {
3946 range = PT_BYTE - BEGV_BYTE - startpos;
3947 if (range < 0)
3948 return -1;
3949 }
3950 #endif /* emacs */
3951
3952 /* Update the fastmap now if not correct already. */
3953 if (fastmap && !bufp->fastmap_accurate)
3954 re_compile_fastmap (bufp);
3955
3956 /* See whether the pattern is anchored. */
3957 anchored_start = (bufp->buffer[0] == begline);
3958
3959 #ifdef emacs
3960 gl_state.object = re_match_object;
3961 {
3962 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
3963
3964 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3965 }
3966 #endif
3967
3968 /* Loop through the string, looking for a place to start matching. */
3969 for (;;)
3970 {
3971 /* If the pattern is anchored,
3972 skip quickly past places we cannot match.
3973 We don't bother to treat startpos == 0 specially
3974 because that case doesn't repeat. */
3975 if (anchored_start && startpos > 0)
3976 {
3977 if (! ((startpos <= size1 ? string1[startpos - 1]
3978 : string2[startpos - size1 - 1])
3979 == '\n'))
3980 goto advance;
3981 }
3982
3983 /* If a fastmap is supplied, skip quickly over characters that
3984 cannot be the start of a match. If the pattern can match the
3985 null string, however, we don't need to skip characters; we want
3986 the first null string. */
3987 if (fastmap && startpos < total_size && !bufp->can_be_null)
3988 {
3989 register re_char *d;
3990 register re_wchar_t buf_ch;
3991
3992 d = POS_ADDR_VSTRING (startpos);
3993
3994 if (range > 0) /* Searching forwards. */
3995 {
3996 register int lim = 0;
3997 int irange = range;
3998
3999 if (startpos < size1 && startpos + range >= size1)
4000 lim = range - (size1 - startpos);
4001
4002 /* Written out as an if-else to avoid testing `translate'
4003 inside the loop. */
4004 if (RE_TRANSLATE_P (translate))
4005 {
4006 if (multibyte)
4007 while (range > lim)
4008 {
4009 int buf_charlen;
4010
4011 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4012 buf_charlen);
4013
4014 buf_ch = RE_TRANSLATE (translate, buf_ch);
4015 if (buf_ch >= 0400
4016 || fastmap[buf_ch])
4017 break;
4018
4019 range -= buf_charlen;
4020 d += buf_charlen;
4021 }
4022 else
4023 while (range > lim
4024 && !fastmap[RE_TRANSLATE (translate, *d)])
4025 {
4026 d++;
4027 range--;
4028 }
4029 }
4030 else
4031 while (range > lim && !fastmap[*d])
4032 {
4033 d++;
4034 range--;
4035 }
4036
4037 startpos += irange - range;
4038 }
4039 else /* Searching backwards. */
4040 {
4041 int room = (startpos >= size1
4042 ? size2 + size1 - startpos
4043 : size1 - startpos);
4044 buf_ch = RE_STRING_CHAR (d, room);
4045 buf_ch = TRANSLATE (buf_ch);
4046
4047 if (! (buf_ch >= 0400
4048 || fastmap[buf_ch]))
4049 goto advance;
4050 }
4051 }
4052
4053 /* If can't match the null string, and that's all we have left, fail. */
4054 if (range >= 0 && startpos == total_size && fastmap
4055 && !bufp->can_be_null)
4056 return -1;
4057
4058 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4059 startpos, regs, stop);
4060 #ifndef REGEX_MALLOC
4061 # ifdef C_ALLOCA
4062 alloca (0);
4063 # endif
4064 #endif
4065
4066 if (val >= 0)
4067 return startpos;
4068
4069 if (val == -2)
4070 return -2;
4071
4072 advance:
4073 if (!range)
4074 break;
4075 else if (range > 0)
4076 {
4077 /* Update STARTPOS to the next character boundary. */
4078 if (multibyte)
4079 {
4080 re_char *p = POS_ADDR_VSTRING (startpos);
4081 re_char *pend = STOP_ADDR_VSTRING (startpos);
4082 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4083
4084 range -= len;
4085 if (range < 0)
4086 break;
4087 startpos += len;
4088 }
4089 else
4090 {
4091 range--;
4092 startpos++;
4093 }
4094 }
4095 else
4096 {
4097 range++;
4098 startpos--;
4099
4100 /* Update STARTPOS to the previous character boundary. */
4101 if (multibyte)
4102 {
4103 re_char *p = POS_ADDR_VSTRING (startpos);
4104 int len = 0;
4105
4106 /* Find the head of multibyte form. */
4107 while (!CHAR_HEAD_P (*p))
4108 p--, len++;
4109
4110 /* Adjust it. */
4111 #if 0 /* XXX */
4112 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4113 ;
4114 else
4115 #endif
4116 {
4117 range += len;
4118 if (range > 0)
4119 break;
4120
4121 startpos -= len;
4122 }
4123 }
4124 }
4125 }
4126 return -1;
4127 } /* re_search_2 */
4128 WEAK_ALIAS (__re_search_2, re_search_2)
4129 \f
4130 /* Declarations and macros for re_match_2. */
4131
4132 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4133 register int len,
4134 RE_TRANSLATE_TYPE translate,
4135 const int multibyte));
4136
4137 /* This converts PTR, a pointer into one of the search strings `string1'
4138 and `string2' into an offset from the beginning of that string. */
4139 #define POINTER_TO_OFFSET(ptr) \
4140 (FIRST_STRING_P (ptr) \
4141 ? ((regoff_t) ((ptr) - string1)) \
4142 : ((regoff_t) ((ptr) - string2 + size1)))
4143
4144 /* Call before fetching a character with *d. This switches over to
4145 string2 if necessary.
4146 Check re_match_2_internal for a discussion of why end_match_2 might
4147 not be within string2 (but be equal to end_match_1 instead). */
4148 #define PREFETCH() \
4149 while (d == dend) \
4150 { \
4151 /* End of string2 => fail. */ \
4152 if (dend == end_match_2) \
4153 goto fail; \
4154 /* End of string1 => advance to string2. */ \
4155 d = string2; \
4156 dend = end_match_2; \
4157 }
4158
4159 /* Call before fetching a char with *d if you already checked other limits.
4160 This is meant for use in lookahead operations like wordend, etc..
4161 where we might need to look at parts of the string that might be
4162 outside of the LIMITs (i.e past `stop'). */
4163 #define PREFETCH_NOLIMIT() \
4164 if (d == end1) \
4165 { \
4166 d = string2; \
4167 dend = end_match_2; \
4168 } \
4169
4170 /* Test if at very beginning or at very end of the virtual concatenation
4171 of `string1' and `string2'. If only one string, it's `string2'. */
4172 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4173 #define AT_STRINGS_END(d) ((d) == end2)
4174
4175
4176 /* Test if D points to a character which is word-constituent. We have
4177 two special cases to check for: if past the end of string1, look at
4178 the first character in string2; and if before the beginning of
4179 string2, look at the last character in string1. */
4180 #define WORDCHAR_P(d) \
4181 (SYNTAX ((d) == end1 ? *string2 \
4182 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4183 == Sword)
