(Fprimitive_undo): Check veracity of delta,start,end.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
29 */
30
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
35
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
39
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
46
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
55
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
63
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
90
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
100
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
107
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
113
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
117
118 # include "lisp.h"
119 # include "buffer.h"
120
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
123
124 # include "syntax.h"
125 # include "charset.h"
126 # include "category.h"
127
128 # ifdef malloc
129 # undef malloc
130 # endif
131 # define malloc xmalloc
132 # ifdef realloc
133 # undef realloc
134 # endif
135 # define realloc xrealloc
136 # ifdef free
137 # undef free
138 # endif
139 # define free xfree
140
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
155 do { \
156 if (multibyte) \
157 { \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
168
169 #else /* not emacs */
170
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
174 # undef REL_ALLOC
175
176 # if defined STDC_HEADERS || defined _LIBC
177 # include <stdlib.h>
178 # else
179 char *malloc ();
180 char *realloc ();
181 # endif
182
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
189 # endif
190 # endif
191 # endif
192
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198 # include <string.h>
199 # ifndef bzero
200 # ifndef _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
202 # else
203 # define bzero(s, n) __bzero (s, n)
204 # endif
205 # endif
206 # else
207 # include <strings.h>
208 # ifndef memcmp
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
210 # endif
211 # ifndef memcpy
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
213 # endif
214 # endif
215 # endif
216
217 /* Define the syntax stuff for \<, \>, etc. */
218
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
221
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
224 # else
225 # define SWITCH_ENUM_CAST(x) (x)
226 # endif
227
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
249
250 #ifndef RE_TRANSLATE
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
253 #endif
254 \f
255 /* Get the interface, including the syntax bits. */
256 #include "regex.h"
257
258 /* isalpha etc. are used for the character classes. */
259 #include <ctype.h>
260
261 #ifdef emacs
262
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
265
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
268
269 /* The Emacs definitions should not be directly affected by locales. */
270
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
277
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
280
281 /* The rest must handle multibyte characters. */
282
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
285 : 1)
286
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
289 : 1)
290
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
296
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
301
302 # define ISLOWER(c) (LOWERCASEP (c))
303
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
310
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
312
313 # define ISUPPER(c) (UPPERCASEP (c))
314
315 # define ISWORD(c) (SYNTAX (c) == Sword)
316
317 #else /* not emacs */
318
319 /* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
330
331 # undef ISASCII
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
334 # else
335 # define ISASCII(c) isascii(c)
336 # endif
337
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
340
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
343
344 # ifdef isblank
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
346 # else
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348 # endif
349 # ifdef isgraph
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351 # else
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353 # endif
354
355 # undef ISPRINT
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367 # define ISWORD(c) ISALPHA(c)
368
369 # ifdef _tolower
370 # define TOLOWER(c) _tolower(c)
371 # else
372 # define TOLOWER(c) tolower(c)
373 # endif
374
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
377
378 # ifdef SYNTAX_TABLE
379
380 extern char *re_syntax_table;
381
382 # else /* not SYNTAX_TABLE */
383
384 static char re_syntax_table[CHAR_SET_SIZE];
385
386 static void
387 init_syntax_once ()
388 {
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
400
401 re_syntax_table['_'] = Ssymbol;
402
403 done = 1;
404 }
405
406 # endif /* not SYNTAX_TABLE */
407
408 # define SYNTAX(c) re_syntax_table[(c)]
409
410 #endif /* not emacs */
411 \f
412 #ifndef NULL
413 # define NULL (void *)0
414 #endif
415
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
421 #if __STDC__
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
426 #endif
427 \f
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
433
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438 #ifdef REGEX_MALLOC
439
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
443
444 #else /* not REGEX_MALLOC */
445
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
448
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # if HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
457
458 # endif /* not alloca */
459
460 # define REGEX_ALLOCATE alloca
461
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
466
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
469
470 #endif /* not REGEX_MALLOC */
471
472 /* Define how to allocate the failure stack. */
473
474 #if defined REL_ALLOC && defined REGEX_MALLOC
475
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
482
483 #else /* not using relocating allocator */
484
485 # ifdef REGEX_MALLOC
486
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
490
491 # else /* not REGEX_MALLOC */
492
493 # define REGEX_ALLOCATE_STACK alloca
494
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
499
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
502
503
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
517 #define BYTEWIDTH 8 /* In bits. */
518
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521 #undef MAX
522 #undef MIN
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
525
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char;
528
529 typedef char boolean;
530 #define false 0
531 #define true 1
532
533 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
539 \f
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545 typedef enum
546 {
547 no_op = 0,
548
549 /* Succeed right away--no more backtracking. */
550 succeed,
551
552 /* Followed by one byte giving n, then by n literal bytes. */
553 exactn,
554
555 /* Matches any (more or less) character. */
556 anychar,
557
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
572 charset,
573
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
576 charset_not,
577
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
581 field. */
582 start_memory,
583
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
587 pattern buffer. */
588 stop_memory,
589
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
592 duplicate,
593
594 /* Fail unless at beginning of line. */
595 begline,
596
597 /* Fail unless at end of line. */
598 endline,
599
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
602 begbuf,
603
604 /* Analogously, for end of buffer/string. */
605 endbuf,
606
607 /* Followed by two byte relative address to which to jump. */
608 jump,
609
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
612 on_failure_jump,
613
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump,
617
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart,
636
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
641 succeed_n,
642
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
645 jump_n,
646
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
650 set_number_at,
651
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
656 notwordbound, /* Succeeds if not at a word boundary. */
657
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
666 notsyntaxspec
667
668 #ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
672
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
682 #endif /* emacs */
683 } re_opcode_t;
684 \f
685 /* Common operations on the compiled pattern. */
686
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689 #define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699 #define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708 #define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714 #ifdef DEBUG
715 static void extract_number _RE_ARGS ((int *dest, re_char *source));
716 static void
717 extract_number (dest, source)
718 int *dest;
719 re_char *source;
720 {
721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
722 *dest = *source & 0377;
723 *dest += temp << 8;
724 }
725
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
730
731 #endif /* DEBUG */
732
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
739 (source) += 2; \
740 } while (0)
741
742 #ifdef DEBUG
743 static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
745 static void
746 extract_number_and_incr (destination, source)
747 int *destination;
748 re_char **source;
749 {
750 extract_number (destination, *source);
751 *source += 2;
752 }
753
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
759
760 #endif /* DEBUG */
761 \f
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
765
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
776
777 #define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785 /* Macros for charset. */
786
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
793
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
804
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
813 and end. */
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854 \f
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
860
861 #ifdef DEBUG
862
863 /* We use standard I/O for debugging. */
864 # include <stdio.h>
865
866 /* It is useful to test things that ``must'' be true when debugging. */
867 # include <assert.h>
868
869 static int debug = -100000;
870
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880
881
882 /* Print the fastmap in human-readable form. */
883
884 void
885 print_fastmap (fastmap)
886 char *fastmap;
887 {
888 unsigned was_a_range = 0;
889 unsigned i = 0;
890
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
902 if (was_a_range)
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
908 }
909 putchar ('\n');
910 }
911
912
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916 void
917 print_partial_compiled_pattern (start, end)
918 re_char *start;
919 re_char *end;
920 {
921 int mcnt, mcnt2;
922 re_char *p = start;
923 re_char *pend = end;
924
925 if (start == NULL)
926 {
927 fprintf (stderr, "(null)\n");
928 return;
929 }
930
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 fprintf (stderr, "%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
938 case no_op:
939 fprintf (stderr, "/no_op");
940 break;
941
942 case succeed:
943 fprintf (stderr, "/succeed");
944 break;
945
946 case exactn:
947 mcnt = *p++;
948 fprintf (stderr, "/exactn/%d", mcnt);
949 do
950 {
951 fprintf (stderr, "/%c", *p++);
952 }
953 while (--mcnt);
954 break;
955
956 case start_memory:
957 fprintf (stderr, "/start_memory/%d", *p++);
958 break;
959
960 case stop_memory:
961 fprintf (stderr, "/stop_memory/%d", *p++);
962 break;
963
964 case duplicate:
965 fprintf (stderr, "/duplicate/%d", *p++);
966 break;
967
968 case anychar:
969 fprintf (stderr, "/anychar");
970 break;
971
972 case charset:
973 case charset_not:
974 {
975 register int c, last = -100;
976 register int in_range = 0;
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
979
980 fprintf (stderr, "/charset [%s",
981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
982
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
985
986 for (c = 0; c < 256; c++)
987 if (c / 8 < length
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 fprintf (stderr, "-");
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
998 {
999 fprintf (stderr, "%c", last);
1000 in_range = 0;
1001 }
1002
1003 if (! in_range)
1004 fprintf (stderr, "%c", c);
1005
1006 last = c;
1007 }
1008
1009 if (in_range)
1010 fprintf (stderr, "%c", last);
1011
1012 fprintf (stderr, "]");
1013
1014 p += 1 + length;
1015
1016 if (has_range_table)
1017 {
1018 int count;
1019 fprintf (stderr, "has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
1026 }
1027 break;
1028
1029 case begline:
1030 fprintf (stderr, "/begline");
1031 break;
1032
1033 case endline:
1034 fprintf (stderr, "/endline");
1035 break;
1036
1037 case on_failure_jump:
1038 extract_number_and_incr (&mcnt, &p);
1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1040 break;
1041
1042 case on_failure_keep_string_jump:
1043 extract_number_and_incr (&mcnt, &p);
1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
1046
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
1052 case on_failure_jump_loop:
1053 extract_number_and_incr (&mcnt, &p);
1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1055 break;
1056
1057 case on_failure_jump_smart:
1058 extract_number_and_incr (&mcnt, &p);
1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1060 break;
1061
1062 case jump:
1063 extract_number_and_incr (&mcnt, &p);
1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
1065 break;
1066
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1071 break;
1072
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1077 break;
1078
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1083 break;
1084
1085 case wordbound:
1086 fprintf (stderr, "/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 fprintf (stderr, "/notwordbound");
1091 break;
1092
1093 case wordbeg:
1094 fprintf (stderr, "/wordbeg");
1095 break;
1096
1097 case wordend:
1098 fprintf (stderr, "/wordend");
1099 break;
1100
1101 case symbeg:
1102 fprintf (stderr, "/symbeg");
1103 break;
1104
1105 case symend:
1106 fprintf (stderr, "/symend");
1107 break;
1108
1109 case syntaxspec:
1110 fprintf (stderr, "/syntaxspec");
1111 mcnt = *p++;
1112 fprintf (stderr, "/%d", mcnt);
1113 break;
1114
1115 case notsyntaxspec:
1116 fprintf (stderr, "/notsyntaxspec");
1117 mcnt = *p++;
1118 fprintf (stderr, "/%d", mcnt);
1119 break;
1120
1121 # ifdef emacs
1122 case before_dot:
1123 fprintf (stderr, "/before_dot");
1124 break;
1125
1126 case at_dot:
1127 fprintf (stderr, "/at_dot");
1128 break;
1129
1130 case after_dot:
1131 fprintf (stderr, "/after_dot");
1132 break;
1133
1134 case categoryspec:
1135 fprintf (stderr, "/categoryspec");
1136 mcnt = *p++;
1137 fprintf (stderr, "/%d", mcnt);
1138 break;
1139
1140 case notcategoryspec:
1141 fprintf (stderr, "/notcategoryspec");
1142 mcnt = *p++;
1143 fprintf (stderr, "/%d", mcnt);
1144 break;
1145 # endif /* emacs */
1146
1147 case begbuf:
1148 fprintf (stderr, "/begbuf");
1149 break;
1150
1151 case endbuf:
1152 fprintf (stderr, "/endbuf");
1153 break;
1154
1155 default:
1156 fprintf (stderr, "?%d", *(p-1));
1157 }
1158
1159 fprintf (stderr, "\n");
1160 }
1161
1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1163 }
1164
1165
1166 void
1167 print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169 {
1170 re_char *buffer = bufp->buffer;
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
1188 printf ("syntax: %lx\n", bufp->syntax);
1189 fflush (stdout);
1190 /* Perhaps we should print the translate table? */
1191 }
1192
1193
1194 void
1195 print_double_string (where, string1, size1, string2, size2)
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
1199 int size1;
1200 int size2;
1201 {
1202 int this_char;
1203
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
1212
1213 where = string2;
1214 }
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
1217 putchar (string2[this_char]);
1218 }
1219 }
1220
1221 #else /* not DEBUG */
1222
1223 # undef assert
1224 # define assert(e)
1225
1226 # define DEBUG_STATEMENT(e)
1227 # define DEBUG_PRINT1(x)
1228 # define DEBUG_PRINT2(x1, x2)
1229 # define DEBUG_PRINT3(x1, x2, x3)
1230 # define DEBUG_PRINT4(x1, x2, x3, x4)
1231 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1233
1234 #endif /* not DEBUG */
1235 \f
1236 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239 /* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241 reg_syntax_t re_syntax_options;
1242
1243
1244 /* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
1249 defined in regex.h. We return the old syntax. */
1250
1251 reg_syntax_t
1252 re_set_syntax (syntax)
1253 reg_syntax_t syntax;
1254 {
1255 reg_syntax_t ret = re_syntax_options;
1256
1257 re_syntax_options = syntax;
1258 return ret;
1259 }
1260 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1261
1262 /* Regexp to use to replace spaces, or NULL meaning don't. */
1263 static re_char *whitespace_regexp;
1264
1265 void
1266 re_set_whitespace_regexp (regexp)
1267 re_char *regexp;
1268 {
1269 whitespace_regexp = regexp;
1270 }
1271 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1272 \f
1273 /* This table gives an error message for each of the error codes listed
1274 in regex.h. Obviously the order here has to be same as there.
1275 POSIX doesn't require that we do anything for REG_NOERROR,
1276 but why not be nice? */
1277
1278 static const char *re_error_msgid[] =
1279 {
1280 gettext_noop ("Success"), /* REG_NOERROR */
1281 gettext_noop ("No match"), /* REG_NOMATCH */
1282 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1283 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1284 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1285 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1286 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1287 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1288 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1289 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1290 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1291 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1292 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1293 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1294 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1295 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1296 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1297 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1298 };
1299 \f
1300 /* Avoiding alloca during matching, to placate r_alloc. */
1301
1302 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1303 searching and matching functions should not call alloca. On some
1304 systems, alloca is implemented in terms of malloc, and if we're
1305 using the relocating allocator routines, then malloc could cause a
1306 relocation, which might (if the strings being searched are in the
1307 ralloc heap) shift the data out from underneath the regexp
1308 routines.
1309
1310 Here's another reason to avoid allocation: Emacs
1311 processes input from X in a signal handler; processing X input may
1312 call malloc; if input arrives while a matching routine is calling
1313 malloc, then we're scrod. But Emacs can't just block input while
1314 calling matching routines; then we don't notice interrupts when
1315 they come in. So, Emacs blocks input around all regexp calls
1316 except the matching calls, which it leaves unprotected, in the
1317 faith that they will not malloc. */
1318
1319 /* Normally, this is fine. */
1320 #define MATCH_MAY_ALLOCATE
1321
1322 /* When using GNU C, we are not REALLY using the C alloca, no matter
1323 what config.h may say. So don't take precautions for it. */
1324 #ifdef __GNUC__
1325 # undef C_ALLOCA
1326 #endif
1327
1328 /* The match routines may not allocate if (1) they would do it with malloc
1329 and (2) it's not safe for them to use malloc.
1330 Note that if REL_ALLOC is defined, matching would not use malloc for the
1331 failure stack, but we would still use it for the register vectors;
1332 so REL_ALLOC should not affect this. */
1333 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1334 # undef MATCH_MAY_ALLOCATE
1335 #endif
1336
1337 \f
1338 /* Failure stack declarations and macros; both re_compile_fastmap and
1339 re_match_2 use a failure stack. These have to be macros because of
1340 REGEX_ALLOCATE_STACK. */
1341
1342
1343 /* Approximate number of failure points for which to initially allocate space
1344 when matching. If this number is exceeded, we allocate more
1345 space, so it is not a hard limit. */
1346 #ifndef INIT_FAILURE_ALLOC
1347 # define INIT_FAILURE_ALLOC 20
1348 #endif
1349
1350 /* Roughly the maximum number of failure points on the stack. Would be
1351 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1352 This is a variable only so users of regex can assign to it; we never
1353 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1354 before using it, so it should probably be a byte-count instead. */
1355 # if defined MATCH_MAY_ALLOCATE
1356 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1357 whose default stack limit is 2mb. In order for a larger
1358 value to work reliably, you have to try to make it accord
1359 with the process stack limit. */
1360 size_t re_max_failures = 40000;
1361 # else
1362 size_t re_max_failures = 4000;
1363 # endif
1364
1365 union fail_stack_elt
1366 {
1367 re_char *pointer;
1368 /* This should be the biggest `int' that's no bigger than a pointer. */
1369 long integer;
1370 };
1371
1372 typedef union fail_stack_elt fail_stack_elt_t;
1373
1374 typedef struct
1375 {
1376 fail_stack_elt_t *stack;
1377 size_t size;
1378 size_t avail; /* Offset of next open position. */
1379 size_t frame; /* Offset of the cur constructed frame. */
1380 } fail_stack_type;
1381
1382 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1383 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1384
1385
1386 /* Define macros to initialize and free the failure stack.
1387 Do `return -2' if the alloc fails. */
1388
1389 #ifdef MATCH_MAY_ALLOCATE
1390 # define INIT_FAIL_STACK() \
1391 do { \
1392 fail_stack.stack = (fail_stack_elt_t *) \
1393 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1394 * sizeof (fail_stack_elt_t)); \
1395 \
1396 if (fail_stack.stack == NULL) \
1397 return -2; \
1398 \
1399 fail_stack.size = INIT_FAILURE_ALLOC; \
1400 fail_stack.avail = 0; \
1401 fail_stack.frame = 0; \
1402 } while (0)
1403
1404 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1405 #else
1406 # define INIT_FAIL_STACK() \
1407 do { \
1408 fail_stack.avail = 0; \
1409 fail_stack.frame = 0; \
1410 } while (0)
1411
1412 # define RESET_FAIL_STACK() ((void)0)
1413 #endif
1414
1415
1416 /* Double the size of FAIL_STACK, up to a limit
1417 which allows approximately `re_max_failures' items.
1418
1419 Return 1 if succeeds, and 0 if either ran out of memory
1420 allocating space for it or it was already too large.
1421
1422 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1423
1424 /* Factor to increase the failure stack size by
1425 when we increase it.
1426 This used to be 2, but 2 was too wasteful
1427 because the old discarded stacks added up to as much space
1428 were as ultimate, maximum-size stack. */
1429 #define FAIL_STACK_GROWTH_FACTOR 4
1430
1431 #define GROW_FAIL_STACK(fail_stack) \
1432 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1433 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1434 ? 0 \
1435 : ((fail_stack).stack \
1436 = (fail_stack_elt_t *) \
1437 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1438 (fail_stack).size * sizeof (fail_stack_elt_t), \
1439 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1440 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1441 * FAIL_STACK_GROWTH_FACTOR))), \
1442 \
1443 (fail_stack).stack == NULL \
1444 ? 0 \
1445 : ((fail_stack).size \
1446 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1447 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1448 * FAIL_STACK_GROWTH_FACTOR)) \
1449 / sizeof (fail_stack_elt_t)), \
1450 1)))
1451
1452
1453 /* Push a pointer value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
1455 be called from within `PUSH_FAILURE_POINT'. */
1456 #define PUSH_FAILURE_POINTER(item) \
1457 fail_stack.stack[fail_stack.avail++].pointer = (item)
1458
1459 /* This pushes an integer-valued item onto the failure stack.
1460 Assumes the variable `fail_stack'. Probably should only
1461 be called from within `PUSH_FAILURE_POINT'. */
1462 #define PUSH_FAILURE_INT(item) \
1463 fail_stack.stack[fail_stack.avail++].integer = (item)
1464
1465 /* Push a fail_stack_elt_t value onto the failure stack.
1466 Assumes the variable `fail_stack'. Probably should only
1467 be called from within `PUSH_FAILURE_POINT'. */
1468 #define PUSH_FAILURE_ELT(item) \
1469 fail_stack.stack[fail_stack.avail++] = (item)
1470
1471 /* These three POP... operations complement the three PUSH... operations.
