Change defvar_int def and vars to use EMACS_INT instead of just int.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24
25 /* Note that this declares bzero on OSF/1. How dumb. */
26
27 #include <signal.h>
28
29 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
30 memory. Can do this only if using gmalloc.c. */
31
32 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
33 #undef GC_MALLOC_CHECK
34 #endif
35
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
39
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "charset.h"
51 #include "syssignal.h"
52 #include <setjmp.h>
53
54 #ifdef HAVE_UNISTD_H
55 #include <unistd.h>
56 #else
57 extern POINTER_TYPE *sbrk ();
58 #endif
59
60 #ifdef DOUG_LEA_MALLOC
61
62 #include <malloc.h>
63 /* malloc.h #defines this as size_t, at least in glibc2. */
64 #ifndef __malloc_size_t
65 #define __malloc_size_t int
66 #endif
67
68 /* Specify maximum number of areas to mmap. It would be nice to use a
69 value that explicitly means "no limit". */
70
71 #define MMAP_MAX_AREAS 100000000
72
73 #else /* not DOUG_LEA_MALLOC */
74
75 /* The following come from gmalloc.c. */
76
77 #define __malloc_size_t size_t
78 extern __malloc_size_t _bytes_used;
79 extern __malloc_size_t __malloc_extra_blocks;
80
81 #endif /* not DOUG_LEA_MALLOC */
82
83 /* Macro to verify that storage intended for Lisp objects is not
84 out of range to fit in the space for a pointer.
85 ADDRESS is the start of the block, and SIZE
86 is the amount of space within which objects can start. */
87
88 #define VALIDATE_LISP_STORAGE(address, size) \
89 do \
90 { \
91 Lisp_Object val; \
92 XSETCONS (val, (char *) address + size); \
93 if ((char *) XCONS (val) != (char *) address + size) \
94 { \
95 xfree (address); \
96 memory_full (); \
97 } \
98 } while (0)
99
100 /* Value of _bytes_used, when spare_memory was freed. */
101
102 static __malloc_size_t bytes_used_when_full;
103
104 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
105 to a struct Lisp_String. */
106
107 #define MARK_STRING(S) ((S)->size |= MARKBIT)
108 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
109 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
110
111 /* Value is the number of bytes/chars of S, a pointer to a struct
112 Lisp_String. This must be used instead of STRING_BYTES (S) or
113 S->size during GC, because S->size contains the mark bit for
114 strings. */
115
116 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
117 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
118
119 /* Number of bytes of consing done since the last gc. */
120
121 int consing_since_gc;
122
123 /* Count the amount of consing of various sorts of space. */
124
125 EMACS_INT cons_cells_consed;
126 EMACS_INT floats_consed;
127 EMACS_INT vector_cells_consed;
128 EMACS_INT symbols_consed;
129 EMACS_INT string_chars_consed;
130 EMACS_INT misc_objects_consed;
131 EMACS_INT intervals_consed;
132 EMACS_INT strings_consed;
133
134 /* Number of bytes of consing since GC before another GC should be done. */
135
136 EMACS_INT gc_cons_threshold;
137
138 /* Nonzero during GC. */
139
140 int gc_in_progress;
141
142 /* Nonzero means display messages at beginning and end of GC. */
143
144 int garbage_collection_messages;
145
146 #ifndef VIRT_ADDR_VARIES
147 extern
148 #endif /* VIRT_ADDR_VARIES */
149 int malloc_sbrk_used;
150
151 #ifndef VIRT_ADDR_VARIES
152 extern
153 #endif /* VIRT_ADDR_VARIES */
154 int malloc_sbrk_unused;
155
156 /* Two limits controlling how much undo information to keep. */
157
158 EMACS_INT undo_limit;
159 EMACS_INT undo_strong_limit;
160
161 /* Number of live and free conses etc. */
162
163 static int total_conses, total_markers, total_symbols, total_vector_size;
164 static int total_free_conses, total_free_markers, total_free_symbols;
165 static int total_free_floats, total_floats;
166
167 /* Points to memory space allocated as "spare", to be freed if we run
168 out of memory. */
169
170 static char *spare_memory;
171
172 /* Amount of spare memory to keep in reserve. */
173
174 #define SPARE_MEMORY (1 << 14)
175
176 /* Number of extra blocks malloc should get when it needs more core. */
177
178 static int malloc_hysteresis;
179
180 /* Non-nil means defun should do purecopy on the function definition. */
181
182 Lisp_Object Vpurify_flag;
183
184 #ifndef HAVE_SHM
185
186 /* Force it into data space! */
187
188 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
189 #define PUREBEG (char *) pure
190
191 #else /* HAVE_SHM */
192
193 #define pure PURE_SEG_BITS /* Use shared memory segment */
194 #define PUREBEG (char *)PURE_SEG_BITS
195
196 #endif /* HAVE_SHM */
197
198 /* Pointer to the pure area, and its size. */
199
200 static char *purebeg;
201 static size_t pure_size;
202
203 /* Number of bytes of pure storage used before pure storage overflowed.
204 If this is non-zero, this implies that an overflow occurred. */
205
206 static size_t pure_bytes_used_before_overflow;
207
208 /* Value is non-zero if P points into pure space. */
209
210 #define PURE_POINTER_P(P) \
211 (((PNTR_COMPARISON_TYPE) (P) \
212 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
213 && ((PNTR_COMPARISON_TYPE) (P) \
214 >= (PNTR_COMPARISON_TYPE) purebeg))
215
216 /* Index in pure at which next pure object will be allocated.. */
217
218 EMACS_INT pure_bytes_used;
219
220 /* If nonzero, this is a warning delivered by malloc and not yet
221 displayed. */
222
223 char *pending_malloc_warning;
224
225 /* Pre-computed signal argument for use when memory is exhausted. */
226
227 Lisp_Object memory_signal_data;
228
229 /* Maximum amount of C stack to save when a GC happens. */
230
231 #ifndef MAX_SAVE_STACK
232 #define MAX_SAVE_STACK 16000
233 #endif
234
235 /* Buffer in which we save a copy of the C stack at each GC. */
236
237 char *stack_copy;
238 int stack_copy_size;
239
240 /* Non-zero means ignore malloc warnings. Set during initialization.
241 Currently not used. */
242
243 int ignore_warnings;
244
245 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
246
247 /* Hook run after GC has finished. */
248
249 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
250
251 static void mark_buffer P_ ((Lisp_Object));
252 static void mark_kboards P_ ((void));
253 static void gc_sweep P_ ((void));
254 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
255 static void mark_face_cache P_ ((struct face_cache *));
256
257 #ifdef HAVE_WINDOW_SYSTEM
258 static void mark_image P_ ((struct image *));
259 static void mark_image_cache P_ ((struct frame *));
260 #endif /* HAVE_WINDOW_SYSTEM */
261
262 static struct Lisp_String *allocate_string P_ ((void));
263 static void compact_small_strings P_ ((void));
264 static void free_large_strings P_ ((void));
265 static void sweep_strings P_ ((void));
266
267 extern int message_enable_multibyte;
268
269 /* When scanning the C stack for live Lisp objects, Emacs keeps track
270 of what memory allocated via lisp_malloc is intended for what
271 purpose. This enumeration specifies the type of memory. */
272
273 enum mem_type
274 {
275 MEM_TYPE_NON_LISP,
276 MEM_TYPE_BUFFER,
277 MEM_TYPE_CONS,
278 MEM_TYPE_STRING,
279 MEM_TYPE_MISC,
280 MEM_TYPE_SYMBOL,
281 MEM_TYPE_FLOAT,
282 /* Keep the following vector-like types together, with
283 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
284 first. Or change the code of live_vector_p, for instance. */
285 MEM_TYPE_VECTOR,
286 MEM_TYPE_PROCESS,
287 MEM_TYPE_HASH_TABLE,
288 MEM_TYPE_FRAME,
289 MEM_TYPE_WINDOW
290 };
291
292 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
293
294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
295 #include <stdio.h> /* For fprintf. */
296 #endif
297
298 /* A unique object in pure space used to make some Lisp objects
299 on free lists recognizable in O(1). */
300
301 Lisp_Object Vdead;
302
303 #ifdef GC_MALLOC_CHECK
304
305 enum mem_type allocated_mem_type;
306 int dont_register_blocks;
307
308 #endif /* GC_MALLOC_CHECK */
309
310 /* A node in the red-black tree describing allocated memory containing
311 Lisp data. Each such block is recorded with its start and end
312 address when it is allocated, and removed from the tree when it
313 is freed.
314
315 A red-black tree is a balanced binary tree with the following
316 properties:
317
318 1. Every node is either red or black.
319 2. Every leaf is black.
320 3. If a node is red, then both of its children are black.
321 4. Every simple path from a node to a descendant leaf contains
322 the same number of black nodes.
323 5. The root is always black.
324
325 When nodes are inserted into the tree, or deleted from the tree,
326 the tree is "fixed" so that these properties are always true.
327
328 A red-black tree with N internal nodes has height at most 2
329 log(N+1). Searches, insertions and deletions are done in O(log N).
330 Please see a text book about data structures for a detailed
331 description of red-black trees. Any book worth its salt should
332 describe them. */
333
334 struct mem_node
335 {
336 struct mem_node *left, *right, *parent;
337
338 /* Start and end of allocated region. */
339 void *start, *end;
340
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
343
344 /* Memory type. */
345 enum mem_type type;
346 };
347
348 /* Base address of stack. Set in main. */
349
350 Lisp_Object *stack_base;
351
352 /* Root of the tree describing allocated Lisp memory. */
353
354 static struct mem_node *mem_root;
355
356 /* Lowest and highest known address in the heap. */
357
358 static void *min_heap_address, *max_heap_address;
359
360 /* Sentinel node of the tree. */
361
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
364
365 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
366 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
367 static void lisp_free P_ ((POINTER_TYPE *));
368 static void mark_stack P_ ((void));
369 static int live_vector_p P_ ((struct mem_node *, void *));
370 static int live_buffer_p P_ ((struct mem_node *, void *));
371 static int live_string_p P_ ((struct mem_node *, void *));
372 static int live_cons_p P_ ((struct mem_node *, void *));
373 static int live_symbol_p P_ ((struct mem_node *, void *));
374 static int live_float_p P_ ((struct mem_node *, void *));
375 static int live_misc_p P_ ((struct mem_node *, void *));
376 static void mark_maybe_object P_ ((Lisp_Object));
377 static void mark_memory P_ ((void *, void *));
378 static void mem_init P_ ((void));
379 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
380 static void mem_insert_fixup P_ ((struct mem_node *));
381 static void mem_rotate_left P_ ((struct mem_node *));
382 static void mem_rotate_right P_ ((struct mem_node *));
383 static void mem_delete P_ ((struct mem_node *));
384 static void mem_delete_fixup P_ ((struct mem_node *));
385 static INLINE struct mem_node *mem_find P_ ((void *));
386
387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
388 static void check_gcpros P_ ((void));
389 #endif
390
391 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
392
393 /* Recording what needs to be marked for gc. */
394
395 struct gcpro *gcprolist;
396
397 /* Addresses of staticpro'd variables. */
398
399 #define NSTATICS 1280
400 Lisp_Object *staticvec[NSTATICS] = {0};
401
402 /* Index of next unused slot in staticvec. */
403
404 int staticidx = 0;
405
406 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
407
408
409 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
410 ALIGNMENT must be a power of 2. */
411
412 #define ALIGN(SZ, ALIGNMENT) \
413 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
414
415
416 \f
417 /************************************************************************
418 Malloc
419 ************************************************************************/
420
421 /* Write STR to Vstandard_output plus some advice on how to free some
422 memory. Called when memory gets low. */
423
424 Lisp_Object
425 malloc_warning_1 (str)
426 Lisp_Object str;
427 {
428 Fprinc (str, Vstandard_output);
429 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
430 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
431 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
432 return Qnil;
433 }
434
435
436 /* Function malloc calls this if it finds we are near exhausting
437 storage. */
438
439 void
440 malloc_warning (str)
441 char *str;
442 {
443 pending_malloc_warning = str;
444 }
445
446
447 /* Display a malloc warning in buffer *Danger*. */
448
449 void
450 display_malloc_warning ()
451 {
452 register Lisp_Object val;
453
454 val = build_string (pending_malloc_warning);
455 pending_malloc_warning = 0;
456 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
457 }
458
459
460 #ifdef DOUG_LEA_MALLOC
461 # define BYTES_USED (mallinfo ().arena)
462 #else
463 # define BYTES_USED _bytes_used
464 #endif
465
466
467 /* Called if malloc returns zero. */
468
469 void
470 memory_full ()
471 {
472 #ifndef SYSTEM_MALLOC
473 bytes_used_when_full = BYTES_USED;
474 #endif
475
476 /* The first time we get here, free the spare memory. */
477 if (spare_memory)
478 {
479 free (spare_memory);
480 spare_memory = 0;
481 }
482
483 /* This used to call error, but if we've run out of memory, we could
484 get infinite recursion trying to build the string. */
485 while (1)
486 Fsignal (Qnil, memory_signal_data);
487 }
488
489
490 /* Called if we can't allocate relocatable space for a buffer. */
491
492 void
493 buffer_memory_full ()
494 {
495 /* If buffers use the relocating allocator, no need to free
496 spare_memory, because we may have plenty of malloc space left
497 that we could get, and if we don't, the malloc that fails will
498 itself cause spare_memory to be freed. If buffers don't use the
499 relocating allocator, treat this like any other failing
500 malloc. */
501
502 #ifndef REL_ALLOC
503 memory_full ();
504 #endif
505
506 /* This used to call error, but if we've run out of memory, we could
507 get infinite recursion trying to build the string. */
508 while (1)
509 Fsignal (Qerror, memory_signal_data);
510 }
511
512
513 /* Like malloc but check for no memory and block interrupt input.. */
514
515 POINTER_TYPE *
516 xmalloc (size)
517 size_t size;
518 {
519 register POINTER_TYPE *val;
520
521 BLOCK_INPUT;
522 val = (POINTER_TYPE *) malloc (size);
523 UNBLOCK_INPUT;
524
525 if (!val && size)
526 memory_full ();
527 return val;
528 }
529
530
531 /* Like realloc but check for no memory and block interrupt input.. */
532
533 POINTER_TYPE *
534 xrealloc (block, size)
535 POINTER_TYPE *block;
536 size_t size;
537 {
538 register POINTER_TYPE *val;
539
540 BLOCK_INPUT;
541 /* We must call malloc explicitly when BLOCK is 0, since some
542 reallocs don't do this. */
543 if (! block)
544 val = (POINTER_TYPE *) malloc (size);
545 else
546 val = (POINTER_TYPE *) realloc (block, size);
547 UNBLOCK_INPUT;
548
549 if (!val && size) memory_full ();
550 return val;
551 }
552
553
554 /* Like free but block interrupt input.. */
555
556 void
557 xfree (block)
558 POINTER_TYPE *block;
559 {
560 BLOCK_INPUT;
561 free (block);
562 UNBLOCK_INPUT;
563 }
564
565
566 /* Like strdup, but uses xmalloc. */
567
568 char *
569 xstrdup (s)
570 char *s;
571 {
572 size_t len = strlen (s) + 1;
573 char *p = (char *) xmalloc (len);
574 bcopy (s, p, len);
575 return p;
576 }
577
578
579 /* Like malloc but used for allocating Lisp data. NBYTES is the
580 number of bytes to allocate, TYPE describes the intended use of the
581 allcated memory block (for strings, for conses, ...). */
582
583 static POINTER_TYPE *
584 lisp_malloc (nbytes, type)
585 size_t nbytes;
586 enum mem_type type;
587 {
588 register void *val;
589
590 BLOCK_INPUT;
591
592 #ifdef GC_MALLOC_CHECK
593 allocated_mem_type = type;
594 #endif
595
596 val = (void *) malloc (nbytes);
597
598 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
599 if (val && type != MEM_TYPE_NON_LISP)
600 mem_insert (val, (char *) val + nbytes, type);
601 #endif
602
603 UNBLOCK_INPUT;
604 if (!val && nbytes)
605 memory_full ();
606 return val;
607 }
608
609
610 /* Return a new buffer structure allocated from the heap with
611 a call to lisp_malloc. */
612
613 struct buffer *
614 allocate_buffer ()
615 {
616 struct buffer *b
617 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
618 MEM_TYPE_BUFFER);
619 VALIDATE_LISP_STORAGE (b, sizeof *b);
620 return b;
621 }
622
623
624 /* Free BLOCK. This must be called to free memory allocated with a
625 call to lisp_malloc. */
626
627 static void
628 lisp_free (block)
629 POINTER_TYPE *block;
630 {
631 BLOCK_INPUT;
632 free (block);
633 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
634 mem_delete (mem_find (block));
635 #endif
636 UNBLOCK_INPUT;
637 }
638
639 \f
640 /* Arranging to disable input signals while we're in malloc.
641
642 This only works with GNU malloc. To help out systems which can't
643 use GNU malloc, all the calls to malloc, realloc, and free
644 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
645 pairs; unfortunately, we have no idea what C library functions
646 might call malloc, so we can't really protect them unless you're
647 using GNU malloc. Fortunately, most of the major operating can use
648 GNU malloc. */
649
650 #ifndef SYSTEM_MALLOC
651 #ifndef DOUG_LEA_MALLOC
652 extern void * (*__malloc_hook) P_ ((size_t));
653 extern void * (*__realloc_hook) P_ ((void *, size_t));
654 extern void (*__free_hook) P_ ((void *));
655 /* Else declared in malloc.h, perhaps with an extra arg. */
656 #endif /* DOUG_LEA_MALLOC */
657 static void * (*old_malloc_hook) ();
658 static void * (*old_realloc_hook) ();
659 static void (*old_free_hook) ();
660
661 /* This function is used as the hook for free to call. */
662
663 static void
664 emacs_blocked_free (ptr)
665 void *ptr;
666 {
667 BLOCK_INPUT;
668
669 #ifdef GC_MALLOC_CHECK
670 if (ptr)
671 {
672 struct mem_node *m;
673
674 m = mem_find (ptr);
675 if (m == MEM_NIL || m->start != ptr)
676 {
677 fprintf (stderr,
678 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
679 abort ();
680 }
681 else
682 {
683 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
684 mem_delete (m);
685 }
686 }
687 #endif /* GC_MALLOC_CHECK */
688
689 __free_hook = old_free_hook;
690 free (ptr);
691
692 /* If we released our reserve (due to running out of memory),
693 and we have a fair amount free once again,
694 try to set aside another reserve in case we run out once more. */
695 if (spare_memory == 0
696 /* Verify there is enough space that even with the malloc
697 hysteresis this call won't run out again.
698 The code here is correct as long as SPARE_MEMORY
699 is substantially larger than the block size malloc uses. */
700 && (bytes_used_when_full
701 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
702 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
703
704 __free_hook = emacs_blocked_free;
705 UNBLOCK_INPUT;
706 }
707
708
709 /* If we released our reserve (due to running out of memory),
710 and we have a fair amount free once again,
711 try to set aside another reserve in case we run out once more.