4184
4185 /* Disabled due to a compiler bug -- see comment at case wordbound */
4186
4187 /* The comment at case wordbound is following one, but we don't use
4188 AT_WORD_BOUNDARY anymore to support multibyte form.
4189
4190 The DEC Alpha C compiler 3.x generates incorrect code for the
4191 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4192 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4193 macro and introducing temporary variables works around the bug. */
4194
4195 #if 0
4196 /* Test if the character before D and the one at D differ with respect
4197 to being word-constituent. */
4198 #define AT_WORD_BOUNDARY(d) \
4199 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4200 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4201 #endif
4202
4203 /* Free everything we malloc. */
4204 #ifdef MATCH_MAY_ALLOCATE
4205 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4206 # define FREE_VARIABLES() \
4207 do { \
4208 REGEX_FREE_STACK (fail_stack.stack); \
4209 FREE_VAR (regstart); \
4210 FREE_VAR (regend); \
4211 FREE_VAR (best_regstart); \
4212 FREE_VAR (best_regend); \
4213 } while (0)
4214 #else
4215 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4216 #endif /* not MATCH_MAY_ALLOCATE */
4217
4218 \f
4219 /* Optimization routines. */
4220
4221 /* If the operation is a match against one or more chars,
4222 return a pointer to the next operation, else return NULL. */
4223 static re_char *
4224 skip_one_char (p)
4225 re_char *p;
4226 {
4227 switch (SWITCH_ENUM_CAST (*p++))
4228 {
4229 case anychar:
4230 break;
4231
4232 case exactn:
4233 p += *p + 1;
4234 break;
4235
4236 case charset_not:
4237 case charset:
4238 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4239 {
4240 int mcnt;
4241 p = CHARSET_RANGE_TABLE (p - 1);
4242 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4243 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4244 }
4245 else
4246 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4247 break;
4248
4249 case syntaxspec:
4250 case notsyntaxspec:
4251 #ifdef emacs
4252 case categoryspec:
4253 case notcategoryspec:
4254 #endif /* emacs */
4255 p++;
4256 break;
4257
4258 default:
4259 p = NULL;
4260 }
4261 return p;
4262 }
4263
4264
4265 /* Jump over non-matching operations. */
4266 static unsigned char *
4267 skip_noops (p, pend)
4268 unsigned char *p, *pend;
4269 {
4270 int mcnt;
4271 while (p < pend)
4272 {
4273 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4274 {
4275 case start_memory:
4276 case stop_memory:
4277 p += 2; break;
4278 case no_op:
4279 p += 1; break;
4280 case jump:
4281 p += 1;
4282 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4283 p += mcnt;
4284 break;
4285 default:
4286 return p;
4287 }
4288 }
4289 assert (p == pend);
4290 return p;
4291 }
4292
4293 /* Non-zero if "p1 matches something" implies "p2 fails". */
4294 static int
4295 mutually_exclusive_p (bufp, p1, p2)
4296 struct re_pattern_buffer *bufp;
4297 unsigned char *p1, *p2;
4298 {
4299 re_opcode_t op2;
4300 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4301 unsigned char *pend = bufp->buffer + bufp->used;
4302
4303 assert (p1 >= bufp->buffer && p1 < pend
4304 && p2 >= bufp->buffer && p2 <= pend);
4305
4306 /* Skip over open/close-group commands.
4307 If what follows this loop is a ...+ construct,
4308 look at what begins its body, since we will have to
4309 match at least one of that. */
4310 p2 = skip_noops (p2, pend);
4311 /* The same skip can be done for p1, except that this function
4312 is only used in the case where p1 is a simple match operator. */
4313 /* p1 = skip_noops (p1, pend); */
4314
4315 assert (p1 >= bufp->buffer && p1 < pend
4316 && p2 >= bufp->buffer && p2 <= pend);
4317
4318 op2 = p2 == pend ? succeed : *p2;
4319
4320 switch (SWITCH_ENUM_CAST (op2))
4321 {
4322 case succeed:
4323 case endbuf:
4324 /* If we're at the end of the pattern, we can change. */
4325 if (skip_one_char (p1))
4326 {
4327 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4328 return 1;
4329 }
4330 break;
4331
4332 case endline:
4333 case exactn:
4334 {
4335 register re_wchar_t c
4336 = (re_opcode_t) *p2 == endline ? '\n'
4337 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4338
4339 if ((re_opcode_t) *p1 == exactn)
4340 {
4341 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4342 {
4343 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4344 return 1;
4345 }
4346 }
4347
4348 else if ((re_opcode_t) *p1 == charset
4349 || (re_opcode_t) *p1 == charset_not)
4350 {
4351 int not = (re_opcode_t) *p1 == charset_not;
4352
4353 /* Test if C is listed in charset (or charset_not)
4354 at `p1'. */
4355 if (SINGLE_BYTE_CHAR_P (c))
4356 {
4357 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4358 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4359 not = !not;
4360 }
4361 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4362 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4363
4364 /* `not' is equal to 1 if c would match, which means
4365 that we can't change to pop_failure_jump. */
4366 if (!not)
4367 {
4368 DEBUG_PRINT1 (" No match => fast loop.\n");
4369 return 1;
4370 }
4371 }
4372 else if ((re_opcode_t) *p1 == anychar
4373 && c == '\n')
4374 {
4375 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4376 return 1;
4377 }
4378 }
4379 break;
4380
4381 case charset:
4382 {
4383 if ((re_opcode_t) *p1 == exactn)
4384 /* Reuse the code above. */
4385 return mutually_exclusive_p (bufp, p2, p1);
4386
4387 /* It is hard to list up all the character in charset
4388 P2 if it includes multibyte character. Give up in
4389 such case. */
4390 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4391 {
4392 /* Now, we are sure that P2 has no range table.
4393 So, for the size of bitmap in P2, `p2[1]' is
4394 enough. But P1 may have range table, so the
4395 size of bitmap table of P1 is extracted by
4396 using macro `CHARSET_BITMAP_SIZE'.
4397
4398 Since we know that all the character listed in
4399 P2 is ASCII, it is enough to test only bitmap
4400 table of P1. */
4401
4402 if ((re_opcode_t) *p1 == charset)
4403 {
4404 int idx;
4405 /* We win if the charset inside the loop
4406 has no overlap with the one after the loop. */
4407 for (idx = 0;
4408 (idx < (int) p2[1]
4409 && idx < CHARSET_BITMAP_SIZE (p1));
4410 idx++)
4411 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4412 break;
4413
4414 if (idx == p2[1]
4415 || idx == CHARSET_BITMAP_SIZE (p1))
4416 {
4417 DEBUG_PRINT1 (" No match => fast loop.\n");
4418 return 1;
4419 }
4420 }
4421 else if ((re_opcode_t) *p1 == charset_not)
4422 {
4423 int idx;
4424 /* We win if the charset_not inside the loop lists
4425 every character listed in the charset after. */
4426 for (idx = 0; idx < (int) p2[1]; idx++)
4427 if (! (p2[2 + idx] == 0
4428 || (idx < CHARSET_BITMAP_SIZE (p1)
4429 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4430 break;
4431
4432 if (idx == p2[1])
4433 {
4434 DEBUG_PRINT1 (" No match => fast loop.\n");
4435 return 1;
4436 }
4437 }
4438 }
4439 }
4440 break;
4441
4442 case charset_not:
4443 switch (SWITCH_ENUM_CAST (*p1))
4444 {
4445 case exactn:
4446 case charset:
4447 /* Reuse the code above. */
4448 return mutually_exclusive_p (bufp, p2, p1);
4449 case charset_not:
4450 /* When we have two charset_not, it's very unlikely that
4451 they don't overlap. The union of the two sets of excluded
4452 chars should cover all possible chars, which, as a matter of
4453 fact, is virtually impossible in multibyte buffers. */
4454 break;
4455 }
4456 break;
4457
4458 case wordend:
4459 case notsyntaxspec:
4460 return ((re_opcode_t) *p1 == syntaxspec
4461 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4462
4463 case wordbeg:
4464 case syntaxspec:
4465 return ((re_opcode_t) *p1 == notsyntaxspec
4466 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4467
4468 case wordbound:
4469 return (((re_opcode_t) *p1 == notsyntaxspec
4470 || (re_opcode_t) *p1 == syntaxspec)
4471 && p1[1] == Sword);
4472
4473 #ifdef emacs
4474 case categoryspec:
4475 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4476 case notcategoryspec:
4477 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4478 #endif /* emacs */
4479
4480 default:
4481 ;
4482 }
4483
4484 /* Safe default. */
4485 return 0;
4486 }
4487
4488 \f
4489 /* Matching routines. */
4490
4491 #ifndef emacs /* Emacs never uses this. */
4492 /* re_match is like re_match_2 except it takes only a single string. */
4493
4494 int
4495 re_match (bufp, string, size, pos, regs)
4496 struct re_pattern_buffer *bufp;
4497 const char *string;
4498 int size, pos;
4499 struct re_registers *regs;
4500 {
4501 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4502 pos, regs, size);
4503 # if defined C_ALLOCA && !defined REGEX_MALLOC
4504 alloca (0);
4505 # endif
4506 return result;
4507 }
4508 WEAK_ALIAS (__re_match, re_match)
4509 #endif /* not emacs */
4510
4511 #ifdef emacs
4512 /* In Emacs, this is the string or buffer in which we
4513 are matching. It is used for looking up syntax properties. */
4514 Lisp_Object re_match_object;
4515 #endif
4516
4517 /* re_match_2 matches the compiled pattern in BUFP against the
4518 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4519 and SIZE2, respectively). We start matching at POS, and stop
4520 matching at STOP.