1472 All assume that `fail_stack' is nonempty. */
1473 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1474 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1475 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1476
1477 /* Individual items aside from the registers. */
1478 #define NUM_NONREG_ITEMS 3
1479
1480 /* Used to examine the stack (to detect infinite loops). */
1481 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1482 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1483 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1484 #define TOP_FAILURE_HANDLE() fail_stack.frame
1485
1486
1487 #define ENSURE_FAIL_STACK(space) \
1488 while (REMAINING_AVAIL_SLOTS <= space) { \
1489 if (!GROW_FAIL_STACK (fail_stack)) \
1490 return -2; \
1491 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1492 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1493 }
1494
1495 /* Push register NUM onto the stack. */
1496 #define PUSH_FAILURE_REG(num) \
1497 do { \
1498 char *destination; \
1499 ENSURE_FAIL_STACK(3); \
1500 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1501 num, regstart[num], regend[num]); \
1502 PUSH_FAILURE_POINTER (regstart[num]); \
1503 PUSH_FAILURE_POINTER (regend[num]); \
1504 PUSH_FAILURE_INT (num); \
1505 } while (0)
1506
1507 /* Change the counter's value to VAL, but make sure that it will
1508 be reset when backtracking. */
1509 #define PUSH_NUMBER(ptr,val) \
1510 do { \
1511 char *destination; \
1512 int c; \
1513 ENSURE_FAIL_STACK(3); \
1514 EXTRACT_NUMBER (c, ptr); \
1515 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1516 PUSH_FAILURE_INT (c); \
1517 PUSH_FAILURE_POINTER (ptr); \
1518 PUSH_FAILURE_INT (-1); \
1519 STORE_NUMBER (ptr, val); \
1520 } while (0)
1521
1522 /* Pop a saved register off the stack. */
1523 #define POP_FAILURE_REG_OR_COUNT() \
1524 do { \
1525 int reg = POP_FAILURE_INT (); \
1526 if (reg == -1) \
1527 { \
1528 /* It's a counter. */ \
1529 /* Here, we discard `const', making re_match non-reentrant. */ \
1530 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 STORE_NUMBER (ptr, reg); \
1533 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1534 } \
1535 else \
1536 { \
1537 regend[reg] = POP_FAILURE_POINTER (); \
1538 regstart[reg] = POP_FAILURE_POINTER (); \
1539 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1540 reg, regstart[reg], regend[reg]); \
1541 } \
1542 } while (0)
1543
1544 /* Check that we are not stuck in an infinite loop. */
1545 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1546 do { \
1547 int failure = TOP_FAILURE_HANDLE (); \
1548 /* Check for infinite matching loops */ \
1549 while (failure > 0 \
1550 && (FAILURE_STR (failure) == string_place \
1551 || FAILURE_STR (failure) == NULL)) \
1552 { \
1553 assert (FAILURE_PAT (failure) >= bufp->buffer \
1554 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1555 if (FAILURE_PAT (failure) == pat_cur) \
1556 { \
1557 cycle = 1; \
1558 break; \
1559 } \
1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564 } while (0)
1565
1566 /* Push the information about the state we will need
1567 if we ever fail back to it.
1568
1569 Requires variables fail_stack, regstart, regend and
1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1571 declared.
1572
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
1575 #define PUSH_FAILURE_POINT(pattern, string_place) \
1576 do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604 } while (0)
1605
1606 /* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
1609 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1610 #define TYPICAL_FAILURE_SIZE 20
1611
1612 /* How many items can still be added to the stack without overflowing it. */
1613 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616 /* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
1621 REGSTART, REGEND -- arrays of string positions.
1622
1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1624 `pend', `string1', `size1', `string2', and `size2'. */
1625
1626 #define POP_FAILURE_POINT(str, pat) \
1627 do { \
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1634 \
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
1637 POP_FAILURE_REG_OR_COUNT (); \
1638 \
1639 pat = POP_FAILURE_POINTER (); \
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
1646 str = POP_FAILURE_POINTER (); \
1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1653 \
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
1656 \
1657 DEBUG_STATEMENT (nfailure_points_popped++); \
1658 } while (0) /* POP_FAILURE_POINT */
1659
1660
1661 \f
1662 /* Registers are set to a sentinel when they haven't yet matched. */
1663 #define REG_UNSET(e) ((e) == NULL)
1664 \f
1665 /* Subroutine declarations and macros for regex_compile. */
1666
1667 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
1677 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
1679 reg_syntax_t syntax));
1680 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
1682 reg_syntax_t syntax));
1683 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1685 char *fastmap, const int multibyte));
1686
1687 /* Fetch the next character in the uncompiled pattern, with no
1688 translation. */
1689 #define PATFETCH(c) \
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
1695 } while (0)
1696
1697
1698 /* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
1702 #ifndef TRANSLATE
1703 # define TRANSLATE(d) \
1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1705 #endif
1706
1707
1708 /* Macros for outputting the compiled pattern into `buffer'. */
1709
1710 /* If the buffer isn't allocated when it comes in, use this. */
1711 #define INIT_BUF_SIZE 32
1712
1713 /* Make sure we have at least N more bytes of space in buffer. */
1714 #define GET_BUFFER_SPACE(n) \
1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1716 EXTEND_BUFFER ()
1717
1718 /* Make sure we have one more byte of buffer space and then add C to it. */
1719 #define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727 #define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
1735 /* As with BUF_PUSH_2, except for three bytes. */
1736 #define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745 /* Store a jump with opcode OP at LOC to location TO. We store a
1746 relative address offset by the three bytes the jump itself occupies. */
1747 #define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750 /* Likewise, for a two-argument jump. */
1751 #define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
1754 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1755 #define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759 #define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763 /* This is not an arbitrary limit: the arguments which represent offsets
1764 into the pattern are two bytes long. So if 2^15 bytes turns out to
1765 be too small, many things would have to change. */
1766 # define MAX_BUF_SIZE (1L << 15)
1767
1768 #if 0 /* This is when we thought it could be 2^16 bytes. */
1769 /* Any other compiler which, like MSC, has allocation limit below 2^16
1770 bytes will have to use approach similar to what was done below for
1771 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1772 reallocating to 0 bytes. Such thing is not going to work too well.
1773 You have been warned!! */
1774 #if defined _MSC_VER && !defined WIN32
1775 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1776 # define MAX_BUF_SIZE 65500L
1777 #else
1778 # define MAX_BUF_SIZE (1L << 16)
1779 #endif
1780 #endif /* 0 */
1781
1782 /* Extend the buffer by twice its current size via realloc and
1783 reset the pointers that pointed into the old block to point to the
1784 correct places in the new one. If extending the buffer results in it
1785 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1786 #if __BOUNDED_POINTERS__
1787 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1788 # define MOVE_BUFFER_POINTER(P) \
1789 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1790 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1791 else \
1792 { \
1793 SET_HIGH_BOUND (b); \
1794 SET_HIGH_BOUND (begalt); \
1795 if (fixup_alt_jump) \
1796 SET_HIGH_BOUND (fixup_alt_jump); \
1797 if (laststart) \
1798 SET_HIGH_BOUND (laststart); \
1799 if (pending_exact) \
1800 SET_HIGH_BOUND (pending_exact); \
1801 }
1802 #else
1803 # define MOVE_BUFFER_POINTER(P) (P) += incr
1804 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1805 #endif
1806 #define EXTEND_BUFFER() \
1807 do { \
1808 re_char *old_buffer = bufp->buffer; \
1809 if (bufp->allocated == MAX_BUF_SIZE) \
1810 return REG_ESIZE; \
1811 bufp->allocated <<= 1; \
1812 if (bufp->allocated > MAX_BUF_SIZE) \
1813 bufp->allocated = MAX_BUF_SIZE; \
1814 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1815 if (bufp->buffer == NULL) \
1816 return REG_ESPACE; \
1817 /* If the buffer moved, move all the pointers into it. */ \
1818 if (old_buffer != bufp->buffer) \
1819 { \
1820 int incr = bufp->buffer - old_buffer; \
1821 MOVE_BUFFER_POINTER (b); \
1822 MOVE_BUFFER_POINTER (begalt); \
1823 if (fixup_alt_jump) \
1824 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1825 if (laststart) \
1826 MOVE_BUFFER_POINTER (laststart); \
1827 if (pending_exact) \
1828 MOVE_BUFFER_POINTER (pending_exact); \
1829 } \
1830 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1831 } while (0)
1832
1833
1834 /* Since we have one byte reserved for the register number argument to
1835 {start,stop}_memory, the maximum number of groups we can report
1836 things about is what fits in that byte. */
1837 #define MAX_REGNUM 255
1838
1839 /* But patterns can have more than `MAX_REGNUM' registers. We just
1840 ignore the excess. */
1841 typedef int regnum_t;
1842
1843
1844 /* Macros for the compile stack. */
1845
1846 /* Since offsets can go either forwards or backwards, this type needs to
1847 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1848 /* int may be not enough when sizeof(int) == 2. */
1849 typedef long pattern_offset_t;
1850
1851 typedef struct
1852 {
1853 pattern_offset_t begalt_offset;
1854 pattern_offset_t fixup_alt_jump;
1855 pattern_offset_t laststart_offset;
1856 regnum_t regnum;
1857 } compile_stack_elt_t;
1858
1859
1860 typedef struct
1861 {
1862 compile_stack_elt_t *stack;
1863 unsigned size;
1864 unsigned avail; /* Offset of next open position. */
1865 } compile_stack_type;
1866
1867
1868 #define INIT_COMPILE_STACK_SIZE 32
1869
1870 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1871 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1872
1873 /* The next available element. */
1874 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1875
1876 /* Explicit quit checking is only used on NTemacs. */
1877 #if defined WINDOWSNT && defined emacs && defined QUIT
1878 extern int immediate_quit;
1879 # define IMMEDIATE_QUIT_CHECK \
1880 do { \
1881 if (immediate_quit) QUIT; \
1882 } while (0)
1883 #else
1884 # define IMMEDIATE_QUIT_CHECK ((void)0)
1885 #endif
1886 \f
1887 /* Structure to manage work area for range table. */
1888 struct range_table_work_area
1889 {
1890 int *table; /* actual work area. */
1891 int allocated; /* allocated size for work area in bytes. */
1892 int used; /* actually used size in words. */
1893 int bits; /* flag to record character classes */
1894 };
1895
1896 /* Make sure that WORK_AREA can hold more N multibyte characters.
1897 This is used only in set_image_of_range and set_image_of_range_1.
1898 It expects WORK_AREA to be a pointer.
1899 If it can't get the space, it returns from the surrounding function. */
1900
1901 #define EXTEND_RANGE_TABLE(work_area, n) \
1902 do { \
1903 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1904 { \
1905 extend_range_table_work_area (work_area); \
1906 if ((work_area)->table == 0) \
1907 return (REG_ESPACE); \
1908 } \
1909 } while (0)
1910
1911 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1912 (work_area).bits |= (bit)
1913
1914 /* Bits used to implement the multibyte-part of the various character classes
1915 such as [:alnum:] in a charset's range table. */
1916 #define BIT_WORD 0x1
1917 #define BIT_LOWER 0x2
1918 #define BIT_PUNCT 0x4
1919 #define BIT_SPACE 0x8
1920 #define BIT_UPPER 0x10
1921 #define BIT_MULTIBYTE 0x20
1922
1923 /* Set a range START..END to WORK_AREA.
1924 The range is passed through TRANSLATE, so START and END
1925 should be untranslated. */
1926 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1927 do { \
1928 int tem; \
1929 tem = set_image_of_range (&work_area, start, end, translate); \
1930 if (tem > 0) \
1931 FREE_STACK_RETURN (tem); \
1932 } while (0)
1933
1934 /* Free allocated memory for WORK_AREA. */
1935 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1936 do { \
1937 if ((work_area).table) \
1938 free ((work_area).table); \
1939 } while (0)
1940
1941 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1942 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1943 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1944 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1945 \f
1946
1947 /* Set the bit for character C in a list. */
1948 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1949
1950
1951 /* Get the next unsigned number in the uncompiled pattern. */
1952 #define GET_UNSIGNED_NUMBER(num) \
1953 do { \
1954 if (p == pend) \
1955 FREE_STACK_RETURN (REG_EBRACE); \
1956 else \
1957 { \
1958 PATFETCH (c); \
1959 while ('0' <= c && c <= '9') \
1960 { \
1961 int prev; \
1962 if (num < 0) \
1963 num = 0; \
1964 prev = num; \
1965 num = num * 10 + c - '0'; \
1966 if (num / 10 != prev) \
1967 FREE_STACK_RETURN (REG_BADBR); \
1968 if (p == pend) \
1969 FREE_STACK_RETURN (REG_EBRACE); \
1970 PATFETCH (c); \
1971 } \
1972 } \
1973 } while (0)
1974 \f
1975 #if ! WIDE_CHAR_SUPPORT
1976
1977 /* Map a string to the char class it names (if any). */
1978 re_wctype_t
1979 re_wctype (str)
1980 re_char *str;
1981 {
1982 const char *string = str;
1983 if (STREQ (string, "alnum")) return RECC_ALNUM;
1984 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1985 else if (STREQ (string, "word")) return RECC_WORD;
1986 else if (STREQ (string, "ascii")) return RECC_ASCII;
1987 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1988 else if (STREQ (string, "graph")) return RECC_GRAPH;
1989 else if (STREQ (string, "lower")) return RECC_LOWER;
1990 else if (STREQ (string, "print")) return RECC_PRINT;
1991 else if (STREQ (string, "punct")) return RECC_PUNCT;
1992 else if (STREQ (string, "space")) return RECC_SPACE;
1993 else if (STREQ (string, "upper")) return RECC_UPPER;
1994 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1995 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1996 else if (STREQ (string, "digit")) return RECC_DIGIT;
1997 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1998 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1999 else if (STREQ (string, "blank")) return RECC_BLANK;
2000 else return 0;
2001 }
2002
2003 /* True iff CH is in the char class CC. */
2004 boolean
2005 re_iswctype (ch, cc)
2006 int ch;
2007 re_wctype_t cc;
2008 {
2009 switch (cc)
2010 {
2011 case RECC_ALNUM: return ISALNUM (ch);
2012 case RECC_ALPHA: return ISALPHA (ch);
2013 case RECC_BLANK: return ISBLANK (ch);
2014 case RECC_CNTRL: return ISCNTRL (ch);
2015 case RECC_DIGIT: return ISDIGIT (ch);
2016 case RECC_GRAPH: return ISGRAPH (ch);
2017 case RECC_LOWER: return ISLOWER (ch);
2018 case RECC_PRINT: return ISPRINT (ch);
2019 case RECC_PUNCT: return ISPUNCT (ch);
2020 case RECC_SPACE: return ISSPACE (ch);
2021 case RECC_UPPER: return ISUPPER (ch);
2022 case RECC_XDIGIT: return ISXDIGIT (ch);
2023 case RECC_ASCII: return IS_REAL_ASCII (ch);
2024 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2025 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2026 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2027 case RECC_WORD: return ISWORD (ch);
2028 case RECC_ERROR: return false;
2029 default:
2030 abort();
2031 }
2032 }
2033
2034 /* Return a bit-pattern to use in the range-table bits to match multibyte
2035 chars of class CC. */
2036 static int
2037 re_wctype_to_bit (cc)
2038 re_wctype_t cc;
2039 {
2040 switch (cc)
2041 {
2042 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2043 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2044 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2045 case RECC_LOWER: return BIT_LOWER;
2046 case RECC_UPPER: return BIT_UPPER;
2047 case RECC_PUNCT: return BIT_PUNCT;
2048 case RECC_SPACE: return BIT_SPACE;
2049 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2050 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2051 default:
2052 abort();
2053 }
2054 }
2055 #endif
2056 \f
2057 /* Filling in the work area of a range. */
2058
2059 /* Actually extend the space in WORK_AREA. */
2060
2061 static void
2062 extend_range_table_work_area (work_area)
2063 struct range_table_work_area *work_area;
2064 {
2065 work_area->allocated += 16 * sizeof (int);
2066 if (work_area->table)
2067 work_area->table
2068 = (int *) realloc (work_area->table, work_area->allocated);
2069 else
2070 work_area->table
2071 = (int *) malloc (work_area->allocated);
2072 }
2073
2074 #ifdef emacs
2075
2076 /* Carefully find the ranges of codes that are equivalent
2077 under case conversion to the range start..end when passed through
2078 TRANSLATE. Handle the case where non-letters can come in between
2079 two upper-case letters (which happens in Latin-1).
2080 Also handle the case of groups of more than 2 case-equivalent chars.
2081
2082 The basic method is to look at consecutive characters and see
2083 if they can form a run that can be handled as one.
2084
2085 Returns -1 if successful, REG_ESPACE if ran out of space. */
2086
2087 static int
2088 set_image_of_range_1 (work_area, start, end, translate)
2089 RE_TRANSLATE_TYPE translate;
2090 struct range_table_work_area *work_area;
2091 re_wchar_t start, end;
2092 {
2093 /* `one_case' indicates a character, or a run of characters,
2094 each of which is an isolate (no case-equivalents).
2095 This includes all ASCII non-letters.
2096
2097 `two_case' indicates a character, or a run of characters,
2098 each of which has two case-equivalent forms.
2099 This includes all ASCII letters.
2100
2101 `strange' indicates a character that has more than one
2102 case-equivalent. */
2103
2104 enum case_type {one_case, two_case, strange};
2105
2106 /* Describe the run that is in progress,
2107 which the next character can try to extend.
2108 If run_type is strange, that means there really is no run.
2109 If run_type is one_case, then run_start...run_end is the run.
2110 If run_type is two_case, then the run is run_start...run_end,
2111 and the case-equivalents end at run_eqv_end. */
2112
2113 enum case_type run_type = strange;
2114 int run_start, run_end, run_eqv_end;
2115
2116 Lisp_Object eqv_table;
2117
2118 if (!RE_TRANSLATE_P (translate))
2119 {
2120 EXTEND_RANGE_TABLE (work_area, 2);
2121 work_area->table[work_area->used++] = (start);
2122 work_area->table[work_area->used++] = (end);
2123 return -1;
2124 }
2125
2126 eqv_table = XCHAR_TABLE (translate)->extras[2];
2127
2128 for (; start <= end; start++)
2129 {
2130 enum case_type this_type;
2131 int eqv = RE_TRANSLATE (eqv_table, start);
2132 int minchar, maxchar;
2133
2134 /* Classify this character */
2135 if (eqv == start)
2136 this_type = one_case;
2137 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2138 this_type = two_case;
2139 else
2140 this_type = strange;
2141
2142 if (start < eqv)
2143 minchar = start, maxchar = eqv;
2144 else
2145 minchar = eqv, maxchar = start;
2146
2147 /* Can this character extend the run in progress? */
2148 if (this_type == strange || this_type != run_type
2149 || !(minchar == run_end + 1
2150 && (run_type == two_case
2151 ? maxchar == run_eqv_end + 1 : 1)))
2152 {
2153 /* No, end the run.
2154 Record each of its equivalent ranges. */
2155 if (run_type == one_case)
2156 {
2157 EXTEND_RANGE_TABLE (work_area, 2);
2158 work_area->table[work_area->used++] = run_start;
2159 work_area->table[work_area->used++] = run_end;
2160 }
2161 else if (run_type == two_case)
2162 {
2163 EXTEND_RANGE_TABLE (work_area, 4);
2164 work_area->table[work_area->used++] = run_start;
2165 work_area->table[work_area->used++] = run_end;
2166 work_area->table[work_area->used++]
2167 = RE_TRANSLATE (eqv_table, run_start);
2168 work_area->table[work_area->used++]
2169 = RE_TRANSLATE (eqv_table, run_end);
2170 }
2171 run_type = strange;
2172 }
2173
2174 if (this_type == strange)
2175 {
2176 /* For a strange character, add each of its equivalents, one
2177 by one. Don't start a range. */
2178 do
2179 {
2180 EXTEND_RANGE_TABLE (work_area, 2);
2181 work_area->table[work_area->used++] = eqv;
2182 work_area->table[work_area->used++] = eqv;
2183 eqv = RE_TRANSLATE (eqv_table, eqv);
2184 }
2185 while (eqv != start);
2186 }
2187
2188 /* Add this char to the run, or start a new run. */
2189 else if (run_type == strange)
2190 {
2191 /* Initialize a new range. */
2192 run_type = this_type;
2193 run_start = start;
2194 run_end = start;
2195 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2196 }
2197 else
2198 {
2199 /* Extend a running range. */
2200 run_end = minchar;
2201 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2202 }
2203 }
2204
2205 /* If a run is still in progress at the end, finish it now
2206 by recording its equivalent ranges. */
2207 if (run_type == one_case)
2208 {
2209 EXTEND_RANGE_TABLE (work_area, 2);
2210 work_area->table[work_area->used++] = run_start;
2211 work_area->table[work_area->used++] = run_end;
2212 }
2213 else if (run_type == two_case)
2214 {
2215 EXTEND_RANGE_TABLE (work_area, 4);
2216 work_area->table[work_area->used++] = run_start;
2217 work_area->table[work_area->used++] = run_end;
2218 work_area->table[work_area->used++]
2219 = RE_TRANSLATE (eqv_table, run_start);
2220 work_area->table[work_area->used++]
2221 = RE_TRANSLATE (eqv_table, run_end);
2222 }
2223
2224 return -1;
2225 }
2226
2227 #endif /* emacs */
2228
2229 /* Record the the image of the range start..end when passed through
2230 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2231 and is not even necessarily contiguous.
2232 Normally we approximate it with the smallest contiguous range that contains
2233 all the chars we need. However, for Latin-1 we go to extra effort
2234 to do a better job.
2235
2236 This function is not called for ASCII ranges.
2237
2238 Returns -1 if successful, REG_ESPACE if ran out of space. */
2239
2240 static int
2241 set_image_of_range (work_area, start, end, translate)
2242 RE_TRANSLATE_TYPE translate;
2243 struct range_table_work_area *work_area;
2244 re_wchar_t start, end;
2245 {
2246 re_wchar_t cmin, cmax;
2247
2248 #ifdef emacs
2249 /* For Latin-1 ranges, use set_image_of_range_1
2250 to get proper handling of ranges that include letters and nonletters.