712
713 This is called when a relocatable block is freed in ralloc.c. */
714
715 void
716 refill_memory_reserve ()
717 {
718 if (spare_memory == 0)
719 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
720 }
721
722
723 /* This function is the malloc hook that Emacs uses. */
724
725 static void *
726 emacs_blocked_malloc (size)
727 size_t size;
728 {
729 void *value;
730
731 BLOCK_INPUT;
732 __malloc_hook = old_malloc_hook;
733 #ifdef DOUG_LEA_MALLOC
734 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
735 #else
736 __malloc_extra_blocks = malloc_hysteresis;
737 #endif
738
739 value = (void *) malloc (size);
740
741 #ifdef GC_MALLOC_CHECK
742 {
743 struct mem_node *m = mem_find (value);
744 if (m != MEM_NIL)
745 {
746 fprintf (stderr, "Malloc returned %p which is already in use\n",
747 value);
748 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
749 m->start, m->end, (char *) m->end - (char *) m->start,
750 m->type);
751 abort ();
752 }
753
754 if (!dont_register_blocks)
755 {
756 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
757 allocated_mem_type = MEM_TYPE_NON_LISP;
758 }
759 }
760 #endif /* GC_MALLOC_CHECK */
761
762 __malloc_hook = emacs_blocked_malloc;
763 UNBLOCK_INPUT;
764
765 /* fprintf (stderr, "%p malloc\n", value); */
766 return value;
767 }
768
769
770 /* This function is the realloc hook that Emacs uses. */
771
772 static void *
773 emacs_blocked_realloc (ptr, size)
774 void *ptr;
775 size_t size;
776 {
777 void *value;
778
779 BLOCK_INPUT;
780 __realloc_hook = old_realloc_hook;
781
782 #ifdef GC_MALLOC_CHECK
783 if (ptr)
784 {
785 struct mem_node *m = mem_find (ptr);
786 if (m == MEM_NIL || m->start != ptr)
787 {
788 fprintf (stderr,
789 "Realloc of %p which wasn't allocated with malloc\n",
790 ptr);
791 abort ();
792 }
793
794 mem_delete (m);
795 }
796
797 /* fprintf (stderr, "%p -> realloc\n", ptr); */
798
799 /* Prevent malloc from registering blocks. */
800 dont_register_blocks = 1;
801 #endif /* GC_MALLOC_CHECK */
802
803 value = (void *) realloc (ptr, size);
804
805 #ifdef GC_MALLOC_CHECK
806 dont_register_blocks = 0;
807
808 {
809 struct mem_node *m = mem_find (value);
810 if (m != MEM_NIL)
811 {
812 fprintf (stderr, "Realloc returns memory that is already in use\n");
813 abort ();
814 }
815
816 /* Can't handle zero size regions in the red-black tree. */
817 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
818 }
819
820 /* fprintf (stderr, "%p <- realloc\n", value); */
821 #endif /* GC_MALLOC_CHECK */
822
823 __realloc_hook = emacs_blocked_realloc;
824 UNBLOCK_INPUT;
825
826 return value;
827 }
828
829
830 /* Called from main to set up malloc to use our hooks. */
831
832 void
833 uninterrupt_malloc ()
834 {
835 if (__free_hook != emacs_blocked_free)
836 old_free_hook = __free_hook;
837 __free_hook = emacs_blocked_free;
838
839 if (__malloc_hook != emacs_blocked_malloc)
840 old_malloc_hook = __malloc_hook;
841 __malloc_hook = emacs_blocked_malloc;
842
843 if (__realloc_hook != emacs_blocked_realloc)
844 old_realloc_hook = __realloc_hook;
845 __realloc_hook = emacs_blocked_realloc;
846 }
847
848 #endif /* not SYSTEM_MALLOC */
849
850
851 \f
852 /***********************************************************************
853 Interval Allocation
854 ***********************************************************************/
855
856 /* Number of intervals allocated in an interval_block structure.
857 The 1020 is 1024 minus malloc overhead. */
858
859 #define INTERVAL_BLOCK_SIZE \
860 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
861
862 /* Intervals are allocated in chunks in form of an interval_block
863 structure. */
864
865 struct interval_block
866 {
867 struct interval_block *next;
868 struct interval intervals[INTERVAL_BLOCK_SIZE];
869 };
870
871 /* Current interval block. Its `next' pointer points to older
872 blocks. */
873
874 struct interval_block *interval_block;
875
876 /* Index in interval_block above of the next unused interval
877 structure. */
878
879 static int interval_block_index;
880
881 /* Number of free and live intervals. */
882
883 static int total_free_intervals, total_intervals;
884
885 /* List of free intervals. */
886
887 INTERVAL interval_free_list;
888
889 /* Total number of interval blocks now in use. */
890
891 int n_interval_blocks;
892
893
894 /* Initialize interval allocation. */
895
896 static void
897 init_intervals ()
898 {
899 interval_block
900 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
901 MEM_TYPE_NON_LISP);
902 interval_block->next = 0;
903 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
904 interval_block_index = 0;
905 interval_free_list = 0;
906 n_interval_blocks = 1;
907 }
908
909
910 /* Return a new interval. */
911
912 INTERVAL
913 make_interval ()
914 {
915 INTERVAL val;
916
917 if (interval_free_list)
918 {
919 val = interval_free_list;
920 interval_free_list = INTERVAL_PARENT (interval_free_list);
921 }
922 else
923 {
924 if (interval_block_index == INTERVAL_BLOCK_SIZE)
925 {
926 register struct interval_block *newi;
927
928 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
929 MEM_TYPE_NON_LISP);
930
931 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
932 newi->next = interval_block;
933 interval_block = newi;
934 interval_block_index = 0;
935 n_interval_blocks++;
936 }
937 val = &interval_block->intervals[interval_block_index++];
938 }
939 consing_since_gc += sizeof (struct interval);
940 intervals_consed++;
941 RESET_INTERVAL (val);
942 return val;
943 }
944
945
946 /* Mark Lisp objects in interval I. */
947
948 static void
949 mark_interval (i, dummy)
950 register INTERVAL i;
951 Lisp_Object dummy;
952 {
953 if (XMARKBIT (i->plist))
954 abort ();
955 mark_object (&i->plist);
956 XMARK (i->plist);
957 }
958
959
960 /* Mark the interval tree rooted in TREE. Don't call this directly;
961 use the macro MARK_INTERVAL_TREE instead. */
962
963 static void
964 mark_interval_tree (tree)
965 register INTERVAL tree;
966 {
967 /* No need to test if this tree has been marked already; this
968 function is always called through the MARK_INTERVAL_TREE macro,
969 which takes care of that. */
970
971 /* XMARK expands to an assignment; the LHS of an assignment can't be
972 a cast. */
973 XMARK (tree->up.obj);
974
975 traverse_intervals_noorder (tree, mark_interval, Qnil);
976 }
977
978
979 /* Mark the interval tree rooted in I. */
980
981 #define MARK_INTERVAL_TREE(i) \
982 do { \
983 if (!NULL_INTERVAL_P (i) \
984 && ! XMARKBIT (i->up.obj)) \
985 mark_interval_tree (i); \
986 } while (0)
987
988
989 /* The oddity in the call to XUNMARK is necessary because XUNMARK
990 expands to an assignment to its argument, and most C compilers
991 don't support casts on the left operand of `='. */
992
993 #define UNMARK_BALANCE_INTERVALS(i) \
994 do { \
995 if (! NULL_INTERVAL_P (i)) \
996 { \
997 XUNMARK ((i)->up.obj); \
998 (i) = balance_intervals (i); \
999 } \
1000 } while (0)
1001
1002 \f
1003 /* Number support. If NO_UNION_TYPE isn't in effect, we
1004 can't create number objects in macros. */
1005 #ifndef make_number
1006 Lisp_Object
1007 make_number (n)
1008 int n;
1009 {
1010 Lisp_Object obj;
1011 obj.s.val = n;
1012 obj.s.type = Lisp_Int;
1013 return obj;
1014 }
1015 #endif
1016 \f
1017 /***********************************************************************
1018 String Allocation
1019 ***********************************************************************/
1020
1021 /* Lisp_Strings are allocated in string_block structures. When a new
1022 string_block is allocated, all the Lisp_Strings it contains are
1023 added to a free-list string_free_list. When a new Lisp_String is
1024 needed, it is taken from that list. During the sweep phase of GC,
1025 string_blocks that are entirely free are freed, except two which
1026 we keep.
1027
1028 String data is allocated from sblock structures. Strings larger
1029 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1030 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1031
1032 Sblocks consist internally of sdata structures, one for each
1033 Lisp_String. The sdata structure points to the Lisp_String it
1034 belongs to. The Lisp_String points back to the `u.data' member of
1035 its sdata structure.
1036
1037 When a Lisp_String is freed during GC, it is put back on
1038 string_free_list, and its `data' member and its sdata's `string'
1039 pointer is set to null. The size of the string is recorded in the
1040 `u.nbytes' member of the sdata. So, sdata structures that are no
1041 longer used, can be easily recognized, and it's easy to compact the
1042 sblocks of small strings which we do in compact_small_strings. */
1043
1044 /* Size in bytes of an sblock structure used for small strings. This
1045 is 8192 minus malloc overhead. */
1046
1047 #define SBLOCK_SIZE 8188
1048
1049 /* Strings larger than this are considered large strings. String data
1050 for large strings is allocated from individual sblocks. */
1051
1052 #define LARGE_STRING_BYTES 1024
1053
1054 /* Structure describing string memory sub-allocated from an sblock.
1055 This is where the contents of Lisp strings are stored. */
1056
1057 struct sdata
1058 {
1059 /* Back-pointer to the string this sdata belongs to. If null, this
1060 structure is free, and the NBYTES member of the union below
1061 contains the string's byte size (the same value that STRING_BYTES
1062 would return if STRING were non-null). If non-null, STRING_BYTES
1063 (STRING) is the size of the data, and DATA contains the string's
1064 contents. */
1065 struct Lisp_String *string;
1066
1067 #ifdef GC_CHECK_STRING_BYTES
1068
1069 EMACS_INT nbytes;
1070 unsigned char data[1];
1071
1072 #define SDATA_NBYTES(S) (S)->nbytes
1073 #define SDATA_DATA(S) (S)->data
1074
1075 #else /* not GC_CHECK_STRING_BYTES */
1076
1077 union
1078 {
1079 /* When STRING in non-null. */
1080 unsigned char data[1];
1081
1082 /* When STRING is null. */
1083 EMACS_INT nbytes;
1084 } u;
1085
1086
1087 #define SDATA_NBYTES(S) (S)->u.nbytes
1088 #define SDATA_DATA(S) (S)->u.data
1089
1090 #endif /* not GC_CHECK_STRING_BYTES */
1091 };
1092
1093
1094 /* Structure describing a block of memory which is sub-allocated to
1095 obtain string data memory for strings. Blocks for small strings
1096 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1097 as large as needed. */
1098
1099 struct sblock
1100 {
1101 /* Next in list. */
1102 struct sblock *next;
1103
1104 /* Pointer to the next free sdata block. This points past the end
1105 of the sblock if there isn't any space left in this block. */
1106 struct sdata *next_free;
1107
1108 /* Start of data. */
1109 struct sdata first_data;
1110 };
1111
1112 /* Number of Lisp strings in a string_block structure. The 1020 is
1113 1024 minus malloc overhead. */
1114
1115 #define STRINGS_IN_STRING_BLOCK \
1116 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1117
1118 /* Structure describing a block from which Lisp_String structures
1119 are allocated. */
1120
1121 struct string_block
1122 {
1123 struct string_block *next;
1124 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1125 };
1126
1127 /* Head and tail of the list of sblock structures holding Lisp string
1128 data. We always allocate from current_sblock. The NEXT pointers
1129 in the sblock structures go from oldest_sblock to current_sblock. */
1130
1131 static struct sblock *oldest_sblock, *current_sblock;
1132
1133 /* List of sblocks for large strings. */
1134
1135 static struct sblock *large_sblocks;
1136
1137 /* List of string_block structures, and how many there are. */
1138
1139 static struct string_block *string_blocks;
1140 static int n_string_blocks;
1141
1142 /* Free-list of Lisp_Strings. */
1143
1144 static struct Lisp_String *string_free_list;
1145
1146 /* Number of live and free Lisp_Strings. */
1147
1148 static int total_strings, total_free_strings;
1149
1150 /* Number of bytes used by live strings. */
1151
1152 static int total_string_size;
1153
1154 /* Given a pointer to a Lisp_String S which is on the free-list
1155 string_free_list, return a pointer to its successor in the
1156 free-list. */
1157
1158 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1159
1160 /* Return a pointer to the sdata structure belonging to Lisp string S.
1161 S must be live, i.e. S->data must not be null. S->data is actually
1162 a pointer to the `u.data' member of its sdata structure; the
1163 structure starts at a constant offset in front of that. */
1164
1165 #ifdef GC_CHECK_STRING_BYTES
1166
1167 #define SDATA_OF_STRING(S) \
1168 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1169 - sizeof (EMACS_INT)))
1170
1171 #else /* not GC_CHECK_STRING_BYTES */
1172
1173 #define SDATA_OF_STRING(S) \
1174 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1175
1176 #endif /* not GC_CHECK_STRING_BYTES */
1177
1178 /* Value is the size of an sdata structure large enough to hold NBYTES
1179 bytes of string data. The value returned includes a terminating
1180 NUL byte, the size of the sdata structure, and padding. */
1181
1182 #ifdef GC_CHECK_STRING_BYTES
1183
1184 #define SDATA_SIZE(NBYTES) \
1185 ((sizeof (struct Lisp_String *) \
1186 + (NBYTES) + 1 \
1187 + sizeof (EMACS_INT) \
1188 + sizeof (EMACS_INT) - 1) \
1189 & ~(sizeof (EMACS_INT) - 1))
1190
1191 #else /* not GC_CHECK_STRING_BYTES */
1192
1193 #define SDATA_SIZE(NBYTES) \
1194 ((sizeof (struct Lisp_String *) \
1195 + (NBYTES) + 1 \
1196 + sizeof (EMACS_INT) - 1) \
1197 & ~(sizeof (EMACS_INT) - 1))
1198
1199 #endif /* not GC_CHECK_STRING_BYTES */
1200
1201 /* Initialize string allocation. Called from init_alloc_once. */
1202
1203 void
1204 init_strings ()
1205 {
1206 total_strings = total_free_strings = total_string_size = 0;
1207 oldest_sblock = current_sblock = large_sblocks = NULL;
1208 string_blocks = NULL;
1209 n_string_blocks = 0;
1210 string_free_list = NULL;
1211 }
1212
1213
1214 #ifdef GC_CHECK_STRING_BYTES
1215
1216 static int check_string_bytes_count;
1217
1218 void check_string_bytes P_ ((int));
1219 void check_sblock P_ ((struct sblock *));
1220
1221 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1222
1223
1224 /* Like GC_STRING_BYTES, but with debugging check. */
1225
1226 int
1227 string_bytes (s)
1228 struct Lisp_String *s;
1229 {
1230 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1231 if (!PURE_POINTER_P (s)
1232 && s->data
1233 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1234 abort ();
1235 return nbytes;
1236 }
1237
1238 /* Check validity Lisp strings' string_bytes member in B. */
1239
1240 void
1241 check_sblock (b)
1242 struct sblock *b;
1243 {
1244 struct sdata *from, *end, *from_end;
1245
1246 end = b->next_free;
1247
1248 for (from = &b->first_data; from < end; from = from_end)
1249 {
1250 /* Compute the next FROM here because copying below may
1251 overwrite data we need to compute it. */
1252 int nbytes;
1253
1254 /* Check that the string size recorded in the string is the
1255 same as the one recorded in the sdata structure. */
1256 if (from->string)
1257 CHECK_STRING_BYTES (from->string);
1258
1259 if (from->string)
1260 nbytes = GC_STRING_BYTES (from->string);
1261 else
1262 nbytes = SDATA_NBYTES (from);
1263
1264 nbytes = SDATA_SIZE (nbytes);
1265 from_end = (struct sdata *) ((char *) from + nbytes);
1266 }
1267 }
1268
1269
1270 /* Check validity of Lisp strings' string_bytes member. ALL_P
1271 non-zero means check all strings, otherwise check only most
1272 recently allocated strings. Used for hunting a bug. */
1273
1274 void
1275 check_string_bytes (all_p)
1276 int all_p;
1277 {
1278 if (all_p)
1279 {
1280 struct sblock *b;
1281
1282 for (b = large_sblocks; b; b = b->next)
1283 {
1284 struct Lisp_String *s = b->first_data.string;
1285 if (s)
1286 CHECK_STRING_BYTES (s);
1287 }
1288
1289 for (b = oldest_sblock; b; b = b->next)
1290 check_sblock (b);
1291 }
1292 else
1293 check_sblock (current_sblock);
1294 }
1295
1296 #endif /* GC_CHECK_STRING_BYTES */
1297
1298
1299 /* Return a new Lisp_String. */
1300
1301 static struct Lisp_String *
1302 allocate_string ()
1303 {
1304 struct Lisp_String *s;
1305
1306 /* If the free-list is empty, allocate a new string_block, and
1307 add all the Lisp_Strings in it to the free-list. */
1308 if (string_free_list == NULL)
1309 {
1310 struct string_block *b;
1311 int i;
1312
1313 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1314 VALIDATE_LISP_STORAGE (b, sizeof *b);
1315 bzero (b, sizeof *b);
1316 b->next = string_blocks;
1317 string_blocks = b;
1318 ++n_string_blocks;
1319
1320 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1321 {
1322 s = b->strings + i;
1323 NEXT_FREE_LISP_STRING (s) = string_free_list;
1324 string_free_list = s;
1325 }
1326
1327 total_free_strings += STRINGS_IN_STRING_BLOCK;
1328 }
1329
1330 /* Pop a Lisp_String off the free-list. */
1331 s = string_free_list;
1332 string_free_list = NEXT_FREE_LISP_STRING (s);
1333
1334 /* Probably not strictly necessary, but play it safe. */
1335 bzero (s, sizeof *s);
1336
1337 --total_free_strings;
1338 ++total_strings;
1339 ++strings_consed;
1340 consing_since_gc += sizeof *s;
1341
1342 #ifdef GC_CHECK_STRING_BYTES
1343 if (!noninteractive
1344 #ifdef macintosh
1345 && current_sblock
1346 #endif
1347 )
1348 {
1349 if (++check_string_bytes_count == 200)
1350 {
1351 check_string_bytes_count = 0;
1352 check_string_bytes (1);
1353 }
1354 else
1355 check_string_bytes (0);
1356 }
1357 #endif /* GC_CHECK_STRING_BYTES */
1358
1359 return s;
1360 }
1361
1362
1363 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1364 plus a NUL byte at the end. Allocate an sdata structure for S, and
1365 set S->data to its `u.data' member. Store a NUL byte at the end of
1366 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1367 S->data if it was initially non-null. */
1368
1369 void
1370 allocate_string_data (s, nchars, nbytes)
1371 struct Lisp_String *s;
1372 int nchars, nbytes;
1373 {
1374 struct sdata *data, *old_data;
1375 struct sblock *b;
1376 int needed, old_nbytes;
1377
1378 /* Determine the number of bytes needed to store NBYTES bytes
1379 of string data. */
1380 needed = SDATA_SIZE (nbytes);
1381
1382 if (nbytes > LARGE_STRING_BYTES)
1383 {
1384 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1385
1386 #ifdef DOUG_LEA_MALLOC
1387 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1388 because mapped region contents are not preserved in
1389 a dumped Emacs. */
1390 mallopt (M_MMAP_MAX, 0);
1391 #endif
1392
1393 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1394
1395 #ifdef DOUG_LEA_MALLOC
1396 /* Back to a reasonable maximum of mmap'ed areas. */
1397 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1398 #endif
1399
1400 b->next_free = &b->first_data;
1401 b->first_data.string = NULL;
1402 b->next = large_sblocks;
1403 large_sblocks = b;
1404 }
1405 else if (current_sblock == NULL
1406 || (((char *) current_sblock + SBLOCK_SIZE
1407 - (char *) current_sblock->next_free)
1408 < needed))
1409 {
1410 /* Not enough room in the current sblock. */
1411 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1412 b->next_free = &b->first_data;
1413 b->first_data.string = NULL;
1414 b->next = NULL;