4521
4522 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4523 store offsets for the substring each group matched in REGS. See the
4524 documentation for exactly how many groups we fill.
4525
4526 We return -1 if no match, -2 if an internal error (such as the
4527 failure stack overflowing). Otherwise, we return the length of the
4528 matched substring. */
4529
4530 int
4531 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4532 struct re_pattern_buffer *bufp;
4533 const char *string1, *string2;
4534 int size1, size2;
4535 int pos;
4536 struct re_registers *regs;
4537 int stop;
4538 {
4539 int result;
4540
4541 #ifdef emacs
4542 int charpos;
4543 gl_state.object = re_match_object;
4544 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4545 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4546 #endif
4547
4548 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4549 (re_char*) string2, size2,
4550 pos, regs, stop);
4551 #if defined C_ALLOCA && !defined REGEX_MALLOC
4552 alloca (0);
4553 #endif
4554 return result;
4555 }
4556 WEAK_ALIAS (__re_match_2, re_match_2)
4557
4558 /* This is a separate function so that we can force an alloca cleanup
4559 afterwards. */
4560 static int
4561 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4562 struct re_pattern_buffer *bufp;
4563 re_char *string1, *string2;
4564 int size1, size2;
4565 int pos;
4566 struct re_registers *regs;
4567 int stop;
4568 {
4569 /* General temporaries. */
4570 int mcnt;
4571 size_t reg;
4572 boolean not;
4573
4574 /* Just past the end of the corresponding string. */
4575 re_char *end1, *end2;
4576
4577 /* Pointers into string1 and string2, just past the last characters in
4578 each to consider matching. */
4579 re_char *end_match_1, *end_match_2;
4580
4581 /* Where we are in the data, and the end of the current string. */
4582 re_char *d, *dend;
4583
4584 /* Used sometimes to remember where we were before starting matching
4585 an operator so that we can go back in case of failure. This "atomic"
4586 behavior of matching opcodes is indispensable to the correctness
4587 of the on_failure_keep_string_jump optimization. */
4588 re_char *dfail;
4589
4590 /* Where we are in the pattern, and the end of the pattern. */
4591 re_char *p = bufp->buffer;
4592 re_char *pend = p + bufp->used;
4593
4594 /* We use this to map every character in the string. */
4595 RE_TRANSLATE_TYPE translate = bufp->translate;
4596
4597 /* Nonzero if we have to concern multibyte character. */
4598 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4599
4600 /* Failure point stack. Each place that can handle a failure further
4601 down the line pushes a failure point on this stack. It consists of
4602 regstart, and regend for all registers corresponding to
4603 the subexpressions we're currently inside, plus the number of such
4604 registers, and, finally, two char *'s. The first char * is where
4605 to resume scanning the pattern; the second one is where to resume
4606 scanning the strings. */
4607 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4608 fail_stack_type fail_stack;
4609 #endif
4610 #ifdef DEBUG
4611 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4612 #endif
4613
4614 #if defined REL_ALLOC && defined REGEX_MALLOC
4615 /* This holds the pointer to the failure stack, when
4616 it is allocated relocatably. */
4617 fail_stack_elt_t *failure_stack_ptr;
4618 #endif
4619
4620 /* We fill all the registers internally, independent of what we
4621 return, for use in backreferences. The number here includes
4622 an element for register zero. */
4623 size_t num_regs = bufp->re_nsub + 1;
4624
4625 /* Information on the contents of registers. These are pointers into
4626 the input strings; they record just what was matched (on this
4627 attempt) by a subexpression part of the pattern, that is, the
4628 regnum-th regstart pointer points to where in the pattern we began
4629 matching and the regnum-th regend points to right after where we
4630 stopped matching the regnum-th subexpression. (The zeroth register
4631 keeps track of what the whole pattern matches.) */
4632 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4633 re_char **regstart, **regend;
4634 #endif
4635
4636 /* The following record the register info as found in the above
4637 variables when we find a match better than any we've seen before.
4638 This happens as we backtrack through the failure points, which in
4639 turn happens only if we have not yet matched the entire string. */
4640 unsigned best_regs_set = false;
4641 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4642 re_char **best_regstart, **best_regend;
4643 #endif
4644
4645 /* Logically, this is `best_regend[0]'. But we don't want to have to
4646 allocate space for that if we're not allocating space for anything
4647 else (see below). Also, we never need info about register 0 for
4648 any of the other register vectors, and it seems rather a kludge to
4649 treat `best_regend' differently than the rest. So we keep track of
4650 the end of the best match so far in a separate variable. We
4651 initialize this to NULL so that when we backtrack the first time
4652 and need to test it, it's not garbage. */
4653 re_char *match_end = NULL;
4654
4655 #ifdef DEBUG
4656 /* Counts the total number of registers pushed. */
4657 unsigned num_regs_pushed = 0;
4658 #endif
4659
4660 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4661
4662 INIT_FAIL_STACK ();
4663
4664 #ifdef MATCH_MAY_ALLOCATE
4665 /* Do not bother to initialize all the register variables if there are
4666 no groups in the pattern, as it takes a fair amount of time. If
4667 there are groups, we include space for register 0 (the whole
4668 pattern), even though we never use it, since it simplifies the
4669 array indexing. We should fix this. */
4670 if (bufp->re_nsub)
4671 {
4672 regstart = REGEX_TALLOC (num_regs, re_char *);
4673 regend = REGEX_TALLOC (num_regs, re_char *);
4674 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4675 best_regend = REGEX_TALLOC (num_regs, re_char *);
4676
4677 if (!(regstart && regend && best_regstart && best_regend))
4678 {
4679 FREE_VARIABLES ();
4680 return -2;
4681 }
4682 }
4683 else
4684 {
4685 /* We must initialize all our variables to NULL, so that
4686 `FREE_VARIABLES' doesn't try to free them. */
4687 regstart = regend = best_regstart = best_regend = NULL;
4688 }
4689 #endif /* MATCH_MAY_ALLOCATE */
4690
4691 /* The starting position is bogus. */
4692 if (pos < 0 || pos > size1 + size2)
4693 {
4694 FREE_VARIABLES ();
4695 return -1;
4696 }
4697
4698 /* Initialize subexpression text positions to -1 to mark ones that no
4699 start_memory/stop_memory has been seen for. Also initialize the
4700 register information struct. */
4701 for (reg = 1; reg < num_regs; reg++)
4702 regstart[reg] = regend[reg] = NULL;
4703
4704 /* We move `string1' into `string2' if the latter's empty -- but not if
4705 `string1' is null. */
4706 if (size2 == 0 && string1 != NULL)
4707 {
4708 string2 = string1;
4709 size2 = size1;
4710 string1 = 0;
4711 size1 = 0;
4712 }
4713 end1 = string1 + size1;
4714 end2 = string2 + size2;
4715
4716 /* `p' scans through the pattern as `d' scans through the data.
4717 `dend' is the end of the input string that `d' points within. `d'
4718 is advanced into the following input string whenever necessary, but
4719 this happens before fetching; therefore, at the beginning of the
4720 loop, `d' can be pointing at the end of a string, but it cannot
4721 equal `string2'. */
4722 if (pos >= size1)
4723 {
4724 /* Only match within string2. */
4725 d = string2 + pos - size1;
4726 dend = end_match_2 = string2 + stop - size1;
4727 end_match_1 = end1; /* Just to give it a value. */
4728 }
4729 else
4730 {
4731 if (stop < size1)
4732 {
4733 /* Only match within string1. */
4734 end_match_1 = string1 + stop;
4735 /* BEWARE!
4736 When we reach end_match_1, PREFETCH normally switches to string2.
4737 But in the present case, this means that just doing a PREFETCH
4738 makes us jump from `stop' to `gap' within the string.