2251 For a range that includes the whole of Latin-1, this is not necessary.
2252 For other character sets, we don't bother to get this right. */
2253 if (RE_TRANSLATE_P (translate) && start < 04400
2254 && !(start < 04200 && end >= 04377))
2255 {
2256 int newend;
2257 int tem;
2258 newend = end;
2259 if (newend > 04377)
2260 newend = 04377;
2261 tem = set_image_of_range_1 (work_area, start, newend, translate);
2262 if (tem > 0)
2263 return tem;
2264
2265 start = 04400;
2266 if (end < 04400)
2267 return -1;
2268 }
2269 #endif
2270
2271 EXTEND_RANGE_TABLE (work_area, 2);
2272 work_area->table[work_area->used++] = (start);
2273 work_area->table[work_area->used++] = (end);
2274
2275 cmin = -1, cmax = -1;
2276
2277 if (RE_TRANSLATE_P (translate))
2278 {
2279 int ch;
2280
2281 for (ch = start; ch <= end; ch++)
2282 {
2283 re_wchar_t c = TRANSLATE (ch);
2284 if (! (start <= c && c <= end))
2285 {
2286 if (cmin == -1)
2287 cmin = c, cmax = c;
2288 else
2289 {
2290 cmin = MIN (cmin, c);
2291 cmax = MAX (cmax, c);
2292 }
2293 }
2294 }
2295
2296 if (cmin != -1)
2297 {
2298 EXTEND_RANGE_TABLE (work_area, 2);
2299 work_area->table[work_area->used++] = (cmin);
2300 work_area->table[work_area->used++] = (cmax);
2301 }
2302 }
2303
2304 return -1;
2305 }
2306 \f
2307 #ifndef MATCH_MAY_ALLOCATE
2308
2309 /* If we cannot allocate large objects within re_match_2_internal,
2310 we make the fail stack and register vectors global.
2311 The fail stack, we grow to the maximum size when a regexp
2312 is compiled.
2313 The register vectors, we adjust in size each time we
2314 compile a regexp, according to the number of registers it needs. */
2315
2316 static fail_stack_type fail_stack;
2317
2318 /* Size with which the following vectors are currently allocated.
2319 That is so we can make them bigger as needed,
2320 but never make them smaller. */
2321 static int regs_allocated_size;
2322
2323 static re_char ** regstart, ** regend;
2324 static re_char **best_regstart, **best_regend;
2325
2326 /* Make the register vectors big enough for NUM_REGS registers,
2327 but don't make them smaller. */
2328
2329 static
2330 regex_grow_registers (num_regs)
2331 int num_regs;
2332 {
2333 if (num_regs > regs_allocated_size)
2334 {
2335 RETALLOC_IF (regstart, num_regs, re_char *);
2336 RETALLOC_IF (regend, num_regs, re_char *);
2337 RETALLOC_IF (best_regstart, num_regs, re_char *);
2338 RETALLOC_IF (best_regend, num_regs, re_char *);
2339
2340 regs_allocated_size = num_regs;
2341 }
2342 }
2343
2344 #endif /* not MATCH_MAY_ALLOCATE */
2345 \f
2346 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2347 compile_stack,
2348 regnum_t regnum));
2349
2350 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2351 Returns one of error codes defined in `regex.h', or zero for success.
2352
2353 Assumes the `allocated' (and perhaps `buffer') and `translate'
2354 fields are set in BUFP on entry.
2355
2356 If it succeeds, results are put in BUFP (if it returns an error, the
2357 contents of BUFP are undefined):
2358 `buffer' is the compiled pattern;
2359 `syntax' is set to SYNTAX;
2360 `used' is set to the length of the compiled pattern;
2361 `fastmap_accurate' is zero;
2362 `re_nsub' is the number of subexpressions in PATTERN;
2363 `not_bol' and `not_eol' are zero;
2364
2365 The `fastmap' field is neither examined nor set. */
2366
2367 /* Insert the `jump' from the end of last alternative to "here".
2368 The space for the jump has already been allocated. */
2369 #define FIXUP_ALT_JUMP() \
2370 do { \
2371 if (fixup_alt_jump) \
2372 STORE_JUMP (jump, fixup_alt_jump, b); \
2373 } while (0)
2374
2375
2376 /* Return, freeing storage we allocated. */
2377 #define FREE_STACK_RETURN(value) \
2378 do { \
2379 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2380 free (compile_stack.stack); \
2381 return value; \
2382 } while (0)
2383
2384 static reg_errcode_t
2385 regex_compile (pattern, size, syntax, bufp)
2386 re_char *pattern;
2387 size_t size;
2388 reg_syntax_t syntax;
2389 struct re_pattern_buffer *bufp;
2390 {
2391 /* We fetch characters from PATTERN here. */
2392 register re_wchar_t c, c1;
2393
2394 /* A random temporary spot in PATTERN. */
2395 re_char *p1;
2396
2397 /* Points to the end of the buffer, where we should append. */
2398 register unsigned char *b;
2399
2400 /* Keeps track of unclosed groups. */
2401 compile_stack_type compile_stack;
2402
2403 /* Points to the current (ending) position in the pattern. */
2404 #ifdef AIX
2405 /* `const' makes AIX compiler fail. */
2406 unsigned char *p = pattern;
2407 #else
2408 re_char *p = pattern;
2409 #endif
2410 re_char *pend = pattern + size;
2411
2412 /* How to translate the characters in the pattern. */
2413 RE_TRANSLATE_TYPE translate = bufp->translate;
2414
2415 /* Address of the count-byte of the most recently inserted `exactn'
2416 command. This makes it possible to tell if a new exact-match
2417 character can be added to that command or if the character requires
2418 a new `exactn' command. */
2419 unsigned char *pending_exact = 0;
2420
2421 /* Address of start of the most recently finished expression.
2422 This tells, e.g., postfix * where to find the start of its
2423 operand. Reset at the beginning of groups and alternatives. */
2424 unsigned char *laststart = 0;
2425
2426 /* Address of beginning of regexp, or inside of last group. */
2427 unsigned char *begalt;
2428
2429 /* Place in the uncompiled pattern (i.e., the {) to
2430 which to go back if the interval is invalid. */
2431 re_char *beg_interval;
2432
2433 /* Address of the place where a forward jump should go to the end of
2434 the containing expression. Each alternative of an `or' -- except the
2435 last -- ends with a forward jump of this sort. */
2436 unsigned char *fixup_alt_jump = 0;
2437
2438 /* Counts open-groups as they are encountered. Remembered for the
2439 matching close-group on the compile stack, so the same register
2440 number is put in the stop_memory as the start_memory. */
2441 regnum_t regnum = 0;
2442
2443 /* Work area for range table of charset. */
2444 struct range_table_work_area range_table_work;
2445
2446 /* If the object matched can contain multibyte characters. */
2447 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2448
2449 /* Nonzero if we have pushed down into a subpattern. */
2450 int in_subpattern = 0;
2451
2452 /* These hold the values of p, pattern, and pend from the main
2453 pattern when we have pushed into a subpattern. */
2454 re_char *main_p;
2455 re_char *main_pattern;
2456 re_char *main_pend;
2457
2458 #ifdef DEBUG
2459 debug++;
2460 DEBUG_PRINT1 ("\nCompiling pattern: ");
2461 if (debug > 0)
2462 {
2463 unsigned debug_count;
2464
2465 for (debug_count = 0; debug_count < size; debug_count++)
2466 putchar (pattern[debug_count]);
2467 putchar ('\n');
2468 }
2469 #endif /* DEBUG */
2470
2471 /* Initialize the compile stack. */
2472 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2473 if (compile_stack.stack == NULL)
2474 return REG_ESPACE;
2475
2476 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2477 compile_stack.avail = 0;
2478
2479 range_table_work.table = 0;
2480 range_table_work.allocated = 0;
2481
2482 /* Initialize the pattern buffer. */
2483 bufp->syntax = syntax;
2484 bufp->fastmap_accurate = 0;
2485 bufp->not_bol = bufp->not_eol = 0;
2486
2487 /* Set `used' to zero, so that if we return an error, the pattern
2488 printer (for debugging) will think there's no pattern. We reset it
2489 at the end. */
2490 bufp->used = 0;
2491
2492 /* Always count groups, whether or not bufp->no_sub is set. */
2493 bufp->re_nsub = 0;
2494
2495 #if !defined emacs && !defined SYNTAX_TABLE
2496 /* Initialize the syntax table. */
2497 init_syntax_once ();
2498 #endif
2499
2500 if (bufp->allocated == 0)
2501 {
2502 if (bufp->buffer)
2503 { /* If zero allocated, but buffer is non-null, try to realloc
2504 enough space. This loses if buffer's address is bogus, but
2505 that is the user's responsibility. */
2506 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2507 }
2508 else
2509 { /* Caller did not allocate a buffer. Do it for them. */
2510 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2511 }
2512 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2513
2514 bufp->allocated = INIT_BUF_SIZE;
2515 }
2516
2517 begalt = b = bufp->buffer;
2518
2519 /* Loop through the uncompiled pattern until we're at the end. */
2520 while (1)
2521 {
2522 if (p == pend)
2523 {
2524 /* If this is the end of an included regexp,
2525 pop back to the main regexp and try again. */
2526 if (in_subpattern)
2527 {
2528 in_subpattern = 0;
2529 pattern = main_pattern;
2530 p = main_p;
2531 pend = main_pend;
2532 continue;
2533 }
2534 /* If this is the end of the main regexp, we are done. */
2535 break;
2536 }
2537
2538 PATFETCH (c);
2539
2540 switch (c)
2541 {
2542 case ' ':
2543 {
2544 re_char *p1 = p;
2545
2546 /* If there's no special whitespace regexp, treat
2547 spaces normally. And don't try to do this recursively. */
2548 if (!whitespace_regexp || in_subpattern)
2549 goto normal_char;
2550
2551 /* Peek past following spaces. */
2552 while (p1 != pend)
2553 {
2554 if (*p1 != ' ')
2555 break;
2556 p1++;
2557 }
2558 /* If the spaces are followed by a repetition op,
2559 treat them normally. */
2560 if (p1 != pend
2561 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2562 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2563 goto normal_char;
2564
2565 /* Replace the spaces with the whitespace regexp. */
2566 in_subpattern = 1;
2567 main_p = p1;
2568 main_pend = pend;
2569 main_pattern = pattern;
2570 p = pattern = whitespace_regexp;
2571 pend = p + strlen (p);
2572 break;
2573 }
2574
2575 case '^':
2576 {
2577 if ( /* If at start of pattern, it's an operator. */
2578 p == pattern + 1
2579 /* If context independent, it's an operator. */
2580 || syntax & RE_CONTEXT_INDEP_ANCHORS
2581 /* Otherwise, depends on what's come before. */
2582 || at_begline_loc_p (pattern, p, syntax))
2583 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2584 else
2585 goto normal_char;
2586 }
2587 break;
2588
2589
2590 case '$':
2591 {
2592 if ( /* If at end of pattern, it's an operator. */
2593 p == pend
2594 /* If context independent, it's an operator. */
2595 || syntax & RE_CONTEXT_INDEP_ANCHORS
2596 /* Otherwise, depends on what's next. */
2597 || at_endline_loc_p (p, pend, syntax))
2598 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2599 else
2600 goto normal_char;
2601 }
2602 break;
2603
2604
2605 case '+':
2606 case '?':
2607 if ((syntax & RE_BK_PLUS_QM)
2608 || (syntax & RE_LIMITED_OPS))
2609 goto normal_char;
2610 handle_plus:
2611 case '*':
2612 /* If there is no previous pattern... */
2613 if (!laststart)
2614 {
2615 if (syntax & RE_CONTEXT_INVALID_OPS)
2616 FREE_STACK_RETURN (REG_BADRPT);
2617 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2618 goto normal_char;
2619 }
2620
2621 {
2622 /* 1 means zero (many) matches is allowed. */
2623 boolean zero_times_ok = 0, many_times_ok = 0;
2624 boolean greedy = 1;
2625
2626 /* If there is a sequence of repetition chars, collapse it
2627 down to just one (the right one). We can't combine
2628 interval operators with these because of, e.g., `a{2}*',
2629 which should only match an even number of `a's. */
2630
2631 for (;;)
2632 {
2633 if ((syntax & RE_FRUGAL)
2634 && c == '?' && (zero_times_ok || many_times_ok))
2635 greedy = 0;
2636 else
2637 {
2638 zero_times_ok |= c != '+';
2639 many_times_ok |= c != '?';
2640 }
2641
2642 if (p == pend)
2643 break;
2644 else if (*p == '*'
2645 || (!(syntax & RE_BK_PLUS_QM)
2646 && (*p == '+' || *p == '?')))
2647 ;
2648 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2649 {
2650 if (p+1 == pend)
2651 FREE_STACK_RETURN (REG_EESCAPE);
2652 if (p[1] == '+' || p[1] == '?')
2653 PATFETCH (c); /* Gobble up the backslash. */
2654 else
2655 break;
2656 }
2657 else
2658 break;
2659 /* If we get here, we found another repeat character. */
2660 PATFETCH (c);
2661 }
2662
2663 /* Star, etc. applied to an empty pattern is equivalent
2664 to an empty pattern. */
2665 if (!laststart || laststart == b)
2666 break;
2667
2668 /* Now we know whether or not zero matches is allowed
2669 and also whether or not two or more matches is allowed. */
2670 if (greedy)
2671 {
2672 if (many_times_ok)
2673 {
2674 boolean simple = skip_one_char (laststart) == b;
2675 unsigned int startoffset = 0;
2676 re_opcode_t ofj =
2677 /* Check if the loop can match the empty string. */
2678 (simple || !analyse_first (laststart, b, NULL, 0))
2679 ? on_failure_jump : on_failure_jump_loop;
2680 assert (skip_one_char (laststart) <= b);
2681
2682 if (!zero_times_ok && simple)
2683 { /* Since simple * loops can be made faster by using
2684 on_failure_keep_string_jump, we turn simple P+
2685 into PP* if P is simple. */
2686 unsigned char *p1, *p2;
2687 startoffset = b - laststart;
2688 GET_BUFFER_SPACE (startoffset);
2689 p1 = b; p2 = laststart;
2690 while (p2 < p1)
2691 *b++ = *p2++;
2692 zero_times_ok = 1;
2693 }
2694
2695 GET_BUFFER_SPACE (6);
2696 if (!zero_times_ok)
2697 /* A + loop. */
2698 STORE_JUMP (ofj, b, b + 6);
2699 else
2700 /* Simple * loops can use on_failure_keep_string_jump
2701 depending on what follows. But since we don't know
2702 that yet, we leave the decision up to
2703 on_failure_jump_smart. */
2704 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2705 laststart + startoffset, b + 6);
2706 b += 3;
2707 STORE_JUMP (jump, b, laststart + startoffset);
2708 b += 3;
2709 }
2710 else
2711 {
2712 /* A simple ? pattern. */
2713 assert (zero_times_ok);
2714 GET_BUFFER_SPACE (3);
2715 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2716 b += 3;
2717 }
2718 }
2719 else /* not greedy */
2720 { /* I wish the greedy and non-greedy cases could be merged. */
2721
2722 GET_BUFFER_SPACE (7); /* We might use less. */
2723 if (many_times_ok)
2724 {
2725 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2726
2727 /* The non-greedy multiple match looks like
2728 a repeat..until: we only need a conditional jump
2729 at the end of the loop. */
2730 if (emptyp) BUF_PUSH (no_op);
2731 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2732 : on_failure_jump, b, laststart);
2733 b += 3;
2734 if (zero_times_ok)
2735 {
2736 /* The repeat...until naturally matches one or more.
2737 To also match zero times, we need to first jump to
2738 the end of the loop (its conditional jump). */
2739 INSERT_JUMP (jump, laststart, b);
2740 b += 3;
2741 }
2742 }
2743 else
2744 {
2745 /* non-greedy a?? */
2746 INSERT_JUMP (jump, laststart, b + 3);
2747 b += 3;
2748 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2749 b += 3;
2750 }
2751 }
2752 }
2753 pending_exact = 0;
2754 break;
2755
2756
2757 case '.':
2758 laststart = b;
2759 BUF_PUSH (anychar);
2760 break;
2761
2762
2763 case '[':
2764 {
2765 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2766
2767 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2768
2769 /* Ensure that we have enough space to push a charset: the
2770 opcode, the length count, and the bitset; 34 bytes in all. */
2771 GET_BUFFER_SPACE (34);
2772
2773 laststart = b;
2774
2775 /* We test `*p == '^' twice, instead of using an if
2776 statement, so we only need one BUF_PUSH. */
2777 BUF_PUSH (*p == '^' ? charset_not : charset);
2778 if (*p == '^')
2779 p++;
2780
2781 /* Remember the first position in the bracket expression. */
2782 p1 = p;
2783
2784 /* Push the number of bytes in the bitmap. */
2785 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2786
2787 /* Clear the whole map. */
2788 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2789
2790 /* charset_not matches newline according to a syntax bit. */
2791 if ((re_opcode_t) b[-2] == charset_not
2792 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2793 SET_LIST_BIT ('\n');
2794
2795 /* Read in characters and ranges, setting map bits. */
2796 for (;;)
2797 {
2798 boolean escaped_char = false;
2799 const unsigned char *p2 = p;
2800
2801 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2802
2803 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2804 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2805 So the translation is done later in a loop. Example:
2806 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2807 PATFETCH (c);
2808
2809 /* \ might escape characters inside [...] and [^...]. */
2810 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2811 {
2812 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2813
2814 PATFETCH (c);
2815 escaped_char = true;
2816 }
2817 else
2818 {
2819 /* Could be the end of the bracket expression. If it's
2820 not (i.e., when the bracket expression is `[]' so
2821 far), the ']' character bit gets set way below. */
2822 if (c == ']' && p2 != p1)
2823 break;
2824 }
2825
2826 /* What should we do for the character which is
2827 greater than 0x7F, but not BASE_LEADING_CODE_P?
2828 XXX */
2829
2830 /* See if we're at the beginning of a possible character
2831 class. */
2832
2833 if (!escaped_char &&
2834 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2835 {
2836 /* Leave room for the null. */
2837 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2838 const unsigned char *class_beg;
2839
2840 PATFETCH (c);
2841 c1 = 0;
2842 class_beg = p;
2843
2844 /* If pattern is `[[:'. */
2845 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2846
2847 for (;;)
2848 {
2849 PATFETCH (c);
2850 if ((c == ':' && *p == ']') || p == pend)
2851 break;
2852 if (c1 < CHAR_CLASS_MAX_LENGTH)
2853 str[c1++] = c;
2854 else
2855 /* This is in any case an invalid class name. */
2856 str[0] = '\0';
2857 }
2858 str[c1] = '\0';
2859
2860 /* If isn't a word bracketed by `[:' and `:]':
2861 undo the ending character, the letters, and
2862 leave the leading `:' and `[' (but set bits for
2863 them). */
2864 if (c == ':' && *p == ']')
2865 {
2866 re_wchar_t ch;
2867 re_wctype_t cc;
2868
2869 cc = re_wctype (str);
2870
2871 if (cc == 0)
2872 FREE_STACK_RETURN (REG_ECTYPE);
2873
2874 /* Throw away the ] at the end of the character
2875 class. */
2876 PATFETCH (c);
2877
2878 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2879
2880 /* Most character classes in a multibyte match
2881 just set a flag. Exceptions are is_blank,
2882 is_digit, is_cntrl, and is_xdigit, since
2883 they can only match ASCII characters. We
2884 don't need to handle them for multibyte.
2885 They are distinguished by a negative wctype. */
2886
2887 if (multibyte)
2888 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2889 re_wctype_to_bit (cc));
2890
2891 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2892 {
2893 int translated = TRANSLATE (ch);
2894 if (re_iswctype (btowc (ch), cc))
2895 SET_LIST_BIT (translated);
2896 }
2897
2898 /* Repeat the loop. */
2899 continue;
2900 }
2901 else
2902 {
2903 /* Go back to right after the "[:". */
2904 p = class_beg;
2905 SET_LIST_BIT ('[');
2906
2907 /* Because the `:' may starts the range, we
2908 can't simply set bit and repeat the loop.
2909 Instead, just set it to C and handle below. */
2910 c = ':';
2911 }
2912 }
2913
2914 if (p < pend && p[0] == '-' && p[1] != ']')
2915 {
2916
2917 /* Discard the `-'. */
2918 PATFETCH (c1);
2919
2920 /* Fetch the character which ends the range. */
2921 PATFETCH (c1);
2922
2923 if (SINGLE_BYTE_CHAR_P (c))
2924 {
2925 if (! SINGLE_BYTE_CHAR_P (c1))
2926 {
2927 /* Handle a range starting with a
2928 character of less than 256, and ending
2929 with a character of not less than 256.