1415
1416 if (current_sblock)
1417 current_sblock->next = b;
1418 else
1419 oldest_sblock = b;
1420 current_sblock = b;
1421 }
1422 else
1423 b = current_sblock;
1424
1425 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1426 old_nbytes = GC_STRING_BYTES (s);
1427
1428 data = b->next_free;
1429 data->string = s;
1430 s->data = SDATA_DATA (data);
1431 #ifdef GC_CHECK_STRING_BYTES
1432 SDATA_NBYTES (data) = nbytes;
1433 #endif
1434 s->size = nchars;
1435 s->size_byte = nbytes;
1436 s->data[nbytes] = '\0';
1437 b->next_free = (struct sdata *) ((char *) data + needed);
1438
1439 /* If S had already data assigned, mark that as free by setting its
1440 string back-pointer to null, and recording the size of the data
1441 in it. */
1442 if (old_data)
1443 {
1444 SDATA_NBYTES (old_data) = old_nbytes;
1445 old_data->string = NULL;
1446 }
1447
1448 consing_since_gc += needed;
1449 }
1450
1451
1452 /* Sweep and compact strings. */
1453
1454 static void
1455 sweep_strings ()
1456 {
1457 struct string_block *b, *next;
1458 struct string_block *live_blocks = NULL;
1459
1460 string_free_list = NULL;
1461 total_strings = total_free_strings = 0;
1462 total_string_size = 0;
1463
1464 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1465 for (b = string_blocks; b; b = next)
1466 {
1467 int i, nfree = 0;
1468 struct Lisp_String *free_list_before = string_free_list;
1469
1470 next = b->next;
1471
1472 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1473 {
1474 struct Lisp_String *s = b->strings + i;
1475
1476 if (s->data)
1477 {
1478 /* String was not on free-list before. */
1479 if (STRING_MARKED_P (s))
1480 {
1481 /* String is live; unmark it and its intervals. */
1482 UNMARK_STRING (s);
1483
1484 if (!NULL_INTERVAL_P (s->intervals))
1485 UNMARK_BALANCE_INTERVALS (s->intervals);
1486
1487 ++total_strings;
1488 total_string_size += STRING_BYTES (s);
1489 }
1490 else
1491 {
1492 /* String is dead. Put it on the free-list. */
1493 struct sdata *data = SDATA_OF_STRING (s);
1494
1495 /* Save the size of S in its sdata so that we know
1496 how large that is. Reset the sdata's string
1497 back-pointer so that we know it's free. */
1498 #ifdef GC_CHECK_STRING_BYTES
1499 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1500 abort ();
1501 #else
1502 data->u.nbytes = GC_STRING_BYTES (s);
1503 #endif
1504 data->string = NULL;
1505
1506 /* Reset the strings's `data' member so that we
1507 know it's free. */
1508 s->data = NULL;
1509
1510 /* Put the string on the free-list. */
1511 NEXT_FREE_LISP_STRING (s) = string_free_list;
1512 string_free_list = s;
1513 ++nfree;
1514 }
1515 }
1516 else
1517 {
1518 /* S was on the free-list before. Put it there again. */
1519 NEXT_FREE_LISP_STRING (s) = string_free_list;
1520 string_free_list = s;
1521 ++nfree;
1522 }
1523 }
1524
1525 /* Free blocks that contain free Lisp_Strings only, except
1526 the first two of them. */
1527 if (nfree == STRINGS_IN_STRING_BLOCK
1528 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1529 {
1530 lisp_free (b);
1531 --n_string_blocks;
1532 string_free_list = free_list_before;
1533 }
1534 else
1535 {
1536 total_free_strings += nfree;
1537 b->next = live_blocks;
1538 live_blocks = b;
1539 }
1540 }
1541
1542 string_blocks = live_blocks;
1543 free_large_strings ();
1544 compact_small_strings ();
1545 }
1546
1547
1548 /* Free dead large strings. */
1549
1550 static void
1551 free_large_strings ()
1552 {
1553 struct sblock *b, *next;
1554 struct sblock *live_blocks = NULL;
1555
1556 for (b = large_sblocks; b; b = next)
1557 {
1558 next = b->next;
1559
1560 if (b->first_data.string == NULL)
1561 lisp_free (b);
1562 else
1563 {
1564 b->next = live_blocks;
1565 live_blocks = b;
1566 }
1567 }
1568
1569 large_sblocks = live_blocks;
1570 }
1571
1572
1573 /* Compact data of small strings. Free sblocks that don't contain
1574 data of live strings after compaction. */
1575
1576 static void
1577 compact_small_strings ()
1578 {
1579 struct sblock *b, *tb, *next;
1580 struct sdata *from, *to, *end, *tb_end;
1581 struct sdata *to_end, *from_end;
1582
1583 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1584 to, and TB_END is the end of TB. */
1585 tb = oldest_sblock;
1586 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1587 to = &tb->first_data;
1588
1589 /* Step through the blocks from the oldest to the youngest. We
1590 expect that old blocks will stabilize over time, so that less
1591 copying will happen this way. */
1592 for (b = oldest_sblock; b; b = b->next)
1593 {
1594 end = b->next_free;
1595 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1596
1597 for (from = &b->first_data; from < end; from = from_end)
1598 {
1599 /* Compute the next FROM here because copying below may
1600 overwrite data we need to compute it. */
1601 int nbytes;
1602
1603 #ifdef GC_CHECK_STRING_BYTES
1604 /* Check that the string size recorded in the string is the
1605 same as the one recorded in the sdata structure. */
1606 if (from->string
1607 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1608 abort ();
1609 #endif /* GC_CHECK_STRING_BYTES */
1610
1611 if (from->string)
1612 nbytes = GC_STRING_BYTES (from->string);
1613 else
1614 nbytes = SDATA_NBYTES (from);
1615
1616 nbytes = SDATA_SIZE (nbytes);
1617 from_end = (struct sdata *) ((char *) from + nbytes);
1618
1619 /* FROM->string non-null means it's alive. Copy its data. */
1620 if (from->string)
1621 {
1622 /* If TB is full, proceed with the next sblock. */
1623 to_end = (struct sdata *) ((char *) to + nbytes);
1624 if (to_end > tb_end)
1625 {
1626 tb->next_free = to;
1627 tb = tb->next;
1628 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1629 to = &tb->first_data;
1630 to_end = (struct sdata *) ((char *) to + nbytes);
1631 }
1632
1633 /* Copy, and update the string's `data' pointer. */
1634 if (from != to)
1635 {
1636 xassert (tb != b || to <= from);
1637 safe_bcopy ((char *) from, (char *) to, nbytes);
1638 to->string->data = SDATA_DATA (to);
1639 }
1640
1641 /* Advance past the sdata we copied to. */
1642 to = to_end;
1643 }
1644 }
1645 }
1646
1647 /* The rest of the sblocks following TB don't contain live data, so
1648 we can free them. */
1649 for (b = tb->next; b; b = next)
1650 {
1651 next = b->next;
1652 lisp_free (b);
1653 }
1654
1655 tb->next_free = to;
1656 tb->next = NULL;
1657 current_sblock = tb;
1658 }
1659
1660
1661 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1662 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1663 Both LENGTH and INIT must be numbers. */)
1664 (length, init)
1665 Lisp_Object length, init;
1666 {
1667 register Lisp_Object val;
1668 register unsigned char *p, *end;
1669 int c, nbytes;
1670
1671 CHECK_NATNUM (length);
1672 CHECK_NUMBER (init);
1673
1674 c = XINT (init);
1675 if (SINGLE_BYTE_CHAR_P (c))
1676 {
1677 nbytes = XINT (length);
1678 val = make_uninit_string (nbytes);
1679 p = XSTRING (val)->data;
1680 end = p + XSTRING (val)->size;
1681 while (p != end)
1682 *p++ = c;
1683 }
1684 else
1685 {
1686 unsigned char str[MAX_MULTIBYTE_LENGTH];
1687 int len = CHAR_STRING (c, str);
1688
1689 nbytes = len * XINT (length);
1690 val = make_uninit_multibyte_string (XINT (length), nbytes);
1691 p = XSTRING (val)->data;
1692 end = p + nbytes;
1693 while (p != end)
1694 {
1695 bcopy (str, p, len);
1696 p += len;
1697 }
1698 }
1699
1700 *p = 0;
1701 return val;
1702 }
1703
1704
1705 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1706 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1707 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1708 (length, init)
1709 Lisp_Object length, init;
1710 {
1711 register Lisp_Object val;
1712 struct Lisp_Bool_Vector *p;
1713 int real_init, i;
1714 int length_in_chars, length_in_elts, bits_per_value;
1715
1716 CHECK_NATNUM (length);
1717
1718 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1719
1720 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1721 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1722
1723 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1724 slot `size' of the struct Lisp_Bool_Vector. */
1725 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1726 p = XBOOL_VECTOR (val);
1727
1728 /* Get rid of any bits that would cause confusion. */
1729 p->vector_size = 0;
1730 XSETBOOL_VECTOR (val, p);
1731 p->size = XFASTINT (length);
1732
1733 real_init = (NILP (init) ? 0 : -1);
1734 for (i = 0; i < length_in_chars ; i++)
1735 p->data[i] = real_init;
1736
1737 /* Clear the extraneous bits in the last byte. */
1738 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1739 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1740 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1741
1742 return val;
1743 }
1744
1745
1746 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1747 of characters from the contents. This string may be unibyte or
1748 multibyte, depending on the contents. */
1749
1750 Lisp_Object
1751 make_string (contents, nbytes)
1752 char *contents;
1753 int nbytes;
1754 {
1755 register Lisp_Object val;
1756 int nchars, multibyte_nbytes;
1757
1758 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1759 if (nbytes == nchars || nbytes != multibyte_nbytes)
1760 /* CONTENTS contains no multibyte sequences or contains an invalid
1761 multibyte sequence. We must make unibyte string. */
1762 val = make_unibyte_string (contents, nbytes);
1763 else
1764 val = make_multibyte_string (contents, nchars, nbytes);
1765 return val;
1766 }
1767
1768
1769 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1770
1771 Lisp_Object
1772 make_unibyte_string (contents, length)
1773 char *contents;
1774 int length;
1775 {
1776 register Lisp_Object val;
1777 val = make_uninit_string (length);
1778 bcopy (contents, XSTRING (val)->data, length);
1779 SET_STRING_BYTES (XSTRING (val), -1);
1780 return val;
1781 }
1782
1783
1784 /* Make a multibyte string from NCHARS characters occupying NBYTES
1785 bytes at CONTENTS. */
1786
1787 Lisp_Object
1788 make_multibyte_string (contents, nchars, nbytes)
1789 char *contents;
1790 int nchars, nbytes;
1791 {
1792 register Lisp_Object val;
1793 val = make_uninit_multibyte_string (nchars, nbytes);
1794 bcopy (contents, XSTRING (val)->data, nbytes);
1795 return val;
1796 }
1797
1798
1799 /* Make a string from NCHARS characters occupying NBYTES bytes at
1800 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1801
1802 Lisp_Object
1803 make_string_from_bytes (contents, nchars, nbytes)
1804 char *contents;
1805 int nchars, nbytes;
1806 {
1807 register Lisp_Object val;
1808 val = make_uninit_multibyte_string (nchars, nbytes);
1809 bcopy (contents, XSTRING (val)->data, nbytes);
1810 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1811 SET_STRING_BYTES (XSTRING (val), -1);
1812 return val;
1813 }
1814
1815
1816 /* Make a string from NCHARS characters occupying NBYTES bytes at
1817 CONTENTS. The argument MULTIBYTE controls whether to label the
1818 string as multibyte. */
1819
1820 Lisp_Object
1821 make_specified_string (contents, nchars, nbytes, multibyte)
1822 char *contents;
1823 int nchars, nbytes;
1824 int multibyte;
1825 {
1826 register Lisp_Object val;
1827 val = make_uninit_multibyte_string (nchars, nbytes);
1828 bcopy (contents, XSTRING (val)->data, nbytes);
1829 if (!multibyte)
1830 SET_STRING_BYTES (XSTRING (val), -1);
1831 return val;
1832 }
1833
1834
1835 /* Make a string from the data at STR, treating it as multibyte if the
1836 data warrants. */
1837
1838 Lisp_Object
1839 build_string (str)
1840 char *str;
1841 {
1842 return make_string (str, strlen (str));
1843 }
1844
1845
1846 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1847 occupying LENGTH bytes. */
1848
1849 Lisp_Object
1850 make_uninit_string (length)
1851 int length;
1852 {
1853 Lisp_Object val;
1854 val = make_uninit_multibyte_string (length, length);
1855 SET_STRING_BYTES (XSTRING (val), -1);
1856 return val;
1857 }
1858
1859
1860 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1861 which occupy NBYTES bytes. */
1862
1863 Lisp_Object
1864 make_uninit_multibyte_string (nchars, nbytes)
1865 int nchars, nbytes;
1866 {
1867 Lisp_Object string;
1868 struct Lisp_String *s;
1869
1870 if (nchars < 0)
1871 abort ();
1872
1873 s = allocate_string ();
1874 allocate_string_data (s, nchars, nbytes);
1875 XSETSTRING (string, s);
1876 string_chars_consed += nbytes;
1877 return string;
1878 }
1879
1880
1881 \f
1882 /***********************************************************************
1883 Float Allocation
1884 ***********************************************************************/
1885
1886 /* We store float cells inside of float_blocks, allocating a new
1887 float_block with malloc whenever necessary. Float cells reclaimed
1888 by GC are put on a free list to be reallocated before allocating
1889 any new float cells from the latest float_block.
1890
1891 Each float_block is just under 1020 bytes long, since malloc really
1892 allocates in units of powers of two and uses 4 bytes for its own
1893 overhead. */
1894
1895 #define FLOAT_BLOCK_SIZE \
1896 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1897
1898 struct float_block
1899 {
1900 struct float_block *next;
1901 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1902 };
1903
1904 /* Current float_block. */
1905
1906 struct float_block *float_block;
1907
1908 /* Index of first unused Lisp_Float in the current float_block. */
1909
1910 int float_block_index;
1911
1912 /* Total number of float blocks now in use. */
1913
1914 int n_float_blocks;
1915
1916 /* Free-list of Lisp_Floats. */
1917
1918 struct Lisp_Float *float_free_list;
1919
1920
1921 /* Initialize float allocation. */
1922
1923 void
1924 init_float ()
1925 {
1926 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1927 MEM_TYPE_FLOAT);
1928 float_block->next = 0;
1929 bzero ((char *) float_block->floats, sizeof float_block->floats);
1930 float_block_index = 0;
1931 float_free_list = 0;
1932 n_float_blocks = 1;
1933 }
1934
1935
1936 /* Explicitly free a float cell by putting it on the free-list. */
1937
1938 void
1939 free_float (ptr)
1940 struct Lisp_Float *ptr;
1941 {
1942 *(struct Lisp_Float **)&ptr->data = float_free_list;
1943 #if GC_MARK_STACK
1944 ptr->type = Vdead;
1945 #endif
1946 float_free_list = ptr;
1947 }
1948
1949
1950 /* Return a new float object with value FLOAT_VALUE. */
1951
1952 Lisp_Object
1953 make_float (float_value)
1954 double float_value;
1955 {
1956 register Lisp_Object val;
1957
1958 if (float_free_list)
1959 {
1960 /* We use the data field for chaining the free list
1961 so that we won't use the same field that has the mark bit. */
1962 XSETFLOAT (val, float_free_list);
1963 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1964 }
1965 else
1966 {
1967 if (float_block_index == FLOAT_BLOCK_SIZE)
1968 {
1969 register struct float_block *new;
1970
1971 new = (struct float_block *) lisp_malloc (sizeof *new,
1972 MEM_TYPE_FLOAT);
1973 VALIDATE_LISP_STORAGE (new, sizeof *new);
1974 new->next = float_block;
1975 float_block = new;
1976 float_block_index = 0;
1977 n_float_blocks++;
1978 }
1979 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1980 }
1981
1982 XFLOAT_DATA (val) = float_value;
1983 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1984 consing_since_gc += sizeof (struct Lisp_Float);
1985 floats_consed++;
1986 return val;
1987 }
1988
1989
1990 \f
1991 /***********************************************************************
1992 Cons Allocation
1993 ***********************************************************************/
1994
1995 /* We store cons cells inside of cons_blocks, allocating a new
1996 cons_block with malloc whenever necessary. Cons cells reclaimed by
1997 GC are put on a free list to be reallocated before allocating
1998 any new cons cells from the latest cons_block.
1999
2000 Each cons_block is just under 1020 bytes long,
2001 since malloc really allocates in units of powers of two
2002 and uses 4 bytes for its own overhead. */
2003
2004 #define CONS_BLOCK_SIZE \
2005 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2006
2007 struct cons_block
2008 {
2009 struct cons_block *next;
2010 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2011 };
2012
2013 /* Current cons_block. */
2014
2015 struct cons_block *cons_block;
2016
2017 /* Index of first unused Lisp_Cons in the current block. */
2018
2019 int cons_block_index;
2020
2021 /* Free-list of Lisp_Cons structures. */
2022
2023 struct Lisp_Cons *cons_free_list;
2024
2025 /* Total number of cons blocks now in use. */
2026
2027 int n_cons_blocks;
2028
2029
2030 /* Initialize cons allocation. */
2031
2032 void
2033 init_cons ()
2034 {
2035 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2036 MEM_TYPE_CONS);
2037 cons_block->next = 0;
2038 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2039 cons_block_index = 0;
2040 cons_free_list = 0;
2041 n_cons_blocks = 1;
2042 }
2043
2044
2045 /* Explicitly free a cons cell by putting it on the free-list. */
2046
2047 void
2048 free_cons (ptr)
2049 struct Lisp_Cons *ptr;
2050 {
2051 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2052 #if GC_MARK_STACK
2053 ptr->car = Vdead;
2054 #endif
2055 cons_free_list = ptr;
2056 }
2057
2058
2059 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2060 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2061 (car, cdr)
2062 Lisp_Object car, cdr;
2063 {
2064 register Lisp_Object val;
2065
2066 if (cons_free_list)
2067 {
2068 /* We use the cdr for chaining the free list
2069 so that we won't use the same field that has the mark bit. */
2070 XSETCONS (val, cons_free_list);
2071 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2072 }
2073 else
2074 {
2075 if (cons_block_index == CONS_BLOCK_SIZE)
2076 {
2077 register struct cons_block *new;
2078 new = (struct cons_block *) lisp_malloc (sizeof *new,
2079 MEM_TYPE_CONS);
2080 VALIDATE_LISP_STORAGE (new, sizeof *new);
2081 new->next = cons_block;
2082 cons_block = new;
2083 cons_block_index = 0;
2084 n_cons_blocks++;
2085 }
2086 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2087 }
2088
2089 XSETCAR (val, car);
2090 XSETCDR (val, cdr);
2091 consing_since_gc += sizeof (struct Lisp_Cons);
2092 cons_cells_consed++;
2093 return val;
2094 }
2095
2096
2097 /* Make a list of 2, 3, 4 or 5 specified objects. */
2098
2099 Lisp_Object
2100 list2 (arg1, arg2)
2101 Lisp_Object arg1, arg2;
2102 {
2103 return Fcons (arg1, Fcons (arg2, Qnil));
2104 }
2105
2106
2107 Lisp_Object
2108 list3 (arg1, arg2, arg3)
2109 Lisp_Object arg1, arg2, arg3;
2110 {
2111 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2112 }
2113
2114
2115 Lisp_Object
2116 list4 (arg1, arg2, arg3, arg4)
2117 Lisp_Object arg1, arg2, arg3, arg4;
2118 {
2119 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2120 }
2121
2122
2123 Lisp_Object
2124 list5 (arg1, arg2, arg3, arg4, arg5)
2125 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2126 {
2127 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2128 Fcons (arg5, Qnil)))));
2129 }
2130
2131
2132 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2133 doc: /* Return a newly created list with specified arguments as elements.