4739 What we really want here is for the search to stop as
4740 soon as we hit end_match_1. That's why we set end_match_2
4741 to end_match_1 (since PREFETCH fails as soon as we hit
4742 end_match_2). */
4743 end_match_2 = end_match_1;
4744 }
4745 else
4746 { /* It's important to use this code when stop == size so that
4747 moving `d' from end1 to string2 will not prevent the d == dend
4748 check from catching the end of string. */
4749 end_match_1 = end1;
4750 end_match_2 = string2 + stop - size1;
4751 }
4752 d = string1 + pos;
4753 dend = end_match_1;
4754 }
4755
4756 DEBUG_PRINT1 ("The compiled pattern is: ");
4757 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4758 DEBUG_PRINT1 ("The string to match is: `");
4759 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4760 DEBUG_PRINT1 ("'\n");
4761
4762 /* This loops over pattern commands. It exits by returning from the
4763 function if the match is complete, or it drops through if the match
4764 fails at this starting point in the input data. */
4765 for (;;)
4766 {
4767 DEBUG_PRINT2 ("\n%p: ", p);
4768
4769 if (p == pend)
4770 { /* End of pattern means we might have succeeded. */
4771 DEBUG_PRINT1 ("end of pattern ... ");
4772
4773 /* If we haven't matched the entire string, and we want the
4774 longest match, try backtracking. */
4775 if (d != end_match_2)
4776 {
4777 /* 1 if this match ends in the same string (string1 or string2)
4778 as the best previous match. */
4779 boolean same_str_p = (FIRST_STRING_P (match_end)
4780 == FIRST_STRING_P (d));
4781 /* 1 if this match is the best seen so far. */
4782 boolean best_match_p;
4783
4784 /* AIX compiler got confused when this was combined
4785 with the previous declaration. */
4786 if (same_str_p)
4787 best_match_p = d > match_end;
4788 else
4789 best_match_p = !FIRST_STRING_P (d);
4790
4791 DEBUG_PRINT1 ("backtracking.\n");
4792
4793 if (!FAIL_STACK_EMPTY ())
4794 { /* More failure points to try. */
4795
4796 /* If exceeds best match so far, save it. */
4797 if (!best_regs_set || best_match_p)
4798 {
4799 best_regs_set = true;
4800 match_end = d;
4801
4802 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4803
4804 for (reg = 1; reg < num_regs; reg++)
4805 {
4806 best_regstart[reg] = regstart[reg];
4807 best_regend[reg] = regend[reg];
4808 }
4809 }
4810 goto fail;
4811 }
4812
4813 /* If no failure points, don't restore garbage. And if
4814 last match is real best match, don't restore second
4815 best one. */
4816 else if (best_regs_set && !best_match_p)
4817 {
4818 restore_best_regs:
4819 /* Restore best match. It may happen that `dend ==
4820 end_match_1' while the restored d is in string2.
4821 For example, the pattern `x.*y.*z' against the
4822 strings `x-' and `y-z-', if the two strings are
4823 not consecutive in memory. */
4824 DEBUG_PRINT1 ("Restoring best registers.\n");
4825
4826 d = match_end;
4827 dend = ((d >= string1 && d <= end1)
4828 ? end_match_1 : end_match_2);
4829
4830 for (reg = 1; reg < num_regs; reg++)
4831 {
4832 regstart[reg] = best_regstart[reg];
4833 regend[reg] = best_regend[reg];
4834 }
4835 }
4836 } /* d != end_match_2 */
4837
4838 succeed_label:
4839 DEBUG_PRINT1 ("Accepting match.\n");
4840
4841 /* If caller wants register contents data back, do it. */
4842 if (regs && !bufp->no_sub)
4843 {
4844 /* Have the register data arrays been allocated? */
4845 if (bufp->regs_allocated == REGS_UNALLOCATED)
4846 { /* No. So allocate them with malloc. We need one
4847 extra element beyond `num_regs' for the `-1' marker
4848 GNU code uses. */
4849 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4850 regs->start = TALLOC (regs->num_regs, regoff_t);
4851 regs->end = TALLOC (regs->num_regs, regoff_t);
4852 if (regs->start == NULL || regs->end == NULL)
4853 {
4854 FREE_VARIABLES ();
4855 return -2;
4856 }
4857 bufp->regs_allocated = REGS_REALLOCATE;
4858 }
4859 else if (bufp->regs_allocated == REGS_REALLOCATE)
4860 { /* Yes. If we need more elements than were already
4861 allocated, reallocate them. If we need fewer, just
4862 leave it alone. */
4863 if (regs->num_regs < num_regs + 1)
4864 {
4865 regs->num_regs = num_regs + 1;
4866 RETALLOC (regs->start, regs->num_regs, regoff_t);
4867 RETALLOC (regs->end, regs->num_regs, regoff_t);
4868 if (regs->start == NULL || regs->end == NULL)
4869 {
4870 FREE_VARIABLES ();
4871 return -2;
4872 }
4873 }
4874 }
4875 else
4876 {
4877 /* These braces fend off a "empty body in an else-statement"
4878 warning under GCC when assert expands to nothing. */
4879 assert (bufp->regs_allocated == REGS_FIXED);
4880 }
4881
4882 /* Convert the pointer data in `regstart' and `regend' to
4883 indices. Register zero has to be set differently,
4884 since we haven't kept track of any info for it. */
4885 if (regs->num_regs > 0)
4886 {
4887 regs->start[0] = pos;
4888 regs->end[0] = POINTER_TO_OFFSET (d);
4889 }
4890
4891 /* Go through the first `min (num_regs, regs->num_regs)'
4892 registers, since that is all we initialized. */
4893 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
4894 {
4895 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
4896 regs->start[reg] = regs->end[reg] = -1;
4897 else
4898 {
4899 regs->start[reg]
4900 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
4901 regs->end[reg]
4902 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
4903 }
4904 }
4905
4906 /* If the regs structure we return has more elements than
4907 were in the pattern, set the extra elements to -1. If
4908 we (re)allocated the registers, this is the case,
4909 because we always allocate enough to have at least one
4910 -1 at the end. */
4911 for (reg = num_regs; reg < regs->num_regs; reg++)
4912 regs->start[reg] = regs->end[reg] = -1;
4913 } /* regs && !bufp->no_sub */
4914
4915 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4916 nfailure_points_pushed, nfailure_points_popped,
4917 nfailure_points_pushed - nfailure_points_popped);
4918 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4919
4920 mcnt = POINTER_TO_OFFSET (d) - pos;
4921
4922 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4923
4924 FREE_VARIABLES ();
4925 return mcnt;
4926 }
4927
4928 /* Otherwise match next pattern command. */
4929 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4930 {
4931 /* Ignore these. Used to ignore the n of succeed_n's which
4932 currently have n == 0. */
4933 case no_op:
4934 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4935 break;
4936
4937 case succeed:
4938 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4939 goto succeed_label;
4940
4941 /* Match the next n pattern characters exactly. The following
4942 byte in the pattern defines n, and the n bytes after that
4943 are the characters to match. */
4944 case exactn:
4945 mcnt = *p++;
4946 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4947
4948 /* Remember the start point to rollback upon failure. */
4949 dfail = d;
4950
4951 /* This is written out as an if-else so we don't waste time
4952 testing `translate' inside the loop. */
4953 if (RE_TRANSLATE_P (translate))
4954 {
4955 if (multibyte)
4956 do
4957 {
4958 int pat_charlen, buf_charlen;
4959 unsigned int pat_ch, buf_ch;
4960
4961 PREFETCH ();
4962 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4963 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4964
4965 if (RE_TRANSLATE (translate, buf_ch)
4966 != pat_ch)
4967 {
4968 d = dfail;
4969 goto fail;
4970 }
4971
4972 p += pat_charlen;
4973 d += buf_charlen;
4974 mcnt -= pat_charlen;
4975 }
4976 while (mcnt > 0);
4977 else
4978 do
4979 {
4980 PREFETCH ();
4981 if (RE_TRANSLATE (translate, *d) != *p++)
4982 {
4983 d = dfail;
4984 goto fail;
4985 }
4986 d++;
4987 }
4988 while (--mcnt);
4989 }
4990 else
4991 {
4992 do
4993 {
4994 PREFETCH ();
4995 if (*d++ != *p++)
4996 {
4997 d = dfail;
4998 goto fail;
4999 }
5000 }
5001 while (--mcnt);
5002 }
5003 break;
5004
5005
5006 /* Match any character except possibly a newline or a null. */
5007 case anychar:
5008 {
5009 int buf_charlen;
5010 re_wchar_t buf_ch;
5011
5012 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5013
5014 PREFETCH ();
5015 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5016 buf_ch = TRANSLATE (buf_ch);
5017
5018 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5019 && buf_ch == '\n')
5020 || ((bufp->syntax & RE_DOT_NOT_NULL)
5021 && buf_ch == '\000'))
5022 goto fail;
5023
5024 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5025 d += buf_charlen;
5026 }
5027 break;
5028
5029
5030 case charset:
5031 case charset_not:
5032 {
5033 register unsigned int c;
5034 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5035 int len;
5036
5037 /* Start of actual range_table, or end of bitmap if there is no
5038 range table. */
5039 re_char *range_table;
5040
5041 /* Nonzero if there is a range table. */
5042 int range_table_exists;
5043
5044 /* Number of ranges of range table. This is not included
5045 in the initial byte-length of the command. */
5046 int count = 0;
5047
5048 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5049
5050 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5051
5052 if (range_table_exists)
5053 {
5054 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5055 EXTRACT_NUMBER_AND_INCR (count, range_table);
5056 }
5057
5058 PREFETCH ();
5059 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5060 c = TRANSLATE (c); /* The character to match. */
5061
5062 if (SINGLE_BYTE_CHAR_P (c))
5063 { /* Lookup bitmap. */
5064 /* Cast to `unsigned' instead of `unsigned char' in
5065 case the bit list is a full 32 bytes long. */
5066 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5067 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5068 not = !not;
5069 }
5070 #ifdef emacs
5071 else if (range_table_exists)
5072 {
5073 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5074
5075 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5076 | (class_bits & BIT_MULTIBYTE)
5077 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5078 | (class_bits & BIT_SPACE && ISSPACE (c))
5079 | (class_bits & BIT_UPPER && ISUPPER (c))
5080 | (class_bits & BIT_WORD && ISWORD (c)))
5081 not = !not;
5082 else
5083 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5084 }
5085 #endif /* emacs */
5086
5087 if (range_table_exists)
5088 p = CHARSET_RANGE_TABLE_END (range_table, count);
5089 else
5090 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5091
5092 if (!not) goto fail;
5093
5094 d += len;
5095 break;
5096 }
5097
5098
5099 /* The beginning of a group is represented by start_memory.