2930 Split that into two ranges, the low one
2931 ending at 0377, and the high one
2932 starting at the smallest character in
2933 the charset of C1 and ending at C1. */
2934 int charset = CHAR_CHARSET (c1);
2935 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2936
2937 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2938 c2, c1);
2939 c1 = 0377;
2940 }
2941 }
2942 else if (!SAME_CHARSET_P (c, c1))
2943 FREE_STACK_RETURN (REG_ERANGEX);
2944 }
2945 else
2946 /* Range from C to C. */
2947 c1 = c;
2948
2949 /* Set the range ... */
2950 if (SINGLE_BYTE_CHAR_P (c))
2951 /* ... into bitmap. */
2952 {
2953 re_wchar_t this_char;
2954 re_wchar_t range_start = c, range_end = c1;
2955
2956 /* If the start is after the end, the range is empty. */
2957 if (range_start > range_end)
2958 {
2959 if (syntax & RE_NO_EMPTY_RANGES)
2960 FREE_STACK_RETURN (REG_ERANGE);
2961 /* Else, repeat the loop. */
2962 }
2963 else
2964 {
2965 for (this_char = range_start; this_char <= range_end;
2966 this_char++)
2967 SET_LIST_BIT (TRANSLATE (this_char));
2968 }
2969 }
2970 else
2971 /* ... into range table. */
2972 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2973 }
2974
2975 /* Discard any (non)matching list bytes that are all 0 at the
2976 end of the map. Decrease the map-length byte too. */
2977 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2978 b[-1]--;
2979 b += b[-1];
2980
2981 /* Build real range table from work area. */
2982 if (RANGE_TABLE_WORK_USED (range_table_work)
2983 || RANGE_TABLE_WORK_BITS (range_table_work))
2984 {
2985 int i;
2986 int used = RANGE_TABLE_WORK_USED (range_table_work);
2987
2988 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2989 bytes for flags, two for COUNT, and three bytes for
2990 each character. */
2991 GET_BUFFER_SPACE (4 + used * 3);
2992
2993 /* Indicate the existence of range table. */
2994 laststart[1] |= 0x80;
2995
2996 /* Store the character class flag bits into the range table.
2997 If not in emacs, these flag bits are always 0. */
2998 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2999 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3000
3001 STORE_NUMBER_AND_INCR (b, used / 2);
3002 for (i = 0; i < used; i++)
3003 STORE_CHARACTER_AND_INCR
3004 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3005 }
3006 }
3007 break;
3008
3009
3010 case '(':
3011 if (syntax & RE_NO_BK_PARENS)
3012 goto handle_open;
3013 else
3014 goto normal_char;
3015
3016
3017 case ')':
3018 if (syntax & RE_NO_BK_PARENS)
3019 goto handle_close;
3020 else
3021 goto normal_char;
3022
3023
3024 case '\n':
3025 if (syntax & RE_NEWLINE_ALT)
3026 goto handle_alt;
3027 else
3028 goto normal_char;
3029
3030
3031 case '|':
3032 if (syntax & RE_NO_BK_VBAR)
3033 goto handle_alt;
3034 else
3035 goto normal_char;
3036
3037
3038 case '{':
3039 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3040 goto handle_interval;
3041 else
3042 goto normal_char;
3043
3044
3045 case '\\':
3046 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3047
3048 /* Do not translate the character after the \, so that we can
3049 distinguish, e.g., \B from \b, even if we normally would
3050 translate, e.g., B to b. */
3051 PATFETCH (c);
3052
3053 switch (c)
3054 {
3055 case '(':
3056 if (syntax & RE_NO_BK_PARENS)
3057 goto normal_backslash;
3058
3059 handle_open:
3060 {
3061 int shy = 0;
3062 if (p+1 < pend)
3063 {
3064 /* Look for a special (?...) construct */
3065 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3066 {
3067 PATFETCH (c); /* Gobble up the '?'. */
3068 PATFETCH (c);
3069 switch (c)
3070 {
3071 case ':': shy = 1; break;
3072 default:
3073 /* Only (?:...) is supported right now. */
3074 FREE_STACK_RETURN (REG_BADPAT);
3075 }
3076 }
3077 }
3078
3079 if (!shy)
3080 {
3081 bufp->re_nsub++;
3082 regnum++;
3083 }
3084
3085 if (COMPILE_STACK_FULL)
3086 {
3087 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3088 compile_stack_elt_t);
3089 if (compile_stack.stack == NULL) return REG_ESPACE;
3090
3091 compile_stack.size <<= 1;
3092 }
3093
3094 /* These are the values to restore when we hit end of this
3095 group. They are all relative offsets, so that if the
3096 whole pattern moves because of realloc, they will still
3097 be valid. */
3098 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3099 COMPILE_STACK_TOP.fixup_alt_jump
3100 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3101 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3102 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3103
3104 /* Do not push a
3105 start_memory for groups beyond the last one we can
3106 represent in the compiled pattern. */
3107 if (regnum <= MAX_REGNUM && !shy)
3108 BUF_PUSH_2 (start_memory, regnum);
3109
3110 compile_stack.avail++;
3111
3112 fixup_alt_jump = 0;
3113 laststart = 0;
3114 begalt = b;
3115 /* If we've reached MAX_REGNUM groups, then this open
3116 won't actually generate any code, so we'll have to
3117 clear pending_exact explicitly. */
3118 pending_exact = 0;
3119 break;
3120 }
3121
3122 case ')':
3123 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3124
3125 if (COMPILE_STACK_EMPTY)
3126 {
3127 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3128 goto normal_backslash;
3129 else
3130 FREE_STACK_RETURN (REG_ERPAREN);
3131 }
3132
3133 handle_close:
3134 FIXUP_ALT_JUMP ();
3135
3136 /* See similar code for backslashed left paren above. */
3137 if (COMPILE_STACK_EMPTY)
3138 {
3139 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3140 goto normal_char;
3141 else
3142 FREE_STACK_RETURN (REG_ERPAREN);
3143 }
3144
3145 /* Since we just checked for an empty stack above, this
3146 ``can't happen''. */
3147 assert (compile_stack.avail != 0);
3148 {
3149 /* We don't just want to restore into `regnum', because
3150 later groups should continue to be numbered higher,
3151 as in `(ab)c(de)' -- the second group is #2. */
3152 regnum_t this_group_regnum;
3153
3154 compile_stack.avail--;
3155 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3156 fixup_alt_jump
3157 = COMPILE_STACK_TOP.fixup_alt_jump
3158 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3159 : 0;
3160 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3161 this_group_regnum = COMPILE_STACK_TOP.regnum;
3162 /* If we've reached MAX_REGNUM groups, then this open
3163 won't actually generate any code, so we'll have to
3164 clear pending_exact explicitly. */
3165 pending_exact = 0;
3166
3167 /* We're at the end of the group, so now we know how many
3168 groups were inside this one. */
3169 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3170 BUF_PUSH_2 (stop_memory, this_group_regnum);
3171 }
3172 break;
3173
3174
3175 case '|': /* `\|'. */
3176 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3177 goto normal_backslash;
3178 handle_alt:
3179 if (syntax & RE_LIMITED_OPS)
3180 goto normal_char;
3181
3182 /* Insert before the previous alternative a jump which
3183 jumps to this alternative if the former fails. */
3184 GET_BUFFER_SPACE (3);
3185 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3186 pending_exact = 0;
3187 b += 3;
3188
3189 /* The alternative before this one has a jump after it
3190 which gets executed if it gets matched. Adjust that
3191 jump so it will jump to this alternative's analogous
3192 jump (put in below, which in turn will jump to the next
3193 (if any) alternative's such jump, etc.). The last such
3194 jump jumps to the correct final destination. A picture:
3195 _____ _____
3196 | | | |
3197 | v | v
3198 a | b | c
3199
3200 If we are at `b', then fixup_alt_jump right now points to a
3201 three-byte space after `a'. We'll put in the jump, set
3202 fixup_alt_jump to right after `b', and leave behind three
3203 bytes which we'll fill in when we get to after `c'. */
3204
3205 FIXUP_ALT_JUMP ();
3206
3207 /* Mark and leave space for a jump after this alternative,
3208 to be filled in later either by next alternative or
3209 when know we're at the end of a series of alternatives. */
3210 fixup_alt_jump = b;
3211 GET_BUFFER_SPACE (3);
3212 b += 3;
3213
3214 laststart = 0;
3215 begalt = b;
3216 break;
3217
3218
3219 case '{':
3220 /* If \{ is a literal. */
3221 if (!(syntax & RE_INTERVALS)
3222 /* If we're at `\{' and it's not the open-interval
3223 operator. */
3224 || (syntax & RE_NO_BK_BRACES))
3225 goto normal_backslash;
3226
3227 handle_interval:
3228 {
3229 /* If got here, then the syntax allows intervals. */
3230
3231 /* At least (most) this many matches must be made. */
3232 int lower_bound = 0, upper_bound = -1;
3233
3234 beg_interval = p;
3235
3236 GET_UNSIGNED_NUMBER (lower_bound);
3237
3238 if (c == ',')
3239 GET_UNSIGNED_NUMBER (upper_bound);
3240 else
3241 /* Interval such as `{1}' => match exactly once. */
3242 upper_bound = lower_bound;
3243
3244 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3245 || (upper_bound >= 0 && lower_bound > upper_bound))
3246 FREE_STACK_RETURN (REG_BADBR);
3247
3248 if (!(syntax & RE_NO_BK_BRACES))
3249 {
3250 if (c != '\\')
3251 FREE_STACK_RETURN (REG_BADBR);
3252 if (p == pend)
3253 FREE_STACK_RETURN (REG_EESCAPE);
3254 PATFETCH (c);
3255 }
3256
3257 if (c != '}')
3258 FREE_STACK_RETURN (REG_BADBR);
3259
3260 /* We just parsed a valid interval. */
3261
3262 /* If it's invalid to have no preceding re. */
3263 if (!laststart)
3264 {
3265 if (syntax & RE_CONTEXT_INVALID_OPS)
3266 FREE_STACK_RETURN (REG_BADRPT);
3267 else if (syntax & RE_CONTEXT_INDEP_OPS)
3268 laststart = b;
3269 else
3270 goto unfetch_interval;
3271 }
3272
3273 if (upper_bound == 0)
3274 /* If the upper bound is zero, just drop the sub pattern
3275 altogether. */
3276 b = laststart;
3277 else if (lower_bound == 1 && upper_bound == 1)
3278 /* Just match it once: nothing to do here. */
3279 ;
3280
3281 /* Otherwise, we have a nontrivial interval. When
3282 we're all done, the pattern will look like:
3283 set_number_at <jump count> <upper bound>
3284 set_number_at <succeed_n count> <lower bound>
3285 succeed_n <after jump addr> <succeed_n count>
3286 <body of loop>
3287 jump_n <succeed_n addr> <jump count>
3288 (The upper bound and `jump_n' are omitted if
3289 `upper_bound' is 1, though.) */
3290 else
3291 { /* If the upper bound is > 1, we need to insert
3292 more at the end of the loop. */
3293 unsigned int nbytes = (upper_bound < 0 ? 3
3294 : upper_bound > 1 ? 5 : 0);
3295 unsigned int startoffset = 0;
3296
3297 GET_BUFFER_SPACE (20); /* We might use less. */
3298
3299 if (lower_bound == 0)
3300 {
3301 /* A succeed_n that starts with 0 is really a
3302 a simple on_failure_jump_loop. */
3303 INSERT_JUMP (on_failure_jump_loop, laststart,
3304 b + 3 + nbytes);
3305 b += 3;
3306 }
3307 else
3308 {
3309 /* Initialize lower bound of the `succeed_n', even
3310 though it will be set during matching by its
3311 attendant `set_number_at' (inserted next),
3312 because `re_compile_fastmap' needs to know.
3313 Jump to the `jump_n' we might insert below. */
3314 INSERT_JUMP2 (succeed_n, laststart,
3315 b + 5 + nbytes,
3316 lower_bound);
3317 b += 5;
3318
3319 /* Code to initialize the lower bound. Insert
3320 before the `succeed_n'. The `5' is the last two
3321 bytes of this `set_number_at', plus 3 bytes of
3322 the following `succeed_n'. */
3323 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3324 b += 5;
3325 startoffset += 5;
3326 }
3327
3328 if (upper_bound < 0)
3329 {
3330 /* A negative upper bound stands for infinity,
3331 in which case it degenerates to a plain jump. */
3332 STORE_JUMP (jump, b, laststart + startoffset);
3333 b += 3;
3334 }
3335 else if (upper_bound > 1)
3336 { /* More than one repetition is allowed, so
3337 append a backward jump to the `succeed_n'
3338 that starts this interval.
3339
3340 When we've reached this during matching,
3341 we'll have matched the interval once, so
3342 jump back only `upper_bound - 1' times. */
3343 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3344 upper_bound - 1);
3345 b += 5;
3346
3347 /* The location we want to set is the second
3348 parameter of the `jump_n'; that is `b-2' as
3349 an absolute address. `laststart' will be
3350 the `set_number_at' we're about to insert;
3351 `laststart+3' the number to set, the source
3352 for the relative address. But we are
3353 inserting into the middle of the pattern --
3354 so everything is getting moved up by 5.
3355 Conclusion: (b - 2) - (laststart + 3) + 5,
3356 i.e., b - laststart.
3357
3358 We insert this at the beginning of the loop
3359 so that if we fail during matching, we'll
3360 reinitialize the bounds. */
3361 insert_op2 (set_number_at, laststart, b - laststart,
3362 upper_bound - 1, b);
3363 b += 5;
3364 }
3365 }
3366 pending_exact = 0;
3367 beg_interval = NULL;
3368 }
3369 break;
3370
3371 unfetch_interval:
3372 /* If an invalid interval, match the characters as literals. */
3373 assert (beg_interval);
3374 p = beg_interval;
3375 beg_interval = NULL;
3376
3377 /* normal_char and normal_backslash need `c'. */
3378 c = '{';
3379
3380 if (!(syntax & RE_NO_BK_BRACES))
3381 {
3382 assert (p > pattern && p[-1] == '\\');
3383 goto normal_backslash;
3384 }
3385 else
3386 goto normal_char;
3387
3388 #ifdef emacs
3389 /* There is no way to specify the before_dot and after_dot
3390 operators. rms says this is ok. --karl */
3391 case '=':
3392 BUF_PUSH (at_dot);
3393 break;
3394
3395 case 's':
3396 laststart = b;
3397 PATFETCH (c);
3398 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3399 break;
3400
3401 case 'S':
3402 laststart = b;
3403 PATFETCH (c);
3404 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3405 break;
3406
3407 case 'c':
3408 laststart = b;
3409 PATFETCH (c);
3410 BUF_PUSH_2 (categoryspec, c);
3411 break;
3412
3413 case 'C':
3414 laststart = b;
3415 PATFETCH (c);
3416 BUF_PUSH_2 (notcategoryspec, c);
3417 break;
3418 #endif /* emacs */
3419
3420
3421 case 'w':
3422 if (syntax & RE_NO_GNU_OPS)
3423 goto normal_char;
3424 laststart = b;
3425 BUF_PUSH_2 (syntaxspec, Sword);
3426 break;
3427
3428
3429 case 'W':
3430 if (syntax & RE_NO_GNU_OPS)
3431 goto normal_char;
3432 laststart = b;
3433 BUF_PUSH_2 (notsyntaxspec, Sword);
3434 break;
3435
3436
3437 case '<':
3438 if (syntax & RE_NO_GNU_OPS)
3439 goto normal_char;
3440 BUF_PUSH (wordbeg);
3441 break;
3442
3443 case '>':
3444 if (syntax & RE_NO_GNU_OPS)
3445 goto normal_char;
3446 BUF_PUSH (wordend);
3447 break;
3448
3449 case '_':
3450 if (syntax & RE_NO_GNU_OPS)
3451 goto normal_char;
3452 laststart = b;
3453 PATFETCH (c);
3454 if (c == '<')
3455 BUF_PUSH (symbeg);
3456 else if (c == '>')
3457 BUF_PUSH (symend);
3458 else
3459 FREE_STACK_RETURN (REG_BADPAT);
3460 break;
3461
3462 case 'b':
3463 if (syntax & RE_NO_GNU_OPS)
3464 goto normal_char;
3465 BUF_PUSH (wordbound);
3466 break;
3467
3468 case 'B':
3469 if (syntax & RE_NO_GNU_OPS)
3470 goto normal_char;
3471 BUF_PUSH (notwordbound);
3472 break;
3473
3474 case '`':
3475 if (syntax & RE_NO_GNU_OPS)
3476 goto normal_char;
3477 BUF_PUSH (begbuf);
3478 break;
3479
3480 case '\'':
3481 if (syntax & RE_NO_GNU_OPS)
3482 goto normal_char;
3483 BUF_PUSH (endbuf);
3484 break;
3485
3486 case '1': case '2': case '3': case '4': case '5':
3487 case '6': case '7': case '8': case '9':
3488 {
3489 regnum_t reg;
3490
3491 if (syntax & RE_NO_BK_REFS)
3492 goto normal_backslash;
3493
3494 reg = c - '0';
3495
3496 /* Can't back reference to a subexpression before its end. */
3497 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3498 FREE_STACK_RETURN (REG_ESUBREG);
3499
3500 laststart = b;
3501 BUF_PUSH_2 (duplicate, reg);
3502 }
3503 break;
3504
3505
3506 case '+':
3507 case '?':
3508 if (syntax & RE_BK_PLUS_QM)
3509 goto handle_plus;
3510 else
3511 goto normal_backslash;
3512
3513 default:
3514 normal_backslash:
3515 /* You might think it would be useful for \ to mean
3516 not to translate; but if we don't translate it
3517 it will never match anything. */
3518 goto normal_char;
3519 }
3520 break;
3521
3522
3523 default:
3524 /* Expects the character in `c'. */
3525 normal_char:
3526 /* If no exactn currently being built. */
3527 if (!pending_exact
3528
3529 /* If last exactn not at current position. */
3530 || pending_exact + *pending_exact + 1 != b
3531
3532 /* We have only one byte following the exactn for the count. */
3533 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3534
3535 /* If followed by a repetition operator. */
3536 || (p != pend && (*p == '*' || *p == '^'))
3537 || ((syntax & RE_BK_PLUS_QM)
3538 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3539 : p != pend && (*p == '+' || *p == '?'))
3540 || ((syntax & RE_INTERVALS)
3541 && ((syntax & RE_NO_BK_BRACES)
3542 ? p != pend && *p == '{'
3543 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3544 {
3545 /* Start building a new exactn. */
3546
3547 laststart = b;
3548
3549 BUF_PUSH_2 (exactn, 0);
3550 pending_exact = b - 1;
3551 }
3552
3553 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3554 {
3555 int len;
3556
3557 c = TRANSLATE (c);
3558 if (multibyte)
3559 len = CHAR_STRING (c, b);
3560 else
3561 *b = c, len = 1;
3562 b += len;
3563 (*pending_exact) += len;
3564 }
3565
3566 break;
3567 } /* switch (c) */
3568 } /* while p != pend */
3569
3570
3571 /* Through the pattern now. */
3572
3573 FIXUP_ALT_JUMP ();
3574
3575 if (!COMPILE_STACK_EMPTY)
3576 FREE_STACK_RETURN (REG_EPAREN);
3577
3578 /* If we don't want backtracking, force success
3579 the first time we reach the end of the compiled pattern. */
3580 if (syntax & RE_NO_POSIX_BACKTRACKING)
3581 BUF_PUSH (succeed);
3582
3583 /* We have succeeded; set the length of the buffer. */
3584 bufp->used = b - bufp->buffer;
3585
3586 #ifdef DEBUG
3587 if (debug > 0)
3588 {
3589 re_compile_fastmap (bufp);
3590 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3591 print_compiled_pattern (bufp);
3592 }
3593 debug--;
3594 #endif /* DEBUG */
3595
3596 #ifndef MATCH_MAY_ALLOCATE
3597 /* Initialize the failure stack to the largest possible stack. This
3598 isn't necessary unless we're trying to avoid calling alloca in
3599 the search and match routines. */
3600 {
3601 int num_regs = bufp->re_nsub + 1;
3602
3603 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3604 {
3605 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3606
3607 if (! fail_stack.stack)
3608 fail_stack.stack
3609 = (fail_stack_elt_t *) malloc (fail_stack.size
3610 * sizeof (fail_stack_elt_t));
3611 else
3612 fail_stack.stack
3613 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3614 (fail_stack.size
3615 * sizeof (fail_stack_elt_t)));
3616 }
3617
3618 regex_grow_registers (num_regs);
3619 }
3620 #endif /* not MATCH_MAY_ALLOCATE */
3621
3622 FREE_STACK_RETURN (REG_NOERROR);
3623 } /* regex_compile */
3624 \f
3625 /* Subroutines for `regex_compile'. */
3626
3627 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3628
3629 static void
3630 store_op1 (op, loc, arg)
3631 re_opcode_t op;
3632 unsigned char *loc;
3633 int arg;
3634 {
3635 *loc = (unsigned char) op;
3636 STORE_NUMBER (loc + 1, arg);
3637 }
3638
3639
3640 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3641
3642 static void
3643 store_op2 (op, loc, arg1, arg2)
3644 re_opcode_t op;
3645 unsigned char *loc;
3646 int arg1, arg2;
3647 {
3648 *loc = (unsigned char) op;
3649 STORE_NUMBER (loc + 1, arg1);
3650 STORE_NUMBER (loc + 3, arg2);
3651 }
3652
3653
3654 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3655 for OP followed by two-byte integer parameter ARG. */
3656
3657 static void
3658 insert_op1 (op, loc, arg, end)
3659 re_opcode_t op;
3660 unsigned char *loc;
3661 int arg;
3662 unsigned char *end;
3663 {
3664 register unsigned char *pfrom = end;
3665 register unsigned char *pto = end + 3;
3666
3667 while (pfrom != loc)
3668 *--pto = *--pfrom;
3669
3670 store_op1 (op, loc, arg);
3671 }
3672
3673
3674 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3675
3676 static void
3677 insert_op2 (op, loc, arg1, arg2, end)
3678 re_opcode_t op;
3679 unsigned char *loc;
3680 int arg1, arg2;
3681 unsigned char *end;
3682 {
3683 register unsigned char *pfrom = end;
3684 register unsigned char *pto = end + 5;
3685
3686 while (pfrom != loc)
3687 *--pto = *--pfrom;
3688
3689 store_op2 (op, loc, arg1, arg2);
3690 }
3691
3692
3693 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3694 after an alternative or a begin-subexpression. We assume there is at
3695 least one character before the ^. */
3696
3697 static boolean
3698 at_begline_loc_p (pattern, p, syntax)
3699 re_char *pattern, *p;
3700 reg_syntax_t syntax;
3701 {
3702 re_char *prev = p - 2;
3703 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3704
3705 return
3706 /* After a subexpression? */
3707 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3708 /* After an alternative? */
3709 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3710 /* After a shy subexpression? */
3711 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3712 && prev[-1] == '?' && prev[-2] == '('
3713 && (syntax & RE_NO_BK_PARENS
3714 || (prev - 3 >= pattern && prev[-3] == '\\')));
3715 }
3716
3717
3718 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3719 at least one character after the $, i.e., `P < PEND'. */
3720
3721 static boolean
3722 at_endline_loc_p (p, pend, syntax)
3723 re_char *p, *pend;
3724 reg_syntax_t syntax;
3725 {
3726 re_char *next = p;
3727 boolean next_backslash = *next == '\\';
3728 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3729
3730 return
3731 /* Before a subexpression? */
3732 (syntax & RE_NO_BK_PARENS ? *next == ')'
3733 : next_backslash && next_next && *next_next == ')')
3734 /* Before an alternative? */
3735 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3736 : next_backslash && next_next && *next_next == '|');
3737 }
3738
3739
3740 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3741 false if it's not. */
3742
3743 static boolean
3744 group_in_compile_stack (compile_stack, regnum)
3745 compile_stack_type compile_stack;
3746 regnum_t regnum;
3747 {
3748 int this_element;
3749
3750 for (this_element = compile_stack.avail - 1;
3751 this_element >= 0;
3752 this_element--)
3753 if (compile_stack.stack[this_element].regnum == regnum)
3754 return true;
3755
3756 return false;
3757 }
3758 \f
3759 /* analyse_first.