2134 Any number of arguments, even zero arguments, are allowed.
2135 usage: (list &rest OBJECTS) */)
2136 (nargs, args)
2137 int nargs;
2138 register Lisp_Object *args;
2139 {
2140 register Lisp_Object val;
2141 val = Qnil;
2142
2143 while (nargs > 0)
2144 {
2145 nargs--;
2146 val = Fcons (args[nargs], val);
2147 }
2148 return val;
2149 }
2150
2151
2152 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2153 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2154 (length, init)
2155 register Lisp_Object length, init;
2156 {
2157 register Lisp_Object val;
2158 register int size;
2159
2160 CHECK_NATNUM (length);
2161 size = XFASTINT (length);
2162
2163 val = Qnil;
2164 while (size > 0)
2165 {
2166 val = Fcons (init, val);
2167 --size;
2168
2169 if (size > 0)
2170 {
2171 val = Fcons (init, val);
2172 --size;
2173
2174 if (size > 0)
2175 {
2176 val = Fcons (init, val);
2177 --size;
2178
2179 if (size > 0)
2180 {
2181 val = Fcons (init, val);
2182 --size;
2183
2184 if (size > 0)
2185 {
2186 val = Fcons (init, val);
2187 --size;
2188 }
2189 }
2190 }
2191 }
2192
2193 QUIT;
2194 }
2195
2196 return val;
2197 }
2198
2199
2200 \f
2201 /***********************************************************************
2202 Vector Allocation
2203 ***********************************************************************/
2204
2205 /* Singly-linked list of all vectors. */
2206
2207 struct Lisp_Vector *all_vectors;
2208
2209 /* Total number of vector-like objects now in use. */
2210
2211 int n_vectors;
2212
2213
2214 /* Value is a pointer to a newly allocated Lisp_Vector structure
2215 with room for LEN Lisp_Objects. */
2216
2217 static struct Lisp_Vector *
2218 allocate_vectorlike (len, type)
2219 EMACS_INT len;
2220 enum mem_type type;
2221 {
2222 struct Lisp_Vector *p;
2223 size_t nbytes;
2224
2225 #ifdef DOUG_LEA_MALLOC
2226 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2227 because mapped region contents are not preserved in
2228 a dumped Emacs. */
2229 mallopt (M_MMAP_MAX, 0);
2230 #endif
2231
2232 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2233 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2234
2235 #ifdef DOUG_LEA_MALLOC
2236 /* Back to a reasonable maximum of mmap'ed areas. */
2237 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2238 #endif
2239
2240 VALIDATE_LISP_STORAGE (p, 0);
2241 consing_since_gc += nbytes;
2242 vector_cells_consed += len;
2243
2244 p->next = all_vectors;
2245 all_vectors = p;
2246 ++n_vectors;
2247 return p;
2248 }
2249
2250
2251 /* Allocate a vector with NSLOTS slots. */
2252
2253 struct Lisp_Vector *
2254 allocate_vector (nslots)
2255 EMACS_INT nslots;
2256 {
2257 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2258 v->size = nslots;
2259 return v;
2260 }
2261
2262
2263 /* Allocate other vector-like structures. */
2264
2265 struct Lisp_Hash_Table *
2266 allocate_hash_table ()
2267 {
2268 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2269 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2270 EMACS_INT i;
2271
2272 v->size = len;
2273 for (i = 0; i < len; ++i)
2274 v->contents[i] = Qnil;
2275
2276 return (struct Lisp_Hash_Table *) v;
2277 }
2278
2279
2280 struct window *
2281 allocate_window ()
2282 {
2283 EMACS_INT len = VECSIZE (struct window);
2284 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2285 EMACS_INT i;
2286
2287 for (i = 0; i < len; ++i)
2288 v->contents[i] = Qnil;
2289 v->size = len;
2290
2291 return (struct window *) v;
2292 }
2293
2294
2295 struct frame *
2296 allocate_frame ()
2297 {
2298 EMACS_INT len = VECSIZE (struct frame);
2299 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2300 EMACS_INT i;
2301
2302 for (i = 0; i < len; ++i)
2303 v->contents[i] = make_number (0);
2304 v->size = len;
2305 return (struct frame *) v;
2306 }
2307
2308
2309 struct Lisp_Process *
2310 allocate_process ()
2311 {
2312 EMACS_INT len = VECSIZE (struct Lisp_Process);
2313 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2314 EMACS_INT i;
2315
2316 for (i = 0; i < len; ++i)
2317 v->contents[i] = Qnil;
2318 v->size = len;
2319
2320 return (struct Lisp_Process *) v;
2321 }
2322
2323
2324 struct Lisp_Vector *
2325 allocate_other_vector (len)
2326 EMACS_INT len;
2327 {
2328 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2329 EMACS_INT i;
2330
2331 for (i = 0; i < len; ++i)
2332 v->contents[i] = Qnil;
2333 v->size = len;
2334
2335 return v;
2336 }
2337
2338
2339 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2340 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2341 See also the function `vector'. */)
2342 (length, init)
2343 register Lisp_Object length, init;
2344 {
2345 Lisp_Object vector;
2346 register EMACS_INT sizei;
2347 register int index;
2348 register struct Lisp_Vector *p;
2349
2350 CHECK_NATNUM (length);
2351 sizei = XFASTINT (length);
2352
2353 p = allocate_vector (sizei);
2354 for (index = 0; index < sizei; index++)
2355 p->contents[index] = init;
2356
2357 XSETVECTOR (vector, p);
2358 return vector;
2359 }
2360
2361
2362 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2363 doc: /* Return a newly created char-table, with purpose PURPOSE.
2364 Each element is initialized to INIT, which defaults to nil.
2365 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2366 The property's value should be an integer between 0 and 10. */)
2367 (purpose, init)
2368 register Lisp_Object purpose, init;
2369 {
2370 Lisp_Object vector;
2371 Lisp_Object n;
2372 CHECK_SYMBOL (purpose);
2373 n = Fget (purpose, Qchar_table_extra_slots);
2374 CHECK_NUMBER (n);
2375 if (XINT (n) < 0 || XINT (n) > 10)
2376 args_out_of_range (n, Qnil);
2377 /* Add 2 to the size for the defalt and parent slots. */
2378 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2379 init);
2380 XCHAR_TABLE (vector)->top = Qt;
2381 XCHAR_TABLE (vector)->parent = Qnil;
2382 XCHAR_TABLE (vector)->purpose = purpose;
2383 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2384 return vector;
2385 }
2386
2387
2388 /* Return a newly created sub char table with default value DEFALT.
2389 Since a sub char table does not appear as a top level Emacs Lisp
2390 object, we don't need a Lisp interface to make it. */
2391
2392 Lisp_Object
2393 make_sub_char_table (defalt)
2394 Lisp_Object defalt;
2395 {
2396 Lisp_Object vector
2397 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2398 XCHAR_TABLE (vector)->top = Qnil;
2399 XCHAR_TABLE (vector)->defalt = defalt;
2400 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2401 return vector;
2402 }
2403
2404
2405 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2406 doc: /* Return a newly created vector with specified arguments as elements.
2407 Any number of arguments, even zero arguments, are allowed.
2408 usage: (vector &rest OBJECTS) */)
2409 (nargs, args)
2410 register int nargs;
2411 Lisp_Object *args;
2412 {
2413 register Lisp_Object len, val;
2414 register int index;
2415 register struct Lisp_Vector *p;
2416
2417 XSETFASTINT (len, nargs);
2418 val = Fmake_vector (len, Qnil);
2419 p = XVECTOR (val);
2420 for (index = 0; index < nargs; index++)
2421 p->contents[index] = args[index];
2422 return val;
2423 }
2424
2425
2426 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2427 doc: /* Create a byte-code object with specified arguments as elements.
2428 The arguments should be the arglist, bytecode-string, constant vector,
2429 stack size, (optional) doc string, and (optional) interactive spec.
2430 The first four arguments are required; at most six have any
2431 significance.
2432 usage: (make-byte-code &rest ELEMENTS) */)
2433 (nargs, args)
2434 register int nargs;
2435 Lisp_Object *args;
2436 {
2437 register Lisp_Object len, val;
2438 register int index;
2439 register struct Lisp_Vector *p;
2440
2441 XSETFASTINT (len, nargs);
2442 if (!NILP (Vpurify_flag))
2443 val = make_pure_vector ((EMACS_INT) nargs);
2444 else
2445 val = Fmake_vector (len, Qnil);
2446
2447 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2448 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2449 earlier because they produced a raw 8-bit string for byte-code
2450 and now such a byte-code string is loaded as multibyte while
2451 raw 8-bit characters converted to multibyte form. Thus, now we
2452 must convert them back to the original unibyte form. */
2453 args[1] = Fstring_as_unibyte (args[1]);
2454
2455 p = XVECTOR (val);
2456 for (index = 0; index < nargs; index++)
2457 {
2458 if (!NILP (Vpurify_flag))
2459 args[index] = Fpurecopy (args[index]);
2460 p->contents[index] = args[index];
2461 }
2462 XSETCOMPILED (val, p);
2463 return val;
2464 }
2465
2466
2467 \f
2468 /***********************************************************************
2469 Symbol Allocation
2470 ***********************************************************************/
2471
2472 /* Each symbol_block is just under 1020 bytes long, since malloc
2473 really allocates in units of powers of two and uses 4 bytes for its
2474 own overhead. */
2475
2476 #define SYMBOL_BLOCK_SIZE \
2477 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2478
2479 struct symbol_block
2480 {
2481 struct symbol_block *next;
2482 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2483 };
2484
2485 /* Current symbol block and index of first unused Lisp_Symbol
2486 structure in it. */
2487
2488 struct symbol_block *symbol_block;
2489 int symbol_block_index;
2490
2491 /* List of free symbols. */
2492
2493 struct Lisp_Symbol *symbol_free_list;
2494
2495 /* Total number of symbol blocks now in use. */
2496
2497 int n_symbol_blocks;
2498
2499
2500 /* Initialize symbol allocation. */
2501
2502 void
2503 init_symbol ()
2504 {
2505 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2506 MEM_TYPE_SYMBOL);
2507 symbol_block->next = 0;
2508 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2509 symbol_block_index = 0;
2510 symbol_free_list = 0;
2511 n_symbol_blocks = 1;
2512 }
2513
2514
2515 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2516 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2517 Its value and function definition are void, and its property list is nil. */)
2518 (name)
2519 Lisp_Object name;
2520 {
2521 register Lisp_Object val;
2522 register struct Lisp_Symbol *p;
2523
2524 CHECK_STRING (name);
2525
2526 if (symbol_free_list)
2527 {
2528 XSETSYMBOL (val, symbol_free_list);
2529 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2530 }
2531 else
2532 {
2533 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2534 {
2535 struct symbol_block *new;
2536 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2537 MEM_TYPE_SYMBOL);
2538 VALIDATE_LISP_STORAGE (new, sizeof *new);
2539 new->next = symbol_block;
2540 symbol_block = new;
2541 symbol_block_index = 0;
2542 n_symbol_blocks++;
2543 }
2544 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2545 }
2546
2547 p = XSYMBOL (val);
2548 p->name = XSTRING (name);
2549 p->plist = Qnil;
2550 p->value = Qunbound;
2551 p->function = Qunbound;
2552 p->next = NULL;
2553 p->interned = SYMBOL_UNINTERNED;
2554 p->constant = 0;
2555 p->indirect_variable = 0;
2556 consing_since_gc += sizeof (struct Lisp_Symbol);
2557 symbols_consed++;
2558 return val;
2559 }
2560
2561
2562 \f
2563 /***********************************************************************
2564 Marker (Misc) Allocation
2565 ***********************************************************************/
2566
2567 /* Allocation of markers and other objects that share that structure.
2568 Works like allocation of conses. */
2569
2570 #define MARKER_BLOCK_SIZE \
2571 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2572
2573 struct marker_block
2574 {
2575 struct marker_block *next;
2576 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2577 };
2578
2579 struct marker_block *marker_block;
2580 int marker_block_index;
2581
2582 union Lisp_Misc *marker_free_list;
2583
2584 /* Total number of marker blocks now in use. */
2585
2586 int n_marker_blocks;
2587
2588 void
2589 init_marker ()
2590 {
2591 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2592 MEM_TYPE_MISC);
2593 marker_block->next = 0;
2594 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2595 marker_block_index = 0;
2596 marker_free_list = 0;
2597 n_marker_blocks = 1;
2598 }
2599
2600 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2601
2602 Lisp_Object
2603 allocate_misc ()
2604 {
2605 Lisp_Object val;
2606
2607 if (marker_free_list)
2608 {
2609 XSETMISC (val, marker_free_list);
2610 marker_free_list = marker_free_list->u_free.chain;
2611 }
2612 else
2613 {
2614 if (marker_block_index == MARKER_BLOCK_SIZE)
2615 {
2616 struct marker_block *new;
2617 new = (struct marker_block *) lisp_malloc (sizeof *new,
2618 MEM_TYPE_MISC);
2619 VALIDATE_LISP_STORAGE (new, sizeof *new);
2620 new->next = marker_block;
2621 marker_block = new;
2622 marker_block_index = 0;
2623 n_marker_blocks++;
2624 }
2625 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2626 }
2627
2628 consing_since_gc += sizeof (union Lisp_Misc);
2629 misc_objects_consed++;
2630 return val;
2631 }
2632
2633 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2634 doc: /* Return a newly allocated marker which does not point at any place. */)
2635 ()
2636 {
2637 register Lisp_Object val;
2638 register struct Lisp_Marker *p;
2639
2640 val = allocate_misc ();
2641 XMISCTYPE (val) = Lisp_Misc_Marker;
2642 p = XMARKER (val);
2643 p->buffer = 0;
2644 p->bytepos = 0;
2645 p->charpos = 0;
2646 p->chain = Qnil;
2647 p->insertion_type = 0;
2648 return val;
2649 }
2650
2651 /* Put MARKER back on the free list after using it temporarily. */
2652
2653 void
2654 free_marker (marker)
2655 Lisp_Object marker;
2656 {
2657 unchain_marker (marker);
2658
2659 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2660 XMISC (marker)->u_free.chain = marker_free_list;
2661 marker_free_list = XMISC (marker);
2662
2663 total_free_markers++;
2664 }
2665
2666 \f
2667 /* Return a newly created vector or string with specified arguments as
2668 elements. If all the arguments are characters that can fit
2669 in a string of events, make a string; otherwise, make a vector.
2670
2671 Any number of arguments, even zero arguments, are allowed. */
2672
2673 Lisp_Object
2674 make_event_array (nargs, args)
2675 register int nargs;
2676 Lisp_Object *args;
2677 {
2678 int i;
2679
2680 for (i = 0; i < nargs; i++)
2681 /* The things that fit in a string
2682 are characters that are in 0...127,
2683 after discarding the meta bit and all the bits above it. */
2684 if (!INTEGERP (args[i])
2685 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2686 return Fvector (nargs, args);
2687
2688 /* Since the loop exited, we know that all the things in it are
2689 characters, so we can make a string. */
2690 {
2691 Lisp_Object result;
2692
2693 result = Fmake_string (make_number (nargs), make_number (0));
2694 for (i = 0; i < nargs; i++)
2695 {
2696 XSTRING (result)->data[i] = XINT (args[i]);
2697 /* Move the meta bit to the right place for a string char. */
2698 if (XINT (args[i]) & CHAR_META)
2699 XSTRING (result)->data[i] |= 0x80;
2700 }
2701
2702 return result;
2703 }
2704 }
2705
2706
2707 \f
2708 /************************************************************************
2709 C Stack Marking
2710 ************************************************************************/
2711
2712 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2713
2714 /* Conservative C stack marking requires a method to identify possibly
2715 live Lisp objects given a pointer value. We do this by keeping
2716 track of blocks of Lisp data that are allocated in a red-black tree
2717 (see also the comment of mem_node which is the type of nodes in
2718 that tree). Function lisp_malloc adds information for an allocated
2719 block to the red-black tree with calls to mem_insert, and function
2720 lisp_free removes it with mem_delete. Functions live_string_p etc
2721 call mem_find to lookup information about a given pointer in the
2722 tree, and use that to determine if the pointer points to a Lisp
2723 object or not. */
2724
2725 /* Initialize this part of alloc.c. */
2726
2727 static void
2728 mem_init ()
2729 {
2730 mem_z.left = mem_z.right = MEM_NIL;
2731 mem_z.parent = NULL;
2732 mem_z.color = MEM_BLACK;
2733 mem_z.start = mem_z.end = NULL;
2734 mem_root = MEM_NIL;
2735 }
2736
2737
2738 /* Value is a pointer to the mem_node containing START. Value is
2739 MEM_NIL if there is no node in the tree containing START. */
2740
2741 static INLINE struct mem_node *
2742 mem_find (start)
2743 void *start;
2744 {
2745 struct mem_node *p;
2746
2747 if (start < min_heap_address || start > max_heap_address)
2748 return MEM_NIL;
2749
2750 /* Make the search always successful to speed up the loop below. */
2751 mem_z.start = start;
2752 mem_z.end = (char *) start + 1;
2753
2754 p = mem_root;
2755 while (start < p->start || start >= p->end)
2756 p = start < p->start ? p->left : p->right;
2757 return p;
2758 }
2759
2760
2761 /* Insert a new node into the tree for a block of memory with start
2762 address START, end address END, and type TYPE. Value is a
2763 pointer to the node that was inserted. */
2764
2765 static struct mem_node *
2766 mem_insert (start, end, type)
2767 void *start, *end;
2768 enum mem_type type;
2769 {
2770 struct mem_node *c, *parent, *x;
2771
2772 if (start < min_heap_address)
2773 min_heap_address = start;
2774 if (end > max_heap_address)
2775 max_heap_address = end;
2776
2777 /* See where in the tree a node for START belongs. In this
2778 particular application, it shouldn't happen that a node is already
2779 present. For debugging purposes, let's check that. */
2780 c = mem_root;
2781 parent = NULL;
2782
2783 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2784
2785 while (c != MEM_NIL)
2786 {
2787 if (start >= c->start && start < c->end)
2788 abort ();
2789 parent = c;
2790 c = start < c->start ? c->left : c->right;
2791 }
2792
2793 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2794
2795 while (c != MEM_NIL)
2796 {
2797 parent = c;
2798 c = start < c->start ? c->left : c->right;
2799 }
2800
2801 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2802
2803 /* Create a new node. */
2804 #ifdef GC_MALLOC_CHECK
2805 x = (struct mem_node *) _malloc_internal (sizeof *x);
2806 if (x == NULL)
2807 abort ();
2808 #else
2809 x = (struct mem_node *) xmalloc (sizeof *x);
2810 #endif
2811 x->start = start;
2812 x->end = end;
2813 x->type = type;
2814 x->parent = parent;
2815 x->left = x->right = MEM_NIL;
2816 x->color = MEM_RED;
2817
2818 /* Insert it as child of PARENT or install it as root. */
2819 if (parent)
2820 {
2821 if (start < parent->start)
2822 parent->left = x;
2823 else
2824 parent->right = x;
2825 }
2826 else
2827 mem_root = x;
2828
2829 /* Re-establish red-black tree properties. */
2830 mem_insert_fixup (x);
2831
2832 return x;
2833 }
2834
2835
2836 /* Re-establish the red-black properties of the tree, and thereby
2837 balance the tree, after node X has been inserted; X is always red. */
2838
2839 static void
2840 mem_insert_fixup (x)
2841 struct mem_node *x;
2842 {
2843 while (x != mem_root && x->parent->color == MEM_RED)
2844 {
2845 /* X is red and its parent is red. This is a violation of
2846 red-black tree property #3. */