5100 The argument is the register number. The text
5101 matched within the group is recorded (in the internal
5102 registers data structure) under the register number. */
5103 case start_memory:
5104 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5105
5106 /* In case we need to undo this operation (via backtracking). */
5107 PUSH_FAILURE_REG ((unsigned int)*p);
5108
5109 regstart[*p] = d;
5110 regend[*p] = NULL; /* probably unnecessary. -sm */
5111 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5112
5113 /* Move past the register number and inner group count. */
5114 p += 1;
5115 break;
5116
5117
5118 /* The stop_memory opcode represents the end of a group. Its
5119 argument is the same as start_memory's: the register number. */
5120 case stop_memory:
5121 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5122
5123 assert (!REG_UNSET (regstart[*p]));
5124 /* Strictly speaking, there should be code such as:
5125
5126 assert (REG_UNSET (regend[*p]));
5127 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5128
5129 But the only info to be pushed is regend[*p] and it is known to
5130 be UNSET, so there really isn't anything to push.
5131 Not pushing anything, on the other hand deprives us from the
5132 guarantee that regend[*p] is UNSET since undoing this operation
5133 will not reset its value properly. This is not important since
5134 the value will only be read on the next start_memory or at
5135 the very end and both events can only happen if this stop_memory
5136 is *not* undone. */
5137
5138 regend[*p] = d;
5139 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5140
5141 /* Move past the register number and the inner group count. */
5142 p += 1;
5143 break;
5144
5145
5146 /* \<digit> has been turned into a `duplicate' command which is
5147 followed by the numeric value of <digit> as the register number. */
5148 case duplicate:
5149 {
5150 register re_char *d2, *dend2;
5151 int regno = *p++; /* Get which register to match against. */
5152 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5153
5154 /* Can't back reference a group which we've never matched. */
5155 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5156 goto fail;
5157
5158 /* Where in input to try to start matching. */
5159 d2 = regstart[regno];
5160
5161 /* Remember the start point to rollback upon failure. */
5162 dfail = d;
5163
5164 /* Where to stop matching; if both the place to start and
5165 the place to stop matching are in the same string, then
5166 set to the place to stop, otherwise, for now have to use
5167 the end of the first string. */
5168
5169 dend2 = ((FIRST_STRING_P (regstart[regno])
5170 == FIRST_STRING_P (regend[regno]))
5171 ? regend[regno] : end_match_1);
5172 for (;;)
5173 {
5174 /* If necessary, advance to next segment in register
5175 contents. */
5176 while (d2 == dend2)
5177 {
5178 if (dend2 == end_match_2) break;
5179 if (dend2 == regend[regno]) break;
5180
5181 /* End of string1 => advance to string2. */
5182 d2 = string2;
5183 dend2 = regend[regno];
5184 }
5185 /* At end of register contents => success */
5186 if (d2 == dend2) break;
5187
5188 /* If necessary, advance to next segment in data. */
5189 PREFETCH ();
5190
5191 /* How many characters left in this segment to match. */
5192 mcnt = dend - d;
5193
5194 /* Want how many consecutive characters we can match in
5195 one shot, so, if necessary, adjust the count. */
5196 if (mcnt > dend2 - d2)
5197 mcnt = dend2 - d2;
5198
5199 /* Compare that many; failure if mismatch, else move
5200 past them. */
5201 if (RE_TRANSLATE_P (translate)
5202 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5203 : memcmp (d, d2, mcnt))
5204 {
5205 d = dfail;
5206 goto fail;
5207 }
5208 d += mcnt, d2 += mcnt;
5209 }
5210 }
5211 break;
5212
5213
5214 /* begline matches the empty string at the beginning of the string
5215 (unless `not_bol' is set in `bufp'), and after newlines. */
5216 case begline:
5217 DEBUG_PRINT1 ("EXECUTING begline.\n");
5218
5219 if (AT_STRINGS_BEG (d))
5220 {
5221 if (!bufp->not_bol) break;
5222 }
5223 else
5224 {
5225 unsigned char c;
5226 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5227 if (c == '\n')
5228 break;
5229 }
5230 /* In all other cases, we fail. */
5231 goto fail;
5232
5233
5234 /* endline is the dual of begline. */
5235 case endline:
5236 DEBUG_PRINT1 ("EXECUTING endline.\n");
5237
5238 if (AT_STRINGS_END (d))
5239 {
5240 if (!bufp->not_eol) break;
5241 }
5242 else
5243 {
5244 PREFETCH_NOLIMIT ();
5245 if (*d == '\n')
5246 break;
5247 }
5248 goto fail;
5249
5250
5251 /* Match at the very beginning of the data. */
5252 case begbuf:
5253 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5254 if (AT_STRINGS_BEG (d))
5255 break;
5256 goto fail;
5257
5258
5259 /* Match at the very end of the data. */
5260 case endbuf:
5261 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5262 if (AT_STRINGS_END (d))
5263 break;
5264 goto fail;
5265
5266
5267 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5268 pushes NULL as the value for the string on the stack. Then
5269 `POP_FAILURE_POINT' will keep the current value for the
5270 string, instead of restoring it. To see why, consider
5271 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5272 then the . fails against the \n. But the next thing we want
5273 to do is match the \n against the \n; if we restored the
5274 string value, we would be back at the foo.
5275
5276 Because this is used only in specific cases, we don't need to
5277 check all the things that `on_failure_jump' does, to make
5278 sure the right things get saved on the stack. Hence we don't
5279 share its code. The only reason to push anything on the
5280 stack at all is that otherwise we would have to change
5281 `anychar's code to do something besides goto fail in this
5282 case; that seems worse than this. */
5283 case on_failure_keep_string_jump:
5284 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5285 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5286 mcnt, p + mcnt);
5287
5288 PUSH_FAILURE_POINT (p - 3, NULL);
5289 break;
5290
5291 /* A nasty loop is introduced by the non-greedy *? and +?.
5292 With such loops, the stack only ever contains one failure point
5293 at a time, so that a plain on_failure_jump_loop kind of
5294 cycle detection cannot work. Worse yet, such a detection
5295 can not only fail to detect a cycle, but it can also wrongly
5296 detect a cycle (between different instantiations of the same
5297 loop.