3760 If fastmap is non-NULL, go through the pattern and fill fastmap
3761 with all the possible leading chars. If fastmap is NULL, don't
3762 bother filling it up (obviously) and only return whether the
3763 pattern could potentially match the empty string.
3764
3765 Return 1 if p..pend might match the empty string.
3766 Return 0 if p..pend matches at least one char.
3767 Return -1 if fastmap was not updated accurately. */
3768
3769 static int
3770 analyse_first (p, pend, fastmap, multibyte)
3771 re_char *p, *pend;
3772 char *fastmap;
3773 const int multibyte;
3774 {
3775 int j, k;
3776 boolean not;
3777
3778 /* If all elements for base leading-codes in fastmap is set, this
3779 flag is set true. */
3780 boolean match_any_multibyte_characters = false;
3781
3782 assert (p);
3783
3784 /* The loop below works as follows:
3785 - It has a working-list kept in the PATTERN_STACK and which basically
3786 starts by only containing a pointer to the first operation.
3787 - If the opcode we're looking at is a match against some set of
3788 chars, then we add those chars to the fastmap and go on to the
3789 next work element from the worklist (done via `break').
3790 - If the opcode is a control operator on the other hand, we either
3791 ignore it (if it's meaningless at this point, such as `start_memory')
3792 or execute it (if it's a jump). If the jump has several destinations
3793 (i.e. `on_failure_jump'), then we push the other destination onto the
3794 worklist.
3795 We guarantee termination by ignoring backward jumps (more or less),
3796 so that `p' is monotonically increasing. More to the point, we
3797 never set `p' (or push) anything `<= p1'. */
3798
3799 while (p < pend)
3800 {
3801 /* `p1' is used as a marker of how far back a `on_failure_jump'
3802 can go without being ignored. It is normally equal to `p'
3803 (which prevents any backward `on_failure_jump') except right
3804 after a plain `jump', to allow patterns such as:
3805 0: jump 10
3806 3..9: <body>
3807 10: on_failure_jump 3
3808 as used for the *? operator. */
3809 re_char *p1 = p;
3810
3811 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3812 {
3813 case succeed:
3814 return 1;
3815 continue;
3816
3817 case duplicate:
3818 /* If the first character has to match a backreference, that means
3819 that the group was empty (since it already matched). Since this
3820 is the only case that interests us here, we can assume that the
3821 backreference must match the empty string. */
3822 p++;
3823 continue;
3824
3825
3826 /* Following are the cases which match a character. These end
3827 with `break'. */
3828
3829 case exactn:
3830 if (fastmap)
3831 {
3832 int c = RE_STRING_CHAR (p + 1, pend - p);
3833
3834 if (SINGLE_BYTE_CHAR_P (c))
3835 fastmap[c] = 1;
3836 else
3837 fastmap[p[1]] = 1;
3838 }
3839 break;
3840
3841
3842 case anychar:
3843 /* We could put all the chars except for \n (and maybe \0)
3844 but we don't bother since it is generally not worth it. */
3845 if (!fastmap) break;
3846 return -1;
3847
3848
3849 case charset_not:
3850 /* Chars beyond end of bitmap are possible matches.
3851 All the single-byte codes can occur in multibyte buffers.
3852 So any that are not listed in the charset
3853 are possible matches, even in multibyte buffers. */
3854 if (!fastmap) break;
3855 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3856 j < (1 << BYTEWIDTH); j++)
3857 fastmap[j] = 1;
3858 /* Fallthrough */
3859 case charset:
3860 if (!fastmap) break;
3861 not = (re_opcode_t) *(p - 1) == charset_not;
3862 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3863 j >= 0; j--)
3864 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3865 fastmap[j] = 1;
3866
3867 if ((not && multibyte)
3868 /* Any character set can possibly contain a character
3869 which doesn't match the specified set of characters. */
3870 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3871 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3872 /* If we can match a character class, we can match
3873 any character set. */
3874 {
3875 set_fastmap_for_multibyte_characters:
3876 if (match_any_multibyte_characters == false)
3877 {
3878 for (j = 0x80; j < 0xA0; j++) /* XXX */
3879 if (BASE_LEADING_CODE_P (j))
3880 fastmap[j] = 1;
3881 match_any_multibyte_characters = true;
3882 }
3883 }
3884
3885 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3886 && match_any_multibyte_characters == false)
3887 {
3888 /* Set fastmap[I] 1 where I is a base leading code of each
3889 multibyte character in the range table. */
3890 int c, count;
3891
3892 /* Make P points the range table. `+ 2' is to skip flag
3893 bits for a character class. */
3894 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3895
3896 /* Extract the number of ranges in range table into COUNT. */
3897 EXTRACT_NUMBER_AND_INCR (count, p);
3898 for (; count > 0; count--, p += 2 * 3) /* XXX */
3899 {
3900 /* Extract the start of each range. */
3901 EXTRACT_CHARACTER (c, p);
3902 j = CHAR_CHARSET (c);
3903 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3904 }
3905 }
3906 break;
3907
3908 case syntaxspec:
3909 case notsyntaxspec:
3910 if (!fastmap) break;
3911 #ifndef emacs
3912 not = (re_opcode_t)p[-1] == notsyntaxspec;
3913 k = *p++;
3914 for (j = 0; j < (1 << BYTEWIDTH); j++)
3915 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3916 fastmap[j] = 1;
3917 break;
3918 #else /* emacs */
3919 /* This match depends on text properties. These end with
3920 aborting optimizations. */
3921 return -1;
3922
3923 case categoryspec:
3924 case notcategoryspec:
3925 if (!fastmap) break;
3926 not = (re_opcode_t)p[-1] == notcategoryspec;
3927 k = *p++;
3928 for (j = 0; j < (1 << BYTEWIDTH); j++)
3929 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3930 fastmap[j] = 1;
3931
3932 if (multibyte)
3933 /* Any character set can possibly contain a character
3934 whose category is K (or not). */
3935 goto set_fastmap_for_multibyte_characters;
3936 break;
3937
3938 /* All cases after this match the empty string. These end with
3939 `continue'. */
3940
3941 case before_dot:
3942 case at_dot:
3943 case after_dot:
3944 #endif /* !emacs */
3945 case no_op:
3946 case begline:
3947 case endline:
3948 case begbuf:
3949 case endbuf:
3950 case wordbound:
3951 case notwordbound:
3952 case wordbeg:
3953 case wordend:
3954 case symbeg:
3955 case symend:
3956 continue;
3957
3958
3959 case jump:
3960 EXTRACT_NUMBER_AND_INCR (j, p);
3961 if (j < 0)
3962 /* Backward jumps can only go back to code that we've already
3963 visited. `re_compile' should make sure this is true. */
3964 break;
3965 p += j;
3966 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3967 {
3968 case on_failure_jump:
3969 case on_failure_keep_string_jump:
3970 case on_failure_jump_loop:
3971 case on_failure_jump_nastyloop:
3972 case on_failure_jump_smart:
3973 p++;
3974 break;
3975 default:
3976 continue;
3977 };
3978 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3979 to jump back to "just after here". */
3980 /* Fallthrough */
3981
3982 case on_failure_jump:
3983 case on_failure_keep_string_jump:
3984 case on_failure_jump_nastyloop:
3985 case on_failure_jump_loop:
3986 case on_failure_jump_smart:
3987 EXTRACT_NUMBER_AND_INCR (j, p);
3988 if (p + j <= p1)
3989 ; /* Backward jump to be ignored. */
3990 else
3991 { /* We have to look down both arms.
3992 We first go down the "straight" path so as to minimize
3993 stack usage when going through alternatives. */
3994 int r = analyse_first (p, pend, fastmap, multibyte);
3995 if (r) return r;
3996 p += j;
3997 }
3998 continue;
3999
4000
4001 case jump_n:
4002 /* This code simply does not properly handle forward jump_n. */
4003 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4004 p += 4;
4005 /* jump_n can either jump or fall through. The (backward) jump
4006 case has already been handled, so we only need to look at the
4007 fallthrough case. */
4008 continue;
4009
4010 case succeed_n:
4011 /* If N == 0, it should be an on_failure_jump_loop instead. */
4012 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4013 p += 4;
4014 /* We only care about one iteration of the loop, so we don't
4015 need to consider the case where this behaves like an
4016 on_failure_jump. */
4017 continue;
4018
4019
4020 case set_number_at:
4021 p += 4;
4022 continue;
4023
4024
4025 case start_memory:
4026 case stop_memory:
4027 p += 1;
4028 continue;
4029
4030
4031 default:
4032 abort (); /* We have listed all the cases. */
4033 } /* switch *p++ */
4034
4035 /* Getting here means we have found the possible starting
4036 characters for one path of the pattern -- and that the empty
4037 string does not match. We need not follow this path further. */
4038 return 0;
4039 } /* while p */
4040
4041 /* We reached the end without matching anything. */
4042 return 1;
4043
4044 } /* analyse_first */
4045 \f
4046 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4047 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4048 characters can start a string that matches the pattern. This fastmap
4049 is used by re_search to skip quickly over impossible starting points.
4050
4051 Character codes above (1 << BYTEWIDTH) are not represented in the
4052 fastmap, but the leading codes are represented. Thus, the fastmap
4053 indicates which character sets could start a match.
4054
4055 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4056 area as BUFP->fastmap.
4057
4058 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4059 the pattern buffer.
4060
4061 Returns 0 if we succeed, -2 if an internal error. */
4062
4063 int
4064 re_compile_fastmap (bufp)
4065 struct re_pattern_buffer *bufp;
4066 {
4067 char *fastmap = bufp->fastmap;
4068 int analysis;
4069
4070 assert (fastmap && bufp->buffer);
4071
4072 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4073 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4074
4075 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4076 fastmap, RE_MULTIBYTE_P (bufp));
4077 bufp->can_be_null = (analysis != 0);
4078 return 0;
4079 } /* re_compile_fastmap */
4080 \f
4081 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4082 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4083 this memory for recording register information. STARTS and ENDS
4084 must be allocated using the malloc library routine, and must each
4085 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4086
4087 If NUM_REGS == 0, then subsequent matches should allocate their own
4088 register data.
4089
4090 Unless this function is called, the first search or match using
4091 PATTERN_BUFFER will allocate its own register data, without
4092 freeing the old data. */
4093
4094 void
4095 re_set_registers (bufp, regs, num_regs, starts, ends)
4096 struct re_pattern_buffer *bufp;
4097 struct re_registers *regs;
4098 unsigned num_regs;
4099 regoff_t *starts, *ends;
4100 {
4101 if (num_regs)
4102 {
4103 bufp->regs_allocated = REGS_REALLOCATE;
4104 regs->num_regs = num_regs;
4105 regs->start = starts;
4106 regs->end = ends;
4107 }
4108 else
4109 {
4110 bufp->regs_allocated = REGS_UNALLOCATED;
4111 regs->num_regs = 0;
4112 regs->start = regs->end = (regoff_t *) 0;
4113 }
4114 }
4115 WEAK_ALIAS (__re_set_registers, re_set_registers)
4116 \f
4117 /* Searching routines. */
4118
4119 /* Like re_search_2, below, but only one string is specified, and
4120 doesn't let you say where to stop matching. */
4121
4122 int
4123 re_search (bufp, string, size, startpos, range, regs)
4124 struct re_pattern_buffer *bufp;
4125 const char *string;
4126 int size, startpos, range;
4127 struct re_registers *regs;
4128 {
4129 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4130 regs, size);
4131 }
4132 WEAK_ALIAS (__re_search, re_search)
4133
4134 /* Head address of virtual concatenation of string. */
4135 #define HEAD_ADDR_VSTRING(P) \
4136 (((P) >= size1 ? string2 : string1))
4137
4138 /* End address of virtual concatenation of string. */
4139 #define STOP_ADDR_VSTRING(P) \
4140 (((P) >= size1 ? string2 + size2 : string1 + size1))
4141
4142 /* Address of POS in the concatenation of virtual string. */
4143 #define POS_ADDR_VSTRING(POS) \
4144 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4145
4146 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4147 virtual concatenation of STRING1 and STRING2, starting first at index
4148 STARTPOS, then at STARTPOS + 1, and so on.
4149
4150 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4151
4152 RANGE is how far to scan while trying to match. RANGE = 0 means try
4153 only at STARTPOS; in general, the last start tried is STARTPOS +
4154 RANGE.
4155
4156 In REGS, return the indices of the virtual concatenation of STRING1
4157 and STRING2 that matched the entire BUFP->buffer and its contained
4158 subexpressions.
4159
4160 Do not consider matching one past the index STOP in the virtual
4161 concatenation of STRING1 and STRING2.
4162
4163 We return either the position in the strings at which the match was
4164 found, -1 if no match, or -2 if error (such as failure
4165 stack overflow). */
4166
4167 int
4168 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4169 struct re_pattern_buffer *bufp;
4170 const char *str1, *str2;
4171 int size1, size2;
4172 int startpos;
4173 int range;
4174 struct re_registers *regs;
4175 int stop;
4176 {
4177 int val;
4178 re_char *string1 = (re_char*) str1;
4179 re_char *string2 = (re_char*) str2;
4180 register char *fastmap = bufp->fastmap;
4181 register RE_TRANSLATE_TYPE translate = bufp->translate;
4182 int total_size = size1 + size2;
4183 int endpos = startpos + range;
4184 boolean anchored_start;
4185
4186 /* Nonzero if we have to concern multibyte character. */
4187 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4188
4189 /* Check for out-of-range STARTPOS. */
4190 if (startpos < 0 || startpos > total_size)
4191 return -1;
4192
4193 /* Fix up RANGE if it might eventually take us outside
4194 the virtual concatenation of STRING1 and STRING2.
4195 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4196 if (endpos < 0)
4197 range = 0 - startpos;
4198 else if (endpos > total_size)
4199 range = total_size - startpos;
4200
4201 /* If the search isn't to be a backwards one, don't waste time in a
4202 search for a pattern anchored at beginning of buffer. */
4203 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4204 {
4205 if (startpos > 0)
4206 return -1;
4207 else
4208 range = 0;
4209 }
4210
4211 #ifdef emacs
4212 /* In a forward search for something that starts with \=.
4213 don't keep searching past point. */
4214 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4215 {
4216 range = PT_BYTE - BEGV_BYTE - startpos;
4217 if (range < 0)
4218 return -1;
4219 }
4220 #endif /* emacs */
4221
4222 /* Update the fastmap now if not correct already. */
4223 if (fastmap && !bufp->fastmap_accurate)
4224 re_compile_fastmap (bufp);
4225
4226 /* See whether the pattern is anchored. */
4227 anchored_start = (bufp->buffer[0] == begline);
4228
4229 #ifdef emacs
4230 gl_state.object = re_match_object;
4231 {
4232 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4233
4234 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4235 }
4236 #endif
4237
4238 /* Loop through the string, looking for a place to start matching. */
4239 for (;;)
4240 {
4241 /* If the pattern is anchored,
4242 skip quickly past places we cannot match.
4243 We don't bother to treat startpos == 0 specially
4244 because that case doesn't repeat. */
4245 if (anchored_start && startpos > 0)
4246 {
4247 if (! ((startpos <= size1 ? string1[startpos - 1]
4248 : string2[startpos - size1 - 1])
4249 == '\n'))
4250 goto advance;
4251 }
4252
4253 /* If a fastmap is supplied, skip quickly over characters that
4254 cannot be the start of a match. If the pattern can match the
4255 null string, however, we don't need to skip characters; we want
4256 the first null string. */
4257 if (fastmap && startpos < total_size && !bufp->can_be_null)
4258 {
4259 register re_char *d;
4260 register re_wchar_t buf_ch;
4261
4262 d = POS_ADDR_VSTRING (startpos);
4263
4264 if (range > 0) /* Searching forwards. */
4265 {
4266 register int lim = 0;
4267 int irange = range;
4268
4269 if (startpos < size1 && startpos + range >= size1)
4270 lim = range - (size1 - startpos);
4271
4272 /* Written out as an if-else to avoid testing `translate'
4273 inside the loop. */
4274 if (RE_TRANSLATE_P (translate))
4275 {
4276 if (multibyte)
4277 while (range > lim)
4278 {
4279 int buf_charlen;
4280
4281 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4282 buf_charlen);
4283
4284 buf_ch = RE_TRANSLATE (translate, buf_ch);
4285 if (buf_ch >= 0400
4286 || fastmap[buf_ch])
4287 break;
4288
4289 range -= buf_charlen;
4290 d += buf_charlen;
4291 }
4292 else
4293 while (range > lim
4294 && !fastmap[RE_TRANSLATE (translate, *d)])
4295 {
4296 d++;
4297 range--;
4298 }
4299 }
4300 else
4301 while (range > lim && !fastmap[*d])
4302 {
4303 d++;
4304 range--;
4305 }
4306
4307 startpos += irange - range;
4308 }
4309 else /* Searching backwards. */
4310 {
4311 int room = (startpos >= size1
4312 ? size2 + size1 - startpos
4313 : size1 - startpos);
4314 buf_ch = RE_STRING_CHAR (d, room);
4315 buf_ch = TRANSLATE (buf_ch);
4316
4317 if (! (buf_ch >= 0400
4318 || fastmap[buf_ch]))
4319 goto advance;
4320 }
4321 }
4322
4323 /* If can't match the null string, and that's all we have left, fail. */
4324 if (range >= 0 && startpos == total_size && fastmap
4325 && !bufp->can_be_null)
4326 return -1;
4327
4328 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4329 startpos, regs, stop);
4330 #ifndef REGEX_MALLOC
4331 # ifdef C_ALLOCA
4332 alloca (0);
4333 # endif
4334 #endif
4335
4336 if (val >= 0)
4337 return startpos;
4338
4339 if (val == -2)
4340 return -2;
4341
4342 advance:
4343 if (!range)
4344 break;
4345 else if (range > 0)
4346 {
4347 /* Update STARTPOS to the next character boundary. */
4348 if (multibyte)
4349 {
4350 re_char *p = POS_ADDR_VSTRING (startpos);
4351 re_char *pend = STOP_ADDR_VSTRING (startpos);
4352 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4353
4354 range -= len;
4355 if (range < 0)
4356 break;
4357 startpos += len;
4358 }
4359 else
4360 {
4361 range--;
4362 startpos++;
4363 }
4364 }
4365 else
4366 {
4367 range++;
4368 startpos--;
4369
4370 /* Update STARTPOS to the previous character boundary. */
4371 if (multibyte)
4372 {
4373 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4374 re_char *p0 = p;
4375 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4376
4377 /* Find the head of multibyte form. */
4378 PREV_CHAR_BOUNDARY (p, phead);
4379 range += p0 - 1 - p;
4380 if (range > 0)
4381 break;
4382
4383 startpos -= p0 - 1 - p;
4384 }
4385 }
4386 }
4387 return -1;
4388 } /* re_search_2 */
4389 WEAK_ALIAS (__re_search_2, re_search_2)
4390 \f
4391 /* Declarations and macros for re_match_2. */
4392
4393 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4394 register int len,
4395 RE_TRANSLATE_TYPE translate,
4396 const int multibyte));
4397
4398 /* This converts PTR, a pointer into one of the search strings `string1'
4399 and `string2' into an offset from the beginning of that string. */
4400 #define POINTER_TO_OFFSET(ptr) \
4401 (FIRST_STRING_P (ptr) \
4402 ? ((regoff_t) ((ptr) - string1)) \
4403 : ((regoff_t) ((ptr) - string2 + size1)))
4404
4405 /* Call before fetching a character with *d. This switches over to
4406 string2 if necessary.