2847
2848 if (x->parent == x->parent->parent->left)
2849 {
2850 /* We're on the left side of our grandparent, and Y is our
2851 "uncle". */
2852 struct mem_node *y = x->parent->parent->right;
2853
2854 if (y->color == MEM_RED)
2855 {
2856 /* Uncle and parent are red but should be black because
2857 X is red. Change the colors accordingly and proceed
2858 with the grandparent. */
2859 x->parent->color = MEM_BLACK;
2860 y->color = MEM_BLACK;
2861 x->parent->parent->color = MEM_RED;
2862 x = x->parent->parent;
2863 }
2864 else
2865 {
2866 /* Parent and uncle have different colors; parent is
2867 red, uncle is black. */
2868 if (x == x->parent->right)
2869 {
2870 x = x->parent;
2871 mem_rotate_left (x);
2872 }
2873
2874 x->parent->color = MEM_BLACK;
2875 x->parent->parent->color = MEM_RED;
2876 mem_rotate_right (x->parent->parent);
2877 }
2878 }
2879 else
2880 {
2881 /* This is the symmetrical case of above. */
2882 struct mem_node *y = x->parent->parent->left;
2883
2884 if (y->color == MEM_RED)
2885 {
2886 x->parent->color = MEM_BLACK;
2887 y->color = MEM_BLACK;
2888 x->parent->parent->color = MEM_RED;
2889 x = x->parent->parent;
2890 }
2891 else
2892 {
2893 if (x == x->parent->left)
2894 {
2895 x = x->parent;
2896 mem_rotate_right (x);
2897 }
2898
2899 x->parent->color = MEM_BLACK;
2900 x->parent->parent->color = MEM_RED;
2901 mem_rotate_left (x->parent->parent);
2902 }
2903 }
2904 }
2905
2906 /* The root may have been changed to red due to the algorithm. Set
2907 it to black so that property #5 is satisfied. */
2908 mem_root->color = MEM_BLACK;
2909 }
2910
2911
2912 /* (x) (y)
2913 / \ / \
2914 a (y) ===> (x) c
2915 / \ / \
2916 b c a b */
2917
2918 static void
2919 mem_rotate_left (x)
2920 struct mem_node *x;
2921 {
2922 struct mem_node *y;
2923
2924 /* Turn y's left sub-tree into x's right sub-tree. */
2925 y = x->right;
2926 x->right = y->left;
2927 if (y->left != MEM_NIL)
2928 y->left->parent = x;
2929
2930 /* Y's parent was x's parent. */
2931 if (y != MEM_NIL)
2932 y->parent = x->parent;
2933
2934 /* Get the parent to point to y instead of x. */
2935 if (x->parent)
2936 {
2937 if (x == x->parent->left)
2938 x->parent->left = y;
2939 else
2940 x->parent->right = y;
2941 }
2942 else
2943 mem_root = y;
2944
2945 /* Put x on y's left. */
2946 y->left = x;
2947 if (x != MEM_NIL)
2948 x->parent = y;
2949 }
2950
2951
2952 /* (x) (Y)
2953 / \ / \
2954 (y) c ===> a (x)
2955 / \ / \
2956 a b b c */
2957
2958 static void
2959 mem_rotate_right (x)
2960 struct mem_node *x;
2961 {
2962 struct mem_node *y = x->left;
2963
2964 x->left = y->right;
2965 if (y->right != MEM_NIL)
2966 y->right->parent = x;
2967
2968 if (y != MEM_NIL)
2969 y->parent = x->parent;
2970 if (x->parent)
2971 {
2972 if (x == x->parent->right)
2973 x->parent->right = y;
2974 else
2975 x->parent->left = y;
2976 }
2977 else
2978 mem_root = y;
2979
2980 y->right = x;
2981 if (x != MEM_NIL)
2982 x->parent = y;
2983 }
2984
2985
2986 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2987
2988 static void
2989 mem_delete (z)
2990 struct mem_node *z;
2991 {
2992 struct mem_node *x, *y;
2993
2994 if (!z || z == MEM_NIL)
2995 return;
2996
2997 if (z->left == MEM_NIL || z->right == MEM_NIL)
2998 y = z;
2999 else
3000 {
3001 y = z->right;
3002 while (y->left != MEM_NIL)
3003 y = y->left;
3004 }
3005
3006 if (y->left != MEM_NIL)
3007 x = y->left;
3008 else
3009 x = y->right;
3010
3011 x->parent = y->parent;
3012 if (y->parent)
3013 {
3014 if (y == y->parent->left)
3015 y->parent->left = x;
3016 else
3017 y->parent->right = x;
3018 }
3019 else
3020 mem_root = x;
3021
3022 if (y != z)
3023 {
3024 z->start = y->start;
3025 z->end = y->end;
3026 z->type = y->type;
3027 }
3028
3029 if (y->color == MEM_BLACK)
3030 mem_delete_fixup (x);
3031
3032 #ifdef GC_MALLOC_CHECK
3033 _free_internal (y);
3034 #else
3035 xfree (y);
3036 #endif
3037 }
3038
3039
3040 /* Re-establish the red-black properties of the tree, after a
3041 deletion. */
3042
3043 static void
3044 mem_delete_fixup (x)
3045 struct mem_node *x;
3046 {
3047 while (x != mem_root && x->color == MEM_BLACK)
3048 {
3049 if (x == x->parent->left)
3050 {
3051 struct mem_node *w = x->parent->right;
3052
3053 if (w->color == MEM_RED)
3054 {
3055 w->color = MEM_BLACK;
3056 x->parent->color = MEM_RED;
3057 mem_rotate_left (x->parent);
3058 w = x->parent->right;
3059 }
3060
3061 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3062 {
3063 w->color = MEM_RED;
3064 x = x->parent;
3065 }
3066 else
3067 {
3068 if (w->right->color == MEM_BLACK)
3069 {
3070 w->left->color = MEM_BLACK;
3071 w->color = MEM_RED;
3072 mem_rotate_right (w);
3073 w = x->parent->right;
3074 }
3075 w->color = x->parent->color;
3076 x->parent->color = MEM_BLACK;
3077 w->right->color = MEM_BLACK;
3078 mem_rotate_left (x->parent);
3079 x = mem_root;
3080 }
3081 }
3082 else
3083 {
3084 struct mem_node *w = x->parent->left;
3085
3086 if (w->color == MEM_RED)
3087 {
3088 w->color = MEM_BLACK;
3089 x->parent->color = MEM_RED;
3090 mem_rotate_right (x->parent);
3091 w = x->parent->left;
3092 }
3093
3094 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3095 {
3096 w->color = MEM_RED;
3097 x = x->parent;
3098 }
3099 else
3100 {
3101 if (w->left->color == MEM_BLACK)
3102 {
3103 w->right->color = MEM_BLACK;
3104 w->color = MEM_RED;
3105 mem_rotate_left (w);
3106 w = x->parent->left;
3107 }
3108
3109 w->color = x->parent->color;
3110 x->parent->color = MEM_BLACK;
3111 w->left->color = MEM_BLACK;
3112 mem_rotate_right (x->parent);
3113 x = mem_root;
3114 }
3115 }
3116 }
3117
3118 x->color = MEM_BLACK;
3119 }
3120
3121
3122 /* Value is non-zero if P is a pointer to a live Lisp string on
3123 the heap. M is a pointer to the mem_block for P. */
3124
3125 static INLINE int
3126 live_string_p (m, p)
3127 struct mem_node *m;
3128 void *p;
3129 {
3130 if (m->type == MEM_TYPE_STRING)
3131 {
3132 struct string_block *b = (struct string_block *) m->start;
3133 int offset = (char *) p - (char *) &b->strings[0];
3134
3135 /* P must point to the start of a Lisp_String structure, and it
3136 must not be on the free-list. */
3137 return (offset >= 0
3138 && offset % sizeof b->strings[0] == 0
3139 && ((struct Lisp_String *) p)->data != NULL);
3140 }
3141 else
3142 return 0;
3143 }
3144
3145
3146 /* Value is non-zero if P is a pointer to a live Lisp cons on
3147 the heap. M is a pointer to the mem_block for P. */
3148
3149 static INLINE int
3150 live_cons_p (m, p)
3151 struct mem_node *m;
3152 void *p;
3153 {
3154 if (m->type == MEM_TYPE_CONS)
3155 {
3156 struct cons_block *b = (struct cons_block *) m->start;
3157 int offset = (char *) p - (char *) &b->conses[0];
3158
3159 /* P must point to the start of a Lisp_Cons, not be
3160 one of the unused cells in the current cons block,
3161 and not be on the free-list. */
3162 return (offset >= 0
3163 && offset % sizeof b->conses[0] == 0
3164 && (b != cons_block
3165 || offset / sizeof b->conses[0] < cons_block_index)
3166 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3167 }
3168 else
3169 return 0;
3170 }
3171
3172
3173 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3174 the heap. M is a pointer to the mem_block for P. */
3175
3176 static INLINE int
3177 live_symbol_p (m, p)
3178 struct mem_node *m;
3179 void *p;
3180 {
3181 if (m->type == MEM_TYPE_SYMBOL)
3182 {
3183 struct symbol_block *b = (struct symbol_block *) m->start;
3184 int offset = (char *) p - (char *) &b->symbols[0];
3185
3186 /* P must point to the start of a Lisp_Symbol, not be
3187 one of the unused cells in the current symbol block,
3188 and not be on the free-list. */
3189 return (offset >= 0
3190 && offset % sizeof b->symbols[0] == 0
3191 && (b != symbol_block
3192 || offset / sizeof b->symbols[0] < symbol_block_index)
3193 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3194 }
3195 else
3196 return 0;
3197 }
3198
3199
3200 /* Value is non-zero if P is a pointer to a live Lisp float on
3201 the heap. M is a pointer to the mem_block for P. */
3202
3203 static INLINE int
3204 live_float_p (m, p)
3205 struct mem_node *m;
3206 void *p;
3207 {
3208 if (m->type == MEM_TYPE_FLOAT)
3209 {
3210 struct float_block *b = (struct float_block *) m->start;
3211 int offset = (char *) p - (char *) &b->floats[0];
3212
3213 /* P must point to the start of a Lisp_Float, not be
3214 one of the unused cells in the current float block,
3215 and not be on the free-list. */
3216 return (offset >= 0
3217 && offset % sizeof b->floats[0] == 0
3218 && (b != float_block
3219 || offset / sizeof b->floats[0] < float_block_index)
3220 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3221 }
3222 else
3223 return 0;
3224 }
3225
3226
3227 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3228 the heap. M is a pointer to the mem_block for P. */
3229
3230 static INLINE int
3231 live_misc_p (m, p)
3232 struct mem_node *m;
3233 void *p;
3234 {
3235 if (m->type == MEM_TYPE_MISC)
3236 {
3237 struct marker_block *b = (struct marker_block *) m->start;
3238 int offset = (char *) p - (char *) &b->markers[0];
3239
3240 /* P must point to the start of a Lisp_Misc, not be
3241 one of the unused cells in the current misc block,
3242 and not be on the free-list. */
3243 return (offset >= 0
3244 && offset % sizeof b->markers[0] == 0
3245 && (b != marker_block
3246 || offset / sizeof b->markers[0] < marker_block_index)
3247 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3248 }
3249 else
3250 return 0;
3251 }
3252
3253
3254 /* Value is non-zero if P is a pointer to a live vector-like object.
3255 M is a pointer to the mem_block for P. */
3256
3257 static INLINE int
3258 live_vector_p (m, p)
3259 struct mem_node *m;
3260 void *p;
3261 {
3262 return (p == m->start
3263 && m->type >= MEM_TYPE_VECTOR
3264 && m->type <= MEM_TYPE_WINDOW);
3265 }
3266
3267
3268 /* Value is non-zero of P is a pointer to a live buffer. M is a
3269 pointer to the mem_block for P. */
3270
3271 static INLINE int
3272 live_buffer_p (m, p)
3273 struct mem_node *m;
3274 void *p;
3275 {
3276 /* P must point to the start of the block, and the buffer
3277 must not have been killed. */
3278 return (m->type == MEM_TYPE_BUFFER
3279 && p == m->start
3280 && !NILP (((struct buffer *) p)->name));
3281 }
3282
3283 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3284
3285 #if GC_MARK_STACK
3286
3287 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3288
3289 /* Array of objects that are kept alive because the C stack contains
3290 a pattern that looks like a reference to them . */
3291
3292 #define MAX_ZOMBIES 10
3293 static Lisp_Object zombies[MAX_ZOMBIES];
3294
3295 /* Number of zombie objects. */
3296
3297 static int nzombies;
3298
3299 /* Number of garbage collections. */
3300
3301 static int ngcs;
3302
3303 /* Average percentage of zombies per collection. */
3304
3305 static double avg_zombies;
3306
3307 /* Max. number of live and zombie objects. */
3308
3309 static int max_live, max_zombies;
3310
3311 /* Average number of live objects per GC. */
3312
3313 static double avg_live;
3314
3315 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3316 doc: /* Show information about live and zombie objects. */)
3317 ()
3318 {
3319 Lisp_Object args[7];
3320 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3321 args[1] = make_number (ngcs);
3322 args[2] = make_float (avg_live);
3323 args[3] = make_float (avg_zombies);
3324 args[4] = make_float (avg_zombies / avg_live / 100);
3325 args[5] = make_number (max_live);
3326 args[6] = make_number (max_zombies);
3327 return Fmessage (7, args);
3328 }
3329
3330 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3331
3332
3333 /* Mark OBJ if we can prove it's a Lisp_Object. */
3334
3335 static INLINE void
3336 mark_maybe_object (obj)
3337 Lisp_Object obj;
3338 {
3339 void *po = (void *) XPNTR (obj);
3340 struct mem_node *m = mem_find (po);
3341
3342 if (m != MEM_NIL)
3343 {
3344 int mark_p = 0;
3345
3346 switch (XGCTYPE (obj))
3347 {
3348 case Lisp_String:
3349 mark_p = (live_string_p (m, po)
3350 && !STRING_MARKED_P ((struct Lisp_String *) po));
3351 break;
3352
3353 case Lisp_Cons:
3354 mark_p = (live_cons_p (m, po)
3355 && !XMARKBIT (XCONS (obj)->car));
3356 break;
3357
3358 case Lisp_Symbol:
3359 mark_p = (live_symbol_p (m, po)
3360 && !XMARKBIT (XSYMBOL (obj)->plist));
3361 break;
3362
3363 case Lisp_Float:
3364 mark_p = (live_float_p (m, po)
3365 && !XMARKBIT (XFLOAT (obj)->type));
3366 break;
3367
3368 case Lisp_Vectorlike:
3369 /* Note: can't check GC_BUFFERP before we know it's a
3370 buffer because checking that dereferences the pointer
3371 PO which might point anywhere. */
3372 if (live_vector_p (m, po))
3373 mark_p = (!GC_SUBRP (obj)
3374 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3375 else if (live_buffer_p (m, po))
3376 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3377 break;
3378
3379 case Lisp_Misc:
3380 if (live_misc_p (m, po))
3381 {
3382 switch (XMISCTYPE (obj))
3383 {
3384 case Lisp_Misc_Marker:
3385 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3386 break;
3387
3388 case Lisp_Misc_Buffer_Local_Value:
3389 case Lisp_Misc_Some_Buffer_Local_Value:
3390 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3391 break;
3392
3393 case Lisp_Misc_Overlay:
3394 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3395 break;
3396 }
3397 }
3398 break;
3399
3400 case Lisp_Int:
3401 case Lisp_Type_Limit:
3402 break;
3403 }
3404
3405 if (mark_p)
3406 {
3407 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3408 if (nzombies < MAX_ZOMBIES)
3409 zombies[nzombies] = *p;
3410 ++nzombies;
3411 #endif
3412 mark_object (&obj);
3413 }
3414 }
3415 }
3416
3417
3418 /* If P points to Lisp data, mark that as live if it isn't already
3419 marked. */
3420
3421 static INLINE void
3422 mark_maybe_pointer (p)
3423 void *p;
3424 {
3425 struct mem_node *m;
3426
3427 /* Quickly rule out some values which can't point to Lisp data. We
3428 assume that Lisp data is aligned on even addresses. */
3429 if ((EMACS_INT) p & 1)
3430 return;
3431
3432 m = mem_find (p);
3433 if (m != MEM_NIL)
3434 {
3435 Lisp_Object obj = Qnil;
3436
3437 switch (m->type)
3438 {
3439 case MEM_TYPE_NON_LISP:
3440 /* Nothing to do; not a pointer to Lisp memory. */
3441 break;
3442
3443 case MEM_TYPE_BUFFER:
3444 if (live_buffer_p (m, p)
3445 && !XMARKBIT (((struct buffer *) p)->name))
3446 XSETVECTOR (obj, p);
3447 break;
3448
3449 case MEM_TYPE_CONS:
3450 if (live_cons_p (m, p)
3451 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3452 XSETCONS (obj, p);
3453 break;
3454
3455 case MEM_TYPE_STRING:
3456 if (live_string_p (m, p)
3457 && !STRING_MARKED_P ((struct Lisp_String *) p))
3458 XSETSTRING (obj, p);
3459 break;
3460
3461 case MEM_TYPE_MISC:
3462 if (live_misc_p (m, p))
3463 {
3464 Lisp_Object tem;
3465 XSETMISC (tem, p);
3466
3467 switch (XMISCTYPE (tem))
3468 {
3469 case Lisp_Misc_Marker:
3470 if (!XMARKBIT (XMARKER (tem)->chain))
3471 obj = tem;
3472 break;
3473
3474 case Lisp_Misc_Buffer_Local_Value:
3475 case Lisp_Misc_Some_Buffer_Local_Value:
3476 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3477 obj = tem;
3478 break;
3479
3480 case Lisp_Misc_Overlay:
3481 if (!XMARKBIT (XOVERLAY (tem)->plist))
3482 obj = tem;
3483 break;
3484 }
3485 }
3486 break;
3487
3488 case MEM_TYPE_SYMBOL:
3489 if (live_symbol_p (m, p)
3490 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3491 XSETSYMBOL (obj, p);
3492 break;
3493
3494 case MEM_TYPE_FLOAT:
3495 if (live_float_p (m, p)
3496 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3497 XSETFLOAT (obj, p);
3498 break;
3499
3500 case MEM_TYPE_VECTOR:
3501 case MEM_TYPE_PROCESS:
3502 case MEM_TYPE_HASH_TABLE:
3503 case MEM_TYPE_FRAME:
3504 case MEM_TYPE_WINDOW:
3505 if (live_vector_p (m, p))
3506 {
3507 Lisp_Object tem;
3508 XSETVECTOR (tem, p);
3509 if (!GC_SUBRP (tem)
3510 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3511 obj = tem;
3512 }
3513 break;
3514
3515 default:
3516 abort ();
3517 }
3518
3519 if (!GC_NILP (obj))
3520 mark_object (&obj);
3521 }
3522 }
3523
3524
3525 /* Mark Lisp objects referenced from the address range START..END. */
3526
3527 static void
3528 mark_memory (start, end)
3529 void *start, *end;
3530 {
3531 Lisp_Object *p;
3532 void **pp;
3533
3534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3535 nzombies = 0;
3536 #endif
3537
3538 /* Make START the pointer to the start of the memory region,
3539 if it isn't already. */
3540 if (end < start)
3541 {
3542 void *tem = start;
3543 start = end;
3544 end = tem;
3545 }
3546
3547 /* Mark Lisp_Objects. */
3548 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3549 mark_maybe_object (*p);
3550
3551 /* Mark Lisp data pointed to. This is necessary because, in some
3552 situations, the C compiler optimizes Lisp objects away, so that
3553 only a pointer to them remains. Example:
3554
3555 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3556 ()
3557 {
3558 Lisp_Object obj = build_string ("test");
3559 struct Lisp_String *s = XSTRING (obj);
3560 Fgarbage_collect ();
3561 fprintf (stderr, "test `%s'\n", s->data);
3562 return Qnil;
3563 }
3564
3565 Here, `obj' isn't really used, and the compiler optimizes it
3566 away. The only reference to the life string is through the
3567 pointer `s'. */
3568
3569 for (pp = (void **) start; (void *) pp < end; ++pp)
3570 mark_maybe_pointer (*pp);
3571 }
3572
3573
3574 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3575
3576 static int setjmp_tested_p, longjmps_done;
3577
3578 #define SETJMP_WILL_LIKELY_WORK "\
3579 \n\
3580 Emacs garbage collector has been changed to use conservative stack\n\
3581 marking. Emacs has determined that the method it uses to do the\n\
3582 marking will likely work on your system, but this isn't sure.\n\
3583 \n\
3584 If you are a system-programmer, or can get the help of a local wizard\n\
3585 who is, please take a look at the function mark_stack in alloc.c, and\n\
3586 verify that the methods used are appropriate for your system.\n\
3587 \n\
3588 Please mail the result to <emacs-devel@gnu.org>.\n\
3589 "
3590
3591 #define SETJMP_WILL_NOT_WORK "\
3592 \n\
3593 Emacs garbage collector has been changed to use conservative stack\n\
3594 marking. Emacs has determined that the default method it uses to do the\n\
3595 marking will not work on your system. We will need a system-dependent\n\
3596 solution for your system.\n\
3597 \n\
3598 Please take a look at the function mark_stack in alloc.c, and\n\
3599 try to find a way to make it work on your system.\n\
3600 Please mail the result to <emacs-devel@gnu.org>.\n\
3601 "
3602
3603
3604 /* Perform a quick check if it looks like setjmp saves registers in a
3605 jmp_buf. Print a message to stderr saying so. When this test
3606 succeeds, this is _not_ a proof that setjmp is sufficient for
3607 conservative stack marking. Only the sources or a disassembly
3608 can prove that. */
3609
3610 static void
3611 test_setjmp ()
3612 {
3613 char buf[10];
3614 register int x;
3615 jmp_buf jbuf;
3616 int result = 0;
3617
3618 /* Arrange for X to be put in a register. */
3619 sprintf (buf, "1");
3620 x = strlen (buf);
3621 x = 2 * x - 1;
3622
3623 setjmp (jbuf);
3624 if (longjmps_done == 1)
3625 {
3626 /* Came here after the longjmp at the end of the function.