5298 So the method used for those nasty loops is a little different:
5299 We use a special cycle-detection-stack-frame which is pushed
5300 when the on_failure_jump_nastyloop failure-point is *popped*.
5301 This special frame thus marks the beginning of one iteration
5302 through the loop and we can hence easily check right here
5303 whether something matched between the beginning and the end of
5304 the loop. */
5305 case on_failure_jump_nastyloop:
5306 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5307 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5308 mcnt, p + mcnt);
5309
5310 assert ((re_opcode_t)p[-4] == no_op);
5311 CHECK_INFINITE_LOOP (p - 4, d);
5312 PUSH_FAILURE_POINT (p - 3, d);
5313 break;
5314
5315
5316 /* Simple loop detecting on_failure_jump: just check on the
5317 failure stack if the same spot was already hit earlier. */
5318 case on_failure_jump_loop:
5319 on_failure:
5320 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5321 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5322 mcnt, p + mcnt);
5323
5324 CHECK_INFINITE_LOOP (p - 3, d);
5325 PUSH_FAILURE_POINT (p - 3, d);
5326 break;
5327
5328
5329 /* Uses of on_failure_jump:
5330
5331 Each alternative starts with an on_failure_jump that points
5332 to the beginning of the next alternative. Each alternative
5333 except the last ends with a jump that in effect jumps past
5334 the rest of the alternatives. (They really jump to the
5335 ending jump of the following alternative, because tensioning
5336 these jumps is a hassle.)
5337
5338 Repeats start with an on_failure_jump that points past both
5339 the repetition text and either the following jump or
5340 pop_failure_jump back to this on_failure_jump. */
5341 case on_failure_jump:
5342 IMMEDIATE_QUIT_CHECK;
5343 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5344 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5345 mcnt, p + mcnt);
5346
5347 PUSH_FAILURE_POINT (p -3, d);
5348 break;
5349
5350 /* This operation is used for greedy *.
5351 Compare the beginning of the repeat with what in the
5352 pattern follows its end. If we can establish that there
5353 is nothing that they would both match, i.e., that we
5354 would have to backtrack because of (as in, e.g., `a*a')
5355 then we can use a non-backtracking loop based on
5356 on_failure_keep_string_jump instead of on_failure_jump. */
5357 case on_failure_jump_smart:
5358 IMMEDIATE_QUIT_CHECK;
5359 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5360 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5361 mcnt, p + mcnt);
5362 {
5363 re_char *p1 = p; /* Next operation. */
5364 /* Here, we discard `const', making re_match non-reentrant. */
5365 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5366 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5367
5368 p -= 3; /* Reset so that we will re-execute the
5369 instruction once it's been changed. */
5370
5371 EXTRACT_NUMBER (mcnt, p2 - 2);
5372
5373 /* Ensure this is a indeed the trivial kind of loop
5374 we are expecting. */
5375 assert (skip_one_char (p1) == p2 - 3);
5376 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5377 DEBUG_STATEMENT (debug += 2);
5378 if (mutually_exclusive_p (bufp, p1, p2))
5379 {
5380 /* Use a fast `on_failure_keep_string_jump' loop. */
5381 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5382 *p3 = (unsigned char) on_failure_keep_string_jump;
5383 STORE_NUMBER (p2 - 2, mcnt + 3);
5384 }
5385 else
5386 {
5387 /* Default to a safe `on_failure_jump' loop. */
5388 DEBUG_PRINT1 (" smart default => slow loop.\n");
5389 *p3 = (unsigned char) on_failure_jump;
5390 }
5391 DEBUG_STATEMENT (debug -= 2);
5392 }
5393 break;
5394
5395 /* Unconditionally jump (without popping any failure points). */
5396 case jump:
5397 unconditional_jump:
5398 IMMEDIATE_QUIT_CHECK;
5399 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5400 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5401 p += mcnt; /* Do the jump. */
5402 DEBUG_PRINT2 ("(to %p).\n", p);
5403 break;
5404
5405
5406 /* Have to succeed matching what follows at least n times.
5407 After that, handle like `on_failure_jump'. */
5408 case succeed_n:
5409 /* Signedness doesn't matter since we only compare MCNT to 0. */
5410 EXTRACT_NUMBER (mcnt, p + 2);
5411 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5412
5413 /* Originally, mcnt is how many times we HAVE to succeed. */
5414 if (mcnt != 0)
5415 {
5416 /* Here, we discard `const', making re_match non-reentrant. */
5417 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5418 mcnt--;
5419 p += 4;
5420 PUSH_NUMBER (p2, mcnt);
5421 }
5422 else
5423 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5424 goto on_failure;
5425 break;
5426
5427 case jump_n:
5428 /* Signedness doesn't matter since we only compare MCNT to 0. */
5429 EXTRACT_NUMBER (mcnt, p + 2);
5430 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5431
5432 /* Originally, this is how many times we CAN jump. */
5433 if (mcnt != 0)
5434 {
5435 /* Here, we discard `const', making re_match non-reentrant. */
5436 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5437 mcnt--;
5438 PUSH_NUMBER (p2, mcnt);
5439 goto unconditional_jump;
5440 }
5441 /* If don't have to jump any more, skip over the rest of command. */
5442 else
5443 p += 4;
5444 break;
5445
5446 case set_number_at:
5447 {
5448 unsigned char *p2; /* Location of the counter. */
5449 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5450
5451 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5452 /* Here, we discard `const', making re_match non-reentrant. */
5453 p2 = (unsigned char*) p + mcnt;
5454 /* Signedness doesn't matter since we only copy MCNT's bits . */
5455 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5456 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5457 PUSH_NUMBER (p2, mcnt);
5458 break;
5459 }
5460
5461 case wordbound:
5462 case notwordbound:
5463 not = (re_opcode_t) *(p - 1) == notwordbound;
5464 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5465
5466 /* We SUCCEED (or FAIL) in one of the following cases: */
5467
5468 /* Case 1: D is at the beginning or the end of string. */
5469 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5470 not = !not;
5471 else
5472 {
5473 /* C1 is the character before D, S1 is the syntax of C1, C2
5474 is the character at D, and S2 is the syntax of C2. */
5475 re_wchar_t c1, c2;
5476 int s1, s2;
5477 #ifdef emacs
5478 int offset = PTR_TO_OFFSET (d - 1);
5479 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5480 UPDATE_SYNTAX_TABLE (charpos);
5481 #endif
5482 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5483 s1 = SYNTAX (c1);
5484 #ifdef emacs
5485 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5486 #endif
5487 PREFETCH_NOLIMIT ();
5488 c2 = RE_STRING_CHAR (d, dend - d);
5489 s2 = SYNTAX (c2);
5490
5491 if (/* Case 2: Only one of S1 and S2 is Sword. */
5492 ((s1 == Sword) != (s2 == Sword))
5493 /* Case 3: Both of S1 and S2 are Sword, and macro
5494 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5495 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5496 not = !not;
5497 }
5498 if (not)
5499 break;
5500 else
5501 goto fail;
5502
5503 case wordbeg:
5504 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5505
5506 /* We FAIL in one of the following cases: */
5507
5508 /* Case 1: D is at the end of string. */
5509 if (AT_STRINGS_END (d))
5510 goto fail;
5511 else
5512 {
5513 /* C1 is the character before D, S1 is the syntax of C1, C2
5514 is the character at D, and S2 is the syntax of C2. */
5515 re_wchar_t c1, c2;
5516 int s1, s2;
5517 #ifdef emacs
5518 int offset = PTR_TO_OFFSET (d);
5519 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5520 UPDATE_SYNTAX_TABLE (charpos);
5521 #endif
5522 PREFETCH ();
5523 c2 = RE_STRING_CHAR (d, dend - d);
5524 s2 = SYNTAX (c2);
5525
5526 /* Case 2: S2 is not Sword. */
5527 if (s2 != Sword)
5528 goto fail;
5529
5530 /* Case 3: D is not at the beginning of string ... */
5531 if (!AT_STRINGS_BEG (d))
5532 {
5533 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5534 #ifdef emacs
5535 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5536 #endif
5537 s1 = SYNTAX (c1);
5538
5539 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5540 returns 0. */
5541 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5542 goto fail;
5543 }
5544 }
5545 break;
5546
5547 case wordend:
5548 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5549