4407 Check re_match_2_internal for a discussion of why end_match_2 might
4408 not be within string2 (but be equal to end_match_1 instead). */
4409 #define PREFETCH() \
4410 while (d == dend) \
4411 { \
4412 /* End of string2 => fail. */ \
4413 if (dend == end_match_2) \
4414 goto fail; \
4415 /* End of string1 => advance to string2. */ \
4416 d = string2; \
4417 dend = end_match_2; \
4418 }
4419
4420 /* Call before fetching a char with *d if you already checked other limits.
4421 This is meant for use in lookahead operations like wordend, etc..
4422 where we might need to look at parts of the string that might be
4423 outside of the LIMITs (i.e past `stop'). */
4424 #define PREFETCH_NOLIMIT() \
4425 if (d == end1) \
4426 { \
4427 d = string2; \
4428 dend = end_match_2; \
4429 } \
4430
4431 /* Test if at very beginning or at very end of the virtual concatenation
4432 of `string1' and `string2'. If only one string, it's `string2'. */
4433 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4434 #define AT_STRINGS_END(d) ((d) == end2)
4435
4436
4437 /* Test if D points to a character which is word-constituent. We have
4438 two special cases to check for: if past the end of string1, look at
4439 the first character in string2; and if before the beginning of
4440 string2, look at the last character in string1. */
4441 #define WORDCHAR_P(d) \
4442 (SYNTAX ((d) == end1 ? *string2 \
4443 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4444 == Sword)
4445
4446 /* Disabled due to a compiler bug -- see comment at case wordbound */
4447
4448 /* The comment at case wordbound is following one, but we don't use
4449 AT_WORD_BOUNDARY anymore to support multibyte form.
4450
4451 The DEC Alpha C compiler 3.x generates incorrect code for the
4452 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4453 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4454 macro and introducing temporary variables works around the bug. */
4455
4456 #if 0
4457 /* Test if the character before D and the one at D differ with respect
4458 to being word-constituent. */
4459 #define AT_WORD_BOUNDARY(d) \
4460 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4461 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4462 #endif
4463
4464 /* Free everything we malloc. */
4465 #ifdef MATCH_MAY_ALLOCATE
4466 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4467 # define FREE_VARIABLES() \
4468 do { \
4469 REGEX_FREE_STACK (fail_stack.stack); \
4470 FREE_VAR (regstart); \
4471 FREE_VAR (regend); \
4472 FREE_VAR (best_regstart); \
4473 FREE_VAR (best_regend); \
4474 } while (0)
4475 #else
4476 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4477 #endif /* not MATCH_MAY_ALLOCATE */
4478
4479 \f
4480 /* Optimization routines. */
4481
4482 /* If the operation is a match against one or more chars,
4483 return a pointer to the next operation, else return NULL. */
4484 static re_char *
4485 skip_one_char (p)
4486 re_char *p;
4487 {
4488 switch (SWITCH_ENUM_CAST (*p++))
4489 {
4490 case anychar:
4491 break;
4492
4493 case exactn:
4494 p += *p + 1;
4495 break;
4496
4497 case charset_not:
4498 case charset:
4499 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4500 {
4501 int mcnt;
4502 p = CHARSET_RANGE_TABLE (p - 1);
4503 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4504 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4505 }
4506 else
4507 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4508 break;
4509
4510 case syntaxspec:
4511 case notsyntaxspec:
4512 #ifdef emacs
4513 case categoryspec:
4514 case notcategoryspec:
4515 #endif /* emacs */
4516 p++;
4517 break;
4518
4519 default:
4520 p = NULL;
4521 }
4522 return p;
4523 }
4524
4525
4526 /* Jump over non-matching operations. */
4527 static re_char *
4528 skip_noops (p, pend)
4529 re_char *p, *pend;
4530 {
4531 int mcnt;
4532 while (p < pend)
4533 {
4534 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4535 {
4536 case start_memory:
4537 case stop_memory:
4538 p += 2; break;
4539 case no_op:
4540 p += 1; break;
4541 case jump:
4542 p += 1;
4543 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4544 p += mcnt;
4545 break;
4546 default:
4547 return p;
4548 }
4549 }
4550 assert (p == pend);
4551 return p;
4552 }
4553
4554 /* Non-zero if "p1 matches something" implies "p2 fails". */
4555 static int
4556 mutually_exclusive_p (bufp, p1, p2)
4557 struct re_pattern_buffer *bufp;
4558 re_char *p1, *p2;
4559 {
4560 re_opcode_t op2;
4561 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4562 unsigned char *pend = bufp->buffer + bufp->used;
4563
4564 assert (p1 >= bufp->buffer && p1 < pend
4565 && p2 >= bufp->buffer && p2 <= pend);
4566
4567 /* Skip over open/close-group commands.
4568 If what follows this loop is a ...+ construct,
4569 look at what begins its body, since we will have to
4570 match at least one of that. */
4571 p2 = skip_noops (p2, pend);
4572 /* The same skip can be done for p1, except that this function
4573 is only used in the case where p1 is a simple match operator. */
4574 /* p1 = skip_noops (p1, pend); */
4575
4576 assert (p1 >= bufp->buffer && p1 < pend
4577 && p2 >= bufp->buffer && p2 <= pend);
4578
4579 op2 = p2 == pend ? succeed : *p2;
4580
4581 switch (SWITCH_ENUM_CAST (op2))
4582 {
4583 case succeed:
4584 case endbuf:
4585 /* If we're at the end of the pattern, we can change. */
4586 if (skip_one_char (p1))
4587 {
4588 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4589 return 1;
4590 }
4591 break;
4592
4593 case endline:
4594 case exactn:
4595 {
4596 register re_wchar_t c
4597 = (re_opcode_t) *p2 == endline ? '\n'
4598 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4599
4600 if ((re_opcode_t) *p1 == exactn)
4601 {
4602 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4603 {
4604 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4605 return 1;
4606 }
4607 }
4608
4609 else if ((re_opcode_t) *p1 == charset
4610 || (re_opcode_t) *p1 == charset_not)
4611 {
4612 int not = (re_opcode_t) *p1 == charset_not;
4613
4614 /* Test if C is listed in charset (or charset_not)
4615 at `p1'. */
4616 if (SINGLE_BYTE_CHAR_P (c))
4617 {
4618 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4619 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4620 not = !not;
4621 }
4622 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4623 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4624
4625 /* `not' is equal to 1 if c would match, which means
4626 that we can't change to pop_failure_jump. */
4627 if (!not)
4628 {
4629 DEBUG_PRINT1 (" No match => fast loop.\n");
4630 return 1;
4631 }
4632 }
4633 else if ((re_opcode_t) *p1 == anychar
4634 && c == '\n')
4635 {
4636 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4637 return 1;
4638 }
4639 }
4640 break;
4641
4642 case charset:
4643 {
4644 if ((re_opcode_t) *p1 == exactn)
4645 /* Reuse the code above. */
4646 return mutually_exclusive_p (bufp, p2, p1);
4647
4648 /* It is hard to list up all the character in charset
4649 P2 if it includes multibyte character. Give up in
4650 such case. */
4651 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4652 {
4653 /* Now, we are sure that P2 has no range table.
4654 So, for the size of bitmap in P2, `p2[1]' is
4655 enough. But P1 may have range table, so the
4656 size of bitmap table of P1 is extracted by
4657 using macro `CHARSET_BITMAP_SIZE'.
4658
4659 Since we know that all the character listed in
4660 P2 is ASCII, it is enough to test only bitmap
4661 table of P1. */
4662
4663 if ((re_opcode_t) *p1 == charset)
4664 {
4665 int idx;
4666 /* We win if the charset inside the loop
4667 has no overlap with the one after the loop. */
4668 for (idx = 0;
4669 (idx < (int) p2[1]
4670 && idx < CHARSET_BITMAP_SIZE (p1));
4671 idx++)
4672 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4673 break;
4674
4675 if (idx == p2[1]
4676 || idx == CHARSET_BITMAP_SIZE (p1))
4677 {
4678 DEBUG_PRINT1 (" No match => fast loop.\n");
4679 return 1;
4680 }
4681 }
4682 else if ((re_opcode_t) *p1 == charset_not)
4683 {
4684 int idx;
4685 /* We win if the charset_not inside the loop lists
4686 every character listed in the charset after. */
4687 for (idx = 0; idx < (int) p2[1]; idx++)
4688 if (! (p2[2 + idx] == 0
4689 || (idx < CHARSET_BITMAP_SIZE (p1)
4690 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4691 break;
4692
4693 if (idx == p2[1])
4694 {
4695 DEBUG_PRINT1 (" No match => fast loop.\n");
4696 return 1;
4697 }
4698 }
4699 }
4700 }
4701 break;
4702
4703 case charset_not:
4704 switch (SWITCH_ENUM_CAST (*p1))
4705 {
4706 case exactn:
4707 case charset:
4708 /* Reuse the code above. */
4709 return mutually_exclusive_p (bufp, p2, p1);
4710 case charset_not:
4711 /* When we have two charset_not, it's very unlikely that
4712 they don't overlap. The union of the two sets of excluded
4713 chars should cover all possible chars, which, as a matter of
4714 fact, is virtually impossible in multibyte buffers. */
4715 break;
4716 }
4717 break;
4718
4719 case wordend:
4720 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4721 case symend:
4722 return ((re_opcode_t) *p1 == syntaxspec
4723 && (p1[1] == Ssymbol || p1[1] == Sword));
4724 case notsyntaxspec:
4725 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4726
4727 case wordbeg:
4728 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4729 case symbeg:
4730 return ((re_opcode_t) *p1 == notsyntaxspec
4731 && (p1[1] == Ssymbol || p1[1] == Sword));
4732 case syntaxspec:
4733 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4734
4735 case wordbound:
4736 return (((re_opcode_t) *p1 == notsyntaxspec
4737 || (re_opcode_t) *p1 == syntaxspec)
4738 && p1[1] == Sword);
4739
4740 #ifdef emacs
4741 case categoryspec:
4742 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4743 case notcategoryspec:
4744 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4745 #endif /* emacs */
4746
4747 default:
4748 ;
4749 }
4750
4751 /* Safe default. */
4752 return 0;
4753 }
4754
4755 \f
4756 /* Matching routines. */
4757
4758 #ifndef emacs /* Emacs never uses this. */
4759 /* re_match is like re_match_2 except it takes only a single string. */
4760
4761 int
4762 re_match (bufp, string, size, pos, regs)
4763 struct re_pattern_buffer *bufp;
4764 const char *string;
4765 int size, pos;
4766 struct re_registers *regs;
4767 {
4768 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4769 pos, regs, size);
4770 # if defined C_ALLOCA && !defined REGEX_MALLOC
4771 alloca (0);
4772 # endif
4773 return result;
4774 }
4775 WEAK_ALIAS (__re_match, re_match)
4776 #endif /* not emacs */
4777
4778 #ifdef emacs
4779 /* In Emacs, this is the string or buffer in which we
4780 are matching. It is used for looking up syntax properties. */
4781 Lisp_Object re_match_object;
4782 #endif
4783
4784 /* re_match_2 matches the compiled pattern in BUFP against the
4785 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4786 and SIZE2, respectively). We start matching at POS, and stop
4787 matching at STOP.
4788
4789 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4790 store offsets for the substring each group matched in REGS. See the
4791 documentation for exactly how many groups we fill.
4792
4793 We return -1 if no match, -2 if an internal error (such as the
4794 failure stack overflowing). Otherwise, we return the length of the
4795 matched substring. */
4796
4797 int
4798 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4799 struct re_pattern_buffer *bufp;
4800 const char *string1, *string2;
4801 int size1, size2;
4802 int pos;
4803 struct re_registers *regs;
4804 int stop;
4805 {
4806 int result;
4807
4808 #ifdef emacs
4809 int charpos;
4810 gl_state.object = re_match_object;
4811 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4812 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4813 #endif
4814
4815 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4816 (re_char*) string2, size2,
4817 pos, regs, stop);
4818 #if defined C_ALLOCA && !defined REGEX_MALLOC
4819 alloca (0);
4820 #endif
4821 return result;
4822 }
4823 WEAK_ALIAS (__re_match_2, re_match_2)
4824
4825 /* This is a separate function so that we can force an alloca cleanup
4826 afterwards. */
4827 static int
4828 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4829 struct re_pattern_buffer *bufp;
4830 re_char *string1, *string2;
4831 int size1, size2;
4832 int pos;
4833 struct re_registers *regs;
4834 int stop;
4835 {
4836 /* General temporaries. */
4837 int mcnt;
4838 size_t reg;
4839 boolean not;
4840
4841 /* Just past the end of the corresponding string. */
4842 re_char *end1, *end2;
4843
4844 /* Pointers into string1 and string2, just past the last characters in
4845 each to consider matching. */
4846 re_char *end_match_1, *end_match_2;
4847
4848 /* Where we are in the data, and the end of the current string. */
4849 re_char *d, *dend;
4850
4851 /* Used sometimes to remember where we were before starting matching
4852 an operator so that we can go back in case of failure. This "atomic"
4853 behavior of matching opcodes is indispensable to the correctness
4854 of the on_failure_keep_string_jump optimization. */
4855 re_char *dfail;
4856
4857 /* Where we are in the pattern, and the end of the pattern. */
4858 re_char *p = bufp->buffer;
4859 re_char *pend = p + bufp->used;
4860
4861 /* We use this to map every character in the string. */
4862 RE_TRANSLATE_TYPE translate = bufp->translate;
4863
4864 /* Nonzero if we have to concern multibyte character. */
4865 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4866
4867 /* Failure point stack. Each place that can handle a failure further
4868 down the line pushes a failure point on this stack. It consists of
4869 regstart, and regend for all registers corresponding to
4870 the subexpressions we're currently inside, plus the number of such
4871 registers, and, finally, two char *'s. The first char * is where
4872 to resume scanning the pattern; the second one is where to resume
4873 scanning the strings. */
4874 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4875 fail_stack_type fail_stack;
4876 #endif
4877 #ifdef DEBUG
4878 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4879 #endif
4880
4881 #if defined REL_ALLOC && defined REGEX_MALLOC
4882 /* This holds the pointer to the failure stack, when
4883 it is allocated relocatably. */
4884 fail_stack_elt_t *failure_stack_ptr;
4885 #endif
4886
4887 /* We fill all the registers internally, independent of what we
4888 return, for use in backreferences. The number here includes
4889 an element for register zero. */
4890 size_t num_regs = bufp->re_nsub + 1;
4891
4892 /* Information on the contents of registers. These are pointers into
4893 the input strings; they record just what was matched (on this
4894 attempt) by a subexpression part of the pattern, that is, the
4895 regnum-th regstart pointer points to where in the pattern we began
4896 matching and the regnum-th regend points to right after where we
4897 stopped matching the regnum-th subexpression. (The zeroth register
4898 keeps track of what the whole pattern matches.) */
4899 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4900 re_char **regstart, **regend;
4901 #endif
4902
4903 /* The following record the register info as found in the above
4904 variables when we find a match better than any we've seen before.
4905 This happens as we backtrack through the failure points, which in
4906 turn happens only if we have not yet matched the entire string. */
4907 unsigned best_regs_set = false;
4908 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4909 re_char **best_regstart, **best_regend;
4910 #endif
4911
4912 /* Logically, this is `best_regend[0]'. But we don't want to have to
4913 allocate space for that if we're not allocating space for anything
4914 else (see below). Also, we never need info about register 0 for
4915 any of the other register vectors, and it seems rather a kludge to
4916 treat `best_regend' differently than the rest. So we keep track of
4917 the end of the best match so far in a separate variable. We
4918 initialize this to NULL so that when we backtrack the first time
4919 and need to test it, it's not garbage. */
4920 re_char *match_end = NULL;
4921
4922 #ifdef DEBUG
4923 /* Counts the total number of registers pushed. */
4924 unsigned num_regs_pushed = 0;
4925 #endif
4926
4927 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4928
4929 INIT_FAIL_STACK ();
4930
4931 #ifdef MATCH_MAY_ALLOCATE
4932 /* Do not bother to initialize all the register variables if there are
4933 no groups in the pattern, as it takes a fair amount of time. If
4934 there are groups, we include space for register 0 (the whole
4935 pattern), even though we never use it, since it simplifies the
4936 array indexing. We should fix this. */
4937 if (bufp->re_nsub)
4938 {
4939 regstart = REGEX_TALLOC (num_regs, re_char *);
4940 regend = REGEX_TALLOC (num_regs, re_char *);
4941 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4942 best_regend = REGEX_TALLOC (num_regs, re_char *);
4943
4944 if (!(regstart && regend && best_regstart && best_regend))
4945 {
4946 FREE_VARIABLES ();
4947 return -2;
4948 }
4949 }
4950 else
4951 {
4952 /* We must initialize all our variables to NULL, so that
4953 `FREE_VARIABLES' doesn't try to free them. */
4954 regstart = regend = best_regstart = best_regend = NULL;
4955 }
4956 #endif /* MATCH_MAY_ALLOCATE */
4957
4958 /* The starting position is bogus. */
4959 if (pos < 0 || pos > size1 + size2)
4960 {
4961 FREE_VARIABLES ();
4962 return -1;
4963 }
4964
4965 /* Initialize subexpression text positions to -1 to mark ones that no
4966 start_memory/stop_memory has been seen for. Also initialize the
4967 register information struct. */
4968 for (reg = 1; reg < num_regs; reg++)
4969 regstart[reg] = regend[reg] = NULL;
4970
4971 /* We move `string1' into `string2' if the latter's empty -- but not if
4972 `string1' is null. */
4973 if (size2 == 0 && string1 != NULL)
4974 {
4975 string2 = string1;
4976 size2 = size1;
4977 string1 = 0;
4978 size1 = 0;
4979 }
4980 end1 = string1 + size1;
4981 end2 = string2 + size2;
4982
4983 /* `p' scans through the pattern as `d' scans through the data.
4984 `dend' is the end of the input string that `d' points within. `d'
4985 is advanced into the following input string whenever necessary, but
4986 this happens before fetching; therefore, at the beginning of the
4987 loop, `d' can be pointing at the end of a string, but it cannot
4988 equal `string2'. */
4989 if (pos >= size1)
4990 {
4991 /* Only match within string2. */
4992 d = string2 + pos - size1;
4993 dend = end_match_2 = string2 + stop - size1;
4994 end_match_1 = end1; /* Just to give it a value. */
4995 }
4996 else
4997 {
4998 if (stop < size1)
4999 {
5000 /* Only match within string1. */
5001 end_match_1 = string1 + stop;
5002 /* BEWARE!
5003 When we reach end_match_1, PREFETCH normally switches to string2.
5004 But in the present case, this means that just doing a PREFETCH
5005 makes us jump from `stop' to `gap' within the string.
5006 What we really want here is for the search to stop as
5007 soon as we hit end_match_1. That's why we set end_match_2
5008 to end_match_1 (since PREFETCH fails as soon as we hit
5009 end_match_2). */
5010 end_match_2 = end_match_1;
5011 }
5012 else
5013 { /* It's important to use this code when stop == size so that
5014 moving `d' from end1 to string2 will not prevent the d == dend
5015 check from catching the end of string. */
5016 end_match_1 = end1;
5017 end_match_2 = string2 + stop - size1;
5018 }
5019 d = string1 + pos;
5020 dend = end_match_1;
5021 }
5022
5023 DEBUG_PRINT1 ("The compiled pattern is: ");
5024 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5025 DEBUG_PRINT1 ("The string to match is: `");
5026 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5027 DEBUG_PRINT1 ("'\n");
5028
5029 /* This loops over pattern commands. It exits by returning from the
5030 function if the match is complete, or it drops through if the match
5031 fails at this starting point in the input data. */
5032 for (;;)
5033 {
5034 DEBUG_PRINT2 ("\n%p: ", p);
5035
5036 if (p == pend)
5037 { /* End of pattern means we might have succeeded. */
5038 DEBUG_PRINT1 ("end of pattern ... ");
5039
5040 /* If we haven't matched the entire string, and we want the
5041 longest match, try backtracking. */
5042 if (d != end_match_2)
5043 {
5044 /* 1 if this match ends in the same string (string1 or string2)
5045 as the best previous match. */
5046 boolean same_str_p = (FIRST_STRING_P (match_end)
5047 == FIRST_STRING_P (d));
5048 /* 1 if this match is the best seen so far. */
5049 boolean best_match_p;
5050
5051 /* AIX compiler got confused when this was combined
5052 with the previous declaration. */
5053 if (same_str_p)
5054 best_match_p = d > match_end;
5055 else
5056 best_match_p = !FIRST_STRING_P (d);
5057
5058 DEBUG_PRINT1 ("backtracking.\n");
5059
5060 if (!FAIL_STACK_EMPTY ())
5061 { /* More failure points to try. */
5062
5063 /* If exceeds best match so far, save it. */
5064 if (!best_regs_set || best_match_p)
5065 {
5066 best_regs_set = true;
5067 match_end = d;
5068
5069 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5070
5071 for (reg = 1; reg < num_regs; reg++)
5072 {
5073 best_regstart[reg] = regstart[reg];
5074 best_regend[reg] = regend[reg];
5075 }
5076 }
5077 goto fail;
5078 }
5079
5080 /* If no failure points, don't restore garbage. And if
5081 last match is real best match, don't restore second
5082 best one. */
5083 else if (best_regs_set && !best_match_p)
5084 {
5085 restore_best_regs:
5086 /* Restore best match. It may happen that `dend ==
5087 end_match_1' while the restored d is in string2.