3627
3628 If x == 1, the longjmp has restored the register to its
3629 value before the setjmp, and we can hope that setjmp
3630 saves all such registers in the jmp_buf, although that
3631 isn't sure.
3632
3633 For other values of X, either something really strange is
3634 taking place, or the setjmp just didn't save the register. */
3635
3636 if (x == 1)
3637 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3638 else
3639 {
3640 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3641 exit (1);
3642 }
3643 }
3644
3645 ++longjmps_done;
3646 x = 2;
3647 if (longjmps_done == 1)
3648 longjmp (jbuf, 1);
3649 }
3650
3651 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3652
3653
3654 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3655
3656 /* Abort if anything GCPRO'd doesn't survive the GC. */
3657
3658 static void
3659 check_gcpros ()
3660 {
3661 struct gcpro *p;
3662 int i;
3663
3664 for (p = gcprolist; p; p = p->next)
3665 for (i = 0; i < p->nvars; ++i)
3666 if (!survives_gc_p (p->var[i]))
3667 abort ();
3668 }
3669
3670 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3671
3672 static void
3673 dump_zombies ()
3674 {
3675 int i;
3676
3677 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3678 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3679 {
3680 fprintf (stderr, " %d = ", i);
3681 debug_print (zombies[i]);
3682 }
3683 }
3684
3685 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3686
3687
3688 /* Mark live Lisp objects on the C stack.
3689
3690 There are several system-dependent problems to consider when
3691 porting this to new architectures:
3692
3693 Processor Registers
3694
3695 We have to mark Lisp objects in CPU registers that can hold local
3696 variables or are used to pass parameters.
3697
3698 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3699 something that either saves relevant registers on the stack, or
3700 calls mark_maybe_object passing it each register's contents.
3701
3702 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3703 implementation assumes that calling setjmp saves registers we need
3704 to see in a jmp_buf which itself lies on the stack. This doesn't
3705 have to be true! It must be verified for each system, possibly
3706 by taking a look at the source code of setjmp.
3707
3708 Stack Layout
3709
3710 Architectures differ in the way their processor stack is organized.
3711 For example, the stack might look like this
3712
3713 +----------------+
3714 | Lisp_Object | size = 4
3715 +----------------+
3716 | something else | size = 2
3717 +----------------+
3718 | Lisp_Object | size = 4
3719 +----------------+
3720 | ... |
3721
3722 In such a case, not every Lisp_Object will be aligned equally. To
3723 find all Lisp_Object on the stack it won't be sufficient to walk
3724 the stack in steps of 4 bytes. Instead, two passes will be
3725 necessary, one starting at the start of the stack, and a second
3726 pass starting at the start of the stack + 2. Likewise, if the
3727 minimal alignment of Lisp_Objects on the stack is 1, four passes
3728 would be necessary, each one starting with one byte more offset
3729 from the stack start.
3730
3731 The current code assumes by default that Lisp_Objects are aligned
3732 equally on the stack. */
3733
3734 static void
3735 mark_stack ()
3736 {
3737 int i;
3738 jmp_buf j;
3739 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3740 void *end;
3741
3742 /* This trick flushes the register windows so that all the state of
3743 the process is contained in the stack. */
3744 #ifdef sparc
3745 asm ("ta 3");
3746 #endif
3747
3748 /* Save registers that we need to see on the stack. We need to see
3749 registers used to hold register variables and registers used to
3750 pass parameters. */
3751 #ifdef GC_SAVE_REGISTERS_ON_STACK
3752 GC_SAVE_REGISTERS_ON_STACK (end);
3753 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3754
3755 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3756 setjmp will definitely work, test it
3757 and print a message with the result
3758 of the test. */
3759 if (!setjmp_tested_p)
3760 {
3761 setjmp_tested_p = 1;
3762 test_setjmp ();
3763 }
3764 #endif /* GC_SETJMP_WORKS */
3765
3766 setjmp (j);
3767 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3768 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3769
3770 /* This assumes that the stack is a contiguous region in memory. If
3771 that's not the case, something has to be done here to iterate
3772 over the stack segments. */
3773 #ifndef GC_LISP_OBJECT_ALIGNMENT
3774 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3775 #endif
3776 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
3777 mark_memory ((char *) stack_base + i, end);
3778
3779 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3780 check_gcpros ();
3781 #endif
3782 }
3783
3784
3785 #endif /* GC_MARK_STACK != 0 */
3786
3787
3788 \f
3789 /***********************************************************************
3790 Pure Storage Management
3791 ***********************************************************************/
3792
3793 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3794 pointer to it. TYPE is the Lisp type for which the memory is
3795 allocated. TYPE < 0 means it's not used for a Lisp object.
3796
3797 If store_pure_type_info is set and TYPE is >= 0, the type of
3798 the allocated object is recorded in pure_types. */
3799
3800 static POINTER_TYPE *
3801 pure_alloc (size, type)
3802 size_t size;
3803 int type;
3804 {
3805 size_t nbytes;
3806 POINTER_TYPE *result;
3807 char *beg = purebeg;
3808
3809 /* Give Lisp_Floats an extra alignment. */
3810 if (type == Lisp_Float)
3811 {
3812 size_t alignment;
3813 #if defined __GNUC__ && __GNUC__ >= 2
3814 alignment = __alignof (struct Lisp_Float);
3815 #else
3816 alignment = sizeof (struct Lisp_Float);
3817 #endif
3818 pure_bytes_used = ALIGN (pure_bytes_used, alignment);
3819 }
3820
3821 nbytes = ALIGN (size, sizeof (EMACS_INT));
3822
3823 if (pure_bytes_used + nbytes > pure_size)
3824 {
3825 /* Don't allocate a large amount here,
3826 because it might get mmap'd and then its address
3827 might not be usable. */
3828 beg = purebeg = (char *) xmalloc (10000);
3829 pure_size = 10000;
3830 pure_bytes_used_before_overflow += pure_bytes_used;
3831 pure_bytes_used = 0;
3832 }
3833
3834 result = (POINTER_TYPE *) (beg + pure_bytes_used);
3835 pure_bytes_used += nbytes;
3836 return result;
3837 }
3838
3839
3840 /* Signal an error if PURESIZE is too small. */
3841
3842 void
3843 check_pure_size ()
3844 {
3845 if (pure_bytes_used_before_overflow)
3846 error ("Pure Lisp storage overflow (approx. %d bytes needed)",
3847 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3848 }
3849
3850
3851 /* Return a string allocated in pure space. DATA is a buffer holding
3852 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3853 non-zero means make the result string multibyte.
3854
3855 Must get an error if pure storage is full, since if it cannot hold
3856 a large string it may be able to hold conses that point to that
3857 string; then the string is not protected from gc. */
3858
3859 Lisp_Object
3860 make_pure_string (data, nchars, nbytes, multibyte)
3861 char *data;
3862 int nchars, nbytes;
3863 int multibyte;
3864 {
3865 Lisp_Object string;
3866 struct Lisp_String *s;
3867
3868 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3869 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3870 s->size = nchars;
3871 s->size_byte = multibyte ? nbytes : -1;
3872 bcopy (data, s->data, nbytes);
3873 s->data[nbytes] = '\0';
3874 s->intervals = NULL_INTERVAL;
3875 XSETSTRING (string, s);
3876 return string;
3877 }
3878
3879
3880 /* Return a cons allocated from pure space. Give it pure copies
3881 of CAR as car and CDR as cdr. */
3882
3883 Lisp_Object
3884 pure_cons (car, cdr)
3885 Lisp_Object car, cdr;
3886 {
3887 register Lisp_Object new;
3888 struct Lisp_Cons *p;
3889
3890 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3891 XSETCONS (new, p);
3892 XSETCAR (new, Fpurecopy (car));
3893 XSETCDR (new, Fpurecopy (cdr));
3894 return new;
3895 }
3896
3897
3898 /* Value is a float object with value NUM allocated from pure space. */
3899
3900 Lisp_Object
3901 make_pure_float (num)
3902 double num;
3903 {
3904 register Lisp_Object new;
3905 struct Lisp_Float *p;
3906
3907 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3908 XSETFLOAT (new, p);
3909 XFLOAT_DATA (new) = num;
3910 return new;
3911 }
3912
3913
3914 /* Return a vector with room for LEN Lisp_Objects allocated from
3915 pure space. */
3916
3917 Lisp_Object
3918 make_pure_vector (len)
3919 EMACS_INT len;
3920 {
3921 Lisp_Object new;
3922 struct Lisp_Vector *p;
3923 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3924
3925 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3926 XSETVECTOR (new, p);
3927 XVECTOR (new)->size = len;
3928 return new;
3929 }
3930
3931
3932 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3933 doc: /* Make a copy of OBJECT in pure storage.
3934 Recursively copies contents of vectors and cons cells.
3935 Does not copy symbols. Copies strings without text properties. */)
3936 (obj)
3937 register Lisp_Object obj;
3938 {
3939 if (NILP (Vpurify_flag))
3940 return obj;
3941
3942 if (PURE_POINTER_P (XPNTR (obj)))
3943 return obj;
3944
3945 if (CONSP (obj))
3946 return pure_cons (XCAR (obj), XCDR (obj));
3947 else if (FLOATP (obj))
3948 return make_pure_float (XFLOAT_DATA (obj));
3949 else if (STRINGP (obj))
3950 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
3951 STRING_BYTES (XSTRING (obj)),
3952 STRING_MULTIBYTE (obj));
3953 else if (COMPILEDP (obj) || VECTORP (obj))
3954 {
3955 register struct Lisp_Vector *vec;
3956 register int i, size;
3957
3958 size = XVECTOR (obj)->size;
3959 if (size & PSEUDOVECTOR_FLAG)
3960 size &= PSEUDOVECTOR_SIZE_MASK;
3961 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3962 for (i = 0; i < size; i++)
3963 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3964 if (COMPILEDP (obj))
3965 XSETCOMPILED (obj, vec);
3966 else
3967 XSETVECTOR (obj, vec);
3968 return obj;
3969 }
3970 else if (MARKERP (obj))
3971 error ("Attempt to copy a marker to pure storage");
3972
3973 return obj;
3974 }
3975
3976
3977 \f
3978 /***********************************************************************
3979 Protection from GC
3980 ***********************************************************************/
3981
3982 /* Put an entry in staticvec, pointing at the variable with address
3983 VARADDRESS. */
3984
3985 void
3986 staticpro (varaddress)
3987 Lisp_Object *varaddress;
3988 {
3989 staticvec[staticidx++] = varaddress;
3990 if (staticidx >= NSTATICS)
3991 abort ();
3992 }
3993
3994 struct catchtag
3995 {
3996 Lisp_Object tag;
3997 Lisp_Object val;
3998 struct catchtag *next;
3999 };
4000
4001 struct backtrace
4002 {
4003 struct backtrace *next;
4004 Lisp_Object *function;
4005 Lisp_Object *args; /* Points to vector of args. */
4006 int nargs; /* Length of vector. */
4007 /* If nargs is UNEVALLED, args points to slot holding list of
4008 unevalled args. */
4009 char evalargs;
4010 };
4011
4012
4013 \f
4014 /***********************************************************************
4015 Protection from GC
4016 ***********************************************************************/
4017
4018 /* Temporarily prevent garbage collection. */
4019
4020 int
4021 inhibit_garbage_collection ()
4022 {
4023 int count = specpdl_ptr - specpdl;
4024 int nbits = min (VALBITS, BITS_PER_INT);
4025
4026 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4027 return count;
4028 }
4029
4030
4031 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4032 doc: /* Reclaim storage for Lisp objects no longer needed.
4033 Returns info on amount of space in use:
4034 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4035 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4036 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4037 (USED-STRINGS . FREE-STRINGS))
4038 Garbage collection happens automatically if you cons more than
4039 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4040 ()
4041 {
4042 register struct gcpro *tail;
4043 register struct specbinding *bind;
4044 struct catchtag *catch;
4045 struct handler *handler;
4046 register struct backtrace *backlist;
4047 char stack_top_variable;
4048 register int i;
4049 int message_p;
4050 Lisp_Object total[8];
4051 int count = BINDING_STACK_SIZE ();
4052
4053 /* Can't GC if pure storage overflowed because we can't determine
4054 if something is a pure object or not. */
4055 if (pure_bytes_used_before_overflow)
4056 return Qnil;
4057
4058 /* In case user calls debug_print during GC,
4059 don't let that cause a recursive GC. */
4060 consing_since_gc = 0;
4061
4062 /* Save what's currently displayed in the echo area. */
4063 message_p = push_message ();
4064 record_unwind_protect (push_message_unwind, Qnil);
4065
4066 /* Save a copy of the contents of the stack, for debugging. */
4067 #if MAX_SAVE_STACK > 0
4068 if (NILP (Vpurify_flag))
4069 {
4070 i = &stack_top_variable - stack_bottom;
4071 if (i < 0) i = -i;
4072 if (i < MAX_SAVE_STACK)
4073 {
4074 if (stack_copy == 0)
4075 stack_copy = (char *) xmalloc (stack_copy_size = i);
4076 else if (stack_copy_size < i)
4077 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4078 if (stack_copy)
4079 {
4080 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4081 bcopy (stack_bottom, stack_copy, i);
4082 else
4083 bcopy (&stack_top_variable, stack_copy, i);
4084 }
4085 }
4086 }
4087 #endif /* MAX_SAVE_STACK > 0 */
4088
4089 if (garbage_collection_messages)
4090 message1_nolog ("Garbage collecting...");
4091
4092 BLOCK_INPUT;
4093
4094 shrink_regexp_cache ();
4095
4096 /* Don't keep undo information around forever. */
4097 {
4098 register struct buffer *nextb = all_buffers;
4099
4100 while (nextb)
4101 {
4102 /* If a buffer's undo list is Qt, that means that undo is
4103 turned off in that buffer. Calling truncate_undo_list on
4104 Qt tends to return NULL, which effectively turns undo back on.
4105 So don't call truncate_undo_list if undo_list is Qt. */
4106 if (! EQ (nextb->undo_list, Qt))
4107 nextb->undo_list
4108 = truncate_undo_list (nextb->undo_list, undo_limit,
4109 undo_strong_limit);
4110
4111 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4112 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4113 {
4114 /* If a buffer's gap size is more than 10% of the buffer
4115 size, or larger than 2000 bytes, then shrink it
4116 accordingly. Keep a minimum size of 20 bytes. */
4117 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4118
4119 if (nextb->text->gap_size > size)
4120 {
4121 struct buffer *save_current = current_buffer;
4122 current_buffer = nextb;
4123 make_gap (-(nextb->text->gap_size - size));
4124 current_buffer = save_current;
4125 }
4126 }
4127
4128 nextb = nextb->next;
4129 }
4130 }
4131
4132 gc_in_progress = 1;
4133
4134 /* clear_marks (); */
4135
4136 /* Mark all the special slots that serve as the roots of accessibility.
4137
4138 Usually the special slots to mark are contained in particular structures.
4139 Then we know no slot is marked twice because the structures don't overlap.
4140 In some cases, the structures point to the slots to be marked.
4141 For these, we use MARKBIT to avoid double marking of the slot. */
4142
4143 for (i = 0; i < staticidx; i++)
4144 mark_object (staticvec[i]);
4145
4146 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4147 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4148 mark_stack ();
4149 #else
4150 for (tail = gcprolist; tail; tail = tail->next)
4151 for (i = 0; i < tail->nvars; i++)
4152 if (!XMARKBIT (tail->var[i]))
4153 {
4154 /* Explicit casting prevents compiler warning about
4155 discarding the `volatile' qualifier. */
4156 mark_object ((Lisp_Object *)&tail->var[i]);
4157 XMARK (tail->var[i]);
4158 }
4159 #endif
4160
4161 mark_byte_stack ();
4162 for (bind = specpdl; bind != specpdl_ptr; bind++)
4163 {
4164 mark_object (&bind->symbol);
4165 mark_object (&bind->old_value);
4166 }
4167 for (catch = catchlist; catch; catch = catch->next)
4168 {
4169 mark_object (&catch->tag);
4170 mark_object (&catch->val);
4171 }
4172 for (handler = handlerlist; handler; handler = handler->next)
4173 {
4174 mark_object (&handler->handler);
4175 mark_object (&handler->var);
4176 }
4177 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4178 {
4179 if (!XMARKBIT (*backlist->function))
4180 {
4181 mark_object (backlist->function);
4182 XMARK (*backlist->function);
4183 }
4184 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4185 i = 0;
4186 else
4187 i = backlist->nargs - 1;
4188 for (; i >= 0; i--)
4189 if (!XMARKBIT (backlist->args[i]))
4190 {
4191 mark_object (&backlist->args[i]);
4192 XMARK (backlist->args[i]);
4193 }
4194 }
4195 mark_kboards ();
4196
4197 /* Look thru every buffer's undo list
4198 for elements that update markers that were not marked,
4199 and delete them. */
4200 {
4201 register struct buffer *nextb = all_buffers;
4202
4203 while (nextb)