5550 /* We FAIL in one of the following cases: */
5551
5552 /* Case 1: D is at the beginning of string. */
5553 if (AT_STRINGS_BEG (d))
5554 goto fail;
5555 else
5556 {
5557 /* C1 is the character before D, S1 is the syntax of C1, C2
5558 is the character at D, and S2 is the syntax of C2. */
5559 re_wchar_t c1, c2;
5560 int s1, s2;
5561 #ifdef emacs
5562 int offset = PTR_TO_OFFSET (d) - 1;
5563 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5564 UPDATE_SYNTAX_TABLE (charpos);
5565 #endif
5566 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5567 s1 = SYNTAX (c1);
5568
5569 /* Case 2: S1 is not Sword. */
5570 if (s1 != Sword)
5571 goto fail;
5572
5573 /* Case 3: D is not at the end of string ... */
5574 if (!AT_STRINGS_END (d))
5575 {
5576 PREFETCH_NOLIMIT ();
5577 c2 = RE_STRING_CHAR (d, dend - d);
5578 #ifdef emacs
5579 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5580 #endif
5581 s2 = SYNTAX (c2);
5582
5583 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5584 returns 0. */
5585 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5586 goto fail;
5587 }
5588 }
5589 break;
5590
5591 case syntaxspec:
5592 case notsyntaxspec:
5593 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5594 mcnt = *p++;
5595 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5596 PREFETCH ();
5597 #ifdef emacs
5598 {
5599 int offset = PTR_TO_OFFSET (d);
5600 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5601 UPDATE_SYNTAX_TABLE (pos1);
5602 }
5603 #endif
5604 {
5605 int len;
5606 re_wchar_t c;
5607
5608 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5609
5610 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5611 goto fail;
5612 d += len;
5613 }
5614 break;
5615
5616 #ifdef emacs
5617 case before_dot:
5618 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5619 if (PTR_BYTE_POS (d) >= PT_BYTE)
5620 goto fail;
5621 break;
5622
5623 case at_dot:
5624 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5625 if (PTR_BYTE_POS (d) != PT_BYTE)
5626 goto fail;
5627 break;
5628
5629 case after_dot:
5630 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5631 if (PTR_BYTE_POS (d) <= PT_BYTE)
5632 goto fail;
5633 break;
5634
5635 case categoryspec:
5636 case notcategoryspec:
5637 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5638 mcnt = *p++;
5639 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5640 PREFETCH ();
5641 {
5642 int len;
5643 re_wchar_t c;
5644
5645 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5646
5647 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5648 goto fail;
5649 d += len;
5650 }
5651 break;
5652
5653 #endif /* emacs */
5654
5655 default:
5656 abort ();
5657 }
5658 continue; /* Successfully executed one pattern command; keep going. */
5659
5660
5661 /* We goto here if a matching operation fails. */
5662 fail:
5663 IMMEDIATE_QUIT_CHECK;
5664 if (!FAIL_STACK_EMPTY ())
5665 {
5666 re_char *str, *pat;
5667 /* A restart point is known. Restore to that state. */
5668 DEBUG_PRINT1 ("\nFAIL:\n");
5669 POP_FAILURE_POINT (str, pat);
5670 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5671 {
5672 case on_failure_keep_string_jump:
5673 assert (str == NULL);
5674 goto continue_failure_jump;
5675
5676 case on_failure_jump_nastyloop:
5677 assert ((re_opcode_t)pat[-2] == no_op);
5678 PUSH_FAILURE_POINT (pat - 2, str);
5679 /* Fallthrough */
5680
5681 case on_failure_jump_loop:
5682 case on_failure_jump:
5683 case succeed_n:
5684 d = str;
5685 continue_failure_jump:
5686 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5687 p = pat + mcnt;
5688 break;
5689
5690 case no_op:
5691 /* A special frame used for nastyloops. */
5692 goto fail;
5693
5694 default:
5695 abort();
5696 }
5697
5698 assert (p >= bufp->buffer && p <= pend);
5699
5700 if (d >= string1 && d <= end1)
5701 dend = end_match_1;
5702 }
5703 else
5704 break; /* Matching at this starting point really fails. */
5705 } /* for (;;) */
5706
5707 if (best_regs_set)
5708 goto restore_best_regs;
5709
5710 FREE_VARIABLES ();
5711
5712 return -1; /* Failure to match. */
5713 } /* re_match_2 */
5714 \f
5715 /* Subroutine definitions for re_match_2. */
5716
5717 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5718 bytes; nonzero otherwise. */
5719
5720 static int
5721 bcmp_translate (s1, s2, len, translate, multibyte)
5722 re_char *s1, *s2;
5723 register int len;
5724 RE_TRANSLATE_TYPE translate;
5725 const int multibyte;
5726 {
5727 register re_char *p1 = s1, *p2 = s2;
5728 re_char *p1_end = s1 + len;
5729 re_char *p2_end = s2 + len;
5730
5731 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5732 different lengths, but relying on a single `len' would break this. -sm */
5733 while (p1 < p1_end && p2 < p2_end)
5734 {
5735 int p1_charlen, p2_charlen;
5736 re_wchar_t p1_ch, p2_ch;
5737
5738 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5739 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5740
5741 if (RE_TRANSLATE (translate, p1_ch)
5742 != RE_TRANSLATE (translate, p2_ch))
5743 return 1;
5744
5745 p1 += p1_charlen, p2 += p2_charlen;
5746 }
5747
5748 if (p1 != p1_end || p2 != p2_end)
5749 return 1;
5750
5751 return 0;
5752 }
5753 \f
5754 /* Entry points for GNU code. */
5755
5756 /* re_compile_pattern is the GNU regular expression compiler: it
5757 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5758 Returns 0 if the pattern was valid, otherwise an error string.
5759
5760 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5761 are set in BUFP on entry.
5762
5763 We call regex_compile to do the actual compilation. */
5764
5765 const char *
5766 re_compile_pattern (pattern, length, bufp)
5767 const char *pattern;
5768 size_t length;
5769 struct re_pattern_buffer *bufp;
5770 {
5771 reg_errcode_t ret;
5772
5773 /* GNU code is written to assume at least RE_NREGS registers will be set
5774 (and at least one extra will be -1). */
5775 bufp->regs_allocated = REGS_UNALLOCATED;
5776
5777 /* And GNU code determines whether or not to get register information
5778 by passing null for the REGS argument to re_match, etc., not by
5779 setting no_sub. */
5780 bufp->no_sub = 0;
5781
5782 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
5783
5784 if (!ret)
5785 return NULL;
5786 return gettext (re_error_msgid[(int) ret]);
5787 }
5788 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
5789 \f
5790 /* Entry points compatible with 4.2 BSD regex library. We don't define
5791 them unless specifically requested. */
5792
5793 #if defined _REGEX_RE_COMP || defined _LIBC
5794
5795 /* BSD has one and only one pattern buffer. */
5796 static struct re_pattern_buffer re_comp_buf;
5797
5798 char *
5799 # ifdef _LIBC
5800 /* Make these definitions weak in libc, so POSIX programs can redefine
5801 these names if they don't use our functions, and still use
5802 regcomp/regexec below without link errors. */
5803 weak_function
5804 # endif
5805 re_comp (s)
5806 const char *s;
5807 {
5808 reg_errcode_t ret;
5809
5810 if (!s)
5811 {
5812 if (!re_comp_buf.buffer)
5813 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5814 return (char *) gettext ("No previous regular expression");
5815 return 0;
5816 }
5817
5818 if (!re_comp_buf.buffer)
5819 {
5820 re_comp_buf.buffer = (unsigned char *) malloc (200);
5821 if (re_comp_buf.buffer == NULL)
5822 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5823 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5824 re_comp_buf.allocated = 200;
5825
5826 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5827 if (re_comp_buf.fastmap == NULL)
5828 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5829 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5830 }
5831
5832 /* Since `re_exec' always passes NULL for the `regs' argument, we
5833 don't need to initialize the pattern buffer fields which affect it. */
5834
5835 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5836
5837 if (!ret)
5838 return NULL;
5839
5840 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5841 return (char *) gettext (re_error_msgid[(int) ret]);
5842 }
5843
5844
5845 int
5846 # ifdef _LIBC
5847 weak_function
5848 # endif
5849 re_exec (s)
5850 const char *s;
5851 {
5852 const int len = strlen (s);
5853 return
5854 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5855 }
5856 #endif /* _REGEX_RE_COMP */
5857 \f
5858 /* POSIX.2 functions. Don't define these for Emacs. */
5859
5860 #ifndef emacs
5861
5862 /* regcomp takes a regular expression as a string and compiles it.