5088 For example, the pattern `x.*y.*z' against the
5089 strings `x-' and `y-z-', if the two strings are
5090 not consecutive in memory. */
5091 DEBUG_PRINT1 ("Restoring best registers.\n");
5092
5093 d = match_end;
5094 dend = ((d >= string1 && d <= end1)
5095 ? end_match_1 : end_match_2);
5096
5097 for (reg = 1; reg < num_regs; reg++)
5098 {
5099 regstart[reg] = best_regstart[reg];
5100 regend[reg] = best_regend[reg];
5101 }
5102 }
5103 } /* d != end_match_2 */
5104
5105 succeed_label:
5106 DEBUG_PRINT1 ("Accepting match.\n");
5107
5108 /* If caller wants register contents data back, do it. */
5109 if (regs && !bufp->no_sub)
5110 {
5111 /* Have the register data arrays been allocated? */
5112 if (bufp->regs_allocated == REGS_UNALLOCATED)
5113 { /* No. So allocate them with malloc. We need one
5114 extra element beyond `num_regs' for the `-1' marker
5115 GNU code uses. */
5116 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5117 regs->start = TALLOC (regs->num_regs, regoff_t);
5118 regs->end = TALLOC (regs->num_regs, regoff_t);
5119 if (regs->start == NULL || regs->end == NULL)
5120 {
5121 FREE_VARIABLES ();
5122 return -2;
5123 }
5124 bufp->regs_allocated = REGS_REALLOCATE;
5125 }
5126 else if (bufp->regs_allocated == REGS_REALLOCATE)
5127 { /* Yes. If we need more elements than were already
5128 allocated, reallocate them. If we need fewer, just
5129 leave it alone. */
5130 if (regs->num_regs < num_regs + 1)
5131 {
5132 regs->num_regs = num_regs + 1;
5133 RETALLOC (regs->start, regs->num_regs, regoff_t);
5134 RETALLOC (regs->end, regs->num_regs, regoff_t);
5135 if (regs->start == NULL || regs->end == NULL)
5136 {
5137 FREE_VARIABLES ();
5138 return -2;
5139 }
5140 }
5141 }
5142 else
5143 {
5144 /* These braces fend off a "empty body in an else-statement"
5145 warning under GCC when assert expands to nothing. */
5146 assert (bufp->regs_allocated == REGS_FIXED);
5147 }
5148
5149 /* Convert the pointer data in `regstart' and `regend' to
5150 indices. Register zero has to be set differently,
5151 since we haven't kept track of any info for it. */
5152 if (regs->num_regs > 0)
5153 {
5154 regs->start[0] = pos;
5155 regs->end[0] = POINTER_TO_OFFSET (d);
5156 }
5157
5158 /* Go through the first `min (num_regs, regs->num_regs)'
5159 registers, since that is all we initialized. */
5160 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5161 {
5162 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5163 regs->start[reg] = regs->end[reg] = -1;
5164 else
5165 {
5166 regs->start[reg]
5167 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5168 regs->end[reg]
5169 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5170 }
5171 }
5172
5173 /* If the regs structure we return has more elements than
5174 were in the pattern, set the extra elements to -1. If
5175 we (re)allocated the registers, this is the case,
5176 because we always allocate enough to have at least one
5177 -1 at the end. */
5178 for (reg = num_regs; reg < regs->num_regs; reg++)
5179 regs->start[reg] = regs->end[reg] = -1;
5180 } /* regs && !bufp->no_sub */
5181
5182 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5183 nfailure_points_pushed, nfailure_points_popped,
5184 nfailure_points_pushed - nfailure_points_popped);
5185 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5186
5187 mcnt = POINTER_TO_OFFSET (d) - pos;
5188
5189 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5190
5191 FREE_VARIABLES ();
5192 return mcnt;
5193 }
5194
5195 /* Otherwise match next pattern command. */
5196 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5197 {
5198 /* Ignore these. Used to ignore the n of succeed_n's which
5199 currently have n == 0. */
5200 case no_op:
5201 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5202 break;
5203
5204 case succeed:
5205 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5206 goto succeed_label;
5207
5208 /* Match the next n pattern characters exactly. The following
5209 byte in the pattern defines n, and the n bytes after that
5210 are the characters to match. */
5211 case exactn:
5212 mcnt = *p++;
5213 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5214
5215 /* Remember the start point to rollback upon failure. */
5216 dfail = d;
5217
5218 /* This is written out as an if-else so we don't waste time
5219 testing `translate' inside the loop. */
5220 if (RE_TRANSLATE_P (translate))
5221 {
5222 if (multibyte)
5223 do
5224 {
5225 int pat_charlen, buf_charlen;
5226 unsigned int pat_ch, buf_ch;
5227
5228 PREFETCH ();
5229 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5230 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5231
5232 if (RE_TRANSLATE (translate, buf_ch)
5233 != pat_ch)
5234 {
5235 d = dfail;
5236 goto fail;
5237 }
5238
5239 p += pat_charlen;
5240 d += buf_charlen;
5241 mcnt -= pat_charlen;
5242 }
5243 while (mcnt > 0);
5244 else
5245 do
5246 {
5247 PREFETCH ();
5248 if (RE_TRANSLATE (translate, *d) != *p++)
5249 {
5250 d = dfail;
5251 goto fail;
5252 }
5253 d++;
5254 }
5255 while (--mcnt);
5256 }
5257 else
5258 {
5259 do
5260 {
5261 PREFETCH ();
5262 if (*d++ != *p++)
5263 {
5264 d = dfail;
5265 goto fail;
5266 }
5267 }
5268 while (--mcnt);
5269 }
5270 break;
5271
5272
5273 /* Match any character except possibly a newline or a null. */
5274 case anychar:
5275 {
5276 int buf_charlen;
5277 re_wchar_t buf_ch;
5278
5279 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5280
5281 PREFETCH ();
5282 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5283 buf_ch = TRANSLATE (buf_ch);
5284
5285 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5286 && buf_ch == '\n')
5287 || ((bufp->syntax & RE_DOT_NOT_NULL)
5288 && buf_ch == '\000'))
5289 goto fail;
5290
5291 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5292 d += buf_charlen;
5293 }
5294 break;
5295
5296
5297 case charset:
5298 case charset_not:
5299 {
5300 register unsigned int c;
5301 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5302 int len;
5303
5304 /* Start of actual range_table, or end of bitmap if there is no
5305 range table. */
5306 re_char *range_table;
5307
5308 /* Nonzero if there is a range table. */
5309 int range_table_exists;
5310
5311 /* Number of ranges of range table. This is not included
5312 in the initial byte-length of the command. */
5313 int count = 0;
5314
5315 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5316
5317 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5318
5319 if (range_table_exists)
5320 {
5321 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5322 EXTRACT_NUMBER_AND_INCR (count, range_table);
5323 }
5324
5325 PREFETCH ();
5326 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5327 c = TRANSLATE (c); /* The character to match. */
5328
5329 if (SINGLE_BYTE_CHAR_P (c))
5330 { /* Lookup bitmap. */
5331 /* Cast to `unsigned' instead of `unsigned char' in
5332 case the bit list is a full 32 bytes long. */
5333 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5334 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5335 not = !not;
5336 }
5337 #ifdef emacs
5338 else if (range_table_exists)
5339 {
5340 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5341
5342 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5343 | (class_bits & BIT_MULTIBYTE)
5344 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5345 | (class_bits & BIT_SPACE && ISSPACE (c))
5346 | (class_bits & BIT_UPPER && ISUPPER (c))
5347 | (class_bits & BIT_WORD && ISWORD (c)))
5348 not = !not;
5349 else
5350 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5351 }
5352 #endif /* emacs */
5353
5354 if (range_table_exists)
5355 p = CHARSET_RANGE_TABLE_END (range_table, count);
5356 else
5357 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5358
5359 if (!not) goto fail;
5360
5361 d += len;
5362 break;
5363 }
5364
5365
5366 /* The beginning of a group is represented by start_memory.
5367 The argument is the register number. The text
5368 matched within the group is recorded (in the internal
5369 registers data structure) under the register number. */
5370 case start_memory:
5371 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5372
5373 /* In case we need to undo this operation (via backtracking). */
5374 PUSH_FAILURE_REG ((unsigned int)*p);
5375
5376 regstart[*p] = d;
5377 regend[*p] = NULL; /* probably unnecessary. -sm */
5378 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5379
5380 /* Move past the register number and inner group count. */
5381 p += 1;
5382 break;
5383
5384
5385 /* The stop_memory opcode represents the end of a group. Its
5386 argument is the same as start_memory's: the register number. */
5387 case stop_memory:
5388 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5389
5390 assert (!REG_UNSET (regstart[*p]));
5391 /* Strictly speaking, there should be code such as:
5392
5393 assert (REG_UNSET (regend[*p]));
5394 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5395
5396 But the only info to be pushed is regend[*p] and it is known to
5397 be UNSET, so there really isn't anything to push.
5398 Not pushing anything, on the other hand deprives us from the
5399 guarantee that regend[*p] is UNSET since undoing this operation
5400 will not reset its value properly. This is not important since
5401 the value will only be read on the next start_memory or at
5402 the very end and both events can only happen if this stop_memory
5403 is *not* undone. */
5404
5405 regend[*p] = d;
5406 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5407
5408 /* Move past the register number and the inner group count. */
5409 p += 1;
5410 break;
5411
5412
5413 /* \<digit> has been turned into a `duplicate' command which is
5414 followed by the numeric value of <digit> as the register number. */
5415 case duplicate:
5416 {
5417 register re_char *d2, *dend2;
5418 int regno = *p++; /* Get which register to match against. */
5419 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5420
5421 /* Can't back reference a group which we've never matched. */
5422 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5423 goto fail;
5424
5425 /* Where in input to try to start matching. */
5426 d2 = regstart[regno];
5427
5428 /* Remember the start point to rollback upon failure. */
5429 dfail = d;
5430
5431 /* Where to stop matching; if both the place to start and
5432 the place to stop matching are in the same string, then
5433 set to the place to stop, otherwise, for now have to use
5434 the end of the first string. */
5435
5436 dend2 = ((FIRST_STRING_P (regstart[regno])
5437 == FIRST_STRING_P (regend[regno]))
5438 ? regend[regno] : end_match_1);
5439 for (;;)
5440 {
5441 /* If necessary, advance to next segment in register
5442 contents. */
5443 while (d2 == dend2)
5444 {
5445 if (dend2 == end_match_2) break;
5446 if (dend2 == regend[regno]) break;
5447
5448 /* End of string1 => advance to string2. */
5449 d2 = string2;
5450 dend2 = regend[regno];
5451 }
5452 /* At end of register contents => success */
5453 if (d2 == dend2) break;
5454
5455 /* If necessary, advance to next segment in data. */
5456 PREFETCH ();
5457
5458 /* How many characters left in this segment to match. */
5459 mcnt = dend - d;
5460
5461 /* Want how many consecutive characters we can match in
5462 one shot, so, if necessary, adjust the count. */
5463 if (mcnt > dend2 - d2)
5464 mcnt = dend2 - d2;
5465
5466 /* Compare that many; failure if mismatch, else move
5467 past them. */
5468 if (RE_TRANSLATE_P (translate)
5469 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5470 : memcmp (d, d2, mcnt))
5471 {
5472 d = dfail;
5473 goto fail;
5474 }
5475 d += mcnt, d2 += mcnt;
5476 }
5477 }
5478 break;
5479
5480
5481 /* begline matches the empty string at the beginning of the string
5482 (unless `not_bol' is set in `bufp'), and after newlines. */
5483 case begline:
5484 DEBUG_PRINT1 ("EXECUTING begline.\n");
5485
5486 if (AT_STRINGS_BEG (d))
5487 {
5488 if (!bufp->not_bol) break;
5489 }
5490 else
5491 {
5492 unsigned char c;
5493 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5494 if (c == '\n')
5495 break;
5496 }
5497 /* In all other cases, we fail. */
5498 goto fail;
5499
5500
5501 /* endline is the dual of begline. */
5502 case endline:
5503 DEBUG_PRINT1 ("EXECUTING endline.\n");
5504
5505 if (AT_STRINGS_END (d))
5506 {
5507 if (!bufp->not_eol) break;
5508 }
5509 else
5510 {
5511 PREFETCH_NOLIMIT ();
5512 if (*d == '\n')
5513 break;
5514 }
5515 goto fail;
5516
5517
5518 /* Match at the very beginning of the data. */
5519 case begbuf:
5520 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5521 if (AT_STRINGS_BEG (d))
5522 break;
5523 goto fail;
5524
5525
5526 /* Match at the very end of the data. */
5527 case endbuf:
5528 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5529 if (AT_STRINGS_END (d))
5530 break;
5531 goto fail;
5532
5533
5534 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5535 pushes NULL as the value for the string on the stack. Then
5536 `POP_FAILURE_POINT' will keep the current value for the
5537 string, instead of restoring it. To see why, consider
5538 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5539 then the . fails against the \n. But the next thing we want
5540 to do is match the \n against the \n; if we restored the
5541 string value, we would be back at the foo.
5542
5543 Because this is used only in specific cases, we don't need to
5544 check all the things that `on_failure_jump' does, to make
5545 sure the right things get saved on the stack. Hence we don't
5546 share its code. The only reason to push anything on the
5547 stack at all is that otherwise we would have to change
5548 `anychar's code to do something besides goto fail in this
5549 case; that seems worse than this. */
5550 case on_failure_keep_string_jump:
5551 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5552 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5553 mcnt, p + mcnt);
5554
5555 PUSH_FAILURE_POINT (p - 3, NULL);
5556 break;
5557
5558 /* A nasty loop is introduced by the non-greedy *? and +?.
5559 With such loops, the stack only ever contains one failure point
5560 at a time, so that a plain on_failure_jump_loop kind of
5561 cycle detection cannot work. Worse yet, such a detection
5562 can not only fail to detect a cycle, but it can also wrongly
5563 detect a cycle (between different instantiations of the same
5564 loop).
5565 So the method used for those nasty loops is a little different:
5566 We use a special cycle-detection-stack-frame which is pushed
5567 when the on_failure_jump_nastyloop failure-point is *popped*.
5568 This special frame thus marks the beginning of one iteration
5569 through the loop and we can hence easily check right here
5570 whether something matched between the beginning and the end of
5571 the loop. */
5572 case on_failure_jump_nastyloop:
5573 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5574 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5575 mcnt, p + mcnt);
5576
5577 assert ((re_opcode_t)p[-4] == no_op);
5578 {
5579 int cycle = 0;
5580 CHECK_INFINITE_LOOP (p - 4, d);
5581 if (!cycle)
5582 /* If there's a cycle, just continue without pushing
5583 this failure point. The failure point is the "try again"
5584 option, which shouldn't be tried.
5585 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5586 PUSH_FAILURE_POINT (p - 3, d);
5587 }
5588 break;
5589
5590 /* Simple loop detecting on_failure_jump: just check on the
5591 failure stack if the same spot was already hit earlier. */
5592 case on_failure_jump_loop:
5593 on_failure:
5594 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5595 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5596 mcnt, p + mcnt);
5597 {
5598 int cycle = 0;
5599 CHECK_INFINITE_LOOP (p - 3, d);
5600 if (cycle)
5601 /* If there's a cycle, get out of the loop, as if the matching
5602 had failed. We used to just `goto fail' here, but that was
5603 aborting the search a bit too early: we want to keep the
5604 empty-loop-match and keep matching after the loop.
5605 We want (x?)*y\1z to match both xxyz and xxyxz. */
5606 p += mcnt;
5607 else
5608 PUSH_FAILURE_POINT (p - 3, d);
5609 }
5610 break;
5611
5612
5613 /* Uses of on_failure_jump:
5614
5615 Each alternative starts with an on_failure_jump that points
5616 to the beginning of the next alternative. Each alternative
5617 except the last ends with a jump that in effect jumps past
5618 the rest of the alternatives. (They really jump to the
5619 ending jump of the following alternative, because tensioning
5620 these jumps is a hassle.)
5621
5622 Repeats start with an on_failure_jump that points past both
5623 the repetition text and either the following jump or
5624 pop_failure_jump back to this on_failure_jump. */
5625 case on_failure_jump:
5626 IMMEDIATE_QUIT_CHECK;
5627 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5628 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5629 mcnt, p + mcnt);
5630
5631 PUSH_FAILURE_POINT (p -3, d);
5632 break;
5633
5634 /* This operation is used for greedy *.
5635 Compare the beginning of the repeat with what in the
5636 pattern follows its end. If we can establish that there
5637 is nothing that they would both match, i.e., that we
5638 would have to backtrack because of (as in, e.g., `a*a')
5639 then we can use a non-backtracking loop based on
5640 on_failure_keep_string_jump instead of on_failure_jump. */
5641 case on_failure_jump_smart:
5642 IMMEDIATE_QUIT_CHECK;
5643 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5644 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5645 mcnt, p + mcnt);
5646 {
5647 re_char *p1 = p; /* Next operation. */
5648 /* Here, we discard `const', making re_match non-reentrant. */
5649 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5650 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5651
5652 p -= 3; /* Reset so that we will re-execute the
5653 instruction once it's been changed. */
5654
5655 EXTRACT_NUMBER (mcnt, p2 - 2);
5656
5657 /* Ensure this is a indeed the trivial kind of loop
5658 we are expecting. */
5659 assert (skip_one_char (p1) == p2 - 3);
5660 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5661 DEBUG_STATEMENT (debug += 2);
5662 if (mutually_exclusive_p (bufp, p1, p2))
5663 {
5664 /* Use a fast `on_failure_keep_string_jump' loop. */
5665 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5666 *p3 = (unsigned char) on_failure_keep_string_jump;
5667 STORE_NUMBER (p2 - 2, mcnt + 3);
5668 }
5669 else
5670 {
5671 /* Default to a safe `on_failure_jump' loop. */
5672 DEBUG_PRINT1 (" smart default => slow loop.\n");
5673 *p3 = (unsigned char) on_failure_jump;
5674 }
5675 DEBUG_STATEMENT (debug -= 2);
5676 }
5677 break;
5678
5679 /* Unconditionally jump (without popping any failure points). */
5680 case jump:
5681 unconditional_jump:
5682 IMMEDIATE_QUIT_CHECK;
5683 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5684 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5685 p += mcnt; /* Do the jump. */
5686 DEBUG_PRINT2 ("(to %p).\n", p);
5687 break;
5688
5689
5690 /* Have to succeed matching what follows at least n times.