4204 {
4205 /* If a buffer's undo list is Qt, that means that undo is
4206 turned off in that buffer. Calling truncate_undo_list on
4207 Qt tends to return NULL, which effectively turns undo back on.
4208 So don't call truncate_undo_list if undo_list is Qt. */
4209 if (! EQ (nextb->undo_list, Qt))
4210 {
4211 Lisp_Object tail, prev;
4212 tail = nextb->undo_list;
4213 prev = Qnil;
4214 while (CONSP (tail))
4215 {
4216 if (GC_CONSP (XCAR (tail))
4217 && GC_MARKERP (XCAR (XCAR (tail)))
4218 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4219 {
4220 if (NILP (prev))
4221 nextb->undo_list = tail = XCDR (tail);
4222 else
4223 {
4224 tail = XCDR (tail);
4225 XSETCDR (prev, tail);
4226 }
4227 }
4228 else
4229 {
4230 prev = tail;
4231 tail = XCDR (tail);
4232 }
4233 }
4234 }
4235
4236 nextb = nextb->next;
4237 }
4238 }
4239
4240 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4241 mark_stack ();
4242 #endif
4243
4244 gc_sweep ();
4245
4246 /* Clear the mark bits that we set in certain root slots. */
4247
4248 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4249 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4250 for (tail = gcprolist; tail; tail = tail->next)
4251 for (i = 0; i < tail->nvars; i++)
4252 XUNMARK (tail->var[i]);
4253 #endif
4254
4255 unmark_byte_stack ();
4256 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4257 {
4258 XUNMARK (*backlist->function);
4259 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4260 i = 0;
4261 else
4262 i = backlist->nargs - 1;
4263 for (; i >= 0; i--)
4264 XUNMARK (backlist->args[i]);
4265 }
4266 XUNMARK (buffer_defaults.name);
4267 XUNMARK (buffer_local_symbols.name);
4268
4269 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4270 dump_zombies ();
4271 #endif
4272
4273 UNBLOCK_INPUT;
4274
4275 /* clear_marks (); */
4276 gc_in_progress = 0;
4277
4278 consing_since_gc = 0;
4279 if (gc_cons_threshold < 10000)
4280 gc_cons_threshold = 10000;
4281
4282 if (garbage_collection_messages)
4283 {
4284 if (message_p || minibuf_level > 0)
4285 restore_message ();
4286 else
4287 message1_nolog ("Garbage collecting...done");
4288 }
4289
4290 unbind_to (count, Qnil);
4291
4292 total[0] = Fcons (make_number (total_conses),
4293 make_number (total_free_conses));
4294 total[1] = Fcons (make_number (total_symbols),
4295 make_number (total_free_symbols));
4296 total[2] = Fcons (make_number (total_markers),
4297 make_number (total_free_markers));
4298 total[3] = make_number (total_string_size);
4299 total[4] = make_number (total_vector_size);
4300 total[5] = Fcons (make_number (total_floats),
4301 make_number (total_free_floats));
4302 total[6] = Fcons (make_number (total_intervals),
4303 make_number (total_free_intervals));
4304 total[7] = Fcons (make_number (total_strings),
4305 make_number (total_free_strings));
4306
4307 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4308 {
4309 /* Compute average percentage of zombies. */
4310 double nlive = 0;
4311
4312 for (i = 0; i < 7; ++i)
4313 nlive += XFASTINT (XCAR (total[i]));
4314
4315 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4316 max_live = max (nlive, max_live);
4317 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4318 max_zombies = max (nzombies, max_zombies);
4319 ++ngcs;
4320 }
4321 #endif
4322
4323 if (!NILP (Vpost_gc_hook))
4324 {
4325 int count = inhibit_garbage_collection ();
4326 safe_run_hooks (Qpost_gc_hook);
4327 unbind_to (count, Qnil);
4328 }
4329
4330 return Flist (sizeof total / sizeof *total, total);
4331 }
4332
4333
4334 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4335 only interesting objects referenced from glyphs are strings. */
4336
4337 static void
4338 mark_glyph_matrix (matrix)
4339 struct glyph_matrix *matrix;
4340 {
4341 struct glyph_row *row = matrix->rows;
4342 struct glyph_row *end = row + matrix->nrows;
4343
4344 for (; row < end; ++row)
4345 if (row->enabled_p)
4346 {
4347 int area;
4348 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4349 {
4350 struct glyph *glyph = row->glyphs[area];
4351 struct glyph *end_glyph = glyph + row->used[area];
4352
4353 for (; glyph < end_glyph; ++glyph)
4354 if (GC_STRINGP (glyph->object)
4355 && !STRING_MARKED_P (XSTRING (glyph->object)))
4356 mark_object (&glyph->object);
4357 }
4358 }
4359 }
4360
4361
4362 /* Mark Lisp faces in the face cache C. */
4363
4364 static void
4365 mark_face_cache (c)
4366 struct face_cache *c;
4367 {
4368 if (c)
4369 {
4370 int i, j;
4371 for (i = 0; i < c->used; ++i)
4372 {
4373 struct face *face = FACE_FROM_ID (c->f, i);
4374
4375 if (face)
4376 {
4377 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4378 mark_object (&face->lface[j]);
4379 }
4380 }
4381 }
4382 }
4383
4384
4385 #ifdef HAVE_WINDOW_SYSTEM
4386
4387 /* Mark Lisp objects in image IMG. */
4388
4389 static void
4390 mark_image (img)
4391 struct image *img;
4392 {
4393 mark_object (&img->spec);
4394
4395 if (!NILP (img->data.lisp_val))
4396 mark_object (&img->data.lisp_val);
4397 }
4398
4399
4400 /* Mark Lisp objects in image cache of frame F. It's done this way so
4401 that we don't have to include xterm.h here. */
4402
4403 static void
4404 mark_image_cache (f)
4405 struct frame *f;
4406 {
4407 forall_images_in_image_cache (f, mark_image);
4408 }
4409
4410 #endif /* HAVE_X_WINDOWS */
4411
4412
4413 \f
4414 /* Mark reference to a Lisp_Object.
4415 If the object referred to has not been seen yet, recursively mark
4416 all the references contained in it. */
4417
4418 #define LAST_MARKED_SIZE 500
4419 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4420 int last_marked_index;
4421
4422 void
4423 mark_object (argptr)
4424 Lisp_Object *argptr;
4425 {
4426 Lisp_Object *objptr = argptr;
4427 register Lisp_Object obj;
4428 #ifdef GC_CHECK_MARKED_OBJECTS
4429 void *po;
4430 struct mem_node *m;
4431 #endif
4432
4433 loop:
4434 obj = *objptr;
4435 loop2:
4436 XUNMARK (obj);
4437
4438 if (PURE_POINTER_P (XPNTR (obj)))
4439 return;
4440
4441 last_marked[last_marked_index++] = objptr;
4442 if (last_marked_index == LAST_MARKED_SIZE)
4443 last_marked_index = 0;
4444
4445 /* Perform some sanity checks on the objects marked here. Abort if
4446 we encounter an object we know is bogus. This increases GC time
4447 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4448 #ifdef GC_CHECK_MARKED_OBJECTS
4449
4450 po = (void *) XPNTR (obj);
4451
4452 /* Check that the object pointed to by PO is known to be a Lisp
4453 structure allocated from the heap. */
4454 #define CHECK_ALLOCATED() \
4455 do { \
4456 m = mem_find (po); \
4457 if (m == MEM_NIL) \
4458 abort (); \
4459 } while (0)
4460
4461 /* Check that the object pointed to by PO is live, using predicate
4462 function LIVEP. */
4463 #define CHECK_LIVE(LIVEP) \
4464 do { \
4465 if (!LIVEP (m, po)) \
4466 abort (); \
4467 } while (0)
4468
4469 /* Check both of the above conditions. */
4470 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4471 do { \
4472 CHECK_ALLOCATED (); \
4473 CHECK_LIVE (LIVEP); \
4474 } while (0) \
4475
4476 #else /* not GC_CHECK_MARKED_OBJECTS */
4477
4478 #define CHECK_ALLOCATED() (void) 0
4479 #define CHECK_LIVE(LIVEP) (void) 0
4480 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4481
4482 #endif /* not GC_CHECK_MARKED_OBJECTS */
4483
4484 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4485 {
4486 case Lisp_String:
4487 {
4488 register struct Lisp_String *ptr = XSTRING (obj);
4489 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4490 MARK_INTERVAL_TREE (ptr->intervals);
4491 MARK_STRING (ptr);
4492 #ifdef GC_CHECK_STRING_BYTES
4493 /* Check that the string size recorded in the string is the
4494 same as the one recorded in the sdata structure. */
4495 CHECK_STRING_BYTES (ptr);
4496 #endif /* GC_CHECK_STRING_BYTES */
4497 }
4498 break;
4499
4500 case Lisp_Vectorlike:
4501 #ifdef GC_CHECK_MARKED_OBJECTS
4502 m = mem_find (po);
4503 if (m == MEM_NIL && !GC_SUBRP (obj)
4504 && po != &buffer_defaults
4505 && po != &buffer_local_symbols)
4506 abort ();
4507 #endif /* GC_CHECK_MARKED_OBJECTS */
4508
4509 if (GC_BUFFERP (obj))
4510 {
4511 if (!XMARKBIT (XBUFFER (obj)->name))
4512 {
4513 #ifdef GC_CHECK_MARKED_OBJECTS
4514 if (po != &buffer_defaults && po != &buffer_local_symbols)
4515 {
4516 struct buffer *b;
4517 for (b = all_buffers; b && b != po; b = b->next)
4518 ;
4519 if (b == NULL)
4520 abort ();
4521 }
4522 #endif /* GC_CHECK_MARKED_OBJECTS */
4523 mark_buffer (obj);
4524 }
4525 }
4526 else if (GC_SUBRP (obj))
4527 break;
4528 else if (GC_COMPILEDP (obj))
4529 /* We could treat this just like a vector, but it is better to
4530 save the COMPILED_CONSTANTS element for last and avoid
4531 recursion there. */
4532 {
4533 register struct Lisp_Vector *ptr = XVECTOR (obj);
4534 register EMACS_INT size = ptr->size;
4535 register int i;
4536
4537 if (size & ARRAY_MARK_FLAG)
4538 break; /* Already marked */
4539
4540 CHECK_LIVE (live_vector_p);
4541 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4542 size &= PSEUDOVECTOR_SIZE_MASK;
4543 for (i = 0; i < size; i++) /* and then mark its elements */
4544 {
4545 if (i != COMPILED_CONSTANTS)
4546 mark_object (&ptr->contents[i]);
4547 }
4548 /* This cast should be unnecessary, but some Mips compiler complains
4549 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4550 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4551 goto loop;
4552 }
4553 else if (GC_FRAMEP (obj))
4554 {
4555 register struct frame *ptr = XFRAME (obj);
4556 register EMACS_INT size = ptr->size;
4557
4558 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4559 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4560
4561 CHECK_LIVE (live_vector_p);
4562 mark_object (&ptr->name);
4563 mark_object (&ptr->icon_name);
4564 mark_object (&ptr->title);
4565 mark_object (&ptr->focus_frame);
4566 mark_object (&ptr->selected_window);
4567 mark_object (&ptr->minibuffer_window);
4568 mark_object (&ptr->param_alist);
4569 mark_object (&ptr->scroll_bars);
4570 mark_object (&ptr->condemned_scroll_bars);
4571 mark_object (&ptr->menu_bar_items);
4572 mark_object (&ptr->face_alist);
4573 mark_object (&ptr->menu_bar_vector);
4574 mark_object (&ptr->buffer_predicate);
4575 mark_object (&ptr->buffer_list);
4576 mark_object (&ptr->menu_bar_window);
4577 mark_object (&ptr->tool_bar_window);
4578 mark_face_cache (ptr->face_cache);
4579 #ifdef HAVE_WINDOW_SYSTEM
4580 mark_image_cache (ptr);
4581 mark_object (&ptr->tool_bar_items);
4582 mark_object (&ptr->desired_tool_bar_string);
4583 mark_object (&ptr->current_tool_bar_string);
4584 #endif /* HAVE_WINDOW_SYSTEM */
4585 }
4586 else if (GC_BOOL_VECTOR_P (obj))
4587 {
4588 register struct Lisp_Vector *ptr = XVECTOR (obj);
4589
4590 if (ptr->size & ARRAY_MARK_FLAG)
4591 break; /* Already marked */
4592 CHECK_LIVE (live_vector_p);
4593 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4594 }
4595 else if (GC_WINDOWP (obj))
4596 {
4597 register struct Lisp_Vector *ptr = XVECTOR (obj);
4598 struct window *w = XWINDOW (obj);
4599 register EMACS_INT size = ptr->size;
4600 register int i;
4601
4602 /* Stop if already marked. */
4603 if (size & ARRAY_MARK_FLAG)
4604 break;
4605
4606 /* Mark it. */
4607 CHECK_LIVE (live_vector_p);
4608 ptr->size |= ARRAY_MARK_FLAG;
4609
4610 /* There is no Lisp data above The member CURRENT_MATRIX in
4611 struct WINDOW. Stop marking when that slot is reached. */
4612 for (i = 0;
4613 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4614 i++)
4615 mark_object (&ptr->contents[i]);
4616
4617 /* Mark glyphs for leaf windows. Marking window matrices is
4618 sufficient because frame matrices use the same glyph
4619 memory. */
4620 if (NILP (w->hchild)
4621 && NILP (w->vchild)
4622 && w->current_matrix)
4623 {
4624 mark_glyph_matrix (w->current_matrix);
4625 mark_glyph_matrix (w->desired_matrix);
4626 }
4627 }
4628 else if (GC_HASH_TABLE_P (obj))
4629 {
4630 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4631 EMACS_INT size = h->size;
4632
4633 /* Stop if already marked. */
4634 if (size & ARRAY_MARK_FLAG)
4635 break;
4636
4637 /* Mark it. */
4638 CHECK_LIVE (live_vector_p);
4639 h->size |= ARRAY_MARK_FLAG;
4640
4641 /* Mark contents. */
4642 /* Do not mark next_free or next_weak.
4643 Being in the next_weak chain
4644 should not keep the hash table alive.
4645 No need to mark `count' since it is an integer. */
4646 mark_object (&h->test);
4647 mark_object (&h->weak);
4648 mark_object (&h->rehash_size);
4649 mark_object (&h->rehash_threshold);
4650 mark_object (&h->hash);
4651 mark_object (&h->next);
4652 mark_object (&h->index);
4653 mark_object (&h->user_hash_function);
4654 mark_object (&h->user_cmp_function);
4655
4656 /* If hash table is not weak, mark all keys and values.
4657 For weak tables, mark only the vector. */
4658 if (GC_NILP (h->weak))
4659 mark_object (&h->key_and_value);
4660 else
4661 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4662
4663 }
4664 else
4665 {
4666 register struct Lisp_Vector *ptr = XVECTOR (obj);
4667 register EMACS_INT size = ptr->size;
4668 register int i;
4669
4670 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4671 CHECK_LIVE (live_vector_p);
4672 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4673 if (size & PSEUDOVECTOR_FLAG)
4674 size &= PSEUDOVECTOR_SIZE_MASK;
4675
4676 for (i = 0; i < size; i++) /* and then mark its elements */
4677 mark_object (&ptr->contents[i]);
4678 }
4679 break;
4680
4681 case Lisp_Symbol:
4682 {
4683 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4684 struct Lisp_Symbol *ptrx;
4685
4686 if (XMARKBIT (ptr->plist)) break;
4687 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4688 XMARK (ptr->plist);
4689 mark_object ((Lisp_Object *) &ptr->value);
4690 mark_object (&ptr->function);
4691 mark_object (&ptr->plist);
4692
4693 if (!PURE_POINTER_P (ptr->name))
4694 MARK_STRING (ptr->name);
4695 MARK_INTERVAL_TREE (ptr->name->intervals);
4696
4697 /* Note that we do not mark the obarray of the symbol.
4698 It is safe not to do so because nothing accesses that
4699 slot except to check whether it is nil. */
4700 ptr = ptr->next;
4701 if (ptr)
4702 {
4703 /* For the benefit of the last_marked log. */
4704 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4705 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4706 XSETSYMBOL (obj, ptrx);
4707 /* We can't goto loop here because *objptr doesn't contain an
4708 actual Lisp_Object with valid datatype field. */
4709 goto loop2;
4710 }
4711 }
4712 break;
4713
4714 case Lisp_Misc:
4715 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4716 switch (XMISCTYPE (obj))
4717 {
4718 case Lisp_Misc_Marker:
4719 XMARK (XMARKER (obj)->chain);
4720 /* DO NOT mark thru the marker's chain.
4721 The buffer's markers chain does not preserve markers from gc;
4722 instead, markers are removed from the chain when freed by gc. */
4723 break;
4724
4725 case Lisp_Misc_Buffer_Local_Value:
4726 case Lisp_Misc_Some_Buffer_Local_Value:
4727 {
4728 register struct Lisp_Buffer_Local_Value *ptr
4729 = XBUFFER_LOCAL_VALUE (obj);
4730 if (XMARKBIT (ptr->realvalue)) break;
4731 XMARK (ptr->realvalue);
4732 /* If the cdr is nil, avoid recursion for the car. */
4733 if (EQ (ptr->cdr, Qnil))
4734 {
4735 objptr = &ptr->realvalue;
4736 goto loop;
4737 }
4738 mark_object (&ptr->realvalue);
4739 mark_object (&ptr->buffer);
4740 mark_object (&ptr->frame);
4741 objptr = &ptr->cdr;
4742 goto loop;
4743 }
4744
4745 case Lisp_Misc_Intfwd:
4746 case Lisp_Misc_Boolfwd:
4747 case Lisp_Misc_Objfwd:
4748 case Lisp_Misc_Buffer_Objfwd:
4749 case Lisp_Misc_Kboard_Objfwd:
4750 /* Don't bother with Lisp_Buffer_Objfwd,
4751 since all markable slots in current buffer marked anyway. */
4752 /* Don't need to do Lisp_Objfwd, since the places they point
4753 are protected with staticpro. */
4754 break;
4755
4756 case Lisp_Misc_Overlay:
4757 {
4758 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4759 if (!XMARKBIT (ptr->plist))
4760 {
4761 XMARK (ptr->plist);
4762 mark_object (&ptr->start);
4763 mark_object (&ptr->end);
4764 objptr = &ptr->plist;
4765 goto loop;
4766 }
4767 }
4768 break;
4769
4770 default:
4771 abort ();
4772 }
4773 break;
4774
4775 case Lisp_Cons:
4776 {
4777 register struct Lisp_Cons *ptr = XCONS (obj);
4778 if (XMARKBIT (ptr->car)) break;
4779 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4780 XMARK (ptr->car);
4781 /* If the cdr is nil, avoid recursion for the car. */
4782 if (EQ (ptr->cdr, Qnil))
4783 {
4784 objptr = &ptr->car;
4785 goto loop;
4786 }
4787 mark_object (&ptr->car);
4788 objptr = &ptr->cdr;
4789 goto loop;
4790 }
4791
4792 case Lisp_Float:
4793 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4794 XMARK (XFLOAT (obj)->type);
4795 break;
4796
4797 case Lisp_Int:
4798 break;
4799
4800 default:
4801 abort ();
4802 }
4803
4804 #undef CHECK_LIVE
4805 #undef CHECK_ALLOCATED
4806 #undef CHECK_ALLOCATED_AND_LIVE
4807 }
4808
4809 /* Mark the pointers in a buffer structure. */
4810
4811 static void
4812 mark_buffer (buf)
4813 Lisp_Object buf;
4814 {
4815 register struct buffer *buffer = XBUFFER (buf);
4816 register Lisp_Object *ptr;
4817 Lisp_Object base_buffer;
4818
4819 /* This is the buffer's markbit */
4820 mark_object (&buffer->name);
4821 XMARK (buffer->name);
4822
4823 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4824
4825 if (CONSP (buffer->undo_list))
4826 {
4827 Lisp_Object tail;
4828 tail = buffer->undo_list;
4829
4830 while (CONSP (tail))
4831 {
4832 register struct Lisp_Cons *ptr = XCONS (tail);
4833
4834 if (XMARKBIT (ptr->car))
4835 break;
4836 XMARK (ptr->car);
4837 if (GC_CONSP (ptr->car)
4838 && ! XMARKBIT (XCAR (ptr->car))
4839 && GC_MARKERP (XCAR (ptr->car)))
4840 {
4841 XMARK (XCAR_AS_LVALUE (ptr->car));
4842 mark_object (&XCDR_AS_LVALUE (ptr->car));
4843 }
4844 else
4845 mark_object (&ptr->car);
4846
4847 if (CONSP (ptr->cdr))
4848 tail = ptr->cdr;
4849 else
4850 break;
4851 }
4852
4853 mark_object (&XCDR_AS_LVALUE (tail));
4854 }
4855 else
4856 mark_object (&buffer->undo_list);
4857
4858 for (ptr = &buffer->name + 1;
4859 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4860 ptr++)
4861 mark_object (ptr);
4862
4863 /* If this is an indirect buffer, mark its base buffer. */
4864 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4865 {
4866 XSETBUFFER (base_buffer, buffer->base_buffer);
4867 mark_buffer (base_buffer);
4868 }
4869 }
4870
4871
4872 /* Mark the pointers in the kboard objects. */
4873
4874 static void
4875 mark_kboards ()
4876 {
4877 KBOARD *kb;
4878 Lisp_Object *p;
4879 for (kb = all_kboards; kb; kb = kb->next_kboard)
4880 {
4881 if (kb->kbd_macro_buffer)
4882 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4883 mark_object (p);
4884 mark_object (&kb->Voverriding_terminal_local_map);
4885 mark_object (&kb->Vlast_command);
4886 mark_object (&kb->Vreal_last_command);
4887 mark_object (&kb->Vprefix_arg);
4888 mark_object (&kb->Vlast_prefix_arg);
4889 mark_object (&kb->kbd_queue);
4890 mark_object (&kb->defining_kbd_macro);
4891 mark_object (&kb->Vlast_kbd_macro);
4892 mark_object (&kb->Vsystem_key_alist);
4893 mark_object (&kb->system_key_syms);
4894 mark_object (&kb->Vdefault_minibuffer_frame);
4895 }
4896 }
4897
4898
4899 /* Value is non-zero if OBJ will survive the current GC because it's
4900 either marked or does not need to be marked to survive. */
4901
4902 int
4903 survives_gc_p (obj)
4904 Lisp_Object obj;
4905 {
4906 int survives_p;
4907
4908 switch (XGCTYPE (obj))
4909 {
4910 case Lisp_Int:
4911 survives_p = 1;
4912 break;
4913
4914 case Lisp_Symbol:
4915 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4916 break;
4917
4918 case Lisp_Misc:
4919 switch (XMISCTYPE (obj))
4920 {
4921 case Lisp_Misc_Marker:
4922 survives_p = XMARKBIT (obj);
4923 break;
4924
4925 case Lisp_Misc_Buffer_Local_Value:
4926 case Lisp_Misc_Some_Buffer_Local_Value:
4927 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4928 break;
4929
4930 case Lisp_Misc_Intfwd:
4931 case Lisp_Misc_Boolfwd:
4932 case Lisp_Misc_Objfwd:
4933 case Lisp_Misc_Buffer_Objfwd:
4934 case Lisp_Misc_Kboard_Objfwd:
4935 survives_p = 1;
4936 break;
4937
4938 case Lisp_Misc_Overlay:
4939 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4940 break;
4941
4942 default:
4943 abort ();
4944 }
4945 break;
4946
4947 case Lisp_String:
4948 {
4949 struct Lisp_String *s = XSTRING (obj);
4950 survives_p = STRING_MARKED_P (s);
4951 }
4952 break;
4953
4954 case Lisp_Vectorlike:
4955 if (GC_BUFFERP (obj))
4956 survives_p = XMARKBIT (XBUFFER (obj)->name);
4957 else if (GC_SUBRP (obj))
4958 survives_p = 1;
4959 else
4960 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4961 break;
4962
4963 case Lisp_Cons:
4964 survives_p = XMARKBIT (XCAR (obj));
4965 break;
4966
4967 case Lisp_Float:
4968 survives_p = XMARKBIT (XFLOAT (obj)->type);
4969 break;
4970
4971 default:
4972 abort ();
4973 }
4974
4975 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
4976 }
4977
4978
4979 \f
4980 /* Sweep: find all structures not marked, and free them. */
4981
4982 static void
4983 gc_sweep ()
4984 {
4985 /* Remove or mark entries in weak hash tables.