5863
5864 PREG is a regex_t *. We do not expect any fields to be initialized,
5865 since POSIX says we shouldn't. Thus, we set
5866
5867 `buffer' to the compiled pattern;
5868 `used' to the length of the compiled pattern;
5869 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5870 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5871 RE_SYNTAX_POSIX_BASIC;
5872 `fastmap' to an allocated space for the fastmap;
5873 `fastmap_accurate' to zero;
5874 `re_nsub' to the number of subexpressions in PATTERN.
5875
5876 PATTERN is the address of the pattern string.
5877
5878 CFLAGS is a series of bits which affect compilation.
5879
5880 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5881 use POSIX basic syntax.
5882
5883 If REG_NEWLINE is set, then . and [^...] don't match newline.
5884 Also, regexec will try a match beginning after every newline.
5885
5886 If REG_ICASE is set, then we considers upper- and lowercase
5887 versions of letters to be equivalent when matching.
5888
5889 If REG_NOSUB is set, then when PREG is passed to regexec, that
5890 routine will report only success or failure, and nothing about the
5891 registers.
5892
5893 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5894 the return codes and their meanings.) */
5895
5896 int
5897 regcomp (preg, pattern, cflags)
5898 regex_t *__restrict preg;
5899 const char *__restrict pattern;
5900 int cflags;
5901 {
5902 reg_errcode_t ret;
5903 reg_syntax_t syntax
5904 = (cflags & REG_EXTENDED) ?
5905 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5906
5907 /* regex_compile will allocate the space for the compiled pattern. */
5908 preg->buffer = 0;
5909 preg->allocated = 0;
5910 preg->used = 0;
5911
5912 /* Try to allocate space for the fastmap. */
5913 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5914
5915 if (cflags & REG_ICASE)
5916 {
5917 unsigned i;
5918
5919 preg->translate
5920 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5921 * sizeof (*(RE_TRANSLATE_TYPE)0));
5922 if (preg->translate == NULL)
5923 return (int) REG_ESPACE;
5924
5925 /* Map uppercase characters to corresponding lowercase ones. */
5926 for (i = 0; i < CHAR_SET_SIZE; i++)
5927 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5928 }
5929 else
5930 preg->translate = NULL;
5931
5932 /* If REG_NEWLINE is set, newlines are treated differently. */
5933 if (cflags & REG_NEWLINE)
5934 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5935 syntax &= ~RE_DOT_NEWLINE;
5936 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5937 }
5938 else
5939 syntax |= RE_NO_NEWLINE_ANCHOR;
5940
5941 preg->no_sub = !!(cflags & REG_NOSUB);
5942
5943 /* POSIX says a null character in the pattern terminates it, so we
5944 can use strlen here in compiling the pattern. */
5945 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5946
5947 /* POSIX doesn't distinguish between an unmatched open-group and an
5948 unmatched close-group: both are REG_EPAREN. */
5949 if (ret == REG_ERPAREN)
5950 ret = REG_EPAREN;
5951
5952 if (ret == REG_NOERROR && preg->fastmap)
5953 { /* Compute the fastmap now, since regexec cannot modify the pattern
5954 buffer. */
5955 re_compile_fastmap (preg);
5956 if (preg->can_be_null)
5957 { /* The fastmap can't be used anyway. */
5958 free (preg->fastmap);
5959 preg->fastmap = NULL;
5960 }
5961 }
5962 return (int) ret;
5963 }
5964 WEAK_ALIAS (__regcomp, regcomp)
5965
5966
5967 /* regexec searches for a given pattern, specified by PREG, in the
5968 string STRING.
5969
5970 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5971 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5972 least NMATCH elements, and we set them to the offsets of the
5973 corresponding matched substrings.
5974
5975 EFLAGS specifies `execution flags' which affect matching: if
5976 REG_NOTBOL is set, then ^ does not match at the beginning of the
5977 string; if REG_NOTEOL is set, then $ does not match at the end.
5978
5979 We return 0 if we find a match and REG_NOMATCH if not. */
5980
5981 int
5982 regexec (preg, string, nmatch, pmatch, eflags)
5983 const regex_t *__restrict preg;
5984 const char *__restrict string;
5985 size_t nmatch;
5986 regmatch_t pmatch[];
5987 int eflags;
5988 {
5989 int ret;
5990 struct re_registers regs;
5991 regex_t private_preg;
5992 int len = strlen (string);
5993 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
5994
5995 private_preg = *preg;
5996
5997 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5998 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5999
6000 /* The user has told us exactly how many registers to return
6001 information about, via `nmatch'. We have to pass that on to the
6002 matching routines. */
6003 private_preg.regs_allocated = REGS_FIXED;
6004
6005 if (want_reg_info)
6006 {
6007 regs.num_regs = nmatch;
6008 regs.start = TALLOC (nmatch * 2, regoff_t);
6009 if (regs.start == NULL)
6010 return (int) REG_NOMATCH;
6011 regs.end = regs.start + nmatch;
6012 }
6013
6014 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6015 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6016 was a little bit longer but still only matching the real part.
6017 This works because the `endline' will check for a '\n' and will find a
6018 '\0', correctly deciding that this is not the end of a line.
6019 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6020 a convenient '\0' there. For all we know, the string could be preceded
6021 by '\n' which would throw things off. */
6022
6023 /* Perform the searching operation. */
6024 ret = re_search (&private_preg, string, len,
6025 /* start: */ 0, /* range: */ len,
6026 want_reg_info ? &regs : (struct re_registers *) 0);
6027
6028 /* Copy the register information to the POSIX structure. */
6029 if (want_reg_info)
6030 {
6031 if (ret >= 0)
6032 {
6033 unsigned r;
6034
6035 for (r = 0; r < nmatch; r++)
6036 {
6037 pmatch[r].rm_so = regs.start[r];
6038 pmatch[r].rm_eo = regs.end[r];
6039 }
6040 }
6041
6042 /* If we needed the temporary register info, free the space now. */
6043 free (regs.start);
6044 }
6045
6046 /* We want zero return to mean success, unlike `re_search'. */
6047 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6048 }
6049 WEAK_ALIAS (__regexec, regexec)
6050
6051
6052 /* Returns a message corresponding to an error code, ERRCODE, returned
6053 from either regcomp or regexec. We don't use PREG here. */
6054
6055 size_t
6056 regerror (errcode, preg, errbuf, errbuf_size)
6057 int errcode;
6058 const regex_t *preg;
6059 char *errbuf;
6060 size_t errbuf_size;
6061 {
6062 const char *msg;
6063 size_t msg_size;
6064
6065 if (errcode < 0
6066 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6067 /* Only error codes returned by the rest of the code should be passed
6068 to this routine. If we are given anything else, or if other regex
6069 code generates an invalid error code, then the program has a bug.
6070 Dump core so we can fix it. */
6071 abort ();
6072
6073 msg = gettext (re_error_msgid[errcode]);
6074
6075 msg_size = strlen (msg) + 1; /* Includes the null. */
6076
6077 if (errbuf_size != 0)
6078 {
6079 if (msg_size > errbuf_size)
6080 {
6081 strncpy (errbuf, msg, errbuf_size - 1);
6082 errbuf[errbuf_size - 1] = 0;
6083 }
6084 else
6085 strcpy (errbuf, msg);
6086 }
6087
6088 return msg_size;
6089 }
6090 WEAK_ALIAS (__regerror, regerror)
6091
6092
6093 /* Free dynamically allocated space used by PREG. */
6094
6095 void
6096 regfree (preg)
6097 regex_t *preg;
6098 {
6099 if (preg->buffer != NULL)
6100 free (preg->buffer);
6101 preg->buffer = NULL;
6102
6103 preg->allocated = 0;
6104 preg->used = 0;
6105
6106 if (preg->fastmap != NULL)
6107 free (preg->fastmap);
6108 preg->fastmap = NULL;
6109 preg->fastmap_accurate = 0;
6110
6111 if (preg->translate != NULL)
6112 free (preg->translate);
6113 preg->translate = NULL;
6114 }
6115 WEAK_ALIAS (__regfree, regfree)
6116
6117 #endif /* not emacs */