5691 After that, handle like `on_failure_jump'. */
5692 case succeed_n:
5693 /* Signedness doesn't matter since we only compare MCNT to 0. */
5694 EXTRACT_NUMBER (mcnt, p + 2);
5695 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5696
5697 /* Originally, mcnt is how many times we HAVE to succeed. */
5698 if (mcnt != 0)
5699 {
5700 /* Here, we discard `const', making re_match non-reentrant. */
5701 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5702 mcnt--;
5703 p += 4;
5704 PUSH_NUMBER (p2, mcnt);
5705 }
5706 else
5707 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5708 goto on_failure;
5709 break;
5710
5711 case jump_n:
5712 /* Signedness doesn't matter since we only compare MCNT to 0. */
5713 EXTRACT_NUMBER (mcnt, p + 2);
5714 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5715
5716 /* Originally, this is how many times we CAN jump. */
5717 if (mcnt != 0)
5718 {
5719 /* Here, we discard `const', making re_match non-reentrant. */
5720 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5721 mcnt--;
5722 PUSH_NUMBER (p2, mcnt);
5723 goto unconditional_jump;
5724 }
5725 /* If don't have to jump any more, skip over the rest of command. */
5726 else
5727 p += 4;
5728 break;
5729
5730 case set_number_at:
5731 {
5732 unsigned char *p2; /* Location of the counter. */
5733 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5734
5735 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5736 /* Here, we discard `const', making re_match non-reentrant. */
5737 p2 = (unsigned char*) p + mcnt;
5738 /* Signedness doesn't matter since we only copy MCNT's bits . */
5739 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5740 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5741 PUSH_NUMBER (p2, mcnt);
5742 break;
5743 }
5744
5745 case wordbound:
5746 case notwordbound:
5747 not = (re_opcode_t) *(p - 1) == notwordbound;
5748 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5749
5750 /* We SUCCEED (or FAIL) in one of the following cases: */
5751
5752 /* Case 1: D is at the beginning or the end of string. */
5753 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5754 not = !not;
5755 else
5756 {
5757 /* C1 is the character before D, S1 is the syntax of C1, C2
5758 is the character at D, and S2 is the syntax of C2. */
5759 re_wchar_t c1, c2;
5760 int s1, s2;
5761 #ifdef emacs
5762 int offset = PTR_TO_OFFSET (d - 1);
5763 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5764 UPDATE_SYNTAX_TABLE (charpos);
5765 #endif
5766 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5767 s1 = SYNTAX (c1);
5768 #ifdef emacs
5769 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5770 #endif
5771 PREFETCH_NOLIMIT ();
5772 c2 = RE_STRING_CHAR (d, dend - d);
5773 s2 = SYNTAX (c2);
5774
5775 if (/* Case 2: Only one of S1 and S2 is Sword. */
5776 ((s1 == Sword) != (s2 == Sword))
5777 /* Case 3: Both of S1 and S2 are Sword, and macro
5778 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5779 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5780 not = !not;
5781 }
5782 if (not)
5783 break;
5784 else
5785 goto fail;
5786
5787 case wordbeg:
5788 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5789
5790 /* We FAIL in one of the following cases: */
5791
5792 /* Case 1: D is at the end of string. */
5793 if (AT_STRINGS_END (d))
5794 goto fail;
5795 else
5796 {
5797 /* C1 is the character before D, S1 is the syntax of C1, C2
5798 is the character at D, and S2 is the syntax of C2. */
5799 re_wchar_t c1, c2;
5800 int s1, s2;
5801 #ifdef emacs
5802 int offset = PTR_TO_OFFSET (d);
5803 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5804 UPDATE_SYNTAX_TABLE (charpos);
5805 #endif
5806 PREFETCH ();
5807 c2 = RE_STRING_CHAR (d, dend - d);
5808 s2 = SYNTAX (c2);
5809
5810 /* Case 2: S2 is not Sword. */
5811 if (s2 != Sword)
5812 goto fail;
5813
5814 /* Case 3: D is not at the beginning of string ... */
5815 if (!AT_STRINGS_BEG (d))
5816 {
5817 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5818 #ifdef emacs
5819 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5820 #endif
5821 s1 = SYNTAX (c1);
5822
5823 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5824 returns 0. */
5825 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5826 goto fail;
5827 }
5828 }
5829 break;
5830
5831 case wordend:
5832 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5833
5834 /* We FAIL in one of the following cases: */
5835
5836 /* Case 1: D is at the beginning of string. */
5837 if (AT_STRINGS_BEG (d))
5838 goto fail;
5839 else
5840 {
5841 /* C1 is the character before D, S1 is the syntax of C1, C2
5842 is the character at D, and S2 is the syntax of C2. */
5843 re_wchar_t c1, c2;
5844 int s1, s2;
5845 #ifdef emacs
5846 int offset = PTR_TO_OFFSET (d) - 1;
5847 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5848 UPDATE_SYNTAX_TABLE (charpos);
5849 #endif
5850 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5851 s1 = SYNTAX (c1);
5852
5853 /* Case 2: S1 is not Sword. */
5854 if (s1 != Sword)
5855 goto fail;
5856
5857 /* Case 3: D is not at the end of string ... */
5858 if (!AT_STRINGS_END (d))
5859 {
5860 PREFETCH_NOLIMIT ();
5861 c2 = RE_STRING_CHAR (d, dend - d);
5862 #ifdef emacs
5863 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5864 #endif
5865 s2 = SYNTAX (c2);
5866
5867 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5868 returns 0. */
5869 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5870 goto fail;
5871 }
5872 }
5873 break;
5874
5875 case symbeg:
5876 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5877
5878 /* We FAIL in one of the following cases: */
5879
5880 /* Case 1: D is at the end of string. */
5881 if (AT_STRINGS_END (d))
5882 goto fail;
5883 else
5884 {
5885 /* C1 is the character before D, S1 is the syntax of C1, C2
5886 is the character at D, and S2 is the syntax of C2. */
5887 re_wchar_t c1, c2;
5888 int s1, s2;
5889 #ifdef emacs
5890 int offset = PTR_TO_OFFSET (d);
5891 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5892 UPDATE_SYNTAX_TABLE (charpos);
5893 #endif
5894 PREFETCH ();
5895 c2 = RE_STRING_CHAR (d, dend - d);
5896 s2 = SYNTAX (c2);
5897
5898 /* Case 2: S2 is neither Sword nor Ssymbol. */
5899 if (s2 != Sword && s2 != Ssymbol)
5900 goto fail;
5901
5902 /* Case 3: D is not at the beginning of string ... */
5903 if (!AT_STRINGS_BEG (d))
5904 {
5905 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5906 #ifdef emacs
5907 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5908 #endif
5909 s1 = SYNTAX (c1);
5910
5911 /* ... and S1 is Sword or Ssymbol. */
5912 if (s1 == Sword || s1 == Ssymbol)
5913 goto fail;
5914 }
5915 }
5916 break;
5917
5918 case symend:
5919 DEBUG_PRINT1 ("EXECUTING symend.\n");
5920
5921 /* We FAIL in one of the following cases: */
5922
5923 /* Case 1: D is at the beginning of string. */
5924 if (AT_STRINGS_BEG (d))
5925 goto fail;
5926 else
5927 {
5928 /* C1 is the character before D, S1 is the syntax of C1, C2
5929 is the character at D, and S2 is the syntax of C2. */
5930 re_wchar_t c1, c2;
5931 int s1, s2;
5932 #ifdef emacs
5933 int offset = PTR_TO_OFFSET (d) - 1;
5934 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5935 UPDATE_SYNTAX_TABLE (charpos);
5936 #endif
5937 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5938 s1 = SYNTAX (c1);
5939
5940 /* Case 2: S1 is neither Ssymbol nor Sword. */
5941 if (s1 != Sword && s1 != Ssymbol)
5942 goto fail;
5943
5944 /* Case 3: D is not at the end of string ... */
5945 if (!AT_STRINGS_END (d))
5946 {
5947 PREFETCH_NOLIMIT ();
5948 c2 = RE_STRING_CHAR (d, dend - d);
5949 #ifdef emacs
5950 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5951 #endif
5952 s2 = SYNTAX (c2);
5953
5954 /* ... and S2 is Sword or Ssymbol. */
5955 if (s2 == Sword || s2 == Ssymbol)
5956 goto fail;
5957 }
5958 }
5959 break;
5960
5961 case syntaxspec:
5962 case notsyntaxspec:
5963 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5964 mcnt = *p++;
5965 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5966 PREFETCH ();
5967 #ifdef emacs
5968 {
5969 int offset = PTR_TO_OFFSET (d);
5970 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5971 UPDATE_SYNTAX_TABLE (pos1);
5972 }
5973 #endif
5974 {
5975 int len;
5976 re_wchar_t c;
5977
5978 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5979
5980 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5981 goto fail;
5982 d += len;
5983 }
5984 break;
5985
5986 #ifdef emacs
5987 case before_dot:
5988 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5989 if (PTR_BYTE_POS (d) >= PT_BYTE)
5990 goto fail;
5991 break;
5992
5993 case at_dot:
5994 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5995 if (PTR_BYTE_POS (d) != PT_BYTE)
5996 goto fail;
5997 break;
5998
5999 case after_dot:
6000 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6001 if (PTR_BYTE_POS (d) <= PT_BYTE)
6002 goto fail;
6003 break;
6004
6005 case categoryspec:
6006 case notcategoryspec:
6007 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6008 mcnt = *p++;
6009 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6010 PREFETCH ();
6011 {
6012 int len;
6013 re_wchar_t c;
6014
6015 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6016
6017 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6018 goto fail;
6019 d += len;
6020 }
6021 break;
6022
6023 #endif /* emacs */
6024
6025 default:
6026 abort ();
6027 }
6028 continue; /* Successfully executed one pattern command; keep going. */
6029
6030
6031 /* We goto here if a matching operation fails. */
6032 fail:
6033 IMMEDIATE_QUIT_CHECK;
6034 if (!FAIL_STACK_EMPTY ())
6035 {
6036 re_char *str, *pat;
6037 /* A restart point is known. Restore to that state. */
6038 DEBUG_PRINT1 ("\nFAIL:\n");
6039 POP_FAILURE_POINT (str, pat);
6040 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6041 {
6042 case on_failure_keep_string_jump:
6043 assert (str == NULL);
6044 goto continue_failure_jump;
6045
6046 case on_failure_jump_nastyloop:
6047 assert ((re_opcode_t)pat[-2] == no_op);
6048 PUSH_FAILURE_POINT (pat - 2, str);
6049 /* Fallthrough */
6050
6051 case on_failure_jump_loop:
6052 case on_failure_jump:
6053 case succeed_n:
6054 d = str;
6055 continue_failure_jump:
6056 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6057 p = pat + mcnt;
6058 break;
6059
6060 case no_op:
6061 /* A special frame used for nastyloops. */
6062 goto fail;
6063
6064 default:
6065 abort();
6066 }
6067
6068 assert (p >= bufp->buffer && p <= pend);
6069
6070 if (d >= string1 && d <= end1)
6071 dend = end_match_1;
6072 }
6073 else
6074 break; /* Matching at this starting point really fails. */
6075 } /* for (;;) */
6076
6077 if (best_regs_set)
6078 goto restore_best_regs;
6079
6080 FREE_VARIABLES ();
6081
6082 return -1; /* Failure to match. */
6083 } /* re_match_2 */
6084 \f
6085 /* Subroutine definitions for re_match_2. */
6086
6087 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6088 bytes; nonzero otherwise. */
6089
6090 static int
6091 bcmp_translate (s1, s2, len, translate, multibyte)
6092 re_char *s1, *s2;
6093 register int len;
6094 RE_TRANSLATE_TYPE translate;
6095 const int multibyte;
6096 {
6097 register re_char *p1 = s1, *p2 = s2;
6098 re_char *p1_end = s1 + len;
6099 re_char *p2_end = s2 + len;
6100
6101 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6102 different lengths, but relying on a single `len' would break this. -sm */
6103 while (p1 < p1_end && p2 < p2_end)
6104 {
6105 int p1_charlen, p2_charlen;
6106 re_wchar_t p1_ch, p2_ch;
6107
6108 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6109 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6110
6111 if (RE_TRANSLATE (translate, p1_ch)
6112 != RE_TRANSLATE (translate, p2_ch))
6113 return 1;
6114
6115 p1 += p1_charlen, p2 += p2_charlen;
6116 }
6117
6118 if (p1 != p1_end || p2 != p2_end)
6119 return 1;
6120
6121 return 0;
6122 }
6123 \f
6124 /* Entry points for GNU code. */
6125
6126 /* re_compile_pattern is the GNU regular expression compiler: it
6127 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6128 Returns 0 if the pattern was valid, otherwise an error string.
6129
6130 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6131 are set in BUFP on entry.
6132
6133 We call regex_compile to do the actual compilation. */
6134
6135 const char *
6136 re_compile_pattern (pattern, length, bufp)
6137 const char *pattern;
6138 size_t length;
6139 struct re_pattern_buffer *bufp;
6140 {
6141 reg_errcode_t ret;
6142
6143 /* GNU code is written to assume at least RE_NREGS registers will be set
6144 (and at least one extra will be -1). */
6145 bufp->regs_allocated = REGS_UNALLOCATED;
6146
6147 /* And GNU code determines whether or not to get register information
6148 by passing null for the REGS argument to re_match, etc., not by
6149 setting no_sub. */
6150 bufp->no_sub = 0;
6151
6152 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6153
6154 if (!ret)
6155 return NULL;
6156 return gettext (re_error_msgid[(int) ret]);
6157 }
6158 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6159 \f
6160 /* Entry points compatible with 4.2 BSD regex library. We don't define
6161 them unless specifically requested. */
6162
6163 #if defined _REGEX_RE_COMP || defined _LIBC
6164
6165 /* BSD has one and only one pattern buffer. */
6166 static struct re_pattern_buffer re_comp_buf;
6167
6168 char *
6169 # ifdef _LIBC
6170 /* Make these definitions weak in libc, so POSIX programs can redefine
6171 these names if they don't use our functions, and still use
6172 regcomp/regexec below without link errors. */
6173 weak_function
6174 # endif
6175 re_comp (s)
6176 const char *s;
6177 {
6178 reg_errcode_t ret;
6179
6180 if (!s)
6181 {
6182 if (!re_comp_buf.buffer)
6183 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6184 return (char *) gettext ("No previous regular expression");
6185 return 0;
6186 }
6187
6188 if (!re_comp_buf.buffer)
6189 {
6190 re_comp_buf.buffer = (unsigned char *) malloc (200);
6191 if (re_comp_buf.buffer == NULL)
6192 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6193 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6194 re_comp_buf.allocated = 200;
6195
6196 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6197 if (re_comp_buf.fastmap == NULL)
6198 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6199 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6200 }
6201
6202 /* Since `re_exec' always passes NULL for the `regs' argument, we
6203 don't need to initialize the pattern buffer fields which affect it. */
6204
6205 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6206
6207 if (!ret)
6208 return NULL;
6209
6210 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6211 return (char *) gettext (re_error_msgid[(int) ret]);
6212 }
6213
6214
6215 int
6216 # ifdef _LIBC
6217 weak_function
6218 # endif
6219 re_exec (s)
6220 const char *s;
6221 {
6222 const int len = strlen (s);
6223 return
6224 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6225 }
6226 #endif /* _REGEX_RE_COMP */
6227 \f
6228 /* POSIX.2 functions. Don't define these for Emacs. */
6229
6230 #ifndef emacs
6231
6232 /* regcomp takes a regular expression as a string and compiles it.
6233
6234 PREG is a regex_t *. We do not expect any fields to be initialized,
6235 since POSIX says we shouldn't. Thus, we set
6236
6237 `buffer' to the compiled pattern;
6238 `used' to the length of the compiled pattern;
6239 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6240 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6241 RE_SYNTAX_POSIX_BASIC;
6242 `fastmap' to an allocated space for the fastmap;
6243 `fastmap_accurate' to zero;
6244 `re_nsub' to the number of subexpressions in PATTERN.
6245
6246 PATTERN is the address of the pattern string.
6247
6248 CFLAGS is a series of bits which affect compilation.
6249
6250 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6251 use POSIX basic syntax.
6252
6253 If REG_NEWLINE is set, then . and [^...] don't match newline.
6254 Also, regexec will try a match beginning after every newline.
6255
6256 If REG_ICASE is set, then we considers upper- and lowercase
6257 versions of letters to be equivalent when matching.
6258
6259 If REG_NOSUB is set, then when PREG is passed to regexec, that
6260 routine will report only success or failure, and nothing about the
6261 registers.
6262
6263 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6264 the return codes and their meanings.) */
6265
6266 int
6267 regcomp (preg, pattern, cflags)
6268 regex_t *__restrict preg;
6269 const char *__restrict pattern;
6270 int cflags;
6271 {
6272 reg_errcode_t ret;
6273 reg_syntax_t syntax
6274 = (cflags & REG_EXTENDED) ?
6275 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6276
6277 /* regex_compile will allocate the space for the compiled pattern. */
6278 preg->buffer = 0;
6279 preg->allocated = 0;
6280 preg->used = 0;
6281
6282 /* Try to allocate space for the fastmap. */
6283 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6284
6285 if (cflags & REG_ICASE)
6286 {
6287 unsigned i;
6288
6289 preg->translate
6290 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6291 * sizeof (*(RE_TRANSLATE_TYPE)0));
6292 if (preg->translate == NULL)
6293 return (int) REG_ESPACE;
6294
6295 /* Map uppercase characters to corresponding lowercase ones. */
6296 for (i = 0; i < CHAR_SET_SIZE; i++)
6297 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6298 }
6299 else
6300 preg->translate = NULL;
6301
6302 /* If REG_NEWLINE is set, newlines are treated differently. */
6303 if (cflags & REG_NEWLINE)
6304 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6305 syntax &= ~RE_DOT_NEWLINE;
6306 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6307 }
6308 else
6309 syntax |= RE_NO_NEWLINE_ANCHOR;
6310
6311 preg->no_sub = !!(cflags & REG_NOSUB);
6312
6313 /* POSIX says a null character in the pattern terminates it, so we
6314 can use strlen here in compiling the pattern. */
6315 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6316
6317 /* POSIX doesn't distinguish between an unmatched open-group and an
6318 unmatched close-group: both are REG_EPAREN. */
6319 if (ret == REG_ERPAREN)
6320 ret = REG_EPAREN;
6321
6322 if (ret == REG_NOERROR && preg->fastmap)
6323 { /* Compute the fastmap now, since regexec cannot modify the pattern
6324 buffer. */
6325 re_compile_fastmap (preg);
6326 if (preg->can_be_null)
6327 { /* The fastmap can't be used anyway. */
6328 free (preg->fastmap);
6329 preg->fastmap = NULL;
6330 }
6331 }
6332 return (int) ret;
6333 }
6334 WEAK_ALIAS (__regcomp, regcomp)
6335
6336
6337 /* regexec searches for a given pattern, specified by PREG, in the
6338 string STRING.
6339
6340 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6341 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6342 least NMATCH elements, and we set them to the offsets of the
6343 corresponding matched substrings.
6344
6345 EFLAGS specifies `execution flags' which affect matching: if
6346 REG_NOTBOL is set, then ^ does not match at the beginning of the
6347 string; if REG_NOTEOL is set, then $ does not match at the end.
6348
6349 We return 0 if we find a match and REG_NOMATCH if not. */
6350
6351 int
6352 regexec (preg, string, nmatch, pmatch, eflags)
6353 const regex_t *__restrict preg;
6354 const char *__restrict string;
6355 size_t nmatch;
6356 regmatch_t pmatch[__restrict_arr];
6357 int eflags;
6358 {
6359 int ret;
6360 struct re_registers regs;
6361 regex_t private_preg;
6362 int len = strlen (string);
6363 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6364
6365 private_preg = *preg;
6366
6367 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6368 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6369
6370 /* The user has told us exactly how many registers to return
6371 information about, via `nmatch'. We have to pass that on to the
6372 matching routines. */
6373 private_preg.regs_allocated = REGS_FIXED;
6374
6375 if (want_reg_info)
6376 {
6377 regs.num_regs = nmatch;
6378 regs.start = TALLOC (nmatch * 2, regoff_t);
6379 if (regs.start == NULL)
6380 return (int) REG_NOMATCH;
6381 regs.end = regs.start + nmatch;
6382 }
6383
6384 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6385 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6386 was a little bit longer but still only matching the real part.
6387 This works because the `endline' will check for a '\n' and will find a
6388 '\0', correctly deciding that this is not the end of a line.
6389 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6390 a convenient '\0' there. For all we know, the string could be preceded
6391 by '\n' which would throw things off. */
6392
6393 /* Perform the searching operation. */
6394 ret = re_search (&private_preg, string, len,
6395 /* start: */ 0, /* range: */ len,
6396 want_reg_info ? &regs : (struct re_registers *) 0);
6397
6398 /* Copy the register information to the POSIX structure. */
6399 if (want_reg_info)
6400 {
6401 if (ret >= 0)
6402 {
6403 unsigned r;
6404
6405 for (r = 0; r < nmatch; r++)
6406 {
6407 pmatch[r].rm_so = regs.start[r];
6408 pmatch[r].rm_eo = regs.end[r];
6409 }
6410 }
6411
6412 /* If we needed the temporary register info, free the space now. */
6413 free (regs.start);
6414 }
6415
6416 /* We want zero return to mean success, unlike `re_search'. */
6417 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6418 }
6419 WEAK_ALIAS (__regexec, regexec)
6420
6421
6422 /* Returns a message corresponding to an error code, ERRCODE, returned
6423 from either regcomp or regexec. We don't use PREG here. */
6424
6425 size_t
6426 regerror (errcode, preg, errbuf, errbuf_size)
6427 int errcode;
6428 const regex_t *preg;
6429 char *errbuf;
6430 size_t errbuf_size;
6431 {
6432 const char *msg;
6433 size_t msg_size;
6434
6435 if (errcode < 0
6436 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6437 /* Only error codes returned by the rest of the code should be passed
6438 to this routine. If we are given anything else, or if other regex
6439 code generates an invalid error code, then the program has a bug.
6440 Dump core so we can fix it. */
6441 abort ();
6442
6443 msg = gettext (re_error_msgid[errcode]);
6444
6445 msg_size = strlen (msg) + 1; /* Includes the null. */
6446
6447 if (errbuf_size != 0)
6448 {
6449 if (msg_size > errbuf_size)
6450 {
6451 strncpy (errbuf, msg, errbuf_size - 1);
6452 errbuf[errbuf_size - 1] = 0;
6453 }
6454 else
6455 strcpy (errbuf, msg);
6456 }
6457
6458 return msg_size;
6459 }
6460 WEAK_ALIAS (__regerror, regerror)
6461
6462
6463 /* Free dynamically allocated space used by PREG. */
6464
6465 void
6466 regfree (preg)
6467 regex_t *preg;
6468 {
6469 if (preg->buffer != NULL)
6470 free (preg->buffer);
6471 preg->buffer = NULL;
6472
6473 preg->allocated = 0;
6474 preg->used = 0;
6475
6476 if (preg->fastmap != NULL)
6477 free (preg->fastmap);
6478 preg->fastmap = NULL;
6479 preg->fastmap_accurate = 0;
6480
6481 if (preg->translate != NULL)
6482 free (preg->translate);
6483 preg->translate = NULL;
6484 }
6485 WEAK_ALIAS (__regfree, regfree)
6486
6487 #endif /* not emacs */
6488
6489 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6490 (do not change this comment) */