4986 This must be done before any object is unmarked. */
4987 sweep_weak_hash_tables ();
4988
4989 sweep_strings ();
4990 #ifdef GC_CHECK_STRING_BYTES
4991 if (!noninteractive)
4992 check_string_bytes (1);
4993 #endif
4994
4995 /* Put all unmarked conses on free list */
4996 {
4997 register struct cons_block *cblk;
4998 struct cons_block **cprev = &cons_block;
4999 register int lim = cons_block_index;
5000 register int num_free = 0, num_used = 0;
5001
5002 cons_free_list = 0;
5003
5004 for (cblk = cons_block; cblk; cblk = *cprev)
5005 {
5006 register int i;
5007 int this_free = 0;
5008 for (i = 0; i < lim; i++)
5009 if (!XMARKBIT (cblk->conses[i].car))
5010 {
5011 this_free++;
5012 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5013 cons_free_list = &cblk->conses[i];
5014 #if GC_MARK_STACK
5015 cons_free_list->car = Vdead;
5016 #endif
5017 }
5018 else
5019 {
5020 num_used++;
5021 XUNMARK (cblk->conses[i].car);
5022 }
5023 lim = CONS_BLOCK_SIZE;
5024 /* If this block contains only free conses and we have already
5025 seen more than two blocks worth of free conses then deallocate
5026 this block. */
5027 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5028 {
5029 *cprev = cblk->next;
5030 /* Unhook from the free list. */
5031 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5032 lisp_free (cblk);
5033 n_cons_blocks--;
5034 }
5035 else
5036 {
5037 num_free += this_free;
5038 cprev = &cblk->next;
5039 }
5040 }
5041 total_conses = num_used;
5042 total_free_conses = num_free;
5043 }
5044
5045 /* Put all unmarked floats on free list */
5046 {
5047 register struct float_block *fblk;
5048 struct float_block **fprev = &float_block;
5049 register int lim = float_block_index;
5050 register int num_free = 0, num_used = 0;
5051
5052 float_free_list = 0;
5053
5054 for (fblk = float_block; fblk; fblk = *fprev)
5055 {
5056 register int i;
5057 int this_free = 0;
5058 for (i = 0; i < lim; i++)
5059 if (!XMARKBIT (fblk->floats[i].type))
5060 {
5061 this_free++;
5062 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5063 float_free_list = &fblk->floats[i];
5064 #if GC_MARK_STACK
5065 float_free_list->type = Vdead;
5066 #endif
5067 }
5068 else
5069 {
5070 num_used++;
5071 XUNMARK (fblk->floats[i].type);
5072 }
5073 lim = FLOAT_BLOCK_SIZE;
5074 /* If this block contains only free floats and we have already
5075 seen more than two blocks worth of free floats then deallocate
5076 this block. */
5077 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5078 {
5079 *fprev = fblk->next;
5080 /* Unhook from the free list. */
5081 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5082 lisp_free (fblk);
5083 n_float_blocks--;
5084 }
5085 else
5086 {
5087 num_free += this_free;
5088 fprev = &fblk->next;
5089 }
5090 }
5091 total_floats = num_used;
5092 total_free_floats = num_free;
5093 }
5094
5095 /* Put all unmarked intervals on free list */
5096 {
5097 register struct interval_block *iblk;
5098 struct interval_block **iprev = &interval_block;
5099 register int lim = interval_block_index;
5100 register int num_free = 0, num_used = 0;
5101
5102 interval_free_list = 0;
5103
5104 for (iblk = interval_block; iblk; iblk = *iprev)
5105 {
5106 register int i;
5107 int this_free = 0;
5108
5109 for (i = 0; i < lim; i++)
5110 {
5111 if (! XMARKBIT (iblk->intervals[i].plist))
5112 {
5113 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5114 interval_free_list = &iblk->intervals[i];
5115 this_free++;
5116 }
5117 else
5118 {
5119 num_used++;
5120 XUNMARK (iblk->intervals[i].plist);
5121 }
5122 }
5123 lim = INTERVAL_BLOCK_SIZE;
5124 /* If this block contains only free intervals and we have already
5125 seen more than two blocks worth of free intervals then
5126 deallocate this block. */
5127 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5128 {
5129 *iprev = iblk->next;
5130 /* Unhook from the free list. */
5131 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5132 lisp_free (iblk);
5133 n_interval_blocks--;
5134 }
5135 else
5136 {
5137 num_free += this_free;
5138 iprev = &iblk->next;
5139 }
5140 }
5141 total_intervals = num_used;
5142 total_free_intervals = num_free;
5143 }
5144
5145 /* Put all unmarked symbols on free list */
5146 {
5147 register struct symbol_block *sblk;
5148 struct symbol_block **sprev = &symbol_block;
5149 register int lim = symbol_block_index;
5150 register int num_free = 0, num_used = 0;
5151
5152 symbol_free_list = NULL;
5153
5154 for (sblk = symbol_block; sblk; sblk = *sprev)
5155 {
5156 int this_free = 0;
5157 struct Lisp_Symbol *sym = sblk->symbols;
5158 struct Lisp_Symbol *end = sym + lim;
5159
5160 for (; sym < end; ++sym)
5161 {
5162 /* Check if the symbol was created during loadup. In such a case
5163 it might be pointed to by pure bytecode which we don't trace,
5164 so we conservatively assume that it is live. */
5165 int pure_p = PURE_POINTER_P (sym->name);
5166
5167 if (!XMARKBIT (sym->plist) && !pure_p)
5168 {
5169 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5170 symbol_free_list = sym;
5171 #if GC_MARK_STACK
5172 symbol_free_list->function = Vdead;
5173 #endif
5174 ++this_free;
5175 }
5176 else
5177 {
5178 ++num_used;
5179 if (!pure_p)
5180 UNMARK_STRING (sym->name);
5181 XUNMARK (sym->plist);
5182 }
5183 }
5184
5185 lim = SYMBOL_BLOCK_SIZE;
5186 /* If this block contains only free symbols and we have already
5187 seen more than two blocks worth of free symbols then deallocate
5188 this block. */
5189 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5190 {
5191 *sprev = sblk->next;
5192 /* Unhook from the free list. */
5193 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5194 lisp_free (sblk);
5195 n_symbol_blocks--;
5196 }
5197 else
5198 {
5199 num_free += this_free;
5200 sprev = &sblk->next;
5201 }
5202 }
5203 total_symbols = num_used;
5204 total_free_symbols = num_free;
5205 }
5206
5207 /* Put all unmarked misc's on free list.
5208 For a marker, first unchain it from the buffer it points into. */
5209 {
5210 register struct marker_block *mblk;
5211 struct marker_block **mprev = &marker_block;
5212 register int lim = marker_block_index;
5213 register int num_free = 0, num_used = 0;
5214
5215 marker_free_list = 0;
5216
5217 for (mblk = marker_block; mblk; mblk = *mprev)
5218 {
5219 register int i;
5220 int this_free = 0;
5221 EMACS_INT already_free = -1;
5222
5223 for (i = 0; i < lim; i++)
5224 {
5225 Lisp_Object *markword;
5226 switch (mblk->markers[i].u_marker.type)
5227 {
5228 case Lisp_Misc_Marker:
5229 markword = &mblk->markers[i].u_marker.chain;
5230 break;
5231 case Lisp_Misc_Buffer_Local_Value:
5232 case Lisp_Misc_Some_Buffer_Local_Value:
5233 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5234 break;
5235 case Lisp_Misc_Overlay:
5236 markword = &mblk->markers[i].u_overlay.plist;
5237 break;
5238 case Lisp_Misc_Free:
5239 /* If the object was already free, keep it
5240 on the free list. */
5241 markword = (Lisp_Object *) &already_free;
5242 break;
5243 default:
5244 markword = 0;
5245 break;
5246 }
5247 if (markword && !XMARKBIT (*markword))
5248 {
5249 Lisp_Object tem;
5250 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5251 {
5252 /* tem1 avoids Sun compiler bug */
5253 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5254 XSETMARKER (tem, tem1);
5255 unchain_marker (tem);
5256 }
5257 /* Set the type of the freed object to Lisp_Misc_Free.
5258 We could leave the type alone, since nobody checks it,
5259 but this might catch bugs faster. */
5260 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5261 mblk->markers[i].u_free.chain = marker_free_list;
5262 marker_free_list = &mblk->markers[i];
5263 this_free++;
5264 }
5265 else
5266 {
5267 num_used++;
5268 if (markword)
5269 XUNMARK (*markword);
5270 }
5271 }
5272 lim = MARKER_BLOCK_SIZE;
5273 /* If this block contains only free markers and we have already
5274 seen more than two blocks worth of free markers then deallocate
5275 this block. */
5276 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5277 {
5278 *mprev = mblk->next;
5279 /* Unhook from the free list. */
5280 marker_free_list = mblk->markers[0].u_free.chain;
5281 lisp_free (mblk);
5282 n_marker_blocks--;
5283 }
5284 else
5285 {
5286 num_free += this_free;
5287 mprev = &mblk->next;
5288 }
5289 }
5290
5291 total_markers = num_used;
5292 total_free_markers = num_free;
5293 }
5294
5295 /* Free all unmarked buffers */
5296 {
5297 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5298
5299 while (buffer)
5300 if (!XMARKBIT (buffer->name))
5301 {
5302 if (prev)
5303 prev->next = buffer->next;
5304 else
5305 all_buffers = buffer->next;
5306 next = buffer->next;
5307 lisp_free (buffer);
5308 buffer = next;
5309 }
5310 else
5311 {
5312 XUNMARK (buffer->name);
5313 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5314 prev = buffer, buffer = buffer->next;
5315 }
5316 }
5317
5318 /* Free all unmarked vectors */
5319 {
5320 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5321 total_vector_size = 0;
5322
5323 while (vector)
5324 if (!(vector->size & ARRAY_MARK_FLAG))
5325 {
5326 if (prev)
5327 prev->next = vector->next;
5328 else
5329 all_vectors = vector->next;
5330 next = vector->next;
5331 lisp_free (vector);
5332 n_vectors--;
5333 vector = next;
5334
5335 }
5336 else
5337 {
5338 vector->size &= ~ARRAY_MARK_FLAG;
5339 if (vector->size & PSEUDOVECTOR_FLAG)
5340 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5341 else
5342 total_vector_size += vector->size;
5343 prev = vector, vector = vector->next;
5344 }
5345 }
5346
5347 #ifdef GC_CHECK_STRING_BYTES
5348 if (!noninteractive)
5349 check_string_bytes (1);
5350 #endif
5351 }
5352
5353
5354
5355 \f
5356 /* Debugging aids. */
5357
5358 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5359 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5360 This may be helpful in debugging Emacs's memory usage.
5361 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5362 ()
5363 {
5364 Lisp_Object end;
5365
5366 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5367
5368 return end;
5369 }
5370
5371 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5372 doc: /* Return a list of counters that measure how much consing there has been.
5373 Each of these counters increments for a certain kind of object.
5374 The counters wrap around from the largest positive integer to zero.
5375 Garbage collection does not decrease them.
5376 The elements of the value are as follows:
5377 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5378 All are in units of 1 = one object consed
5379 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5380 objects consed.
5381 MISCS include overlays, markers, and some internal types.
5382 Frames, windows, buffers, and subprocesses count as vectors
5383 (but the contents of a buffer's text do not count here). */)
5384 ()
5385 {
5386 Lisp_Object consed[8];
5387
5388 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5389 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5390 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5391 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5392 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5393 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5394 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5395 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5396
5397 return Flist (8, consed);
5398 }
5399
5400 int suppress_checking;
5401 void
5402 die (msg, file, line)
5403 const char *msg;
5404 const char *file;
5405 int line;
5406 {
5407 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5408 file, line, msg);
5409 abort ();
5410 }
5411 \f
5412 /* Initialization */
5413
5414 void
5415 init_alloc_once ()
5416 {
5417 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5418 purebeg = PUREBEG;
5419 pure_size = PURESIZE;
5420 pure_bytes_used = 0;
5421 pure_bytes_used_before_overflow = 0;
5422
5423 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5424 mem_init ();
5425 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5426 #endif
5427
5428 all_vectors = 0;
5429 ignore_warnings = 1;
5430 #ifdef DOUG_LEA_MALLOC
5431 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5432 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5433 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5434 #endif
5435 init_strings ();
5436 init_cons ();
5437 init_symbol ();
5438 init_marker ();
5439 init_float ();
5440 init_intervals ();
5441
5442 #ifdef REL_ALLOC
5443 malloc_hysteresis = 32;
5444 #else
5445 malloc_hysteresis = 0;
5446 #endif
5447
5448 spare_memory = (char *) malloc (SPARE_MEMORY);
5449
5450 ignore_warnings = 0;
5451 gcprolist = 0;
5452 byte_stack_list = 0;
5453 staticidx = 0;
5454 consing_since_gc = 0;
5455 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5456 #ifdef VIRT_ADDR_VARIES
5457 malloc_sbrk_unused = 1<<22; /* A large number */
5458 malloc_sbrk_used = 100000; /* as reasonable as any number */
5459 #endif /* VIRT_ADDR_VARIES */
5460 }
5461
5462 void
5463 init_alloc ()
5464 {
5465 gcprolist = 0;
5466 byte_stack_list = 0;
5467 #if GC_MARK_STACK
5468 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5469 setjmp_tested_p = longjmps_done = 0;
5470 #endif
5471 #endif
5472 }
5473
5474 void
5475 syms_of_alloc ()
5476 {
5477 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5478 doc: /* *Number of bytes of consing between garbage collections.
5479 Garbage collection can happen automatically once this many bytes have been
5480 allocated since the last garbage collection. All data types count.
5481
5482 Garbage collection happens automatically only when `eval' is called.
5483
5484 By binding this temporarily to a large number, you can effectively
5485 prevent garbage collection during a part of the program. */);
5486
5487 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5488 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5489
5490 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5491 doc: /* Number of cons cells that have been consed so far. */);
5492
5493 DEFVAR_INT ("floats-consed", &floats_consed,
5494 doc: /* Number of floats that have been consed so far. */);
5495
5496 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5497 doc: /* Number of vector cells that have been consed so far. */);
5498
5499 DEFVAR_INT ("symbols-consed", &symbols_consed,
5500 doc: /* Number of symbols that have been consed so far. */);
5501
5502 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5503 doc: /* Number of string characters that have been consed so far. */);
5504
5505 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5506 doc: /* Number of miscellaneous objects that have been consed so far. */);
5507
5508 DEFVAR_INT ("intervals-consed", &intervals_consed,
5509 doc: /* Number of intervals that have been consed so far. */);
5510
5511 DEFVAR_INT ("strings-consed", &strings_consed,
5512 doc: /* Number of strings that have been consed so far. */);
5513
5514 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5515 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5516 This means that certain objects should be allocated in shared (pure) space. */);
5517
5518 DEFVAR_INT ("undo-limit", &undo_limit,
5519 doc: /* Keep no more undo information once it exceeds this size.
5520 This limit is applied when garbage collection happens.
5521 The size is counted as the number of bytes occupied,
5522 which includes both saved text and other data. */);
5523 undo_limit = 20000;
5524
5525 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5526 doc: /* Don't keep more than this much size of undo information.
5527 A command which pushes past this size is itself forgotten.
5528 This limit is applied when garbage collection happens.
5529 The size is counted as the number of bytes occupied,
5530 which includes both saved text and other data. */);
5531 undo_strong_limit = 30000;
5532
5533 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5534 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5535 garbage_collection_messages = 0;
5536
5537 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5538 doc: /* Hook run after garbage collection has finished. */);
5539 Vpost_gc_hook = Qnil;
5540 Qpost_gc_hook = intern ("post-gc-hook");
5541 staticpro (&Qpost_gc_hook);
5542
5543 /* We build this in advance because if we wait until we need it, we might
5544 not be able to allocate the memory to hold it. */
5545 memory_signal_data
5546 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
5547 staticpro (&memory_signal_data);
5548
5549 staticpro (&Qgc_cons_threshold);
5550 Qgc_cons_threshold = intern ("gc-cons-threshold");
5551
5552 staticpro (&Qchar_table_extra_slots);
5553 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5554
5555 defsubr (&Scons);
5556 defsubr (&Slist);
5557 defsubr (&Svector);
5558 defsubr (&Smake_byte_code);
5559 defsubr (&Smake_list);
5560 defsubr (&Smake_vector);
5561 defsubr (&Smake_char_table);
5562 defsubr (&Smake_string);
5563 defsubr (&Smake_bool_vector);
5564 defsubr (&Smake_symbol);
5565 defsubr (&Smake_marker);
5566 defsubr (&Spurecopy);
5567 defsubr (&Sgarbage_collect);
5568 defsubr (&Smemory_limit);
5569 defsubr (&Smemory_use_counts);
5570
5571 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5572 defsubr (&Sgc_status);
5573 #endif
5574 }